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Computation Offloading and Resource Allocation in

Mixed Fog/Cloud Computing Systems with

Min-Max Fairness Guarantee

Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu

Abstract—Cooperation between the fog and the cloud in mobile
cloud computing environments could offer improved offloading
services to smart mobile user equipment (UE) with computation
intensive tasks. In this paper, we tackle the computation offload-
ing problem in a mixed fog/cloud system by jointly optimizing
the offloading decisions and the allocation of computation re-
source, transmit power and radio bandwidth, while guaranteeing
user fairness and maximum tolerable delay. This optimization
problem is formulated to minimize the maximal weighted cost
of delay and energy consumption (EC) among all UEs, which
is a mixed-integer non-linear programming problem. Due to
the NP-hardness of the problem, we propose a low-complexity
suboptimal algorithm to solve it, where the offloading decisions
are obtained via semidefinite relaxation and randomization and
the resource allocation is obtained using fractional programming
theory and Lagrangian dual decomposition. Simulation results
are presented to verify the convergence performance of our
proposed algorithms and their achieved fairness among UEs, and
the performance gains in terms of delay, EC and the number of
beneficial UEs over existing algorithms.

Index Terms—Computation offloading, cloud computing, fog
computing, resource allocation, min-max fairness.

I. INTRODUCTION

With smart mobile user equipments (UEs) gains enormous

popularity, people expect to run more and more computation-

intensive mobile applications [1]. Those applications usual-

ly consume huge amounts of energy and demand powerful

computation capacity, and have rigorous delay constraints.

However, UEs are usually resource-constrained, possessing

limited computation capability and battery, which makes it

impractical to run sophisticated applications on them [2].

Mobile Cloud Computing (MCC) [3] has been considered as a

promising way to address the above challenges by offloading

those applications to powerful cloud centers. However, the

delay caused by transferring data to the remote cloud server is

usually unacceptable for some latency-sensitive applications.

Mobile edge computing [3] (or fog computing [4]) has been

proposed as a supplement to MCC for further energy saving

*This work was supported in part by National Natural Science Founda-
tion of China (61771358), Intergovernmental International Cooperation on
Science and Technology Innovation (2016YFE0122900), and the 111 Project
(B08038).

J. Du, L. Zhao, J. Feng are with State Key Laboratory of ISN, Xidian
University, No.2 Taibainan-lu, Xi’an, 710071, Shaanxi, China. (Email: du-
jianboo@163.com; lqzhao@mail.xidian.edu.cn; 784852087@qq.com).

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

and delay reduction in recent years [5]. In fog computing, ac-

cess points (APs) and UEs with certain processing capabilities

serve as fog nodes [4], [6], [7], and each UE is associated to

a cloud clone in the fog node or cloud center, where a virtual

machine (VM) executes mobile applications for the UE [8],

[9]. The slight difference between Fog computing and Mobile

edge computing is that Fog computing can be expanded to the

core network [3], [4], however, similar to most works, we do

not distinguish the two concepts in this paper.

Many works have been proposed to investigate the issues

involved in computation offloading. Through the optimization

of offloading decisions and the involved resource allocation,

such as the allocation of transmit power, bandwidth, and

computation resource, to obtain system performance gains,

e.g., reduction in delay or energy consumption (EC), or an

improvement in energy efficiency, etc. However, most of

those previous works put their emphasis either on offloading

decision making [2], [10], or resource allocation [6], without

a joint consideration of both. The works in [6] and [11]

focused on system-level performance improvement, without

considering the performance of individual UEs, where UEs

with good channel conditions (e.g., high channel gains, low

interference, or both) will benefit from computation offloading,

but at the cost of degraded performance of UEs under bad

channel conditions, resulting in unfairness among UEs.

Different from the above approaches, in this paper, we study

the joint optimization of offloading decision making, computa-

tion resource allocation, transmit power assignment, and radio

bandwidth allocation for a mixed cloud/fog computing system

to minimize the system cost, i.e., a weighted sum of delay

and energy consumption, with the maximum tolerable delay

guaranteed. To ensure the fairness of all the UEs, we minimize

the maximum cost among all the UEs. We formulate the

joint optimization as a mixed integer non-linear programming

(MINLP) problem and propose a suboptimal algorithm with

low complexity to solve it. The main contributions of this work

are summarized as follows.

• Different from [6], [12] and [13], a fairness-aware cost

minimization problem is formulated to minimize the

maximum cost among all UEs.

• We devise a low complexity algorithm called computation

offloading and resource allocation algorithm (CORA)

to solve the formulated NP-hard optimization problem.

It is first transformed into a non-convex quadratically

constrained quadratic programming (QCQP) problem;



and through semidefinite relaxation (SDR) and random-

ization, offloading decisions are obtained; then by using

the bisection method for computation resource allocation

(BCRA), we propose Algorithm 2 to optimize the com-

putation resource allocation.

• We propose a fractional programming based Algorithm

3 to transform the non-convex radio resource allocation

into a convex programming problem, which is solved by

Lagrange dual decomposition based Algorithm 4 (which

is nested in Algorithm 3) and transmit power and band-

width allocation is obtained.

• We perform abundant simulation results to evaluate the

convergence of the iterative algorithms 2, 3 and 4, the

fairness of CORA, and the performance gain of CORA

by comparing it with the existing prevalent algorithms in

computation offloading.

The remainder of this paper is organized as follows. Related

works are presented in Section II. Section III introduces the

system model and problem formulation. Section IV presents

the CORA algorithm with focus on the SDR based offload-

ing decision making algorithm. The iterative algorithms for

computation resources allocation is detailed in Section V. In

Section VI, we present the bandwidth and power allocation al-

gorithm. Complexity analysis of CORA algorithm is presented

in Section VII. Simulation results are provided in Section VIII.

Finally, the paper is concluded in Section IX.

Notation: Lower case boldface letters denote vectors, while

upper case boldface letters denote matrices. For a certain

matrix X, X ≽ 0 means that X is a positive semidefinite

matrix, while Tr(X) and rank(X) denote the trace and the

rank of X, respectively. For a vector x or a matrix X, xT or

XT represents the transpose of them. We use en to denote an

N × 1 unit vector with the nth entry being 1, and diag(en)
stands for an N ×N diagonal matrix with its main diagonal

elements from en.

II. RELATED WORKS

Application offloading has been a hot topic owning to the

appearance of cloud computing and fog computing. Each

application can be offloaded in coarse-grained application level

[6], [12], fine-grained task level [2], [13]–[16], or a percent of

[17], [18], and can be offloaded to the cloud or fog, where the

decision could be made in a centralized (most current works

employ this manner) or decentralized manner [10], [19], for

single UE or multiple UEs.

In single-UE case, task partitioning and assignment is usual-

ly considered where each task should be determined whether to

offload or not according to some criteria [2], [14]–[16], [20].

In [17], [18] the authors considered a special kind of data-

partitioned-oriented-application and partial of the application

is offloaded, together with transmit power optimization, to

minimize the EC of the UE. The tradeoff between the EC

for local computation and for remote communications was

discussed in [20], [21].

In multi-UE scenario, the computation resources of the fog

node, and communication resources between UEs and the fog

node (e.g., bandwidth, and power) are shared, which should

be allocated elaborately for a better performance. The authors

in [22] studied task-level offloading in a multi-UE multi-fog

scenario where offloading decision (whether to offload or not)

was optimized for each task of each UE. In [10] and [19],

game theory was utilized to optimized offloading decisions in

a multi-UE cloud computing environment. In [12], the authors

intended to minimize the system EC by offloading applications

into the cloud. Note that radio resources were not optimized

in [10], [12], [19], [22]. The authors in [6] studied application

offloading in a multi-UE multi-cell Multiple-Input Multiple-

Output (MIMO) system by transmit power optimization under

given offloading decisions, in order to minimize the total

EC of all UEs. The authors in [13] intended to maximize

the weighted performance improvement in time saving and

energy reduction of the system, by jointly optimizing offload-

ing decisions, the allocation of local clock frequency and

transmit power. A novel three-tier optimization architecture,

including the UE tier, the cloudlet tier, and the cloud tier, was

proposed in [19], where the authors proposed to minimize

the queue-arrival-rate weighted mean task response time of

each UE by offloading strategy optimization employing game

theory. However, none of the aforementioned works [4], [6],

[10], [12], [13], [19], [22] have jointly considered offloading

decision making, computation resource allocation and uplink

communication resource assignment for multi-UE mixed fog

and cloud radio access networks.

Resource allocation and offloading decision making were

jointly optimized in [11] so as to conserve energy while

satisfying UE delay constraints. However, the EC of each UE

was set as a constant for simplicity, ignoring its time varying

aspect. Besides, for resource allocation, it was only mentioned

as “solve the corresponding resource allocation problem”, but

no detail was given. Furthermore, there was no radio channel

model, and the radio resource was allocated in units of bit/s,

which was oversimplified, since in actual networks, radio

resource is usually in terms of resource blocks, bandwidth,

and/or transmit power. Moreover, the fairness between UEs

was not taken into consideration [6], [11]–[13].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Description of the Concerned Scenario

As shown in Fig. 1 [19], we consider a network consisting

of N UEs, one WiFi AP as the fog node, and a remote cloud

server. Denote the set of UEs as N . Each UE is connected to

the fog node via a wireless link, while the fog node and the

cloud server are connected via a fiber wired link. Each UE

has one application to be either handled locally or offloaded

for remote processing through the following procedure. Firstly,

each UE sends an offloading request (including the information

of the UE (e.g., its local processing capability, power), the

properties of the application (e.g., the maximum tolerable

delay), etc. [13]) to the decision maker (DM) in the fog node

[17]. According to the collected offloading requests of all

UEs and the instantaneous wireless channel gains, the DM

performs optimization to decide where should the applications



be processed, i.e., in the UE locally, in the fog, or in the cloud,

and finally, the offloading decision is delivered to the corre-

sponding UE. Since the offloading requests are usually very

small, we assume that no buffer is needed for queueing the

computation requests, as in [9]. To enable tractable analysis,

we assume that the DM decides the offloading strategy for all

the UE requests that have been received at the beginning of

the offloading period, i.e., the decision making delay due to

request queuing and decision making is omitted [23].

UE1

UEN

Fog node Cloud serverMobile users

Fiber link

Fig. 1. System topology [19].

The offloading decisions of UEn are constrained by

xn + yn + zn = 1, ∀n ∈ N , (1)

where xn = 1, yn = 1, zn = 1 indicate that the application

is processed by UE itself, by the fog, and by the cloud,

respectively; otherwise, xn=0, yn=0, zn=0. The constraint

in (1) implies that among xn, yn, and zn, one and only one

of them is 1 at any time.

Similar to the existing works [6], [9], [10], [13], [20],

[22], [23], to enable tractable analysis, we consider a quasi-

static scenario where all UEs and the wireless network remain

stationary during an offloading period (usually within several

seconds [10]). This assumption holds for many applications,

e.g., natural language processing, and face recognition, where

the input data size is not large so that the application offloading

could be completed during a time shorter than the timescales

of UE mobility and the dynamics of wireless networks. We

perform the joint optimization of offloading decision and

resource allocation at each new request from a UE within an

offloading period independently.

For fog processing, the fog node needs to allocate the limit-

ed computation resources (in CPU cycles/s) to the application

of corresponding UEs. Denote the set of fog-processing UEs

by N1, and N1 = |N1| is the number of UEs in N1. For

remote processing in the cloud, the applications need to be

transmitted from the UE to the fog node through the shared

wireless links, and then forwarded by the fog node to the

cloud through a wired link. Since the cloud has plenty of

computation resources and the wired link between the fog

node and the cloud server is of a sufficiently large capacity, the

allocation of these resources will not be discussed. However,

the limited radio bandwidth needs to be allocated among all the

fog-processing and cloud-executing UEs for communicating

with the fog node. All the fog-processing and cloud-executing

UEs are referred to as remote-processing UEs, collected in the

set N2, and N2 = |N2| is the number of remote-processing

UEs. Assume the total radio bandwidth is B Hz. We allocate

to each remote-processing UE a portion of the total bandwidth

orthogonally to avoid interference between them [24], [25].1

Denote the normalized assigned portion of bandwidth to UEn

as an, we have an ∈ [0, 1] and
∑

n∈N2

an ≤ 1.

The application of UE n is described by Jn =
{Dn, Appn, τ

max
n }, n ∈ N , where Dn denotes the size of

input data (in bits), τmax
n is the tolerable maximum latency

(in second), and Appn is the processing density (in CPU

cycles/bit), which depends on the computational complexity

of the application [1], [17]. We model the size Cn of cal-

culation amount, i.e., the number of CPU cycles necessary

to accomplish the application, as Cn = DnAppn [17], [18].

In the following, we assume that the Dn, Cn and Appn are

known, which can be obtained by employing program profilers

as in [2], [13], [22]. We assume there is a clone for each UE

in the fog node, so the application code of Jn with size Cn is

backed up in the fog node [1], [20], and can be downloaded

by the cloud server through a high-speed wired link [2], [6].

Therefore, only the data of Dn bits need to be transmitted

from the UE to cloud server when offloading. It should be

noted that Dn, Cn, Appn and τmax
n are inherent parameters

of the application of UEn, and they will not change with where

the application is processed.

In the following we will discuss the EC and the delay caused

by local processing, fog executing and cloud computing,

respectively. Since the output after processing is usually small,

only the uplink communication is considered hereafter for

simplicity of analysis [9], [10], [13], [20].

B. Cost Under Different Scenarios

1) Local Processing: Let f loc
n and plocn be the local com-

putation capability (in CPU cycles/s) and the local executing

power consumption (in watt) of UEn, respectively. The delay

and EC of processing application Jn locally are [6], [13], [16]

T loc
n = Cn/f

loc
n , (2)

Eloc
n = plocn (Cn/f

loc
n ). (3)

2) Fog Computing: For analytical tractability, we assume

that the fog processing for an application starts only after

all the input data has been received by the fog node. More

specifically, if the application Jn is to be processed in the fog,

UEn needs to transmit the input data Dn to the fog through the

shared wireless links. After all the input data Dn is received,

application Jn is executed by the fog node. Denote the channel

gain between UEn and the fog node as hn, then the achievable

transmit rate of UEn is

rn = anB log2

(
1 +

pcomn hn

anN0B

)
, (4)

where pcomn is the transmit power of UEn, which is restricted

by the maximum value pmax
n .

1When the total allocated bandwidth is less than the system bandwidth, the
frequency band of each UE does not overlap and can be accessed orthogonally.



Denote the power consumption (in watt) of UEn in idle

state as pidn , then the delay and EC of fog processing are given

respectively by [6]

T fog
n = Dn/rn + Cn/f

fog
n , (5)

Efog
n = pcomn (Dn/rn) + pidn (Cn/f

fog
n ), (6)

where ffog
n (in CPU cycles/s) denotes the computation re-

sources allocated to UEn.

3) Cloud Computing: If application Jn is offloaded to the

cloud server, then UEn first transmits the data of size Dn

through a wireless link to the fog node, which then forwards

Jn to the cloud server through a high-speed wired link. We

denote the rate of the wired link allocated to UEn as Rfc
n (in

bit/s), and the cloud processing capability assigned to UEn

as f c
n (in CPU cycles/s). The delays in wired transmission

and cloud processing are given by T fc
n = Dn/R

fc
n and T c

n =
Cn/f

c
n, respectively. The total delay and total EC of cloud

processing for UEn are given respectively by

T cloud
n = Dn/rn + T fc

n + T c
n, (7)

Ecloud
n = pcomn (Dn/rn) + pidn (T fc

n + T c
n). (8)

According to (2)-(8), the EC and delay of UEn can be

expressed respectively as

En = Eloc
n xn + Efog

n yn + Ecloud
n zn, (9)

Tn = T loc
n xn + Efog

n yn + Ecloud
n zn. (10)

All the notations used are listed in Table I.

TABLE I
NOTATION DEFINITIONS

Symbol Definition

Eloc
n , Efog

n , EC for UEn in local/fog/cloud processing

Ecloud
n

T loc
n , T fog

n , Delay for UEn in local/fog/

T cloud
n cloud processing

f loc
n , ffog

n , Processing ability of UEn of
fc
n local/fog/cloud processing

plocn , pidn , Power of UEn in local processing/idle/transmit
pcomn

Dn, Cn, Data size/size of calculation amount/
Appn processing density of Jn

τmax
n The maximum processing delay of Jn

rn Transmit rate of UEn

an Normalized allocated bandwidth to UEn

F fog Total computation capability of the fog

T fc
n , T c

n Wired transmit/cloud-processing delay of UEn

Rfc
n Rate of UEn in wired link

xn, yn, zn Offloading decisions of UEn

π Set of offloading decision of all UEs

N , N Set/number of UEs

N1, N1 Set/number of fog processing UEs

N2, N2 Set/number of remote processing UEs

L Number of runs (i.e., randomization trails)

B Total radio bandwidth between UEs and the fog

N0 Additive noisy power spectral density

C. Problem Formulation

In this section, we formulate the problem of jointly opti-

mizing offloading decision making and resource allocation for

a mixed fog/cloud computing system and show that it is NP-

hard.

The cost of UEn is defined as the weighted sum of EC and

latency as Costn = λe
nEn+λt

nTn where λe
n, λ

t
n ∈ [0, 1] , n ∈

N denote the weights of EC and delay for UEn, respectively.

We propose to minimize the maximum cost among all UEs

while meeting the maximum delay constraints. We formu-

late the joint optimization of the offloading decisions π =
[x,y, z] = [x1, y1, z1, ..., xN , yN , zN ], the power and band-

width assignment pcom = [pcom1 , ..., pcomN ] and a=[a1, ..., aN ]
(for local processing UEn, we let pcomn =0, an=0), and the

computation resource allocation ffog = [ffog
1 , ..., ffog

N ] (for

non-fog processing UEn, let ffog
n =0) as follows

(P1) : min
π,ffog,pcom,a

max
n∈N

Costn (11)

s.t. (C1) : xn, yn, zn ∈ {0, 1}, ∀n ∈ N ,

(C2) : xn + yn + zn = 1, ∀n ∈ N ,

(C3) :
∑

n∈N

ffog
n ≤ F fog,

(C4) : ffog
n ≥ 0, ∀n ∈ N ,

(C5) : 0 < an ≤ 1, ∀n ∈ N ,

(C6) :
∑

n∈N

an ≤ 1,

(C7) : 0 ≤ pcomn ≤ pmax
n , ∀n ∈ N ,

(C8) : Tn ≤ τmax
n , ∀n ∈ N ,

where F fog is the total computation capacity of the fog node;

(C1) and (C2) are the constraints on the offloading decision

of each UE; (C3) indicates that the allocated computation

resources cannot exceed the total computation capability of the

fog node; (C4) is the non-negative constraint on computation

resource allocation; (C5) and (C6) are the constraints on

bandwidth allocation; (C7) is the transmit power constraint

of each UE; and (C8) indicates each application should

be performed before a tolerable deadline. Note that (P1)
minimizes the maximum cost among all UEs. Therefore, it

guarantees fairness among UEs from the perspective of system

cost.

Remark 1. Problem (P1) is not convex due to: 1) the

min-max formulation; and 2) the binary variables π. It is a

mixed-integer non-linear programming problem, which can be

generally NP-hard [26].

IV. OFFLOADING DECISION MAKING

A. Equivalent Transformation into a QCQP Problem

In the following, to reduce the computational complexity,

we transform (P1) into a QCQP problem, which is then

converted into a standard convex problem via semidefinite

relaxation. The converted problem can be solved using convex

optimization toolbox CVX [27].



Firstly, we introduce a slack variable ζ, and let

max
n∈N

Costn = ζ. By merging items containing xn, yn, zn

and yn + zn, respectively, we have

(λe
np

loc
n + λt

n)
Cn

f loc
n

xn + (λe
np

id
n + λt

n)(T
fc
n + T c

n)zn

+ (λe
np

id
n + λt

n)
Cn

ffog
n

yn + (λe
np

com
n + λt

n)
Dn

rn
(yn + zn)

≤ ζ, (12)

where (λe
np

loc
n + λt

n)
Cn

f loc
n

and (λe
np

id
n + λt

n)(T
fc
n + T c

n) are

constants. Letting max
n∈N

{(λe
np

id
n + λt

n)
Cn

f
fog
n

yn} = Dfog
n and

max
n∈N

{(λe
np

com
n + λt

n)
Dn

rn
(yn + zn)} = Dcom

n , we have

Cn(λ
e
np

id
n + λt

n)yn ≤ Dfog
n ffog

n ,

Dn(λ
e
np

com
n + λt

n)(yn + zn) ≤ Dcom
n rn. (13)

Based on the above definitions, (P1) is transformed as

(P2) : min
π,ffog,pcom,a,d,ζ

ζ (14)

s.t. (C11) : xn(xn − 1) = 0, yn(yn − 1) = 0,

zn(zn − 1) = 0, ∀n ∈ N ,

(C2)− (C8),

(C9) : Costn ≤ ζ, ∀n ∈ N ,

(C10) : Cn(λ
e
np

id
n + λt

n)yn ≤ Dfog
n ffog

n , ∀n ∈ N ,

(C11) : Dn(λ
e
np

com
n + λt

n)(yn + zn) ≤ Dcom
n rn,

∀n ∈ N ,

where d = [d1,d2, ...,dN ], dn =
[
Dfog

n , Dcom
n

]
, and the

integer constraint (C1) is replaced with (C11). However,

problem (P2) is still nonconvex due to the quadratic terms in

(C11). Next, we transform (P2) into an equivalent standard

QCQP problem. To enable tractable analysis, the constraints

with respect to resource allocation including (C5)–(C8) are

not considered temporarily in offloading decision making for

simplicity.

We first define the following (7N+1)×1 vector as follows

s =
[
x1, y1, z1, ..., xN , yN , zN , ffog

1 , ..., ffog
N ,

Dfog
1 , ..., Dfog

N , r1, ..., rN , Dcom
1 , ..., Dcom

N , ζ
]T

.

Then problem (P2) is transformed into the following stan-

dard QCQP problem

(P3) : min
s

(u0)
T s (15)

s.t. (C1′) : sTdiag(e′p)s−(e′p)
Ts=0, p=1, ..., 3N,

(C2′) : (uI
n)

T s = 1, ∀n ∈ N ,

(C3′) : (ufog)T s ≤ F fog,

(C4′) : (uf
n)

T s ≥ 0, ∀n ∈ N ,

(C9′) : (uc
n)

T s ≤ 0, ∀n ∈ N ,

(C10′) : sTQfog
n s+ (ufog

n )T s ≤ 0, ∀n ∈ N ,

(C11′) : sTQcom
n s+ (ucom

n )T s ≤ 0, ∀n ∈ N ,

where ei and e′i are standard unit vectors with size of N × 1
and (7N + 1)× 1, respectively, and

u0 = [01×7N 1]T , uI
n = e′3n−2 + e′3n−1 + e′3n,

ufog = [01×3N 11×N 01×(3N+1)]
T ,

ufog
n = Cn(λ

e
np

id
n + λt

n)e
′
3n−1, uf

n = e′3N+n,

ucom
n = Dn(λ

e
np

com
n + λt

n)(e
′
3n−1 + e′3n),

uc
n = (λe

np
loc
n + λt

n)
Cn

f loc
n

e′3n−2 + (λe
np

id
n + λt

n)(T
fc
n + T c

n)e
′
3n

+ e′4N+n + e′6N+n − e′7N+1,

Qfog
n =




03N×3N 03N×2N 03N×(2N+1)

02N×3N Q
fog
n1 02N×(2N+1)

0(2N+1)×3N 0(2N+1)×2N 0(2N+1)×(2N+1)


 ,

Qcom
n =




05N×5N 05N×2N 05N×1

02N×5N Qcom
n1 02N×1

01×5N 01×2N 01×1


 ,

Qcom
n1 =Q

fog
n1 =−1

2

[
0N×N diag (en)

diag (en) 0N×N

]
.

However, the QCQP problem (P3) is still nonconvex and

is hard to solve.

B. Semidefinite Relaxation

SDR is an efficient way to simplify QCQP problems [28].

In (P3), all the matrices are real symmetric, and all the vectors

are real, satisfying the conditions for SDR. In order to apply

SDR to (P3), we define

w = [s(7N+1)×1 11×1]
T ,

W = [wwT ](7N+2)×(7N+2). (16)

Notice W is a rank one symmetric positive semidefinite

matrix, then we obtain the equivalent version of (P3) as

follows

(P4) : min
W

Tr(M0W) (17)

s.t. (C1′′) : Tr(MpW) = 0, p = 1, ..., 3N,

(C2′′) : Tr(MI
nW) = 1, ∀n ∈ N ,

(C3′′) : Tr(MfogW) ≤ F fog,

(C4′′) : Tr(Mf
nW) ≥ 0, ∀n ∈ N ,

(C9′′) : Tr(Mc
nW) ≤ 0, ∀n ∈ N ,

(C10′′) : Tr(Mfog
n W) ≤ 0, ∀n ∈ N ,

(C11′′) : Tr(Mcom
n W) ≤ 0, ∀n ∈ N ,

(C12) : W(7N+2, 7N+2) = 1,

(C13) : W≽0,

(C14) : rank(W) = 1,



where

M0 =

[
0(7N+1)×(7N+1)

1
2u0

1
2 (u0)

T 0

]
,

Ma
n =

[
0(7N+1)×(7N+1)

1
2u

a
n

1
2 (u

a
n)

T 0

]
, a = I, f, c; ∀n,

Mfog =

[
0(7N+1)×(7N+1)

1
2u

fog

1
2 (u

fog)T 0

]
,

Mv
n =

[
Qv

n
1
2u

v
n

1
2 (u

v
n)

T 0

]
, v = com, fog; ∀n,

Mp =

[
diag(e′p) − 1

2e
′
p

− 1
2 (e

′
p)

T 0

]
, ∀p.

In problem (P4), the only non-convex constraint is the rank

constraint (C14). By dropping the rank constraint (C14), we

relax problem (P4) into a positive semidefinite programming

(PSD) problem as follows

(P5) : min
W

Tr(M0W) (18)

s.t. (C1′′)− (C4′′), (C9′′)− (C11′′),

(C12), (C13).

Now, we have transformed the original problem (P1) into

a standard convex optimization problem (P5), which could be

solved in polynominal time using standard CVX tools such as

SeDuMi [27].

C. Extracting Offloading Decisions

In this subsection, we extract a feasible solution s̃ to (P3)
from the global optimal solution W∗ to (P5). We adopt

the method proposed in [11], [16], to obtain the offloading

decisions in the feasible solution s̃.

According to the definition of W, we know that only the

top left 3N × 3N submatrix of W∗, denoted as W
′∗, is

necessary to obtain the offloading decisions π; and all the

diagonal elements in W
′∗ are positive real numbers between 0

and 1. We define pr = [prl1, pr
f
1 , pr

c
1, ..., pr

l
N , prfN , prcN ]T ,

diag(W
′∗), where each entry of pr indicates the probability

of the corresponding entry of π being 1.

To satisfy constraint (C2), we define Ξl
n=prln(1−prfn)(1−

prcn), Ξf
n = (1−prln)pr

f
n(1−prcn) and Ξc

n = (1−prln)(1−
prfn)pr

c
n. Based on them, the probabilities of local, fog, and

cloud processing for UEn are given respectively as Prln =
Ξl
n/(Ξ

l
n+Ξf

n+Ξc
n), Prfn = Ξf

n/(Ξ
l
n+Ξf

n+Ξc
n), and Prcn =

Ξc
n/(Ξ

l
n + Ξf

n + Ξc
n).

Then the location where the application of UEn will be

executed is given by

On =





(1, 0, 0), local processing with prob. P rln,
(0, 1, 0), fog processing with prob. P rfn,
(0, 0, 1), cloud processing with prob. P rcn.

(19)

By randomly setting the value of the vector according to

the probabilities in (19), problem (P6) is resolved and the

offloading decisions xn, yn and zn of UEn can be obtained.

D. Joint Offloading Decision and Resource Allocation algo-

rithm

In the above procedure for offloading decision extraction

in (19), since the offloading decisions are obtained randomly

according to the obtained probabilities Prln, P rfn, P rcn, we can

run the above procedure several times to obtain more accurate

offloading decisions. Each run is referred to as a randomization

trial and the number of randomization trails is denoted by L.

After that L i.i.d feasible offloading decisions π
l, l = 1, ..., L

are obtained. Then we perform radio and computation resource

allocation under each π
l, and L solutions including offloading

decision and resource allocation are obtained, among which

the one with the minimum objective value is considered as

the final solution π
∗. A small value of L will be sufficient

to obtain a satisfying result [11]. The global framework of

CORA is shown in Algorithm 1.

Algorithm 1 Computation Offloading Decision Making and

Resource Allocation Algorithm (CORA)

Initialization:

1: Initialize L,N,B,N0, F
fog .

2: Initialize Dn, Appn, f
loc
n , pmax

n , pidn , plocn , Rfc
n , f c

n, τ
max
n

of each UE.

3: Initialize all the matrixes involved in (P5);
Iteration:

4: Solve the SDR problem (P5) adopting standard CVX tool

SeDuMi to get its optimal W∗.

5: Extract the top left corner 3N×3N sub-matrix W′∗ from

matrix W∗, and denote the values of diagonal elements

in W′∗ as pr = [prl1, pr
f
1 , pr

c
1, ..., pr

l
N , prfN , prcN ]T .

6: for l = 1, ..., L do

7: Extract π
l from prl =

[prl1, pr
f
1 , pr

c
1, ..., pr

l
N , prfN , prcN ]T

l
according to

(19).

8: Perform radio and computation resource allocation un-

der πl.

9: end for

10: Compare the objective value of all the L solutions, and

choose the solution with the minimum objective value.

11: Output: The corresponding offloading decision π
∗ and

resource allocation is considered as the final solution.

E. Dimensional Reduction of Original Problem (P1)

In lines 6-9 in the iteration of Algorithm 1, after offloading

decision π
l is obtained, we need to perform resource allocation

in line 8 under given π
l. For notation simplicity, we denote

π
l as π. Then problem (P1) reduces to the optimization of

radio and computation resource allocation, which is embedded

in Step 7 of Algorithm 1 as follows

(P6) : min
ffog,pcom,a

max
n∈N

(λe
np

com
n + λt

n)
Dn

rn
(yn + zn)

+ (λe
np

id
n + λt

n)
Cn

ffog
n

yn+un

s.t. (C3)− (C8), (20)



where un = (λe
np

loc
n +λt

n)
Cn

f loc
n

xn+(λe
np

id
n +λt

n)(T
fc
n +T c

n)zn
is a constant for a given offloading decision π. According to

(P6), the computation resource allocation ffog and the radio

resource allocation pcom,a are decoupled both in objective

function and the constraints, so (P6) can be decomposed into

the joint optimization of computation resource allocation and

radio resource allocation, which will be detailed in the next

two sections.

V. ITERATIVE COMPUTATION RESOURCE ALLOCATION

Under given radio resource allocation pcom,a, the optimal

computation resource allocation can be obtained by solving

the following problem:

(P7) : min
ffog

max
n∈N1

(λe
np

id
n + λt

n)
Cn

ffog
n

+Bn (21)

s.t. (C3+) :
∑

n∈N1

ffog
n ≤ F fog,

(C4+) : ffog
n ≥ 0, ∀n ∈ N1,

where Bn = (λe
np

com
n + λt

n)
Dn

rn
is a constant now. Let

(λe
np

id
n + λt

n)
Cn

f
fog
n

+ Bn ≤ ζ1, the nonsmooth problem (P7)

is transformed into

(P8) : min
ffog,ζ1

ζ1 (22)

s.t. (C3+), (C4+),

(C15) : (λe
np

id
n + λt

n)
Cn

ffog
n

+Bn ≤ ζ1, ∀n ∈ N1.

As (λe
np

id
n + λt

n)
Cn

f
fog
n

≥ 0, thus ζ1 −Bn ≥ 0, and we have

0 ≤ Cn(λ
e
np

id
n +λt

n)
ζ1−Bn

≤ ffog
n , ∀n ∈ N1.

Based on the analysis above, we obtain∑
n∈N1

Cn(λ
e
np

id
n +λt

n)
ζ1−Bn

≤∑n∈N1
ffog
n ≤ F fog .

Next, we perform computation resource allocation among

all the fog-executing UEs to minimize the maximum cost

among them to guarantee min-max fairness. To this end, we

need to allocate more computation resource to the UE with

the maximum cost. Thus the cost of this UE is reduced while

that of other UEs will increase. By performing this procedure

iteratively, in the end, all the computation resource will be

allocated and all the fog-executing UEs will be assigned the

same quality of computation resource. Thus we have

∑

n∈N1

Cn(λ
e
np

id
n + λt

n)

ζ1 −Bn

=
∑

n∈N1

ffog
n = F fog. (23)

Then problem (P8) could be transformed into

(P9) : min
ζ1

ζ1 (24)

s.t. (C16) :
∑

n∈N1

Cn(λ
e
np

id
n + λt

n)

ζ1 −Bn

= F fog.

As the left side of constraint (C16) is monotonic de-

creasing with ζ1, the bisection method could be employed

to resolve problem (P9). The procedure of the proposed

bisection method for computation resource allocation algo-

rithm (BCRA) is described in Algorithm 2.

Algorithm 2 Bisection Method for Computation Resource

Allocation Algorithm (BCRA)

Initialization:

1: Set ζmin
1 = max{Bn}, ζmax

1 =∑
n∈N1

(
Cn(λ

e
np

id
n +λt

n)N1

F fog +Bn

)
, such that ζmin

1 ≤
ζopt ≤ ζmax

1 .

2: Set l = 1 and the maximum tolerance ε > 0.

Iteration:

3: while 1 do

4: ζl1 = (ζmin
1 + ζmax

1 )/2.

5: if | ζmax
1 − ζmin

1 |≤ ε then

6: ζopt1 = ζl1
7: else

8: if
∑

n∈N1

Cnyn

ζl
1
−Bn

> F fog then

9: ζmin
1 = ζl1.

10: else

11: ζmax
1 = ζl1.

12: end if

13: end if

14: l = l + 1
15: end while

16: Substituting ζl1 into (23), computation resource allocation

scheme ffog is obtained.

17: Output: ffog .

VI. ITERATIVE RADIO RESOURCE ALLOCATION

ALGORITHM DESIGN

When the computational resource allocation ffog has been

obtained, problem (P6) reduces to the optimization of transmit

power and bandwidth allocation among all remote-executing

UEs in N2 as follows

(P10) : min
pcom,a

max
n∈N2

Dn(λ
e
np

com
n + λt

n)

anB log2 (1 +
pcom
n hn

anN0B
)

(25)

s.t. (C5+) : 0 ≤ an ≤ 1, ∀n ∈ N2,

(C6+) :
∑

n∈N2

an ≤ 1,

(C7+) : 0 ≤ pcomn ≤ pmax
n , ∀n ∈ N2,

(C8+) : T fog
n yn + T cloud

n zn ≤ τmax
n , ∀n ∈ N2,

where the constant un = (λe
np

loc
n + λt

n)
Cn

f loc
n

xn + (λe
np

id
n +

λt
n)(T

fc
n +T c

n)zn in the objective function is omitted, because

it does not affect the problem solving. As the objective

function is non-convex, (P10) is a non-convex optimization

problem. Nevertheless, (P10) can be grouped into nonlinear

fractional programming problem [29], so fractional optimiza-

tion could be employed to solve it.

For notational simplicity, we define the feasible solutions

set of (P10) as F(F ̸= 0). Denote the optimal solution and



optimal value of (P10) as {pcom∗,a∗} and V ∗, respectively,

we have

V ∗ = min
{pcom,a}∈F

max
n∈N2

Dn(λ
e
np

com
n + λt

n)

anB log2

(
1 +

pcom
n hn

anN0B

)

= max
n∈N2

Dn(λ
e
np

com
n

∗ + λt
n)

a∗nB log2

(
1 +

pcom∗

n hn

a∗

nN0B

) . (26)

Proposition 1: The optimal value V ∗ is reached if and only

if

min
{pcom,a}∈F

max
n∈N2[
Dn(λ

e
np

com
n + λt

n)− V ∗anB log2

(
1+

pcomn hn

anN0B

)]

= max
n∈N2

[
Dn(λ

e
np

com∗
n + λt

n)−V ∗a∗nB log2

(
1+

pcom∗
n hn

a∗nN0B

)]

= 0. (27)

Proof: See Appendix A. 2

Proposition 1 indicates that (P10) can be solved via solving

its equivalent problem (27). Nevertheless, V ∗ is usually un-

known in advance. To tackle the difficulty, we replace V ∗ with

an update parameter V [29]. The procedure is elaborated in

Algorithm 3, where the optimization problem in line 4 under

a given V (e.g., V i at iteration i) is

(P11) : min
pcom,a

max
n∈N2

[
Dn(λ

e
np

com
n + λt

n)

− V anB log2

(
1 +

pcomn hn

anN0B

)]

s.t. (C5+)− (C8+). (28)

To solve (P11), substituting equations (5) and (7) into

constraint (C8+)and noting that yn + zn = 1, n ∈ N2, we

obtain

anB log2

(
1 +

pcomn hn

anN0B

)
≥ Dn

τmax
n − vn

, (29)

where vn = Cn

f
fog
n

yn + (T fc
n + T c

n)zn is a constant.

Similar to (12), let Dn(λ
e
np

com
n + λt

n) −
V an log2

(
1 +

pcom
n hn

anN0B

)
≤ ζ2, (P11) is recasted as

(P12) : min
pcom,a,ζ2

ζ2 (30)

s.t. (C5+), (C6+),

(C7+1 ) : p
com
n ≥ 0, n ∈ N2,

(C7+2 ) : p
com
n ≤ pmax

n , n ∈ N2,

(C17) : anB log2

(
1+

pcomn hn

anN0B

)
≥ Dn

τmax
n − vn

, n∈N2,

(C18) : Dn(λ
e
np

com
n + λt

n)−V an log2

(
1+

pcomn hn

anN0B

)

≤ ζ2, n ∈ N2.

Proposition 2: Problem (P12) is jointly convex in pcom, a

Algorithm 3 Iterative Power and Bandwidth Allocation Algo-

rithm to solve (P10)

Initialization:

1: Set the maximum iteration number imax and precision ϵ.
2: Set the initial iteration index i = 0 and the initial optimal

value V i = 1.

Iteration:

3: while i < imax do

4: For given V i, solve (P11) to obtain {pcomi,ai}.

5: if ∣∣∣∣∣ max
n∈N2

[
Dn(λ

e
np

com
n

i+λt
n)

−V iainB log2

(
1+

pcomn
ihi

n

ainN0B

)]∣∣∣∣∣ < ϵ

then

6: {p∗,a∗} = {pcomi,ai}.

7: V ∗ = max
n∈N2

Dn(λ
e
np

com
n

i+λt
n)

ai
nB log

2

(

1+
pcomn

ihi
n

ai
nN0B

) .

8: else

9: Set V i+1 = max
n∈N2

Dn(λ
e
np

com
n

i+λt
n)

ai
nB log

2

(

1+
pcomn

ihi
n

ai
nN0B

) .

10: break.

11: end if

12: end while

and ζ2.

Proof: See Appendix B. 2

As problem (P12) is convex, the Slaters condition [30]

is satisfied and the zero duality gap is guaranteed, thus the

problem could be resolved using Lagrange dual decomposition

and subgradient projection [31].

The Lagrange function of (P12) is given by (31), where

β ≥ 0, ω = [ω1, ..., ωN2
] ≽ 0, µ = [µ1, ..., µN2

] ≽ 0, and

γ = [γ1, ..., γN2
] ≽ 0 are Lagrange multipliers corresponding

to (C6+), (C7+2 ), (C17), and (C18), respectively.

The Lagrange dual function is given by

D(β,ω,µ,γ) = min
pcom,a,ζ2

L(pcom,a, ζ2, β,ω,µ,γ)(32)

s.t. (C5+), (C7+1 ).

From (32), we minimize L(pcom,a, ζ2, β,ω,µ,γ) for a

given set of dual variables β,ω,µ,γ to obtain the transmit

power pcom and bandwidth allocation a, by resolving the

following two problems.



L(pcom,a, ζ2, β,ω,µ,γ)

= ζ2+β

(
∑

n∈N2

an−1

)
+
∑

n∈N2

ωn (p
com
n −pmax

n ) +
∑

n∈N2

µn

[
Dn

τmax
n −vn

−anB log2

(
1 +

pcomn hn

anN0B

)]

+
∑

n∈N2

γn

[
Dn(λ

e
np

com
n + λt

n)− V anB log2

(
1 +

pcomn hn

anN0B

)
− ζ2

]
. (31)

A. Resource Allocation Update

(P13) : min
pcom,a{
∑

n∈N2

ωnp
com
n −

∑

n∈N2

µnanB log2

(
1+

pcomn hn

anN0B

)

+ β
∑

n∈N2

an+
∑

n∈N2

γn

[
Dn(λ

e
np

com
n + λt

n)

−V anB log2

(
1+

pcomn hn

anN0B

)]}

s.t. (C5+), (C7+1 ). (33)

1) Power and Bandwidth Allocation:

• Optimal Transmit Power Allocation

For a given bandwidth allocation a, the Karush-Kuhn-

Tucker (KKT) conditions are satisfied. By differentiating

L(pcom,a, ζ2, β,ω,µ,γ) with respect to pcomn , n ∈ N2, and

let it equal 0, we obtain the optimal transmit power allocation

for each UE as follows,

pcomn
∗=

{
an

[
B(µn + V γn)

ln 2(ωn + γnDnλe
n)

− N0B

hn

]}+

, n ∈ N2, (34)

where x+ , max{0, x}.

• Optimal Bandwidth Assignment

After pcom∗ has been obtained, by differentiating

L(pcom,a, ζ2, β,ω,µ,γ) w.r.t. an and letting it equal 0, we

obtain

(µn+V γn)B log2

(
1+

pcomn hn

anN0B

)
µn+V γn

ln 2

pcomn hnB

anN0B+pcomn hn

= β. (35)

Rearranging (35) and denoting Xn = Xn(µn, γn, β) =
1

1+
pcomn hn
anN0B

as the solution to

Xn − ln 2 log2(Xn) =
β ln 2

(µn + V γn)B
+ 1, (36)

it is easy to show 0 < Xn < 1. For Xn ∈ (0, 1), we

have Xn − ln 2 log2(Xn) ∈ (1,+∞), which suggests that

Xn ∈ (0, 1) always exists as all the dual variables µn, γn, β
are non-negative, and Xn−ln 2 log2(Xn)− β ln 2

(µn+V γn)B
−1 = 0

decreases with Xn, and has a root in (0, 1). Consequently,

a bisection search in (0, 1) could be used for X∗
n, and the

bandwidth allocation a∗n is given as

a∗n=
pcomn hn

N0B

X∗
n(µn, γn, β)

1−X∗
n(µn, γn, β)

, (0<X∗
n(µn, γn, β)<1). (37)

2) Adaptive ζ2 Selection:

(P14) : min
ζ2

ζ2 (38)

s.t.(C18+) : Dn(λ
e
np

com
n +λt

n)−V anB log2

(
1+

pcomn hn

anN0B

)

≤ ζ2 ≤ 0, n ∈ N2.

From (P14), the optimal solution ζ∗2 is

ζ∗2 =





0, 1 <
∑

n∈N2

γn

G∗
n, 1 >

∑
n∈N2

γn
, ∀n ∈ N2, (39)

where G∗
n=max

n∈N2

[
Dn(λ

e
np

com
n +λt

n)−V a∗nB log2

(
1+

pcom
n

∗hn

a∗

nN0B

)]
.

B. Lagrange Multipliers Update

The optimal resource allocations in (34) and (37) depend

on the dual variables β,ω,µ and γ, which can be updated by

solving the dual problem of (P12) as follows

(P15) : max
β,ω,µ,γ

D(β,ω, µ,γ) (40)

s.t. β ≥ 0,ω ≽ 0,µ ≽ 0,γ ≽ 0.

According to (31) and (32), (P15) is convex as

D(β,ω,µ,γ) is a linear function w.r.t. the dual variables

β,ω,µ and γ. Thus, subgradient projection could be applied

to solve (P15).

Proposition 3: The subgradients of D(β,ω,µ,γ) are given

as

▽ β=
∑

n∈N2

a∗n − 1, (41)

▽ ωn=pcomn
∗ − pmax

n , ∀n ∈ N2, (42)

▽ µn=
Dn

τmax
n −vn

−a∗nB log2

(
1+

pcomn
∗hn

a∗nN0B

)
, ∀n∈N2, (43)

▽ γn=Dn(λ
e
np

com
n

∗+λt
n)−V a∗nB log2

(
1+

pcomn
∗hn

a∗nN0B

)

−ζ2, ∀n ∈ N2, (44)

where pcomn
∗, a∗n, n ∈ N2 are the optimal solutions to (37)

for a given set of dual variables β,ω,µ and γ.

Proof: See Appendix C. 2

Based on (41)–(44), the Lagrange multipliers are updated



using the subgradient projection method as follows:

β(t+ 1) = [β(t)− h(t)▽ β(t)]
+
, (45)

ωn(t+ 1) = [ωn(t)− i(t)▽ ωn(t)]
+
, ∀n ∈ N2, (46)

µn(t+ 1) = [µn(t)− j(t)▽ µn(t)]
+
, ∀n ∈ N2, (47)

γn(t+ 1) = [γn(t)− k(t)▽ γn(t)]
+
, ∀n ∈ N2, (48)

where t is iteration index; h(t), i(t), j(t) and k(t) are positive

step sizes. We adopt square-summable but not summable step

sizes [30], where h(t) = 1/(10−2t), i(t) = 1/(10t), j(t) =
−1/(1013.8t), and k(t) = 1/(1018t). The Lagrange multipliers

are updated iteratively until the terminal condition is med. The

whole procedure to solve (P11) is summarized in Algorithm

4.

Till now, the complete solution to the primal optimization

problem (P1) is obtained. For the sake of a clear understand-

ing, the detailed flow diagram of CORA is shown in Fig.2.

Algorithm 4 Suboptimal Power and Bandwidth Allocation

Algorithm to solve problem (P11)

Initialization:

1: Set β,ω,µ,γ, τmax
n and the precision δ. Set t = 0.

Iteration:

2: while t ≤ tmax do

3: Allocate transmit power pcomn (t) according to (34).

4: Perform bisection search between (0, 1) for Xn(t).
5: Assign bandwidth an(t) from (37) based on Xn(t).
6: Update Lagrange multipliers β,ω,µ,γ from (45)-(48),

respectively.

7: if ∥β(t + 1) − β(t)∥2 < δ, ∥ω(t + 1) − ω(t)∥2 <
δ,∥µ(t + 1) − µ(t)∥2 < δ, ∥γ(t + 1) − γ(t)∥2 < δ
then

8: a∗n = an(t), p
com
n

∗ = pcomn (t).
9: break.

10: else

11: t = t+ 1.

12: end if

13: end while

14: Output: a∗ = [a∗n, ..., a
∗
N2

], pcom∗ = [pcom1
∗, ..., pcomN2

∗].

VII. COMPLEXITY ANALYSIS OF CORA

The computational complexity of CORA in Algorithm 1

mainly comes from Step 4 and Step 8 in the for-loop for

L times. In Step 4 of Algorithm 1, the SDR problem could

be resolved easily within a precision ε1 using the interior-

point method within O(
√
N log( 1

ε1
)) iterations, where the

computational complexity per iteration is O(N6), thus the

complexity of Step 4 is O(N6.5 log( 1
ε1
)) [30].

In Step 8 of Algorithm 1, it contains Algorithm 2 and

Algorithm 3 in fact. In Algorithm 2, the bisection method costs

O
(
log2

(
ζmax
1

−ζmin
1

ε

))
iterations. In Algorithm 3, computa-

tional complexity mainly comes from Step 4 ( i.e., Algorithm

4) in the while loop. In Algorithm 4, the complexity mainly

focuses on the bisection search in (0, 1) (i.e., Step 4) in the

Start

Initialize all the 

parameters, vectors and 

matrixes of relaxed 

problem (P5).

Solve problem 

(P5).

Extract offloading 

decisions from the 

solution of (P5).

Perform computation 

resource allocation 

According to 

Algorithm 2.

Perform radio resource 

allocation according to 

Algorithm 3 and its 

embedded Algorithm 4.

Choose the one with 

the minimum 

objective value as the 

final solution.

End

l>L?

Yes

No

Fig. 2. The flow chart of CORA.

while-loop, and the complexity of Step 4 in Algorithm 4

is O(log2(
1−0
δ1

)). The subgradient projection method needs

O
(

1
δ2

)
iterations to converge [30]. Therefore, the total com-

plexity of the while-loop in Algorithm 4 is O
(

1
δ2

log2

(
1
δ1

))
.

The while-loop in Algorithm 3 needs M iterations to converge

(as shown in simulations latter, M is usually no more than 2),

so the complexity of Algorithm 3 is O
(

1
δ2

log2

(
1
δ1

)
M
)

=

O
(

1
δ2

log2

(
1
δ1

))
.

Thus the complexity of CORA is

O
(
N6.5 log( 1

ε1
) + L

(
log2(

ζmax
1

−ζmin
1

ε
) + 1

δ2
log2(

1
δ1
)
))

.

VIII. SIMULATION RESULTS

In this section, we present simulation results to first verify

the convergence of the three iterative algorithms (Algorithms

2, 3 and 4), and then evaluate the performance of the proposed

algorithm CORA. Simulation is performed on a Monte Carlo

simulation on a Matlab-based simulator. We simulate a mixed

fog/cloud computing system with one WiFi AP based fog

node, a cloud server, and multiple UEs. TGn path loss model

and Rician fading with 6 dB Rician factor is considered [31],

[32]. Other parameters are listed in Table II. Note that each

point in the following figures (except for Fig. 5) are based on

the average values of 5000 runs.

Remark 2. In Table II, the “Unchanged” parameters are

kept unchanged in our simulation; while the “Default” pa-

rameters are set as default unless otherwise specified, because

their values may change in our simulation. Note that in most

of the simulations, we take λe
n = 1 and λt

n = 0 as the default

values, i.e., we take EC as our default optimization objective.

In addition, in the second sub-figure of Fig. 9, we take delay as

the objective function to show our algorithm works well under

different optimization objectives including EC and delay.



TABLE II
SIMULATION PARAMETERS

Parameter Value

N0 −174 dBm/Hz [24]

pidn 0.001− 0.01 W uniformly [20]
Unchanged B 15 MHz [25]

pmax
n 0.1 W [17]

Rfc
n 1 M b/s [33]

plocn 0.1− 0.5 W uniformly [20]

L 6
N 6

F fog 2 G cycles/s [16]
fc
n 4 G cycles/s [16]

Default f loc
n 0.5− 1.5 G cycles/s uniformly [13]

τmax
n 4 s [18]
Dn 0.42 MB [10]
Appn 297.62 cycles/bit [10]
λe
n 1

λt
n 0

A. Convergence of Algorithms 2, 3 and 4
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Fig. 3. Convergence of the main loop of Algorithm 2.

Fig. 3 plots ζ1 (As the analysis in Section V, ζ1 in fact

is the maximum EC of all fog-processing UEs) versus the

number of iterations to show the convergence of the main

loop of Algorithm 2 for different processing capabilities of

the fog server F fog. As can be seen, ζ1 keeps decreasing

after each iteration until convergence. This is because the

BCRA aims to minimize the maximum EC among all UEs in

each iteration by performing computation resource allocation,

thus the maximum EC can be reduced by an appropriate

computation resource allocation. As shown in Fig. 3, the

number of iterations is always no more than 10.

In Fig. 4, we plot V i versus the number of iterations to show

the convergence evolution of the outer loop of Algorithm 3,

for different number of UEs N . It is observed that it converges

typically in two iterations.

In Fig. 5, we further plot the dual variables µ = [µn], γ =
[γn], n ∈ N2 versus the number of iterations to depict the

convergence of the inner loop of Algorithm 3, i.e., Algorithm

4, under N = 6. Observing form Fig. 5, it can be known that

UEs 1, 2, 4, 6 are remote-processing UEs, and radio resource

allocation in Algorithm 4 will be performed within them; it
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Fig. 4. Convergence of the outer loop of Algorithm 3.
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Fig. 5. Convergence of Algorithm 4.

can also be known that Algorithm 4 has a fast convergence

rate. It should be note that Fig. 5 has to be plotted based on one

random realization, because Fig. 5 plots the two dual variables,

µn and γn, n ∈ N2, versus the number of iterations for each

UE in set N2. As the offloading decision is independent in

each run, and the UEs in set N2 will be different in different

runs. Hence, the dual variables µn and γn, n ∈ N2, cannot be

averaged over multiple runs.

B. Performance of CORA
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Fig. 6. The maximum, minimum, and average EC among all UEs
obtained by CORA vs. the number of runs L.

In Fig. 6, we show the maximum, the minimum and the

average system EC obtained by CORA vs. the number of



runs L. As is shown, the three kinds of EC keeps dropping

with the increase of L. This is because CORA is proposed

aiming at minimizing the maximum EC among all UEs, and

the offloading decisions are extracted from the probabilities

in (19) randomly and then resource allocation is performed,

so the system performance increases (i.e., the objective value

decrease) with the number of the runs L. Moreover, the three

kinds of system EC decrease sharply at the begin and slowly

with the number of L increases. So a moderate L will be the

best choice to obtain better performance and without too high

computational complexity, and we take L = 6 as the default

runs in this paper.

Next we evaluate the performance of CORA in compari-

son with the following three algorithms: (i) Offloading-only

algorithm [10], where only offloading decisions are optimized

to minimize the weighted sum of EC and delay for each

UE, while no resource allocation optimization. (ii) Resource-

only algorithm [24], where only the allocation of resources

(including transmit power, bandwidth and computation re-

source) is optimized to minimize the power consumption of

each UE, without optimizing offloading decisions. (iii) Local-

only: all UEs process their applications themselves without

any optimization.
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Fig. 7. The max EC among all UEs vs. the number of UEs N .

In Figures 7 and 8, we present comparisons of CORA with

Local-only, Offloading-only, and Resource-only, respectively,

under different number of UEs N . Fig. 7 shows the com-

parison on the objective value, i.e., the maximum EC among

all UEs in system, which keeps increasing with the number of

UEs N increases for all algorithms. However, CORA increases

the slowest, while other three algorithms grow sharper and

sharper with the number of UEs N more than 8, demonstrating

CORA performs good in EC reduction.

In order to show the percentage of UEs benefited from

computation offloading, in Fig. 8 we show the number of

beneficial UEs vs. the total number of UEs, where a beneficial

UE is defined as the UE that consumes less energy than when

adopting Local-only method. As there’s no any optimization

in Local-only, no UE benefits in the method, so we plot

Fig. 8 without plotting the bars of Local-only. As a result of

the joint optimization of the offloading decision making, the

allocation of computation resource, transmit power and radio
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Fig. 8. The number of beneficial UEs vs. the number of UEs N .

bandwidth, CORA can always benefit the most number of UEs

compared with other algorithms, which only optimize part of

the optimization items.
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Fig. 9. The max EC and delay among all UEs vs. different
applications.

To verify the feasibility of CORA for different applications,

in Fig. 9, we evaluate the performance achieved by CORA

under different applications, and take max
n∈N

En and max
n∈N

Tn

as the objective function, respectively. The applications are

the m-queens puzzle, where m = 4, 5, 6, 7, respectively [1],

[12]. The four applications possess the same size of data,

i.e., Dn = 200 KB, n ∈ N , but with the different size of

processing density, where Appn = 87.8, 263, 1760, 8250,

n ∈ N , for 4-queens puzzle, 5-queens puzzle, 6-queens

puzzle, and 7-queens puzzle, respectively. From the two sub-

figures in Fig. 9, when m increases, the maximum EC and

delay of all UEs in the system increase, which is the same for

all the algorithms. However, CORA consumes the minimum

energy or delay compared with other algorithms. What’s more,

the second sub-figure demonstrates that our algorithm can

works well when only delay is considered as the optimization

objective.

The impact of local processing capability f loc
n on EC of the

four algorithms is shown in Fig. 10. As the local processing

capability grows stronger and stronger, the maximum con-

sumed energy decreases gradually for all the methods as in Fig.

10, and CORA always consumes the least amount of energy.
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Fig. 10. The max EC among all UEs vs. f loc
n .

Fig. 10 accords with our intuition that the weaker processing

capability of a UE, the more benefit could be obtained by

computation offloading, and vice-versa.
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Fig. 11. The max saved energy among all UEs vs. τmax
n .

In Fig. 11 we consider the impact of the delay constraint

τmax on the saved energy compared with Local-only method.

It can be observed that the longer the delay constraint, the

more saved energy. This is because a looser delay constraint

will lead to more offloaded UEs, and consequently more con-

served energy, which is the same for all the three algorithms.

However, CORA conserves the most energy among all the

three algorithms under any τmax.
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Fig. 12. Fairness comparison.

In Fig. 12, we compare the maximum, the minimum EC, and

the average EC of all UEs. All parameters are set as the default

values. We observe that there is a considerable difference in the

maximum and minimum EC in offloading-only and resource-

only schemes. However, the proposed algorithm can balance

the EC among all the UEs, demonstrating CORA performs

better in min-max fairness.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated a min-max fairness based

cost conservation problem in a mixed fog/cloud computing

system by a joint optimization of offloading decision making

and resource allocation. To address the NP-hard problem, we

have proposed CORA algorithm, where SDR and random

extracting are first adopted for offloading decision making. To

solve the nested resource allocation problem in CORA, BCRA

algorithm was proposed to solve computation resource alloca-

tion among all the fog-processing UEs. Employing fractional

programming and Lagrangian dual decomposition, radio band-

width and transmit power allocation was optimized among all

the remote-processing UEs. Our simulation results verified the

convergence of the proposed iterative algorithms, and indicated

the performance gains of CORA in cost conversation and the

increase in the number of beneficial UEs compared with other

existing works.

Our future work are listed as follows:

• The case UEs may move dynamically in an offloading

period is regarded as one of our future work.

• The long-term optimization where the offloading periods

are time-coupled with each other and the wireless net-

works may changes dynamically during a long period of

time will be regarded as one of our future work.

• We will extend the scenario from one fog node to

multiple fog nodes when interference management and

load balancing will be considered in our future work.

• The queue length and delay of UEs’ requests will be

considered in our future work.

APPENDIX

Appendix A. Proof of Proposition 1

Proof: We prove it from sufficiency and necessity. First,

the sufficiency proof is as follows.

Assuming the optimal solution for (27) is {pcom′,a′}, and

for any feasible solution {pcom,a} ∈ F , we have

max
n∈N2

[
Dn(λ

e
np

com
n +λt

n)−V ∗anB log2

(
1+

pcomn hn

anN0B

)]
≥0,

max
n∈N2

[
Dn(λ

e
np

com′

n +λt
n)−V ∗an

′B log2

(
1+

pcomn
′hn

an′N0B

)]
=0.

(49)



From (49), we obtain

max
n∈N2


 Dn(λ

e
np

com
n + λt

n)

anB log2

(
1 +

pcom
n hn

anN0B

)


 ≥ V ∗,

max
n∈N2


 Dn(λ

e
np

com′

n + λt
n)

an′B log2

(
1 +

pcom
n

′hn

an
′N0B

)


 = V ∗. (50)

Hence, {pcom′,a′} is also the optimal solution of (P8).
This completes the sufficiency proof.

Proof of necessity: For any feasible solution {pcom,a} ∈ F ,

from (P8), we have

max
n∈N2


 Dn(λ

e
np

com
n + λt

n)

anB log2

(
1 +

pcom
n hn

anN0B

)


 ≥ V ∗,

max
n∈N2


 Dn(λ

e
np

com∗
n + λt

n)

a∗nB log2

(
1 +

pcom∗

n hn

a∗

nN0B

)


 = V ∗. (51)

Rearranging (51) yields

max
n∈N2

[
Dn(λ

e
np

com
n +λt

n)−V ∗anB log2

(
1+

pcomn hn

anN0B

)]
≥0,

max
n∈N2

[
Dn(λ

e
np

com∗
n +λt

n)−V ∗a∗nB log2

(
1+

pcom∗
n hn

a∗nN0B

)]
=0.

(52)

Thus, {pcom∗,a∗} is also the optimal solution of (27). The

necessity proof is completed.

Appendix B. Proof of Proposition 2

Proof: When f(x) is concave, then the perspective

function g(x, t) = tf(x/t) is concave, too [30]. Since

anB log2(1 +
pcom
n hn

anN0B
) is the perspective function of concave

function log2(1 + pcomn hn), it preserves concavity. On the

other hand, the upper level set of concave function is convex

[30], so (C17)−(C18) are convex. Moreover, (C5+)−(C7+2 )
are all linear constraints. So (P12) is a convex optimization

programming that minimize a convex function over a convex

set.

Appendix C. Proof of Proposition 3

Proof: Observing the definition of D(β,ω,µ,γ) of (32),

we have

D(β′,ω′,µ′,γ′)

≥ ζ2+β′

(
∑

n∈N2

a∗n−1

)
+
∑

n∈N2

ω′
n (p

com
n

∗−pmax
n )

+
∑

n∈N2

µ′
n

[
Dn

τmax
n −vn

−a∗nB log2

(
1+

pcomn
∗hn

a∗nN0B

)]

+
∑

n∈N2

γ′
n

[
Dn(λ

e
np

com
n

∗+λt
n)−V a∗nB log2

(
1+

pcomn
∗hn

a∗nN0B

)
−ζ2

]
.

(53)

Rearranging (53), we have

D(β′,ω′,µ′,γ′) ≥ D(β,ω,µ,γ)

+(β′−β)

(
∑

n∈N2

a∗n − 1

)
+
∑

n∈N2

(ω′
n−ωn) (p

com
n

∗ − pmax
n )

+
∑

n∈N2

(µ′
n − µn)

[
Dn

τmax
n − vn

− a∗nB log2

(
1 +

pcomn
∗hn

a∗nN0B

)]

+
∑

n∈N2

(γ′
n − γn)

[
Dn

(
λe
np

com
n

∗ + λt
n

)

− V a∗nB log2

(
1 +

pcomn
∗hn

a∗nN0B

)
− ζ2

]
. (54)

Note that a subgradient ζ of a convex function f(·) is

defined as: if f(x) ≥ f(y) + ζT (x − y), ∀x, y holds. Thus,

Proposition 3 holds.
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