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KURZFASSUNG 

 .  
 

In der modernen Festkörperphysik spielen elektronisch stark korrelierte Systeme mit ihrem 

komplexen Vielteilchenverhalten eine zentrale Rolle. Insbesondere das Wechselspiel zwischen 

thermischen und Quantenfluktuationen in den Ladungs- und Spinfreiheitsgraden führt zur 

Entstehung verschiedenster neuartiger Grundzustände.  

 

Die vorliegende Dissertation „Ultrasonic and Magnetic Investigations in frustrated Low-

dimensional Spin Systems“ beschäftigt sich mit den besonderen physikalischen Eigenschaften 

niedrig dimensionaler Spinsysteme. Diese Materialklasse, die auch zu den stark korrelierten 

Systemen zählt, wird seit vielen Jahren intensiv sowohl experimentell als auch theoretisch 

untersucht. Auf theoretischer Seite sind die niedrigdimensionalen Spinsysteme besonders 

interessant, da sie als Modellsysteme die exakte Beschreibung des Grundzustandes und des 

Anregungsspektrums ermöglichen. Von experimenteller Seite ist es in den letzten Jahrzehnten 

gelungen, verschiedenste Materialklassen niedrigdimensionaler Spinsysteme zu synthetisieren.  

 

In der vorliegenden Arbeit werden die grundlegenden Theorien und physikalischen Konzepte 

niedrigdimensionaler Spinsysteme diskutiert. Insbesondere auch die Spin-Phonon-Wechselwirkung 

dieser Materialien, die für die hier beobachteten elastischen Anomalien verantwortlich ist. Weiterhin 

wird auch das elastische Verhalten bei magnetischen Phasenübergängen beschrieben.  

 

Da die Ultraschallexperimente einen Schwerpunkt dieser Arbeit bilden, wird der Versuchsaufbau 

zur phasenempfindlichen Detektion von Schallgeschwindigkeit und Ultraschalldämfung ausführlich 
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beschrieben. Diese Messmethode ist ideal zur Untersuchung der Spin-Phonon Wechselwirkung 

geeignet.  

 

Die elastische Konstante, die aus der Schallgeschwindigkeit bestimmt werden kann, ist eine 

thermodynamische Größe. Sie ist die zweite Ableitung der freien Energie nach der Verzerrung und 

daher mit anderen thermodynamischen Größen wie zum Beispiel der spezifischen Wärme oder aber 

auch der Magnetisierung verknüpft. Die elastische Konstante zeigt daher auch bei magnetischen 

Phasenübergängen ausgeprägte Anomalien, die mit Dämfungseffekten verbunden sind. Die 

Ultraschalldämpfung ist im Gegensatz zur elastischen Konstanten eine Transportgröße. Beide 

Größen zeigen aber bei magnetischen Phasenübergängen ein kritisches Verhalten. Die gewonnen 

Ergebnisse lassen sich sehr gut mit denen anderer thermodynamische Experimente oder 

Spektroskopischen Untersuchungen vergleichen. 

 

Die Ultraschalluntersuchungen wurden über einen weiten Temperaturbereich von 0.03 K bis 300 

K in magnetischen dc-Feldern bis 12 T durchgeführt. Für ein spezielles Experiment am quasi 2D-

Heisenberg Antiferromagneten Cs2CuBr4 wurden die Messungen in gepulsten Magnetfeldern bis 50 

T gemacht. 

 

Das natürliche Mineral Azurit ist ein Modellsystem für eine quasi 1D Spinkette. Die 

magnetischen Ionen in Azurit sind Cu2+, also Spin S = 1/2, die mit zwei dominanten magnetischen 

Wechselwirkungen J1 und J2 miteinander in Form einer verzerrten (J1 ≠ J2) Diamandkette 

miteinander verknüpft sind. Daher handelt es sich bei Azurit um ein frustriertes magnetisches 

System.  

In der vorliegenden Arbeit wurde die longitudinale c22-Mode im gesamten Temperaturbereich 

für unterschiedliche Orientierungen des externen Magnetfeldes untersucht. Dabei führt die 

ausgeprägte Spin-Phonon Wechselwirkung dieses Systems zu deutlichen Anomalien in den 
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elastischen Konstanten bei 20 K und 5 K, worin sich die relevanten Energieskalen des Systems 

widerspiegeln.  

Diese Ergebnisse decken sich mit denen, die aus thermischer Expansion und spezifischer Wärme 

gewonnen wurden. Aus der Temperaturabhängigkeit der c22-Mode konnte die 

Verzerrungsabhängigkeit der dominanten magnetische Kopplungskonstante J2 ermittelt werden, die 

sich direkt mit der aus magnetischen Suszeptibilitätsmessungen unter hydrostatischem Druck deckt.  

Bedingt durch verschiedene deutlich kleinere magnetische Wechselwirkungen ordnet Azurit bei 

1.88 K langreichweitig antiferromagnetisch. An diesem Phasenübergang wurde das kritische 

Verhalten der elastischen Konstanten und der Ultraschalldämpfung untersucht. Die dabei ermittelten 

kritischen Exponenten stimmen in der Schallgeschwindigkeit mit dem in den Neutronenstreuung 

gefundenen überein. Insbesondere an diesem Phasenübergang zeigt sich die starke Kopplung 

zwischen magnetischen und strukturellen Freiheitsgraden.  

Die Tieftemperaturexperimente an Azurite im 3He/4He Mischkryostaten dienten vor allem dazu 

das komplexe BT-Phasendiagramm der Verbindung zu bestimmen. Dabei wurde eine bis dahin nicht 

bekannte magnetische Phase entdeckt und beschrieben. 

 

Ein weiteres niedrigdimensinales Spinsystem, das in dieser Arbeit beschrieben wurde, ist 

Cs2CuCl4. Hier wurden die drei longitudinalen Moden c11, c22 und c33 in externen Magnetfeldern für 

B//a im gesamten Temperaturbereich vermessen.  

Der Schwerpunkt der Messungen lag dabei auf Untersuchungen im Tieftemperaturbereich. Hier 

wurde das elastische Verhalten sowohl in der antiferromagnetischen Phase als auch im Spin-

Flüssigkeitsbereich eingehend untersucht. Beide Bereiche zeichnen sich in allen untersuchten Moden 

durch ausgeprägte elastische Anomalien aus. In der geordneten Phase für nicht so sehr große 

Magnetfelder lassen sich sowohl die elastische Konstanten als auch die Ultraschalldämpfung mit 

Hilfe einer Spinwellentheorie beschreiben. 

 Für höhere Magnetfelder, um den quantenkritischen Punkt am Sättigungsfeld, gibt es zur Zeit 

noch keine mikrospische Theorie, so dass hier eine theoretische quantitative Analyse der elastischen 
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Anomalien nicht möglich ist. Dies gilt auch für den sehr ausgeprägten Spin-Flüssigkeitsbereich. 

Auffällig sind hier insbesondere die ausgeprägten Dämpfungsanomalien, die bis zu tiefsten 

Temperaturen verfolgt wurden. Dabei findet man um den quantenkritschen Punkt eine deutliche 

Doppelstruktur in der Dämpfung, aus deren Feld- und Temperaturabhängigkeit sich schließen lässt, 

dass sie zum einen vom Übergang aus der antiferromagnetischen Phase und zum anderen aus dem 

Spim-Flüssigkeitsbereich herrührt. 

 

Abgeschlossen wurden die Ultraschalluntersuchen an den quasi 2D-Heisenberg 

Antiferromagneten durch Messung an Cs2CuBr4. Wegen des im Vergleich zum isostrukturellen Cl-

System höheren kritischen Feldes von ~ 31 T für B//a wurden die Messungen in gepulsten Feldern 

bis 50 T durchgeführt. Dabei zeigte sich, ein ausgeprägtes Weichwerden in der c11-Mode in Spin-

Flüssigkeitsbereich. 

 

Wie schon erwähnt, sind sowohl das Cl-System als auch das Br-System von Cs2CuCl4/Br4 

isostrukturell. Beide Verbindungen unterscheiden sich allerdings stark in der Beweglichkeit ihrer 

magnetischen Anregungen. Diese ist für das Cl-System recht groß. So dass man am unterhalb des 

quantenkritischen Punkts in der geordneten Phase die Kondensation von Magnonen beobachten 

kann.  

In Gegensatz dazu ist die Beweglichkeit der magnetischen Anregungen im Br-System deutlich 

geringer, was zur Bildung von Plateaus in der Magnetisierung führt. Daher waren Untersuchungen 

an gemischten Systemen Cs2CuCl4-xBrx besonders interessant, um die Entwicklung der 

magnetischen Eigenschaften als Funktion der chemischen Zusammensetzung zu untersuchen.  

Insgesamt wurden 18 verschiedene Konzentrationen im SQUID-Magnetometer untersucht. 

Dabei zeigt sich überaschender weise, dass es keine kontinuierliche Veränderung der magnetischen 

Eigenschaften gibt. Vielmehr lassen sich 3 Bereiche identifizieren, die sich in ihren magnetischen 

Eigenschaften deutlich unterscheiden. In der Arbeit wird gezeigt, dass mit Hilfe eines Modells der 

selektiven Substitution der Halogenionen das magnetische Verhalten erklärt werden kann. Dabei 
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existieren wohl zwei ausgezeichnet Konzentrationen, nämlich x =1 und x = 2, wo völlig neuartige 

Verbindungen erwartete werden. Dies ist gleichzeitig der Ansatzpunkt für weitere Untersuchung in 

der Zukunft. 
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1 
INTRODUCTION 

  

A major focus of modern condensed matter physics is the study of collective, many-body 

behavior in strongly-correlated systems. In these systems, the interplay of thermal and quantum 

fluctuations in both charge and spin degrees of freedom gives rise to many competing and co-

existing novel phases. In this thesis, the focus of the study lies on a variety of compounds belonging 

to a class of correlated magnetic systems, called low-dimensional frustrated spin systems.  

The low-dimensional spin system has a long history [Ising25, Bethe31] and for a number of 

reasons has now developed into one of the most active research fields of modern condensed matter 

physics. 

Firstly, the interest in low-dimensional magnets is that these materials provide a unique 

possibility to study ground and excited states of quantum models. On the other hand, in contrast to 

magnetic systems with classical long-ranged ferro - or antiferromagnetic order, novel ground state 

properties arise due to the existence of strong quantum fluctuations in reduced dimensions and the 

interplay of quantum fluctuations and thermal fluctuations. 

Secondly, this is a very attractive field for theoretical studies. Theorists were attracted by the 

chance of finding interesting exact results without having to deal with the hopelessly complicated 

case of models in 3D [Richter04]. A number of powerful numerical and analytical techniques has 

been developed including Density-Matrix-Renormalization-Group methods (DMRG), Quantum-

Monte-Carlo simulations (QMC) and exact diagonalization (ED), or the Bethe ansatz for integrable 

models and field-theoretical approaches such as bosonization [Mikeska04]. 

Thirdly, the successful preparation of materials that are good realizations of quasi-two- or one-

dimensional quantum magnets have rendered possible a fruitful interplay between theory and 

experiment. Actually, low-dimensional magnets have a natural realization since they exist as real 

bulk crystals thus having all the advantages of bulk materials in providing sufficient intensity for 

experiments investigating thermal properties (e.g. specific heat), as well as dynamic properties (in 

particular quantum excitations) by e.g. neutron scattering. 
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Frustrated magnetism has also become an extremely active field of research over the last decade. 

Frustration arises in magnetic systems when not all nearest-neighbor interaction energies can be 

simultaneously minimized. It creates a highly degenerated ground state in which the system can 

fluctuate with almost no energy expenditure, even down to a few mK in temperature thus preventing 

the formation of long-range magnetic order [Ong04, Heidarian05 and Greedan01]. In the absence of 

long-range magnetic order at low temperatures, spin-liquid states, characterized by a large remanent 

entropy associated with the fluctuating nature of the spins, are among the possible ground states of 

frustrated systems. The existence of spin liquids and their corresponding universality classes is a 

matter of intense debate both theoretically and experimentally as they exhibit many interesting 

properties. These consist of pressure or magnetic field-induced antiferromagnetic phase transitions, 

Bose-Einstein condensation (BEC), magnetization plateaux and possible applications in topological 

quantum computation, to name a few. They show both classical phases as well as new quantum 

phases with interesting cross-over regimes. New quantum phases are not only interesting in their 

own right, but they are also important for application, such as having an enhanced magnetocaloric 

effect in a frustrated spin system [Brück03], which may be useful for efficient magnetic refrigeration 

[Zhitomirsky03, Tegus02, Wolf11] or a natural candidate for quantum information processing 

applications [Gershoni06]. 

Among the various techniques used to investigate the properties of condensed matter is the 

ultrasound measurement, a powerful technique used to study phase transitions and critical 

phenomena. Physical acoustics embrace the measurements of ultrasonic velocity and attenuation. 

The elastic constants can be gained from the ultrasonic velocities. The elastic constants are 

thermodynamic derivatives, the second derivative of the free energy with respect to the strains. 

Therefore, they are directly related to the atomic and molecular bonding in the crystal. In addition, 

they are connected to thermal properties of solids through the Debye theory. In combination with 

specific heat and thermal expansion measurements, elastic constant data can be used to determine 

the equation of state and various thermodynamic functions. This technique has been well established 

as an important tool for the investigation of low-dimensional spin systems [Lüthi05, Sherman03 and 

Wolf00]. It is proven to be a powerful tool to probe the spin-lattice interactions [Wolf01a], lattice 

instabilities and phase transitions [Zherlitsyn10]. The investigation of the correlations between 

magnetic and lattice degrees of freedom provides a better understanding of the underlying physics of 

frustrated and low-dimensional spin systems. In this thesis, ultrasound will be used as the main 
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experimental technique while supplementary thermodynamic probes such as magnetic susceptibility 

and thermal expansion will be employed over wide ranges of temperature and magnetic field.  

After a brief introduction and motivation, a description of interesting quantum spin systems 

studied in this thesis is given in Chapter 1. The other chapters are organized as follows:  

• Chapter 2 contains relevant theoretical and material specific background in two parts. In the 

first part, I give a general introduction in the basic theories and concepts of low-

dimensional spin systems including the phenomenon of frustration and its effect 

on magnetic ordering. In the second part, I present the basic theory of ultrasound 

as well as the necessary background of sound-wave propagation at magnetic 

phase transitions. 

• Chapter 3 is devoted to the experimental technique. The ultrasound setup is discussed here 

in detail as it is the prime experimental method of the present work. In addition, 

the instrumentation to maintain the system at low temperature and the setup for 

magnetic susceptibility measurement will be shortly reviewed. 

• Chapter 4 presents the study of the quasi-1D frustrated diamond chain compound Azurite.  

• Chapter 5 deals with ultrasound studies of the 2D spin systems Cs2CuCl4 and Cs2CuBr4. 

• Chapter 6 contains experimental details of the magnetic characterization of single crystals of 

the mixed system Cs2CuCl4-xBrx. 

• Chapter 7 In this chapter, a summary of the conclusions drawn from the research is presented 

and an outline is given for future research in this area. 
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2 
GENERAL THEORETICAL ASPECTS 

  

This chapter introduces some general theoretical aspects of quantum magnetism and physical 

acoustics necessary to understand the concepts presented in this thesis. In the first section, we 

examine the Heisenberg model, an effective description of the interaction of localized magnetic 

moments, and its solutions on some classical antiferromagnetic spin lattices. The second section is 

dedicated to the basic theory of sound-waves and ultrasound attenuation in an elastic media. The 

backgrounds on spin-phonon coupling mechanism and sound-wave propagation at a magnetic phase 

transition are also given. 

2.1 Quantum magnets and spin liquids 

2.1.1 Heisenberg model  

When the temperature of a magnetic material is lowered sufficiently, it undergoes a phase 

transition from a disordered paramagnetic phase to an ordered magnetic phase. The temperature at 

which this occurs is called the Néel (TN) or Curie (TC) temperature, if the material is 

antiferromagnetic or ferromagnetic, respectively.  

Spontaneous alignment of magnetic moments in magnetic material implies the presence of an 

internal field. This internal field is called the molecular field. In 1928, Heisenberg proposed that the 

molecular field, responsible for the magnetic ordering in solids, is the result of a spin-dependent 

exchange interaction between moments on neighboring lattice sites [Heisenberg28]. Furthermore, he 

proposed that the exchange (potential) energy between atoms of net spin Si and Sj on neighboring 

sites is given by:  

jiij SSJ ⋅=ijV . (2.1) 

Consequently, if Jij > 0, the lowest energy configuration is when the spins are aligned anti-

parallel to one another, corresponding to antiferromagnetic ordering (AFM) of the moments. In the 

case where Jij < 0, the lowest energy configuration occurs when spins are aligned parallel to one 

another, resulting in a ferromagnetic ordering (FM) of the moments. The physical origin of the 
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exchange energy is governed by the laws of quantum mechanics. Electrons interact classically via 

Coulomb’s law, and quantum mechanically via the Pauli Exclusion Principle. The exchange energy 

can then be thought of as the difference in potential energy of the parallel and anti-parallel spin 

states. This spin-dependent exchange energy is responsible for magnetic ordering in materials. 

In describing a lattice of spins with the exchange energy given in Eq. 2.1, the Heisenberg 

Hamiltonian for the system is written as: 

∑=
ij

jiij SSJH       (2.2) 

where Si is the total spin of the ith ion in the lattice. Exchange interactions fall off rapidly with 

increasing distance; thus it is sufficient to consider only nearest-neighbor exchange interactions. The 

term “nearest neighbors” means the moments which are physically closest to one another on a 

crystal lattice. On the hypothetical square lattice in Fig 2.1, the pairs of moments at lattice sites 1 and 

2 and at sites 1 and 3 are nearest neighbors’ pairs.  

 

Figure 2.1 Spin moments situated on a square lattice. Atoms 1 and 3, and 1 and 2 are nearest 

neighbors. 

2.1.2 Dimensionality and long-range ordering of spin systems 

By specifying the dimension of the lattice as well as the dimension of the spin space, a useful 

classification of the possible spin models of the form in Eq. 2.2 can be constructed. On the one hand, 

restricting the spin space to one dimension leads to the Ising model, where the spins can only point 

in up or down direction. Similarly, we can restrict the spin space to two dimensions in an XY model 

or three dimensions in the Heisenberg model.  

In the following, we restrict the study to the Heisenberg model. On the other hand, as introduced 

in Chapter 1 the exchange couplings J could be predominantly uni-directional, leading to the 1D spin 

J 

3 

2 

1 



Chapter 2: General Theoretical Aspects 

 16

systems, such as the linear chain. They could also be predominant along two directions, leading to 

2D spin systems, such as the square or triangular lattices (see Fig. 2.2). Finally, the exchange 

interactions could give rise to 3D spin systems.  

The dimensionality of the lattice has profound consequences on the long-range ordering 

properties of the magnetic moments. Indeed, due to the Mermin-Wagner theorem [Mermin66], at 

any nonzero temperature, long-range order (meaning the presence of a bulk magnetization) is 

impossible in one and two dimensions in the isotropic Heisenberg model. Interestingly, nothing is 

said in the limit T → 0. However, it turns out that one-dimensional antiferromagnetic spin chains 

described by Eq. 2.2 have a ground state with quasi-long-range order (the spin-spin correlation 

function decays at long distance following a power law), exactly calculated with the Bethe ansatz. 

The excitation spectrum of the spin chain exhibits interesting properties, such as a gapless excitation 

spectrum with deconfined fractional elementary excitations, known as spinons. 

 

Figure 2.2 The most common spin lattices studied theoretically are the linear chain (a), the square 

lattice (b) and the triangular lattice (c). 

The two-dimensional lattices show long-range ordering at T = 0. For example, on the square 

lattice, the ground state is Néel ordered at wave vector q = (π , π) and with S = 1 transverse spin-

wave excitations [Lüther75]. The same situation is true for the isotropic triangular lattice. At the 

classical level, the minimum energy configuration is the well-known 120o Néel state. At the quantum 

level, numerical work indicates that even in the presence of strong quantum fluctuations (the 

magnetization is reduced by about 59% from its classical value), long-range order with an ordering 

vector (q = (2π/3 , 2π/3) is still favored [Manousakis91]. 

In three-dimensional lattices, such as the cubic lattice or the inter-coupled lattice the Heisenberg 

antiferromagnet (HAF) can order at finite temperature (T > 0). The associated ordered spin structure 

a) Linear chain 

b) Square lattice c) Triangular lattice 
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is shown in Fig. 2.3. For T > TN, the spin system is found in the paramagnetic state, where each 

magnetic moment behaves independently. The emergence of long-range order breaks the spin-

rotation symmetry and the system can be treated by the Landau theory of phase transitions. In this 

theory, an order parameter ψ is defined such that ψ = 0 in the paramagnetic phase (symmetric phase) 

and ψ ≠ 0 in the ordered phase (broken-symmetry phase). Elementary excitations in long-range 

ordered system are found by linearizing the equations of motion of the local deviations of the spins 

from their ground state positions [Blundell01, Coldea03]. The resulting low-lying excitations are 

called magnons and obey the Bose-Einstein statistics. They can be pictured as long-wavelength 

deformations of the order parameter. They represent the conventional behavior of the elementary 

excitations in long-range-ordered systems.  

 

Figure 2.3 Antiferromagnetic long-range order on the square lattice 

Thermal fluctuations can lead to the destruction of long-range order, as we saw in the 3D case 

for T > TN. A similar situation could arise at T = 0 where the long-range order can be weakened by 

quantum fluctuations. Quantum effects are amplified in a magnetic system with a low value of the 

spin, e.g. S = 1/2 or S = 1, in the presence of antiferromagnetic coupling and in low-dimensional 

lattices (1D or 2D lattices) with a small number of nearest-neighbors [Rice02]. The consequences of 

these quantum fluctuations are a renormalization of the ground-state energy and a reduction of the 

magnetization [Lhuillier02]. Ultimately, quantum fluctuations can lead to the destruction of long-

range order and a preference for a quantum ground state with high symmetry and small degeneracy.  

2.1.3 Frustration 

A spin system is called frustrated when it cannot satisfy simultaneously all its interactions 

between every pair of spins. The resulting configurations minimize the energy of the whole system, 
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but not all the energies of interactions between one spin and its neighbors. Frustrated systems exhibit 

interesting properties such as a very large ground-state degeneracy. Particular interest in those 

magnetic systems stems from the fact that they were found to present new phases such as Resonating 

Valence Bonds (RVB) spin liquids [Anderson73], super solids [Wessel05, Melko05] and spin ices 

[Bramwell01, Castelnovo08].  

Frustration has two possible origins: it can arise either from competing magnetic interactions, 

such as in the J1 − J2 spin chain, or from geometry. Geometric frustration will be illustrated through 

a couple of examples among the family of corner-sharing lattices [Moessner01]. The exploration of 

frustrated systems is a wide and expanding field of condensed matter physics. The purpose of this 

section is just to gives a brief overview on frustrated systems. Reviews on frustrated quantum 

magnets can be found in Ref. [Anderson73] or [Misguich01].  

In the case of frustration that arises from competing interactions, let us consider a pair of two 

nearest-neighbor spins interacting through an antiferromagnetic coupling J1. The energy of this pair 

is minimized if the spins are antiparallel (Néel order). If we add a next-nearest-neighbor 

antiferromagnetic interaction J2 and J2 is "low enough", each nearest-neighbor pair (Si, Si+1) still 

tends to align antiparallel. However, above a certain value of J2, the pairs of next-nearest-neighbors 

(Si, Si+2) will also try to lie antiparallel, which is impossible due to the J1 coupling. As a 

consequence, for a range of values of the ratio J1/J2, the interplay between the two antiferromagnetic 

couplings will lead to a non-collinear configuration, a spiral state, that does not fully satisfy any of 

the interactions. In such case the system is frustrated by the competition between the J1 and J2 

couplings. 

 

Figure 2.4 The geometry of the triangular lattice (a) prohibits AF ordering since spin 3 cannot be 

aligned antiparallel to both of its nearest neighbors 1 and 2. The system is said to be frustrated. (b) 

Possible ordered phases in a triangular antiferromagnetic (TAF), derived from simplified expression 

for the total energy of the system. 

b) a) 

or ? 

1 

2 3 
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In the case of geometric frustration, the simplest example to illustrate these kinds of systems is a 

triangular lattice with antiferromagnetic couplings J on all edges. In order to satisfy independently 

all interactions, spins should align antiparallel along each edge, which is not possible as shown in 

Fig. 2.4(a). It is possible for the moments at lattice site 1 and 2 to align antiparallel, but the moment 

at lattice site 3 cannot be placed exactly anti-parallel to the other two. Instead, spins will realize a 

120◦ coplanar configuration in order to minimize the energy of the whole triangle as displayed in 

Fig. 2.4(b). 

To generalize this to lattices containing elementary plaquettes (triangles, squares . . . ), Toulouse 

[Toulouse77] proposed a criterion on the product of the bonds of a plaquette P: 

∏
><

=
ji

ijJsignP
,

)( . (2.3) 

If P < 0, the plaquette is geometrically frustrated. For example, if we consider only 

antiferromagnetic couplings, examples of geometrically frustrated two-dimensional systems are the 

triangular lattice, the Kagomé lattice, the checkerboard lattice and the Shastry-Sutherland lattice. 

The square lattice, with an even number of antiferromagnetic couplings per plaquette, fails 

Toulouse’s criterion. However, a square plaquette with three ferromagnetic bonds and one 

antiferromagnetic bond becomes frustrated. 

 

Figure 2.5 Schematic curve of the inverse of the susceptibility χ as a function of temperature 

showing the signature of geometrical frustration (adapted from Ref. [Moessner01]). θCW is the 

Curie-Weiss temperature and TF is the temperature of deviation. 

TF ΘCW -ΘCW 

Paramagnet 

Cooperative 
Paramagnet 

T 

χ
-1 
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If we consider a whole lattice of N spins, the number of degrees of freedom increases with the 

number of bonds q in a single plaquette (for example, q = 3 if the plaquette is a triangle). The 

classical ground states satisfy L = 0 in each plaquette. This condition leads to n = 3 constraints for 

Heisenberg spins. The dimension of the ground state grows with q and n. If we call F the number of 

degrees of freedom and K the number of constraints, the dimension of the ground state D is 

[Moessner01, Chalker07]: 

2

))(( qwqnN
KFD

−−=−= . 

Hence the ground state of geometrically frustrated systems is highly degenerated and its 

dimension increases with the number of bonds per plaquette and the number of spin components. 

Quantum or thermal fluctuations can partially lift this degeneracy, which is called the Order by 

Disorder effect [Villain80]. 

Experimentally, strong frustration can be identified from the behavior of the inverse of the 

susceptibility χ−1. Fig. 2.5 shows a schematic curve of a strongly frustrated magnet. The usual 

paramagnetic regime takes place above the Curie-Weiss temperature θCW. Between θCW and TF, 

strongly frustrated systems then present a phase in which correlations are weak (cooperative 

paramagnet region). A deviation takes place at a temperature TF ~ θCW indicating a transition to a 

non-generic state which varies from one compound to another [Moessner01]. The ratio TF / θCW << 1 

is considered as a characteristic of strong frustration. 

2.1.4 Effects of applied field on S = 1/2 Heisenberg antiferromagnets  

 A finite magnetic field orients spins towards the field direction, thus breaking the planar spin 

alignment, which may be the ground state at zero field. In this sense, the presence of an external 

magnetic field can be viewed as a competing interaction, which can affect quantum fluctuations. 

Moreover, a magnetic field gives the possibility to tune the ground state and move the spin system 

towards a quantum critical point. Here we will discuss effects of a magnetic field applied to some 

classical spin system. 

a) Magnetization plateau  

For classical spin systems, Misguish showed under the assumption that the classical energy is a 

continuous and differentiable function of the spins’ directions [Misguich04], that the spin 
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configurations in the plateau must be collinear with the magnetic field direction. Let n be the number 

of spins in the unit cell and p an integer. The possible configurations are: 

U
n−p

D
p
 

where n-p is the number of spins ’Up’ (U) and p of spins ’Down’ (D). The corresponding 

magnetization plateau arises at: 

n

p

M

M

sat

21−= . 

For example, the magnetization as function of applied magnetic field for the S = 1/2 HAF on a 

triangular lattice is shown in Fig 2.6 [Farnell09]. The spin configuration in the plateau at 1/3 of the 

saturation magnetization Msat is the collinear “Up-Up-Down” state (UUD), in which two out of three 

spins are pointing up along the z-axis and the last one is pointing down. Classical plateau states can 

sometimes survive in quantum-spin systems. Affleck and Hida [Hida05] studied the competition of 

two possible states in the 1/3 magnetization plateau of an S = 1/2 frustrated Heisenberg spin chain 

using bosonization, renormalization group and numerical diagonalization methods. Depending on 

the exchange modulation, the M/Msat = 1/3 classical or quantum plateau state is favored.  

 

Figure 2.6 Magnetization of the S = 1/2 HAF on a triangular lattice in the presence of an external 

magnetic field (Reprinted from Ref. [Farnell09]). 

The classical 1/3 plateau state, which appears in the conventional S = 1/2 frustrated Heisenberg 

chain 
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∑ ++∂ ∂+=
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consists in a 3-fold degenerate ↑↓↑ structure (i.e. the quantum analog of the classical collinear UUD 

configuration) accompanied by the spontaneous Z3 translational symmetry breakdown [Farnell09]. 

The quantum case corresponds to •−• ↑ (where •−• is a singlet dimer). This state is favored by a 

period-exchange modulation: 

[ ]∑ +++−∂ ++∂+−=
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b) Quantum phase transitions 

A classical phase transition (CPT) involves thermal fluctuations occurring at finite temperatures 

only. In the thermodynamic limit at T = 0 K, where the thermal energy scale is absent, only the 

fluctuations associated with the Heisenberg’s uncertainty principle are present. In some cases those 

zero-point fluctuations lead to transitions which, in analogy to a CPT, are called a quantum phase 

transition (QPT) and occur at T = 0 K. In analogy with a temperature-driven CPT, every QPT is 

governed by an external parameter, for instance magnetic field, pressure or a doping percentage of a 

chemical [Vojta03]. 

 A system approaches a quantum-critical point (QCP) in the thermodynamic limit under 

application of the external parameter. Every continuous QPT is characterized by an order parameter: 

At zero in the disordered phase, an order parameter becomes non-zero while the system reaches a 

QCP. Correlations of the order parameter diverge as 
ντξ −

~  in the vicinity of QCP. Here τ is a 

measure of closeness to the QCP and ν is the correlation length critical exponent. An order 

parameter fluctuates not only in space but also in time. Close to the QCP corresponding time 

correlations τc diverges as
z

c

νττ −
~ , where z is the dynamical critical exponent [Sachdev99]. 

Critical length and time scales are the only characteristics of the system close to QCP. All 

scaling observable variables’ critical exponents depend on ξ and τc exclusively. Therefore the scaling 

is universal and depends only on the symmetry of the order parameter. Consequently, QPTs can be 

classified by the symmetry of order parameter which forms the universality class. It means that all 

observable variables in various QPTs posses a universal behavior which can be described by a model 

system with a corresponding symmetry of the order parameter [Vojta03, Sachdev99]. 
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Quantum-ordered phases occurring at T = 0 K survive to a finite temperature range, which is 

important for experimental physics. This makes empirical investigations of QPTs possible. A wide 

range of QPTs was discovered: from superfluid helium and the cuprate superconductors, which can 

be tuned from a Mott insulating to a superconducting phase by a carrier doping [Keimer91, 

Aeppli97], to various QPTs in quantum magnets and unconventional metals [Schröder00]. The main 

role in the phenomena is played by electrons and their collective behavior. Quantum magnets, i.e. 

systems with localized electrons in reduced dimensions, belong to the most important candidates for 

the investigations of novel quantum phases. In the next section 1.2.1(c), a specific example of a QPT 

in a low-dimensional magnet is given: Bose-Einstein condensation of magnons. 

c) Bose-Einstein condensation of magnons  

Bose-Einstein condensation (BEC) remains one of the most exotic predictions of quantum 

mechanics. In the last half decade, a continuous interest has been shown with respect to this 

phenomenon because of its experimental evidence in ultra-cold diluted atomic gases. It is also 

known that a quantum spin system can be mapped onto an interacting Bose gas. The analogy 

between a quantum spin system which presents long-range order, and an interacting Bose gas, which 

presents BEC, has been well known for a long time [Matsubara56].  

Here we show that field-induced QPTs from paramagnetic to the 3D-XY ordered 

antiferromagnetic phase can be mapped onto Bose-Einstein condensation of magnons (BEC) in 

axially symmetric magnets. The materials of choice have been crystalline networks of 

antiferromagnetically coupled S = 1/2 dimers. The starting point is the spin Hamiltonian of the 

system, which, for instance, in case of the ladder models with rungs made of spin-1/2 dimers 

[Oosawa99, Rüegg03], can be written as:  

∑∑∑ −+=
k

z
kBj

ji
ilegrung

rung
rungrung SHgSSJSSJH µ

,
,2,1

~
.     (2.6) 

Here the first sum is taken over all rungs in the spin ladder, the second sum runs over all legs and the 

third term describes the impact of the magnetic field H and its sum runs over all spins in the system. 

We assume that the rung exchange interaction, Jrung, is the strongest in Eq. 2.6, coupling S1 and S2 

into dimers. Thus the system effectively consists of interacting S = 1 particles. Using second-order 

quantization, it was shown [Nikuni00, Giamarchi99] that the Hamiltonian in Eq. 2.6 can be mapped 

onto the following form: 



Chapter 2: General Theoretical Aspects 

 24
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where the operators +ia and ia  create and annihilate a boson on dimer i, respectively, tij describes a 

hopping between sites i and j and Uij is a repulsion energy. The coupling of the transverse, 

y
j

y
i

x
j

x
i SSSS + , and longitudinal, z

j
z
i SS , components in the spin Hamiltonian in Eq. 2.6 maps onto the 

hopping tij and repulsion Uij  terms in the bosonic representation in Eq. 2.7, respectively. The singlet 

S = 0 is the ground state of the system and is separated by a finite energy gap ∆ from the excited 

triplet Sz = 0;± 1. An applied magnetic field induces the Zeeman splitting and lowers the energy of 

the dispersive Sz = 1 excitation. When the field energy is equal to the value of the gap, gµBHc1 = ∆, 

the excitation Sz = 1 mixes with the ground state and the system undergoes a QPT from quantum 

paramagnetic to the 3D antiferromagnetically ordered state. In the bosonic representation, this 

process can be viewed as a condensation of magnons carrying S = 1, thus obeying Bose-Einstein 

statistics [Sorensen93]. In spin space, the field-induced Bose-Einstein condensation (BEC) of 

magnons corresponds to the order of the transverse spin components, perpendicular to the applied 

field, which spontaneously breakes the O(2) symmetry of the Hamiltonian in Eq. 2.6. The list of the 

respective parameters of the Bose gas and the quantum antiferromagnet is given in Tab. 2.1 

[Giamarchi08].  

Table 2.1 The respective parameters of a Bose gas and a quantum antiferromagnet. The table is 

adapted from the review of T. Giamarchi et al. [Giamarchi08]. 

Bose gas Antiferromagnet 

Particles 

Boson number N 

Charge conservation U(1) 

Condensate wavefunction ψi(r) 

Chemical potential 

Magnons carrying spin-1 

Spin component Sz 

Rotational invariance O(2) 

Transverse order ( y
i

x
i iSS + ) 

Magnetic field 

The upper critical dimension dc and the dynamical exponent z of the BEC are equal to two. 

However the magnetically quantum-ordered phase exists at finite temperature and its dimension is d 

> 2. Therefore, the experimentally observed field-induced phase transition in the low-temperature 
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region, corresponding to the BEC of magnons, belongs to the 3D-XY universality class with d = 3 

and z = 2. 

 

Figure 2.7: The schematic representation of the field-driven Bose-Einstein condensation of magnons 

(adapted from Ref. [Rüegg03]). 

The process of the field-induced antiferromagnetic order was observed experimentally in the 

gapped S = 1/2 compound TlCuCl3 by Oosawa et al. [Oosawa99] and explained as the BEC of 

magnons by Nikuni et al. [Nikuni00]. The magnetization measurements [Oosawa99], [Shiramura97] 

have shown that the magnetic subsystem of TlCuCl3 consists of weakly antiferromagnetically 

coupled S = 1/2 spin dimers and the first excited state is separated from the ground state singlet by 

the energy gap ∆ = 0.7meV. At the quantum-critical point, which corresponds to the critical 

magnetic field Hc = 5.7 T, the energy gap collapses. The diagram of the field-induced QPT from a 

magnetically disordered towards a 3D XY antiferromagnetic state is shown in Fig. 2.7. The solid 

lines correspond to the Zeeman splitting of the excited triplet state. At the quantum-critical point, the 

triplet mode Sz = +1 reaches the nonmagnetic ground state Sz = 0 and the system turns into a 3D 

antiferromagnetic state, which is proved by the detected Goldstone mode [Rüegg03].  

2.2 Physical acoustic properties 

2.2.1 Elastic theory 

Let us begin with a survey of continuum elastic theory. Only the main results will be presented. 

The proper derivation and the full development of the theory can be found in various monographs, 

such as [Landau59] or [Kittel05].  

0,0  

1,1+  

0,1  

1,1−  

Hc 

H 

E 
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When an elastic deformation is applied to a medium, a point originally at R moves to R’ = R + 

u(R, t). Obviously, the effect of a constant u is just a translation of the whole medium. For 

deformations, u is position dependent and we can express dR’ by the partial derivatives: 

j

i
ij R

u
v

∂
∂

= , i.e. ∑+=
j

jijii dRvdRdR' . 

Here vij is a component of the deformation tensor. A general deformation in a solid can be built up 

by a pure strain deformation followed by a rotation. Usually, only infinitesimal displacements are 

considered in the elasticity theory. Therefore, a component of the infinitesimal strain tensor 

reads: )(
2

1
jiijij vv +=ε and the rotation tensor R reduces to Rij = δij + ωij, where ωij =1/2(vij − vji) = 

−ωji. The ωij are the components of a vector Ω = 1/2 rotu = (ωyz, ωzx, ωxy) which describes a bulk 

rotation of the body in first order for a homogeneous deformation. So the finite strain tensor can be 

written as:  

∑ +++=
k

kjkjkikiijij ))((
2

1 ωεωεεη . 

Applying Hook’s law to a continuous elastic medium, we obtain the equations of motion: 

∑ ∂
∂

=
∂
∂

k k

iki

R

T

t

u
2

2

ρ . 

Here Tik is a component of the stress tensor and u the displacement vector introduced above. With 

the linearized stress-strain relation, which is the phenomenological Hooke law: 

∑=
kl

klijklij vcT  

and for plane waves ui = Ueiexp(i(k·r − ωt)) (U amplitude, e polarization vector) we get the 

eigenfrequencies and normal modes: 

[ ] 0)(2 =−∑
jlm

ljmijlmilk kekkcδρω . 

Here ωk is the eigenfrequency for the wave vector k and cijkl are the elastic stiffness constants. The 

components of the inverse tensor to the (cijkl) are denoted by sijkl, the components of the compliance 

tensor. 
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2.2.2 Background elastic constant 

In the harmonic approximation without phonon-phonon interaction, the elastic constants are 

temperature independent. In the harmonic approximation, the Hamiltonian Hh has terms due to 

strains and due to harmonic phonons: 








 ++=+= ∑∑ Γ
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q

q nc ωε h  (2.8) 

where 0
Γc  is a symmetry elastic constant and nq = (exp(hωq/kT)−1)−1 is the thermal occupation 

number of the phonon q. The lowest-order an-harmonic theory starts with a quasi-harmonic free 

energy with nq = 0, 1, 2… 

Fqh = F0 − kBT lnZ 
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where F0 is the elastic energy Hel. But now Hel and ωq depend on Ri, the lattice vectors. For 

equilibrium we have ∂Fqh/∂εij = 0, i.e. 
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E(ω) is the average energy of an oscillator. Due to the third- and fourth-order anharmonic terms in 

the crystal potential, there is a coupling between the homogeneous strains and the phonons. This an-

harmonicity can be described by the strain dependence of the phonon frequencies via the phonon 

Grüneisen parameter: 
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kl ε

ωγ
∂

><∂=
2ln

, 
''

22

''

ln

lkkl
lklk εε

ω
∂∂

><∂−=Γ . 

From the above equations with: 
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For T > ΘD, cij is proportional to T since U ≈ T, they reach a constant value at T = 0 and for low 

temperatures cij is proportional to T4 (C ≈ T3, U ≈ T4). Fig. 2.8 shows a typical result for cij(T) for 

cubic LaAl2 [Schiltz74]. With ΘD = 374 K, a linear temperature dependence already for T > 150 K is 

observed, i.e. for T > Θ/2 for all elastic modes and a bend over (~ T4) towards saturation for T < 100 

K. 

 

Figure 2.8 Temperature dependence of elastic constants for LaAl2 (reprinted from Ref. [Schiltz74]). 

The range of the T4 dependence of the elastic stiffness constants is difficult to estimate. There are 

phenomenological expressions for the temperature dependence of the elastic constants, the best 

known is given by Varshny [Varshny70]. It reads: 

1/
0

−
−=

Ttijij
e

s
cc  (2.11) 

where s and t are constants which can be fitted to the experimental results. This empirical expression 

for the temperature dependence due to anharmonic phonon interaction describes the background 

elastic stiffness constants surprisingly well. It is therefore widely used. 

2.2.3 Magnetic susceptibility and elastic constants 

Here we discuss magnetic susceptibility and elastic constants for crystals with magnetic ions in 

the presence of crystalline electric fields (CEF). First, we discuss systems where other effects such 
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as magnetic exchange interactions or quadrupolar interactions between the magnetic ions are 

negligible. After that the more complicated effects will be introduced. 

The necessary formula for the different thermodynamic derivatives, the free energy density of 

the system, can be written as: 

( )
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 (2.12) 

where Fqh is the background free energy density of the quasi-harmonic crystal and the crystal field 

free energy density is given by FCEF = −NskBTlnZ with Z the partition function. The energies En are 

strain-dependent. Ns is the number of magnetic ions per unit volume. The CEF magnetic 

susceptibility χm measures the response of a system of magnetic ions to an applied magnetic field B 













>
∂
∂<+>









∂
∂<−>

∂
∂<−=

∂
∂−=

∂
∂

= 2
2

2

2

2

2 11

B

E

TkB

E

TkB

E
N

B

F

B

J
N

BB
s

z
smχ . (2.13) 

In this expression the first term is a Van Vleck contribution, which probes the off-diagonal 

magnetic dipole matrix elements. The next two terms are the so-called Curie terms showing a strong 

temperature dependence that is due to the diagonal matrix elements.  

In an analogous way, the strain susceptibility is the response of the structural order parameter 

<OΓ> to an applied strain εΓ. The strain dependence of the CEF energy levels in second-order 

perturbation theory is obtained from the magneto-elastic interaction: 
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where En are the unperturbed CEF energies. This perturbation theory is appropriate for small strains 

as used in ultrasonic measurements. This gives for the elastic constant:  
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Eq. 2.15a can be interpreted in the same way as Eq. 2.13. 0
Γc  is the background elastic constant. We 

can distinguish again between Van Vleck type terms ∂2E/∂ε2 and the strongly temperature-dependent 

Curie term. 

Now, if we include the exchange interaction: ∑=
ji

jiijex SSJH
,

, the magnetic susceptibility 

changes from the single-ion susceptibility to: 

0

0

1 χ
χχ

jm −
= . (2.16) 

Here, j is the q = 0 exchange constant which has positive and negative values for ferromagnets and 

antiferromagnets, respectively. 

In a similar way, an expression for the elastic constants in the presence of two-ion interactions 

can be obtained. The Hamiltonian is taken as: 
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Here, the first and second terms are the elastic and magneto-elastic energy. The last term gives 

the orbital interactions between the quadrupoles with a coupling constant K. Eq. 2.17 in molecular- 

field approximation reads: 

∑∑∑ Γ
≠

Γ
ΓΓΓΓΓΓ

Γ
Γ +=><++=

ijii
iii

OcOOKOgcH ζεεε
22

22

   (2.18) 

with ζ = gε + K<OΓ >. For the free energy we get in the molecular field approximation: 
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Here the magnetic ion energies Ei depend on ζ as Ei = E0
i + aiζ + biζ

2. We get the equilibrium 

condition ∂F/∂<OΓ>  = K<OΓ> +  <∂E/∂<OΓ>>  = 0. With the single-ion strain susceptibility χs = 

d<OΓ>/dε we get dζ/dε = g/(1 − Kχs) and cΓ = d2F/dε2 = c0 − gNsχsdζ/dε or: 
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This equation has the same structure as the magnetic susceptibility in Eq. 2.16. The expression has 

wide-spread applications in various fields such as in the cooperative Jahn–Teller effect [Lüthi05], 

certain structural transitions and the magnetic dimer–strain coupling [Wolf01a]. 

2.2.4 Ultrasonics at magnetic phase transitions 

The exchange interaction is the dominant interaction responsible for a magnetic phase transition. 

The isotropic Heisenberg exchange interaction explains many different phenomena in magnetism, 

such as the occurrence of the phase transition or the elementary excitations called magnons or spin 

waves. The magneto-elastic interaction, i.e. the coupling of the lattice coordinates (strains or phonon 

coordinates) to the spin system plays only a secondary role. Here, we will discuss the effect of the 

strain-spin coupling on the sound velocity and the attenuation near magnetic phase transitions. 

a) Critical attenuation coefficient  

Critical effects on sound velocity and attenuation are expected because of the spin–phonon 

coupling, especially the exchange striction coupling. With this interaction, energy is transferred from 

the sound wave to the spin system, which has relaxation channels whose relaxation times can 

diverge at the critical temperature. Hence from the strain-order parameter coupling (discussed detail 

in [Lüthi05]), it is seen that the sound attenuation α can diverge for ωτ < 1 and dispersive effects can 

occur for ωτ << 1, cf. Fig. 2.9.  

The relaxation time τ measures the time the system needs to come from a non-equilibrium state 

to the thermodynamic equilibrium. This parameter diverges upon approaching the critical point, with 

the critical slowing down. This is the source of divergencies in transport coefficients, here the 

ultrasonic attenuation. The attenuation coefficient can be determined by calculating the number of 

phonons with wave vector q absorbed minus those (induced) emitted [Stern65] leading to time-

dependent four-spin correlation functions: 
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In this formula, the attenuation coefficient α is proportional to the space-time Fourier-Laplace 

transform of a four–spin correlation function. For the evaluation of this correlation function, the 

different theories can be divided into three groups: the so-called conventional theories, the mode–

mode coupling theories and the coupling to energy fluctuations. 

 

Figure 2.9 Ultrasonic attenuation of longitudinal and shear waves along the c-axis near TN and TC 

for (a) FeF2 (reprinted from Ref. [Ikushima71]), (b) Gd (reprinted from Ref. [Lüthi68]) (full circles 

correspond to longitudinal, crosses and open circles to shear waves). 

Conventional theories: The four–spin correlation function of Eq. 2.21 is first factorised. In the 

next step, the hydrodynamic form is used for the two–spin correlation function: <SkS−k(t)> = 

<SkS−k>e−t/τ
k which is valid only for kξ << 1 with ξ the correlation length of spin fluctuations and τk 

the characteristic decay time of the spin fluctuations. Finally with ω<< τk
-1 the attenuation becomes  

α ~ ω2
χ

1/2
τc  (2.22) 

where χ is the spin susceptibility and τc = τk<1/ξ. ω
2 originates from the linear q dependence of Eq. 

2.21. Eq. 2.22 indicates that the critical slowing down of the spin fluctuations, 1/τc, enhances the 

singularity in the attenuation α on approaching TC. 

Mode–mode coupling theories: In the above discussion, the conventional theories overestimate 

the effect of correlations. This can be shown, for example, by calculating the specific heat using the 
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factorization approximation, which gives C ~ χ
1/2. In fact as pointed out by Bennett [Bennett69a], if, 

correspondingly, χ1/2 is replaced by C in Eq. 2.22, then 

22

2

1 C

C
S

C

τω
τωα

+
≈ . (2.23) 

In these theories, one hydrodynamic mode decays into several hydrodynamic modes, leading to a 

divergence in the transport coefficients. These theories retain the assumption ω<< τc
−1 and the 

hydrodynamic form of the spin fluctuations but do not factorize the four–spin correlation function of 

Eq. 2.21. 

Energy-density coupling: Finally, we discuss the energy density coupling mechanism. An 

important variant of the theories outlined above occurs if the exchange striction Hamiltonian Hexs is 

proportional to the exchange Hamiltonian, i.e. if in the corresponding expressions 
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Each individual term of Hexs is proportional to the corresponding term in Hex. Here A is the 

amplitude of the sound wave, zi is the number of neighbors (Ri) for a given site. z'i is  generally 

different from zi, i.e. the sound wave couples in general only to part of the spin energy density. Then 

the attenuation is proportional to an energy correlation function instead of the four-spin correlation 

function discussed above 

∫
∞

− ><∝
0

2 )(tEEdte qq
ti

E
ωωα . (2.25) 

Here <EqE-q(t)> = <E qE-q>e-t/τ
sl  with  τsl

-1=  γ/Cm the spin-lattice relaxation time of the spin-energy 

density with γ a constant. The evaluation of Eq. 2.22 gives the same expression as for αS (2.24) but 

with a weaker singularity like CM for τsl. Another relaxation channel via energy diffusion τE 
−1 = 

κq2/CM, with κ the thermal conductivity, is less effective. This coupling to energy fluctuations was 

introduced by Lüthi and Pollina [Lüthi69]. 

b) Sound velocity effects near magnetic phase transitions 

Similar to the critical ultrasonic attenuation, sound velocities also exhibit sharp dips at the 

magnetic phase transitions. An example of sound velocities for MnF2 near TN for different 

propagation directions [Kawasaki70] is shown in Fig. 2.10. The anomalies amount to ∆v/v0 ≤ 1/2%. 
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Experimentally, both quantities are usually measured together. As introduced in Sec. 2.2.1, for ωτ 

<< 1 the sound velocity does not depend on the relaxation time τ and therefore it is not a transport 

coefficient in contrast to the attenuation. It is a thermodynamic quantity and it can be calculated by 

the static part of the spin fluctuations.  

 

Figure 2.10 Anomalous temperature dependence of the velocity of 10MHz longitudinal sound in 

MnF2 for three different directions (reprinted from Ref. [Kawasaki70]). 

To get a feeling for the velocity anomaly, consider a magnetic free energy of the form Fm = 

−Tf(T/Tc). The spin–phonon coupling is of the exchange-striction type and the coupling constant is 

given by dTC/dε and the longitudinal elastic constant is c = c0 + d2Fm/dε2 = c0 − (dTc/dε)
2(T/Tc)CV 

with the magnetic specific heat CV = −Td2Fm/dT2. Therefore we expect only a small divergence in 

the sound velocity, the same as the specific heat divergence and with no frequency dependence.  

ςω −−−≈∆
)(0

0
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v
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3 
EXPERIMETAL TECHNIQUE AND ANALYSIS 

  

This chapter describes the experimental technique and the data-analysis procedure. The 

experiments are divided into two parts.  The first part presents an overview of the method employed 

to perform ultrasonic measurements and a short note is given about the cryomagnetic systems which 

are used to perform measurements at low temperature. The second part discusses the system and 

method that was used to study the magnetic properties of the materials investigated in this thesis. 

3.1 Ultrasonic measurements 

The common method we use to measure the elastic constants is determined from the propagation 

of acoustic waves. Sound waves are generated and detected by transducers attached to the plane 

faces of the specimen which are ideally parallel to each other. The most widely used methods to 

measure sound velocity and attenuation are the pulse-echo technique and the shape resonance 

technique, also called resonant ultrasound spectroscopy (RUS). In the latter case the specimen acts 

as a resonator operated at one of its eigenmodes so its quality is strongly related to the acoustic 

attenuation of the specimen. Most specimens of interest exhibit rather large attenuation leading to 

very low resonator quality. Therefore the pulse-echo excitation method [Lüthi94] has been chosen 

and successfully setup in our lab and is presented in detail below. 

3.1.1 Pulse-echo technique and phase-comparative method 

The basic idea of the pulse-echo technique is to send a pulse of sound through a sample. 

Assuming the input pulse signal A1 = A0cos(ωt) is applied to a transducer which emits a radio 

frequency acoustic wave (sound) into the sample, the sound wave propagates in the sample with 

velocity vs and arrives at the second transducer after a time τ = L/vs, L being the length of the sample. 

The transducer detects a signal B = B0cos[ω(t-τ)]  which is delayed by the propagation time τ and 

reduced in amplitude by a factor A0/B0 as illustrated in Fig. 3.1. Due to acoustic impedance 

mismatch at the interface between sample and transducer (or bond) part of the acoustic wave is 

reflected and propagates back to the first transducer. There it is reflected again and after a total time 
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τ3 = 3L/vs it arrives again at the second transducer. This process is repeated producing a detected 

pulse train where each transit gives a phase shift for the signal of Φn = (2n+1)ωL/vs (n = 0, 1, 2…). 

 

Figure 3.1 Schematics of sound pulse traveling inside the sample. 

By taking the total differential of sound velocity vs = (2n+1)ωL/Φn we have: 
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After division by vs from Eq. 3.1, it reads: 
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Partial integration gives: 
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Here the index 0 denotes some constant initial value. Taking the exponential finally: 

Φ
Φ

=
00

0

0 L

L

v

v

s

s

ω
ω

. (3.4) 

By replacing the entire variable in Eq. 3.4 as the initial value plus changing the form x = x0 + ∆x, 

performing multiplications and subtracting with the note that the higher-order products are negligible 

because the relative changes of 
0x

x∆
 have a magnitude of order 10-6 to 10-3 , one obtains:  
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A1 = A0cos(ωt) B = B0cos (ωt+Φn) 
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Usually 
0L

L∆
 is neglected since it is mostly one or two orders less than

0s

s

v

v∆
. If this is not valid, it 

must be corrected by other measurements such as magnetostriction or thermal expansion. The Eq. 

3.5 now contains two parameters ω and Φ to be determined in order to obtain the sound velocity vs. 

Conveniently, the measurement is performed while keeping ∆Φ = 0 with the electronic setup as 

described in Sec. 3.1.2. So the change of frequency immediately gives the relative change of sound 

velocity 

00 ω
ω∆=

∆

s

s

v

v
. (3.6) 

3.1.2 Electronic setup 

Figure 3.2 shows the electronic part of the ultrasonic setup for the simultaneous detection of the 

relative changes of ultrasonic velocity and attenuation, based on the technique presented above. The 

frequency range of 5–500 MHz is covered and the duration of the ultrasonic echo pulse is 0.1–1 µs. 

The repetition rate depends on the available cooling power in the cryostat and lies between 100 Hz 

in the mK temperature range and a few kHz at higher temperatures. 

(1)  The frequency generator produces a signal A1 = A0cos(ωt) with a frequency between 10–500 

MHz, depending on the transducer. 

(2)  The voltage divider that divides the signal into two. One signal is sent through the sample and 

the other one for the reference. 

(3)  The diode switch that is used to create a radio-frequency pulse signal. 

(4) The pulse generator that triggers the diode switch. 

(5) Power amplifier: amplifies the signal before sending it to the sample. 

(6) Transducer: converts the electronic signal to an ultrasonic signal and vice versa. 

(7) Sample. 

(8) Receive amplifier: amplifies the signal received from the sample and splits it into two channels. 

(9) Power amplifier: amplifies the reference signal. 

(10) Quadrature hybrid: Splits the reference signal into two equal amplitudes but 90o out of phase. 
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Figure 3.2 Experimental setup for the measuring sound velocity and the attenuation (adapted from 

Ref. [Lüthi05]). 

(11) Mixer: multiplies each reference signal by one of the identically received signals from sample 

using for phase-sensitive detection. 

A1B =1/2A0B0[cosΦn + cos(2ωt + Φn)] 

A2B =1/2A0B0[sinΦn + sin(2ωt + Φn)] 

(12) Low-pass filter: suppresses the time-dependent component leaving the time-independent one as 

the so-called phase signal. 

In-Phase-signal: In =1/2A0B0 cosΦn        Quadrature-signal: Qn =1/2A0B0 sinΦn 
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(13) Boxcar averager: Since the phase signal contains several echoes, the boxcar averager is used 

to select a particular one, performs some averaging both during each echo and between 

successive echoes and reads the output signal as the In and Qn as mentioned above. 

 (14), (15), (16), (17) Oscilloscope and Voltmeters used to display the results. 

(18) Computer: used to determine the frequency change and the amplitude of the 90o phase-shifted 

signal Qn. 

There is a direct feedback from the voltmeter to keep the phase of the signal In constant, usually 

equal to zero, by changing the frequency of the signal generator. As explained in Sec. 3.1.1 with the 

constant phase, the relative change of frequency 
00 ω
ω∆=∆

f

f
gives directly 

0s

s

v

v∆
and is recorded by a 

frequency counter (16).  

For the attenuation measurements, the principle way is to fit echo trains with an exponential 

function 

Ln
n eAA )12(

0
+−= α   (3.7) 

where α is the attenuation coefficient, L the sample length and n the number of the echo. Actually, 

the ultrasonic attenuation calculation is more difficult because the damping of the sound wave is not 

only due to the attenuation but also due to other sources such as reflection at boundaries between 

transducers, interference effects and so forth. Thus it is impossible to calculate the attenuation α 

from the Eq. (3.7) because in fact it is  

Ln
nn eAzA )12(

0
+−= α  

with the unknown factor zn due to the losses mentioned above. Under the assumption that the value 

of this unknown factor remains constant during the experiment, the ratio Ln

n

n e
A

A )12)((

0

0 +−−= αα will 

give the attenuation change.  

We set and kept Qn ~ 0 to determine the change in the sound velocity, so that In of the 

corresponding echo has its maximum value. Setting a second boxcar gate again at the position of the 

nth echo to record In, we obtain information about the changes of its amplitude so the relative 

ultrasound attenuation ∆α can be easily calculated. 
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3.1.3 Sample 

To use this technique, the pulses need to be long enough to include at least a few cycles of the 

frequency. With frequencies around 100 MHz, this implies that 10 cycles are included in a pulse 

length of 1µs. A pulse that is too short will not provide a clean excitation at the reference frequency. 

This restriction on the pulse length is then translated into a restriction in the sample length (L). This 

is because the echoes need to be separated into distinct pulses so the travel time (τ = L/vs) through 

the sample must be longer than the pulse length (Tpulse) 

Tpulse < τ = L/vs. 

Because sound velocities are of the order of 103 m/s, and assuming the pulse length of 1 µs, this 

would imply a requirement for the sample length to be in the millimeter range. 

It is also necessary to have the two surfaces, where the sound should bounce, to be as parallel 

and as flat as possible. The flatness requirement is to insure a good reflection (like in a mirror) at the 

surface of the sample. For this purpose, the surface roughness must be smaller than the wavelength 

of the sound. If the polishing is not good enough, the sound waves will suffer a diffuse scattering, so 

that a large fraction of the signal will not come back along the incoming direction and will be seen as 

a source of attenuation.  

Besides that the parallelism requirement is important because otherwise the signal does not come 

back to the same location. But even more important is that a small misalignment will produce an 

interference effect. 

3.1.4 Ultrasonics at low temperature 

All the ultrasonic measurements herein were carried out using a VTI 4He evaporation cryostat 

and a 3He-4He dilution top-loading refrigerator. All these are standard techniques and widely known 

so they will not be described in detail here apart from some short notes. More details about the 

operating principle of these systems can be found in the literature [Pobell07]. 

Figure 3.4 shows the operating setup of the VTI 4He refrigerator with the needle valve. Static 

magnetic fields were supplied by a superconducting magnet inside the cryostat which can reach up 

to 14 Tesla at 4.2 K. For temperatures above 4.2 K, cooling can be achieved by simply using the 4He 

gas flow taken directly from the main bath via the needle valve.  
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Figure 3.4 Continuously operating 4He refrigerator with needle valve. 

For the temperature range 1.3 K < T < 4.2 K, the simplest way is to pump a helium bath of 4He 

cryostat with an immersed sample. However, since about 40% of the helium is evaporated when the 

bath is pumped and cooled from 4.2 K to 1.3 K, this method is not economically profitable, 

especially if such an experiment requires long times.  The problem can be solved if a small amount 

of helium taken from the main bath is cooled only. In this case, after the insert has been cooled to 4.2 

K, a small flow of liquid helium from the main bath is obtained via a needle valve to the insert. The 

insert is connected to the pump and then pumped down by a room-temperature vacuum pump. Using 

a needle valve allows more flexibility to adjust the temperature of the insert, although adjusting the 

flow can be quite difficult. Samples are mounted on a probe which is loaded through an airlock and a 

gate valve at the top of the insert. This top-loading arrangement allows samples to be changed 

without warming the system or contaminating the VTI with air. 

For the temperature below 1 K, all the measurements are performed in a commercial top-loading 

3He/4He dilution refrigerator model 400 TLM from Oxford Instruments company. A dilution refrigerator 

is a cryogenic device first proposed by Heinz London. Its refrigeration process uses a mixture of two 

isotopes of helium: 3He and 4He. When cooled below a critical temperature, the mixture undergoes 
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spontaneous phase separation to form a 3He-rich phase and a 3He-poor phase. The concentration of 
3He in each phase is dependent upon the temperature as shown in Fig. 3.5(a). Since the enthalpy of 

the 3He in the two phases is different, the "evaporation" of 3He from the concentrated phase into the 

dilute phase may provide highly effective cooling. In a gross simplification, the concentrated phase 

of the mixture is pretty much liquid 3He, and the dilute phase is effectively 3He gas. The 4He 

composing the bulk of the dilute phase is inert and noninteracting, and may be neglected. The 

evaporation of 3He from the "liquid" phase to the "gas" phase cools the sample.  

 

Figure 3.5 a) 3He-4He phase diagram b) Schematic of dilution refrigerator (adapted from Ref. 

[Enss05]). 

When the refrigerator begins operation as shown in Fig. 3.5(b), the 1 K pot is used to condense 

the 3He/4He mixture in the dilution unit. It does not cool the mixture sufficiently to form the phase 

boundary, but simply to bring it to 1.2 K. Phase separation may be attained only once the 

temperature falls below the tri-critical point at 0.86 K. This cooling is provided by the still; incoming 
3He is cooled by the still before it enters the heat exchangers and mixing chamber. Gradually, the 

rest of the dilution unit cools to the point where phase separation occurs. During continuous 

operation, the 3He must be extracted from the dilute phase and resupplied to the concentrated phase. 

b) a) 
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The 3He is pumped down from the liquid surface in the still, where at ~ 0.6 K 3He evaporates 

preferentially. 3He leaving the mixing chamber is used to cool the returning flow of concentrated 3He 

in a series of heat exchangers. A room-temperature vacuum pumping system is used to remove 3He 

from the still and compress it before passing it through impurity-removing filters and cold traps (one 

at 77 K, the other at 4.2 K) and returning it to the cryostat. The inflowing mixture is pre-cooled by 

the main helium bath and condensed on the 1 K pot. A flow impedance is used to maintain a 

sufficiently high pressure in the 1 K pot region for the gas to condense. The experimental apparatus 

is mounted in the mixing chamber to ensure adequate thermal contact. 

The advantage of top-loading dilution refrigerators is that the measurements became more easily 

feasible and the exchange of samples could be achieved within a few hours. Additionally, to reach 

up to milliKevin range, it is very important to use efficient ultrasonic transducers for low input 

power (piezoelectric foils). The transducers have to be contacted with very fine 20 µm gold wires. 

The repetition frequency of the signal has to be as low as possible. With all these precautions, low 

temperatures below 50 mK can be achieved. 

3.1.5 Ultrasonics in pulsed magnetic field 

Fig. 3.6 shows our high magnetic field equipment containing a computer-controlled capacitor 

bank of 32.65 mF with a maximum voltage of 7 kV and a stored energy of 800 kJ. The capacitors are 

discharged using a thyristor switch where the current is limited to 100 kA. A crowbar diode with a 

variable resistor is used to adjust the pulse length, the temperature rise of the coil after the pulse and 

the reversed voltage at the capacitor bank. It becomes active when the voltage changes sign, thus 

dissipating the energy and protecting the capacitors [Wolf01b]. 

The 50 T coil (developed at the National High Field laboratory in Tallahassee) has an inductance 

of L = 1.81 mH with a rise time of 8 ms and a typical pulse length of 25 ms. The coils are cooled 

down to 77 K to reduce their resistivity before each pulse measurement. With a crowbar resistor of 

412 mΩ the temperature change after a 50 T pulse is raises up to 310 K. This change of temperature 

limits the maximum field and the pulse length. For such a 50 T pulse, we need an energy of 390 kJ. 

With a rise time of 8 ms the magnetic field changes ‘slowly’ in comparison with the important 

physical time constants of the sample. The experimental conditions are quasi-static.  

However, in the case of experiments in pulsed magnetic fields, the feedback loop is now much 

too slow to follow the changes of the magnetic field. Therefore, all measurements must be 
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performed at a fixed frequency and the phase shifts, which are proportional to changes in sound 

velocity ∆v/v, have to be calculated numerically using a computer afterwards. Thus we exchanged 

the feedback loop with a digital storage oscilloscope (or special AD converter) and we record In and 

Qn at constant frequency as well as the magnetic field pulse as a function of time. 

 

Figure 3.6 High field apparatus (reprinted from Ref. [Lüthi05]). 

The analysis of the data in this so-called quadrature procedure is based on the following 

equations, see Fig. 3.7. The amplitude of the sound wave is calculated according to:  
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The sound velocity v is proportional to the phase of the signal. One gets for a given echo n, and 

angular frequency ω of the sound wave and propagation time in the sample τ 
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To determine the change of the sound velocity from the changes of the phase ∆Φ one has to 

measure the initial sound velocity which is correlated to the initial phase 00 τωn=Φ , τ0 can be 

determined directly from the time delay between the electromagnetic signal and the nth echo where 

the data are taken. The resolution for sound velocity measurements for the equipment in Fig. 3.2 is 
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usually of the order of 10−6. In the pulsed field mode this changes to ~ 10−5. In order to get a high 

resolution it is also important to use a digital storage with large vertical resolution. 

 

Figure 3.7 Typical echo pattern in pulsed field ultrasonic experiments. Two channels I and Q are 

shown. Shaded area indicates the position of the gates. (b) Output voltage of gated integrator during 

a field pulse. (c) Vector representation of In and Qn. The arrows correspond to the positions in time 

scale from (b) (reprinted from Ref. [Wolf01b]). 

3.2 Magnetic characterization 

The macroscopic magnetic moment (M) of the samples in the presence of an external applied 

field (H) was measured at different temperatures T. The magnetic susceptibility χ(T) (normalized per 

mole) was calculated from M and H as: 
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The magnetization measurements were performed in a commercial SQUID magnetometer 

(Quantum Design MPMS XL-5) in the range 1.8 K < T < 400 K and for applied fields H up to 5 

Tesla (5×104 G). The sensitivity of this equipment is of the order of 1×10−7 emu for the measured 

magnetic moments. 

The SQUID (Superconducting Quantum Interference Devices) is the most sensitive device 

known for the measurement of magnetic flux. In this system, the magnetic moment of the sample is 

measured by moving the sample through superconducting detection coils (configured as a second 
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order gradiometer) which are connected by superconducting wires to the SQUID input coils forming 

a closed loop as shown in the sketch of Fig. 3.8. Any change of magnetic flux in the detection coils 

produces a proportional change in the persistent current in the detection circuit.  

 

Figure 3.8 Schematics of the magnetometer. Flux changes δΦP detected by the pickup coil are 

coupled into the SQUID via the flux transformer (reprinted from Ref.  [Drung96]). 

Since the SQUID functions as a highly sensitive and linear current-to-voltage convertor, a 

variation in the detection coil current produces a corresponding variation in the SQUID output 

voltage, which is thus proportional to the magnetic moment of the sample.  

 

Figure 3.9 Second-order gradiometer superconducting pick-up coils (adapted from Ref. 

[Drung96]). 

The sample is driven through the detection coils either by a continuous sinusoidal movement 

(RSO mode) or in discrete steps (DC mode) along the scan length. The currents induced in the 
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detection coil are ideally those associated with the movement of a point-source magnetic dipole 

through a second-order gradiometer detection coil as seen in Fig. 3.9. This signal requires that the 

sample has a size much smaller than the distance between the detection coils. If a sample is very 

long, extending well beyond the coil during a scan, its motion in the gradiometer will not be 

observable, since there would be no net change of magnetic flux in the detection coil. For this reason 

long uniform tubes were used as sample holders. The samples were mounted in a tube (made of a 

plastic material) and located in the centre of the detection coils, coinciding with the region of 

uniform external field in the centre of the superconductive magnet. The powder samples were 

mounted in a capsule made of cigarette paper and fixed in the tube by cotton. This paper and cotton 

have a very small diamagnetic signal that was carefully measured and subtracted as background, in 

an independent measurement. A careful determination of the magnetic background is important, 

especially at high temperatures where the magnetic signal is small. These capsules have a cylindrical 

shape and a typical size of about 2 mm long by 2 mm in diameter. 
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4 
THE QUASI-1D DIAMOND CHAIN COMPOUND AZURITE 

  

This chapter presents the experimental results of ultrasonic, thermal expansion and magnetic 

susceptibility measurements, performed on a single crystal of the quasi-1D distorted diamond-chain 

compound Azurite [Cu3(CO3)2(OH)2]. We aim to explore the strain dependence and the magneto-

elastic coupling in this compound. In addition, ultrasound is used in combination with other 

thermodynamic probes such as thermal expansion and magnetic susceptibility to construct the 

detailed low-temperature phase diagram of Azurite. 

4.1 Introduction  

The distorted diamond chain (DDC) is a one-dimensional quantum-spin model with a structure 

as shown in Fig. 1(a). This model with spin-1/2 can be viewed as one of the simplest one-

dimensional (1D) quantum frustrated systems, assuming that the exchange interactions along the 

chain are all antiferromagnetic. It has received a substantial amount of theoretical attention 

[Takano00, Tonegawa01, Honecker01, Okamoto99, Okamoto03, and Sakai09]. One reason is the 

occurrence of a plateau that could be observed at one-third of the saturation magnetization in the 

magnetization curve.  

 

Figure 4.1 (a) Structure and (b) phase diagram of the distorted diamond chain model (reprinted 

from Ref. [Tonegawa00]) 

b) 

J1 
J2 

J3 

a) 
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Another reason is the very rich ground-state phase diagram that comes from the competition of 

interactions as shown in Fig. 1(b), including the spin-fluid (SF), the dimerized (D), and the 

ferromagnetic (FRI) state [Tonegawa00]. Tonegawa et al. [Tonegawa01] investigated the ground 

state of the more general distorted-diamond chain in which exchange coupling constants J1, J2 and J3 

between adjacent S=1/2 spins are different. They pointed out that the distorted-diamond chain can be 

viewed as a periodic array of J2 dimer and monomer spins if J2 » J1, J3, or as an alignment of linear 

trimer spins when J1 (or J3) » J2 as presented in Fig. 4.2(a) and (b), respectively.  

 

 

Figure 4.2 Structure of the spin model of a diamond chain (a) dimer-monomer model and (b) linear-

trimer model. 

In these two extreme cases, a one-third magnetization plateau is intuitively understood to be 

present, and the one-third magnetization plateau is found to appear in a broad region of the phase 

diagram. However, past theoretical studies primarily concentrated on the ground-state properties of 

the system, whereas thermodynamic features are still sparse. One reason being a lack of appropriate 

actual real materials needed for experimental work in past years. Recently, it was proposed that 

Azurite, a natural mineral of composition Cu3(CO3)2(OH)2, can be regarded as a model substance of 

a distorted-diamond chain which revealed a distinct plateau at 1/3 of the saturation magnetization 

[Kikuchi05a].  

4.2 Structure and magnetic properties 

Azurite has a monoclinic crystal structure (space group P21/c) with room-temperature lattice 

parameters a = 5.01 Å, b = 5.85 Å, c = 10.3 Å, and a monoclinic angle, β = 92.4° in which Cu2+ (S = 

J1 

J2 

J3 

a) 

J1 

J2 

J3 

b) 
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1/2) magnetic ions located at the corners of diamond units form infinite chains along the b-axis as 

shown in Fig. 4.3 (a) [Gattow58, Zigan72 and Belokoneva01].  

 

Figure 4.3 (a) Structure of Azurite (reprinted from Ref. [Krämer06]). (b) and (c) show the 

temperature dependence of the specific heat and magnetic susceptibility χ(T), respectively. Inset of 

(b) shows the low-temperature part of χ(T). (c) displays the high-field magnetization curves  

measured below 4.2 K. The applied magnetic field was perpendicular to the b-axis ((b), (c) and (d) 

are reprinted from Refs. [Kikuchi05a] and [Lang06]). 

Investigations by high-field electron spin resonance [Okubo05], as well as by static 

measurements (magnetization, susceptibility, specific heat) have been performed [Kikuchi05a, 

Lang06]. Fig. 4.3 (b) and (c) display the experimental data of the magnetic susceptibility and 

a) 

c) d) 

b) 
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specific heat. We can observe a double-peak structure around ~ 25 K and ~ 5 K, followed by an 

antiferromagnetic (AFM) long-range order at TN = 1.86 K. Figure 4.3 (d) shows the magnetization 

measurements. The existence of the 1/3 magnetization plateau has been clearly established between 

16 T -  26 T or 11 T – 30 T when the magnetic field H was applied parallel (not shown here) or 

perpendicular to b-axis, respectively, consistent with theoretical predictions. It is also indicated that 

the coupling of the spins within the chain could be described by a monomer-dimer model as 

displayed in Fig. 4.2(a). This interpretation was later confirmed by nuclear magnetic resonance 

(NMR) measurements [Aimo09], which revealed the singlet state of the dimers and the full 

polarization of the monomers at the plateau region. Beyond the static properties investigated so far, 

the dynamical properties of Azurite remain attractive both experimentally [Rule08] and theoretically, 

[Gu07] and [Mikeska08]. The characteristic features of the model, namely, the presence of two 

different energy scales and their mutual influence will show up most clearly in the energy spectra. 

These are best investigated by inelastic neutron scattering (INS) experiments, as clearly seen in Ref. 

[Rule08].  

The proposed magnetic model and the dimensionality of Azurite is, however, disputed both in 

experimental and theoretical studies. Some authors have suggested a ferromagnetic J3 < 0 [Rule08, 

Gu06] which would render the model non-frustrated, whereas other authors have argued that the 

interchain coupling is important [Kang09]. Recent first-principles density-functional computations 

[Jeschke11] indeed yield a three-dimensional coupling geometry with a dominant antiferromagnetic 

dimer exchange constant J2 > 0. Nevertheless, a closer inspection of the exchange geometry allows 

one to map this three-dimensional network effectively onto the generalized diamond chain which 

gives a reasonable description at higher energy scales, (i.e., T > 2 K or in the plateau region) 

covering a broad range of experimental results, including the magnetization curve, the magnetic 

susceptibility, the specific heat [Kikuchi05a], the structure of the one-third plateau as determined by 

NMR [Aimo09] and inelastic neutron scattering on this one-third plateau [Rule08]. These studies 

thus place Azurite in the highly-frustrated parameter regime of the 1D diamond chain. However, at 

an energy scale of a few Kelvin, i.e.,  T < 2 K, some parameters such as inter-chain coupling and 

magnetic anisotropy, neglected in the above generalized diamond chain model, now play an 

important role and affect the magnetic properties of Azurite in the very low-temperature region. The 

studies of magnetic and structural properties of Azurite recently performed at very low temperature 

by inelastic neutron scattering (ISN) and muon-spin resonance (µSR) measurements, suggest a more 

complicated micromagnetic structure than has been previously thought, with the coexistence of 
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magnetic order with structural distortion [Gibson10]. Besides that, the detailed field-temperature (B-

T) phase diagram as well as the static spin structure at low temperature is still unknown. This 

motivated the current study about the magnetic phase diagram and the interdependence of structure 

to magnetic degrees of freedom. 

In this thesis, ultrasound measurements were used to study the strain dependence and the 

magnetoelastic coupling in Azurite. The results were discussed in connection with the supporting 

information obtained from magnetic susceptibility under pressure [Mariano09] and thermal 

expansion measurements [Brüehl08]. The B-T phase diagram at very low temperature was also 

revealed in detail up to the plateau region in both directions B // b and B ⊥ b-axis. 

4.3 Sample preparation 

The samples for the various measurements were cut out of a large high-quality single crystal that 

was also used in INS and µSR measurements [Rule08], [Gibson10]. The crystal was supplied by the 

Institute of Mineralogy at the University of Frankfurt. The crystal, which is used for ultrasonic 

measurement, has a dimension of about 2.7 x 2.3 x 2.5 mm3. Two opposite surfaces, normal to the 

[010] crystallographic axis, were polished and a pair of piezoelectric thin-film transducers were 

glued to the surfaces. These transducers generate longitudinal sound waves propagating along the 

[010] direction, corresponding to the acoustic c22 mode. The measurements with the acoustic 

frequency of 75 MHz were performed as the function of temperature (down to 80 mK) and static 

fields (up to 12 Tesla). 

Magnetic susceptibility measurements under pressure have been performed with a SQUID 

magnetometer (Quantum Design, MPMS). High pressure was generated by a piston cylinder 

clamped cell, using Daphne oil 7373 as a pressure-transmitting medium. The pressure at low 

temperature was determined by the superconducting transition temperature of Indium. Thermal 

expansion measurements, αi(T) = li
−1(∂l i/∂T), where l i(T) is the sample length, were carried out by 

using an ultrahigh-resolution capacitive dilatometer with resolution up to ∆l/l = 10−10 [Pott83]. 

Measurements were conducted along a′, b and c* axes, where a′ and c* are perpendicular to the (-

102) and (102) crystallographic planes, respectively. 

4.4 Results and discussions 

4.4.1 Strain dependence 
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Figure 4.4 a) Temperature dependence of the c22(T) mode. Full line is the background )(0
22 Tc . Inset: 

low-temperature part of c22(T) vs. log(T). Arrows mark the short-range ordering of dimer (T1), 

monomer (T2) and long-range ordering (TN). b) )(22 Tc∆  = ( )(22 Tc - )(0
22 Tc )/ )0(0

22 =Tc data (open 

circles) as a function of temperature with a fit according to Eq. (4.1) (solid line).  

Fig. 1 (a) shows the temperature dependence of the longitudinal elastic constant c22(T) plotted 

together with the elastic constant background )(0
22 Tc that is derived from the phenomenological 

expressions 
1/

0

−
−=

Ttijij e

s
cc , where s and t ~ θD/2 (θD is the Debye temperature) are constants, cf. 

chapter 2 for details. Using the value of θD  = 350 K that was used in Ref. [Kikuchi05b] to estimate 

the lattice contribution to specific heat data, the function given above has been fitted to the high-
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temperature part of the experimental data (T > 275 K) where the temperature dependence of the 

elastic constant obeys this expression. The fitted results are displayed as the solid lines in Fig. 4.4(a). 

The magnetic contribution to the elastic constants is obtained by subtracting the measured data from 

the elastic background as illustrated in Fig. 4.4(b). Details of the low-temperature part of c22(T) are 

exhibited in the inset of Fig. 4.4(a). A sharp anomaly is observed at 1.8 K, reflecting the occurrence 

of the long-range magnetic order. This temperature is consistent with the reported value for the Néel 

temperature TN [Kikuchi05a]. A new finding from our sound velocity measurement is the 

observation of the steep decreasing of c22(T) at very low temperature (T < 0.5 K) as well as the 

appearance of two anomalies, a minimum and a maximum around 25 K and 5 K, respectively, 

corresponding to the temperature at which the formation of dimers and short-range ordering of 

monomers occur, respectively. 

 

Figure 4.5 a) Uniaxial expansivities along three orthogonal axes. Arrows mark the short-range 

ordering temperatures of dimer (T1) and monomer (T2). Broken lines at T1 and T2 are guides for the 

eyes. b) Volume expansivity β = αa′ + αb + αc* determined from the data in a). The insets of (a) and 

(b) show details of the anomalies at TN [Brüehl08]. 
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Fig. 4.5(a) shows the results of the temperature dependence of the thermal expansion coefficient 

αi(T) (i = a′, b, c*) for temperatures below T = 75 K at ambient pressure and zero magnetic field. 

Three distinct anomalies are observed along the three different crystallographic axes. Upon cooling, 

the data, measured along the b-axis, show a broad positive maximum at T1 ≈ 20 K whereas along the 

two other axes (a′ and c*) a negative minima appears. Upon further cooling to lower temperatures, 

one more feature which appears as a minimum in the b, a′-axes and as a maximum in the c*-axis, is 

observed at T2 ≈ 5 K. These temperatures coincide closely with those where the rounded peaks 

appear in the magnetic susceptibility and specific heat, cf. Fig. 4.3(b and c) and Fig. 4.6. Finally the 

long-range AFM order takes place at TN ≈ 1.88 K reflected in a huge λ–like peak in the thermal 

expansion coefficients. This is shown clearly in the inset of Fig. 4.5(a) on expanded scales. The 

various anomalies are also seen clearly in the volume expansion coefficient β(T) = αa′(T) + αb(T) + 

αc*(T), shown in Fig. 4.5(b).  

The huge softening of c22(T) and large anomalies in β(T) observed in the low-temperature region, 

indicates the strong influence of the magnetic properties to the elastic behavior, i.e., a strong spin-

phonon interaction. The anomalies observed at T1 and T2 reveal clearly two energy scales governing 

the thermodynamic properties of this material. The higher and dominant energy scale is associated 

with the intradimer coupling whereas the lower energy scale has been identified as the correlation 

between monomers induced via the coupling through the dimers. The effect of c22(T) at T1 is 

reminiscent of the behavior observed for the coupled-dimer system SrCu2(BO3)2, where the 

minimum of c(T) is also recognized to be due to the formation of spin dimers [Wolf01a]. 

In order to quantitatively evaluate the elastic coupling of the Cu2+ dimer interaction, the 

generalized strain susceptibility χstr formula is used to calculate the temperature dependence of the 

elastic constants in the frame of a random-phase approximation (RPA) molecular-field theory for the 

coupled-dimer model [Wolf01a]. We define the strain susceptibility as the response function of an 

applied strain. So the temperature dependence of elastic constant can be expressed as follows: 

strNGTc
F

Tc χ
δε
δ 20

222
22

2

22 )()( −==       (4.1) 

where:
s

s
str Kχ

χχ
−

=
1

,  

and
 
the strain susceptibility of the single dimer with respect to singlet-triplet gap ∆: 
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Here Z is the partition function, K is the strength of the effective dimer-dimer interaction that can be 

mediated, e.g., by phonons,
ε∂
∆∂=G , i.e.,

ε∂
∂

= 2J
G   is a single-dimer coupling or exchange-striction 

coupling constant and N is the density of dimers [Lüthi05].  

Using the number of dimers N = 3.3x1021 cm-3 and c0(T = 0) = 7.96x1021 erg/cm3, we conducted 

the nonlinear least-square fitting with two free parameters K and G in the high-temperature region 

down to T1 where the dimers play the dominant role. The solid line in Fig. 4.4(b) shows the result of 

the fitting based on equation (4.1). The fit plotted in Fig. 4.4(b) has a minimum at the same 

temperature T1 as the experimental data and shows a fairly good agreement with the experimental 

data at T ≥ 22 K, while the difference is large for T ≤ 22 K due to the complex magnetic interactions 

at lower temperatures. The fitting result gives the singlet-triplet gap, ∆ = 54 K and the dimer-dimer 

coupling constant K ~ 100 K. The value or the gap ∆ is very close to the value of 50 K obtained by 

ESR measurements [Okubo05]. The single-dimer coupling constant G, which measures the strain 

dependence of the singlet-triplet gap, has been also obtained to G ~ 1700 K. This value is 

comparable with the largest one found in the coupled-dimer system SrCu2(BO3)2 [Zherlitsyn00] and 

implies a very strong coupling of the Cu2+ spin dimers to the lattice. It may be responsible for the 

structural distortions observed at the AFM transition as discussed below. 

In order to have a more quantitative evaluation of the strain dependence of the dimer interaction, 

we conducted the magnetic susceptibility measurement under various pressures. Fig. 4.6 displays the 

data of the magnetic susceptibility χ(T,p) as a function of temperature in the range from 300 K to 2 K 

under different constant pressures. The data were taken in a field of 2 T applied parallel to the b-axis 

with pressure varying from 0 to 6.2 kbar. At p = 0 kbar, the data are consistent with those reported 

by Kikuchi et al. [Kikuchi05a], including the broadened maxima at T1 and T2. A remarkable 

decrease of the position of T1 (-1 K·kbar-1) to lower temperatures with increasing pressure was 

observed. On the other hand, the position of T2 changes only by ~ -0.2 K·kbar-1, cf. Fig. 4.6(b). 

Simultaneously, the low-temperature value of the magnetic susceptibility increases with increasing 

pressure.  

The isolated-dimer model was again applied to describe the magnetic susceptibility data using 

the similar value of the singlet-triplet gap ∆ = 54 K for the data at p = 0 kbar in the temperature 
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range of T1 < T < 300 K. It gives a rather good overall agreement with the data and can well 

reproduce especially the position of T1 at the different pressure values as shown in Fig. 4.5. 

 

 

Figure 4.6 a) Temperature dependence of the magnetic susceptibility under various applied 

pressures and the field parallel to the b-axis. Red solid line is the result of a fit based on the 

isolated-dimer model (see text). b) Data in the vicinity of T1 and T2 are shown on an enlarged scale. 

Arrows indicate the changes of the positions of T1 and T2 under pressure [Mariano09]. 

 At finite pressure, we also obtained a fairly good description with the value of the pressure 

dependence of the singlet-triplet gap of d∆/dp ~ 1 K·kbar-1, i.e., .kbarK 1 1-2 ⋅−≈
∂
∂

p

J

 
The temperature 

T1, being the characteristic temperature of the intra-dimer interaction, provides the measure for the 
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strength of the intra-dimer coupling constant. The strain dependence of the exchange coupling can 

be derived from the pressure dependence of the corresponding characteristic temperature T1 by the 

relation δ(kBT1)/δp = C-1δJ/δε; here C, ε and J are the elastic modulus, the strain and the exchange 

coupling constant, respectively. Using this relation, we can estimate the strain dependence of the 

single-dimer coupling constant 
ε∂

∂ 2J
 and find it to be of the order of ~ 1000 K, in rough agreement 

with the result for the strain dependence obtained above.  

This simple RPA expression for the dimer-model accounts quite well for the effect of the 

dominant energy scale characterized by the temperature T1 as observed in χ(T), c22(T) and β(T) . 

From these results, we can conclude that the strain interactions are very important in this compound. 

These experimental findings are interpreted appropriately by the monomer-dimer model which also 

provides a natural explanation for the 1/3 plateau seen in magnetization experiments as discussed in 

Refs. [Kikuchi05a], [Rule08] and [Aimo09].  

4.4.2 Magneto-elastic coupling 

At TN  = 1.88 K, we observed a very sharp minimum and a sharp kink in c22(T) and χ(T), 

respectively, displayed in Fig. 4.7(a), coinciding with a pronounced anomaly in αi(T), cf. inset of 

Fig. 4.5(b), that reflects the entrance into the AFM ordered state. The size of the elastic anomaly is 

of the order of 0.1%, which is considerably larger than the features observed in other low-

dimensional quantum spin systems, where only kink-like anomalies were observed at the AFM 

transition, cf. Ref. [Sytcheva10] for an example. Additionally, the volume thermal expansion 

coefficient β(T) has an extraordinary large anomaly of ∆β = 550·10-6 K-1, as exhibited in the inset of 

Fig. 4.5(b), implying a strong reduction that leads to a significant strain in the lattice. These results 

thus indicate that there is a huge spin-lattice coupling accompanying the occurrence of long-range 

magnetic ordering in agreement with the conclusion from Ref. [Gibson10].  

To get more information on the field dependence of the acoustic anomalies, measurements were 

conducted in both static and high pulsed fields. In static fields, the data of c22(B), reveal a 

pronounced softening with increasing field and show an anomaly at around 10 T marking the 

entrance into the 1/3 plateau region [Kikuchi05a], regardless of the applied field direction. The size 

of this softening increases quickly as the system enters deeply into the long-range ordered state, cf. 

Fig. 4.7(b) and Fig. 4.12. The field dependence of c22(B) in the ordered AFM phase resembles the b-
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axis magnetostriction data [Wolff-Fabris09]. At 0.85 K, the softening of c22(B) reaches values of 

about 1% as illustrated in Fig. 4.7(b) which cannot be explained by magnetostriction (~10−4). This 

observation is a clear evidence for a strong magneto-elastic interaction within the AFM ordered 

state. The same conclusion was also obtained from the pulsed field data measured for B // b-axis 

reported previously [Lang06]. The results showed a drastic softening of the elastic c22 mode with a 

minimum at 31 T - a typical behavior of a resonant interaction between the sound wave and the 

magnetic excitations indicating a significant spin-phonon interaction in this material. 

 

Figure 4.7 a) Temperature dependence of the c22(T) acoustic mode for B = 0 T (left scale) and the 

magnetic susceptibility χmol(T) (right scale) in the vicinity of the AFM transition. b) Field 

dependence (B ⊥ b-axis) of ∆v22/v22 at 0.85 K up to the critical field of the plateau region. 

To conclude this subsection, we emphasize that Azurite can be well described as a model system 

for the 1D diamond chain at temperatures above 2 K [Jeschke11]. However, a strong magneto-elastic 

exchange coupling must be taken into account in the “full model” Hamiltonian for describing the 

low-temperature region, including the 3D long-range AFM order. 

4.4.3 Critical behavior of sound velocity and attenuation 

Fig. 4.8 (a) shows a typical attenuation and sound velocity results for the c22 mode in the 

temperature range around the AFM phase transition. The sharp dip observed in the velocity, closely 

coincides with the maximum of the λ-like anomaly of the attenuation at this second-order phase 

transition. To check for the frequency dependence of these anomalies, the data of the sound velocity 

a) b) 
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and the attenuation, measured at 50 MHz and 75 MHz, are shown in Fig 4.8 (b) and (c), respectively. 

In the case of the sound velocity, there was no significant difference within the accuracy of the 

experiment, either above or below the transition. However, the attenuation increases by about a 

factor of 2 when the frequency increases from 50 MHz to 75 MHz. This agrees nicely with the 

discussion in chapter 2.2.4 indicating that the critical contributions to the sound velocity at magnetic 

phase transitions are frequency independent while those of the sound wave attenuation closely 

follow a quadratic frequency dependence. So the anomalous contribution to the sound velocity ∆v 

and attenuation α can be described by power-law formulas ςεω 0

0

~
v

v∆− and ηεωα 2~ , respectively. 

ζ and η are the critical exponents, v0 is the velocity of the normal variation at the critical point TN, ω 

is the angular frequency of the acoustic mode and ε is the reduced temperature ε = (T - TN)/TN. To 

get the critical contribution, one has to subtract a background arising from other sources 

(anharmonic terms, imperfections, etc) by following the same procedure as indicated in subchapter 

4.3.1 for the sound velocity and Ref. [Lüthi70] for the attenuation. 

 

Figure 4.8 a) Sound velocity (black balls) and attenuation (blue balls) changes measured at 75 MHz 

of Azurite as a function of temperature around the AFM phase transition. b) and c) show the 

temperature dependence of the relative change of the sound velocity and the sound attenuation 

measured at 50 MHz ( red balls) and 75 MHz (black balls), respectively. 

Fig. 4.9 shows the critical sound attenuation (panel (a)), and critical sound velocity (panel (b)) 

deduced from Fig 4.8 (a) in a double-logarithmic plot. The main panel of a) and b) displays the data 

c)  b) a) 
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for T > TN and the insets for T < TN, respectively. The clear critical behavior can be observed in the 

temperature range ε > 6·10-3 in both sound velocity and sound attenuation for above and below TN. 

The observed roll-off in critical behavior close to TN (ε < 10-3) may be caused by impurities and can 

also be due to the strong magnetoelastic-coupling in the vicinity of the critical point [Lang11]. 

However it is not related to a breakdown of the conditions such as ωτc << 1 (chapter 2.2) which 

would cause a marked frequency dependence, contrary to the observations shown in Fig 4.9 (c). 

 

Figure 4.9 The log-log plot of the sound attenuation, shown in panel (a), and sound velocity, shown 

in panel (b) of 75 MHz longitudinal waves versus reduced temperature ε for T > TN (main panel) 

and T < TN (inset), respectively. c) Double-log plot of the sound attenuation (right-hand ordinate) 

and 1/τc (left-hand ordinate) versus reduced temperature ε. 

c) 

a) b) 
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Figure 4.10 The log-log plot of the sound attenuation, shown in panel (a) and (b), and the sound 

velocity, shown in panel (c) and (d), of 75 MHz longitudinal waves versus reduced temperature ε 

measured at various applied magnetic fields for T > TN and T<TN, respectively. 

In the case of the attenuation, by fitting the data with a power law, we find a critical exponent of 

η ~ 1.12 in the paramagnetic state (T > TN) that is significantly different from η ~ 5.422, obtained in 

the ordered state (T < TN). The value of η = 1.12 obtained here for the paramagnetic phase is in 

agreement with the theoretical prediction by Bennett [Bennett69] of η ~ 1 for the isotropic 

Heisenberg antiferromagnet. Here a perturbation treatment was made for the decay rate of one sound 

wave into two, three or four other sound waves and the scaling law concept was used. The 

extraordinarily large value of η in the ordered state might indicate additional extrinsic damping 

effects. As a possible source we mention the extraordinarily strong lattice distortion accompanying 

the magnetic transition which may lead to the formation of domains acting as scattering centres for 

the sound waves. 

a) b) 

c) d) 
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In the case of the sound velocity, we obtain the same critical exponent of ζ ~ -0.056 for both T > 

TN and T < TN that indicate a common mechanism driving the system at the critical region. 

According to ref. [Lüthi70] the critical contribution of the sound velocity is expected to show the 

same power-law behavior as the specific heat, i.e., ζ ≈ α. Therefore ζ ~ -0.056 is indicative of a 3D 

isotropic antiferromagnet, for which α = -0.12 is predicted [Pelissetto02], rather than the anisotropic 

variant where 0 ≤ α ≤ 0.14 [Pelissetto02].  .  

In addition, in Ref. [Lüthi70], Lüthi pointed out that the ratio of ∆v/v and α should then give 

directly a measure of l/τc. In Fig. 4.9(c) we have made a log-log plot of 1/τc for T > TN (left-hand 

ordinate scale) calculated from the actual experimental values of both ∆v/v and α by using the 

formula: 

α
ω

τ
0

0

2 /1 vv

vc

∆
−= . 

One can clearly see the critical slowing down of l/τc as a function of diminishing ε. The slope 

indicates that l/τc is proportional to ~ ε1.26, rather close to the expected value of the attenuation 

shown above. 

Fig 4.10 shows the log-log plots of the critical attenuation (panel (a) for T > TN and (b) for T < 

TN) and the sound velocity (panel (c) for T > TN and (d) for T < TN) vs. reduced temperature ε under 

various applied fields. The plots show a uniform behavior as the applied field changes from the 

AFM to SF state. It means that a similar mechanism drives the critical contribution when crossing 

from the PRM to the AFM or to the SF state.   

 4.4.4 B-T phase diagram 

The B-T phase diagrams have been constructed from various measurements of c22(B,T) and 

αi(T,B) as a function of field and temperature. Here only some selected results are presented and 

discussed. Fig. 4.11 shows variations of the uniaxial thermal expansion coefficient αc*(T) (shown in 

panel (a) with applied field perpendicular to b-axis) and relative change of the sound velocity 

(shown in panel (b) and (c) with applied field parallel and perpendicular to b-axis, respectively) at 

different magnetic fields in the vicinity of the AFM phase transition temperature. In thermal 

expansion, the transition into the AFM phase appears as a λ-like anomaly reflecting the character of 



Chapter 4: The Quasi-1D Diamond Chain Compound Azurite 

 66

the second-order phase transition. Interestingly, this anomaly has a double-peak structure with a 

temperature difference in the two anomalies of ≈ 0.2 K.  

 

Figure 4.11 a) Uniaxial expansitivity along the b-axis as a function of temperature at different 

applied magnetic fields (B ⊥ b-axis). Solid arrows mark the AFM transition (TN) and dashed arrows 

indicate yet another transition at T* (adapted from Ref. [Brüehl08]. b) and c) Temperature 

dependence of the relative change of the sound velocity at different magnetic fields (applied field 

parallel to b-axis in panel (b) and perpendicular to b-axis in panel (c)) in the vicinity of the AFM 

phase transition temperature. 



Chapter 4: The Quasi-1D Diamond Chain Compound Azurite 

 67

The first one is very sharp and located at TN and the second one appears as a kink-like anomaly at 

slightly lower temperature T*, as shown by solid arrows and dotted arrows in Fig. 4.11. With 

increasing magnetic fields, TN and T* shift to lower temperatures and become suppressed at fields 

above 10 T, consistent with the behavior of TN obtained from sound velocity measurement in the 

same geometry, cf., Fig.4.11 (a) and (c). At present the microscopic mechanism of the second 

anomaly at T* < TN is still unknown.  

 

Figure 4.12 Selection of data of ∆v22/v22 as a function of magnetic field (B ⊥ b-axis) at different 

temperatures in the range from 1.95 K to 3.6 K in panel (a), from 1.8 K to 1.88 K in panel (b) and 

from 1.26 K to 1.7 K in panel (c). Panel (d) exhibits the data of ∆v22/v22 (left scale) and ∆α (right 

scale) taken at 1.63 K. Solid arrows mark the AFM to SF (T < 1.6 K) or AFM to PM transition (T > 

1.6 K) at B1. Dashed arrows indicate the SF to PL (T < 1 K) or SF to PM (T > 1 K) transition at B2. 

Field-induced plateau phase (BPL) is pointed out by dotted vertical arrows 



Chapter 4: The Quasi-1D Diamond Chain Compound Azurite 

 68

Another interesting result comes from the temperature dependence of the sound velocity at zero 

fields. As displayed in Fig. 4.7(a), after the sharp anomaly at TN, the data exhibit another pronounced 

softening of c22(T) when the system is cooled to very low temperatures (T < 0.45 K). The onset of 

this softening coincides with an abrupt increase of χmol(T). Note that this softening of the elastic 

constant is of comparable size to the one observed at TN. This finding suggests the presence of 

another, most likely magnetic phase transition at temperatures below 0.45 K. The different behavior 

of c22(T) at the two phase transitions (at TN and at 0.45 K) indicates that different coupling schemes 

between the strain and the corresponding order parameters are realized here. 

Fig. 4.12 shows the isotherm of the relative sound velocity change of c22(B) as a function of 

magnetic field applied perpendicular to the b-axis. The field orientation was close to the setting 

employed in Ref. [Love70]. For this field orientation, the 1/3 magnetization plateau is reached above 

10 T [Kikuchi05a]. Fig. 4.12(a) displays a selection of data taken outside the ordered phase, i.e., 

from 1.95 K to 3.6 K. With increasing field, the data show a pronounced softening of the c22 mode 

representing the field-induced progressive canting of the monomers giving rise to paramagnetic-like 

behavior in the magnetization [Kikuchi05a]. Entering into the 1/3 plateau was marked by a well-

defined anomaly around 10 T (BL) as mentioned in Sec. 4.4.2.  

Inside the low-temperature long-range-ordered phase, the ultrasound measurements display a 

more complex behavior. As exhibited in Fig. 4.12(b), (c) and (d), we find several distinct anomalies 

which become more pronounced and develop a fine structure with decreasing temperature. As 

already reported in chapter 2, the ultrasonic attenuation ∆α changes abruptly or exhibits an anomaly, 

whereas the elastic constant exhibits an anomaly at the magnetic phase transition as one can see in 

the Fig. 4.12(d), an example of a measurement of ∆v/v and ∆α as a function of magnetic field 

performed at 1.63 K.  The first feature at around B = 2 T (B1), shown in Fig. 4.12(b) and (c) by solid 

arrows, was assigned in Ref. [Love70] to the transition from the antiferromagnetic to the SF state 

(for T < 1.6 K) or the paramagnetic (PM) state (for T > 1.6 K), cf. Fig. 4.14(b). At the temperature 

1.3 K < T <1.6 K, the second feature appears at the field between 2 T and 10 T (B2) in Fig. 4.12(c), 

indicated by the dashed arrow, which is attributed to the transition from the SF state, either to the 

plateau state (PL) via the PM state (T > 1 K) or directly into PM state (T < 1 K). Upon decreasing 

temperature, this second feature becomes sharper and has the tendency of merging with the anomaly 

that characterizes the field-induced transition to the plateau state at low temperature. A precise 

mapping of the field vs. temperature phase diagrams from the various temperature- and field-
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dependent measurements suggests that exiting from the AF ordered phase (for B // b-axis) or SF 

phase (for B⊥ b-axis) merges with the entrance into the 1/3 ordered plateau phase at low 

temperatures, cf. Fig. 4.14 (a) and (b). 

 

Figure 4.13 a) Temperature dependence of ∆v22/v22 in various applied fields (B // b-axis). b) ∆v22/v22 

as a function of field (B ⊥ b-axis) at various fixed temperatures. c) ∆v22/v22 as a function of field at 

constant temperatures (B // b-axis).  

In order to obtain more information on the very low-temperature region (T < 0.5 K), the field 

(temperature) dependence of v22 at various fixed temperatures (fields) has been determined and is 

displayed in Fig. 4.13. The temperature dependence of v22 at different applied fields B // b-axis is 

shown in Fig. 4.13(a). The onset temperature of the softening gradually shifts to lower temperature 



Chapter 4: The Quasi-1D Diamond Chain Compound Azurite 

 70

with increasing field. No softening can be observed within the accessible temperature range T ≥ 0.08 

K for B ≥ 1.25 T. These observations still remain valid when the magnetic field is applied 

perpendicular to b-axis (not shown here). Fig. 4.13 (b) displays a selection of field sweeps for B // b-

axis measurements. A pronounced increase of v22 is observed at very low temperature of 0.13 K 

upon increasing the field. At a field of 1.15 T, this increase is abruptly terminated and c22 starts 

decreasing with further increasing field. The position of this kink in v22 is shifted to the lower fields 

with increasing temperatures. Above the temperature T = 0.41 K, however, this anomaly can no 

longer be discerned.  

 

Figure 4.14 B-T phase diagram for the field applied parallel (a) and perpendicular (b) to the b-

axis. Phase boundaries (solid lines) are constructed from the anomalies of the temperature 

dependence of thermal expansion (open red squares, at TN, and down green triangles, at T*) sound 

velocity (open orange stars) and the field dependence of the sound velocity (open blue circles, at B1 

and B2) measurements. The crossover-phase boundaries (broken lines) from AFM and PM (B // b) or 

SF and PM (B ⊥ b) to the PL state are determined from the field dependence of the sound velocity 

and the thermal expansion [Wolff-Fabris09] at BPL. 

Fig. 4.13(c) shows details of some selected low-field sweep data from 0.072 K to 0.65 K. At 

temperatures above 0.45 K, a single feature of the field-induced AFM to SF phase transition is 

observed around 2 T. For T < 0.45 K, however, the data reveal a splitting into two closely-spaced 
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features. Note that these features for B ⊥ b occur in the same temperature region where the large 

softening was observed in c22(T), cf. Fig. 4.7(a), and have the same size as the elastic anomaly at the 

AFM phase transition. There is no doubt that these observations indicate the existence of an 

unknown phase boundary at very low temperatures. More detailed studies at very low temperatures 

should elucidate this phenomenon. 

Finally we construct the detailed low-temperature B-T phase diagrams for B // b and B ⊥ b, 

shown in Fig. 4.14(a) and (b), from the anomalies of temperature- and field-dependent of the sound 

velocity and thermal expansion measurements. The B-T phase diagram shows that the low 

temperature state of Azurite is more complex than was previously thought. These observations imply 

the action of further interactions such as anisotropic exchange interaction, Dzyaloshinskii-Moriya 

interactions or structural distortions leading to a change of the magnetic exchange coupling. These 

effects should be taken into account in a microscopic model that accounts for the low-temperature 

properties of this material. 
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5 
THE QUASI-2D SPIN-1/2 HEISENGERG AFMs Cs2CuCl4 and Cs2CuBr4 

  

This chapter presents the results of ultrasound measurements carried out on single crystals of the 

quasi-2D antiferromagnetic quantum magnets Cs2CuCl4 and Cs2CuBr4. Our aim is to study the 

interaction of the acoustic wave with the spin lattice at the field-induced phase transitions and the 

interplay of the spin-lattice interaction and the quantum-critical behavior in these low-dimensional 

spin systems. 

5.1 Introduction 

For more than a decade, the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4 have been 

considered as experimental realizations of a frustrated triangular lattice [Coldea96, Tanaka02]. Of 

particular interest in these systems are the anomalous physical properties resulting from the interplay 

of strong quantum fluctuations and geometric frustration [Lee10, Sebastian06 and Batista07].  Both 

systems are characterized by a layered arrangement of Cu2+ ions in a triangular pattern parallel to the 

bc-plane [see Fig.5.1]. The two-dimensional character of the magnetic interactions between the spin-

1/2 Cu2+ ions was confirmed by neutron-scattering and susceptibility measurements in both systems 

[Coldea03, Tsujii07] and was successfully modeled [Coldea03, Zheng05] by a two-dimensional 

Heisenberg Hamiltonian that contains a small anisotropic interaction term of the Dzyaloshinskii-

Moriya (DM) type. In spite of their structural similarity, Cs2CuCl4 and Cs2CuBr4 have rather 

different magnetic behavior.  

Cs2CuCl4 has attracted much attention due to its spin-liquid properties [Coldea02, Coldea01] and 

its field-induced quantum phase transition around Bs ~ 8.5 T, separating long-range 

antiferromagnetic order below TN and B ≤ Bs from a fully-polarized ferromagnetic state at B > Bs. At 

a field B = Bs, the antiferromagnetic order is suppressed to TN = 0, which constitutes a quantum-

critical point (QCP). The B dependence of the field-induced AFM phase transition near the QCP can 

be described by a power-law and interpreted as BEC of magnons. Anomalous physical properties, 

even at finite temperatures, are expected to be observed around Bs as a consequence of the 

underlying quantum phase transition. A topic of high current interest for this compound is the 
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question concerning the interplay of spin-lattice interactions and quantum criticality, especially as to 

what extent a strong spin-phonon interaction may modify the quantum-critical behavior. 

On the other hand, for Cs2CuBr4, quantum-fluctuation-assisted 1/3 and 2/3 magnetization 

plateaux were observed in magnetic fields around 14 T  and 23 T at temperatures T < TN = 1.4 K. 

Here, the field-induced incommensurate–commensurate transitions occur at both ends of the plateau 

[Ono03]. For Cs2CuBr4, we attempt to study the interaction of the acoustic wave with the spin lattice 

at the field-induced plateau phase transitions. Moreover, the observed BEC in Cs2CuCl4 and field-

induced plateaux in Cs2CuBr4 reflect the dominant repulsive and kinetic energy of the magnetic 

excitations, respectively. For our study in these compounds, a first step will be to explore the effects 

of confinement of the motion of the Bosons to the underlying crystal lattice. 

5.2 Crystal structure 

Cs2CuCl4 and Cs2CuBr4 have the β-K2SO4-type crystal structure as shown in Fig. 5.1(a). The 

unit cell contains four Cu2+ surrounded by the tetrahedra of the chlorine atoms and arranged in the 

bc-plane. 

 
Figure 5.1 (a) Crystal structure of Cs2Cu(Cl,Br)4 showing the Cu(Cl,Br)4 tetrahedra arranged in 

layers (bc-plane). (b) Magnetic exchange paths in the (bc) layer which form a two-dimensional 

anisotropic triangular lattice (reprinted from Ref. [Coldea03]). 

a) b) 

J' 

J 

b 
c 
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The magnetic ions are Cu2+ carrying a spin 1/2 and forming a triangular arrangement with non-

equivalent exchange couplings J and J' as indicated in Fig. 5.1(b). The adjacent bc-plane are 

separated from each other by Cs+-ions.  

The ratio J'/J controls the properties of the system. If J'/J = 0 the system can be regarded as an 

assembly of four decoupled spin chains passing through the unit cell, along the b-axis. If J'/J = 1 or 0 

< J'/J < 1 the system is fully frustrated or partially frustrated, respectively. Cs2CuCl4 and Cs2CuBr4 

fall into the class of quasi-two-dimensional (quasi-2D) frustrated spin systems with J'/J = 0.342 and 

0.74, respectively [Coldea02, Ono03]. More details about the crystal structure and its role on the 

magnetic properties will be discussed in chapter 6. 

5.3 The quasi-2D quantum-spin system Cs2CuCl4  

5.3.1 Magnetic properties and phase diagram  

The Cs2CuCl4 system is a spin-1/2 AFM on a frustrated triangular lattice so that the quantum 

fluctuations are strong and also enhanced by the low dimensionality. Neutron scattering 

measurements on Cs2CuCl4 showed considerable dispersion in the bc-plane indicating a strong 2D 

character of the system [Coldea02]. These observations constrast with earlier studies [Coldea97], 

which proposed a quasi-1D picture based on estimates of the interchain couplings. Zero field 

measurements below TN = 0.6 K showed magnetic ordering in the form of an incommensurate spiral 

due to the frustrated couplings, with the ordering wavevector Q = (0.5 + ε0)b
* and the 

incommensuration relative to Néel order ε0 = 0.03. The incommensurate ordering wavevector and 

the excitation energies are strongly renormalized compared to their classical values, indicating large 

quantum fluctuations in the ground state [Coldea01]. The spin excitation spectrum measured by 

neutron scattering experiments shows extended excitation continua, and several theoretical 

approaches have been put forward to explain this observation in terms of fractional-spin excitations 

of a proximate spin-liquid state [Coldea02]. In fact, Cs2CuCl4 is one of the first quasi-2D spin-1/2 

Heisenberg antiferromagnets where dominant excitation continua, characteristic of fractionalization 

of spin-1 spin waves into pairs of deconfined spin-1/2 spinons, were observed [Coldea03, Coldea01], 

instead of sharp spin-wave excitations. 

Neutron scattering measurements [Coldea02] at high fields above the ferromagnetic saturation 

were used to determine the full spin Hamiltonian. It can be written as: 
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ZDM HHHH ++= 0 . (5.1) 

The first term is the usual symmetric Heisenberg exchange Hamiltonian: 

( )
32121

'''0 δδδδδ +++++ ⋅+⋅+⋅+⋅=∑ RRRRRR
R

RR SSJSSSSJSJSH  (5.2) 

where SR represents the spin-1/2 operator at site R, δ1 and δ2 denote the in-plane nearest-neighbor 

vectors and δ3 the out-of-plane nearest-neighbor vector connecting spins on adjacent layers, as 

shown in Fig 5.2. The main exchanges form a two-dimensional triangular lattice with spatially 

anisotropic couplings as shown in Fig. 5.1(b) with J = 0.374(5) meV for the spin chains along the b-

axis, J'/J = 0.34 for the zig-zag bonds between the chains in the bc-plane and the interlayer coupling 

was estimated to J''/J = 0.045. 

The second term is the Dzyaloshinskii-Moriya (DM) Hamiltonian: 

( )∑ ++ +×=
R

RRR SSDSH
210 δδ   (5.3) 

where D is known as the DM vector. This spin exchange anisotropy [Radu07] is due to a significant 

spin-orbit coupling combined with sufficiently low crystal symmetry. The DM vector in Cs2CuCl4 is 

found to be D = ((-1)n D, 0, 0), along the zigzag bonds, with D = 0.235 K [Coldea03] (the factor (-1)n 

indicates that the DM vector changes direction from one plane to the other). 

 

Figure 5.2 Representation of two consecutive Cu planes showing their relative offset and the 

orientation of the exchange coupling constants J, J’ and J’’. The vectors δi, used to describe the 

Hamiltonian Eq. 5.2, are shown by the purple arrows, and the direction of the DM vector D of Eq. 

5.3, by the orange symbols. 

J 

J’ 

J’’ 

b 
c 

δ3 

δ1 δ2 
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Finally, the Zeeman Hamiltonian accounting for the energy of the spins in an applied magnetic 

field B, where g is the g-factor and µB, the Bohr magneton, is: 

∑ ⋅−=
R

RBZ SBgH µ . 

An adaptation of the T vs B phase diagram of Tokiwa et al. [Tokiwa06] and T. Radu et al. 

[Radu05] is presented in Fig 5.3 for the field applied along the principal crystallographic a-axis. 

Open red diamonds, connected by the blue dashed line, indicate the maximum in the temperature 

dependence of the susceptibility curves that represent the crossover phase boundary between the spin 

liquid (SL) and the paramagnetic (PM) state. Black solid circles connected by the black solid line, 

are combining data points from bulk magnetization, specific heat [Tokiwa06] and neutron scattering 

[Coldea01] experiments reflecting the AFM phase boundary.  

   

Figure 5.3 Phase diagram of Cs2CuCl4 along the principal crystallographic a-axis. The lines 

connecting the data points are meant as a guide to the eyes (adapted from Ref. [Coldea03]). 

The magnetic susceptibility measurement shows that upon lowering the temperature, the spin 

system undergoes a crossover/transition at Tmax from a paramagnet into a spin liquid where 

antiferromagnetic short-range correlations become non-negligible. It is found that Tmax decreases as 

the magnetic field is increased and disappears before the saturation field Bs is reached, cf. Fig 5.3. 

This indicates that the short-range correlations are effectively suppressed by the application of a 

magnetic field. Note that the available experimental data points provide only an approximate curve 
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for the boundary between the paramagnet and the spin liquid phase (dashed line). More detailed data 

are needed to complete the phase diagram, especially close to the tri-critical point, where the spin-

liquid phase, the ordered phase and the paramagnetic phase meet. Upon further lowering the 

temperature without applying field, the spin-liquid phase transits into a long-range ordered phase at 

the Néel temperature, TN = 0.62 K. The spiral state in zero field is stable down to the lowest 

temperatures investigated (T = 50 mK) and thus is presumed to be the ground state of the system. 

A global characteristic of the long-range ordered (LRO) region in the phase diagrams is that it 

shows a strong anisotropy depending on the direction of the applied magnetic field, as opposed to 

the more isotropic behavior, characteristic of the spin-liquid region. Indeed, for fields applied along 

the a-axis, only one phase, a spin-cone state, is stable up to the saturation field, while a cascade of 

phase transitions is seen for fields applied in the bc-plane (not shown here). Moreover, using the 

field along the a-axis to control the excitations, intensive studies by means of neutron scattering 

[Coldea01], specific heat [Radu05] and magnetocaloric [Radu07] measurements suggested that the 

field-induced magnetic phase transition for that particular field direction can be understood as a 

Bose-Einstein condensation of magnons. As the applied field approaching Bs, TN is suppressed to TN 

= 0, constituting a quantum critical point (QCP). At the QCP, quantum-critical fluctuations are 

expected to give rise to anomalous physical properties also at finite temperatures.  

As stated in the introduction, with the aim to learn more about the interplay of spin-lattice 

interaction and quantum criticality, especially to what extent a strong spin-phonon interaction may 

modify the quantum-critical behavior, we have used ultrasonic measurements to explore the phase 

diagrams for B // a-axis by all three principal modes c11, c22 and c33. 

5.3.2 Sample preparation 

Large and high-quality single crystals of Cs2CuCl4, grown from aqueous solutions by an 

evaporation technique, see chapter 6 and Ref. [Krüger10] for details, were used for the experiments. 

Piezoelectric film transducers have been glued to the surfaces parallel to the (bc), (ac) and (ab) 

crystallographic planes of the samples that respectively correspond to the longitudinal c11, c22 and c33 

acoustic modes as displayed in Fig 5.4(a).  

The magnetic field was always applied along the a-axis so that the phase diagram shown in 

Fig. 5.3 applies. The sizes of the samples were about 4 x 4.5 x 5 mm3. The arrangement of the 

sample in the sample holder is shown in Fig. 5.4(b). The measurements were performed at a 
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frequency of 75 MHz. The absolute value of the sound velocity at room temperature has been 

determined to v11(300K) = (2603 ± 20) m/s which agrees well with the previously reported value in 

Ref. [Tylczyński92]. 

 

Figure 5.4 a) Scheme indicating the propagation of the longitudinal modes with respect to the 

magnetic layers. The c11, c22, c33 respectively correspond to propagation along the a, b and c-axis, 

respectively. The magnetic field was applied along the a-axis in all three cases. b) Arrangement of 

the Cs2CuCl4 crystal with transducers in the sample holder. 

5.3.3 Results and discussion 

a) Temperature dependence  

Fig. 5.4 (a) presents the temperature dependence of the elastic constant c11(T) measured at zero 

field over the whole temperature range together with the elastic background obtained by applying 

Eq. 2.11. The elastic constant grows linearly with decreasing temperature and does not reveal any 

anomalies down to low temperatures.  

At low temperature, the c11 mode reveals a broad maximum and a softening below about 7 K. In 

addition, the attenuation also shows a broad maximum at a temperature slightly higher than the one 

of c11. This broad maximum is interpreted as a crossover from a paramagnetic to a spin-liquid state, 

with well developed short-range AFM spin-spin correlations [Coldea02], similar to the case of 

Azurite (see chapter 4). The position of this broad maximum changes only slightly when magnetic 

fields are applied. At higher fields the peak becomes broader. The broad maximum is probably still 

there even for B > 4 T but the location of the maximum, Tmax, is difficult to determine because the 

high-temperature tail of the sharp AFM phase transition at lower temperatures overlaps with the low-

a) b) 
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temperature tail of the broad peak. Therefore, from our measurements, it is hard to extract the 

evolution of this feature with magnetic field.  

 

Figure 5.4 a) Temperature dependence of the elastic constant for the acoustic c11 mode in zero field 

measured at 75 MHz with elastic background (red full curve) obtained by fitting with Eq. 2.11. b) 

The softening of the c11 at low temperatures (left axis) deviates from the elastic background. Relative 

change of the sound attenuation (blue curve) is shown in right axis. 

Upon further cooling the sound velocity shows a small kink at TN ~ 0.6 K  marked by a dashed 

arrow in Fig. 5.5(a), indicating the transition to 3D long-range magnetic order where the magnetic 

structure found by neutron diffraction is a spiral in the bc-plane [Coldea96].  This transition 

temperature is changed slightly in fields below 6 T (cf. Fig. 5.5(a)). However, it varies very strongly 

above 6 T. As shown in Fig. 5.5(b), with increasing field the kink-like anomaly in the sound velocity 

becomes more pronounced and changes to a step-like anomaly. This is accompanied by an increase 

in the size of the softening and a rapid shift of the position to lower temperatures. TN is reduced 

dramatically, adopting TN = 0.2(2) K at 8.2 T, for example, nearly three times smaller than its value 

in zero field.  

An extraordinary change occurs as the system approaches the QCP by increasing the field from 

8.4 T to 8.5 T (see of Fig. 5.5(c)). In this fields regime, the sound velocity starts decreasing below 

the temperature around 0.2 K. No further evidences of the transition can be resolved from our data 

upon decreasing to the lowest temperature. In this tiny field change (∆B/B < 1.3%), the softening is 

a) b) 
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gradually suppressed and disappears around the QCP. As seen in Fig 5.5(c), at 8.5 T, the sound 

velocity exhibits a monotonic increase linear in T down to the lowest temperature. With the applied 

fields of 9 T or 10 T, as the system enters the fully-polarized state, the temperature dependence of 

the sound velocity displays the typical variation that shows a very small change of elastic constants 

at very low temperature, as illustrated in Fig. 5.5(d). 

 

Figure 5.5 Temperature dependence of the relative change of the sound velocity for the acoustic c11 

mode at very low temperatures in various applied fields.  

Figure 5.6 shows the temperature dependence of the c22 (panel a) and c33 (panel b and c) modes. 

The same behavior as the c11 mode remains valid for the c22 and c33 modes at the applied fields 

below 8 T meaning that the sound velocity shows a softening and reveals a kink-like anomaly at the 

a) 

b) 

c) d) 
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AFM phase transition. With increasing the applied fields, the phase transition becomes more 

pronounced and changes from a kink-like to a step-like anomaly accompanied by an increase in the 

size of the softening. The difference occurs as the field approaches the QCP. Instead of being 

suppressed to a linear curve, the c22 and c33 keep showing the steep softening at the critical field. By 

increasing the applied field above Bs, the softening is gradually suppressed, similar with the 

observation in the c11 mode. Note that there is a small difference in the value of the critical field Bs 

and a difference in the size of the softening for the different modes. The former may be caused by 

the difference of the g-factor and the miss-alignment of the applied field direction to the crystal-axis. 

The latter one concerns the magneto-elastic couplings, to be discussed in more detail below. 

 

Figure 5.6 Temperature dependence of the relative change of the sound velocity at very low 

temperatures in various applied fields for the c22 mode (panel a) and the c33 mode (panel b and c). 

a) 

b) c) 
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b) Field dependence 

Fig. 5.7 presents the magnetic field dependences of the acoustic characteristics of the c11 mode, 

measured at various constant temperatures ranging from above to below Tmax (the characteristic 

temperature which marks the formation of the spin-liquid state). Fig 5.7 (a) shows the field 

dependence of the relative change of the sound velocity. The common feature of the curves is that 

the sound velocity exhibits a hardening of the lattice stiffness with increasing field. At temperatures 

above Tmax, the sound velocity gradually increases with increasing field even when the applied field 

reaches the saturation Bs. Below Tmax, anomalies develop in the vicinity of the saturation field (cf. 

inset of Fig. 5.8 a) and, as the system enters the fully-polarized state, the sound velocity almost does 

not change with increasing field.  The sound attenuation, shown in Fig. 5.7 (b), displays a broad 

feature around Bs at T > Tmax developing into a pronounced anomaly when the temperature decreases 

to below Tmax, consistent with the position of the anomaly observed in the sound velocity. This 

anomaly shifts to higher field with decreasing the temperature, as illustrated by the dashed-line in 

Fig. 5.7(b).  

 

Figure 5.7 Field dependence of the relative change of the sound velocity (panel a) and sound 

attenuation (panel b) of the c11 mode at various constant temperatures in the spin-liquid phase. 

Fig. 5.8 shows some selected data of the magnetic field dependence of the relative change of the 

sound attenuation (main panel) and sound velocity (inset) for the c11 (panel a), c22 (panel b) and c33 

(panel c) mode for the temperature regimes just above and below TN. As pointed out above, the 

a) b) 
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sound attenuation shows a broad anomaly when the field crosses Bs, consistent with the anomaly 

observed in the sound velocity. Both anomalies become more pronounced and develop a fine 

structure on decreasing temperature. The shape of the attenuation curves change dramatically when 

the temperature decreases to below TN (inside the ordered state). The attenuation stays nearly 

constant in the low field regime. As the field passes through the AFM boundary, the attenuation 

abruptly rises up exhibiting a steep and sharp anomaly. Its position now is strongly temperature 

dependent. The change in the shape of this anomaly can be considered to be the point at which the 

crossover/transition of the system from a 2D spin-liquid to a 3D long-range ordered state happens. 

 

Figure 5.8 Field dependence of the relative change of the sound attenuation (main panels) and the 

sound velocity (insets) at various constant temperatures above and below TN  of the c11 (panel a), c22 

(panel b) and c33 (panel c) modes. 

a) 

b) 
c) 
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As already introduced in Chapter 2, in magnetic insulators, the coupling between a sound wave 

and the magnetic system is usually of exchange-striction type. The magnetoelastic coupling 

constants are proportional to the strain derivative of the magnetic exchange couplings. 

Figure 5.9 displays representative field-induced changes of the sound velocity at around 0.12 K 

of all three longitudinal modes c11, c22 and c33 which modulate three magnetic exchange coupling 

J’’ , J and J’, respectively. The c22 mode which modulates the dominant magnetic coupling constant J 

along the b-axis, exhibits the largest softening (indicated by the length of the blue arrow) at Bs. This 

softening is twice as large as the one denoted c33 (red arrow) and nearly seven times larger than the 

c11 mode (black arrow). On the other hand, as expected, the corresponding attenuation coefficient of 

the c22 mode also shows the largest anomaly at Bs (not shown here). The attenuation coefficients for 

the two other modes are about one order of magnitude smaller, cf. Fig. 5.11. This result consistent 

with quasi-two dimensional magnetic interactions in Cs2CuCl4. 

 

Figure 5.9 Field dependence of the relative change of the sound velocity of the c11, c22 and c33 modes 

at about 120 mK.  

The observed results of the acoustic behavior are surprising as the system is deep inside the AFM 

long-range ordered state. For all three modes, we find a pronounced double-peak structure at Bs (cf. 

Fig. 5.10 and 5.11). One of the peaks is strongly temperature dependent and coincides with TN(B), 

whereas the second one is broader and located at slightly higher fields. 
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As an example, Fig. 5.10 presents the data of the c33 mode measured at 130 mK. Panel (a) shows 

the relative change of the sound velocity (right-axis) and the corresponding change of the sound 

attenuation (left-axis). In the vicinity of Bs, we observe a softening with increasing field in the sound 

velocity. This is followed by a steep increase at Bs and a further hardening for B > Bs. The latter 

feature, coinciding with the B-range where the broad attenuation peak occurs, is characterized by a 

reduced slope, where ∆v33/v33 varies almost linearly with B. In the field-induced ferromagnetic state 

at B > Bs, the sound velocity is nearly field independent.  

 

Figure 5.10 Field dependence of the relative change of sound attenuation (left-axis) plotted together 

with the sound velocity (panel a) and the derivative of the sound velocity with respect to the 

magnetic field (right-axis, panel b) at 130 mK of the c33 mode. 

Panel (b) of Fig.5.10 shows the attenuation peak of the c33 mode (left-axis) at 130 mK together 

with the field derivative of the sound velocity (right-axis). In this representation, the double-peak 

anomaly in the elastic constant becomes even more obvious. While the steep rise of the sound 

velocity at Bs, i.e. the maximum in dv33/dB, coincides with the sharp attenuation peak, dv33/dB is 

only weakly field dependent at the second-round attenuation peak until the system reaches the fully-

polarized state above Bs. These observations also stay valid for the other two modes c11 and c22.  

a) b) 
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Figure 5.11 The field dependence of the sound velocity (left panel) and the sound attenuation (right 

panel) at various temperatures deep inside the 3D AFM long-range ordered state. The first, second 

and third row corresponds to c11 (panel a and b), c22 (panel c and d) and c33 (panel e and f) modes, 

respectively. 

a) b) 

c) d) 

e) f) 
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The evolution of acoustic anomalies in the temperature regime, deep inside the 3D AFM long-

range-ordered state, is shown in Fig. 5.11. The sound velocity (left panels) and the corresponding 

sound attenuation (right panels) of the c11, c22 and c33 modes are presented in the first, second and 

third row, respectively. With decreasing temperature, the overall width of the attenuation anomaly 

gradually becomes narrower. The sharp peak that coincides with TN, cf. Fig. 5.10, becomes more 

pronounced and shifts to higher fields albeit without any significant broadening. The growth in size 

upon cooling suggests that the peak reflects the contribution of critical fluctuations of the underlying 

quantum phase transition. This behavior contrasts with the phenomenology of the broad attenuation 

peak which significantly narrows and becomes reduced in size. The sound velocity also behaves in 

the same manner meaning that, the size of the softening, the temperature of which coincides with TN, 

also increases upon cooling. The phase transition to the fully-polarized state becomes more and more 

steep with decreasing temperature. 

 

Figure 5.12 The evolution of the sound attenuation with temperature deep inside the 3D long-range 

AFM ordered state. 

The question now is: how does this double-peak structure of the attenuation change as the system 

approaches the QCP. Figure 5.12 exhibits the field dependence of the ultrasonic attenuation for the 

c33 mode in the temperature range 0.032 K ≤ T ≤ 0.13 K. As can be clearly seen, at 32 mK - the 

lowest temperature of our c33 measurements - the broad anomaly is almost totally suppressed and 

merges to the sharp one. It manifests itself as only a small shoulder on the high-field side of the 
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sharp attenuation peak. We suggest that the broad anomaly is a manifestation of the material’s spin-

liquid features, which precede the long-range antiferromagnetic order upon cooling [Coldea03]. 

c) Theoretical calculation 

 A theoretical study to obtain a microscopic description of the acoustic behavior of Cs2CuCl4 has 

been conducted in collaboration with Prof. Kopietz’s group. It is based on the usual spin-wave 

expansion around the classical ground state of a Heisenberg model on an anisotropic triangular 

lattice with Dzyaloshinskii–Moriya interactions. The starting Hamiltonian has the form: 
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where Jij > 0 are antiferromagnetic exchange interactions, Dij = −Dji are the antisymmetric 

Dzyaloshinskii-Moriya interactions, and H is an external magnetic field (see Ref. [Kreisel11] for 

details).  

The change in the elastic constants and the ultrasound attenuation in the low-temperature 

regime where Cs2CuCl4 exhibits long-range magnetic order has been calculated. To add the relevant 

phonons to the Hamiltonian given above, the exchange interactions Jij have been assumed to depend 

on the actual positions r i = Ri + Xi of the ions (where Ri are the sites of the Bravais lattice) which led 

to an expansion of Jij in powers of the difference vectors Xij = Xi -Xj, 

( ) ( ) ..../)(
2

1
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Quantization of the phonon coordinates Xi leads to a rather complicated magnon-phonon interaction 

which has been treated using conventional diagrammatic many-body methods [Kreisel11].  

A comparison of the results of these calculations for the change in the sound velocity (which is 

proportional to the shift in the corresponding elastic constant) with the experimental data of the c22 

and c33 modes that were measured at 52 and 48 mK, respectively, is shown in Fig. 5.13 (a). From the 

inset, it is obvious that in the weak-field limit B ≤ 2.5 T, where the calculations applied for the 

change of the sound velocity are expected to be most accurate, theory and experiment agree nicely. 

The deviations in the higher field are attributed to the breakdown of the theoretical approach that 

does not take into account the higher-order fluctuation corrections and other types of excitations. 
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These are likely to play a role in the vicinity of the critical magnetic field where the magnetic order 

vanishes. 

Fig. 5.13 (b) shows the comparison of the theoretical calculations for the attenuation of the c22 

and c33 phonon modes with the experimental data of the relative change of the attenuation ∆α. For 

fields in the range H ≤ 0.8Hc, the measured attenuation is rather small, while one observes a strong 

enhancement for H → Hc.  The overall shape of the data is reproduced rather well by the theoretical 

curves, especially as it gives a satisfactory description of the strong enhancement of the attenuation 

in the vicinity of the critical field, cf. Fig. 5.13(b). 

  

Figure 5.13 a) Field dependence of the sound velocity of the c22 (green dots) and the c33 (black dots) 

modes in Cs2CuCl4 measured at T = 52 and 48 mK, respectively, plotted together with theoretical 

results (blue solid and red-dashed line). b) Corresponding attenuation of the c22 (green dots) and c33 

(black dots) modes which have been compared to theoretical calculations (blue-solid and red-

dashed lines) with the parameters obtained from the fit to the velocity change (reprinted from Ref. 

[Kreisel11]).  

d) Phase diagram and Bose-Einstein Condensation 

The B vs T phase diagram of Cs2CuCl4 for the field B // a-axis obtained from our ultrasound 

experiments is presented in Fig. 5.14. The phase diagram was constructed from anomalies of the 

sound attenuation as a function of field and temperature. The green and blue points indicate the data 

b) 

a) 
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taken from the c11 and c33 modes, respectively. The filled squares are the data from temperature 

dependence of the attenuation while at the same time the filled triangles and filled stars are, 

respectively, the sharp and broad peaks (or single round peak) of the attenuation seen in field-

dependent measurements.  

The phase boundary represented by filled squares and filled triangles, connected by a red solid 

line as a guide to the eyes, presents the field dependence of the antiferromagnetic phase transition 

temperature. It is in very good agreement with TN(B), obtained from specific heat and 

magnetocaloric measurements shown in Fig.5.3. The boundary reveals that above 8 T, TN decreases 

strongly so that the end point of this phase boundary marks the QCP (TN � 0 as B � Bc).  

 

Figure 5.14 B-T phase diagram for B // a-axis constructed from the attenuation anomalies of 

temperature and field dependent measurements. Solid and dashed lines are guides for the eyes. 

Another “phase boundary” as crossover line denoted by filled stars is related to the transit from 

the 2D spin liquid to the paramagnetic state, as discussed above. This boundary is built up initially 

from the position of the single round peak in the attenuation in field-dependent measurements in the 

spin-liquid state regime (0.62 < T < 3 K) followed by the broad anomaly obtained from 

measurements inside the 3D AFM long-range ordered state at temperatures below T < 0.6 K. This 

“phase boundary” also ends at the QCP, cf. Fig. 5.14. Note that the 2D spin-liquid crossover 

boundary displayed in Fig. 5.3 was constructed by using Tmax of magnetic susceptibility data, valid 

3D AFM LRO 

2D Spin liquid  
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only for to T ~ 0.6 K and B ~ 8 T due to the lack of experimental data. Consequently, we stress that 

our data reveal, for the first time, the spin-liquid crossover boundary in the very low temperature 

regime, near the QCP, and completes the phase diagram for B//a-axis of Cs2CuCl4. 

 

Figure 5.15 B-T phase diagram around the QCP of Cs2CuCl4 for B//a-axis. Open triangulars are 

taken from the temperature dependence of the sound attenuation. Open squares and open circles are 

the positions of the sharp and broad, respectively, of the attenuation from field-dependent 

measurements. Solid and dashed lines represent the power-law fitting curve.  

As mentioned in the Introduction, the field-induced AFM phase transition, as the system 

approaches the QCP, can be understood as a magnon BEC. From the position of the field-induced 

phase transition, the critical exponent Φ can be determined: 

Φ− /1)(~ BBT cc . 

Theoretically, for a 3D Bose gas, a universal value ΦBEC = 3/2 has been predicted [Giamarchi99, 

Nohadani04] coinciding with the result of a mean-field treatment [Nikuni00]. Recently, the specific 

heat and the magnetocaloric measurements [Radu05, Radu07] around the QCP have been used to 

extract the critical exponent, giving a value of 1.55. This value is close to the theoretical prediction. 

However it has to be stressed that the value of the critical exponent is very sensitive to the choice of 

TN 
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Bc. Just a small difference of Bc can lead to a large change in the value of Φ.  Moreover, the fitting 

formula shown above contains two free parameters, Bc and Φ, which can be determined from the fit 

to the experimental data. As a result, there have been some controversies over the procedure to 

simultaneously define exactly these two free parameters.  Our aim is to check again the validity of 

the BEC description applied to the Cs2CuCl4 near the QCP using our ultrasound measured data. 

The crucial point in the fitting process is to define the critical field Bc and afterwards to conduct 

the fitting to obtain the critical exponent. In our case, there is an advantage, as the discussion above 

shows that the two phase boundaries, the AFM and crossover SL states, end at the critical field Bs 

when T�0. We assume that these phase boundaries can be described by a power-law function but 

with different values of the critical exponent Φ. We need to find out Bc that simultaneously gives the 

smallest error in the fittings for the two data sets. So we let the Bc vary from Bc1 = 8.4 T to Bc2 = 8.5 

T with a step widths of 0.001 T, perform a non-liner least-squares fitting for each Bci and choose the 

Bci that gives the smallest confidence bounds of parameters and highest coefficient of determination 

(R-square). Note that for a more thorough test, it is important to perform the fitting procedure in a 

narrow field window close to Bc where the theoretical predictions are valid. 

The best fit with our experimental data of the c33 mode presented in Fig 5.15 reveals Bc = 

8.422(1) T and the critical exponent of 1.47(1) and 1.67(1) for the AFM and SL phase boundary, 

respectively. The value Φ = 1.47 is in very good agreement with Φ = 1.5 predicted theoretically for 

3D BEC of magnons and with the published results in Ref. [Radu07]. The meaning of the power law 

field dependence of the SL “phase-boundary” with a critical exponent of 1.67 is still unclear. 

5.4 The quasi-2D quantum-spin system Cs2CuBr 4 

5.4.1 Magnetic properties and phase diagram  

Extensive experimental works [Ono03, Ono04, Fortune09, Tsujii07] have been performed on 

Cs2CuBr4 revealing a rich magnetic phase diagram of this system. At zero field, thermodynamic 

measurements show antiferromagnetic order at 1.43 K [Ono03]. For the field orientation along each 

of the three crystallographic axes, the ordering temperature gradually decreases as the applied field 

is increased. The saturation field is about 30 T.  

Elastic neutron scattering has found that in the ordered phase, spins lie approximately in the bc-

plane and form an incommensurate helical structure which is characterized by a wave vector Q0 = (0, 
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0.575, 0) [Ono04]. For a classical spin model, the ordering vector is given by cos(πQ0) = -J’/2J. 

Using Q0 = 0.575, the authors obtained J’/J = 0.467 exceeding the value of 0.176 found by similar 

means for the isostructural compound Cs2CuCl4. Due to the spin-1/2, the quantum corrections of the 

helical pitch are significant in the present system, and thus, the value of J1/J2 obtained from the 

classical spin model is different from the real value when J’ ̸= J2. Numerical calculations including 

quantum fluctuation effects have been performed with Q0 as a function of J’/(J’ +J) giving the value 

of J’/J =  0.37 and 0.74 for Cs2CuCl4 and Cs2CuBr4, respectively, indicating that Cs2CuBr4 is more 

frustrated than Cs2CuCl4.  

. 

Figure 5.16 Magnetization curves and dM/dH vs H of Cs2CuBr4 measured at T = 0.4 K for H//c-

axis. Arrows denote critical fields [Ono03]. 

The Hamiltonian for Cs2CuBr4 is given by: 
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Here J = 11 K for the nearest-neighbor coupling along the b-axis and J’ = 8.3 K for weaker nearest-

neighbor coupling within the bc- plane. Not included in the Hamiltonian are two small perturbations 

expected to be present: an antiferromagnetic interlayer coupling that causes the spins to order at 1.4 

K in zero field, and an anisotropic super-exchange interaction (Dzyaloshinskii- Moriya type) that 

causes the spins to lie along the plane of the triangular lattice at zero field.  
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Figure 5.16 shows the magnetization curve and dM/dH vs H measured at T = 0.4 K for H//c-axis. 

A notable feature is that the magnetization curve has a plateau at approximately one-third of the 

saturation magnetization Ms. This is more clearly recognized in dM/dH vs H shown in Fig. 5.16. The 

1/3-magnetization-plateau was also observed for H//b-axis, while no plateau was observed for H//a-

axis. Because the 1/3-magnetization-plateau in Cs2CuBr4 is clearly observed for two different field 

directions, the plateau cannot be explained in terms of the classical model. Thus, the conclusion is 

that the magnetization plateau arises from quantum effects. The Dzyaloshinsky-Moriya (DM) 

interaction with the D vector, perpendicular to the triangular lattice, should be responsible for the 

absence of the magnetization plateau for H//a.  

In addition, dM/dH in Fig. 5.16, exhibits an additional sharp double-peak structure around H = 

23 T, where the magnetization is approximately 2/3Ms. This is indicative of the second tiny plateau 

at 2/3Ms. This additional sharp double-peak structure in dM/dH was also observed for H//b-axis. The 

magnetization processes for H//c- and b-axis almost coincide when normalized by the g factor. This 

means that spin-spin interactions are almost isotropic in the triangular-lattice plane. Magnetocaloric 

and specific heat measurements have been used to construct the B-T phase diagram of Cs2CuBr4. A 

cascade of magnetic-field-induced quantum phase transitions has been observed below the saturation 

field for H//b-axis and H//c-axis. 

 

Figure 5.17 Magnetic phase diagram deduced from various measurements for B//a-axis (a) and 

B//c-axis (b) [Ono03, Fortune09] 

a) 

b) 
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Fig. 5.17 (a) and (b) show the phase diagram for H//a-axis and H//c-axis, respectively. For H//c, 

in addition to the 1/3 and 2/3 plateau phases, many quantum phases have been observed. The phase 

transitions to the A phase and the transitions to the very narrow B phase can also be observed as 

small peaks in dM/dH shown in Fig. 5.16. These successive quantum phase transitions should be 

attributed to the spatially anisotropic triangular lattice and the Dzyaloshinsky-Moriya interaction 

with the D vector perpendicular to the triangular lattice [Nohadani04, Fortune09, Morosin61], but an 

overall explanation is still missing. 

5.4.2 Results and discussion 

a) Temperature dependence 

Fig. 5.18 presents the temperature dependence of the elastic constant c11(T) measured at zero 

field. Fig. 5.18 (a) shows the data over the whole temperature range together with the elastic 

background obtained by applying the Eq. 2.11.  

 

Figure 5.18 a) Temperature dependence of the elastic constant for the acoustic c11 mode in zero 

field measured at 50 MHz with elastic background (red line). b) Low-temperature part showing the 

softening of c11 which deviates from the elastic background (red line) at low temperature. 

The elastic constant grows linearly with decreasing temperature and does not reveal any distinct 

anomaly in the temperature range investigated. On decreasing the temperature to below about 6 K, it 

shows a slight softening, as seen in Fig 5.18 (b). At 1.4 K, no clear evidence of a phase transition is 

a) b) 
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observed when the system enters the 3D long-range magnetically ordered state which may be due to 

the small magneto-elastic coupling of the spin-lattice with the sound wave along the a-direction. 

b) Field dependence 

We have also performed pulsed magnetic field experiments on Cs2CuBr4 in order to study the 

acoustic behavior in the region of the magnetization plateau. The change of sound velocity c11 mode 

as a function of magnetic fields up to 50 T applied along the crystallographic a-axis (panel a) and b-

axis (panel b) at temperatures of 1.5, 1.9 and 4.2 K are shown in Fig. 5.19. Unfortunately, the lowest 

achievable temperature of 1.5 K, we could reach in this experiment was still in the paramagnetic 

region of the system (cf, Fig. 5.17). The results exhibit a continuous softening of the sound velocity 

upon increasing the field up to saturation without any pronounced resolvable anomaly.  

 

Figure 5.19 Field dependence of the sound velocity for the c11 mode in Cs2CuBr4 measured in pulsed 

magnetic fields at various constant temperatures. The applied fields are along the a-axis (panel a) 

and the b-axis (panel b). 

The sizes of the softening are comparable, regardless of the applied field direction indicating an 

isotropy in the magneto-elastic coupling in the high-temperature range (i.e., the spin system in the 

paramagnetic state). On the other hand, we can say that the thermal fluctuations at high temperatures 

destroy the low-dimensional nature of the system. At about 32 T, the step-like phase transition from 

the paramagnetic to the fully polarized state is observed. The phase transition anomaly is steeper and 

sharper at lower temperature. 

a) b) 
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6 
THE FRUSTRATED QUANTUM ANTIFERROMAGNET Cs 2CuCl4−xBr x 

  

This chapter presents a systematic study of the crystal growth, structure and magnetic properties 

of the Cs2CuCl4-xBrx (0 ≤  x  ≤ 4) mixed system, which includes the two known end-member 

compounds Cs2CuCl4 and Cs2CuBr4. The first objective was to provide a thermally stable single 

crystal over the whole concentration range of the mixed system of the same type of structure. The 

second one, the magnetic study, was conducted by comparative measurements of the magnetic 

susceptibility χ(T) that reveals three distinct magnetic regimes separated by critical concentrations 

xc1 = 1 and xc2 = 2. This unusual magnetic behavior can be explained by considering the structural 

peculiarities of the materials, especially the distorted Cu-halide tetrahedra, which support a site-

selective replacement of Cl− by Br− ions. 

6.1 Introduction 

As mentioned in chapter 5, the frustrated layered antiferromagnets Cs2CuCl4 and Cs2CuBr4 have 

recently attracted a lot of interest because of their unconventional magnetic properties [Coldea03, 

Tanaka02]. Both compounds have been classified as two-dimensional spin systems, with an 

underlying anisotropic triangular lattice of spin-1/2 Cu2+ ions, cf. Fig 5.1. Although being iso-

structural, these compounds display rather different magnetic properties.  

In Cs2CuCl4, besides the attraction due to the spin fractionalization and the spin-liquid state, the 

field-induced quantum phase transition at the QCP Bs has been also intensively studied. The analogy 

of the critical properties to that of a Bose-Einstein condensation has been pointed out [Radu05] 

suggesting that it is the delocalization of magnetic triplet excitations, which governs the physics in 

Cs2CuCl4 near Bs [Coldea03]. A different situation is encountered for the related Cs2CuBr4 

compound where the Cl ions have been replaced by Br. This system undergoes a Néel ordering at TN 

= 1.4 K at zero field. For applied fields parallel to the b- and c-axis, two plateaux at approximately 

one-third and two-thirds of the saturation magnetization have been observed [Tanaka02] indicating 

that here, as a consequence of frustration, the repulsive interaction dominates, giving rise to the 

localization of the triplet excitations. The difference in the magnetic behavior of these two iso-

structural compounds originates from their unequal degree of frustration that is determined by the 
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ratio J’/J between the interchain-exchange coupling J’ and the dominant intrachain-exchange 

coupling J. Although Cs2CuBr4 and Cs2CuCl4, the field dependent magnetic properties of which 

reflecting dominant repulsive and kinetic energy of the magnetic excitations, respectively, have been 

studied to some extent, no investigation exists on the interesting crossover regime. These two border 

cases thus motivate the study of the magnetic properties of the solid solution Cs2CuCl4-xBrx, in which 

by a continuous replacement of Cl− by Br−, the frustration effects are expected to become 

increasingly important.  

6.2 Review on the crystal structure of Cs2CuCl4 and Cs2CuBr 4 

The crystal structure of Cs2CuCl4 and Cs2CuBr4 at ambient conditions was determined by several 

authors as orthorhombic with space group Pnma [Morosin61, Bailleul91]and McGinnety72]. The 

unit cell, cf. Fig. 5.1(a) and Fig 6.1, consists of four flattened [Cu(Cl/Br)4]
2- tetrahedra and eight 

Cesium atoms. Thus, the unit cell contains four Cs2Cu(Cl/Br)4 entities. Tetrahedra, with the same 

orientation, form linear chains in the b-axis direction, as illustrated in Fig. 5.1(b). These chains stack 

together along the c-axis direction, displaced by b/2 with respect to each other and with each 

tetrahedron orientation reversed, thus forming a planar triangular pattern. The tetrahedra are well-

isolated from each other as they do not share any common coordination element. For example, the 

shortest Cl-Cl distance between two adjacent tetrahedra is along the b-axis and amounts to 3.634 Å, 

significantly larger than the covalent radius of chlorine. All other distances between Cl atoms 

belonging to adjacent tetrahedra are even longer. Finally, adjacent planes are separated from each 

other by Cs+-ions, cf. Fig 5.2, resulting in a quasi-two-dimensional (quasi-2D) spin S = ½ 

arrangement.  

Table 6.1 Bond lengths of the flattened Cu-halide tetrahedron in Cs2CuCl4 and Cs2CuBr4 taken 

from Refs. [Morosin61] and [Bailleul91] together with the ratio of bond length to covalent radius.  

 
Cu-Cl bond 
length [Å] 

Bond length / 
Covalent radius 

  
Cu-Br bond 
length [Å] 

Bond length / 
Covalent radius 

Cl 1 2.244 0.959  Br 1 2.385 0.946 

Cl 2 2.235 0.956  Br 2 2.362 0.937 

Cl 3 2.220 0.940  Br 3 2.342 0.931 

Cl 3 2.220 0.940  Br 3 2.342 0.931 
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An important structural feature, shared by both compounds, originates from the local Cu 

environment. As a consequence of the flattened Cu-halide tetrahedron, the bond lengths are 

significantly different. There is a longest Cu-halide bond, Cu-Cl1/Br1, and two equivalent shortest 

Cu-Cl3/Br3 bonds, cf. inset of Fig. 6.1 and Table I for structural data taken from Refs. [Morosin61] 

and [Bailleul91]. 

 

Figure 6.1 View of the crystal structure of Cs2CuCl4 with a tilt of 6° along the a-axis and rotated 

- 6° around the c-axis of the orthorhombic structure of Cs2CuCl4. Cs atoms are omitted for clarity. 

The longest Cu-Cl1 bonds are pointing along the a-direction perpendicular to the magnetic layers 

which are parallel to the (100)-plane shown in red. Inset: Strongly flattened Cu-Cl tetrahedra with 

the three inequivalent Cl bonds. The bond lengths are listed in Table I [Cong11]. 

The tetrahedra are oriented such that the long Cu-Cl1/Br1 bonds point along the interlayer a-

axis. As a result, this bond is involved in mediating the interlayer exchange J’’ . In contrast, the Cu-

Cl3/Br3 bonds are located within the bc-plane and are oriented along the b-axis, where adjacent Cu-

halide tetrahedra have the shortest distance. This suggests that, as a consequence, the Cu-Cl3/Br3 

bonds are involved in mediating the dominant magnetic interaction J. The exchange interactions of 

Cs2CuCl4 and Cs2CuBr4 have been determined from measurements of the magnon dispersion in the 

saturated ferromagnetic phase with the magnetic fields applied along the a-axis [Coldea02] and the 
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neutron scattering experiments [Ono04], respectively. These ratios of exchange couplings are shown 

in Table 6.II indicating that Cs2CuCl4 is less frustrated and more one-dimensional than Cs2CuBr4. 

Table 5.2: Ratios of exchange coupling interactions in Cs2CuCl4 and Cs2CuBr4 taken from Refs. 

[Coldea02] and [Ono04].  

 Cs2CuCl4  Cs2CuBr4 

J’/J 0.34  0.74 

J’’/J 0.1  0.1 

D/J 0.1  0.05 

6.3 Magnetic susceptibility of Cs2CuCl4 and Cs2CuBr4 

Early characterization of Cs2CuCl4 by susceptibility measurements has been carried out on 

polycrystal samples by Carlin et al. [Carlin85] and on single crystals by Sharnoff et al. [Sharnoff65] 

A more recent susceptibility and bulk magnetization study by Tokiwa et al. [Tokiwa06], triggered by 

recent neutron scattering results [Zheng05], give a more complete picture of the magnetic behavior 

of the sample. The temperature dependence of the uniform susceptibility is presented in Fig. 6.2(a) at 

low fields (H = 0.1 T) for the three principal crystallographic directions [Tokiwa06]. At high 

temperature (T > 20 K), the material is in the paramagnetic phase and the susceptibility, χ(T), 

follows a Curie-Weiss law of the form: 
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Fits to the experimental data give a negative Curie-Weiss temperature of ΘW = -4.0 (0.2) K, 

indicating that the principal couplings are antiferromagnetic, and values of the g-factor ga = 2.27, gb 

= 2.11 and gc = 2.36, consistent with ESR measurements [Sharnoff65]. For T > Tmax, the high-

temperature series expansion calculations of the susceptibility using a 2D spin-1/2 Hamiltonian on 

an anisotropic triangular lattice [Tokiwa06], the black curve in Fig. 6.2(b), is found to be in good 

agreement with the experimental data when the exchange couplings are set to J’/J = 1/3 and J = 4.35 

K. In contrast, the data depart significantly from the expected Bonner-Fisher curve [Bonner64], 

dotted-black curve, for one-dimensional chains (J’ = 0), due to the weak spin frustration leading to 



Chapter 6: The Frustrated Quantum Antiferromagnet Cs2CuCl4-xBrx 

 103

the reduction of the magnetic susceptibility for Cs2CuCl4. Lowering the temperature, a broad 

maximum occurs around Tmax = 2.8 K, indicating the development of short-range antiferromagnetic 

spin-spin correlations. Upon further cooling, a clear kink appears at TN = 0.62 K observed along the 

b- and c-axis reflecting the transition into a long-range ordered (LRO) phase.  

 

Figure 6.2 (a) Temperature dependence of the susceptibility of Cs2CuCl4 along the three 

principal crystallographic axes at H = 0.1 T. (b) Comparison between the susceptibility divided by 

g2 and calculations for a 2D HAF on an anisotropic triangular lattice (reprinted from Ref.  

[Tokiwa06]). 

 

Figure 6.3 (a) Low-temperature magnetic susceptibilities of Cs2CuBr4 for H = 0.1 T parallel to the 

principal crystallographic axes. (b) Magnetic susceptibility and inverse susceptibility as a function 

of temperature for H//b-axis (reprinted from Ref. [Ono03]) 

a) b) 
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Fig. 6.3(a) shows the low-temperature part of the magnetic susceptibility, χ(T), of Cs2CuBr4 as a 

function of temperature measured at H = 1.0 T for the three principal crystallographic axes. As 

expected, with decreasing temperature the susceptibility increases rapidly and shows a broad 

maximum at Tmax = 9 K [Ono03], a characteristic of the low-dimensional antiferromagnetic spin 

system, similar to the behavior observed in Cs2CuCl4. The value of Tmax in this compound is about 

three times larger than the one obtained in Cs2CuCl4. This reflects the larger exchange interactions in 

Cs2CuBr4 compared to those in the Cs2CuCl4. The inverse susceptibility also obeys a Curie-Weiss 

law. The Curie-Weiss temperature of Cs2CuBr4 has a value of ΘW = -18.4 (0.2) K [Cong11] obtained 

by performing a linear fit to the high-temperature experimental data indicating a stronger 

antiferromagnetic coupling compared with Cs2CuCl4 

6.4 Crystal growth and thermal stability 

The mixed system Cs2CuCl4−xBrx has proved to be a very rich system with several structural 

variants that can be realized depending on the growth conditions. By growing the crystals from 

aqueous solution, cf. Ref. [Krüger10] for details, the growth temperature is the crucial parameter for 

the selection of the crystalline phase that is formed for a given composition. There is a competition 

between tetragonal and orthorhombic phases and between those with and without incorporated 

crystal water.  

If the growth of Cs2CuCl4−xBrx takes place at room temperature (~ 300 K), the orthorhombic 

structure type of Cs2CuCl4 and Cs2CuBr4 is left for an intermediate concentration range (1 < x < 2) 

and a new tetragonal phase is formed with the space group I4/mmm [Krüger10]. For growth 

temperatures of at least 350 K, the orthorhombic structure of the end members of the mixed-crystal 

series is preserved over the whole composition range. These crystals are highly hygroscopic and 

show significant degradation when they are stored for a long time at room temperature without 

sufficient protection against humidity. Even if in such crystals no foreign phases are found by 

diffraction experiments at room temperature, they may still content a considerable amount of the 

tetragonal phase that can be observed in low-temperature experiments and are severely damaged 

(cracks) when brought back to room temperature. However no stability problems are encountered 

with the orthorhombic phase even at very low temperatures, if the crystals are heated shortly to 

about 450 K prior to use in such experiments. As an example, the Fig. 6.4 shows the magnetization 

(main panels) and magnetic susceptibility (insets) of the sample Cs2CuCl2.8Br1.2. Panel (a) shows the 
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data of the sample, grown at 300 K adopting tetragonal structure, exhibiting the typical magnetic 

behavior of the tetragonal-phase sample in which the saturated magnetization, M(B), can be reached 

by quite small fields of ~ 1 T, and the magnetic susceptibility, χ(T), has an anomaly around 11 K 

indicating the long-range anfiferromagnetic ordering transition.  Panel (b) and (c) show the data of 

the orthorhombic-structure samples grown at 350 K. 

 

Figure 6.4 Magnetization (main panels) and magnetic susceptibility (insets) of Cs2CuCl2.8Br1.2. 

a) Sample grown at 300 K and of tetragonal structure. b) and c) Sample with orthorhombic structure 

grown at 350 K without and with post-heated treatment, respectively. 

The data shown in panel (b) are of the sample that has no post-heated treatment before 

performing the measurements. The magnetization curve exhibits a change of its slope at the field 

around ~ 1.5 T and an anomaly is observed in χ(T) at about ~ 13 K, indicating the transition into an 

AFM state. These results are evidence for the existence of small amounts of the tetragonal phase in 

this sample. Meanwhile when this sample was post-heated at 450 K for 30 minutes, the data (shown 
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in panel (c)) show the typical behavior of the orthorhombic sample, as for the two border 

compounds, which shows a monotic increase of M(B) and a broad  maximum in χ(T). Thus, in our 

studies, large (100-1000 mm3) and high-quality crystals with pure orthorhombic structure were 

carefully selected before doing the experiments, especially for the samples in the intermediate 

concentration range (1 < x < 2).    

6.5 Magnetic properties of Cs2CuCl4-xBr x 

Fig. 6.5 shows a compilation of the results of the molar susceptibility χmol(T) taken at a field of 

0.1 T of the Cs2CuCl4-xBrx (0 < x < 4) mixed system for temperatures 2 K ≤ T ≤ 20 K [Cong11]. The 

figure also includes the susceptibility data for the border cases Cs2CuCl4 (left panel, full dark green 

circles) and Cs2CuBr4 (right panel, black full squares), which are in accordance with literature results 

[Tokiwa06, Ono03].  

 

Figure 6.5 Overview of the molar magnetic susceptibility of the mixed system Cs2CuCl4-xBrx (0 ≤  x  

≤ 4) for selected Br concentrations measured at 0.1 T. Left panel: Cl-rich side regime I: x = 0 to x = 

0.8, right panel: Br-rich side regime III: x =2.2 to x = 4. The broken blue line is a guide to the eye 

indicating Tmax. 
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The susceptibility curves of these two compounds reveal a continuous increase with decreasing 

temperature and a maximum at Tmax = (2.79 ± 0.15) K for Cs2CuCl4 and (8.75 ± 0.1) K for 

Cs2CuBr4, which is distinctly broader for the latter compound. The maximum reflects the low-

dimensional magnetic character of both materials in the temperature range under investigation. The 

left and right panel of Fig 6.5 exhibit data for the Cl-rich side, i.e. 0 ≤ x ≤ 1, and Br-rich side, i.e. 2 ≤ 

x ≤ 4, which will be labelled as regime I and regime III, respectively, in the following. 

 

Figure 6.6 χmol(T) in regime II for various Br concentrations x = 1.0 (full green circles) to x = 

2.0 (full stars) in steps of x = 0.2. The blue and red broken lines show the χmol(T) data of x = 0.8 in 

regime I and x = 2.2 in regime III, respectively. 

The Fig. 6.6 displays the data of regime II in which the Br concentration x varies from 1 to 2. 

The data are taken in steps of x = 0.2. The Br concentration x = 0.8 in regime I and x = 2.2 in regime 

III are shown as dotted lines to indicate the change of the magnetic properties in between the two 

regimes. 

The position of the susceptibility maximum and its height, Tmax and χ mol(Tmax), respectively, can 

be considered as a parameterization of the data, as seen in Fig. 6.5 and Fig. 6.6, also summarized and 

displayed in Fig. 6.7. It shows that there is no continuous evolution of the magnetic properties with 

increasing the Br concentration from x = 0 to 4. Rather, three distinct concentration regimes can be 

identified. 
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In regime I, χmol(T) has a temperature dependence which is very similar to that of the pure 

chlorine system x = 0. In fact, for the Cs2CuCl3.2Br0.8, Tmax of (3.03 ± 0.12) K is very close to the 

Tmax of the x = 0 compound within the experimental uncertainties. With χmol(Tmax) = 0.041 cm3/mol 

for x = 0.8, the value is reduced by slightly more than 10% compared to the pure chlorine (x = 0) 

system. This reduction of χ mol(Tmax) is significantly larger than the experimental error bars.  

 

Figure 6.7: Tmax (blue solid squares, left axis) and χmol(Tmax) (red solid squares, right axis) as a 

function of the Br content x for all samples under investigation. The vertical dotted lines indicate the 

critical concentrations xc1 = 1 and xc2 = 2 separating the regimes I, II and III.  The broken lines are 

linear fits to the experimental data in the three regimes. 

On the other hand, for the Br-rich side, regime III, a change of the Br-content by the same 

amount of ∆x = 0.8 has a much stronger effect on Tmax and χmol(Tmax). When considering 

Cs2CuCl0.8Br3.2 (purple full up-turn triangles in Fig. 6.5), for example, the data reveal a pronounced 

shift of Tmax to (6.92 ± 0.1) K accompanied by a strong increase of χmol(Tmax) by about 33% 

compared to the pure bromine system x = 4. Note that susceptibility data for the Br-rich side, i.e., 3.6 

≤ x ≤ 4.0, were also reported in Ref. [Ono05] for B // c-axis. We stress, however, that their data 

deviate from the results shown here with respect to the low-temperature upturn and its dependence 

on the Br concentration. These deviations might be the result of the entirely different preparation 

route applied in Ref. [Ono05] to synthesize the mixed systems. The difference of the value of χ(Tmax) 
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is due to the g-factor anisotropy. Besides that, a peculiarity of the data for x = 3.2 in regime III is an 

upturn below about 3 K which grows with decreasing x and can be followed up to the border to 

regime II. Further experiments, in particular magnetic measurements at lower temperatures, have to 

clarify the origin of this feature. 

Within the regime I and III, some variations in the magnetic properties with x become noticeable 

in the high-temperature tail of the susceptibility, i.e., for temperatures 10 K (~ 2J) ≤ T ≤ 300 K. Here 

the data can be well described by a Curie-Weiss-type susceptibility χcw = C⋅(T - ΘW)-1, with C the 

Curie constant and ΘW the Weiss temperature, ranging from ΘW = (-3.46 ± 0.1) K (x = 0) to ΘW = (-

5.71 ± 0.15) K (x = 0.8) in the regime I and from ΘW = -18.4 K (x = 4) to ΘW = -9.8 K (x = 1.9) in 

regime III.  

In the regime II, the χmol(Tmax) decreases more rapidly with x compared to the reduction revealed 

in the regimes I and III, cf. also Fig. 6.7. In addition, the data suggest a discontinuous change of 

χmol(Tmax) upon entering regime I. A less clear situation is encountered at the border to regime III. 

With decreasing the Br-content to about half way of the whole Br-Cl concentration range in 

Cs2CuCl1.8Br2.2 (purple squares in Fig. 6.6), the characteristics of the Br-rich materials (regime III) 

are nearly preserved. The shift of Tmax to lower temperatures is accompanied by a further increase of 

χmol(Tmax). Note, that the broad maximum in the susceptibility is difficult to follow with increasing 

Br concentration due to the increase of the χmol(T) below 4 K. As a consequence, significantly 

enlarged error bars have to be accepted rendering the boundary between regime II and III less well 

defined. 

The three distinct magnetic regimes in the Cs2CuCl4-xBrx (0 ≤  x  ≤ 4) mixed system become 

obvious from Fig. 6.7, where the values for Tmax (blue solid squares) and χmol(Tmax) (red solid 

squares) are shown as a function of the Br content x for all crystals investigated. On the chlorine-rich 

side in regime I and up to x slightly larger than 1.4, Tmax is nearly independent of the Br-

concentration, while χmol(Tmax) reveals a distinct reduction with x. The fact that the characteristic 

temperature Tmax stays nearly constant indicates that the Br substitution in this concentration range 

leaves the quasi-2D magnetic fluctuations, caused by in-plane interactions, practically unaffected. At 

the same time, the significant reduction in χmol(Tmax) with increasing x demonstrates that the 

magnetic coupling between the layers is substantially modified. This is consistent with the results of 

ab initio calculations for the Cs2CuCl4, as shown in Fig. 6.8, where the influence of the strength of 

the interlayer coupling J’’  on the magnetic properties was investigated [Foyevtsova09]. The authors 
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found a decrease in χmol(Tmax) with increasing J’’  without any shift of Tmax. In contrast, for the Br-

rich side (regime III), the strong decrease of Tmax by approximately a factor of 2 on decreasing x 

from 4 to 2 clearly signals the suppression of the 2D-magnetic correlations. 

 

Figure 6.8 Magnetic susceptibility of Cs2CuCl4 as a function of temperature in units of Tmax. 

Green solid line: DFT-based model with only J1 and J2. Red dashed line: DFT-based model with J1, 

J2 and J3. Crosses: experimental data (reprinted from Ref. [Foyevtsova09]. 

6.6 Model 

The magnetic properties of the Cs2CuCl4−xBrx (0 ≤ x ≤ 4) mixed systems and the corresponding 

three distinct magnetic regimes can be understood using the following model which considers 

structural features of the Cu-halide tetrahedra embedded in the orthorhombic crystal structure.  

Upon replacing the Cl− ions by Br− on the chlorine-rich side (the regime I), the Cu-Cl1 bonds 

will be almost exclusively affected, as they exhibit the largest bond length and the Br− ions are 

considerably bigger than the Cl− ions. Since the Cu-Cl1 bonds point along the interlayer a-axis of the 

orthorhombic structure, they mediate the magnetic exchange J’’  between the layers. Thus, starting 

from the pure Cs2CuCl4 compound, the progressive substitution of the Cl1 atoms by Br will be 

accompanied by an increase of J’’ , consistent with the decrease of the magnetic susceptibility at its 

maximum. This site-selective replacement of the Cl1 ions in regime I, which for a hypothetically 

ideal system would be completed at a concentration xc1 = 1, also explains that Tmax is constant on the 
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chlorine-rich side of the phase diagram. The 2D magnetic correlations, probed by Tmax, involve the 

Cl2/Cl3 atoms, the occupation factors of which remain (practically) unaffected for the Br 

substitutions in regime I for x ≤ xc1. It should be mentioned that due to entropic reason, the site-

selective substitution will not be perfect, resulting in a finite disorder in the occupancy of the halide 

positions. 

A quite different situation is encountered on the Br-rich side. Starting from the border case 

Cs2CuBr4 and substituting Br− by the smaller Cl− will predominantly affect the two equivalent Br3 

positions with the shortest bond length. As a consequence, the intralayer coupling constants J and J’, 

i.e., the 2D magnetic correlations, will be reduced. This mechanism explains the strong reduction of 

Tmax as a function of Br content observed in the susceptibility measurement.  

6.6.1 Supporting result 

In addition, density-functional theory (DFT) calculations were carried out to estimate the 

preferential position of the Br atoms in the mixed (x = 1) compound Cs2CuCl3Br. The calculations 

were performed with the full potential local orbital code (FPLO, version 9.00-34) [Koepernik99] 

using the experimental lattice parameters and atom positions [Krüger10] as input. The local-density 

approximation (LDA) in the parametrization of Perdew and Wang [Perdew92] as well as the 

generalized gradient approximation (GGA) [Perdew92] were used to ensure that our conclusions do 

not depend on the choice of the functional approximation used. The calculations were performed in 

the scalar relativistic approximation with 216 k points in the full Brillouin zone.  

The results show a clear preference for the substitution of Cl1 atoms by Br on the Cl-rich side: 

The occupation of Cl1 position in Cs2CuCl3Br yields the lowest total energy, whereas the energy of 

a structure where Br is substituted for Cl2 (Cl3) is about 222 (247) meV/Br higher in energy in the 

LDA calculations. In the GGA calculations, the corresponding energy differences are 244 (274) 

meV/Br, showing only a weak dependence on the choice of the functional. These calculations 

indicate that the sterical aspects, i.e., ionic radii and corresponding bond lengths, covered by the 

above simple model, are of crucial importance for stabilizing the structure in the Cs2CuCl4−xBrx (0 ≤ 

x ≤ 4) mixed system. The reason for that lies in the peculiarity of the Cu-halide tetrahedron, which 

forms a stable, discrete structural unit, typically found in aqueous solutions, and which is also only 

weakly bonded in the orthorhombic crystal structure of the Cs2CuCl4−xBrx (0 ≤ x ≤ 4) mixed system. 

 



Chapter 6: The Frustrated Quantum Antiferromagnet Cs2CuCl4-xBrx 

 112

 

Figure 6.9 Expansion of lattice constants with increasing Br-content: (a) Overview: Nearly 

linear expansion, indicating mainly that the crystalline structure is unaltered within the whole 

composition range.   (b) The detailed view reveals specific expansion anisotropies for different 

composition ranges (reprinted from Ref. [Krüger10]). 

Another independent proof of this model based on the distribution of bond lengths inside the 

flattened Cu-halide tetrahedron is given by the relative length changes [l(x) − l(x0)]/l(x0) of the lattice 

constants as a function of Br content. Here, l(x) and l(x0) are the lattice constants of a mixed 

compound with concentration x and Cs2CuCl4 (x = 0), respectively. As shown in Fig 6.9, [l(x) − 

l(x0)]/l(x0) is isotropic in the concentration range 1 ≤ x ≤ 2 (regime II) and anisotropic in the regimes 

I and III. With increasing x for 0 ≤ x ≤ 1, the relative expansion of the a-axis is largest, consistent 

with a predominant substitution of the Cl1 positions by Br whereas on the Br-rich side 2 ≤ x ≤ 4, the 

Cl doping on the two Br3 positions leads to the strongest reduction of the b axis. 
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7 
CONCLUSIONS AND OUTLOOK 

  

In this thesis, ultrasound was used as the main experimental technique to perform a 

comprehensive study on the acoustic characteristics of some low-dimensional spin systems in a wide 

range of temperature (30 mK< T < 300 K) and magnetic field (DC field: B ≤ 12 T and pulsed fields 

up to 35 T).  We have conducted experimentally a thorough investigation about the acoustic and 

magnetic properties of two classes of materials placing special emphasis on the effect of a nearby 

quantum phase transition induced by a magnetic field: (1) the quasi-1D frustrated diamond chain 

compound Azurite; (2) The quasi-2D quantum spin systems Cs2CuCl4, Cs2CuBr4 and the mixed 

system Cs2CuClxBr4-x. 

7.1 The quasi-1D frustrated diamond chain compound Azurite 

Thorough elastic and magneto-acoustic investigations of the c22 mode of a single crystal of the 

distorted diamond chain compound Azurite have been presented. We have observed clear signatures 

of the dominant magnetic energy scales involved and disclose two pronounced anomalies at ~ 20 K 

and ~ 5 K in the temperature dependences of the sound velocity and thermal expansion 

measurements. These results are consistent with the ones obtained from magnetic susceptibility and 

specific heat measurements. At the transition into the antiferromagnetic (AFM) long-range ordered 

state, TN ~ 1.88 K, we observed a huge anomaly in the sound velocity (∆v/v ~ 0.1%) and thermal 

expansion (β(T) ~ 600·10-6 K-1) that indicates a sizable structural distortion accompanying the 

occurrence of long-range AFM order. Inside the long-range AFM-ordered state, we also observed a 

huge softening of the c22 mode (up to 1% at 0.85 K) as a function of applied magnetic field 

indicating a strong magneto-elastic interaction in the AFM-ordered state.  

Based on these results, we have estimated of the strain dependence of the dominant magnetic 

exchange coupling by analyzing the temperature dependence of the elastic constant that reveals a 

considerable dimer-dimer coupling constant and a large strain dependence of the singlet-triplet gap. 

Moreover, the pressure dependence of the magnetic susceptibility was investigated up to 6.2 kbar 

using a SQUID magnetometer. The results are in agreement with the value of the strain dependence 
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indicating the significant role of strain interactions in this compound. From these results, we 

emphasize that Azurite can be well described by a 1D diamond chain system at temperatures above 2 

K [Jeschke11]. However, a strong magneto-elastic coupling must be taken into account in the “full 

model” Hamiltonian for describing the low-temperature region, including the 3D long-range AFM 

order. 

Further, we have presented a detailed investigation of the critical behavior of the sound velocity 

and ultrasonic attenuation in the vicinity of TN. The results show that the attenuation shift obeys a 

power law both above and below TN with a critical exponent of about 1.12 and 5.22, respectively. 

The value obtained above TN is close to the theoretical expectation of η ~ 1 for the isotropic 

Heisenberg antiferromagnet but the extraordinary large value obtained below TN is not clear at 

present. The critical contribution of the sound velocity shows the same critical exponent of -0.056 

both above and below TN is indicative of a 3D isotropic Heisenberg antiferromagnet.  

. In an applied magnetic field, the critical velocity changes exhibit a uniform behavior for various 

fields, indicating a similar nature of the critical contribution when crossing from the paramagnetic to 

the antiferromagnetic or to the spin-flop state. 

The measurements at low temperature show a complex magnetic structure of Azurite. Based on 

these measurements, detailed low-temperature B-T phase diagrams were mapped which comprise 

two additional new phase boundaries of unknown origin at low temperature (T < TN). One is just 

below the AFM ordering transition, and the other one is at very low temperature (T < 0.5 K) which is 

likely to be of magnetic origin. So, further investigations are needed in order to clarify this issue. 

7.2 The quasi-2D quantum spin systems Cs2CuCl4 and Cs2CuBr4 

We have conducted thorough magneto-acoustic investigations of Cs2CuCl4 for all three modes 

c11, c22 and c33 with the magnetic field applied along the crystallographic a-axis.  

 In the field-dependent measurements, we observed a change of the shape of the attenuation 

curves from a broad feature to a sharp anomaly which is attributed to driving the system from a spin 

liquid to long-range AFM order. Moreover, field-dependent measurements around Bs display two 

distinct anomalies which are particularly clearly pronounced in the sound attenuation. While the first 

one is very sharp and strongly temperature dependent, the other one is distinctly broader and located 

at slightly higher fields. These features have been tentatively attributed to the transition into long-

range AFM order and the preceding spin-liquid state. These two anomalies in the sound attenuation 
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α(B) merge up as T � 0. These pronounced acoustic anomalies indicate a particularly strong spin-

lattice interaction in this material, a quantitative understanding of the interplay of spin-lattice 

interaction and quantum criticality is still missing.  

Our experimental data, again, indicate that in Cs2CuCl4, the field dependence of the critical 

temperature Φ− /1)(~)( BBBT cc  yields a critical field Bc = 8.422 T and is well described by Φ = 

1.47. This is in very good agreement with the exponent expected in the mean-field approximation 

and the result published previously. This finding again supports the notion of a BEC of magnons in 

Cs2CuCl4.  

Theoretical calculations were performed by our collaborator and were used to compare with 

experimental results for the magnetic field dependence of the elastic constants and the ultrasonic 

attenuation in the AFM ordered state. The results for the magnetic field dependence of the elastic 

constants agree quite well with the experimental data, in particular in the low-field regime B ≤ 2.5 T, 

where the approach is expected to be most accurate. The theoretical results for the ultrasonic 

attenuation reproduce the strong enhancement observed close to the critical magnetic field, although 

this approach is likely to break down in the vicinity of the quantum-critical point. The investigation 

of magnon-phonon interactions in the immediate vicinity of the quantum-critical point and in the 

other phases of Cs2CuCl4 such as the spin-liquid phase or the ferromagnetic phase is left for future 

work. 

Based on the temperature and field-dependent measurements, we constructed, in details, the B-T 

phase diagram of Cs2CuCl4 for the field applied along the a-axis that agreed with the one obtained 

from specific heat and magnetocaloric data. The phase diagram reveals the low-temperature 

crossover phase boundary of the spin liquid that has been missing up to now. 

Pulse-field measurements also have been performed in Cs2CuBr4 in order to study the acoustic 

behavior in the region of the magnetization plateau. Unfortunately the available temperature range of 

the study was confined to the paramagnetic state (T > 1.5 K) and could not be extended to the region 

where the plateaux exist. The results show a gradual softening of c11(B) on increasing the field and 

display a step-like phase transition when the field reaches the saturation, regardless of the applied 

field direction.  

In Ref. [Ono07], T. Ono reported an attempt to perform ultrasound measurements in high pulsed 

magnetic fields but without success due to cracks in the sample. Our measurements have proved that 
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the high-quality samples, provided by Prof. Assmus and his team, can survive at low temperatures 

and high fields. In future, we are going to carry out measurements at low temperatures and high DC 

magnetic fields in collaboration with the High Field Laboratory in Dresden. 

7.3 The mixed system Cs2CuClxBr 4-x 

The mixed crystal series Cs2CuCl4-xBrx were successfully synthesized by growing from aqueous 

solutions and were magnetically characterized in the present work. We have performed magnetic 

susceptibility measurements on the whole range of single crystals of the mixed system in the 

orthorhombic phase. By following characteristic features of the susceptibility, including the position 

of the broad maximum at Tmax and the height of the maximum χmol(Tmax), three distinct magnetic 

regimes have been identified. These regimes are separated by critical concentrations around xc1 = 1 

and xc2 = 2. The main magnetic characteristics of the systems and the existence of two critical 

concentrations could be explained by a model which considers the structural peculiarities of the Cu-

halide tetrahedra and the way these building blocks are arranged in the crystal structure.  

According to this model, the substitution of the smaller Cl− ions by the larger Br− ions in the 

distorted Cu-halide tetrahedron enforces a site-selective occupation. This mechanism provides a 

natural explanation for the two critical concentrations: While at xc1 = 1, (practically) all the Cl1 

positions are occupied by Br, the two equivalent Br3 atoms are displaced by Cl atoms at xc2 = 2. 

Thus our results suggest that Cs2CuCl3Br1 and Cs2CuCl2Br2 mark particularly interesting mixed 

systems with a well-ordered local Cu environment providing a suitable basis for studying the 

interplay between strong frustration and quantum criticality.  

In the near future, one target is to explore the low-temperature magnetic properties, especially 

the evolution of the Néel temperature as a function of concentration x, by performing high-resolution 

ac-susceptibility measurements for T < 2 K on the various Cs2CuCl4−xBrx single crystals. Due to the 

increase of the degree of frustration for the Br-rich materials, we expect a sizable suppression of TN. 

We expect that due to strong frustration around xc2, Cs2CuCl2Br2 should show long-range 

antiferromagnetic order at TN below that of the pure Cl (x = 0) system (TN = 0.62 K), and would 

represent an interesting target material for studying the interplay of strong magnetic frustration and 

quantum criticality. 

In addition, the question arises to which extent the system becomes more 3D in character on the 

Cl-rich side. This could be answered by studying the field dependence of TN through χ(T,B) 
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measurements, in order to determine the B-T phase diagrams and to identify the nearby QCP. Of 

particular interest will be the compounds with xc1 = 1 and xc2 = 2. In order to fully characterize the 

criticality and to study the effects of frustration and dimensionality on the quantum-critical behavior, 

it is necessary to employ various measurements such as magnetocaloric effect, specific heat, thermal 

expansion and ultrasound in the millikevin temperature range in combination with theoretical studies 

such as ab-initio and DRMG calculations. 

7.4 In summary 

We have conducted detailed studies of acoustic behavior and magnetic properties on some low-

dimensional spin systems. Our obtained results bring new insight into the thermodynamical 

properties, especially at the field-induced quantum phase transitions and at the QCP. The 

comparison of our data with other experimental results shows that we were able to reproduce and 

improve their quality. In exploring different compounds, e.g., 1D, 2D or a mixed solution of 

quantum spin systems, besides being in the agreement with current results, many of our results point 

out new directions for further studies in both theoretical and experimental field. 
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‘Ultrasonic investigation on the distorted diamond chain compound Azurite’ J. Phys.: Conf. Ser. 

200, 012226 (2010). 

10. B Wolf, P T Cong, K Remović-Langer, Y D Borozdina, E Mostovich, M Baumgarten and M 

Lang 

‘Coupled spin S = 1/2 dimer systems based on nitronyl-nitroxide biradicals’ J. Phys.: Conf. Ser. 

200, 012225 (2010). 

11. Bach Thanh Cong, Pham Huong Thao and Pham Thanh Cong 

‘Theory for long range magnetic order in nanometer films’ J. Phys.: Conf. Ser. 200, 072020 

(2010). 

Talks and Posters Presented in Conferences and Workshops during PhD Time 

1) ‘Search for coupled S = 1/2 dimer systems in a new class of Nitronyl-nitroxides biradicals’ 

German spring meeting (Deutsche Physikalische Gesellschaft) - Berlin, Germany (25th - 29th 

February, 2008). 

2) ‘Quantum spin systems based on Nitronyl-nitroxid biradicals’ Annual retreat SFB/TR 49 - 

Waldthausen, Mainz (25th - 26th September, 2008). 

3) ‘Coupled spin S = 1 /2 dimer-systems based on Nitronyl-nitroxide biradicals’ German spring 

meeting (Deutsche Physikalische Gesellschaft) - Dresden, Germany (22th - 27th March, 2009). 

4) ‘Ultrasonic investigations on the 1D diamond chain compound Azurite’ German spring meeting 

(Deutsche Physikalische Gesellschaft) - Dresden, Germany (22th - 27th March, 2009). 
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5) ‘Exploring the quasi 2d-antiferromagnet Cs2CuCl4 by ultrasonic investigations’ The 9th 

International Conference on Research in High Magnetic Fields (RHMF 2009) - Dresden, 

Germany (22th - 25th July, 2009). 

6) ‘Ultrasonic investigations on the distorted diamond chain compound Azurite’ - International 

Conference on Magnetism (ICM) - Karlsruhe, Germany (26th - 31st July, 2009). 

7) ‘Exploring the quasi 2d-antiferromagnet Cs2CuCl4 by ultrasonic investigations’ Annual Retreat 

SFB/TR 49 - Akademie Gesundes Leben, Oberursel (24th -25th September, 2009). 

8) ‘Elastic anomalies at the field-induced quantum-critical point in the quasi 2D-antiferromagnet 

Cs2CuCl4’ SFB International Symposium on “Novel states in correlated condensed matter – from 

model systems to real materials” - Berlin, Germany (2nd - 4th March, 2010). 

9) ‘Elastic anomalies at the field-induced quantum-critical point in the quasi 2D-antiferromagnet 

Cs2CuCl4’  German spring meeting (Deutsche Physikalische Gesellschaft) - Regensburg, 

Germany (21st - 26th March, 2010). 

10) ‘Structural and magnetic properties of the mixed quantum antiferromagnet Cs2CuCl4-xBrx’ 

German spring meeting (Deutsche Physikalische Gesellschaft) - Regensburg, Germany (21st - 

26th March, 2010). 

11) ‘Elastic anomalies at the field-induced quantum-critical point in the quasi 2D-antiferromagnet 

Cs2CuCl4’ Annual retreat SFB/ TR 49 - Seehotel Gelterswoog, Kaiserslautern, Germany (7th - 8th 

October, 2010).  

12) ‘Ultrasonic investigation in the vicinity of the quantum-critical point in Cs2CuCl4’ German 

spring meeting (Deutsche Physikalische Gesellschaft) - Dresden, Germany (13th - 18th March, 

2010). 

13)  ‘Distinct magnetic regimes through site-selective atom substitution in the frustrated quantum 

antiferromagnet Cs2CuCl4−xBrx’ German spring meeting (Deutsche Physikalische Gesellschaft) - 

Dresden, Germany (13th - 18th March, 2011). 
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14)  ‘Critical behavior study at antiferromagnetic phase transition in Azurite’ German spring 

meeting (Deutsche Physikalische Gesellschaft) - Berlin, Germany (25th - 30th March, 2012). 

15)  ‘Pulse field ultrasonic experiments in the quasi-2d antiferromagnet Cs2CuBr4’ German spring 

meeting (Deutsche Physikalische Gesellschaft) - Berlin, Germany (25th - 30th March, 2012). 

Teaching Assistantship during PhD Time 

1) Winter Semester 2007-2008 - Teaching Assistant for the experiment ‘Optical Pumping’ Advance 

laboratory course for Physics students, J. W. Goethe-Universität Frankfurt, Germany. 

2) From summer Semester 2008-2009 to winter semester 2011-2012 - Teaching Assistant for the 

experiment ‘Sound Propagation in Crystals’ - Advance laboratory course for Physics students, J. 

W. Goethe-Universität Frankfurt, Germany. 

3) From summer Semester 2011 to winter semester 2011-2012 - Teaching Assistant for the 

experiment ‘Josephson Effect’ - Advance laboratory course for Physics students, J. W. Goethe-

Universität Frankfurt, Germany. 

 

 


