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H I G H L I G H T S

• A fully automated procedure for micro-

structural analysis is proposed.

• Measurement accuracy is validated on

Ti6Al4V microstructures.

• Grain size measurements are consistent

with results from existing procedures.

• Much faster measurement times when

compared with manual procedures.
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Thermal and mechanical processes alter the microstructure of materials, which determines their mechanical

properties. Thismakes reliablemicrostructural analysis important to the design andmanufacture of components.

However, the analysis of complex microstructures, such as Ti6Al4V, is difficult and typically requires expert ma-

terials scientists to manually identify andmeasuremicrostructural features. This process is often slow, labour in-

tensive and suffers from poor repeatability. This paper overcomes these challenges by proposing a new set of

automated techniques for 2Dmicrostructural analysis. Digital image processing algorithms are developed to iso-

late individual microstructural features, such as grains and alpha lath colonies. A segmentation of the image is

produced, where regions represent grains and colonies, from which morphological features such as; grain size,

volume fraction of globular alpha grains and alpha colony size can be measured. The proposed measurement

techniques are shown to obtain similar results to existing manual methods while drastically improving speed

and repeatability. The benefits of the proposed approach when measuring complex microstructures are demon-

strated by comparing itwith existing analysis software. Using a few parameter changes, the proposed techniques

are effective on a variety of microstructure types and both SEM and optical microscopy images.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

The microstructure of a metal often reveals important information

about its mechanical properties, such as strength, ductility, yield stress,

tensile strength, hardness and surface roughness among others [1,2]. In

fact, the ability to control themicrostructure of a manufactured part has
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nowbecome a key aspect ofmanymanufacturing techniques [1]. Differ-

ences in thermal and mechanical processing can produce different mi-

crostructures and therefore components with different properties.

Carefully controlling these factors allow material properties to be re-

fined to best suit a specific application [3]. Development of new

manufacturing processes or models, and the existing design and

manufacturing of high value components, must consider the effect of

the microstructure of the material. This makes microstructural analysis

essential for many academic and industrial projects.

Microstructures can contain a variety of different features, each

often requiring different analysis procedures to measure them. Several

techniques have already been proposed to measure a range of micro-

structural features, however, all have limitations that still need to be

addressed.

The American Society for Testing and Materials (ASTM) produce in-

dustrially recognised standards for the analysis of material microstruc-

ture. The ASTM E112 standard describes streamlined methods for

manually measuring average grain size based on linear intercepts of

line segments [4]. A set of lines are overlaid on an image and marked

at locationswhere they cross a boundary between grains. Themean dis-

placement between these marks gives an approximation of the mean

grain size of that microstructure. Typically, only a subset of grains is

measured, with 300 measurements required for statistically valid re-

sults. If the set of lines is placed randomly, then the result would be

free from bias but the aspect ratio of grains could not be calculated.

Manually selecting lines, so that they run the length and width of each

grain, allows formore detailedmeasurement but at the cost of exposing

the result to bias, as users can select which grains tomeasure. The ASTM

E562 standard describes techniques to measure volume fraction based

on point counting [5]. A set of points are distributed throughout an

image and an expert then specifies which points lie within each

phase. The percentage of points marked within a single phase gives

the volume fraction of that phase.

Implementing these standards is very labour intensive, making

them slow and inefficient. The E562 standard estimates a measurement

time of 15 mins per image for an experienced user [5], and our experi-

ments show similar times for the E112 standard. As defining the loca-

tion of grain boundaries is often subjective, such methods are also

prone to human error and poor repeatability. The latter is of particular

concern in the E112 standard which estimates inter-operator repeat-

ability at ±16% for measurements in micrometres [4]. This variability

makes small microstructural changes difficult to detect and may misdi-

rect research into new manufacturing processes or microstructural

refinement.

The procedures described above are based on 2D imaging technolo-

gies common in both industry and academia, however, there also exist

methods to analyse materials in 3D. 3D techniques based on X-ray to-

mography have been applied for the analysis of porosity in metal alloys

[6] and to measure grain orientation and position over time [7]. Similar

techniques have been proposed using focus ion beam (FIB) or serial

block face scanning electron microscopy (SBFSEM) to produce 3D

scans ofmicrostructure, using serial sectioning techniques [8]. Asmicro-

structures are 3D structures these techniques are potentiallymore accu-

rate than 2D scans. However, many of these methods are not as readily

available as traditional 2D microscopy. Furthermore, recent research

shows that automated analysis of 3D microstructures can be achieved

using techniques originally developed in the 2D domain [9]. We there-

fore focus on automating procedures based on more ubiquitous 2D im-

aging technologies as this is impactful now and is potentially still useful

in the future, with opportunities to extend them to 3D.

Digital image processing techniques have been successfully applied

to improve 2D analysis procedures in other fields such as biology [10]

and geology [9,11] as well as to analyse the microstructure of non-me-

tallic elements [12]. In recent years image processing techniques have

also been proposed to improvemicrostructural analysis ofmetals by au-

tomating some, or all, of themeasurement process [13–17]. Collins et al.

and Tiley et al. [13,14] propose several stereology procedures that can

be implemented in the Photoshop extension Fovea Pro. Tiley's work fo-

cuses on beta processed lamellar microstructures and Collins extends

this to measure bi-modal microstructures. The width of alpha laths is

measured by applying a grid of lines at successive 10 degree increments.

The length of any segment of these lines that can fit within a lath ismea-

sured and these lengths are used to approximate the average thickness

of alpha laths. The volume fraction of alpha phase is found by using

thresholding to separate the alpha from the beta phase and computing

the percentage of light and dark pixels. Manual input remains necessary

for measuring grain and colony size. Yang and Liu [15] also use

thresholding for the separation of grain phases. Gaussian filtering tech-

niques are used to reduce the impact of image noise and the pixel values

are used to estimate the depth below the machined surface. Zhe et al.

[16] present a method for separating touching globular and lamellar

phase. The algorithm searches for concave regions in the alpha phase

and splits objects where this concavity is significant. However, this ap-

proach cannot split individual grains of the same type. Sosa et al. [17]

developed an automated software tool to measure a variety of micro-

structural features such as grain size and volume fraction. Grain size is

measured from a segmented image where each segment is assumed

to be a grain. To compute this segmentation, adaptive thresholding is

used to locate dark or light lines in the image, which are considered to

represent grain boundaries. Automated algorithms then complete any

gaps in the boundary to form a complete segmentation and the software

then measures each region. Phase separation is performed in a similar

way as other methods reviewed here. Additionally, the software can

also compute the orientation of the image which can help identify lath

colonies in microstructural images, although no fully automated

method for computing their size is provided.

Some features, such as the volume fraction of alpha phase andwidth

of alpha laths, can be measured relatively successfully by existing tech-

niques, as a result these are not investigated further in this study. In-

stead we focus on features for which the results of existing automated

measurements are less reliable. Of the aforementioned techniques,

only Sosa et al. [17] present automated methods for the analysis of

alpha grains with all others still requiring manual input to measure

this feature. However, themethod proposed in [17] relies on boundaries

presenting with a dark or light line at their boundary, which is not al-

ways possible when imaging many microstructures. This affects the re-

liability of measurements of alpha grain size and volume fraction of

globular alpha. Measuring the size of alpha lath colonies also remains

a manual task in these procedures. We found that, within both industry

and academia, manual procedures are currently relied upon tomeasure

the complexmicrostructures used in our study due to the lack of reliable

techniques for identifying and measuring alpha grains.

It is clear that newdata processing techniques are needed in order to

reduce the time taken to perform microstructural analysis, reduce

human error and give repeatable results. Digital image processing theo-

retically offers a solution to all these problems. However, existing tech-

niques fail to accurately identify many relevant microstructural

features. This paper develops new techniques specifically designed to

recognise these features. We apply our techniques to measure primary

alpha grain size, the volume fraction of globular primary alpha and the

size of alpha lath colonies.

2. Material and microstructure

A material's microstructure depends on the type of material and

manufacturing processes. A variety of different features may be visible,

as indicated by the microstructures shown in Fig. 1. For our study, we

focus on the titanium alloy Ti6Al4V. The popularity of this alloy [1], par-

ticularly within high value manufacturing sectors such as aerospace

[18], means it is often the subject of microstructural analysis. Further-

more, Ti6Al4V is a two-phase material, meaning it exhibits a variety of

different microstructural features. This makes it more likely that
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techniques developed for this material will be applicable to the micro-

structure of other materials.

The microstructures were studied using the Quanta FEG 250 Scan-

ning Electron Microscope (SEM) and the OM Leica DM12000M Optical

Microscope. Ti6Al4V has a microstructure that consists of two distinct

phases, an alpha and beta phase, which are distinguishable by image in-

tensity. Alpha phase is light and beta phase is dark in optical images,

shown in Fig. 1 e) and f), while the reverse is true in SEM images,

shown in the remainder of Fig. 1. Alpha phase investigated in the

paper consists of individual grains which can be categorised as either

globular or lamellar, depending on their morphology. Investigated

beta phase was represented either as a beta matrix, Fig. 1 b) and d), or

as a mixture of beta phase and alpha platelets, as shown in Fig. 1 c)–f).

These are sometimes referred to as martensite laths, and often exist in

parallel groups separated by thin layers of beta phase. These parallel

groups are known as colonies. The microstructure of this material can

be categorised into threemain types; globular, bimodal or fully lamellar

[1]. All of the aforementioned microstructure types are studied in this

work to ensure the generalisation of our techniques. Different types of

microstructure morphology were obtained after different thermo-me-

chanical processes. Examples of the differences between our micro-

structures are shown in Fig. 1.

Existing research has identified the size of equiaxed alpha grains as a

key factor in determining material properties, with yield strength in

particular being directly related to mean grain size [19]. For example,

the analysis of primary alpha phase is necessary for recent work

aimed at creating ultrafine grainedmaterials, where grain size and elon-

gation are important [20,21]. Additionally, the volume fraction of glob-

ular alpha, size of alpha lath colonies, volume fraction of alpha phase

and width of alpha laths are all considered significant [13,14]. This

paper focuses on approaches for calculating the mean size of primary

alpha grains, the volume fraction of globular alpha and colony size as

these morphological features are important and often currently require

time consuming manual methods to measure.

3. Digital image analysis

A popular method of measuring image features is to use algorithms

that automatically partition an image into a set of regions of interest.

This process is commonly called Segmentation [22]. To measure grains

in a microstructure, segmentation algorithms can be designed to locate

grain boundaries and label all pixels within a single continuous bound-

ary as belonging to one grain. From this segmentation a variety of mea-

surements can bemade using establishedmethods [23]. A key benefit of

this approach is in analysis time, with the application of automated

image segmentation in other fields producing measurements in sec-

onds, or even milliseconds for small images [24]. Measurement by a

predetermined software algorithm also allows results to be repeated

without any inter-operator variation.

The key challenge when using automated segmentation algorithms

is ensuring the segmentation produced accurately represents the fea-

tures to be measured. This is widely considered the most difficult task

in this type of image analysis and methods capable of segmenting im-

ages for one application often do not work in others [22,25]. Image pro-

cessing techniques such as the Watershed Algorithm [26], Active

Contour Models [27], Hit-or-Miss transforms [28] and Clustering [29]

have all been applied to segment images in a range of applications,

frommicroscopic cells to large sheets of ice [10,11,30,31]. Each method

has its own advantages but none of the aforementioned techniques are

able to reliably segment features of Ti6Al4V microstructures without

substantial adjustments.

In this paperwe use theWatershed Algorithm [26] as it is best suited

to segment the touching grains which are common in titanium micro-

structures. However, this algorithm is prone to over-segmentation and

existing implementations will typically provide poor segmentation re-

sults for the microstructures in this study. We proposed pre- and post-

processing techniques in order to improve the segmentation accuracy

achieved by theWatershed Algorithm, when applied to challengingmi-

crostructural images. This includes distinct, novel methods of

Fig. 1. Examples of Ti6Al4Vmicrostructureswhere a) is an SEM image of a globularmicrostructure representing primary alpha grainswith the remainder being beta, b) is an SEM image of

a bi-modal microstructure consisting of primary alpha grains surrounded by transformed beta (Widmanstatten structure), c) is an SEM image of Widmanstatten alpha platelets in prior

beta grains, d) is a bi-modal microstructure where primary alpha grains are elongated and subjected to fragmentation, the rest is beta matrix, e) is an optical image of a bimodal

microstructure where primary alpha grains are surrounded by coarse alpha platelets and f) is a bimodal microstructure where alpha phase lamellae are partially fragmented and

globularized.
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computingmarkers that estimate locations of alpha grains and colonies

in a microstructural image and reduce over-segmentation.

4. Challenges when performing microstructural analysis

Microstructural images have a series of inherent properties that

make analysis difficult for both automated and manual techniques.

Any approach for measuring the size of grains or colonies relies on the

ability to identify the boundaries of these features. Alpha and beta

phase present as light and dark regions in an SEM image so the bound-

aries between these are often quite clear. However, grains of the same

phase are typically more difficult to distinguish. As an SEM gives a

high contrast images, adjacent grains often differ in intensity, even

when they are of the same phase. Optical microscopes provide lower

contrast, so there is often no visible boundary between grains. Fig. 2

shows clusters of equiaxed grains imaged using each technology to il-

lustrate this.

As well as visible contrast changes between grains the shape of the

grain can also be used to locate boundaries. Grains are approximately el-

liptical and do not normally feature any concave regions. Therefore,

such concavities often indicate the presence of an overlap between

two adjacent grains. These concavities are typically more distinct

when circular grains overlap, compared to more elongated grains. Con-

cavities are equally visible in both SEM and optical images.

Deciding which contrast variations and concavities are sufficient to

indicate a boundary is difficult, even for experienced materials scien-

tists. Microscopic images often suffer from noise which can obscure

grain boundaries or even create the appearance of boundaries that do

not exist. This is particularly common in images produced using an

SEM. Grain boundaries are also not perfectly smoothmeaning deforma-

tion or phase transformation could create concavities in a grain, but not

indicate an overlap between adjacent grains. There is no explicit rule for

distinguishing between these noise sources and true boundaries, so

manual processes rely on an operator's experience tomake the decision.

The subsequent measurements are therefore subjective and difficult to

repeat. This is demonstrated in Fig. 3 which shows a microstructure

containing elongated alpha grains, with two regions manually seg-

mented by different materials scientists. The result is very different

with the same area divided into 5 grains by one user and 9 by the other.

Further difficulties are produced by etching and polishing, which is

usually required prior to microscopic analysis to ensure microstructural

features are visible. This is a non-trivial task and can cause scratches or

other artefacts to appear on the microstructural image, some of which

can be seen in Fig. 3. This rarely causes problems in manual analysis

but could be more problematic for automated approaches as they

need to be taught to distinguish this from useful information.

5. Newmicrostructural analysis method

In this sectionwepresent innovative image processing techniques to

automate the analysis of different morphological types of Ti6Al4V mi-

crostructure. The methodology we use to detect and measure micro-

structural features is shown in the block diagram in Fig. 4. The same

approach is used for both alpha grain and lath colony measurements,

however, different modifications are made to theWatershed Algorithm

in each case for correct operations. Where appropriate, the influence of

different parameters in our algorithms is discussed to demonstrate how

these methods can be adapted to suit different applications and

datasets.

5.1. Filtering

The initial microstructural image is first filtered to reduce noise

while preserving intensity differences between adjacent grains. We

found Gaussian filtering [25] to be effective, in line with previous re-

search [15], however this filter can also cause distortion. The size of

the filter determines the extent of both noise reduction and distortion,

so should be adjusted depending on the application to ensure the best

results. SEM images contain more noise than optical ones so require a

larger filter. Images showing thin laths would see these laths hidden

by even a small amount of distortion, so smaller filters are needed. For

the Ti6Al4V microstructures in our dataset, the best results were

achieved using a 5 × 5 filter for SEM images and a 3 × 3 filter for optical

images or images where laths were present.

5.2. Watershed Transform

Image segmentation is performed using the Watershed Transform

[26]. This technique considers the image as a topographic surface [32]

and floods this surface from local minima. When floods from different

sources meet, they are prevented from merging and these locations

are marked as boundaries. The transform returns a uniquely labelled

set of regions fully enclosed by these boundaries. If performed correctly

on our dataset, each region in the segmented datawill represent a single

microstructural feature. We use a marker based Watershed Transform

[26], which floods the image exclusively from pre-defined locations

known as markers, rather than from all local minima. This has been

shown to improve segmentation accuracy, particularly in reducing

over-segmentation [33–35], making it ideally suited to segmenting mi-

crostructural images. The marker based Watershed Transform requires

two inputs, the topographic surface, estimating grain boundaries, and

the markers, estimating grain locations. The transform uses these esti-

mates to find a complete image segmentation by placing boundaries

on ridgelines of the topographic surface that are between adjacent

markers. These ridgelines should correspond to the edges of segmented

objects, as shown in Fig. 5. Using a suitable topographic surface and set

of markers are critical to the accuracy of segmentation. Computing ap-

propriate markers is a difficult task and often requires bespoke

Fig. 2. Difference between SEM and optical imaging technologies in terms of grain

boundary visibility and noise where a) is a cluster of alpha grains in an SEM images and

b) is a similar cluster in an optical image.

Fig. 3. Elongated grains with 2 regions segmented by different materials scientists. (For

interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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techniques to be designed that are dependent on the feature being

marked. We propose distinct, novel techniques to mark alpha grains

and lath colonies. We also propose different methods for computing

the topographic surface in each case.

5.2.1. Globular alpha segmentation

To segment alpha grains, we use the gradient magnitude function as

the topographic surface [25]. This is an image transformwhere the value

of each pixel in the output image corresponds to the change in intensity

at that location in the original image. Using the output of this function as

the topographic surface will result in boundaries being placed where

the most significant intensity changes exist between markers.

For alpha grains, edge detection [22] is used to find areas in the

image where significant variations in intensity occur. The sensitivity of

this edge detection, Es, determines the magnitude of intensity change

in the image that suggests the presence of a grain boundary. We then

place amarker in the centre of areaswhich are at least partially enclosed

by these edges. Doing so takes account of both image intensity and ob-

ject shape,making our approach effective for optical and SEM images. In

a similar way, we also set constraints on the Watershed so that floods

cannot pass from one phase of material to another. Edge detection,

with lower sensitivity, is used to locate only large intensity changes

which typically indicate boundaries between alpha and beta phases

with the Watershed being forbidden to allow any region to cross this

boundary. This helps to ensure that each identified grain exists in only

one phase of the material.

5.2.2. Lath colony segmentation

For segmenting colonies we use the gradient orientation of the

image as the topographic surface, computed using Sobel Filters [22].

The gradient orientation is the orientation of greatest intensity change

for a given image location. This is measured counter clockwise from

the positive x-axis. Using the gradient orientation as the topographic

surface results in boundaries placed where laths are closest to being

perpendicular.

If each lath was marked by the method described for alpha grain

analysis, it would be possible to segment them and compute the angle

of orientation of individual laths [36]. Laths at similar orientations

could then be grouped tomark colonies. However, as laths are often ex-

tremely thin and have unclear boundaries compared to equiaxed alpha

grains, we are unable to segment and study individual laths. To over-

come this challenge, we use the gradient orientation to assess each

pixel, rather than computing orientation per lath. Pixels with similar

orientation values are then grouped to mark colonies. The laths in

Ti6Al4V are separated by thin layers of beta phase. As alpha laths and

beta phase have significantly different intensity in microstructural im-

ages, the greatest gradient will typically occur perpendicular to the ori-

entation of the lath. For fully lamellar microstructures containing only a

few colonies this technique can be applied directly. However, in bi-

modalmicrostructuresmany colonies of laths are typically visible, mak-

ing common orientations difficult to identify. To solve this an unmodi-

fied Watershed Transform [26] is applied to the inverse of the alpha

grain segmentation, to split the laths into smaller regions, as shown in

Fig. 6 a). The smaller number of colonies that exist in each region

makes the dominant lath directions easier to identify. Due to noise in

the image, a wide variety of angles are recorded, however, values

representing the orientation of the laths will occur more frequently. A

histogram, shown in Fig. 6 b), can be used to identify themost common

angles that occur in the image. Pixels at a peak angle,+/− a constant,Ar,

are then isolated, as shown in Fig. 6 c). Mathematicalmorphology [25] is

used to group pixels that are within a spacing factor, Ls, of each other

into a single marker representing the colony, shown in Fig. 6 d). Ar is

used to account for both errors in orientation measurement and the

fact that laths are not always aligned perfectly within the colony, so is

typically set relatively high at around 15°. Ls is the distance between

laths at the same angle that are considered to be within the same col-

ony. The best value is usually the same as the width of the widest lath

in the image. Fig. 6 e) shows the complete set of markers for laths in

the microstructural image and Fig. 6 f) shows the resulting segmenta-

tion of the image into separate colonies using these markers.

Fig. 4. Flow chart of main steps in algorithm for measuring the size of microstructural features.

Fig. 5. Illustration of Watershed Transform. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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5.3. Region merging

We propose a new approach to reduce over-segmentation errors

produced by the Watershed Transform by merging adjacent regions

whose properties suggest they belong to the same feature. Similar ap-

proaches have been applied successfully in other image segmentation

methods [37,38].

Our approach uses a region adjacency graph [39]. This is a graph, G

= (V,E), where each vertex, V, is a region of the image and edges, E ⊂

Vi × Vj, connect vertices only when the regions share a common bound-

ary, as illustrated in Fig. 7 a)with vertices in blue and edges in green. For

each edge, a weight,wij, is typically computed based on the similarity of

the regions (vertices) it connects.When theweight of this edge exceeds

a predetermined threshold, edges are removed from the graph such that

only edges between similar regions remain, as shown in Fig. 7 b). Any

internal boundaries between regions connected by an edge are then re-

moved and the encapsulated region is categorised as a single grain. The

updated segmentation is shown in Fig. 7 c).

Determining suitable edge weights and merging thresholds is criti-

cal to the success of the proposed regionmergingmethod. Themore ac-

curately the properties of objects can be predicted in advance the more

precisely these can be set and themore effective this technique is. Inmi-

crostructural analysis, it is often difficult to predict grain properties and,

therefore, selection of these weights and thresholds is difficult. To deal

with this we define 3 separate weights and thresholds to enable each

pair of regions to be examined by 3 separate criteria.

We based edgeweights on; the length of boundaries, B, themean in-

tensity of pixels in the region, I, and region size, S. The first weight,w1ij

¼ Bc
minðBi ;B jÞ

, is the percentage of the boundary of the smaller grain that is

Fig. 6. Analysis of optical image where a) segmentation of non-equiaxed alpha regions (blue) based on equiaxed alpha grain segmentation (red), b) histogram of gradient orientation

measured counter clockwise from the positive x-axis, c) locations where peak gradient value x is returned, d) markers for a lath of orientation x, e) complete set of markers for the

entire image and f) segmentation of alpha lath colonies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7.Merging over-segmented regions using a region adjacency graphwhere a) is the region adjacency graphoverlay on a segmented image, b) is the edges between regions belonging to

the same grain and c) is the new segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a common boundary, Bc, with the adjacent grain. The second weight,

w2ij = Ii − Ij, is the difference in intensity between each grain. The

third weight,w3ij = min (Si,Sj), is the size of the smaller of the two re-

gions. We use the mean diameter of the regions as the size but other

metrics could also be used. Thresholds, TB, TI, TS, are then used to judge

each of these weights and the merge test, M, is positive when regions

should merge. TB should be set as the maximum amount of boundary

that is expected to be shared between grains, TI set as themaximum in-

tensity difference expect between regions of the same grain and TS set as

the smallest possible grain size expected in the microstructure. Regions

are set to merge either when one region is very small, indicating it is

probably caused by an artefact, or when regions share both a large com-

mon boundary and a similar intensity.

M ¼
1ifw1ijNTB; w2ijNT I orw3ijbTS

0 otherwise

�

ð1Þ

Although it is difficult to refine the optimum parameters to correct

general segmentation errors due to variations in grain properties, region

merging still offers a powerfulmethod to reduce the impact of scratches

and artefacts on the images as their features are typically distinct from

regular grains. Thresholds could be set in Eq. (1) that wouldmerge arte-

facts, and regions split by a scratch, to an adjacent grain without signif-

icantly affecting the rest of the segmentation. In cases where more

specific properties of microstructural features are known in advance, a

more extensivemerging criterion could be used to obtainmore accurate

results.

5.4. Phase separation

TheWatershed Transform produces a complete segmentation of the

image, including all phases of material. Before measurements can be

taken we must distinguish which regions are alpha phase and which

are beta phase. Thresholding the original image provides an estimate

of phase separation, as each phase normally is of significantly different

intensity. An adaptive version of Otsu's thresholding method [40] is

used to automatically select a suitable threshold for each region of

each image. This prevents inconsistency in illumination from causing

phases to be misidentified. The user must indicate to the software

whether images are from SEM or optical microscopes, since alpha

phase is dark in the former and light in the latter. For measurements

of primary alpha grains, amorphological opening [25] is used to remove

any coarse alpha platelets, such as shown in Fig. 1 e), so that these are

not categorised as primary alpha.

Due to noise in the images, each grain will contain some pixels

marked as alpha and some that are marked as beta. A threshold is set

to determine if a grain belongs to a particular phase. If set too high

then some grains would be ignored from measurement. We normally

set the threshold high for alpha grain measurements as measuring

fewer grains is preferable to measuring grains incorrectly.

5.5. Measurement

After phase separation, each grain is represented by a single group of

pixels where each pixel is adjacent to at least one other pixel in the

group. This configuration is called a connected component (CC) and

several techniques have been defined to measure their properties [36].

We fit an ellipse to this region to measure the length, L, and width, D,

for each grain. These values are used to compute the mean grain size,

GS, and globular volume fraction, VFG, using Eqs. (2) and (3) where n

is the number of grains measured.

GS ¼
X

n

1

Ln þ Dn

2
ð2Þ

VFG ¼

∑
n
1

1 if
Ln
Dn

N2

0 otherwise

8

<

:

n
ð3Þ

Fig. 8. Segmentation examples of SEM imageswhere a), b) and c) are the original images and d), e) and f) are their respective segmentations. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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6. Experimental results

In this sectionwe evaluate the performance of our proposed analysis

techniques by comparing the automatically produced measurements

with those from existing manual procedures. Average alpha grain size,

colony size and volume fraction of globular alpha phase are all consid-

ered using globular, bi-modal and fully lamellar microstructures. We

also compare our method against an existing analysis technique used

in MiPar software [17], to further demonstrate the benefits of our

approach.

6.1. Dataset and experimental procedure

A variety of Ti6Al4V samples were produced, each using different

thermal and mechanical processes to ensure a varied dataset. For each

sample, up to 5 microstructural images were taken using either an

SEM or optical microscope. Measurements were taken on a sample by

sample basis with metallurgists permitted to select the images from

each sample they felt were most suitable to measure. To keep our com-

parison consistent the software was set to only measure the same im-

ages selected by the metallurgist, rather than all images in the sample.

In total 26 different material samples and around 100 images were

used in this study. We elected to measure both equiaxed alpha grains

and colony sizes by manually drawing lines across the length and

width of each grain rather than using grid based methods as this

allowed the aspect ratio of each grain to be measured. Globular volume

fraction was computed from the same set of measurements by dividing

the number of grains with an aspect ratio b 2 by the total number of

grains measured. For each sample, a minimum of 300 measurements

were taken when assessingmean alpha grain size. For our fully lamellar

microstructures, the number of visible colonies was b300 so all colonies

were measured. Of the 26 samples produced 16 were bimodal, 6 were

globular and 4 were lamellar. 2 of the 16 bimodal microstructures

contained measurable lath colonies. Examples of each microstructure

type are shown in Fig. 1. For each type of microstructure all relevant

properties were assessed.

The automated procedureswere implemented in a softwarepackage

built using the MATLAB programming language. Unlike manual

methods the software measured every grain in each image rather than

a subset of 300, leading to more grain measurements per image. The

software allows an image to be produced, showing where it has de-

tected grain boundaries, examples of which are shown in Fig. 8. This it-

self indicates how likely the result is to be accurate and provides

feedback, allowing the user to decide if any parameters need to be ad-

justed. For alpha grain analysis, the first image from each sample was

used to set parameter, Es, by adjusting this parameter to find a suitable

looking segmentation. The user did not know any numerical results at

this stage and the parameter remained unchanged for all other images

in that sample. Parameters were set for lath analysis in the same way

with Ls being adjusted for each sample and Ar being set at 15° through-

out. For all samples, themerging parameters Bc=0.4, Ti=10 and TG=

1 were chosen by manual visual inspection of a few microstructures.

These values reduced the effects of scratches and artefacts but, for gen-

erality purposes this was not refined to suit any particular microstruc-

ture type in our study.

When comparing the results, it is important to remember that man-

ual measurements cannot be taken as the absolute truth, due to subjec-

tivity, bias and human error. As such errors are difficult to quantify, we

use the expected inter-operator variation defined in industrially

recognised standards [4,5] as an indicator of accuracy. For volume frac-

tion, inter-user repeatability of ±10% is expected [5] while grain size

standards expect a variation of±0.5 G betweenmeasurement by differ-

ent operators [4], which equates to±16% inmicrometres. As previously

described, subjectivity is greater when elongated grains exist so less

variation would be expected in more globular microstructures. The dif-

ference between measurements is recorded in Tables 1–4 and colour

codedwith green indicating a closematch, red indicating disagreement

beyondwhat would reasonably be expected and amber indicating a dif-

ference in measurement that is on the limit of expected inter-operator

variations. Table 5 gives summary statistics for each feature measured

and microstructure type, to illustrate where our methods are most

effective.

6.2. Comparison with manual procedures

6.2.1. Grain size

Overall, there is a good correlation in grain size measurements be-

tween existing manual procedures and our automated analysis ap-

proach. For fully globular microstructures, grain size measurements

were typically within 0.3 μm for 4–5 μm grains, as shown in Table 1.

The greatest difference between measurements was 0.41 μm, which is

still comfortably within the expected inter-operator variation. This is a

very positive result, particularly given that grains are tightly packed in

our microstructure, which often makes automatic segmentation more

difficult. For bi-modal microstructures most measurements also closely

matched the manual results, with grain sizes of around 10 μm and dis-

agreement between results under 0.5 μm in most microstructures,

Table 1

Grain size measurements of fully globular microstructure.

Sample Grain size (µm)

Manual Auto Difference

1 4.72±0.76 4.51 −0.21

2 5.01±0.80 5.04 +0.03

3 4.86±0.78 4.62 −0.24

4 5.42±0.87 5.14 −0.28

5 4.18±0.67 4.59 +0.41

6 4.82±0.77 4.62 −0.2

Table 2

Size and Volume Fraction Measurements of Bi-Modal Microstructures.

Sample Grain size (µm)

Manual Auto Difference

1 9.33±1.49 9.05 −0.28

2 11.3±1.81 11.2 −0.1

3 9.52±1.52 9.62 +0.1

4 8.81±1.41 7.55 −1.26

5 11.4±1.82 10.64 −0.76

6 10.74±1.72 10.5 −0.24

7 10.06±1.61 9.84 −0.22

8 11.57±1.85 9.58 −1.99

9 12.04±1.93 9.93 −2.07

10 8.45±1.35 8.04 −0.41

11 9.45±1.51 9.35 −0.1

12 9±1.44 9.26 +0.26

13 11.2±1.79 10.1 −1.1

14 10.25±1.64 9.99 −0.26

15 10.97±1.76 10.89 −0.08

16 12.97±2.08 12.94 −0.03
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shown in Table 2. However, there are several caseswhere results did not

match as closely as they did for the globular microstructures. One possi-

ble reason for this is that many of the bi-modal microstructures in this

study contained more elongated primary alpha than was seen in the

fully globular microstructures. The boundaries of these grains are less

clear so subjectivity is expected to cause wider variations in these

cases, aswas illustrated in Fig. 3. Microstructures in samples 8 and 9 ap-

pear to have large numbers of elongated grains and also exhibit the larg-

est difference between results. Despite this, no measurement lies

significantly outside the expected inter-operator variation.

The time taken to produce these results is drastically reduced com-

pared to manual methods. A typical image containing approximately

150 grains, as shown in Fig. 8 b), was measured by our software in

3.79 s while it took a materials scientist approximately 15 min to accu-

rately measure the same image. Similar differences in time were found

for all images in our study. In the microstructure, shown in Fig. 1 a),

where a far larger number of grains are visible, the measurement time

was 20.19 s. However, as our software measures every grain in the

image, 4000 grainsweremeasured in this time, farmore than inmanual

methods.

6.2.2. Volume fraction of globular alpha

Globular volume fraction is calculated based on the same segmenta-

tion used to measure grain size, so can typically be computed in less

than a second once grain sizes are already known. The automated mea-

surements of the volume fraction of globular alpha initially appeared to

be inaccurate, with almost all measurements falling outside the ±10%

variation expected, as shown in Table 3. However, on closer inspection

the discrepancy between manual and automated measurement was

found to be very consistent, with the automated techniques always

measuring globular volume fraction higher than the manual methods

and this difference usually being approximately 10%. It is also observed

that, subsequently, variations in volume fraction between each sample

are approximately the same regardless of the measurement techniques

being used, as shown in Fig. 9. This suggests both manual and auto-

mated measurements give meaningful information about the micro-

structure but that some form of bias is causing measurements to

disagree. A likely cause of this is the difference in how the length and

width of grains are selected for measuring aspect ratio. The software

fits an ellipse to the grain giving a length and width that are perpendic-

ular to each other, with the width representing the widest part of the

grain. In manual approaches placing the length and width is done sub-

jectively, therefore, length and width may not be perfectly perpendicu-

lar and the width measurement may be taken at a narrower section of

the grain. This would result in higher aspect ratios for manual measure-

ments and a lower percentage of grains being classed as globular, which

is what our results show.

Further experiments would be required to investigate this and de-

termine whichmethod of measurement gives the true globular volume

fraction. However, for developing an automated tool for analysing mi-

crostructures the ability to measure the same differences in volume

fraction between microstructures as an expert materials scientist

would measure is sufficient to show our technique provides useful in-

formation. Furthermore, due to the predictable effect of biaswe can cal-

ibrate the software, by reducing all automated measurements taken by

10%, to give results that are consistent between each measurement ap-

proach. This allows measurements from manual and automated

methods to be compared without the effect of bias. We calibrate the

software, rather than the manual measurements, so that all measure-

ments are consistent with what would be achieved by an expert mate-

rials scientist. However, the subjective nature of manual techniques

meanswe do not know if this is the absolute truth. Further investigation

is also required when applying such calibrations in practice, as the ap-

propriate calibration level may differ for other datasets. With this cali-

bration applied all results are within the expected inter-operator

variation, showing the software is capable of matching the measure-

ment of expert materials scientists.

6.2.3. Colony size

Colony size was measured for both lamellar and bi-modal micro-

structures and results are shown in Table 4. As manual measurements

were taken using linear intercept methods the inter-user variation

would be expected to be similar to those for alpha grain sizes. For bi-

modal microstructures the variation between measurements was

around 1–2 μm for 15–20 μm colony sizes. This suggests these are also

positive results although the disagreement is greater than typically

seen for alpha grain measurements. However, for fully lamellar micro-

structures the variation ranged from being 5 μm for a 145 μm colony,

to a 133 μm difference in a grain manually measured at 207 μm. The in-

consistency between results is likely because the fully lamellar micro-

structures in our dataset contained only a few colonies per image, so

any error will have a significant effect on results. Fully lamellar micro-

structures quite often contain only a few colonies, and taking hundreds

of scans with an SEM is not always practical, so this inconsistency is

likely to persist in real world applications of this technique. Therefore,

to apply this technique in its current formwemust use the visual repre-

sentation of segmentation, shown in Fig. 8, to check if colony

Table 3

Volume Fraction Measurements of Bi-Modal Microstructures.

Sample Volume fraction of globular alpha (%)

Manual Auto Auto-10%

calibration

Difference

1 44±4.4 56 46 +2

2 70±7 80 70 0

3 62±6.2 74 64 +2

4 52±5.2 68 58 +6

5 51±5.1 64 54 +3

6 62±6.2 75 65 +3

7 64±6.4 75 65 +1

8 46±4.6 56 46 0

9 48±4.8 59 49 +1

10 47±4.7 56 46 −1

11 54±5.4 65 55 +1

12 57±5.7 69 59 +2

13 71±7.1 82 72 +1

14 67±6.7 73 63 −4

15 64±6.4 71 61 −3

16 48±4.8 60 50 +2

Table 4

Colony Size Measurement in Lamellar and Bi-Modal Microstructures.

Sample Colony size (µm)

Manual Auto Difference

Lamellar 1 145±23.2 140 −5

Lamellar 2 179±28.64 190 +11

Lamellar 3 207±33.12 320 +113

Lamellar 4 375±60 434 +59

Bi-modal 1 14.21±2.27 15.22 +1.01

Bi-modal 2 19.23±3.07 21.47 +2.24
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identification is correct. As there are only a few colonies per image it

should be easy to spot errors large enough to cause significant problems,

and discount or re-measure these images manually. This would not be

necessary for our bi-modal microstructures as the larger number of col-

onies reduce the statistical significance of errors. Ultimately, however,

this is not ideal and these results suggest there are still challenges asso-

ciated with colony identification that need to be overcome.

Measurement time for colonies was slower than the methods for

globular alpha grains but is still significantly faster than manual mea-

surements. The fully lamellar microstructure shown in Fig. 8 c) was

measured in 11.32 s, with similar times required to measure all fully la-

mellar microstructures. The measurement time for bi-modal micro-

structures was higher with the microstructure shown in Fig. 8 a)

taking 7min and 11 s tomeasure the number of colonies. The significant

differences observed in measurement time between fully lamellar and

bi-modal microstructures is partly because there were more colonies

to detect in the bi-modal microstructures, but also because markers

are computed by first segmenting the image into a set of smaller re-

gions. This means the algorithm for computing colony markers is re-

peated for every region rather than operating once on the full image.

This initial segmentation of bi-modal microstructures provides an esti-

mate of colony boundaries prior to identifying laths, which is unavail-

able in lamellar microstructures. However, the accuracy of these initial

boundaries is questionable so it is unclearwhat benefit this information

provides.

Despite the analysis of colonies not obtaining the same standard of

results as alpha grain measurement techniques, the techniques can

still be used as long as care is taken to visually inspect the segmentation

to check they are suitable. Future research will aim to refine this tech-

nique to improve its efficiency and reliability. Although we only discuss

colony size, it is worth noting that our segmentation also provides infor-

mation about the angle of each lath within it. This information could be

used to direct existing techniques for measuring lath widths [13], so

thatmeasurements are taken only at angles perpendicular to lath orien-

tation rather than at random angles. This could potentially remove lim-

itationswith thesemethods, wheremeasurements are only accurate for

laths with a high aspect ratio.

6.3. Comparison with existing techniques

We further demonstrate the benefits of our approach by comparing

our techniques with the MiPar software developed by Sosa et al. [17].

This software was selected for comparison as, to the authors' knowl-

edge, it has the best existing tool for automatically detecting and mea-

suring alpha grains in titanium alloys. Colony measurements are not

compared here as we know of no existing fully automated approach

for this measurement, although some orientation based measurements

are possible with the MiPar software. Both MiPar and our techniques

were tested on images from our own dataset and images from the

dataset provided with the MiPar software. For both techniques, the

available parameters were set to give what the operator perceived to

be the best result. We found that the MiPar software worked best on

Sosa’s microstructures and our methods worked best on our own data,

which is unsurprising since each algorithm was design specifically for

those datasets. However, some of the microstructures in our study are

particularly complex and boundaries are less clearly visible than those

in the microstructures MiPar is designed to work with. Segmentation

results and subsequent grain measurements for such a microstructure

are shown in Fig. 10 and Table 6 respectively. The grain segmentation al-

gorithm implemented in MiPar searches for dark pixels in the image

which in their data indicates boundaries. However, in our data, dark

pixels do not indicate boundaries, therefore, the software will predom-

inantly detect noise, causing over-segmentation. Our algorithm mean-

while searches not for dark lines but instead for regions of high

intensity variations, with the shape of these regions then used to esti-

mate grain locations. These features are present in microstructures

from both datasets and results in our approach achieving a better result

on Sosa’s microstructures than the MiPar software achieves on ours.

This suggests the methods we propose in this paper are more generic

and better suited to measuring different types of microstructure, partic-

ularly when boundaries are unclear. It should be noted that the MiPar

software itself is designed to allow different algorithms to be created

and added over time. This test does not represent the ultimate potential

of the MiPar software environment but rather the best alpha grain seg-

mentation procedure provided at the time of writing1.

7. Conclusions

Wehave proposed a new set of image processing techniques capable

of automating the measurement of microstructural images. These tech-

niques are particularly effective for measuring alpha grain features. In

most cases the difference between manual and automated measure-

ments using our techniques was b0.5 μm, a particularly strong result

given the varied dataset. Measurement of globular volume fraction is

also possible, using our techniques. Some calibration was required to

give matching results, however, the same difference in globular volume

fraction between microstructures was found with or without this. The

measurement time for either feature is significantly reduced, from

around 15 min per image to a few seconds. Not only will this save

money and free up skilled materials scientists to focus on other work,

but the time saving is large enough that it would allow larger micro-

structural datasets to be analysed than would have previously been

Table 5

Summary of measurement accuracy of different features and microstructure.

Grain size Volume fraction of globular alpha Colony size

Good OK Bad Good OK Bad Good OK Bad

Fully globular 100 0 0 – – – – – –

Bi-modal 75 25 0 93 7 0 50 25 25

Lamellar – – – – – – 50 50 0

Fig. 9. Graph showing variations in manual and automatic measurements of globular

volume fraction.

1 MiPar Grain Segmentation 1 and 2, https://www.mipar.us/recipe-store.html, on 8th

August 2017.
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practical tomeasure. The automated nature of this approach alsomeans

repeatability is achievable, so long as noparameterswithin the software

are changed. Furthermore, the software does not sub-sample grains in

the image which typically results in far more grains being measured

than usingmanual approaches, which increases the statistical reliability

of results and prevents any potential bias effecting which grains are in-

cluded in the sample. These benefits are critical in industrywheremate-

rials manufacturers require fast results from analysis and for results to

be independent from the operator performing the analysis.

Challenges remain with the segmentation of lath colonies. In bi-

modal microstructures automated measurements were generally simi-

lar to those produced by manual methods, however, were not as good

as was achieved for alpha grains. Measurement time was also signifi-

cantly longer than for alpha grains, although still faster thanmanual ap-

proaches. Fully lamellar microstructures had inconsistent results with

some microstructures achieving accurate measurements and others

showing substantial errors. The visualisation of grain boundaries pro-

duced by the software should allow for incorrectly measured images

to be easily identified and discounted, however, this is not an ideal solu-

tion. Further research is currently underway to fully evaluate and im-

prove lath segmentation.

Ensuring automated techniques are accurate and robust to varia-

tions inmicrostructure is challenging.We tested ourmethods onmicro-

structural images produced by different imaging technologies and of

multiplemicrostructure types, subjected to a variety of thermal andme-

chanical processes. The results were mostly positive, confirming our

techniques to be capable of measuring a wide variety of microstruc-

tures. Comparisons between our techniques and a recent automated

analysis procedure further demonstrated the superior generalisation

of our approach. Although tested on microstructures of Ti6Al4V, this

generality should allow ourmethod to be applied to a range of different

microstructures by changing only a few parameters.
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