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Abstract 

In Western society, the prevalence of a hyper-caloric diet consisting of a high consumption of 

fat and simple sugars has coincided with an exponential rise in diabetes as well as 

cardiovascular diseases and several types of cancer. While some of these medical 

comorbidities are themselves associated with adverse cognitive effects, recent studies have 

also linked the western diet to an increased incidence of Alzheimer’s disease and mild 

cognitive impairment. Moreover, these disorders are considered to be major risk factors for 

dementia indicating that these metabolic effects have both peripheral and central effects.  

Rats that have been a fed high fat diet (HFD) have shown indications to be cognitively 

impaired compared to those fed a normal chow diet. Research suggests that HFD 

consumption has a deleterious effect on spatial learning and memory, and this effect 

consequently may be mediated by damage to the hippocampus. To date however, there is 

conflicting results regarding the motivational and other types of learning implications after HFD 

consumption. The primary animal model of obesity used in this thesis is the western diet 

(WD) model of obesity in rats. This model mimics the ‘western’ diet typically consumed in 

developed ‘western’ countries by feeding rats a WD chow (containing 22% w/w fat) or a 

control chow diet (containing 6% w/w fat).  

Using this model, we explored the ability of 8 weeks of WD consumption to influence 

changes to Pavlovian & instrumental conditioning as well as motivation. This study used well 

characterised tests to assess whether learnt feeding behaviour can be affected by WD 

consumption. The ability for WD consumption to alter motivational drive in varying states of 

food deprivation was also investigated. Results from this study found that rats fed a WD for 8 

weeks did not affect Pavlovian conditioning or motivational state. The effect of WD 

consumption on instrumental conditioning is still indeterminate with conflicting results. 
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There was no change in instrumental conditioning in rats fed a WD. However, WD fed rats 

were impaired in progressive ratio instrumental conditioning acquisition. Additionally, WD 

exposed rats were no different to changes in states of food deprivation compared to control 

diet counterparts. 

A further study investigated whether a period of 12 weeks WD consumption can affect spatial 

working and reference memory. No changes in spatial working or reference memory were 

observed in WD rats. Due to the assumed role of c-Fos, an immediate-early gene and 

corresponding protein, in learning and use as a surrogate marker of neuronal activation, 

neuronal activation in selected brain regions was evaluated. We demonstrated that WD 

consumption increased neuronal activation after environmental novelty in the striatum. Other 

brain regions involved in memory and learning were also investigated with no differences in 

neuronal activation before and after environmental novelty between control and WD animals. 

In a series of experiments, we explored the ability of WD consumption to influence change in 

neurotransmitters involved in memory and learning. The expression of serotonin (5-HT) 

receptors 5-HT2A, 5-HT2C and the 5-HT transporter within the striatum was also investigated, 

as previous studies have shown that serotonin is implicated in feeding behaviour following 

WD consumption. Both 5-HT2C receptor and 5-HT transporter expression were found to be 

increased in WD rats. In contrast, 5-HT2A receptor expression was unchanged in the striatum. 

This suggests that WD consumption has a selective capacity to alter the serotoninergic 

system. Furthermore due to the well-recognised role of dopamine in cognition, including 

motivation, reward, punishment and working memory, the modification of dopamine 

metabolism was evaluated. High performance liquid chromatography analysis found reduced 

levels of striatal dopamine, with alterations in dopamine metabolism and turnover also evident in 

the hippocampus after WD consumption. These neurotransmitter changes were also observed 
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to be independent of any change in cognitive ability. This suggests that WD consumption 

may instigate dopaminergic and serotoninergic adaptations before cognitive impairment 

transpire. 

The early life nutritional environment was also investigated to ascertain if early life obesity 

may contribute to cognitive impairment using a neonatal overfeeding rat model of obesity. As 

early life is a critical window of vulnerability to long-term programming of health, cognitive 

assessment was performed by utilizing spatial memory function in the Y-maze test and also 

spatial reference and working memory using the delayed win-shift task (DWSh) in the radial 

arm maze. Neonatally overfed rats took longer to learn the DWSh task indicating a poorer 

memory acquisition compared to control. No change of spatial memory in the less cognitively 

demanding Y-maze test was observed in neonatally overfed rats.  

The potential of a synergistic effect of WD consumption in the APPswe/PS1dE9 double 

transgenic Alzheimer’s mice model (APDE9) animal model memory and anxiety-like 

behaviour was assessed. Metabolically, this study identified that APDE9 mice fed a WD 

showed impaired glucose tolerance but not in wild-type WD mice or ADPE9 mice fed the 

control diet indicating impaired insulin receptor signalling. Both APDE9 mice fed control or 

WD showed a spatial memory deficit in the Y-maze when compared to their wild-type 

counterparts. There was no observed synergistic effect of WD consumption and APDE9 

phenotype in the Y-maze. Additionally no change in anxiety-like behaviour was discerned 

using the open field test and the light/dark preference test.  

Findings from this thesis indicate that WD consumption alone does not affect cognition using 

a variety of behavioural tasks. Whilst central changes in the dopaminergic and serotoninergic 

system ensue following WD consumption however, whether these changes occur before 

cognitive impairment is still unclear. The time period in which the obese phenotype transpires 
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appears to play a factor in cognitive impairment as shown by the results in the neonatal 

overfeeding study. Additionally we demonstrated that WD consumption does not affect 

spatial memory but a possible synergistic interplay between the APDE9 mice phenotype and 

WD consumption may have a deleterious effect of spatial memory. Further work is necessary 

to elucidate the factors that contribute to the onset of cognitive impairment observed in rat models 

of obesity. 
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1.1. Obesity 

The incidence of obesity, classified by a body mass index > 30 kg/m2 (BMI, body mass 

divided by the square of one’s height), is rising steadily throughout the world’s population.  It 

has further been established that abdominal obesity, assessed by waist circumference, also 

predicts obesity-related health risk (Rexrode et al., 1998, WHO, 1999, Zhu et al., 2002) and is 

a stronger predictor of obesity-related health risks than BMI alone (Janssen et al., 2004, Zhu 

et al., 2002). The rapid rise of obesity rates has been attributed to unhealthy diets (that is 

over-consumption of food and beverages with a high content of fats, sugars and salt) and 

physical inactivity. Figures from the Organisation for Economic Co-operation and 

Development 2014 Obesity report suggest that worldwide 18% of the adult population are 

obese (OECD, 2014). More than one in three adults in Mexico, New Zealand and the United 

States, and more than one in four adults in Australia, Canada, Chile and Hungary were 

considered obese (OECD, 2014). 

1.1.1.Aetiology of obesity 

The lack of energy balance that is energy intake exceeding energy expenditure is the foremost 

cause of obesity. Due to the global shift in diets and greater availability of high calorific 

foodstuffs, especially those high in fats, and lack of physical activity obesity rates have 

soared. However, research has shown that other factors can influence the onset of obesity 

including environmental, genetic, developmental, social demographic and psychological 

influences.  

1.1.2. Consequences of obesity 

Obesity can have damaging effects on many organ systems that can contribute to early 

mortality. In 2009, the standardised mortality rate for obesity in Australia was 1.0 per 
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100,000 of population, an increase from 0.6 per 100,000 population in 2000 (Statistics, 

2013). The US Nurses’ Health Study found all-cause mortality rates to increase significantly 

with increasing BMI (Li et al., 2006) whilst in the Harvard Male Alumni study, a parabolic 

relationship was found whereby risk of mortality in men was increased at the lowest and 

highest values of BMI (Lee et al., 1993). Obesity decreases life expectancy by 7 years at the 

age of 40, similar to what is seen with smoking (Peeters et al., 2003). 

Being overweight or obese contributes to significant health impairments with large increases 

in the risk of cardiovascular disease, type 2 diabetes and cancer (Adams et al., 2006, McGee, 

2005). Prospective cohort studies have demonstrated increases in the risk of coronary heart 

disease with an 8% increase for each unit increase of BMI (Li et al., 2006). Risk of systemic 

hypertension is approximately 5 times higher in obese individuals (Wolf et al., 1997). 

Moreover, the incidence of respiratory diseases such as obstructive sleep apnoea, 

gastrointestinal and musculoskeletal disorders, thromboembolism, stroke and even cancer are 

increased with obesity (Grundy, 2004, Haslam and James, 2005).  

 

1.2. Paediatric obesity 

In 2013, 42 million children under the age of 5 were found to be overweight or obese 

worldwide, with the incidence becoming more apparent in low and middle income countries 

(WHO, 2015). The rate of increase in these countries has been observed to be 30% higher 

than that of developed countries (WHO, 2015). It has been estimated that the incremental 

lifetime medical cost of an obese child relative to a normal weight child who maintains 

normal weight throughout adulthood is US$19,000 (Finkelstein et al., 2014).  

 



Chapter 1 

20 

1.2.1. Consequences of paediatric obesity 

Obesity in childhood is strongly associated with obesity in adulthood such that 60-80% of 

obese children become obese adults (Guo et al., 2002). Paediatric obesity is associated with 

higher risk of premature death and disability in adulthood and is likely to be a major cause of 

ill health in adulthood, but also contributes to the likelihood of pronounced illness in 

childhood (WHO, 2015). Many of the same chronic illnesses and risk factors seen in adult 

obesity are also observed in children.  

A systematic review collated and identified the many consequences of paediatric obesity 

(Reilly et al., 2003). Consequences include psychological issues such as low self-esteem and 

behavioural problems (Epstein et al., 1994, Strauss, 2000), higher incidence of asthma 

(Belamarich et al., 2000), presence of low grade systemic inflammation (Cook et al., 2000, 

Visser et al., 2001) and a myriad of cardiovascular risk factors like hypertension, type 2 

diabetes mellitus, dyslipidaemia, abnormalities in left ventricular mass and/or function; 

abnormalities in endothelial function; and hyperinsulinemia and/or insulin resistance 

(Freedman et al., 1999, Iannuzzi et al., 2004, Maffeis et al., 2001, Ostchega et al., 2009, 

Reilly et al., 2003, Tounian et al., 2001). If comorbidities are present in childhood, and 

obesity persists into adulthood, then obesity related disease duration and hence prognosis is 

worsened.  

 

1.3. Metabolic syndrome 

Obesity is also a part of metabolic syndrome, characterised by a large waist measurement, 

excess abdominal visceral adipose tissue, high triglyceride levels, glucose intolerance and 

hypertension, with many related comorbid conditions (Despres et al., 1990, Messier et al., 
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2010, Wildman et al., 2008). Overweight or obese individuals having the same amount of 

total body fat can also be characterised by different cardiovascular risk factor profiles 

(Despres et al., 1990). Regional fat distribution, particularly visceral abdominal and 

intramuscular adipose tissue, can be used to clearly discriminate those with the metabolic 

syndrome and higher cardiovascular risk profiles (Despres et al., 1990). Sufferers of 

metabolic syndrome have an increased risk of hyperinsulinemia, glucose intolerance, type 2 

diabetes, altered cytokine profile, impaired fibrinolysis, thrombosis, endothelial dysfunction 

and cardiovascular diseases (Brunzell and Hokanson, 1999, Fujioka et al., 1987, Kissebah 

and Krakower, 1994, Rebuffe-Scrive et al., 1989). This suggests that the presence of large 

intra-abdominal fat stores is a critical determinant of obesity-related metabolic complications.  

1.3.1. Regional fat deposition 

BMI is the most widely used and most practical method of assessing obesity however BMI 

does not take into account the variation of body fat distribution (Michels et al., 1998). The 

distribution of body fat is more strongly associated with negative health outcomes than BMI 

and total adiposity and is therefore a more useful health indicator (Janssen et al., 2004, Lean 

et al., 1998, Zhu et al., 2002). Regional fat deposition has been documented to vary markedly 

at any BMI value (Fujioka et al., 1987, Sjostrom et al., 1986). A 13 year longitudinal study 

showed that in middle aged males, BMI and skinfold thickness showed no association to risk 

of cardiovascular disease and death (Larsson et al., 1984). However, waist-to hip 

circumference ratio, an indicator of abdominal adiposity, showed a strong association with 

cardiovascular disease and death indicating that distribution of fat deposits may be a better 

predictor of cardiovascular disease and death than total adiposity (Larsson et al., 1984).  
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1.3.1.1. Visceral and abdominal fat depots 

Visceral and abdominal adiposity has been associated with an adverse cardiometabolic 

profile, including inflammation, insulin resistance, and myocardial dysfunction (Bays, 2011, 

Britton et al., 2013, Janssen et al., 2004, Shah et al., 2014, Zhu et al., 2002). The Framingham 

Heart Study found that visceral adiposity was associated with cardiovascular disease after 

adjusting for clinical risk factors and overall adiposity (Britton et al., 2013). This was 

corroborated by the Multi-Ethnic Study of Atherosclerosis (MESA) which demonstrated that 

visceral adiposity is strongly associated with increased cardiometabolic risk, regardless of 

age, race, or BMI (Shah et al., 2014). Interestingly, the MESA study also found that neither 

waist circumference nor BMI was associated with visceral fat (Shah et al., 2014).  

1.3.1.2. Pericardial and epicardial fat depots 

An excessive amount of pericardial or epicardial fat depots have been implicated in the 

pathogenesis of obesity-related cardiovascular disease (Aslanabadi et al., 2014, Lim and 

Meigs, 2014). Epicardial fat tissue is located between the outer wall of the myocardium and 

the visceral layer of pericardium of the heart (Aslanabadi et al., 2014, Lim and Meigs, 2014). 

Pericardial fat tissue is located anterior to the epicardial fat tissue and is located between 

visceral and parietal pericardium of the heart (Lim and Meigs, 2014, Sironi et al., 2004). 

Epicardial fat volume has been reported to correlate with the severity of coronary artery 

disease due to the proximity to major coronary arteries (Iacobellis et al., 2005, Mazurek et al., 

2003). Iacobellis et al. found that epicardial fat tissue measured by echocardiography 

displayed a strong association with waist circumference, diastolic blood pressure, fasting 

plasma insulin and low-density lipoprotein cholesterol (Iacobellis et al., 2003). Multiple 

studies have shown that in healthy participants, pericardial fat is independently correlated 

with BMI, waist circumference, coronary artery calcification and abdominal aortic artery 
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calcification (Fox et al., 2009, Rosito et al., 2008, Thanassoulis et al., 2010). The loss of 

elasticity through artery calcification impairs cardiovascular haemodynamics, resulting in a 

substantial increase in morbidity and mortality (Keelan et al., 2001, Wayhs et al., 2002). 

The studies discussed above indicate that pericardial and epicardial fat may be an important 

mediator of metabolic risk (Aslanabadi et al., 2014, Despres, 2012). Both fat depot sites are 

correlated with multiple measures of adiposity and cardiovascular disease risk factors, 

nevertheless visceral and abdominal fat depots are a strong correlate for most metabolic risk 

factors (Aslanabadi et al., 2014, Despres, 2012, Rosito et al., 2008). 

 

1.4. Relationship between obesity and mild cognitive impairment 

Cognition is an intellectual process by which one becomes aware of, perceives, or 

comprehends, ideas. Cognition includes higher mental processes, such as perception, 

memory, language, problem solving, and abstract thinking.  

Cognitive aging is a normal process where in older adulthood there is a structural and 

functional change in the brain that results in a deterioration of cognitive ability (Glisky, 

2007). Even when controlling for cognitive aging, studies still show a negative correlation 

between BMI and global cognitive performance (Elias et al., 2005, Hassing et al., 2010, 

Jeong et al., 2005). A cross-sectional longitudinal study of over 2000 adults supported the 

linear association between BMI and cognitive function determined by the word-list learning 

test, which evaluates verbal learning and memory, and digit substitution symbol test (DSST), 

which assesses attention, response speed and visuomotor coordination. Obese people recalled 

fewer words from the list in the word-list learning test and took longer to complete DSST 

relative to normal weight individuals (Cournot et al., 2006). In another study combining ages 
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from 20 to 82, overweight and obese people exhibited poorer executive function test 

performance than normal weight adults with no evidence of a BMI x age interaction (Gunstad 

et al., 2007). These findings were further reinforced by another study that demonstrated that 

persistent obesity is associated with poor cognition in later midlife with deficits in short term 

verbal memory and executive function being identified (Sabia et al., 2009a). A prospective 

study examined the associations of middle age overweight individuals on specific areas of 

cognition, that being episodic memory, semantic memory and visuospatial ability. Semantic 

memory and visuospatial ability, but not episodic memory, was found to be impaired in 

middle aged overweight individuals when compared to normal individuals (Nilsson and 

Nilsson, 2009).  

A growing body of research also indicates that obesity in mid-life is a predictor of mild 

cognitive impairment (MCI) at old age. MCI is a syndrome defined as cognitive decline 

greater than expected for an individual’s age and education level (Gauthier et al., 2006, 

Petersen et al., 1999). In fact, 66.2% of individuals suffering MCI have been shown to 

progress to Alzheimer’s disease (AD) compared with 8.3% without MCI in a 4 year follow-

up study in the elderly (Kluger et al., 1999). Thus the impact of obesity on cognition appears 

to accumulate over the adult life course. However, cognitive impairments have not always 

been observed in obese individuals.  

Across studies, different cognitive domains analysed make it difficult to draw absolute 

comparisons. Nevertheless, impairment of executive function has been dependably identified 

in obese adults when compared to normal weight counterparts (Cournot et al., 2006, Lokken 

et al., 2009, Mond et al., 2007, Sabia et al., 2009b).  
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1.5. Obesity and impairment of cognition  

Studies have investigated the association between human obesity and cognitive function and 

have identified impairments of specific cognitive domains in both children and adults with 

obesity compared with their non-obese counterparts (Table 1.1). As of April 2017 articles 

were identified through the Medline electronic database using the terms related to obesity 

(i.e. obesity, body mass index, adiposity) and cognition (i.e. cognition, cognitive domains, 

executive function, memory). The search was limited to studies of humans and published in 

English. It is important to note that although the cognitive tests described below are arranged 

so that only one cognitive domain is stated, many cannot be evaluated in isolation and 

involve multiple cognitive domains (Lezak et al., 2012, Strauss et al., 2006). For simplicity, 

the major cognitive domain was reported for each test by globally recognised clinical 

neuropsychology references (Lezak et al., 2012, Strauss et al., 2006). The most widely used 

cognitive screening test in the world is the Mini-mental state examination (MMSE), 

employed to evaluate dementia. Dementia is a progressive global cognitive impairment 

syndrome; the hallmark feature being the inability to carry out everyday activities as a 

consequence of diminished cognitive function. After controlling for known confounders, such 

as education, age, and socioeconomic status, there have been a total of 5 out of 7 studies that 

have identified an association between obese adults and deficits in global cognition (Benito-

León et al., 2013, Gunstad et al., 2010, Kerwin et al., 2010, Kerwin et al., 2011, Kilander et 

al., 1997). In a population of 70 year-old men, higher BMI was associated with impaired 

cognitive function (Kilander et al., 1997). Baseline results from the Women's Health 

Initiative Memory Study of 7,163 older women found that as BMI increased, performance in 

the modified MMSE (that covers a wider range of difficulty levels and broadens the range of 

scores from 0-30 to 0-100 compared to the MMSE) was reduced, with each unit of BMI 

associated with a decrease of 0.988 score (Kerwin et al., 2010). A follow-up study also found 
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evidence that older women with high waist-to-hip ratio and BMI to be at greater risk of 

developing cognitive impairment and dementia (Kerwin et al., 2011).  

1.5.1. Obesity and executive function 

As of April 2017 there were a total of 10 studies listed on Medline that have investigated the 

impairment of cognitive function in children and 43 studies in adults with conflicting results 

that met the search criteria. A consistent specific cognitive deficit identified in human 

associative studies has been executive function impairments in obese individuals. Executive 

function is an umbrella term encompassing the complex cognitive processing for the temporal 

organization of behaviour and the use of working memory to plan a sequence of forthcoming 

responses associated with the monitoring and controlling of thought and goal-directed 

behaviours (Baddeley, 1986, Posner and Petersen, 1990, Shallice, 1988). Executive function 

involves multiple components with a variety of theories that endeavour to encapsulate its key 

components (Desimone and Duncan, 1995, Miller and Cohen, 2001, O'Reilly et al., 1999). 

An influential and recognised taxonomy of executive function includes: (i) attention and 

inhibition, by directing attention on appropriate and inhibiting inappropriate information; (ii) 

task management, organising processes in complex tasks that require switching of attention; 

(iii) planning, planning of multiple steps to achieve a desired goal or outcome; (iv) 

performance monitoring, the cognitive and behavioural adjustments through the use of 

working memory to increase control to meet demands; and (v) temporal coding, coding the 

time and place of representations in working memory (Smith and Jonides, 1999). These five 

executive function components are all interrelated and at times the cognitive tests employed 

to assess executive function may target multiple components. Therefore it is a higher 

cognitive process that controls and regulates lower level processes (e.g. perception and motor 

processes) to guide behaviour towards a goal and is mediated primarily by prefrontal cortex 
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(PFC) (Stuss and Levine, 2002). The PFC, dopaminergic system and serotonergic system 

have been linked in the regulation of executive function (Funahashi, 2001, Robbins, 2005). 
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Table 1.1: Association studies between obesity and cognitive function in children and adults 

Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

Children 
       

(Bauer et al., 

2010) 

Not 

reported 
16.1 ± 1.5 Cross-sectional 

Normal weight: n= 

68 

Stroop Colour Word 

Test 

Response 

inhibition 

Sig 

(p<0.05) 

    
Obese:  

n= 41 
   

(Bauer et al., 

2015) 
21.6 ± 5.0 7.6 ± 0.4 Cross-sectional 

Normal weight: 

n= 18 

Neuropsychological 

Assessment of 

Children Test 

Attention ns 

 
   

Overweight/obese: 

n= 15 

Cognitive 

flexibility 
ns 

 
   

 

Verbal 

memory 
ns 

 
   

 

Visual 

memory 
ns 

(Blanco-

Gomez et al., 

2015) 

Not 

reported 

Range: 

6-10 
Cross-sectional 

Normal weight:  

n= 316 

Children’s Colour 

Trails Test 

Attention ns 

    

Overweight/obese: 

n= 186 

Cognitive 

flexibility 

Sig 

(p=0.02) 

    
 

Response 

inhibition 

Sig 

(p<0.05) 

    
 

Five-Digit Test 
Response 

inhibition 

Sig 

(p=0.04) 

     
Symbol Digit 

Modalities Test 

Psychomotor 

processing 
ns 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Cserjési et al., 

2007) 
27.2 ± 1.8 12.1 ± 0.9 Cross-sectional 

Normal weight:  

n= 12 

D2 Attention 

Endurance Test 
Attention 

Sig 

(p<0.05) 

    
Overweight:  

n= 12 

Digit Span Test, 

Forward & Backwards 

Working 

memory 
ns 

     
Raven's Progressive 

Matrices 

Logical 

reasoning 
ns 

     
Semantic Verbal 

Fluency Test 
Verbal fluency ns 

     
Wisconsin Card 

Sorting Test 

Cognitive 

flexibility 

Sig 

(p<0.05) 

(Gentier et al., 

2013) 
31.6 ± 3.5 9.2 ± 1.5 Cross-sectional 

Normal weight:  

n= 19 

Complex Choice 

Reaction Task 

Complex 

decision 

making 

Sig 

(p<0.001) 

    

Obese:  

n= 19 

Simple Choice 

Reaction Task 

Simple 

decision 

making 

Sig 

(p<0.004) 

(Gunstad et al., 

2008) 
24.6 ± 3.7 11.7 ± 3.1 Cross-sectional 

Normal weight:  

n= 330 

Digit Span Test, 

Backwards 

Working 

memory 
ns 

    
Overweight/obese: 

n= 121 

Switching of Attention 

Test 

Cognitive 

flexibility 
ns 

    
 

Verbal Recall Test 
Verbal 

memory 
ns 

(Huang et al., 

2015) 

Not 

reported 
13 ± 0.6 Cross-sectional 

Normal weight:  

n= 451 

Modified Erisksen 

Flanker Task 

Response 

inhibition 

Sig 

(p<0.02) 

    
Overweight/obese: 

n= 74 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Hughes et al., 

2015) 

Not 

reported 
4.8 ± 0.4 Cross-sectional 

Normal weight:  

n= 99 

Delay of Gratification 

Task 

Decision 

making 
ns 

    

Overweight/obese: 

n= 88 

Flexible Item 

Selection Task 

Cognitive 

flexibility 
ns 

    
 

Gift Delay Task Self-regulation ns 

     
Tapping task 

Response 

inhibition 
ns 

(Verdejo-

Garcia et al., 

2010) 

31.6 ± 7.1 14.3 ± 1.2 Cross-sectional 
Normal weight: 

n= 34 
Five-Digit Test 

Response 

inhibition 

Sig 

(p=0.038) 

    

Overweight/obese: 

n= 34 
Iowa Gambling Task 

Decision 

making 

Sig 

(p=0.03) 

    
 

Stroop Colour Word 

Test 

Response 

inhibition 

ns 

(p=0.07) 

     Trail Making Test 
Cognitive 

flexibility 

Sig 

(p=0.003) 

     
Letter Number 

Sequencing 

Working 

memory 
ns 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Yau et al., 

2014) 
35.5 ± 5.9 17.6 ± 1.6 Cross-sectional 

Normal weight:  

n= 30 

Digit Symbol 

Substitution Test 

Psychomotor 

processing 

ns 

(p=0.07) 

    

Obese:  

n= 30 
Digit Vigilance Test Attention ns 

     

Stroop Colour Word 

Test 

Response 

inhibition 
ns 

     
Trail Making Test 

Cognitive 

flexibility 

ns 

(p=0.08) 

     

Wide Range 

Assessment of 

Memory and Learning 

Attention 
ns 

(p=0.06) 

     

Verbal 

memory 
ns 

     

Visual 

memory 
ns 

     

Working 

memory 

ns 

(p=0.06) 

(Wirt et al., 

2015) 

Not 

reported 
7.1 ± 0.6 Cross-sectional 

Normal weight:  

n= 235 
Go/No Go Task 

Response 

inhibition 

Sig 

(p<0.05) 

    

Overweight/obese: 

n= 26 
KiTAP Test 

Cognitive 

flexibility 

Sig 

(p<0.01) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

Adults 
       

(Ariza et al., 

2012) 38.3 ± 7.6 31.8 ± 6.5 Cross-sectional 

Normal weight:  

n= 42 

Letter-Number 

Sequencing 

Working 

memory 

ns 

(p=0.179) 

    

Obese: 

n= 42 

Stroop Colour Word 

Test 

Response 

inhibition 

ns 

(p=0.403) 

     

Symbol Digit 

Modalities Test 

Psychomotor 

processing 

ns 

(p=0.215) 

     
Trail Making Test Cognitive 

flexibility 

ns 

(p=0.44) 

     

Wisconsin Card 

Sorting Test 
Cognitive 

flexibility 

ns 

(p=0.869) 

(Benito-León 

et al., 2013) 

Not 

reported 75.3 ± 5.8 Cross-sectional 

Normal weight:  

n= 507 
MMSE  Global 

cognition 

Sig 

(p<0.001) 

    

Overweight/obese: 

n= 1,442 

Trial Making Test, 

Part A 
Psychomotor 

speed 

Sig 

(p<0.001) 

     
Six Objects Test General 

memory 

Sig 

(p<0.05) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Boeka and 

Lokken, 2008) 

51.8 

(35.0-80.0) 

41 

(20-57) Cross-sectional Normative Sample 

California Verbal 

Learning Test 

Verbal 

memory ns 

 

   

Obese:  

n= 68 

Rey Complex Figure 

Test 

Nonverbal 

memory 

Sig 

(p<0.001) 

 

    

Trail Making Test Cognitive 

flexibility 

ns 

(p=0.07) 

 

    

Wisconsin Card 

Sorting Test 
Cognitive 

flexibility 

Sig 

(p<0.001) 

(Brogan et al., 

2010) 36.2 ± 5.0 52.1 ± 11.7 Cross-sectional 

Normal weight:  

n= 20 Iowa Gambling Test 

Decision 

making 

Sig 

(p=0.004) 

    

Obese:  

n= 18    

(Brogan et al., 

2011) 
52.2 ± 10.0 41.5 ± 9.2 Cross-sectional 

Normal weight:  

n= 50 
Iowa Gambling Test 

Decision 

making 

Sig 

(p=0.02) 

    

Overweight/obese: 

n= 42    

(Brooks et al., 

2013) 
33.0 ± 0.3 

Range: 

70-75 
Cross-sectional 

Normal weight:  

n= 97 
Trail Making Test 

Cognitive 

flexibility 

Sig 

(p<0.05) 

    
Obese:  

n= 59 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Calvo et al., 

2014) 
21.2 ± 2.5 36.4 ± 6.2 Cross-sectional 

Normal weight:  

n= 32 
Go/No Go Task 

Response 

inhibition 

Sig 

(p<0.01) 

 

   

Overweight/obese: 

n= 30 

Running Memory 

Continuous 

Performance Task 

Working 

memory ns 

     

Standard Continuous 

Performance Task Attention ns 

(Cheke et al., 

2015) 

Not 

reported 

Range: 

18-35 Cross-sectional 

Normal weight:  

n= 26 Treasure Hunt Task 

Working 

memory 

Sig 

(p=0.038) 

    

Overweight/obese: 

n= 24    

(Chelune et al., 

1986) 

Not 

reported 32.7 ± 7.5 Cross-sectional Normative Sample Category Test 

Cognitive 

flexibility 

Sig (p, not 

reported) 

    

Obese: 

n= 44 
Trail Making Test Cognitive 

flexibility 

Sig (p, not 

reported) 

(Coppin et al., 

2014) 

Overweight: 

27.6 ± 1.5 

Overweight: 

24.9 ± 4.6 Cross-sectional 

Normal weight:  

n= 16 
Conditioned Cue 

Preference Test 

Associative 

Learning 

Sig 

(p=0.03) 

 

Obese: 

36.0 ± 6.5 

Obese: 

25.2 ± 4.4 

 

Overweight:  

n= 16 
Probabilistic Learning 

Task Learning 

Sig 

(p=0.019) 

(Cournot et al., 

2006) 
28.4 ± 1.8 44.7 ± 10.6 Prospective 

Normal weight:  

n= 1,334 

Adapted Rey Auditory 

Verbal Learning Test 

Verbal 

memory 

Sig 

(p<0.001) 

 
   

Overweight/obese: 

n= 889 

Digit Symbol 

Substitution Test 

Psychomotor 

processing 

Sig 

(p<0.001) 

 
    

Sternberg Test, 

Subtest 
Attention 

Sig 

(p<0.05) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Cserjesi et al., 

2009) 34.2 ± 3.8 48.8 ± 11.0 Cross-sectional 

Normal weight:  

n= 30 

D2 Attention 

Endurance Test Attention 

Sig 

(p<0.05) 

    

Obese:  

n= 30 

Digit Span Test, 

Forward 

Working 

memory ns 

     

Hayling Sentence 

Completion Task 

Response 

inhibition 

Sig 

(p<0.05) 

     
Trail Making Test Cognitive 

flexibility ns 

(Danner et al., 

2012) 30.8 ± 3.0 44.6 ± 13.4 Cross-sectional 

Normal weight:  

n= 30 Iowa Gambling Test 

Decision 

making 

Sig 

(p=0.012) 

    

Obese: 

n= 18 

   (Davis et al., 

2004a) 

Not 

reported 
28.6 ± 5.6 Cross-sectional 

Normal weight:  

n= 26 
Iowa Gambling Test 

Decision 

making 

Sig 

(p<0.05) 

    
Overweight/obese: 

n= 15 
   

(Davis et al., 

2010) 
38.6 ± 7.1 35.2 ± 6.7 Cross-sectional 

Normal weight:  

n= 71 

Delay Discounting 

Task 

Decision 

making 

Sig 

(p<0.05) 

    

Overweight/obese: 

n= 73 
Iowa Gambling Test 

Decision 

making 

Sig 

(p=0.019) 

(Dregan et al., 

2013) 

Not 

reported 
66.9 Cross-sectional 

Total:  

n= 9,432 

Immediate and 

Delayed Recall Test 

General 

memory 

Sig 

(p<0.05) 

     
Letter-Cancellation 

Test 

General 

executive 

function 

ns 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Elias et al., 

2003) 
29.8 ± 1.8 65.7 ± 6.9 Prospective  

Normal weight 

males:  

n= 190 
Kaplan-Albert 

Neuropsychological 

Test Battery 

Working 

memory 

Sig 

(p=0.02) 

 
   

Overweight/obese 

males:  

n= 361 

Visual 

memory 

Sig 

(p=0.0004) 

 
   

 

Verbal 

memory 

Sig 

(p=0.0002) 

(Etou et al., 

1989) 34.6 ± 1.1 

34.2 ± 2.3 

(SEM) Cross-sectional 

Normal weight:  

n= 13 Tap Test 

Psychomotor 

processing 

Sig 

(p<0.01) 

 

   

Obese:  

n= 13 

Transfer coordination 

Test 

Psychomotor 

processing 

Sig 

(p<0.05) 

 

    

Transverse Speed Test 

Psychomotor 

processing 

Sig 

(p<0.05) 

(Fagundo et 

al., 2012) 
39.8 ± 7.4 40.5 ± 11.1 Cross-sectional 

Normal weight:  

n= 137 
Iowa Gambling Test 

Decision 

making 

Sig 

(p<0.05) 

    

Overweight/obese: 

n= 52 

Stroop Colour Word 

Test 

Response 

inhibition 

Sig 

(p<0.05) 

     
Wisconsin Card 

Sorting Test 

Cognitive 

flexibility 
ns 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Fedor and 

Gunstad, 2013) 

Not 

reported 
20.1 ± 1.8 Cross-sectional Total: n= 323 

Immediate Post 

Concussion 

Assessment and 

Cognitive Testing 

Response 

inhibition 
ns 

      
Psychomotor 

processing 
ns 

      
Verbal 

memory 

Sig 

(p<0.01) 

      
Visual 

memory 

Sig 

(p<0.01) 

(Fergenbaum 

et al., 2009) 

Not 

reported 

Range: 

18-55 
Cross-sectional 

Normal weight:  

n= 28 
Clock Drawing Test 

General 

executive 

function 

ns 

    

Overweight/obese: 

n= 179 
Trail Making Test 

Cognitive 

flexibility 

Sig 

(p=0.0015) 

(Galioto 

Wiedemann et 

al., 2014) 

21.2 ± 2.9 36.4 ± 5.7 Cross-sectional 
Normal weight:  

n= 36 
Go/No Go Task 

Response 

inhibition 

Sig 

(p<0.01) 

    

Obese: 

n= 36 

Running Memory 

Continuous 

Performance Task 

Working 

memory 

Sig 

(p=0.04) 

    
 

Standard Continuous 

Performance Task 
Attention 

Sig 

(p=0.04) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Gonzales et 

al., 2010) 34.3 ± 3.5 48.5 ± 8.6 Cross-sectional 

Normal weight:  

n= 9 

California Verbal 

Learning Test 

Verbal 

memory 

ns 

(p=0.39) 

 

   

Overweight: 

n= 11 Digit Span Test 

Working 

memory 

ns 

(p=0.79) 

 

   

Obese:  

n= 12 MMSE  

Global 

cognition 

ns 

(p=0.07) 

 

    

Trail Making Test Cognitive 

flexibility 

ns 

(p=0.91) 

(Gunstad et al., 

2006) 

Overweight: 

26.8 ± 1.3 

Overweight: 

43.5 ± 14.4 
Cross-sectional 

Normal weight:  

n= 261 
Verbal Memory Task 

Verbal 

memory 

Sig 

(p<0.05) 

 
Obese: 

33.9 ± 4.9 

Obese: 

42.1 ± 16.4 
 

Overweight:  

n= 159 
   

    
Obese:  

n= 66 
   

(Gunstad et al., 

2007) 
28.8 ± 3.9 45.4 ± 8.4 Cross-sectional 

Normal weight:  

n= 210 
Austin  Maze 

Spatial 

memory 

Sig 

(p<0.01) 

    
Overweight/obese:  

n= 198 
Choice Reaction Task Attention 

Sig 

(p<0.01) 

    
 

Digit Span Test, 

Forward 

Working 

memory 

Sig 

(p<0.01) 

     Spatial Span Test 
Visual 

memory 

Sig 

(p<0.01) 

     
Stroop Colour Word 

Test 

Response 

inhibition 

Sig 

(p<0.01) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Gunstad et al., 

2010) 

Not 

reported 

Range: 

19-93 Longitudinal 

Total:  

n= 1,703 

California Verbal 

Learning Test 

Verbal 

memory ns 

     Card Rotation Test 

Visuospatial 

ability ns 

     

Digit Span Test, 

Forward & Backwards 

Working 

memory 

Sig 

(p<0.05) 

     MMSE  

Global 

cognition 

Sig 

(p<0.01) 

(Kerwin et al., 

2010) 

Not 

reported 69.6 ± 0.1 Cross-sectional 

Normal weight:  

n= 2,263 MMSE  

Global 

cognition 

Sig 

(p<0.001) 

    

Overweight/obese: 

n= 5,298    

(Kerwin et al., 

2011) 

Not 

reported 

Range: 

65-80 Prospective 

Total:  

n= 7,163 MMSE  

Global 

cognition 

Sig 

(p=0.02) 

(Kesse-Guyot 

et al., 2015) 

Not 

reported 
66.1 ± 4.5 Longitudinal  

Normal weight:  

n= 1,687 
Cued Recall Test 

Episodic 

memory 
ns 

 
   

Overweight:  

n= 928 
Digit Span Test, 

Forward & Backwards 

Working 

memory 

Sig 

(p=0.04) 

 
   

Obese:  

n= 202 
Trail Making Test 

Cognitive 

flexibility 

Sig 

(p= 0.04) 

     Verbal Memory Task 
Verbal 

memory 
ns 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Kilander et 

al., 1997) 

Not 

reported 

Range: 

69-74 Cross-sectional 

Normal weight:  

n= 94 Claeson-Dahl's Test 

Verbal 

memory 

Composite 

Cognitive 

Score: 

Sig 

(p=0.009) 

 

   

Overweight/obese: 

n= 381 

Digit Span Test, 

Forward & Backwards 

Working 

memory 

 

    

MMSE  

Global 

cognition 

 

    

Rey Complex Figure 

Test 

Nonverbal 

memory 

 

    

Trial Making Test Cognitive 

flexibility 

(Mobbs et al., 

2011) 
33.6 ± 6.4 39.3 ± 12.2 Cross-sectional 

Normal weight:  

n= 16 

Mental Flexibility 

Task 

Cognitive 

flexibility 

Sig 

(p<0.05) 

    
Obese:  

n= 16 
   

(Nederkoorn et 

al., 2006) 39.0 ± 5.3 40.9 ± 6.6 Cross-sectional 

Normal weight:  

n= 28 Iowa Gambling Test 

Decision 

making 

ns 

(p=0.3) 

    

Overweight/obese: 

n= 31 Stop Signal Task 

Response 

inhibition 

Sig 

(p<0.05) 

(Pignatti et al., 

2006) 
42.2 ± 6.0 43.4 ± 8.1 Cross-sectional 

Normal weight:  

n= 20 
Iowa Gambling Test 

Decision 

making 

Sig 

(p=0.04) 

    
Overweight/obese: 

n= 20 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcome 

(Reis et al., 

2013) 

Not 

reported 
25.2 ± 3.6 Longitudinal 

Total:  

n= 2,932 

Digit Symbol 

Substitution Test 

Psychomotor 

processing 

Sig 

(p=0.04) 

     
Stroop Colour Word 

Test 

Response 

inhibition 

Sig 

(p=0.002) 

     
Rey Auditory Verbal 

Learning Test 

Verbal 

memory 
ns 

(Singh-

Manoux et al., 

2012) 

Not 

reported 

Overweight: 

50.0 ± 6.0 
Retrospective 

Normal weight:  

n= 3,374 
Alice Hein 4-I Test Reasoning 

Sig 

(p<0.001) 

  
Obese: 

49.7 ± 5.8 
 

Overweight:  

n= 2,445 
Free Recall Test 

Verbal 

memory 

Sig 

(p=0.01) 

    
Obese:  

n= 582 

Phonetic & Semantic 

Fluency Test 
Verbal fluency 

Sig 

(p=0.01) 

(Sorensen and 

Sonne-Holm, 

1985) 

Not 

reported 18 Cross-sectional 

Normal weight:  

n= 2,123 Borge Priens Prove 

Intellectual 

function 

Sig 

(p<0.001) 

   

Obese: 

n= 1143 

  

 

(Sorensen et 

al., 1982) 

Not 

reported 

Range: 

18-21 Cross-sectional 

Normal weight:  

n= 2,719 Borge Priens Prove 

Intellectual 

function 

Sig 

(p<0.001) 

    

Obese:  

n= 1,806   
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Stanek et al., 

2013) 
45.2 ± 6.9 43.5 ± 11.3 Retrospective 

Normal weight:  

n= 580 
Austin Maze 

Spatial 

memory 
ns 

 
   

Obese:  

n= 152 
Choice Reaction Task Attention 

Sig 

(p<0.05) 

 
   

 

Digit Span Test, 

Forward 

Working 

memory 
ns 

 
    

Stroop Colour Word 

Test 

Response 

inhibition 
ns 

(Volkow et al., 

2009) 

Not 

reported 

Range: 

22-45 Cross-sectional 

Total:  

n= 21 

Stroop Colour Word 

Test 

Response 

inhibition ns 

     

Symbol Digit 

Modalities Test 

Psychomotor 

processing ns 

     

Wisconsin Card 

Sorting Test 
Cognitive 

flexibility 

Sig 

(p=0.05) 
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Walther et al., 

2010) 

Overweight: 

27.6 ± 1.4 

Overweight: 

69.9 ± 8.1 Cross-sectional 

Normal weight:  

n= 53 
MMSE  Global 

cognition 
ns 

 

Obese: 

34.9 ± 3.3 

Obese: 

66.9 ± 9.9  

Overweight:  

n= 22 

Halstead-Reitan, 

Trials A 
Visuomotor 

speed 
ns 

    

Obese:  

n= 20 

Face Recognition 

Test 

General 

memory 

Composite 

memory 

score: 

ns 
     

Logical Memory 

Recall Test 

     

Verbal Paired 

Associates I  

     

Mental Arithmetic 

Test 

Executive 

function 

Composite 

executive 

function 

score: 

Sig (p<0.05) 

     
Mental Control Task 

     

Wisconsin Card 

Sorting Test 

(Weller et al., 

2008) 38.4 ± 6.6 19.6 ± 2.9 Cross-sectional 

Normal weight:  

n= 26 Iowa Gambling Task 

Decision 

making 
Sig (p<0.02) 

    

Overweight/obese: 

n= 29   
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Author, year 

Obese 

group: 

BMI 

(µ ± SD) 

Obese 

group: 

Age 

(µ ± SD) 

Study design Sample size Cognitive test 
Cognitive 

domain tested 

Reported 

outcomes 

(Wright et al., 

2016) 

Not 

reported 59.0 ± 10.6 Cross-sectional 

Normal weight:  

n= 49 
Alpha Span Test Working 

memory 
Sig (p<0.05) 

    

Overweight/obese: 

n= 145 

Benton Visual 

Retention Test 
Visual 

memory 
ns 

     

Rey Auditory Verbal 

Learning Test 
Verbal 

memory 
Sig (p<0.05) 

     

Stroop Colour Word 

Test 
Response 

inhibition 
ns 

     
Trail Making Test Cognitive 

flexibility 
ns 
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1.5.2. Attention deficits in obese children and adults 

Attention is the capacity to focus on one or more important stimuli while suppressing 

awareness of competing distractions. As of April 2017, four studies investigated attention 

performance in obese children and only a single study reported an impairment of attention. 

Obese children were found to respond more poorly in the D2 attention endurance test 

compared to normal weight counterparts in which participants scanned a list of alphabetical 

characters and cross out all irregular characters (Cserjési et al., 2007). Conversely, three 

studies did not report any indication of attention deficit in obese children, each using distinct 

behavioural tests for attention (Bauer et al., 2015, Blanco-Gomez et al., 2015, Yau et al., 

2014). The present evidence indicates there is no impairment of attention in obese children.  

In contrast, obese adults were observed to have impairment in attention performance 

(Cournot et al., 2006, Cserjesi et al., 2009, Galioto Wiedemann et al., 2014, Gunstad et al., 

2007, Stanek et al., 2013). Cournot et al. assessed over 2000 adults, using a component of the 

Sternberg test to assess attention, and observed that obese adults took longer to scan a list of 

alphabetic characters to find a specific character than normal weight counterparts (Cournot et 

al., 2006). Furthermore, two studies used the Choice Reaction task to discern that obese 

adults have slower reaction times when given a choice between two possible stimuli, with 

each stimulus requiring a different response (Gunstad et al., 2007, Stanek et al., 2013).  

Thus, the evidence suggests that childhood obesity does not alter attention; however obesity 

may impair attention processes in adulthood.  
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1.5.3. Cognitive flexibility in obese children and adults 

Cognitive flexibility, also known as set-shifting, is the ability to readily and selectively 

switch between concepts in response to appropriate environmental stimuli. As of the April 

2017, six studies examined cognitive flexibility in obese children where a variety of tests 

were used. Four reported impairments (Blanco-Gomez et al., 2015, Cserjési et al., 2007, 

Verdejo-Garcia et al., 2010, Wirt et al., 2015) and two reported no effect on cognitive 

flexibility (Bauer et al., 2015, Yau et al., 2014). One such test is the Trail Making test (TMT) 

involving two components; TMT-A component entails the participant is to draw lines to 

connect circled numbers in a numerical sequence as rapidly in possible and in TMT-B the 

participant is to draw lines to connect circled numbers and letters in an alternating numeric 

and alphabetic pattern as rapidly as possible (Salthouse, 2011). Obese children took longer to 

perform this task indicating impairment of cognitive flexibility (Verdejo-Garcia et al., 2010). 

Results were further corroborated by three studies that reported a strong association between 

obese children and cognitive flexibility impairment (Blanco-Gomez et al., 2015, Cserjési et 

al., 2007, Wirt et al., 2015). Two studies did not observe cognitive flexibility impairment in 

obese children, although sample sizes for these studies were relatively low and as such could 

have lower statistical power (Bauer et al., 2015, Yau et al., 2014). Yau et al. tested obese 

children in the TMT and did not report an impairment in cognitive flexibility, however the 

result did approach significance (p= 0.08) (Yau et al., 2014). Meanwhile, participants in the 

Bauer et al. study had a mean BMI of 21.6 ± 5.0 and as such are considered overweight and 

not clinically obese (Bauer et al., 2015). 

Obese adults were also shown to have impairments in cognitive flexibility; eight studies 

reported impairments (Boeka and Lokken, 2008, Brooks et al., 2013, Chelune et al., 1986, 

Fergenbaum et al., 2009, Kesse-Guyot et al., 2015, Kilander et al., 1997, Mobbs et al., 2011, 
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Volkow et al., 2009) while six studies found no effect (Ariza et al., 2012, Cserjesi et al., 

2009, Fagundo et al., 2012, Gonzales et al., 2010, Gunstad et al., 2008, Wright et al., 2016). 

A majority of these studies used the TMT, while some used the Wisconsin Card Sorting test 

(WCST). The WCST requires participants to sort different cards by finding the correct 

classification through trial and error and experimenter feedback. Classification rules are 

changed multiple times during the test demanding participants to change their responses to 

match changes in reinforcement patterns (Berg, 1948). A study performed by Boeka and 

Lokken assessed several aspects of neuropsychological performance of severely obese adults 

(BMI ≥ 40) (Boeka and Lokken, 2008) and showed that although impairment of cognitive 

flexibility was not apparent when assessed by TMT, the WCST revealed there was an 

approximately 50% reduction in test performance in obese adults compared to normative data 

(Epstein et al., 1994). Poor performance in the WCST was corroborated with a significant 

inverse association of BMI and WCST performance reported by Volkow et al., who also 

reported a negative correlation between BMI and brain activity in the PFC (Volkow et al., 

2009).  

The above summary demonstrates that the most consistent outcome is that cognitive 

flexibility is compromised in obese children. While in obese adults, eight of fourteen studies 

indicate a deficit in this domain, so a definitive conclusion cannot be ascertained from the 

evidence presented thus far. 

1.5.4. Decision making in obese children and adults 

Decision-making tasks require responding based on a variety of criteria including 

probabilistic choice and delay associated with rewards. The Iowa gambling task is a paradigm 

used to measure decision making involving probabilistic choice via uncertainty, monetary 

rewards and punishments (Bechara et al., 1994). Beneficial performance requires participants 
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to forego potential large immediate rewards for small longer term rewards to avoid losses. As 

of April 2017, decision making ability was assessed in three studies of obese children 

(Gentier et al., 2013, Hughes et al., 2015, Verdejo-Garcia et al., 2010) and nine studies in 

obese adults (Brogan et al., 2010, Brogan et al., 2011, Danner et al., 2012, Davis et al., 

2004a, Davis et al., 2010, Fagundo et al., 2012, Nederkoorn et al., 2006, Pignatti et al., 2006, 

Weller et al., 2008). Two studies reported poor decision making ability in obese children, 

where they were more willing to make riskier decisions to obtain large immediate rewards 

even though in the long term the probability of more punishments increased (Gentier et al., 

2013, Verdejo-Garcia et al., 2010). A similar finding was found in obese adults, where eight 

studies reported a deficiency in decision making (Brogan et al., 2010, Brogan et al., 2011, 

Danner et al., 2012, Davis et al., 2004a, Davis et al., 2010, Fagundo et al., 2012, Pignatti et 

al., 2006, Weller et al., 2008). One study in obese children (Hughes et al., 2015) and another 

in obese adults (Nederkoorn et al., 2006) did not observe an effect of decision making. Both 

of these studies are possibly limited in their sample population in that there was a lack of 

multiple ethnicities in the children study, whereas the adult study was performed only in 

women. In summary, there is considerable confirmation suggesting that obesity negatively 

affects decision making in both children and adults.  

1.5.5. Psychomotor processing in obese children and adults 

Psychomotor processing involves cognitive processes that enable sensation, perception and 

motor actions. Two tasks that are designed to assess psychomotor processing are the DSST 

and the Symbol Digit Modalities tests (SDMT), an inverse form of the DSST. The DSST 

requires participants to write digits into an array of empty boxes positioned below symbols 

according to a coding table indicating the association between digits and symbols. Obesity at 
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childhood did not affect completion time in both the DSST and SDMT (Blanco-Gomez et al., 

2015, Yau et al., 2014).  

In contrast, of the seven studies reported in adults, four reported impairments of psychomotor 

processing in which obese adults performed more poorly (Benito-León et al., 2013, Cournot 

et al., 2006, Etou et al., 1989, Reis et al., 2013), whilst three did not (Ariza et al., 2012, Fedor 

and Gunstad, 2013, Volkow et al., 2009). A prospective study of over 2000 participants 

showed that higher BMI was associated with poorer performance in the DSST in a linear 

fashion with females performing worse than males (Cournot et al., 2006). A decline in 

processing speed is recognised as a predictor for cognitive decline in older adults (Eckert, 

2011) and age-related differences in total grey matter volume have been related to differences 

in processing speed (Chee et al., 2009). In summary, the evidence indicates that an 

association between obesity and slower psychomotor processing appears to be an age-

dependent process and is not observed in children. 

1.5.6. Response inhibition in obese children and adults 

Response inhibition is the inhibition of actions that are inappropriate in the given context, and 

interferes with goal-directed behaviour (Mostofsky and Simmonds, 2008). It has been 

reported that obese children as young as 7 years of age have poor response inhibition 

performance (Wirt et al., 2015).  

In contrast, the picture for obese adults is slightly more indistinct with a total of twelve 

studies performed and seven studies finding an association between obesity and poor 

response inhibition performance (Calvo et al., 2014, Cserjesi et al., 2009, Fagundo et al., 

2012, Galioto Wiedemann et al., 2014, Gunstad et al., 2007, Nederkoorn et al., 2006, Reis et 

al., 2013). Seven studies used the Stroop Colour Word Test, based on the observation that 

individuals can read words much faster than they can identify and name colours. The Stroop 



Chapter 1 

50 

Colour Word Test involves the participant presented with words that name colours, but then 

printed in a colour different from the one being named and asked to identify the printed 

colour. Three studies demonstrated obese adults performed worse than healthy controls by 

making more errors (Fagundo et al., 2012, Gunstad et al., 2007, Reis et al., 2013), whilst four 

studies reported no difference in the Stroop Colour Word Test (Ariza et al., 2012, Stanek et 

al., 2013, Volkow et al., 2009, Wright et al., 2016). Using other tests such as the Go/No Go 

test and Hayling Sentence Completion task there was an observed deficit in response 

inhibition (Calvo et al., 2014, Cserjesi et al., 2009). Five studies did not show any association 

with adult obesity and response inhibition (Ariza et al., 2012, Fedor and Gunstad, 2013, 

Stanek et al., 2013, Volkow et al., 2009, Wright et al., 2016). These equivocal findings may 

be explained by differences in the populations tested. One study was conducted on athletes 

(Fedor and Gunstad, 2013) while another had a small sample size (n= 3) of obese adults 

(Volkow et al., 2009). Overall the evidence seems clear that response inhibition deficits are 

observed in obese children however it is still unclear if this cognitive domain deficit is 

observed in obese adults.  

1.5.7. Memory impairments in obese children and adults 

Memory is the term given to the structures and processes involved in the storage and 

subsequent retrieval of information (Mayes, 2000). This information takes numerous forms 

including visual, verbal and semantic in description. Memory can be divided into two 

different classes, being working memory and long-term memory (Mayes, 2000). Working 

memory is a limited-capacity system for the temporary storage and manipulation of 

information for complex tasks such as learning and reasoning (Baddeley, 2000). Working 

memory interacts with short-term memory and long-term memory to coordinate and divide 

attention between separate tasks (Baddeley, 2000). Long-term memory can be further 
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subdivided into declarative and non-declarative memory. Declarative memory refers to the 

capacity for conscious recollection of information such as verbal and visual memory (Squire 

and Zola, 1996). Non-declarative memory, also known as procedural memory, does not 

require conscious thought (Squire and Zola, 1996).  

As of the April 2017, we could find no studies in children that have found evidence of a link 

between memory impairments and obesity. Four separate studies examined three different 

types of memory being verbal, visual and working memory and found no evidence of 

associations in obese children (Bauer et al., 2015, Cserjési et al., 2007, Gunstad et al., 2008, 

Verdejo-Garcia et al., 2010, Yau et al., 2014). 

The narrative of the link between obesity and memory impairments in adults is diverse. Two 

studies found what they regard as a “general” memory impairment (Benito-León et al., 2013, 

Dregan et al., 2013) and investigation of memory impairments of non-verbal (Boeka and 

Lokken, 2008, Kilander et al., 1997), spatial (Gunstad et al., 2007), verbal (Cournot et al., 

2006, Elias et al., 2003, Gunstad et al., 2006, Fedor and Gunstad, 2013, Kilander et al., 1997, 

Singh-Manoux et al., 2012, Wright et al., 2016), visual (Elias et al., 2003, Fedor and Gunstad, 

2013, Gunstad et al., 2007) and working memory (Cheke et al., 2015, Elias et al., 2003, 

Galioto Wiedemann et al., 2014, Gunstad et al., 2007, Gunstad et al., 2010, Kesse-Guyot et 

al., 2015, Kilander et al., 1997, Wright et al., 2016) have been reported. However, other 

studies contradict these reports of memory impairments. One study reported that there was no 

“general” memory impairment observed in obese women (Walther et al., 2010) and another 

found no spatial memory deficit in severely obese adults (BMI ≥ 40) (Stanek et al., 2013). 

Six studies reported no verbal memory impairments in a wide spectrum of obese adults 

(reported mean BMI: 34-52 kg/m2 and range age: 25-66) (Boeka and Lokken, 2008, Gunstad 

et al., 2010, Gonzales et al., 2010, Kesse-Guyot et al., 2015, Reis et al., 2013, Wright et al., 
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2016). Additionally, five studies reported no difference in working memory ability between 

obese adults and their normal weight counterparts (Ariza et al., 2012, Calvo et al., 2014, 

Cserjesi et al., 2009, Gonzales et al., 2010, Stanek et al., 2013).  

To date the evidence strongly suggests obesity does not impair memory in childhood. 

Conversely the link with adult obesity and memory impairment is still unclear with many 

contradictory reports.  

 

1.6. Obesity and Alzheimer’s disease 

In AD, the characteristic behavioural symptoms are the progressive decline in cognitive 

performance with impaired learning and memory (Albert, 1996). These symptoms are 

sometimes accompanied with delusions, depression, agitation and aggressive behaviour 

(Victoroff et al., 1996). The neuropathological characteristic of AD is neuronal damage and 

death in brain regions vital for learning and memory as well as the occurrence of amyloid 

plaques and neurofibrillary tangles containing tau protein, which are the pathological markers 

of AD (Morrison and Hof, 1997, Serrano-Pozo et al., 2011), accompanied by microglial 

activation and astrogliosis (Beach et al., 1989, Itagaki et al., 1989). Pathological progression 

is somewhat consistent with plaques, tangles, neuronal, and synaptic loss observed first in 

medial temporal cortical regions such as entorhinal and perirhinal cortex, followed by 

hippocampus (HPC) and cerebral cortex (National Institute on Aging, 1997). 

Recent human studies suggest that metabolic abnormalities (such as obesity, impaired 

glucose, insulin and increased triglycerides levels and high blood pressure) induced by over 

consumption of a high fat diet (HFD) is linked to AD (Besser et al., 2014, Gustafson et al., 

2012, Solfrizzi et al., 2004, Whitmer et al., 2005). The relative risk of the development of 
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dementia and AD for obese (BMI ≥ 30 kg/m2) and overweight (BMI= 25–29.9 kg/m2) 

individuals in midlife compared to normal weight individuals was 2.04 and 1.64, respectively 

(Anstey et al., 2011). Epidemiological studies have shown that obesity in middle age 

increases the risk of developing dementia and AD, irrespective of associated medical 

conditions such as diabetes or vascular disease (Besser et al., 2014, Gustafson et al., 2012, 

Solfrizzi et al., 2004, Panza et al., 2010, Whitmer et al., 2005). Whitmer and colleagues 

reported that being overweight at age 40–45 increased ones risk of developing dementia by 

35%, while being obese increased this risk to 74% when compared to normal weight 

individuals (Whitmer et al., 2005). The link between elderly obesity with dementia and AD is 

complicated. Several studies have found an age dependent relationship with AD and late-life 

obesity (Elias et al., 2003, Gustafson et al., 2003, Gustafson et al., 2009), while others have 

shown no or even negative correlations (Buchman et al., 2005, Fitzpatrick et al., 2009, 

Luchsinger et al., 2007, Stewart et al., 2005). In a study performed by Buchman et al., 

declining BMI was associated with an increased incidence of AD. Individuals that 

experienced weight loss displayed faster clinical progression and individuals with a higher 

baseline BMI experienced slower clinical progression of AD (Buchman et al., 2005). A 

possible explanation of the confounding results is that weight loss is strongly associated with 

AD and occurs before any presentation of cognitive impairment (Buchman et al., 2005, 

Stewart et al., 2005).  

Interestingly, waist circumference, a measure of the accumulation of adipose tissue in the 

abdomen and the largest depot of adipose tissue in some individuals, was associated with an 

increased rate of cognitive impairment in non-demented elderly individuals (West and Haan, 

2009). However in the same cohort when inspecting the relationship between BMI and 

cognitive impairment, an inverse relationship was observed (West and Haan, 2009). As 

suggested previously, BMI may not be the best measure of obesity in humans. In fact a recent 
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publication examining the BMI of over 40,000 participants in the National Health and 

Nutrition Examination Survey, suggested that approximately half of overweight and 45% 

obese individuals were cardiometabolically healthy with no change in blood pressure, 

triglycerides, cholesterol, blood glucose, insulin resistance and C-reactive protein (Tomiyama 

et al., 2016). Meanwhile, 30% of individuals with normal BMI were deemed 

cardiometabolically unhealthy (Tomiyama et al., 2016). Evidence suggests measuring waist 

circumference or visceral adipose tissue is a better surrogate than BMI. Researchers have also 

shown that CT-measured visceral adipose tissue was associated with total brain volume 

independent of BMI and insulin resistance in middle-aged adults (Debette et al., 2010) where 

lower total brain volume is known to be a powerful predictor of incident dementia (Jack et 

al., 2005). When we consider the growing population of overweight and obese people 

worldwide, along with an increasingly aging population, understanding the pathophysiology 

of obesity on the central nervous system and in particular those brain subregions important in 

learning, memory and executive function is necessary.  

The mechanisms by which obesity influences risk of AD remain to be fully understood. 

Higher levels of Amyloid beta (Aβ, the main component of amyloid plaques), precursor 

protein (APP) and tau expression have been reported in hippocampal sections from morbidly 

obese patients without cognitive impairment, compared to a cohort of non-obese controls 

(Mrak, 2009). Indeed increased levels of plasma amyloid proteins have been found in a 

number of studies of obese individuals suggesting a possible mechanism linking midlife 

obesity with the later development of AD (Jahangiri et al., 2013, Lee et al., 2009). 
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1.7. Animal models of obesity 

Animal models allow for more accurate control of diet and other confounding factors while 

also being able to study pathology. Animal models can be categorized into either 

monogenetic, polygenetic, or dietary and the focus of this dissertation, the western diet-

induced model of obesity.  

1.7.1. Monogenetic models of obesity  

Monogenetic models of obesity are described where a single gene has been mutated leading 

to dysfunction in either a gene or receptor involved in the regulation of energy homeostasis, 

thus leading to obesity. Generally these models have initially focussed on leptin, a hormone 

produced in white adipose tissue that can function as a feedback mechanism that suppresses 

food intake and hence inducing weight loss (Lutz and Woods, 2012). 

1.7.1.1. Ob/Ob mice model 

A commonly studied mouse model is the ob/ob model of obesity in which mice have a 

spontaneous mutation of the Lepob gene that inhibits leptin synthesis prematurely (Ingalls et 

al., 1950). Leptin deficiency leads these mice to display hyperphagia which contributes to 

severe weight gain, hyperglycaemia, glucose intolerance, hyperinsulinemia and insulin 

resistance (Drel et al., 2006, Garthwaite et al., 1980, Mayer et al., 1953).  

1.7.1.2. Db/Db mice model  

The db/db mouse resembles the ob/ob mouse in phenotype in that it involves leptin 

dysregulation. However the spontaneous mutation occurs at the receptor site and not the 

gene. This mutation of the leptin receptor results in a more severe form of hyperglycaemia by 
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8 weeks of age (Chua et al., 1996, Coleman, 1978, Halaas et al., 1995). Thus this model is 

mainly used for research on diabetes rather than obesity.  

1.7.1.3. Zucker fatty rat model 

The leptin deficient Zucker fatty rat is another common monogenetic model of obesity that 

has an autosomal recessive mutation of the extracellular domain of the leptin receptor in the 

fatty gene (fa) (Bray, 1977, Zucker and Zucker, 1961). This is suggested to cause a 

processing defect where the receptor is produced, however is retained intracellularly, leading 

to reduced numbers of leptin receptors on the extracellular surface (Chua et al., 1996). Zucker 

fatty rats display an obese phenotype at an early stage of life due to hyperphagia and reduced 

energy expenditure (Cleare et al., 2015). These rats also present with insulin resistance and 

impaired glucose tolerance, however glucose levels remain normal, resembling the 

prediabetic condition in humans (Bray, 1977, Zucker and Antoniades, 1972).  

1.7.1.4. Other monogenetic models of obesity 

Other monogenetic models of obesity include but are not limited to the propiomelanocortin 

knockout mouse (Huszar et al., 1997, Yaswen et al., 1999), MC4R knockout mouse (Marsh et 

al., 1999, Ste Marie et al., 2000), agouti related protein overexpression mouse (Graham et al., 

1997) and Otsuka Long Evans Tokushima Fatty rat (Kawano et al., 1992, Moran, 2008).  

However, we are aware that most cases of obesity are not due to a single gene mutation with 

the prevalence of leptin receptor mutation in a group of severe, early-onset obese subjects 

estimated to be approximately 3% (Farooqi et al., 2007). Thus monogenetic models of 

obesity are not wholly representative of the pathogenesis of human obesity disorder. 
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1.7.2. Polygenetic models of obesity 

Polygenetic models of obesity do not rely solely on a single gene mutation but rather on 

multiple errors at multiple sites within the genome. These animals become obese through the 

interaction of multiple genes and environment factors. 

1.7.2.1. Obesity prone/obesity resistant rat model 

By selectively breeding Sprague Dawley rats that were fed a high-fat diet over many 

generations until total segregation of obesity-related traits, obesity prone (DIO) and obesity 

resistant (DR) rats were produced to create the DIO/DR rat model of obesity (Levin et al., 

1997). DIO rats are heavier than their DR counterparts, caused primarily by an increase of 

adipose tissue without the need to expose rats to HFDs (Levin et al., 1997). Furthermore DIO 

rats are shown to have an increase in plasma triglycerides, insulin and lipids reflecting 

metabolic syndrome observed in humans (Levin et al., 1997, Madsen et al., 2010, Tkacs and 

Levin, 2004). 

1.7.2.2. Other polygenetic models 

Models of obesity have also investigated in other species besides mice and rats including 

squirrels (Faust and Mrosovsky, 1987), hamsters (Mercer and Tups, 2003), pigs (Clouard et 

al., 2016, Pond et al., 1985) and primates (Altmann et al., 1993, Schwartz et al., 1993) mainly 

through the utilization of high fat (HF) feeding. Spontaneous obesity has been known to 

occur in about 10–15% of rhesus macaque monkeys raised in captivity with aging when 

maintained on a relatively low fat diet (Schwartz et al., 1993).  
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1.7.3. Dietary models of obesity 

Dietary models of obesity rely on the feeding of diets high in fat and/or carbohydrate content. 

This dietary manipulation may increase body weight, blood pressure and cholesterol levels, 

the primary indices of obesity. 

1.7.3.1. Cafeteria diet model 

Obesity can also be induced in rats when given a choice of various palatable, unhealthy 

energy-dense food stuffs such as cookies, candy and cakes along with standard chow which is 

called the cafeteria diet model (Rothwell and Stock, 1979). This intervention promotes 

voluntary hyperphagia (Martire et al., 2013, Martire et al., 2014), increase of adipose tissue 

(Cunningham et al., 1983, Llado et al., 1991, Martire et al., 2013, Martire et al., 2014) and 

glucose and insulin resistance (Cunningham et al., 1983, Rothwell and Stock, 1979).  

1.7.3.2. High fat diet-induced model 

Like the cafeteria diet, the HFD-induced model of obesity can also induce the obese 

phenotype in rodents. The term “HFD” is not yet standardised thus studies have used diets 

with varying levels fats ranging from 30 to 60 kcal% which can result in minor differences in 

phenotype. Furthermore different sources of fat can also be used that are derived from either 

animals or plants sources (Buettner et al., 2007). A challenge for this model is that animals 

may not always display significant weight gain over control diet counterparts (Arvanitidis et 

al., 2009, Boukouvalas et al., 2008, Francis et al., 2013, Hargrave et al., 2016, Kanoski and 

Davidson, 2010, Kosari et al., 2012, White et al., 2009a). However most studies using this 

model do report increases in total fat percentage or indices of such, whilst also promoting 

hyperglycaemia and whole-body insulin resistance (Ahren et al., 1999, Lingohr et al., 2002, 

Oakes et al., 1997). 
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1.7.3.3. Western diet model 

The western diet (WD) model of obesity is a subtype of HFD-induced obesity that mimics the 

so-called ‘western’ diet by feeding rats a WD chow (containing 22% w/w fat equivalent to 40 

kcal% fat) or a control chow diet (containing 6% w/w total fat). The WD was formulated to 

represent a typical HFD typically consumed in developed ‘western’ countries. The WD is 

defined as containing moderately high levels of fat (saturated and trans-fat), simple sugar 

(sucrose & fructose) and cholesterol and low in essential polyunsaturated fatty acids (Cordain 

et al., 2005) . We use the nomenclature for this diet, ‘WD or Western diet,’ as it is used in our 

published work and throughout the literature (e.g. (Sobey et al., 2015, Argueta and 

DiPatrizio, 2017, Johnson et al., 2017), and designates to other researchers the type of diet 

used, while also delineating it from other types of high fat diets, which typically range in fat 

content from 30-60%. The WD used in this thesis was formulated to be equivalent to the 

Harlan Teklad TD88137 or Research Diets Western Diet D12079B that have previously been 

used to accelerate and enhance hypercholesterolemia and atherosclerotic plaque formation 

(Ascencio et al., 2004, Febbraio et al., 2000, Kirk et al., 1998, Plump et al., 1992, Yang et al., 

2006). This diet has been shown to induce hyperglycaemia (Briaud et al., 2002, Taouis et al., 

2002), hypercholesterolemia (Briaud et al., 2002), hyperinsulinemia (Briaud et al., 2002), and 

glucose and insulin resistance (Chalkley et al., 2002, Gustafson et al., 2002).  

1.7.4.Juvenile animal models of obesity 

Well characterized animal models for juvenile obesity are generally lacking and most are 

focused either in utero or post-weaning exposure to HFDs. Monogenetic models of obesity 

can also be included in this category provided that animals are assessed immediately upon the 

conclusion of weaning. Relative to conventional animal models of obesity, few studies have 
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investigated cognitive impairments in juvenile animals and have focused on the mechanisms 

and consequences of juvenile obesity. 

1.7.4.1. In utero HFD exposure model of obesity 

Fetal development is dependent on maternal supply of nutrients and as such perturbation of 

maternal metabolism may predispose offspring to metabolic disease in later life. Oversupply 

of nutrients during critical periods of fetal development causes an impairment of 

hypothalamic development which can induce long-lasting metabolic effects (Metges, 2009). 

This model involves rats being fed a HFD during pregnancy and/or lactation that results in 

the obese phenotype in the offspring. These offspring have elevated levels of glucose, 

triglycerides, insulin and adiposity (Armitage et al., 2005, Srinivasan et al., 2006, White et 

al., 2009b). 

1.7.4.2. Neonatal overfeeding model of obesity  

Excess nutrition during the critical neonatal period can lead to weight gain throughout the 

juvenile period and can persist into adulthood (Bulfin et al., 2011, Plagemann, 2006, Sobesky 

et al., 2014, Spencer and Tilbrook, 2009). By reducing litter size during the weaning period, 

competition for food is reduced and thus pups are overfed which can predispose rats to 

develop obesity. Neonatal overfeeding has been shown to cause elevated insulin (Habbout et 

al., 2013), glucose (Plagemann et al., 1999), triglycerides (Plagemann et al., 1999) and 

cholesterol levels (Boullu-Ciocca et al., 2005, Spencer, 2012, Stefanidis and Spencer, 2012). 

1.7.4.3. Post weaning HFD obesity model 

The post-weaning obesity model is similar to HFD-induced animal model except that feeding 

begins after the cessation of weaning. Post-weaning HFD feeding can amplify the obese 

phenotype by increasing weight, leptin (Marco et al., 2013), blood pressure (Torrens et al., 
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2012), cholesterol (dos Santos Perez et al., 2015, King et al., 2014) and promote glucose-

insulin dyshomeostasis (King et al., 2014). 

 

1.8. Cognitive impairment in rat models of obesity  

Multiple studies have investigated cognitive impairment in several rat models of obesity 

(Table 1.2). As of April 2017, 49 articles were identified through the Medline electronic 

database using the terms related to obesity (i.e. obesity, high fat, adiposity) and cognition (i.e. 

cognition, cognitive domains, executive function, memory). The search was limited to studies 

performed in rats and were published in English. These studies focussed on various cognitive 

domains including spatial memory, motivation, working memory and behavioural flexibility 

with multiple cognitive impairments being identified. 



Chapter 1 

62 

Table 1.2: Adult animal models of obesity studies investigating cognitive function  

Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Alzoubi et al., 

2013b) Wistar rats 5 w/w% 25 w/w% 6 weeks RAWM Spatial memory 

Increased errors in 30 min, 5 h and 

24 h probe test. 

(Alzoubi et al., 

2013a) Wistar rats 

12.1 

w/w% 47.7 w/w% 

12 

weeks RAWM Spatial memory 

Delayed acquisition of RAWM task 

and more errors in 30 min, 5h, and 

24 h probe test 

(Asadbegi et al., 

2017) Wistar rats 5 w/w% 20 w/w% 8 weeks 

MWM, passive 

avoidance task 

Spatial memory, 

Pavlovian 

conditioning 

No reported difference in MWM. 

Impairment of memory indicated 

by increased latency to enter and 

time spent dark compartment 24 hrs 

after acquisition of passive 

avoidance task. 

(Beilharz et al., 

2014) 

Sprague 

Dawley 

rats 15 kcal% 

Cafeteria 

diet, 45 

kcal% 4 weeks NOIP, NORT 

Spatial memory, 

working memory 

Decrease in exploratory ratio in the 

NOIP task indicating spatial 

memory deficit but no difference in 

working memory. 

(Beilharz et al., 

2016) 

Sprague 

Dawley 

rats 15 kcal% 

Cafeteria 

diet, 45 

kcal% 1 week NOIP, NORT 

Spatial memory, 

working memory 

Decrease in exploratory ratio in the 

NOIP task indicating spatial 

memory deficit but no difference in 

working memory. 

(Bocarsly et al., 

2015) 

Sprague 

Dawley 

rats 10 kcal% 45 kcal% 8 weeks NORT, NOIL, ASST 

Working memory, 

spatial memory, 

behavioural 

flexibility 

Working memory deficit indicated 

by reduced discrimination ratio in 

the NORT.  

Impaired performance in the NOIL 

test indicating spatial memory 

deficit. 

Impaired behavioural flexibility 

with impaired performance in the 

ASST. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Chen et al., 

2017) 

Sprague 

Dawley 

rats 10 kcal% 60 kcal% 4 weeks 

MWM with probe 

test Spatial memory 

Increased latency to find platform. 

Spent less time in target zone in 

probe test. 

(Davidson et al., 

2012) 

Sprague 

Dawley 

rats 12 kcal% 40 kcal% 4 weeks 

Discrimination 

training 

Pavlovian 

conditioning 

HFD impairs performance on a 

hippocampal-dependent serial 

feature negative discrimination 

problem. 

(Davidson et al., 

2013) 

DIO/DR 

rats 12 kcal% 40 kcal% 

12 

weeks 

Discrimination 

training 

Pavlovian 

conditioning 

HFD impairs performance on a 

hippocampal-dependent serial 

feature negative discrimination 

problem. 

(Davis et al., 

2008) 

Long-

Evans rats 14 kcal% 38 kcal% 

12 

weeks 

Instrumental 

conditioning, 

breakpoint task Motivation 

Impaired acquisition of 

instrumental conditioning. 

Lower motivational breakpoint for 

sucrose reward. 

(Figlewicz et al., 

2006) 

Sprague 

Dawley 

rats 12 kcal% 32 kcal% 5 weeks 

Instrumental 

conditioning Motivation 

Enhanced acquisition for sucrose 

reward. 

(Figlewicz et al., 

2013) Albino rats 13 kcal% 31.8 kcal% 

5-8 

weeks 

Instrumental 

conditioning, 

breakpoint task Motivation 

Enhanced acquisition.  

Higher breakpoint to work for 

sucrose reward. 

(Francis et al., 

2013) 

Sprague 

Dawley 

rats 13 kcal% 39 kcal% 8 weeks 

NORT, MWM with 

5 day spatial 

reversal, instrumental 

conditioning 

Working memory, 

spatial memory, 

behavioural 

flexibility, 

motivation 

No change in NORT or MWM 

acquisition.  

Impaired spatial reversal learning. 

Decreased lever press response for 

sucrose reward. 

(Fu et al., 2017) 

Sprague 

Dawley 

rats 12 kcal% 60 kcal5 

24 

weeks 

NORT, spontaneous 

alternation in the Y-

maze 

Working memory, 

spatial memory 

Working memory deficit indicated 

by reduced discrimination ratio in 

the NORT.  Spontaneous 

alternation behaviour was impaired. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Gergerlioglu et 

al., 2016) Wistar rats 

Not 

reported 35 kcal% 4 weeks 

MWM with probe 

test Spatial memory 

Increased latency to find platform. 

In probe test, spent less time in 

target quadrant. Results were 

independent from weight change. 

(Glass et al., 

1999) 

Zucker 

fatty rat n/a n/a n/a Breakpoint task Motivation 

Higher breakpoint for grain reward 

but not for sucrose reward. 

(Greenwood and 

Winocur, 1996) 

Long-

Evans rats 4.5 w/w% 20 w/w%  

12 

weeks VIDA 

Behavioural 

flexibility 

Impaired acquisition of response 

alternation rules. 

(Greenwood and 

Winocur, 2001) 

Long-

Evans rats 4.5 w/w% 20 w/w% 

12 

weeks VIDA 

Behavioural 

flexibility 

Impaired acquisition of response 

alternation rules. 

(Greenwood et al., 

1974) 

Zucker 

fatty rat n/a n/a n/a 

Instrumental 

conditioning Motivation 

Increased lever press responses for 

grain reward. 

(Gurung et al., 

2016) 

DIO/DR 

rats n/a n/a n/a 

MWM with probe 

test Spatial memory 

No acquisition difference.  

In probe test, spent less time in 

target quadrant. 

(Hargrave et al., 

2016) DIO/DR 18 kcal% 38 kcal% 

1.5-12 

weeks 

Spontaneous 

alternation in the Y-

maze Spatial memory 

Spontaneous alternation behaviour 

was impaired at 10 days but not at 

40 or 90 days and was independent 

of weight change. 

(Hoane et al., 

2011) 

Sprague 

Dawley 

rats 10 kcal% 45 kcal% 8 weeks 

MWM with 15 min 

spatial reversal 

Spatial memory 

and behavioural 

flexibility 

No acquisition difference.  

Impaired spatial reversal learning. 

(Jen, 1980) 

Sprague 

Dawley 

rats 

Not 

reported 40 w/w% 

12 

weeks 

Active avoidance 

task, instrumental 

conditioning 

Pavlovian 

conditioning, 

motivation 

No reported change in fear 

conditioning or instrumental 

conditioning. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Kanoski and 

Davidson, 2010) 

Sprague 

Dawley 

rats 13 kcal% 40 kcal% 

12 

weeks RAM  Spatial memory 

Increased errors after 72 h of diet 

commencement.  

After 64 days of HFD and then 

following 24 h food deprivation, 

HFD rats made more errors. 

(Kanoski et al., 

2007) 

Sprague 

Dawley 

rats 12 kcal% 40 kcal% 

12 

weeks 

Discrimination 

training with reversal 

Behavioural 

flexibility 

No acquisition difference. Impaired 

reversal learning. 

Kanoski et al., 

2010 (Kanoski et 

al., 2010) 

Sprague 

Dawley 

rats 13 kcal% 40 kcal% 

12 

weeks 

Discrimination 

training 

Pavlovian 

conditioning 

HFD impairs performance on a 

hippocampal-dependent serial 

feature negative discrimination 

problem. 

(Komaki et al., 

2015) Wistar rats 

Not 

reported 60.9 kcal% 

25 

weeks 

Passive avoidance 

task 

Pavlovian 

conditioning 

Acquisition of task was delayed. 

Impairment of memory indicated 

by increased latency to enter and 

time spent dark compartment. 

(Kosari et al., 

2012) 

Long-

Evans rats 7 w/w% 

21 & 60 

w/w% 

12 

weeks NORT, Y-maze 

Working memory, 

spatial memory 

No difference in NORT. 

Impairment of spatial memory in 

Y-maze test independent of body 

weight 

(la Fleur et al., 

2007) Wistar rats 

Not 

reported Not reported 4 weeks 

Instrumental 

conditioning, 

breakpoint task Motivation 

Impaired instrumental conditioning 

acquisition.  

Elevated breakpoint for sucrose 

pellet. 

(Ledreux et al., 

2016) 

Fisher 344 

rats 13 kcal% 36 kcal% 

24 

weeks RAWM Spatial memory 

No acquisition differences. 

Increased errors. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(McNeilly et al., 

2011) Wistar rats 7.4 kcal% 45 kcal% 

12 

weeks 

DMTP, DNMTP, 

progressive ratio, 

MWM 

Behavioural 

flexibility, 

motivation, 

spatial memory 

In DMTP task, lowered number of 

correct lever presses.  

In DNMTP task, less accuracy with 

increased incorrect lever presses.  

No difference in progressive ratio 

task or MWM. 

(McNeilly et al., 

2012) Wistar rats 7.4 kcal% 45 kcal% 

12 

weeks DMTP, DNMTP 

Behavioural 

flexibility 

In DMTP task, lower accuracy and 

total number of lever presses. 

In DNMTP task, less accuracy with 

decreased number of total lever 

presses. 

(Molteni et al., 

2002) 

Fisher 344 

rats 13 kcal% 39 kcal% 

4-8 

weeks MWM Spatial memory 

At 4 weeks, increased latency to 

find platform. 

(Osborne et al., 

2016) 

Sprague 

Dawley 

rats 13 kcal% 60 kcal% 

24 

weeks 

Contextual fear 

conditioning 

Pavlovian 

conditioning Decreased freezing time. 

(Pancani et al., 

2013) 

F344/NIA 

rats 13 kcal% 42 kcal% 

23 

weeks MWM Spatial memory No reported difference. 

(Pathan et al., 

2008) 

Sprague 

Dawley 

rats 

Not 

reported 58 kcal% 5 weeks MWM Spatial memory Increased latency to find platform. 

(Pintana et al., 

2016) Wistar rats 

19.8 

kcal% 59.3 kcal% 

4-12 

weeks 

MWM with probe 

test Spatial memory 

At 12 weeks, increased latency to 

find platform. 

In probe test, spent less time in 

target quadrant. 

(Pratchayasakul et 

al., 2015) Wistar rats 

19.7 

kcal% 59.3 kcal% 

12 

weeks MWM Spatial memory 

At 12 weeks, impaired spatial 

memory indicated by increased 

time to find the hidden platform. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Reichelt et al., 

2015) 

Sprague 

Dawley 

rats 12 kcal% 

Cafeteria 

diet, 32 

kcal% 8 weeks 

Trace fear 

conditioning 

Pavlovian 

conditioning 

Cafeteria rats froze less in context 

associated with shock indicating 

encoding impairment. 

(Rodriguez-

Perdigon et al., 

2016) Wistar rats 13 kcal% 60 kcal% 8 weeks NORT Working memory 

Lower discrimination ratio 

indicating impaired working 

memory. 

(Sobesky et al., 

2014) Wistar rats 17 kcal% 60 kcal% 

12-24 

weeks 

Contextual fear 

conditioning 

Pavlovian 

conditioning 

Less freezing after 12 weeks and 

persistent to 20 weeks of feeding 

indicating impairment of memory 

acquisition. 

(Stranahan et al., 

2008)  

Sprague 

Dawley 

rats 

Not 

reported Not reported 

24 

weeks MWM Spatial memory Increased latency to find platform. 

(Tracy et al., 

2015) 

Long-

Evans rats 14 kcal% 40 kcal% 

10 

weeks 

Breakpoint task, CPP 

task Motivation 

At 6 weeks, decreased breakpoint 

for sucrose reward. 

No CPP for sucrose reward 

observed for HFD rats. 

(Vollbrecht et al., 

2015) 

DIO/DR 

rats 4.5 w/w% 19.6 w/w% 4 weeks 

Instrumental 

conditioning, 

breakpoint task Motivation 

More lever press response in 

instrumental conditioning. 

Higher breakpoint for grain pellet. 

(Winocur and 

Greenwood, 

1999) 

Long-

Evans rats 4.5 w/w% 20 w/w% 

12 

weeks VIDA 

Behavioural 

flexibility 

Impaired acquisition of response 

alternation rules. 

(Wang et al., 

2016) 

Sprague 

Dawley 

rats 12 kcal% 40 kcal% 

16 

weeks 

MWM with probe 

test, NORT 

Spatial memory, 

working memory 

Impaired spatial memory indicated 

by increased latency to escape.  

In probe test, spent less time in 

target quadrant.  

Working memory deficit indicated 

by reduced discrimination ratio in 

the NORT. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD  

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Woo et al., 2013) 

Sprague 

Dawley 

rats 

Not 

reported 45 w/w% 

13 

weeks MWM Spatial memory Increased latency to find platform. 

(Woodie and 

Blythe, 2017) 

Sprague 

Dawley 

rats 

17.1 

kcal% 60 kcal% 8 weeks  

MWM with probe 

and reversal tests 

Spatial memory, 

behavioural 

flexibility No reported differences. 

(Wu et al., 2004) 

Sprague 

Dawley 

rats 13 kcal% 40 kcal% 8 weeks 

MWM with probe 

test Spatial memory 

Increased latency to find platform. 

Spent less time in target zone in 

probe test. 

ASST= Attention set shifting task, CPP= Conditioned place preference, DMTP= Delayed matching to position task, DNMTP= Delayed non-

matching to position task, HFD= High fat diet, MWM= Morris water maze, NOIL= Novel object in location, NOIP= Novel object in place, 

RAM= Radial arm maze, RAWM= Radial arm water maze, VIDA= Variable-interval, delayed alternation task. 
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1.8.1. Spatial learning and memory 

Spatial memory is the ability to learn the geographical configuration of environments, to 

locate objects, to recall previously encountered locations, and to navigate within 

environments. Multiple lesion studies have shown that the HPC plays an integral role in 

spatial learning and memory tasks (Broadbent et al., 2004, Morris et al., 1982) by combining 

spatial information and providing a representation of an animals’ current location and 

heading (Hartley et al., 2014). As of April 2017, of the total 27 studies, HFD exposure was 

shown not to influence spatial learning in five (Francis et al., 2013, Hoane et al., 2011, 

Pancani et al., 2013, McNeilly et al., 2011, Woodie and Blythe, 2017). Overall several 

different behavioural tasks have been used to evaluate spatial learning and memory such as 

the Y-maze, radial arm water maze (RAWM), novel object in place (NOIP) and novel object 

in location (NOIL) tasks. By using these tasks, studies have consistently shown that HFD 

exposure impairs spatial memory and learning (Alzoubi et al., 2013b, Alzoubi et al., 2013a, 

Beilharz et al., 2014, Beilharz et al., 2016, Bocarsly et al., 2015, Hargrave et al., 2016, 

Kanoski and Davidson, 2010, Ledreux et al., 2016). Some have even reported spatial memory 

and learning deficits independent of any increase of body weight compared to control 

counterparts (Beilharz et al., 2016, Bocarsly et al., 2015, Gergerlioglu et al., 2016, Hargrave 

et al., 2016) including our study using the Y-maze (Kosari et al., 2012).  

Fourteen of HFD studies investigating spatial learning and memory have used the Morris 

water maze (MWM) behavioural task. The MWM task involves an animal being placed in a 

circular pool of opaque water from which they progressive learn to escape by finding a 

hidden platform placed just beneath the surface of the water using surrounding extra-maze 

spatial cues (Morris, 1984). Generally, these studies differed with respect to fat content (39-

60 kcal %) and duration of diet exposure (4-24 weeks); however the results were relatively 
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consistent. HFD fed rats took longer than control rats to find the hidden platform indicating 

HFD exposure has a detrimental effect on spatial learning (Asadbegi et al., 2017, Chen et al., 

2017, Gergerlioglu et al., 2016, Gurung et al., 2016, Molteni et al., 2002, Pathan et al., 2008, 

Pratchayasakul et al., 2015, Pintana et al., 2016, Stranahan et al., 2008, Wang et al., 2016, 

Woo et al., 2013, Wu et al., 2004). To summarise most studies have reported that HFD 

exposure, using a range of fat content and length of exposure, may have a deleterious effect 

on spatial learning and memory, and this effect consequently may be mediated by damage to 

the HPC. 

1.8.2. Motivation 

Motivation is defined as the process that initiates, guides, and maintains goal-directed 

behaviours. As of April 2017, a total of ten studies investigated motivational differences in 

rat models of obesity with most using instrumental conditioning and a subsequent breakpoint 

task. These tests involve animals being trained in an operant box to press a lever to obtain a 

food reward, while the subsequent breakpoint task involves pressing a lever for a food reward 

and as the test progresses, more lever presses are required to obtain the reward.  

Three studies reported no impairment of the acquisition in instrumental conditioning (Glass et 

al., 1999, Jen, 1980, Tracy et al., 2015), while two studies reported a deficit in obese rats 

(Francis et al., 2013, la Fleur et al., 2007) and three stated excessive lever press response 

(Figlewicz et al., 2006, Figlewicz et al., 2013, Vollbrecht et al., 2015). Using the breakpoint 

task, three studies showed that motivational drive to work for a sucrose reward was higher in 

obese rats, indicated by an elevated breakpoint compared to control (Figlewicz et al., 2006, 

Figlewicz et al., 2013, la Fleur et al., 2007). For example Figlewicz et al., used a 31.8 kcal% 

HFD for a period of 5-8 weeks and showed that HFD rats had more lever presses (104 ± 10 

vs. 175 ± 25) and obtained more sucrose rewards (8.5 ± 0.4 vs. 10 ± 0.4) compared to control 
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(Figlewicz et al., 2013). Conversely, three studies reported the opposite outcome with an 

observed decreased motivational breakpoint for a sucrose reward in 12 week HFD fed obese 

rats (Davis et al., 2008, Francis et al., 2013, Tracy et al., 2015).  

Other studies have indicated that HFD exposure in Sprague-Dawley rats of either 40 w/w% 

HFD for 12 weeks (Jen, 1980) and Long-Evans rats fed 50 kcal% fat for 10 weeks did not 

affect acquisition of instrumental conditioning (Tracy et al., 2015). The conflicting literature 

in conjunction with our own results suggests that HFD consumption singlehandedly does not 

influence the acquisition of instrumental conditioning and there may be an underlying factor 

involved that has not yet been identified. The above studies show conflicting results on the 

effect of HFD exposure and motivation. As such no conclusion can be attained from the 

current research. 

1.8.3. Pavlovian conditioning 

Pavlovian conditioning, also known as classical conditioning is considered a reflexive/non-

conscious type of motivational learning process (Pavlov, 1927). Pavlovian conditioning is 

accomplished by pairing a reward (appetitive) or punishment (aversive) with a neutral context 

(CS, conditioned stimulus) such that the CS alone elicits conditioned response, such as in 

behavioural tests including discrimination training, fear conditioning and passive avoidance 

task.  

As of the April 2017, a total of ten studies observed both aversive and appetitive Pavlovian 

conditioning in rat models of obesity with a majority using a discrimination training task 

(Asadbegi et al., 2017, Davidson et al., 2013, Davidson et al., 2012, Jen, 1980, Kanoski et al., 

2007, Kanoski et al., 2010, Komaki et al., 2015, Osborne et al., 2016, Reichelt et al., 2015, 

Sobesky et al., 2014). The results for aversive Pavlovian conditioning is fairly consistent with 

four studies showing that the encoding of an aversive memory in obese rats is impaired 
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denoted by a decrease of freezing once re-exposed to fear conditioning context environment 

(Osborne et al., 2016, Reichelt et al., 2015, Sobesky et al., 2014) and a lower latency to 

escape the fear conditioning environment in the passive avoidance task (Komaki et al., 2015). 

DIO/DR and Sprague Dawley rats fed a 40 kcal% HFD for 4 weeks underwent both serial 

feature negative and feature positive Pavlovian appetitive discrimination training (Kanoski et 

al., 2010). It was observed that both DIO and Sprague Dawley 4 week HFD exposed rats 

increased their responding to cues that predict non-rewarded trials in the feature negative 

discrimination task compared to controls demonstrating that obese rats were not able to 

discriminate between cues that predicted rewarded trials and cues that predicted non-

rewarded trials (Davidson et al., 2012). This impairment of learning was also shown to be 

persistent in DIO rats fed a HFD for 12 weeks (Davidson et al., 2013, Kanoski et al., 2010). 

In summary, evidence presented above indicates that HFD feeding impairs both aversive and 

selective appetitive Pavlovian conditioning paradigms.  

1.8.4. Working memory 

The novel object recognition task (NORT) involves rats exploring two identical objects, then 

after an inter-trial interval (ITI), a novel and familiar object is presented (Ennaceur and 

Delacour, 1988). Rats with intact working memory are able to discriminate the novel object 

and consequently will spend more time interacting with it. 

A total of seven studies have scrutinized working memory using the NORT where only three 

studies observed impairment in working memory (Bocarsly et al., 2015, Fu et al., 2017, 

Rodriguez-Perdigon et al., 2016). Four studies show no effect of HFD exposure on working 

memory as rats were able to easily discriminate between novel and familiar objects using a 

range of fat content and length of exposure (Beilharz et al., 2014, Beilharz et al., 2016, 

Francis et al., 2013, Kosari et al., 2012). Although the aforementioned HFD studies on 
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working memory do not converge to give a clear picture, evidence suggests that HFD does 

not affect working memory in rats. 

1.8.5. Behavioural flexibility 

Behavioural flexibility refers to an animal’s ability to make adaptive changes in their 

behaviour in response to changes in environment. A common element within behavioural 

flexibility tests is that behaviour is adaptive where tasks require attention shifting, rule 

switching or reversal learning. Nine studies investigated behavioural flexibility in HFD 

exposed rats. All nine studies indicate that there is a deficit of behavioural flexibility after the 

feeding of a HFD using attention set shifting (Bocarsly et al., 2015), VIDA (Greenwood and 

Winocur, 1996, Greenwood and Winocur, 2001, Winocur and Greenwood, 1999), 

DMTP/DNMTP (McNeilly et al., 2011, McNeilly et al., 2012), MWM with probe reversal 

(Hoane et al., 2011) and discrimination reversal tasks (Kanoski et al., 2007). The VIDA task 

involves rats inhibiting competing responses to obtain a reward. Greenwood and Winocur 

demonstrated that male rats fed a diet containing 20 w/w% fat for 3 months displayed a 

decreased rewarded/non-rewarded ratio, indicating a deficit in behavioural flexibility 

(Greenwood and Winocur, 1996, Greenwood and Winocur, 2001, Winocur and Greenwood, 

1999). The discrimination reversal task is a type of Pavlovian appetitive conditioning that 

involves the adaptation of behaviour according to changes in stimulus–reward contingencies. 

HFD exposed rats were able to initially discriminate between the rewarded and non-reward 

CS’s, however once the stimulus-reward contingencies were reversed they were unable to 

differentiate between the CS’s displaying similar response rates (Kanoski et al., 2007). 

Overall, research suggests that exposure to HFD in adult models of obesity impairs 

behavioural flexibility.  
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1.9. Cognitive function in juvenile rat obesity models 

Articles were identified through the Medline electronic database using the terms related to 

obesity (i.e. obesity, high fat, adiposity), cognition (i.e. cognition, cognitive domains, 

executive function, memory) and adolescence (i.e. adolescence, juvenile). The search was 

limited to studies of rats and published in English. Twelve studies examined cognitive 

function in juvenile obesity animal models compared to adult models of obesity using a HFD 

ranging from 39-60 kcal% mainly focussing on spatial memory (Table 1.3).  
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Table 1.3: Juvenile obesity animal model studies investigating cognitive function  

Author, year Species 

Control 

diet (fat 

content) 

HFD 

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Boitard et al., 

2014) Wistar rats 2.5 w/w% 24 w/w% 

8-12 

weeks 

MWM with probe 

and spatial reversal Spatial memory 

Spent less time in target zone in a 4 

day but not 2h probe test. 

Delayed spatial reversal learning. 

(Boitard et al., 

2015) Wistar rats 2.5 w/w% 24 w/w% 

16 

weeks 

Conditioned odour 

aversion, auditory 

fear conditioning 

Pavlovian 

conditioning 

Juvenile but not adult HFD 

exposure enhanced conditioned 

odour aversion and fear memory. 

(Boitard et al., 

2016) Wistar rats 2.5 w/w% 24 w/w% 

24 

weeks 

MWM with probe 

test Spatial memory No reported difference 

(Boukouvalas et 

al., 2008) Wistar rats 10 kcal% 45 kcal% 3 weeks 

MWM with probe 

test Spatial memory No reported difference. 

(Goldbart et al., 

2006) 

Sprague 

Dawley 

rats 13 kcal% 40 kcal% 8 weeks MWM Spatial memory Increased latency to find platform. 

(Lepinay et al., 

2015) Wistar rats 12 kcal% 39 kcal% 

16 

weeks 

MWM with probe 

test Spatial memory 

No acquisition differences. 

HF offspring with HF dams spent 

less time in target zone in probe 

test. 

(Marwitz et al., 

2015) 

Sprague 

Dawley 

rats 13 kcal% 41 kcal% 9 weeks NORT, ASST 

Working memory, 

behavioural 

flexibility 

Working memory deficit indicated 

by reduced discrimination ratio in 

the NORT.  

No reported difference in ASST. 

(Murray et al., 

2009) Wistar rats 7.5 w/w% 55 w/w% 

1.5 

weeks 

Random foraging 

task in RAM Working memory 

Fewer correct arm entries 

indicating working memory deficit. 
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Author, year Species 

Control 

diet (fat 

content) 

HFD 

(fat content) 

Diet 

length Behavioural test 

Type of 

behaviour tested Reported outcomes 

(Page et al., 2014)  

Sprague 

Dawley 

rats 10 kcal% 45 kcal% 

12 

weeks 

MWM with probe 

test Spatial memory 

CON & HF offspring from HF 

dams had increased latency to find 

platform. 

CON & HF offspring from HF 

dams spent less time in target zone 

in probe test. 

(Underwood and 

Thompson, 

2016b) 

Long-

Evans rats 14 kcal% 58 kcal% 

12 

weeks 

Spontaneous 

alternation in 4 

armed RAM Spatial memory 

Reduction of spontaneous 

alternation behaviour in both males 

and females. 

(Underwood and 

Thompson, 

2016a) 

Long-

Evans rats 14 kcal% 58 kcal% 

12-15 

weeks NOIP Spatial memory 

Decrease in exploratory ratio in the 

NOIP task indicating spatial 

memory deficit in both males and 

females. 

(White et al., 

2009a) 

Long-

Evans 10 kcal% 60 kcal% 

20 

weeks MWM Spatial memory 

No acquisition differences. 

Task retention impaired in HF 

offspring from HF dams. 

ASST= Attention set shifting task, COn= control, HF= High fat, HFD= High fat diet, MWM= Morris water maze, NOIP= Novel object in place, 

NORT= Novel object recognition, RAM= Radial arm maze.  
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1.9.1. Relationship between juvenile rat models of obesity and cognitive impairments. 

Evidence suggests that cognitive impairments are observed in several different juvenile rat 

models of obesity. Specifically, obese juvenile rats have a spatial learning and memory 

impairment in the in utero HFD exposure (Page et al., 2014, White et al., 2009a) and post-

weaning HFD juvenile animal models of obesity (Boitard et al., 2014, Goldbart et al., 2006, 

Lepinay et al., 2015, White et al., 2009a). As of April 2017, nine studies have studied spatial 

learning and memory in juvenile models of obesity with the majority of these studies using 

the MWM task. Obese juvenile rats took longer to find the hidden platform in the MWM 

(Goldbart et al., 2006, Page et al., 2014) and two studies reported these rats spent less time in 

the target zone signifying a spatial reference impairments in the MWM probe test (Boitard et 

al., 2014, Lepinay et al., 2015). Underwood and Thompson extended these findings by 

revealing that both males and female juvenile obese rats display a spatial memory impairment 

using a spontaneous alternation task and spatial object recognition task (Underwood and 

Thompson, 2016b, Underwood and Thompson, 2016a). Two studies reported no such 

impairment with one study feeding rats a HFD for 3 weeks (Boukouvalas et al., 2008) and the 

other for 24 weeks. 

There has only been one study investigating Pavlovian conditioning that used a post-weaning 

model of obesity. Boitard et al. indicate that 24 w/w% feeding after weaning enhances 

conditioned odour aversion and conditioned fear memory after 12 weeks but was not 

apparent after 6 weeks of diet exposure (Boitard et al., 2015).  

Two studies reported that juvenile obesity had a detrimental effect on working memory 

performance (Marwitz et al., 2015, Murray et al., 2009). The working memory deficit was 

observed as early as 1.5 weeks after HFD exposure (Murray et al., 2009) as well as 9 weeks 

after exposure (Marwitz et al., 2015). In summary, juvenile obese rats have a deficit of spatial 
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learning and memory with some indication that Pavlovian conditioning and working memory 

are also impaired.  

1.10. Animal high fat diet models of obesity and Alzheimer’s disease  

A number of experimental studies have examined markers of AD-related pathology in normal 

rodents receiving diets high in fat. Mice receiving a HFD had increased expression of APP 

and APP processing enzyme (Puig et al., 2012, Thirumangalakudi et al., 2008) along with tau 

phosphorylation (Koga et al., 2014). Moreover in rats fed a HFD followed by streptozotocin 

injection to induce a model of type 2 diabetes, hippocampal APP-cleaving enzyme and Aβ 

were found to be present, and raised compared to controls (Zhang et al., 2009). 

Similarly, diet-induced obesity has been shown to increase amyloid and tau pathology in 

transgenic mouse models of AD. In the double-mutant presenilin (PS)-APP model 7 weeks of 

diet modification resulted in both hypercholesterolemia and significantly increased levels of 

Aβ peptides in the brain that were strongly correlated with the levels of both plasma and 

brain total cholesterol (Refolo et al., 2000). Meanwhile, a much longer dietary intervention of 

10 month consumption of a HFD (35 kcal%) formula to the triple transgenic (3xTg-AD) mice 

increased tau, Aβ 40 and 42 levels, suggesting that HFD consumption promotes AD-like 

neuropathology (Julien et al., 2010). 

It is evident that there is a deleterious effect of obesity/HF feeding on cognitive performance. 

In human clinical studies, obesity has been shown to increase the risk of the development of 

dementia and AD. Genetic and diet-induced models of obesity further support this link with 

obese animals displaying deficits in working memory, learning, and memory performance. 

The exact mechanisms or mediators that underlie the connections between obesity and the 

risk of cognitive impairment are still unknown but potential avenues of further research 
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include brain atrophy, disruption in cerebrovascular function, development of AD related 

pathology, and blood brain barrier (BBB) breakdown. 

1.11. Central pathological changes associated with obesity 

The negative systemic effects of obesity on cardiovascular and metabolic physiology are well 

recognised, and it is now clear that the brain is also negatively affected by obesity. 

Alterations in brain pathology of overweight/obese individuals who are otherwise healthy are 

supported by preclinical studies, demonstrating the possible underlying mechanisms by 

which obesity in aging impair higher cerebral function remains wide and varied. 

1.11.1. Brain atrophy 

Increased adiposity has been correlated with reduced volume in a number of brain regions. In 

a longitudinal study in a group of female patients born between 1908 and 1922, women with 

atrophy of the temporal lobe were found to have a higher BMI, with risk of temporal atrophy 

increased 13-16% per 1 kg/m2 BMI rise (Gustafson et al., 2004). More recent brain scanning 

techniques demonstrated that a group of obese individuals (BMI average 39 ± 4.7 kg/m2) had 

significantly lower grey matter density in the post-central gyrus, frontal lobe, putamen, and 

middle frontal gyrus compared to a group of controls with a BMI of 22 ± 2.2 kg/m2 

(Pannacciulli et al., 2006). A further analysis in over 1400 Japanese healthy individuals 

revealed a significant negative correlation in men, though not in women, between BMI and 

brain grey matter ratio with temporal, occipital and frontal lobes and the anterior lobe of the 

cerebellum showing reduced volume with increased BMI (Taki et al., 2008).  

The hippocampal formation, a structure essential for learning and memory, is particularly 

susceptible to aging (Jack et al., 2000, Raji et al., 2009). It is also well recognized that 

reduced hippocampal volumes predict cognitive decline and dementia in the general 
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population (Amieva et al., 2005, den Heijer et al., 2010, Elias et al., 2000). As we described 

previously, a majority of studies have found that obesity in mid-life is associated with an 

increased risk of developing dementia in later life, and consistent with this there is evidence 

from the Framingham Offspring Cohort Study of increased rate of hippocampal brain atrophy 

and executive function decline with mid-life obesity (Debette et al., 2011). This effect of 

obesity on hippocampal functioning is also found earlier: adolescents with metabolic 

syndrome showed significantly lower attention and mental flexibility along with smaller 

hippocampal volumes compared to non-obese children of similar ages (Yau et al., 2012). 

Pre-clinical experimental rodent studies have also provided insight into the potential 

mechanisms underpinning obesity-related cognitive impairment. A number of researchers 

have reported a reduction in synaptic plasticity in the HPC and cerebral cortex after feeding 

rodents a diet high in fat (Molteni et al., 2002, Stranahan et al., 2008, Wu et al., 2003), while 

there is also evidence of neuronal apoptosis and gliosis (Rivera et al., 2013) and a reduction 

in hippocampal weight (Calvo-Ochoa et al., 2014). 

1.11.2. Cerebrovascular 

Increasing evidence suggests that the vascular effects of obesity have a key role in the 

development of vascular cognitive impairment in aged people (Gorelick et al., 2011) by 

promotion of atherosclerosis in large cerebral arteries and alterations at the level of the 

cerebral microcirculation (Zlokovic, 2011). Indeed in a recent rodent study, mice fed a HFD 

displayed disruptions in cerebral vascular function including neurovascular coupling and 

functioning of arteries (Li et al., 2013, Lynch et al., 2013). Moreover, aging exacerbated 

obesity-induced decline in microvascular density in the HPC and cerebral cortex which was 

positively correlated with hippocampal-related cognitive function. Aging also exacerbated the 



Chapter 1 

81 

obesity-induced oxidative stress and impaired cerebral blood flow indicating the possible 

effects of both aging and obesity and brain vascular integrity (Tucsek et al., 2014b).  

1.11.3. Alzheimer’s disease related pathology 

As stated previously, amyloid plaques and neurofibrillary tangles containing tau protein are 

the pathological markers of AD (Serrano-Pozo et al., 2011), accompanied by microglia 

activation and astrogliosis (Beach et al., 1989, Itagaki et al., 1989), in cortical regions and 

HPC (1997). The mechanisms by which obesity influences risk of AD remain to be fully 

understood. Higher levels of APP and tau expression were reported in hippocampal sections 

from morbidly obese patients without cognitive impairment, compared to a cohort of non-

obese controls (Mrak, 2009). Indeed increased levels of plasma amyloid proteins have been 

found in a number of studies of obese individuals (Jahangiri et al., 2013, Lee et al., 2009) 

suggesting a possible mechanism linking midlife obesity with the later development of AD. 

1.11.4. Blood brain barrier 

The chemical consequences of a HFD may also influence the brain by disrupting the integrity 

of the BBB, which has an important role in maintaining a precisely regulated 

microenvironment within the brain for reliable neuronal signalling (Ballabh et al., 2004). 

BBB dysfunction is associated with both AD and vascular dementia (Skoog et al., 1998), and 

can be related to clinical vascular factors (Blennow et al., 1990). In a longitudinal study being 

overweight or obese in mid-life was correlated with lower BBB integrity almost a quarter of a 

century later (Gustafson et al., 2007). Further evidence is available from animal studies: rats 

fed a WD for three months were shown to have a decrease in expression of tight junction 

proteins in the choroid plexus and BBB (Kanoski et al., 2010). Moreover, WD consumption 

in rats produces, as a consequence of this BBB dysfunction, an increased permeability of 

peripheral fluorescent tracer in the HPC (Davidson et al., 2012, Kanoski et al., 2010). 
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Reduced BBB integrity and increased microgliosis was also observed in the HPC of rats fed a 

high-saturated-fat and cholesterol diet for 6 months (Freeman and Granholm, 2012) 

demonstrating that the HPC appears to be particularly vulnerable to diet-induced BBB 

disruption. 

Further support for the relationship between obesity and degeneration of the BBB suggest 

that high circulating levels of fat impairs active transport of consummatory regulatory 

hormones such as leptin and ghrelin through the BBB (Banks et al., 2004, Banks et al., 2008), 

perhaps inhibiting their positive roles in synaptic plasticity via actions in the HPC (Diano et 

al., 2006, Shanley et al., 2001). Of course it should also be considered that obesity leads to 

increased circulatory inflammatory markers which in turn gain access to the hypothalamus by 

increasing BBB permeability and/or via areas that lack an effective BBB. 

1.11.5. Systemic and central inflammation 

In obesity there is an accumulation of white adipose tissue which is the key site facilitating 

systemic inflammation (Odegaard and Chawla, 2013). Particularly, both hypertrophied 

adipocytes and adipose tissue-resident immune cells (primarily lymphocytes and 

macrophages) contribute to increased circulating levels of proinflammatory cytokines where 

there is an increase of tumour necrosis factor (TNF)-α, important feeding-related peptides 

such as leptin and resistin, plasminogen activator inhibitor 1, C-reactive protein and 

interleukins (IL)-1β and IL-6 in obese individuals (Ouchi et al., 2011, Yudkin et al., 1999, 

Visser et al., 1999). Higher waist circumference and waist-hip ratio also showed higher C-

reactive protein and IL-6 concentrations, with IL-6 positively associated with total body fat 

(Hermsdorff et al., 2011) suggesting that these measures may be more highly correlated to 

inflammatory markers than increases in BMI (Hermsdorff et al., 2011, Thewissen et al., 

2011). A cross-sectional study of obese women found that T-cell derived cytokines (IL-23 
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and IL-17) were increased independent of increased abdominal fat and insulin resistance 

(Sumarac-Dumanovic et al., 2009). This has also been corroborated in a diet-induced obese 

mice study (Winer et al., 2009). Obesity was also shown to induce the accumulation and 

activation of macrophages in adipose tissue in both mice and humans (Drake et al., 2011, 

Weisberg et al., 2003, Xu et al., 2003). 

Systemic inflammation can contribute to cognitive decline and dementia. Cytokines, such as 

IL-1β and IL-6 have been shown to disrupt neural circuits involved in cognition and memory 

(Gemma and Bickford, 2007, Jankowsky and Patterson, 1999). A recent meta-analysis 

identified that increased plasma levels of C-reactive protein and IL-6 is associated with an 

increase of dementia (Koyama et al., 2013). Elevated plasma IL-6 and IL-12 levels were also 

associated with impaired processing speed and executive function in a group of elderly 

participants between the ages of 70 and 90 (Trollor et al., 2012).  

Peripheral cytokines can act on the brain to induce local production of cytokines (Dantzer et 

al., 2008). As such, central inflammation is observed after HF feeding and in genetic models 

of obesity, particularly in the hypothalamus (for review see (Miller and Spencer, 2014)). In 

db/db mice, IL-1β, TNF-α and IL-6 mRNA expression levels in the HPC are increased when 

compared to wild type controls (Dinel et al., 2011). Moreover, in mice fed a 60% HFD for 20 

weeks, raised TNF-α expression was observed in the HPC (Jeon et al., 2012). Juvenile HFD 

intake did not affect basal expression of pro-inflammatory cytokines in the brain, but 

potentiated the enhancement of TNF-α expression specifically in the HPC after a peripheral 

immune challenge with lipopolysaccharide (LPS) (Boitard et al., 2014). Chronic HFD 

consumption has also been shown to exacerbate LPS-induced cytokine mRNA expression of 

TNF-α and interferon-γ in the HPC as well as IL-6 and suppressor of cytokine signalling-3 in 

the hypothalamus (Andre et al., 2014).  
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1.11.6. Microglia and astrocytes 

Microglia, the primary mediators of the central nervous system's immune defence system 

release pro-inflammatory cytokines, chemokines, nitric oxide, and superoxide species (Loane 

and Byrnes, 2010). While the relationship between obesity-induced microglia expression 

within hypothalamic regions in animal models has been well-documented (Miller and 

Spencer, 2014), new data indicate that brain regions involved in cognition and memory also 

show exacerbated microglial expression. In the db/db mouse, increased levels of microglial 

activation markers are observed throughout the HPC (Erion et al., 2014). Moreover in aged 

(24 months) mice, hippocampal microglial activation was shown to be exacerbated by five 

months HFD treatment (Tucsek et al., 2014a). In addition, treatment of cultured primary 

microglia with sera derived from these aged obese mice resulted in significantly more 

pronounced microglia activation and oxidative stress (Tucsek et al., 2014a). 

Astrocytes are the most abundant glial cell within the central nervous system and respond to 

all forms of insults through a process referred to as reactive astrogliosis (Sofroniew and 

Vinters, 2010). Within the hypothalamus, astrocytes produce cytokines that drive 

inflammatory responses, however data suggests that central inflammation can extend beyond 

the hypothalamus in obesity models to affect areas directly related to cognition (Garcia-

Caceres et al., 2013). Astrocytes from the CA3 region of HPC showed longer and less 

abundant projections in HFD mice (Cano et al., 2014). In Zucker fatty rats a similar 

pathology is observed with a reported significant increase in the number of glial fibrillary 

acidic protein immunoreactive astrocytes throughout all subfields of the HPC as well as 

frontal and parietal cortices (Tomassoni et al., 2013). 
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1.11.7. Dopamine 

There are numerous neurotransmitters involved in obesity and cognition; however the focus 

of this dissertation is on dopamine (DA) and serotonin (5-HT). DA is a neurotransmitter 

involved in motor system function, cognition, mood, and reward perception via the 

nigrostriatal pathway (projecting from the substantia nigra pars compacta to the caudate 

nucleus and putamen), tuberoinfundibular pathway (projecting from the arcuate nucleus to 

the pituitary gland) and the mesocorticolimbic pathway (also known as the reward pathway, 

projecting from the ventral tegmental area to the frontal cortex and the limbic system via the 

nucleus accumbens). It is becoming evident that the peripheral and central mechanisms that 

control feeding communicate, via the hypothalamus and brainstem, with the brain reward 

system (Volkow et al., 2013).  

In obese individuals, presentation of high-calorie food images triggers an increase of brain 

activity in the nucleus accumbens, amygdala and HPC, which are areas part of the brain 

reward pathway (Rothemund et al., 2007, Stoeckel et al., 2008). Functional magnetic 

resonance imaging studies expanded these findings by demonstrating a blunted striatal 

dopaminergic response to the receipt of palatable foods in human obese subjects (Green et al., 

2011, Stice et al., 2008a, Stice et al., 2008b). Furthermore in obese individuals, there is a 

reported decrease of striatal dopamine-2 (D2) receptor availability, reiterating the role of the 

brain reward system in obesity (de Weijer et al., 2011, Wang et al., 2001). 

When a novel food reward is given to rats, DA neurons are activated in the ventral tegmental 

area, which release DA into the nucleus accumbens (Hajnal and Norgren, 2001). Animal 

studies have also associated overconsumption of food in obese rats with decreases in striatal 

D2 receptors (Johnson and Kenny, 2010). DA reuptake was also observed to decrease, 
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independent of DA transporter protein gene expression, in rats fed a HFD and is thought to be 

due to interference in DA transporter trafficking or maturation (Petrovich et al., 2007). 

Dopamine signalling is mediated by five receptors, termed D1-D5 receptors. Pharmacological 

manipulations have partially clarified the role of D1 and D2 receptors in the control of 

various functions. The role of D3, D4 and D5 receptors is still mostly unknown. The D1 

receptor is the most widespread and highly expressed dopaminergic receptor (Weiner et al., 

1991) and found in the limbic system, hypothalamus and thalamus (Missale et al., 1998). The 

D2 receptor has been found mainly in the striatum, in the olfactory tubercle, and in the core 

of nucleus accumbens (Jackson and Westlind-Danielsson, 1994). 

Dopamine receptors have an opposing role in locomotor activity with D1 specific agonists 

administration resulting in increased locomotion whilst D2 specific agonists decrease 

locomotor activity (Jackson and Westlind-Danielsson, 1994). Pharmacological studies have 

shown that modulation of the hypothalamus's dopamine receptor activity by D1 and D2-like 

receptor agonists and antagonists could regulate food intake (Bina and Cincotta, 2000, 

Fetissov et al., 2002). Both D1 and D2 receptors are involved in reward and reinforcement 

mechanisms, with agonists at both receptors stimulating and antagonists inhibiting the 

behaviour (Kornetsky and Esposito, 1981, Self and Stein, 1992). Furthermore both D1 and 

D2 receptors are involved in the reinforcing properties of different drugs of abuse, with D2 

receptors mediating the stimulant drug reinforcement and D1 receptors playing a permissive 

role (Beninger et al., 1989, Arnsten et al., 1994). 

1.11.8. Serotonin 

5-HT is a neurotransmitter with wide range of functions including; vascular function, 

gastrointestinal control, mood, appetite control, and cognition and has also been implicated in 

obesity. The role of the central serotoninergic system in cognition is modulated by the 



Chapter 1 

87 

activity and function of 5-HT receptors classified into seven groups with a total of 14 known 

serotonin receptors, which differ in structure, action, and localization. Most of these receptors 

are G-protein coupled receptors except for the 5HT-3 receptor which is a ligand-gated ion 

channel. The 5-HT2A and 5HT-2C receptors are of interest due to the overlapping functions 

on cognition and feeding behaviour.  

5HT-2A receptors are located mostly in different parts of the cortex, basal ganglia and less in 

the hippocampus, where they enhance the release of dopamine, glutamate and GABA, and 

inhibit the release of noradrenaline (Hoyer et al., 2002, Fink and Gothert, 2007). The 

observed reduction in the density of 5HT-2A receptor every decade, correlates with cognitive 

decline (Hasselbalch et al., 2008) and AD (Marner et al., 2012). Administration of TCB-2, an 

agonist with high affinity to the 5HT-2A receptor, enhanced working memory in rats (Li et 

al., 2015). Furthermore TCB-2, in a dose-dependent manner, can decrease food consumption 

in food-deprived mice (Fox et al., 2010). 

Within the brain, 5HT-2C receptors have been shown to modulate mesolimbic dopaminergic 

function, where they exert a tonic inhibitory influence over dopamine neurotransmission 

(Bubar and Cunningham, 2007) 5HT-2C receptor mRNA and protein are found widely 

distributed throughout the brain, including the cortex, amygdala, basal ganglia, hippocampus, 

and thalamus (Clemett et al., 2000, Pasqualetti et al., 1999). 5HT-2C receptors are also 

expressed in many brain regions involved in regulating food intake, which include the 

nucleus of the solitary tract, dorsomedial hypothalamus, and the paraventricular hypothalamic 

nucleus (Berthoud, 2002) which is of particular interest and is explored more deeply in 

Chapter 4.  

Some studies indicate reduced 5-HT levels in obese individuals (James et al.). 5-HT agonism 

has also been related to weight loss (Bever and Perry, 1997) and women with primarily 
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abdominal obesity have been associated with low levels of 5-HT metabolites in cerebrospinal 

fluid (Strombom et al., 1996). Serotonin transporter (5-HTT) binding in cortical and 

subcortical regions has been negatively correlated to BMI (Erritzoe et al., 2010). Research 

has also demonstrated a positive correlation between BMI and in vivo cerebral 5-HT2A 

receptor binding (Erritzoe et al., 2009). 

Prolonged HFD exposure in animals has been suggested to compromise hippocampal 5-HT 

homeostasis by reducing basal extracellular 5-HT levels (Zemdegs et al., 2015) and 

decreasing 5-hydroxyindoleacetic acid (primary 5-HT metabolite) in the HPC (Krishna et al., 

2016). In the DIO/DR obesity rat model, higher 5-HT2A/2C binding density in the 

ventromedial hypothalamic nucleus was observed and was associated with total fat mass 

(Huang et al., 2004). The effect of obesity on 5-HTT binding appears to be region specific 

with reported increases in the nucleus accumbens (Huang et al., 2004) and hypothalamus 

(Levin and Dunn-Meynell, 2002) but a decrease of mRNA levels in the dorsal raphe in HFD 

exposed rats (Collin et al., 2000). 

1.12. Hypothesis and aims 

Studies have suggested that there is a link between obesity and impairment of cognitive 

behaviour in humans. To investigate this association researchers have used animal models of 

obesity and discovered contrasting results as noted in the literature above. We sought to 

clarify the literature on the effect of western diet consumption on motivation, learning and 

memory. 

The central hypothesis of this thesis is that impairments of cognitive behaviour such as 

specific types of memory and learning can be caused by the obesity condition. Furthermore, 

the cognitive impairments could potentially be mediated through the alteration of the 

neurotransmitters, DA and 5-HT. 
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This hypothesis was assessed by the following aims: 

Aim 1: Assess Pavlovian & instrumental conditioning, motivation in a WD induced animal 

model of obesity. 

Aim 2: Assess cognitive behaviour and associated basal and neuronal activation in response 

to novelty using c-Fos immunoreactivity in a WD induced animal model of obesity. 

Aim 3: Assess associated changes in DA levels and 5-HT receptor expression 

immunoreactivity in a WD induced animal model of obesity. 

Aim 4: Assess spatial, reference and working memory in an early life overfeeding model of 

obesity. 

Aim 5: Assess memory and anxiety in APDE9 transgenic mice fed a WD. 
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2.1. Background and rationale 

Food intake and body weight regulation is dependent on the ability to balance the inclination 

to seek out and consume food on some occasions with the capacity to inhibit those responses 

at other times. Homeostatic energy regulation has been long known to involve the 

hypothalamus by the adaptation and coordination of metabolic needs to the demands and 

complexities of the environment. However, it has been purported that hedonic signals can 

disturb food consumption to heighten food intake and obese individuals perceive palatable 

foods to be more pleasurable than lean counterparts do (Lowe and Levine, 2005, Yeomans et 

al., 2004).  

Food-related cues (i.e. smell and sight) may overwhelm homeostatic energy mechanisms that 

lead to exacerbated hedonic feeding thereby causing a positive energy balance and increase 

of body weight (Corsica and Hood, 2011, King, 2013, Zheng et al., 2009). In human studies, 

it has been proposed that obesity may modulate the associative properties of food-related 

cues, evoking cravings for particular foods, thus triggering over-consumption (Cohen et al., 

2005, Jastreboff et al., 2013, Meule et al., 2012, Meule et al., 2014). However, these findings 

have not been replicated in animals. Only one group of researchers has investigated appetitive 

Pavlovian conditioning in an animal model of obesity. Using DIO/DR rats fed a 40 kcal% 

HFD for 12 weeks researchers demonstrated that Pavlovian conditioning was not affected 

(Davidson et al., 2013, Kanoski et al., 2010, Kanoski et al., 2007).  

Moreover the literature on the effects of HFD on instrumental conditioning has been 

conflicting. Performance in the instrumental conditioning task, where food reward delivery is 

contingent upon the animals’ actions, of HFD exposed animals was observed to be enhanced 

when compared to control diet counterparts (Figlewicz et al., 2006, Figlewicz et al., 2013, 

Vollbrecht et al., 2015). This suggests that HFD exposed animals enhanced their behaviours 
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that result in a food reward compared to control diet counterparts. However, these findings 

are conflicted by other studies that have indicated that HFD exposure does not affect 

instrumental conditioning performance (Davis and Fox, 2008, Tracy et al., 2015).  

It has been established that rats subjected to periods of acute food deprivation increase 

subsequent consumption of palatable foods (Castellanos et al., 2009, Cameron et al., 2014, 

Epstein et al., 2003, Wei et al., 2015). The increase of consumption is not solely due to 

calorific deprivation as food-deprived rats have been shown to increase intake of both caloric 

sucrose and non-caloric saccharin solutions (Smith and Duffy, 1957). This finding suggests 

that other factors are involved in the subsequent consumption of palatable foods in a state of 

food deprivation such as an enhanced hedonic response (Berridge, 1991). By reducing the 

incentive value of a particular food by pre-feeding to satiety or lithium-induced devaluation, 

animals decrease their performance responses in Pavlovian and instrumental conditioning 

(Balleine and Dickinson, 1998, Dickinson et al., 1996, Reichelt et al., 2011). Whereas 

animals fed a high fat/high sugar diet for 5 weeks showed impairments in outcome 

devaluation indicating loss of goal-directed control of responding (Furlong et al., 2014). 

However the effect of increasing the incentive value of a food reward by food deprivation on 

an animal model of obesity is still unknown. 

Given the expanding global burden of HFD consumption and obesity, and an emerging crisis 

of dementia due to a rapidly aging population, understanding the effects of HFD consumption 

on cognition are of critical importance. Given conflicting literature on the effect of HFD 

consumption on instrumental conditioning described above, we sought to clarify the literature 

by performing these experiments and hypothesized WD consumption may have an effect on 

instrumental conditioning. Furthermore, appetitive motivational drive, assessed by the 

breakpoint task, would be impaired and WD fed animals would be more sensitive to changes 
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to motivation drive in a state of food deprivation compared to control diet counterparts. To 

investigate this hypothesis we examined instrumental conditioning following WD 

consumption. Additionally we investigated progressive ratio instrumental conditioning and 

assessed instrumental extinction under varying states of food deprivation.  

 

2.2. Methods 

2.2.1. Animals 

The first cohort of male Wistar-hooded rats (n= 32, Laboratory Animal Services, Adelaide, 

Australia) weighing 206-290 g at the start of the experiment was brought into the RMIT 

University Animal Facility and was used for Pavlovian and instrumental conditioning, open 

field and light/dark preference testing. A second cohort of male Wistar-hooded rats (n= 32; 

220-266 g) were used to assess progressive ratio instrumental conditioning and instrumental 

extinction performance under varying states of food deprivation.  

Rats were housed at RMIT University animal facility, under a controlled environment (20 ± 

1°C) with 12-h light/dark cycle (lights on at 07:00 h) in groups of 4, with food and water ad 

libutum in the home cage. Behavioural tests were performed from 9:00 h to 19:00 h in a 

dedicated animal behaviour room. All experiments were performed in accordance with the 

Prevention of Cruelty to Animals Act 1986 and with approval from the RMIT University 

Animal Ethics Committee. 

2.2.2.Dietary manipulation 

Upon delivery, all animals were allowed to acclimatise for at least 1 week before 

commencement of dietary manipulation. Rats were fed one of two diets (Speciality feeds, 
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Australia) either a control diet (CON; SF04057) or a western diet (WD; SF00-219) for a 

period of 8 weeks. The nutritional content of each diet is given in Table 2.1. 

 

Table 2.1: Nutritional parameters of CON and WD feed.  

 
CON (SF04057) 

(w/w %) 

WD (SF00-219) 

(w/w %) 

Protein 19 19 

Monounsaturated fats 3.43 6.23 

Polyunsaturated fats 2.15 0.77 

Saturated fats 0.43 13.99 

Total fat 6 21 

Digestible energy 16.1 MJ/kg 19.4 MJ/kg 

Total digestible energy 

from fat 
14 kcal% 40 kcal% 

Total digestible energy 

from protein 
21 kcal% 17 kcal% 

 

2.2.3. Food restriction 

One week prior to the start of behavioural training, rats were food restricted to 85% of their 

daily food intake. Food restriction was maintained for the entire duration of behavioural 

testing. Body weight was monitored twice weekly to ensure rats did not fall below 85% of 

their free-feeding weight. At the end of the experiment, animals were sacrificed and 

epididymal adipose tissue was collected and weighed.  

2.2.4. Operant box apparatus 

The apparatus comprised of 8 operant chambers (Med Associates, USA) individually housed 

in light and sound attenuating cabinets. Chambers are 30 cm wide x 24 cm deep x 21cm high 
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and consist of three aluminium walls and ceiling, with a Perspex door serving as the fourth 

wall. Each chamber comprised of a transparent Perspex back wall, roof and front door, with 

aluminium left and right-hand walls. The floor consisted of steel bars, aligned perpendicular 

to the back of the chamber. Each chamber also had a 3 W, 24 V house light that provided 

illumination inside the enclosed chamber. Grain pellets (45 mg; containing 25 kcal% protein, 

10 kcal% fat and 65 kcal% carbohydrates, Bio-Serv, USA) and 0.5 ml of 10 w/v% sucrose 

solution was delivered into a recessed magazine located at the bottom centre of the right hand 

wall. Access to the magazine was measured by infrared detectors at the mouth of the recess. 

Two panel lights were located on either side of the magazine at the top of the right-hand wall. 

The chambers were fitted with two retractable levers that could be inserted to the left and the 

right of the magazine. A speaker located to the right of the house light could provide auditory 

stimuli to the chamber. In addition, a 5 Hz train of clicks produced by a heavy-duty relay 

placed outside the chamber at the back right corner of the cabinet was used as an auditory 

stimulus. A computer equipped with Med-PC software (Med Associates, USA) was used to 

control the experimental procedures and record experimental data.  

2.2.5. Pre-training 

After 3 days of food restriction, rats were exposed to the pellets by placing a small petri dish 

containing grain pellets into each cage. The following day, all rats received two 30 min 

session in the operant chamber to learn to retrieve reinforcers from the magazine recess. A 

single grain pellet was delivered randomly approximately every 60 s. 

2.2.6. Pavlovian conditioning 

Rats (n= 16 per group) received 9 sessions of Pavlovian conditioning in the operant box. Two 

auditory stimuli (tone and clicker) served as CS and were paired with either pellet or 10% 

sucrose solution delivery (counterbalanced). Three presentations of each stimuli lasting 5 min 
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each were given in each session in random order interspersed with periods where no stimuli 

were presented. Reward was delivered into the recessed magazine on a variable interval 90 s 

during stimuli presentation. An inter-trial period of 90 s was observed after each reward 

delivery. The number of magazine entries during stimuli presentation and pre-stimulus 

interval was measured. Each session lasted 30 min. 

2.2.7. Instrumental conditioning 

Rats received 9 (n= 16 per group) sessions of instrumental training in the operant box. Rats 

were trained to perform two lever-press responses (left and right) with each reinforced on a 

random interval 30 schedule. Each lever was trained separately and earned one of two 

possible outcomes: pellets or 10% sucrose solution (counterbalanced). Both levers were 

trained in the same session with 6 alternating 5 min lever presentations. The number of lever 

presses performed and magazine entries was measured. Each session lasted 30 min. 

2.2.8. Open field test 

The open field test is used to assess the differences in locomotor activity in rats. Locomotor 

activity was assessed using an open field test chamber (44.5 cm x 44.5 cm x 30.5 cm; Med 

Associates, USA) with four pairs of photocells spaced evenly along the length of the test 

chamber to detect horizontal and vertical motor activity. Wistar-hooded rats (n= 16 per 

group) were placed individually in the test chamber for 10 min to monitor locomotor activity. 

Test chamber was cleaned with 70% ethanol after each rat to remove foreign odours that can 

affect explorative behaviours. Total distance travelled and average velocity was measured by 

Med Associates activity monitor software, version 4.  
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2.2.9. Light/dark preference test 

The light/dark preference test is commonly used to assess anxiety-like phenotypes and 

validate the pharmacological effects of neuroactive compounds. The test relies on the 

tendency for rats to explore new environments and to prefer dark environments over brightly 

illuminated environments. Rats that spend more time in the dark environment indicate 

elevated anxiety levels. The test took place in the locomotor activity chamber (Med 

Associates, USA) as described above in Chapter 2.2.8 with a specially designed dark box 

insert and each session lasted 10 min. Med Associates dark box plastic insert that does not 

interfere with infrared beams allowed tracking in both light and dark areas. Number of entries 

and total time spent in either light or dark areas of the box was measured.  

2.2.10. Progressive ratio instrumental conditioning 

Progressive ratio instrumental conditioning task is a widely utilized behavioural test used to 

assess motivational drive and reward strength in drug addiction research. In this behavioural 

test, rats (n= 16 per group) were placed in the operant box and were conditioned to perform 

lever presses with a grain pellet reward reinforcer. In the first three sessions, the pellets were 

delivered on a continuous reinforcement schedule, whereas in sessions 4-7, 8-10 and 11-14, 

they were delivered on a random ratio (RR) 5, RR10, RR20 schedule, respectively. A RR 

schedule is characterised as the probability of a single lever press delivering a reward. 

Following training rats underwent a test session, where the response ratio schedule was using 

the following formula (rounded to the nearest integer): = [5e (n*0.2)] - 5 where n is equal to the 

number of food rewards already earned plus 1 (i.e., next reinforcer). Thus, the number of 

responses required to earn a food reward follow the order: 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 

50, 62, 77, 95 and so on. The final ratio completed is the breakpoint.  

2.2.11. Instrumental extinction performance under varying states of food deprivation 



Chapter 2 

98 

This task was used to assess motivational drive and saliency of a food reward under food 

deprivation. Following the conclusion of progressive ratio instrumental conditioning, rats 

were placed into an instrumental extinction test, where no rewards were given. Lever press 

responses and magazine entries were recorded. The rats (n= 16 per group) were allowed 30 

min ad lib access of control or WD, respectively, prior to the food deprivation period. Food 

deprivation periods were studied in the same order: 0 h, 6h, 12 h, and 24 hr after the last meal 

with a staggered start. Each test session lasted 30 min. 

2.2.12. Statistical analysis 

All data are presented as mean ± standard error of the mean (SEM). A p-value of < 0.05 was 

considered statistically significant. Statistical comparisons were made between groups by 

repeated measures two-way analysis of variance (ANOVA) for body weights, Pavlovian and 

instrumental conditioning data using GraphPad Prism version 6.00 (GraphPad Software, 

USA). Unpaired t-tests were used to compare epididymal adipose tissue weights, basal 

locomotor activity and light/dark preferences. Further analysis by a post hoc Bonferroni's t-

test was performed if a significant effect was detected by the ANOVA. 

 

2.3. Results 

2.3.1. Animals 

In the first cohort, rats fed a WD were observed to be heavier than rats fed a CON diet (Week 

8 CON: 350.7 ± 7.1 g; WD: 372 ± 4.9 g; F(1,261)= 46.11 p< 0.0001, Fig. 2.1A). Both groups 

showed a similar weight increase over time (time: (F(8,261)= 84.71, p< 0.0001). Epididymal fat 

was not different after WD consumption (p= 0.82; Fig. 2.1B). In the second cohort, rats fed a 

WD were not significantly heavier than rats fed a CON diet (Week 8 CON: 392.8 ± 7.1 g; 
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WD: 408.0 ± 5.1 g; group: F(1,30)= 1.87 p= 0.18; Fig. 2.2A). However, WD consumption was 

shown to increase epididymal adipose tissue with a significant increase in WD rats (CON: 

8.66 ± 0.39 g; WD: 13.53 ± 0.75 g, p<0.0001; Fig. 2.2B).  
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2.3.2. Locomotor activity and light/dark preference 

WD consumption did not affect basal locomotor activity (p> 0.05) and anxiety (p> 0.05) as 

indicated by the open field test (Fig.2.3A) and light/dark preference test (Fig. 2.3B), 

respectively. 

2.3.3. Pavlovian conditioning 

2-way ANOVA revealed there was no difference in which both CON (F(1,280) = 1.43, p=0.24) 

and WD animals (F(1,300) < 1, p=0.59) responded to the 10% sucrose solution and grain pellet 

rewards. Magazine entries steadily increased over training session in both groups at a similar 

rate (from a mean of 4.6 magazine entries/min in session 1 to 5.2 magazine entries/min in 

session 9 (group (F(1,29)= 1.33, p= 0.26); time (F(8,232)= 2.55, p< 0.01). All rats showed similar 

proficiency to associate CS presentation with reward delivery by the end of training (F(1,56)= 

45.89, p< 0.0001; Fig. 2.4A). Post-hoc analysis shows a marked increase of magazine 

entries/min in both CON and WD rats compared to baseline in the final Pavlovian 

conditioning session (p< 0.001). The results of Pavlovian conditioning showed that all groups 

learned to respond significantly more on CS compared to baseline and that the magnitude of 

this difference did not vary significantly as a function of type of diet or prior dietary 

restriction condition. 

2.3.4. Instrumental conditioning 

Lever press responding steadily increased over the course of instrumental training in both 

groups (Fig. 2.4B). An ANOVA applied to this data revealed a significant main effect of 

Session (F(8,232)= 90.15, p< 0.0001), but no apparent difference between the groups (F(1,29)= 

1.80, p= 0.19). 
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Figure 2.1. Metabolic measures of the first cohort. (A) Body weight after consumption of 

either CON or WD over the 8 week feeding protocol of the (B) Epididymal adipose tissue 

weight in both CON and WD rats. n= 16 per group. Data expressed as mean ± SEM. *p< 

0.05, **p< 0.01, ****p<0.0001.   
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Figure 2.2. Metabolic measures of the second cohort. (A) Body weight after consumption of 

either CON or WD diet over the 8 week feeding protocol of the (B) Epididymal adipose 

tissue mass weight in both CON and WD fed rats. n= 16 per group. Data expressed as mean ± 

SEM, *p< 0.05, ****p< 0.0001. 
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Figure 2.3. Anxiety-like behavioural testing. (A) Basal locomotor activity after consumption 

of CON or WD in open field test. (B) Time spent in dark chamber in the light/dark preference 

test. n= 16 per group. Data expressed as mean ± SEM.  
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Figure 2.4. Pavlovian conditioning. (A) Final Pavlovian conditioning session of CON and 

WD rats during baseline and CS presentation (magazine entries/min). (B) Number of lever 

presses across instrumental training. n= 16 per group. Data expressed as mean ± SEM, ***p< 

0.001. 
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2.3.5. Progressive ratio instrumental conditioning 

Lever press responses increased as training progressed indicating that all rats learnt to 

associate lever press responses to reward delivery. A significant time effect (F(12,360)= 138.40, 

p< 0.0001) and group x time interaction (F(12,360)= 2.73, p= 0.0015) was observed, 

corresponding to a decrease in lever press responses in WD rats during the end of training 

(sessions 11 and 13: p< 0.05; Fig. 2.5A).  

Motivation to work for a food reward as indicated by the breakpoint task showed no change 

in total lever presses in the subsequent breakpoint task after WD consumption (p> 0.05; Fig. 

2.5B). The rate at which rats acquired the food reward in the breakpoint task was also 

observed not to be different after WD consumption indicating no change in motivational 

behaviour to perform for a food reward (Fig. 2.5C).  
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Figure 2.5. Instrumental conditioning. (A) Training acquisition using a scaling progressive 

ratio schedule for CON and WD rats. (B) Lever press performance in progressive ratio test 

session and (C) Number of rewards obtained over 5 min blocks of time in progressive ratio 

test session. n= 16 per group. Data expressed as mean ± SEM, *p< 0.05, **p< 0.01. 
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Figure 2.6. Instrumental conditioning response after food deprivation (A) Lever press 

response and (B) Magazine entries in an instrumental extinction test after 0, 6, 12 & 24 h 

food deprivation. n= 16 per group. Data expressed as mean ± SEM, † p< 0.05 compared to 

CON 0 h, ‡ p< 0.05 compared to WD 0 h. 
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2.3.6. Instrumental extinction test following food deprivation 

Rats were food deprived for 0, 6, 12, and 24 h with lever press responses and magazine 

entries recorded in an extinction test where no rewards were delivered to assess instrumental 

conditioning recall. Following 6, 12, and 24 h food deprivation, both CON and WD rats had a 

significant increase of lever press response (F(3,120)= 28.92, p< 0.0001) and magazine entries 

(F(3,120)= 13.12, p< 0.0001) compared to 0 h baseline. There was no observed difference in all 

measures recorded in the extinction test between CON and WD (F< 1; Fig. 2.6A&B). This 

indicates that WD consumption did not alter motivation drive in a state of food deprivation to 

work for a food reward in rats.  

 

2.4. Discussion 

Previous research has demonstrated that HFDs can impair learning and memory function, 

particularly in tasks that rely on the utilization of spatial cues. The present series of 

experiments was performed to understand how HFDs can impair different types of learning 

and whether different states of food deprivation can influence appetitive motivation. In the 

first cohort of rats there was a significant increase of body weight in WD fed rats but no 

change in epididymal adipose tissue weight. Basal locomotor activity was not affected by 

WD and anxiety-like behaviour in the light/dark preference test was unaffected. However 

WD fed rats in the second cohort displayed no change in body weight but displayed a 

significant increase of epididymal adipose tissue weight compared to controls.  

This present study demonstrates that Pavlovian conditioning was not affected by rats being 

fed a WD for 8 weeks. Both CON and WD fed rats showed similar responses to stimuli 

which predicted food reward delivery. In a feature negative Pavlovian conditioning task, 

where the presentation of a single stimulus (i.e. a tone) are rewarded but the presence of the 
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same stimulus in conjunction with a different stimulus (i.e. light) are not reinforced with a 

food reward. Animals with hippocampal lesions are unable to learn this feature negative 

Pavlovian conditioning task (Holland et al., 1999). HFD exposed rats were unable to 

discriminate between stimuli that predicted food rewards and stimuli that predicted no food 

reward delivery suggesting that HFD consumption affects the HPC (Davidson et al., 2013, 

Kanoski et al., 2007, Kanoski et al., 2010). These results suggest that associations with food 

rewards are not maladaptive and the food related cues does not promote responding in 

animals fed a WD.  

WD was shown not to affect instrumental conditioning acquisition however, when tested in a 

progressive ratio instrumental conditioning task there was an observed reduced lever press 

response compared with control diet counterparts. We do not believe that the observed 

reduction in the lever press response can be explained by a reduction of activity as basal 

locomotor activity did not differ between cohorts. Rats fed a HF-high sugar diet for 2 weeks 

(la Fleur et al., 2007) and Long-Evans rats fed a 39 kcal% HFD for 12 weeks (Francis et al., 

2013) exhibited impaired instrumental acquisition with less lever press response compared to 

controls. Further experiments in DIO fed a standard chow diet also showed a similar outcome 

of impaired instrumental conditioning acquisition (Francis et al., 2013). There have been 

some reports of enhanced lever press responding during instrumental conditioning in 

Sprague-Dawley rats fed a 32 kcal% HFD for 5 weeks (Figlewicz et al., 2006), albino rats fed 

32 kcal% fat diet 5-8 weeks (Figlewicz et al., 2013) and obese prone rats fed a 20 kcal% HFD 

for 5 weeks (Vollbrecht et al., 2015). Other studies have indicated that HFD exposure in 

Sprague-Dawley rats (38 kcal% fat for 16 weeks) (Davis et al., 2008) or Long-Evans rats (50 

kcal% fat for 10 weeks) did not affect acquisition of instrumental conditioning (Tracy et al., 

2015). These studies in conjunction with our results suggests that HFD consumption alone 
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does not influence the acquisition of instrumental conditioning which may assist in 

elucidating previous conflicting research. 

Studies have shown that that food motivation is enhanced where HFD exposed rats had an 

increase of lever presses in a breakpoint task (Figlewicz et al., 2006, Figlewicz et al., 2013, la 

Fleur et al., 2007). Yet this finding is still disputed as there have been discrepant outcomes 

with other studies showing a decreased motivational breakpoint for a reward in 12 week HFD 

fed obese rats (Davis et al., 2008, Francis et al., 2013, Tracy et al., 2015). We found no 

indication of any appetitive motivational effect of WD consumption as demonstrated by no 

change of lever presses and number of rewards received in the breakpoint task compared to 

controls. It is possible that the duration of HFD consumption influences the motivation of 

animals. Studies where HFD duration occurs for a period of 8–12 weeks have shown reduced 

motivation for pellet rewards (Davis et al., 2008, Francis et al., 2013, Tracy et al., 2015). In 

contrast, HFD exposed rats for 4-8 weeks report a significant increase of motivation for pellet 

rewards (Figlewicz et al., 2013, la Fleur et al., 2007, Vollbrecht et al., 2015). These studies 

further allude to a time dependent relationship of HFD exposure to motivational drive similar 

to which is observed for instrumental conditioning performance. A study performed by Tracy 

et al. (Tracy et al., 2015) showed that 3 weeks of HFD exposure was insufficient to produce a 

difference in a breakpoint task however, after 6 weeks of HFD exposure a motivational 

deficit became apparent. Authors suggest that significant weight gain appears to be a 

contributing factor to motivational deficits in HFD exposed rats but state that weight gain 

cannot exclusively account for this effect (Tracy et al., 2015). In support of this hypothesis, 

when HFD exposed rats were significantly heavier they showed a motivational deficit in the 

breakpoint task (Davis et al., 2008, Tracy et al., 2015). Whereas when HFD exposed rats 

displayed similar body weight as controls, there was an observed increase of motivational 

drive in the breakpoint task (Figlewicz et al., 2013, la Fleur et al., 2007, Tracy et al., 2015).  
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It is also worth noting that, in order to produce robust responding, we food restricted our rats 

throughout conditioning, which was not the case in studies conducted by La Fleur et al. (la 

Fleur et al., 2007), Figlewicz et al. (Figlewicz et al., 2013) or Vollbrecht et al. (Vollbrecht et 

al., 2015), who found increases of breakpoint responding after HFD consumption. 

Conversely, in food restricted HFD exposed rats, such as in studies performed by Davis et al. 

(Davis et al., 2008) and Tracy et al. (Tracy et al., 2015), decreases of breakpoint responding 

was observed. Alternatively Francis et al. (Francis et al., 2013) presented similar results, but 

these rats were not food restricted. This suggests that food restriction may influence 

motivation drive when assessed by the breakpoint task. 

It is plausible that HFD exposed rats may be less sensitive to changes in states of hunger and 

satiety than their control counterparts. To examine potential effects of changes in states of 

hunger and satiety on motivation, in the second experiment we subsequently examined 

instrumental responding in an extinction test after a period of food deprivation. Rats were 

tested in extinction (i.e., with no rewards available) in order to probe the effects of WD 

consumption on previously encoded relationships rather than on new learning. Although there 

was an increase of magazine entries and lever press responses after more than 6 h of food 

deprivation compared to satiated rats, we are the first to report that WD consumption did not 

affect extinction performance when food deprived. However, impaired performance in 

progressive ratio instrumental conditioning may have confounded potential differential 

response rates or other performance differences in the extinction test.  

The presented results demonstrate that WD consumption for 8 weeks does not affect 

Pavlovian conditioning. The effect of WD consumption on instrumental conditioning is still 

indeterminate with conflicting results. There was no change in instrumental conditioning in 

rats fed a WD. However, WD fed rats was impaired in progressive ratio instrumental 



Chapter 2 

112 

conditioning acquisition. Body weight and adipose tissue increase may possibly be a 

contributing factor for reported motivational deficits. Additionally, WD exposed rats had no 

observable changes in motivational state when examined by instrumental conditioning 

extinction under various food deprivation compared to control diet counterparts. 
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neuronal activation in a western diet induced 
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3.1. Background and rationale 

Rats fed a HFD have been shown to be cognitively impaired compared to those fed a normal 

chow diet with much emphasis placed on hippocampal-dependent behavioural tasks 

(Goldbart et al., 2006, Molteni et al., 2002, Pathan et al., 2008, Stranahan et al., 2008, Wu et 

al., 2003, Xia et al., 2015). In the MWM, HF fed animals took longer to learn the location of 

a submerged platform relative to their control counterparts (Goldbart et al., 2006, Molteni et 

al., 2002, Pathan et al., 2008, Stranahan et al., 2008, Wu et al., 2003, Xia et al., 2015). These 

studies used varying levels of fat ranging from 21-58 kcal% and different lengths of diet 

consumption, with the general consensus that HFDs impair performance in the MWM.  

The delayed-win shift (DWSh) version of the radial arm maze (RAM) task is used to assess 

spatial working and reference memory using the rats’ ability to locate and retrieve food 

efficiently using spatial cues (Floresco et al., 1997, Jarrard, 1993). This task emphasises 

cognitive flexibility as the rodent acquires, retains and uses trial-unique information like the 

MWM, perhaps with less stress and a food reward (Seamans et al., 1995). Rodents with 

lesions to the medial PFC (Taylor et al., 2003), HPC (Jarrard, 1993), and ventral striatum 

(Floresco et al., 1997, Jarrard, 1993) have impaired performance indicating that these areas 

are critical in proper functioning of working memory and executive function in this task. 

Immediate-early genes such as c-Fos are a class of genes that do not require previous protein 

synthesis and can influence cell function through the downstream genes that it regulates 

(Aggleton et al., 2012, Herrera and Robertson, 1996). Activation of the c-Fos immediate-

early gene can be used as a surrogate marker of neuronal activation and is assumed to have 

roles in learning (Herdegen and Leah, 1998, Kaczmarek, 1993, Santin et al., 2003) and long 

term plasticity (Guzowski, 2002, Tischmeyer and Grimm, 1999). This gene is widely 

distributed through the brain, and occurrences that increase neuronal activity will produce an 
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upregulation of c-Fos in selective brain regions (Chaudhuri, 1997, Herrera and Robertson, 

1996, Kovacs, 2008). In the majority of neurons, the basal level of c-Fos mRNA, and protein 

are relatively low. Extracellular signals are required constantly to maintain elevated levels of 

Fos, mRNA peaks after 30 min whilst Fos protein can be visualised by using 

immunohistochemistry after 90-120 min exposure to a novel stimulus such as environment 

(Greenberg and Ziff, 1984, Kruijer et al., 1985, Muller et al., 1984). 

So far only one study has examined neuronal activation by using Fos immunoreactivity in 

HFD fed mice. This focussed on the hypothalamus due to its recognized role in regulation of 

food intake and energy (Lin and Huang, 1999). Mice were fed a 60 kcal% HFD for 15 weeks 

and had a 20% increase of body weight and 292% increase in epididymal adipose tissue 

weight compared to control diet counterparts after feeding (Lin and Huang, 1999). These 

metabolic changes were accompanied with increased basal Fos immunoreactivity the lateral 

hypothalamic area, dorsal medial hypothalamic area and perifornical nuclei (Lin and Huang, 

1999). 

Given that we see a cognitive deficit in our animals after WD consumption (Kosari et al., 

2012) we aimed to explore the effects of WD consumption on spatial working and reference 

memory in the DWSh task on the RAM. Furthermore, we investigated changes in neuronal 

activation following WD consumption. An additional set of animals (“home-cage controls”) 

allowed us to determine whether the effects of WD consumption on Fos mediated neuronal 

activation were specific to the novel stimulus. We hypothesised that WD consumption has a 

deleterious effect on spatial working and reference memory mediated through alterations of 

Fos neuronal activity in basal and after environmental novelty conditions. To investigate this 

hypothesis, we investigated spatial working and reference memory using the DWSh task in 

http://topics.sciencedirect.com/topics/page/Downregulation_and_upregulation
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the WD induced model of obesity. Additionally we examined basal and neuronal activation in 

response to novelty using Fos immunohistochemistry following WD consumption. 

 

3.2. Methods 

3.2.1. Animals 

A cohort of male Wistar-hooded rats (n= 20, Laboratory Animal Services, Adelaide, 

Australia) weighing between 224-321 g at the start of the experiment were brought into the 

RMIT University animal house facility and were used for the DWSh task and Fos 

immunohistochemistry. A second cohort of male Wistar-hooded rats (n= 13; 220-264 g) were 

used as “home-cage controls” for Fos immunohistochemistry. 

Rats were housed at RMIT University animal facility, a controlled environment (20 ± 1°C) 

with 12-h light/dark cycle (lights on at 07:00 h) in groups of up to 4, with food and water ad 

libutum in the home cage. Behavioural tests were performed from 9:00 h to 19:00 h in a 

dedicated animal behaviour room. The experiments were performed in accordance with the 

Prevention of Cruelty to Animals Act 1986 and with approval from the RMIT University 

Animal Ethics Committee.  

3.2.2. Dietary manipulation 

As 8 week WD consumption was insufficient to operant conditioning we extended the dietary 

period to 12 weeks for this experiment. All animals were allowed to acclimatise after delivery 

for at least 1 week before commencement of dietary manipulation. Rats were fed one of two 

diets: either CON diet (SF04057, Speciality feeds, Australia) or WD (SF00-219, Speciality 
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feeds, Australia) for a period of 12 weeks. The nutritional content of each diet is as seen in 

Table 2.1. 

3.2.3. Food restriction 

One week prior to the start of behavioural training, rats were food restricted to 85% of their 

daily food intake. Food restriction was maintained for the entire duration of behavioural 

testing. Body weight was monitored twice weekly to ensure rats did not fall below 85% of 

their free-feeding weight. At the end of the experiment, animals were sacrificed and 

epididymal adipose tissue was collected and weighed.  

3.2.4. Delayed win-shift task in the radial arm maze  

DWSh version of the RAM task (Lafayette Instrument Company, USA) was used to assess 

spatial working and reference memory using the rats’ ability to locate and retrieve food 

efficiently using spatial cues (Floresco et al., 1997, Jarrard, 1993). This task emphasises 

cognitive flexibility as the rat acquires, retains and uses trial-unique information (Seamans et 

al., 1995). Rodents with lesions to the medial PFC (Taylor et al., 2003), HPC (Jarrard, 1993), 

and ventral striatum (Floresco et al., 1997, Jarrard, 1993) have impaired performance with a 

marked increase of errors in the DWSh task indicating that these areas are critical in proper 

functioning of working and reference memory function in this task. 

Testing was carried out in an eight-arm radial maze, consisting of an octagonal central 

platform (34 cm diameter) and eight equally spaced radial arms (87 cm long, 10 cm wide). At 

the end of each arm was a food well (2 cm in diameter and 0.5 cm deep). At the start of each 

arm was a clear Perspex door that controlled access in and out of the central area. Each door 

was controlled by computerised control box enabling the experimenter to control access to all 
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the arms. Salient visual cues of different geometric shapes and contrasting colours were 

placed around the maze on the walls of the room. 

On the first 3 days of testing, rats were habituated to the radial arm maze in two sessions per 

day lasting 10 min each. After the final habituation session of the day, rats were returned to 

their home cages and given approximately 20 grain reward pellets to familiarise rats to the 

novel food reward used for this task. Following habituation, rats underwent a total of 12 

training sessions with 2 sessions performed per day consisting of a 5 min training phase, 5 

min delay phase where the rat was returned to the home cage and a 5 min test phase. Before 

the training phase, 4 arms were pseudo-randomly chosen and blocked, with the following rule 

that no more than 2 adjacent arms could be closed in any trail. The remaining arms that were 

not blocked were baited with grain reward pellets. The training phase involved the rat being 

given 5 min to enter and retrieve the grain pellet rewards from all the baited arms. After a 5 

min delay where the animal was returned to the home cage, all 8 arms were opened in which 

the previously blocked arms are baited with grain reward pellets. The rat was then placed 

back inside the maze and the number of arm entries was recorded.  

For analysis purposes, four training/test sessions were grouped into a single block. An arm 

entry was recorded when the animal fully moved off the central platform into the arm. Two 

types of errors were recorded: within phase error (working memory error, re-entry of an arm 

that has been baited and has been visited) and across phase error (reference memory error, 

entry into a training phase baited arm).  

3.2.5. Exposure to novel environment 

A smaller cohort of these rats (n= 5–7 per group, 12 weeks CON or WD dietary 

manipulation) was assessed for activated Fos expression. Rats were placed into a novel arena, 

in our case a Y-maze (three-arm maze with equal angles between all arms which were 50 cm 
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long × 17 cm wide × 32 cm high. Rats were allowed to move around this novel environment 

for 30 min. Rats were then returned to their home cages for 90 min in a dark, quiet room. 

This manipulation was to reduce exposure to other stimuli that might evoke Fos production. 

Immediately after this 90 min quiet period rats were deeply anesthetized with pentobarbitone 

sodium (1 mg/kg) and perfused transcardially with 0.1 M PBS followed by 4% 

paraformaldehyde in 0.1 M phosphate buffered saline (PBS). 

3.2.6. Home cage controls 

A further cohort of rats (n= 6 per group), underwent the identical dietary manipulation as the 

cohort above. The home cage control experiment was not simultaneously run with the main 

cohort, but was completed within the same animal house. These home cage control rats, 

remained untouched except for weighing until culled. As with the animals exposed to the 

novel environment, they were also deeply anesthetized with pentobarbital sodium (1 mg/kg) 

and perfused transcardially with 0.1 M PBS followed by 4% paraformaldehyde in 0.1 M 

PBS. 

3.2.7. Brain preparation 

Rats underwent cardiothoracic perfusion to prepare brains for immunohistochemistry. 

Cardiothoracic perfusion entailed rats firstly being deeply anesthetized with pentobarbital 

sodium. A lateral incision was made just below the rib cage to expose the pleural cavity and 

an incision was made through the rib cage up to the collarbone to expose the heart. A 15-

gauge blunt perfusion needle was inserted into the left ventricle and firmly held into place. 

An incision was made to the caudal vena cava to aid drainage of blood and fluids. Blood was 

flushed out of the body with phosphate buffered saline (PBS; 137 mM sodium chloride, 2.7 

mM potassium chloride, 10 mM sodium phosphate dibasic, 1.8 mM monopotassium 

phosphate, pH 7.4) via a peristaltic pump at a constant flow rate of 25 µL/min. Once blood 
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had cleared the body, the peristaltic pump was switched to the fixative agent of 4% 

paraformaldehyde (Sigma-Aldrich, USA) in 0.1 M PBS. Perfusion was complete when 

fixative tremors were observed and whole body was rigid. The head was removed with a 

purpose built rat guillotine. The brain was then removed and postfixed for 4 h in the 4% 

paraformaldehyde in PBS before placing them in 30% sucrose in PBS solution (4°C) until 

sectioning. 

Following fixing of brains, serial coronal sections (30 µm) were cut on a cryostat (Leica 

CM1950, Leica Microsystems, Germany) at -16°C and placed in cryoprotectant [30% (w/v) 

sucrose, 30% (w/v) ethylene glycol, 0.01% (w/v) polyvinyl pyrolididne in 0.1 M PBS (pH 

7.4) solution] and stored at -20°C to later undergo immunohistochemistry.  

3.2.8. C-Fos immunohistochemistry. 

Sections were washed and transferred to 0.3% hydrogen peroxide in 0.1 M PBS containing 

0.2% Triton X-100 (PBST) for 10 min to inhibit endogenous peroxidase and then washed 

several times with PBST. Sections were incubated in PBST containing c-Fos rabbit 

polyclonal antibody (1:5000; Ab-5; Oncogene Science, UK) for 48 h at 4°C with periodic 

rotation. Sections were then washed with PBST and incubated in biotinylated goat anti-rabbit 

secondary antibody (diluted 1:200 in PBST; Vectastain; Vector Laboratories, USA) and 1.5% 

normal goat serum for 2 h at room temperature on a rotator. Sections were then washed and 

processed with avidin-biotinylated horseradish peroxidase complex in PBST (Elite Kit; 

Vector Laboratories, USA) for 1 h at room temperature, again with constant rotation. 

Sections were washed again in PBST and then in 0.05 M Tris buffer. The reaction was then 

visualised using 3’, 3’–diaminobenzidine intensified with nickel chloride. Sections were 

mounted and allowed to dry overnight before being dehydrated via graded series of alcohol 

washes and coverslipped. 
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3.2.9. Image analysis 

Photomicrographs of immunolabelled brain sections were captured at 10x objective using a 

BX60 microscope (Olympus, Japan) and RTKE SPOT camera (Diagnostic Instruments, 

USA) interfaced to a PC computer with SPOT imaging software. Counts of stained nuclei 

were carried out using the public domain Image J program (National Institutes of Health, 

USA). C-Fos immunohistochemistry were automatically counted using Image J. Images were 

digitized into grey scale where a threshold, set above the mean value ± SEM. of the 

background, was applied for background correction. Inside each region, the number of 

particles above the threshold was automatically calculated. There were no observed 

rostrocaudal differences in all brain regions analysed.  

3.2.10. Regions of interest 

A total of 7 regions were analysed with sites selected because they have been implicated 

previously in memory processes. All of the sites from which it was decided a priori to count 

Fos positive cells are presented. For each brain region analysed, counts were taken from a 

minimum of seven coronal sections. Cytoarchitectonic subfields within the hippocampal 

formation consisted of the cornu ammonis area 1 (CA1), cornu ammonis area 2/3 (CA2/3) 

and dentate gyrus (DG) of the HPC were investigated. Hippocampal counts were taken at 

interaural 5.28 mm and bregma -3.72 mm in Paxinos and Watson rat brain atlas (Paxinos and 

Watson, 2009). Fos immunoreactive cells were counted in the prelimbic area (PrL), cingulate 

cortex (Cg), and infralimbic cortex (ILC) corresponding to interaural 12.00 mm and bregma 

3.00 mm (Paxinos and Watson, 2009). The striatum were counted at levels corresponding to 

interaural 11.04 mm and bregma 2.04 mm (Paxinos and Watson, 2009). The striatum was 

counted by sampling 3 areas of each section and a single value was obtained by averaging the 

3 counts. 
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3.2.11. Statistical analysis 

All data are presented as mean ± SEM. A p-value of < 0.05 was considered statistically 

significant. Statistical comparisons were made between groups by repeated measures two-

way ANOVA for body weights, DWSh performance data using GraphPad Prism. Two-way 

ANOVA was used for Fos counts in basal and after environmental novelty conditions in the 

PFC and HPC. Unpaired t-tests assessed epididymal adipose tissue weights, Fos counts in the 

striatum. Further analysis by a post hoc Bonferroni's t-test was performed if a significant 

main effect was detected by the ANOVA. 

 

3.3. Results 

3.3.1. Animals 

Rats fed a WD were observed to be heavier than rats fed a CON diet (Week 12, CON: 415.7 

± 9.8 g; WD: 458.2 ± 11.6 g; Fig. 3.1A; (F(1,18)= 7.2, p< 0.05)). Both groups showed a similar 

weight increase over time (time: (F(12,264)= 332.7, p< 0.0001) and WD rats increased their 

body weight at a more pronounced rate than CON, (group x time: F(12,264)= 3.5, p< 0.01). Post 

hoc analysis showed significant body weight differences starting from week 8 and until week 

12. WD consumption was shown to increase epididymal adipose tissue with a significant 

increase in WD rats (CON: 8.2 ± 0.3 g; WD: 11.5 ± 0.6 g, p<0.001). WD consumption also 

increased epididymal fat mass by approximately 2 fold (p< 0.01).  

3.3.2. Training phase performance in the delayed win-shift task 

Both groups learnt to complete the DWSh task, had fewer errors and entered more correct 

arms before an error was recorded as training progressed. Performances of rats in the training 
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phase of the delayed win-shift radial arm maze procedure are shown in Figure 3.2. A 

repeated measures ANOVA was conducted and revealed that both CON and WD rats entered 

more arms as training progressed (F(5,90)= 29.86, p< 0.0001), however there was no group 

(F(1,18)= 0.63, p= 0.44) nor group x block effect (F(5,90)= 1.40, p= 0.23; Fig. 3.2A). During 

training, rats steadily increased the number of correct arm choices over blocks (Block effect: 

F(5,90)= 36.34, p< 0.0001) but no group or group x block effect (Both F-values < 1, Fig. 3.2B). 

As training progressed both CON and WD animals became more proficient in the task as the 

animals made more correct arm choices before an error was recorded (Block effect: F(5,90)= 

27.78, p< 0.0001; Fig. 3.2C).  
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Figure 3.1. Metabolic measures. (A) Body weights of rats fed the control or WD for 12 

weeks. (B) Epididymal adipose tissue weight in both control and WD fed rats. n= 10 per 

group. Data represented as mean ± SEM, *p< 0.05, **p< 0.01, ***p< 0.001. 

  



Chapter 3 

125 

 

Figure 3.2. Performance in training phase of DWSh task. (A) Number of arm entries in each 

session of training. (B) Number of correct arm entries in each session of training. (C) 

Number of correct arm entries before error in each session of training. n= 10 per group. Data 

expressed as mean ± SEM.  
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Figure 3.3. Performance in test phase of DWSh task. (A) Number of correct arm choices 

before error in each session of training. (B) Total number of within phase errors in each 

session of training. (C) Number of across phase errors in each session of training. n= 10 per 

group. Data expressed as mean ± SEM.   
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3.3.3. Test phase performance in the delayed win-shift task  

During the test phase, WD animals did not show any evidence of cognitive impairment 

relative to CON. The number of correct arm choices before an error was made steadily 

increased as training progressed (Block effect: F(5,90)= 10.41, p< 0.0001; Fig. 3.3A) and there 

was an overall effect of block to influence total within phase errors (F(5,90)= 2.79, p= 0.02; 

Fig. 3.3B) but there was no other significant differences in any other measure including 

group. 

3.3.4. Basal neuronal activation 

Table 3.1 shows the expression of basal Fos in the regions analysed after 12 week WD 

consumption. In the PFC subregions a two way ANOVA showed there was no effect of diet 

group [F(1, 30)= 0.95, p= 0.34], no effect of sub-region [F(2, 30)= 2.15, p= 0.13] nor a diet x sub-

region effect [F(2, 30)< 1, p= 0.56] on home cage control Fos expression in the Cg, IL, and PrL 

sub-regions. Analysis of home cage control Fos in the striatum revealed no significant effect 

of diet (p= 0.59, t= 0.56, df= 10). The initial analysis of the HPC involved separate counts 

taken across subfields (CA1, CA2/3, and DG). Overall, there was no observed difference in 

home cage control Fos expression due to diet (group effect: [F(1, 30)< 0.1, p= 0.99]). There was 

a significant difference due to hippocampal subfield [F(2, 27)= 7.06, p= 0.003] however post-

hoc analysis revealed no further differences. No diet x hippocampal subfield effect was 

observed [F(2,27)< 0.1, p= 0.92]. 
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Table 3.1: Number of positively stained Fos immunoreactive cells of home cage control fed 

CON or WD. 

BRAIN REGION CON (n= 6) WD (n= 6) 

Prefrontal cortex   

Cingulate gyrus (Cg) 12.04 ± 2.03 12.83 ± 0.82 

Infralimbic cortex (ILC) 17.92 ± 2.77 15.46 ± 2.11 

Prelimbic cortex (PrL) 18.88 ± 4.59 16.63 ± 1.86 

Striatal area   

Striatum 117.50 ± 17.84 102.50 ± 19.78 

Hippocampus   

Cornu Ammonis area 1 (CA1) 61.70 ± 12.86 57.79 ± 19.01 

Cornu Ammonis area 2/3 (CA2/3) 209.95 ± 55.71 196.13 ± 48.25 

Dentate gyrus (DG) 116.70 ± 22.26 134.25 ± 44.27 
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Figure 3.4. Fos immunohistochemistry after environmental novelty. (A) Number of 

positively stained Fos neurons in the PFC. (B) Representative photomicrographs of Fos 

immunoreactivity in the PrL, ILC and Cg of the PFC from rats fed a CON or WD at 100x 

magnification. n= 5-7 per group. Data expressed as mean ± SEM.  
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3.3.5. Neuronal activation in response to novelty 

Environmental novelty increased neuronal activation in striatum but not PFC or HPC. In the 

PFC subregions there was no effect of diet (F(1,33)= 2.36, p= 0.13; Fig 3A), subfield (F(2,33)= 

2.36, p= 0.09) or diet x subfield effect (F(1233)< 1, p= 0.98) on numbers of cells expressing 

Fos 2 hr after exposure to a novel environment in the Cg, IL and PrL regions group. 

Similarly, there were no differences between the diet groups in the HPC subfields (CA1, 

CA2/3, and DG; diet effect: (F(1,30)= 3.67, p= 0.65; Fig. 3C) or a diet x subfield: (F(2,33)= 2.61, 

p= 0.09. There was a subfield effect (F(2,33)= 41.63, p< 0.0001) which was attributable to a 

significantly lower amount of activated Fos neurons in the CA1 for both CON and WD 

groups when compared to the CA2 and DG regions. 

In the striatum, however, WD significantly increased novelty-induced neuronal activation 

compared with control diet (p< 0.05, t= 2.89, df= 10; Fig. 3B). 
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Figure 3.5. Fos immunohistochemistry after environmental novelty. (A) Number of 

positively stained Fos neurons in the striatum. (B) Representative photomicrographs of Fos 

neurons in the striatum in CON and WD fed rats at 100x magnification. n= 6-7 per group. 

Data expressed as mean ± SEM, *p< 0.05.  
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Figure 3.6. Fos immunohistochemistry after environmental novelty. (A) Number of 

positively stained Fos neurons in the HPC (B) Representative photomicrographs of positively 

stained Fos neurons in the CA1, CA2/3 and DG of the HPC in CON and WD fed rats at 100x 

magnification. n= 6-7 per group. Data expressed as mean ± SEM.  
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3.4. Discussion 

In this study we investigated the effect of WD on cognitive performance using the DWSh in 

the RAM in adult male Wistar hooded rats. Also using Fos as a marker, this study mapped 

how WD consumption does not alter the neuronal activation that normally accompanies 

exposure to a novel environment, except in the striatum. Our findings indicate that WD 

consumption does not affect learning and performance in the DWSh task, a PFC, 

hippocampal and striatal-dependent memory task. Basal Fos immunoreactivity was also 

unchanged with WD consumption in regions of interest. In a further series of animals WD 

consumption was observed to be associated with an increase in activated Fos expression in 

the striatum after exposure to a novel environment. 

Using the DWSh task we failed to detect any impairment after WD consumption. Similar 

acquisition rates and spatial memory ability were observed in WD rats as the CON rats. This 

is in contrast to our previous study with this dietary manipulation where we showed 

impairment in spatial memory in the Y-maze, a one trial-one test procedure (Kosari et al., 

2012). In the MWM, female Fisher 344 rats fed a diet with higher fat (approximately 39 

kcal%) and similar sugar content to that in our study for 2 months displayed an impairment of 

spatial reference memory (Molteni et al., 2002). The radial arm water maze is known for 

combining the simplicity of results analysis from the RAM with the rapid and strong 

motivation observed in the MWM without the food deprivation  (Alamed et al., 2006). Using 

the radial arm water maze, Alzhoubi et al. illustrated that male Wistar rats fed a similar WD 

for 3 months produced an impairment of short and long term spatial memory (Alzoubi et al., 

2013a). Researchers have also reported impairments of spatial memory following high fat 

consumption using other one trial-one test behavioural tasks. Arnold et al. reported spatial 

memory impairments using the T-maze spontaneous alternation task in C57BL/6J mice fed 
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45 kcal% fat diet for 8 weeks (Arnold et al., 2014), whilst a 60 kcal% fat diet for 27 weeks, 

produced an impairment of spatial reference memory in the object location task (Heyward et 

al., 2012). Of note between these studies, where a memory deficit was observed, and our 

present one, is a variation in food. Our DWSh paradigm prompts the animals to solve the task 

using food pellets as a reward, and for both WD and CON animals we used the same 

“control” grain pellets. A consequence of this is that WD animals, if they solved the task 

successfully, consumed approximately sixteen 45 mg pellets/day during habituation and 

testing that were not of WD composition. To address the issue of additional energy intake a, 

saccharin based reward could be used as it effectively has no food energy. Moreover, 

throughout the task animals were on food restriction, albeit of their WD or CON food, 

meaning that for the final 15 days all rats received less of their specific diet than the previous 

12 weeks of ad lib feeding. These two methodological points may have resulted in our WD 

animals becoming normalized, and thus attributable to the lack of deficit in this task.  

We demonstrate that 12 week WD consumption increases Fos expression after environmental 

novelty in the striatum in response to a novel environment. Other brain regions involved in 

memory and learning were also investigated with no comparable differences in Fos 

expression after environmental novelty in the PFC and HPC between control and WD 

animals. Much research performed to date has focussed on investigating diet-induced 

neuronal activation in the hypothalamus due to its well-recognised role in the regulation of 

food intake and energy homeostasis (Bray et al., 1981). C57BL/6J mice fed a 58 kcal% fat 

diet for 15 weeks display increased expression of basal Fos in the lateral hypothalamus (Lin 

and Huang, 1999, Xin et al., 2000), dorsal medial hypothalamus (Lin and Huang, 1999, Xin 

et al., 2000), and paraventricular nuclei (Wang et al., 1999). A study in female Long-Evans 

rats fed a 40 kcal% fat diet for 12 weeks also demonstrated an increase of Fos expression 

after environmental novelty in the hypothalamic paraventricular nuclei induced by 
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introduction into a novel environment (Ressler et al., 2015). In a further study, acute HFD (21 

kcal% fat) consumption in C57BL/6J mice elicited an increase of Fos expression after 

environmental novelty not only in the lateral hypothalamus but also the ventral tegmental 

area, nucleus accumbens, and central amygdala (Valdivia et al., 2014), suggesting that acute 

HFD consumption recruits the mesolimbic system. This finding is corroborated by Del Rio et 

al. who demonstrated that the dorsal medial PFC was selectively increased Fos 

immunoreactivity after environmental novelty in response to acute HFD consumption (Del 

Rio et al., 2015).  

Whilst the stimulus used to induce activation of Fos expression was the introduction of the 

animal into a novel environment, our group has not observed any differences of exploration 

time in novel environments with this model (Kosari et al., 2012). This indicates that the 

increase of neuronal activation is due to the diet manipulation and not the stimulus, in this 

case new surroundings. However, it should be considered that there may also be an 

interaction between the experience of stress and the western diet. In the water maze RAM 

study (Alzoubi et al., 2013a), the combination of stress and western diet resulted in the 

strongest impairment in the memory test, suggesting that stress may exacerbate the effect of 

diet. 

The striatum is interconnected to many brain regions that have been implicated in learning, 

memory and reward such as the PFC, HPC, amygdala and substantia nigra (Bjorklund and 

Dunnett, 2007, Kelley and Berridge, 2002). These connections are in part through 

afferent/efferent dopaminergic cell bodies in the mesolimbic, mesocortical and nigrostriatal 

pathways (see (Bentivoglio and Morelli, 2005) for a comprehensive review). Striatal D2 

receptor expression has been previously shown to be decreased after consumption of a HFD 

in both mice and rat models of diet-induced obesity (Huang et al., 2006, Johnson and Kenny, 
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2010, van de Giessen et al., 2012). One study also found a clear inverse association between 

body weight and striatal D2 receptor expression suggested to be due to a down regulation of 

postsynaptic striatal dopamine-2/3 receptors (Huang et al., 2006, Johnson and Kenny, 2010, 

van de Giessen et al., 2012).  

In conclusion our present results expand on the known relationship between obesity and 

central effects. We have also extended the previous neuronal activation data largely focused 

around the hypothalamus to show that WD-manipulation in the rat produces an upregulation 

of striatal neuronal activation. As this data was collected from a novel environment paradigm 

of much interest would be to expand this to assess neuronal activation during memory tests 

where a cognitive deficit is observed. Whether WD manipulation, or indeed fat manipulation, 

is the ideal model to assess obesity-associated cognitive decline is still contentious; indeed 

our Fos data is independent of a deficit in memory using the DWSh task. While we have 

previously shown cognitive deficits along with metabolic changes with this model (Kosari et 

al., 2012) it is not universal; indeed no deficit was observed in working memory in the novel 

object recognition task (Kosari et al., 2012), as no deficiency was observed here. It is clear 

that the biological contribution to obesity in humans involves numerous factors beyond fat, 

including the more palatable sugar, inactivity, along with broader factors, such as genes and 

mood, and these are yet to be considered or produced in a single animal model. 

In conclusion, WD consumption was not observed to affect spatial working and reference 

memory using the DWSh task in the RAM. Furthermore, the present study is the first to 

demonstrate that WD consumption increases Fos expression in the striatum following a novel 

environment stimulus.  
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Chapter 4 - Associated changes in serotonin 

receptor expression and dopamine levels in a 

western diet induced animal model of obesity 
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4.1. Background and rationale 

There are a multitude of central pathological changes associated with obesity, as discussed in 

Chapter 1.11. Nonetheless the possible underlying mechanism by which obesity impairs 

cognitive function is still undetermined. 5-HT and DA are important neurotransmitters for 

amongst other functions, food intake and cognition. Both 5-HT2A and 5-HT2C receptors have 

been implicated in feeding and cognition. Pharmacological manipulations that increase brain 

5-HT levels reduce food intake (Blundell, 1986, Leibowitz et al., 1988) and also impair visual 

working memory (Jans et al., 2010, Lieben et al., 2004). Conversely depleting 5-HT via 

tryptophan (precursor to 5-HT) depletion increases food intake (Nonogaki et al., 1998) and 

impairs both object recognition memory (Jenkins et al., 2010) and fear contextual memory 

(Uchida et al., 2007). A 5-HT2A receptor agonist injected into the PVN attenuates 

neuropeptide Y induced hyperphagia (Grignaschi et al., 1996), while injection of the 5-HT2C 

receptor antagonist, RS-102221, produces hyperphagia (Bonhaus et al., 1997). The 

serotoninergic system may mediate changes in food intake and/or cognitive state when 

nutritional state is altered. Zucker fatty rats have depressed hypothalamic 5-HT activity 

(Routh et al., 1990, Routh et al., 1994) and DIO rats have been shown to have decreased 

levels of 5-HT in the HPC and brainstem (Kimbrough and Weekley, 1984). 5-HTT regulates 

the entire serotoninergic system and its receptors by modulation of 5-HT concentration by 5-

HT reuptake from the synaptic cleft back into the presynaptic neuron. Of the limited research 

on 5-HTT expression and obesity, focus has mainly been on the hypothalamus due to its 

recognised role in the regulation of food intake. Nonetheless the effect of obesity in other 

brain regions besides the hypothalamus, such as the striatum, is relatively unknown.  

DA has a well-recognised role in cognition including motivation, reward, punishment and 

working memory (Cools, 2008). But recent research has discovered the involvement of DA 
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with obesity (Volkow et al., 2012, Volkow et al., 2013). It has been postulated that 

individuals that have a hypo-responsive mesocorticolimbic pathway have an increased risk of 

the development of obesity (Davis et al., 2004b). Sensitivity to reward has been associated 

with emotional overeating, preference for HF foods, binge eating and food cravings (Davis et 

al., 2004b, Davis et al., 2007, Franken and Muris, 2005, Loxton and Dawe, 2001). HFD 

consumption was shown to decrease brain reward threshold, and this effect was mediated by 

downregulation of the D2 receptor (Johnson and Kenny, 2010). A HF cafeteria diet was also 

shown to lower both basal levels of DA and DA release in response to food or amphetamine 

(Geiger et al., 2009). A consistent finding is the reduction of DA levels in the nucleus 

accumbens in animal models of obesity including ob/ob mice (Fulton et al., 2006), DIO rats 

(Geiger et al., 2009, Pothos et al., 1998), cafeteria diet model (Geiger et al., 2008) and HFD 

exposed mice (Carlin et al., 2013). HFD exposure even as short as 5 days has been shown to 

reduce basal DA levels in the nucleus accumbens (Rada et al., 2010). However, we do not 

know whether HFD feeding produces alterations of DA levels beyond the nucleus 

accumbens. 

Our group has previously showed that HFDs (22 and 60 w/w %) have a deleterious effect on 

spatial memory, but do not affect hippocampal acetylcholine measures, suggesting that the 

brain cholinergic system does not change with this diet or play a major role in the observed 

spatial memory deficits (Kosari et al., 2012). However, HFD consumption has been shown to 

affect hippocampal neurons with several experiments finding altered dendritic morphology 

(Freeman et al., 2011, Granholm et al., 2008) and impaired synaptic plasticity after HFD 

consumption (Molteni et al., 2002, Stranahan et al., 2008), indicating the HPC is particularly 

sensitive to dietary manipulation. The PFC (Pasupathy and Miller, 2005, Winocur and 

Moscovitch, 1990, Xu, 2015) and striatum (Pasupathy and Miller, 2005, Scimeca and Badre, 
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2012) also play an integral role in learning and memory. However, an assessment of 

neurotransmitter action in these regions after HFD is lacking.  

Considering the previous findings of interactions of HFD feeding with 5-HT and DA, we 

hypothesized that WD consumption model of obesity would alter 5-HT receptor expression in 

the striatum and DA levels in the PFC, striatum and HPC. These changes in 

neurotransmission may also contribute to cognitive impairments observed in obesity models. 

To investigate this hypothesis we investigated spatial memory by means of the spontaneous 

alternation behavioural test in the WD induced model of obesity. We also determined 5-HT 

receptor and 5-HTT expression in striata using western blotting. Additionally we measured 

DA levels in the PFC, striatum and HPC from WD exposed rats relative to CON. 

 

4.2. Methods 

4.2.1. Animals 

A group of male Long-Evans rats (n= 12 per group, Monash University, Australia) weighing 

255-288 g at the start of experimentation underwent spatial alternation behaviour testing, 

open field testing and subsequent western blot analysis. A second group of rats (a subset from 

Chapter 3 cohort) used for brain HPLC analysis. Body weights and epididymal adipose tissue 

weights previously described in Chapter 3.  

Rats were housed at RMIT University animal facility, a controlled environment (20 ± 1°C) 

with 12-h light/dark cycle (lights on at 07:00 h) in groups of up to 4, with food and water ad 

libutum in the home cage. The experiments were performed in accordance with the 

Prevention of Cruelty to Animals Act 1986 and with approval from the RMIT University 
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Animal Ethics Committee. At the end of the experiment, animals were sacrificed and 

epididymal adipose tissue was collected and weighed.  

4.2.2. Dietary manipulation 

All animals were allowed to acclimatise after delivery for at least 1 week before 

commencement of dietary manipulation. Rats were fed one of two diets: either CON diet 

(SF04057, Speciality feeds, Australia) or WD (SF00-219, Speciality feeds, Australia) for a 

period of 12 weeks. The nutritional content of each diet is as seen in Table 2.1. 

4.2.3. Spontaneous alternation behaviour in the Y-maze 

Spontaneous alternation behaviour is the tendency for rodents to alternate their non-

reinforced choices of Y-maze arms and is based upon the tendency for rats to alternate their 

choices to enter non-reinforced arms of a maze on successive opportunities (Drew et al., 

1973). The phenomenon has been ascribed to the operation of a variety of mechanisms 

including habituation to novelty (Hughes, 2004), foraging strategies (Estes and Schoeffler, 

1955) and spatial working memory (Hughes, 2004). Successful spontaneous alternation 

behaviour is dependent on the HPC (Johnson et al., 1977, Means et al., 1971), septum (Clody 

and Carlton, 1969, Douglas and Isaacson, 1966), basal forebrain, PFC and dorsal striatum 

(Lalonde, 2002). After 12 weeks of dietary manipulation rats (n= 12 per group) underwent 

the spontaneous alternation test in the Y-maze. Spontaneous alternation behaviour is a 

measure of exploratory behaviour and can be used to assess spatial memory. The Y-maze was 

a three-arm maze with equal angles between all arms (50 cm long ×17 cm wide × 32 cm 

high). Rats were placed in the Y-maze for 5 min during which the rats were allowed to freely 

explore. Activity was videotaped using a Legria FS200 digital video camcorder (Canon, 

Japan) and later scored. Number of arm entries and the sequence of arm entries was 

measured. Alternation was determined from successive entries of the three arms on 
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overlapping triplet sets in which three different arms are entered. Results from this test are 

expressed as percentage alternation which was calculated by: 

Number of alternations x100 

Total arm entries – 1. 

4.2.4. Open field test 

Locomotor activity was assessed as described previously in Section 2.2.8. In brief, rats were 

placed individually in the test chamber for 10 min to monitor locomotor activity. Total 

distance travelled and average velocity was measured by Med Associates activity monitor 

software, version 4.  

4.2.5. Sample preparation 

Following behavioural testing, rats were killed by 0.5 ml i.p injection of pentobarbital 

sodium. Brains were snap frozen in iso-pentane cooled to -35°C by dry ice then stored at -

80°C. Whole striata, hippocampi and prefrontal cortices were dissected on ice with a scalpel 

and the Paxinos and Watson rat brain atlas to delineate brain regions (Paxinos and Watson, 

2009). 

4.2.6. Western blotting  

The striata from the first cohort of rats (n= 4-5 per group) underwent western blotting. Tissue 

was homogenised in lysis buffer (10 mM Tris-hydrochloride, 150 mM sodium chloride and 

1% Triton-X100, pH 7.4) with supernatant collected to be used for further analysis. Total 

protein content of brain samples was determined via bicinchoninic acid protein assay 

(Thermo Fisher Scientific, USA) with bovine serum albumin as standard. Brain samples were 

suspended in Laemelli’s sample buffer (40% glycerol, 20% 2-mercaptoethanol, 8% sodium 

dodecyl sulfate, 250 mM Tris, 0.01% Bromophenol blue, pH 6.8) then heated at 95°C for 15 
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min. Samples were then frozen at -20°C until use. Seventeen ug of protein from brain 

samples were loaded per lane and separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) using 8% polyacrylamide gels. The SDS-PAGE gel was 

subjected to electrophoresis at 110 V for 90 min at room temperature. Separated proteins 

were transferred onto a nitrocellulose membrane using wet method at 60 V for 2.5 h at 4°C. 

Nitrocellulose membrane and SDS-PAGE gel were sandwiched between filter blot paper and 

fibre pads which was then placed into a cassette and immersed in transfer buffer (25 mM 

Tris, 192 mM glycine, 20% (v/v) methanol, pH 7.4). Non-specific binding was blocked by 

incubating membrane for 1 h in 5% skim milk protein in Tris-buffered saline-Tween (TBST, 

pH 7.4) for 1 h at room temperature. After blocking, the membrane was incubated in 1:1000 

dilutions of either; 5-HT2C (ab32887, Abcam, UK), 5-HT2A (ab16028, Abcam, UK) or 5-HTT 

(ab1772, Millipore, USA) antibodies in TBST and 1% skim milk, pH 7.4 at 4°C overnight. 

Primary antibodies were then detected with Alexa-conjugated secondary antibodies (1:1000; 

Invitrogen, USA) in TBST, pH 7.4 for 1 h. Target protein expression levels were normalised 

to chicken anti β-actin (1:1000, Abcam, UK) used as a loading control. Blots were visualized 

using FluoroChemQ MultiImage III (Alpha Innotech, USA), and analysed using Image J 

Software.  

4.2.7. High performance liquid chromatography analysis 

Prefrontal cortices, striata and hippocampi were assessed for DA and dihydroxyphenylacetic 

acid (DOPAC; DA metabolite) levels from home-caged controls described in Chapter 3, n= 5 

per group. Samples were homogenised in extraction buffer (4 M perchloric acid, 0.008 M 

sodium metabisulphate, 0.002 M disodium ethylenediaminetetraacetic acid (EDTA) and 

MilliQ water to bring volume to 100 ml) and sonicated to rupture vesicular membranes. 

Samples were then spun at 10,500 g for 5 min, and the supernatant transferred to a fresh tube. 
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The samples were spun a further two times, to ensure all debris was eliminated. Samples 

were stored at -80°C until required. 

For high performance liquid chromatography analysis (HPLC) analysis, 40 µl of sample was 

transferred to a HPLC recovery vial. Standards for DA and DOPAC were made in the same 

extraction buffer used for sample preparation. The mobile phase was composed of 70 mM 

monopotassium phosphate, 0.5 mM EDTA disodium salt, 8 mM octane sulfonic acid sodium 

salt, 170 ml HPLC grade methanol, to a final volume of 1000 ml and pH 4.2. The flow rate 

was 500 µl/min with reverse phase C18 columns. HPLC analysis was conducted on PFC, 

striatal and HPC samples from rats fed either CON diet or WD for 12 weeks for total 

(intracellular and extracellular) DA and DOPAC levels. HPLC analysis was conducted on 

PFC, striatal and HPC samples from rats fed either CON diet or WD for 12 weeks for total 

(intracellular and extracellular) DA and DOPAC levels. Standards of known concentrations 

for dopamine and DOPAC were used to quantify and identify the peaks on the 

chromatographs. 

4.2.8. Statistical analysis 

All data are presented as mean ± SEM. A p-value of < 0.05 was considered statistically 

significant. Statistical comparisons were made between groups by repeated measures two-

way ANOVA for body weights using GraphPad Prism. Two-way ANOVA was used for 

comparing HPLC data while unpaired t-tests assessed all other data. Further analysis by post 

hoc Bonferroni's t-test was performed if a significant effect was detected by the ANOVA. 
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4.3. Results 

4.3.1. Animals 

In the first cohort, rats fed a WD were observed to be heavier than rats fed a CON diet (Week 

12 CON: 345.5 ± 5.6 g; WD: 365.8 ± 6.7 g; Fig. 4.1A; (F(1,22)= 4.0, p< 0.05)). WD rats 

increased their body weight at a more pronounced rate than CON, (group x time: F(12,264)= 

6.0, p< 0.0001). Both groups showed a similar weight increase over time (time: (F(12,264)= 

362.2, p< 0.0001). Post hoc analysis showed significant body weight differences starting 

from week 10 and until week 12. WD consumption was shown to increase epididymal 

adipose tissue weight with a significant increase in WD rats (CON: 7.1 ± 0.3 g; WD: 9.5 ± 

0.4 g, p< 0.0001; Fig. 4.1B). No effect of WD on basal locomotor activity was observed (p> 

0.05).  

Body weights and epididymal fat tissue content have been previously described in Chapter 3 

for the second cohort of rats. Briefly, WD consumption caused a significant increase of 

approximately 40 g in body weight and 3 g of epididymal fat mass content compared to 

controls (Fig. 3.1).  

4.3.2. Spontaneous alternation task 

WD consumption did not affect spontaneous alternation behaviour with similar number of 

arm entries (CON: 18.8 ± 1.5, WD: 19.2 ± 1.9, p= 0.84, t= 0.20, df= 22; Fig. 4.2A) and 

percentage alternation (CON: 25.6 ± 1.9 %, WD: 25.6 ± 1.7 %, p= 0.98, t= 0.03, df= 22; Fig. 

4.2B). 
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4.3.3. Western blot analysis 

WD exposure was observed to increase 5-HT2C receptor by 33% (CON: 24.2 ± 2.3%, WD: 

38.2 ± 6.3%, p= 0.0375; Fig. 4.3A) compared to controls. 5-HT2A receptor expression was 

unchanged by WD consumption (CON: 69.9 ± 15.9%, WD: 93.2 ± 12.6%, p= 0.31; Fig. 

4.3B), whilst 5-HTT expression was increased by 18% (CON: 62.4 ± 1.6%, WD: 73.9 ± 

2.5%, p= 0.0081; Fig. 4.3C). 
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Figure 4.1. Metabolic measures. (A) Body weights of rats fed the control or WD for 12 

weeks. (B) Epididymal adipose tissue mass content in both control and WD fed rats. (C) 

Basal locomotor activity. n= 12 per group. Data represented as mean ± SEM, **p< 0.01, 

***p< 0.001.  
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Figure 4.2. Spontaneous alternation behaviour in the Y-maze. (A) Total number of arm 

entries, (B) Percentage of arm alternation in CON and WD rats. n= 12 per group. Data 

expressed as mean ± SEM. 
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Figure 4.3. Representative western blots. (A) 5-HT2C expression, (B) 5-HT2A receptor 

expression, (C) 5-HTT expression in the striatum of CON and WD rats normalised to β-actin. 

n= 4-5 per group. Data represented as mean ± SEM. * p< 0.05, *** p< 0.001.  
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4.3.4. High performance liquid chromatography 

In the PFC, WD consumption did not alter neurotransmitter levels (DA CON 34.01 ± 14.66 

pmol/mg vs. WD 30.17 ± 3.66 pmol/mg and DOPAC CON 25.97 ± 11.24 pmol/mg vs. WD 

19.43 ± 3.55 pmol/mg, F(1,16)< 1, p> 0.05; Fig. 4.4A). No group or group x neurotransmitter 

effect was observed (all F< 1). DA turnover was also found not to be different between diet 

groups (CON 0.75 ± 0.06 vs. WD 0.65 ± 0.11, p> 0.05, t= 0.55, df= 8; Fig. 4.4D). 

WD feeding was observed to change DA and DOPAC levels in the striatum relative to CON 

with a significant effect of group [F(1, 16)= 10.63, p= 0.0049], and differing amounts of 

neurotransmitter [F(1, 16)= 112.1, p< 0.0001] which was attributable to a significantly higher 

amount of DA than DOPAC (DA CON 1651.59 ± 85.61 pmol/mg vs. WD 1370.88 ± 99.45 

pmol/mg; DOPAC (CON 822.54 ± 52.02 pmol/mg vs. WD 615.23 ± 49.83 pmol/mg). No 

group x neurotransmitter interaction (F< 1) was observed. Post-hoc analysis showed a 

marked reduction in DA levels in the striatum relative to CON (p< 0.05; Fig. 4.4B), but not 

DOPAC levels (p> 0.05). The DA turnover rate in the striatum was not seen to be influenced 

by WD consumption (CON 0.50 ± 0.02 vs. WD 0.46 ± 0.05, p> 0.05, t= 2.88, df= 8; Fig. 

4.4E). 

In the HPC no differences were observed in neurotransmitter levels [F(1, 16)= 4.3, p= 0.06], 

nor group x neurotransmitter (F < 1), while an overall group effect was observed [F(1, 16)= 4.9, 

p= 0.04]. However, with post-hoc analysis no individual differences were seen with DA 

(CON 13.22 ± 3.81 pmol/mg vs. WD 9.51 ± 1.34 pmol/mg, p> 0.05) or DOPAC (CON 9.88 

± 2.81 pmol/mg vs. WD 2.68 ± 0.27 pmol/mg, p> 0.05) levels compared to CON (Fig. 4.4C). 

WD animals did have significantly reduced DA turnover relative to control (CON 0.78 ± 0.14 

vs. WD 0.32 ± 0.07, p< 0.05, t= 2.55, df= 8; Fig. 4.4F). 
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Figure 4.4. HPLC analysis in rats fed a WD compared to CON. (A) DA and DOPAC levels 

in the PFC. (B) DA and DOPAC levels in the striatum. (C) DA and DOPAC levels in the 

HPC. (D-F) HPLC analysis of DOPAC to DA ratio in the PFC, striatum and HPC, 

respectively. n= 5 per group. Data represented as mean ± SEM. *p< 0.05. 

  



Chapter 4 

152 

4.4. Discussion 

Here we have shown that WD consumption increases 5-HT2C and 5-HTT but not 5-HT2A 

receptor expression levels in the striatum. In addition decreased DA level in the striatum and 

a reduction of DA turnover in the HPC was observed in WD animals. These neurotransmitter 

changes were also observed to be independent of any change in spontaneous alternation 

behaviour. 

We show that WD exposure increased striatal levels of 5-HT2C receptor expression by 14%, 

but not 5-HT2A receptor expression, as measured by western blot. A small number of studies 

have investigated the effect of HFDs on 5-HT2A and 5-HT2C receptor expression. An 

autoradiography study using a non-specific ligand, [125I]DOI targeting both 5-HT2A/2C 

receptors, in mice fed a 40 kcal% fat diet for 20 weeks reported no change in dorsal striatum 

5-HT2A/2C binding density, but significantly higher receptor levels in hypothalamic areas such 

as the anterior olfactory nucleus and ventromedial hypothalamic nucleus (Huang et al., 2004). 

Meanwhile the same group of researchers using autoradiography demonstrated that rats fed 

beef tallow, a source of saturated fat, for 8 weeks had a reduction in both 5-HT2A and 5-HT2C 

receptor binding density in the dorsal striatum compared to control counterparts using 

[3H]ketanserin and [3H]mesulergine as binding ligands respectively (du Bois et al., 2006). 

Pharmacological agonism of 5-HT2C and 5-HT2A receptors have been reported to decrease 

food intake (Fox et al., 2010, Martin et al., 1998, Schreiber and De Vry, 2002). Moreover, 

although 5-HT2C and 5-HT2A receptors are of close homology, 5-HT2C knockout mice display 

lifelong hyperphagia that develops into late-onset obesity (Nonogaki et al., 2003), while 5-

HT2A knockout mice demonstrate no change in food intake or body weight (Weisstaub et al., 

2006). This indicates that while they are structurally similar, these receptors are functionally 

distinctive. In addition to its effect on food consumption, 5-HT2C and 5-HT2A receptors show 
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a regional and cellular distribution within the central nervous system in brain areas associated 

to learning and memory processes (Barnes and Sharp, 1999, Buhot et al., 2000). 5-HT2C and 

5-HT2A receptors have been shown to have opposing roles on inhibitory control and 

impulsivity. Infusion into the nucleus accumbens of a 5-HT2A receptor antagonist decreases 

impulsivity while infusion of a 5-HT2C receptor antagonist increases impulsivity in a 5-choice 

serial reaction task (Robinson et al., 2007, Winstanley et al., 2004). Moreover agonists of 5-

HT2A receptors enhance Pavlovian memory consolidation and agonists of 5-HT2C receptors 

impair Pavlovian memory consolidation (Meneses, 2003).  

We are the first to show that 12 week WD exposure also increased 5-HTT expression 

compared to controls. The effect of HFDs on 5-HTT binding appears to be region specific 

with reported increases in hypothalamus (Koopman et al., 2013, Levin and Dunn-Meynell, 

2002, Okuda et al., 2014, Rowland, 1994) but a decrease of mRNA levels in the dorsal raphe 

(Collin et al., 2000). Huang et al. also investigated 5-HTT binding using autoradiography 

(Huang et al., 2004). Although HFD exposure caused no differences in 5-HTT binding in the 

striatum, a reduction in the nucleus accumbens and median raphe nuclei was observed 

(Huang et al., 2004). In the WD group, increased 5-HTT may result in lower 5-HT 

availability at synapses, and the increase in 5-HT2C receptor expression could be an attempt to 

compensate for lowered 5-HT levels. 

Several rat obesity models have reported reductions of 5-HT and 5-hydroxyindoleacetic acid 

(primary 5-HT metabolite, 5-HIAA) content in the ventral medial hypothalamus (Shimizu et 

al., 1994), brainstem (Kimbrough and Weekley, 1984) and also HPC (Krishna et al., 2016, 

Zemdegs et al., 2015). In the striatum, after 10 day HFD exposure 5-HT content was not 

changed, however 5-HT release was reduced (York et al., 2010). In addition 4 week 10% 

saturated fat exposure was shown to reduce 5-HIAA content (Kirac et al., 2009). 
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Interestingly, short term use of drugs that increase extracellular 5-HT via inhibition of 5-HTT 

reduce food intake and result in a decrease in body weight in animals (Simansky, 1996) and 

humans (Heisler et al., 2006, Simansky and Vaidya, 1990). Conversly, long-term use of 

selective 5-HT reuptake inhibitors has been associated with obesity (Fava et al., 2000, Raeder 

et al., 2006). 

The presented results also demonstrated that WD consumption for 12 weeks causes a 

dysregulation of the dopaminergic system in both the HPC and striatum, as reflected by a 

significant decrease of DA levels in the striatum and DA turnover in the HPC in WD rats 

compared to controls. Our findings parallel data observed by Ma et al. who also showed a 

decrease of DA levels and no change in DA turnover in the striatum of rats fed a 60 kcal% 

HFD for 13 weeks (Ma et al., 2015). Interestingly, upon first exposure to a HFD, DA release 

was elicited in the nucleus accumbens and PFC, detected by microdialysis (Bassareo and Di 

Chiara, 1997). However, repeated exposure to food rewards severely blunted DA release, 

suggesting a form of habituation (Bassareo and Di Chiara, 1997). Results by Baladi et al. 

using chronoamperometry indicated a decrease in DA turnover in the striatum however this 

was independent to any observed changes to body weight in HFD rats (Baladi et al., 2015).  

In animal models of obesity, a consistent finding is the reduction of DA levels in the nucleus 

accumbens observed in ob/ob mice (Fulton et al., 2006), diet-induced obesity rats (Geiger et 

al., 2008, Pothos et al., 1998), cafeteria diet model (Geiger et al., 2008) and HFD exposed 

mice (Carlin et al., 2013). Mice fed a 60 kcal% fat diet for 12 weeks also had a decrease of 

DA levels and increased DA turnover in the PFC (Carlin et al., 2013). High fat diet exposure, 

even as short as 5 days, has been shown to reduce basal DA levels in the nucleus accumbens 

(Rada et al., 2010). The reduction in DA levels at least in the nucleus accumbens is suggested 

to be due to reduced stimulated DA release and vesicle size (Geiger et al., 2008, Pothos et al., 
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1998). Additionally, DA reuptake has been observed to decrease independent of DA 

transporter protein gene expression in rats fed a HFD, thought to be due to interference in DA 

transporter trafficking or maturation (Petrovich et al., 2007). 

It could be hypothesized that WD consumption alters D2 receptor expression which can lead 

to the neuroadaptive response to decrease DA levels in the striatum and DA turnover in the 

HPC. It is known that the D2 receptor plays an inhibitory role in dopaminergic transmission 

in the mesolimbic dopaminergic system (Nestler, 1994). Previous observations have shown 

an inverse correlation between adiposity and striatal D2 binding in HF fed mice (Huang et al., 

2005), rats (Johnson and Kenny, 2010) and obese humans (Davis and Fox, 2008).  

Our lab has previously considered the possibility that the cholinergic system is associated 

with spatial deficits caused by WD consumption (Kosari et al., 2012). Nonetheless using 

immunohistochemistry we reported no change in acetylcholinesterase activity, the enzyme 

responsible for the metabolism of acetylcholine, in the HPC and striatum after WD 

consumption (Kosari et al., 2012). In this chapter, we show that that WD consumption 

selectively increases 5-HT2C receptor and 5-HTT expression levels in the striatum, as well as 

inducing a reduction of DA level in the striatum and DA turnover in the HPC. These findings 

were independent of any spontaneous alternation behaviour change.  
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Chapter 5 - Spatial reference and working memory 

deficits in a neonatal overfeeding model of obesity 
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5.1. Background and rationale 

The early life nutritional environment has been shown to influence body weight and has 

important repercussions for metabolism and weight regulation. As such, a critical window of 

significant vulnerability to long-term programming of health and disease occurs in the days to 

weeks after birth (Spencer et al., 2006, Spencer and Tilbrook, 2011, Spencer, 2012). The 

neonatal overfeeding model of obesity involves pups suckled in small litters, allowing for 

greater access to dam’s milk, which are observed to be significantly heavier when compared 

to normal sized control litters by post natal day 7 (Stefanidis and Spencer, 2012). This 

observed increase in weight is persistent throughout life (Boullu-Ciocca et al., 2005, Morris 

et al., 2005, Stefanidis and Spencer, 2012). These animals also have altered stress responses 

(Spencer and Tilbrook, 2009) and exacerbated inflammatory response to an 

lipopolysaccharide challenge (Calvo et al., 2014, Clarke et al., 2012, Ziko et al., 2014).  

Accumulating evidence indicates that obesity stimulates a chronic, low-grade inflammatory 

response, provoking the recruitment and activation of immune cells (including mast cells, 

macrophages, and dendritic cells) in metabolic tissues and particularly in adipose tissues, and 

also induces recruitment and activation of other cells, such as adipocytes, thus reinforcing the 

inflammatory process (Lumeng and Saltiel, 2011, Sell et al., 2012). Of particular interest is 

central inflammation in the HPC and hypothalamus that may converge leading to cognitive 

impairment. HFD consumption in animals elevates the expression of pro-inflammatory 

cytokines and activation of the pro-inflammatory transcription factor nuclear factor κB in the 

hypothalamus (De Souza et al., 2005). Whereas in the HPC, increased microglial activation 

(Lull and Block, 2010), astrogliosis, and elevated TNF-α protein has been observed in mice 

once fed a HFD (Jeon et al., 2012, Puig et al., 2012).  

http://topics.sciencedirect.com/topics/page/NF-%CE%BAB
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Research investigating the relationship concerning cognition impairments in juvenile obesity 

animal models is still in its infancy stage. How the neonatal nutritional environment can alter 

learning and memory has yet to be determined. Research investigating the relationship 

concerning cognitive impairments in juvenile obesity animal models is still in its infancy. We 

aim to test if spatial memory function may be impaired in a single trial-single test behavioural 

test, the Y-maze, and a multi-trial spatial memory test, the delayed win-shift task in the radial 

arm maze (DWSh), in adult rats made obese due to neonatal overfeeding. To investigate this 

hypothesis, we assessed spatial memory function in the Y-maze test and also evaluated 

spatial reference and working memory using the DWSh task in the neonatal overfeeding 

model of obesity. 

 

5.2. Methods 

5.2.1. Animals 

Pregnant Wistar rat dams arrived at RMIT University animal facility from Animal Resources 

Centre, Australia. A total of 40 offspring rats were used in the first study (n= 20 male, n= 20 

female), spatial memory testing in the Y-maze. A second cohort of male offspring rats (n= 10 

per group) were used to assess spatial reference and working memory in the DWSh task.  

Rats were housed at RMIT University animal facility, a controlled environment (20 ± 1°C) 

with 12-h light/dark cycle (lights on at 07:00 h), with food and water ad libutum in the home 

cage. The experiments were performed in accordance with the Prevention of Cruelty to 

Animals Act 1986 and with approval from the RMIT University Animal Ethics Committee. 

5.2.2. Litter Size Manipulation  
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On the day of birth (P0), pups were removed from their dams and randomly reallocated to 

new dams in litters of 12 (control litter, CL) or 4 (small litter, SL). No dam received any of 

her own pups and each new litter comprised 50% males and 50% females. Excess pups were 

culled. At P21, animals were weaned into same-sex, same-treatment pairs. This manipulation 

results in SL pups being significantly heavier by P7 and heavier throughout life (Smith and 

Spencer, 2012, Spencer and Tilbrook, 2009, Stefanidis and Spencer, 2012). After weaning, 

the rats were left undisturbed, except for the usual animal husbandry, until experimentation in 

adulthood (P70).  

5.2.3. Spatial memory in the Y-maze 

The Y-maze was a three-arm maze with equal angles between all arms (50 cm long ×17 cm 

wide × 32 cm high). Rats were habituated twice to the maze for 5 min to become familiarised 

with the testing environment. On the test day, rats were allowed to explore the maze for 10 

min, having access to two of the three arms (home, or start arm, and familiar arm). The rat 

was then returned to its home cage for a 4 h ITI during which the maze was cleaned with 

70% ethanol. The rat was then again placed back into the maze, this time having access to all 

arms for 5 min. Both trial and test phases were recorded using a Legria FS200 digital video 

camcorder (Canon, Japan) for subsequent behavioural analysis. The number of entries to the 

novel arm and the time rat spent in each arm was recorded manually by stopwatch. 

5.2.4. Food restriction 

One week prior to the start of behavioural training, rats were food restricted to 85% of their 

daily food intake. Body weight was monitored twice weekly to ensure rats did not fall below 

85% free-feeding weight. Food restriction was maintained for the entire duration of 

behavioural testing.   
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5.2.5. Delayed win-shift task in the radial arm maze 

The DWSh test was performed as described in Section 3.2.4. In brief, rats were habituated to 

the RAM and then underwent a total of 25 training sessions with 2 sessions performed per 

day consisting of a 5 min training phase, 5 min delay phase where the rat was returned to the 

home cage and a 5 min test phase. 

For analysis purposes, 2 days of testing (4 training sessions) were grouped into a single 

block. An arm entry was recorded when the animal fully moved off the central platform into 

the arm. Two types of errors were recorded: within phase error (working memory error, re-

entry of an arm that has been baited and has been visited) and across phase error (reference 

memory error, entry into a training phase baited arm).  

5.2.6. Statistical analysis 

All data are presented as mean ± SEM. A p-value of < 0.05 was considered statistically 

significant. Statistical comparisons were made between groups by repeated measures two-

way ANOVA for DWSh performance data and two-way ANOVA for Y-maze data.  

 

5.3. Results 

5.3.1. Spatial memory in the Y-maze 

In the Y-maze, litter size did not affect the number of entries in the novel arm (F(1,36)= 1.35, 

p= 0.25, Fig. 5.1A, nor was there an observed effect of gender x litter size in the number of 

entries into the novel arm (F(1,36)= 0.20, p= 0.66). However, females in both CL and SL were 

observed to enter the novel arm more than males (F(1,36)= 12.90, p= 0.001).  
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The measure of the time spent in the novel arm, there was no effect of litter size (F(1,36)= 0.04, 

p= 0.85 or gender x litter size (F(1,36)= 1.06, p= 0.31, Fig. 5.1B). Both CL and SL females 

spent more time in the novel arm compared to their male counterparts (F(1,36)= 42.34, p< 

0.0001). These results indicate that there was no impairment of spatial memory in either male 

or female SL rats. 

Gender was also observed to affect distance travelled in the Y-maze (F(1,36)= 20.44, p< 

0.0001; Fig. 5.1C), with males moving less than females (p< 0.05). No difference in distance 

travelled between CL and SL groups for both genders (F< 1). 
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Figure 5.1. Spatial memory test in the Y-maze. (A) Number of entries into the novel arm, (B) 

Time spent in the novel arm, (C) Total distance travelled in Y-maze behavioural test. n= 10 

per group. Data expressed as mean ± SEM, *p< 0.05, *** p< 0.001.  
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Figure 5.2. Performance in test phase DWSh task. (A) Number of correct arm choices before 

error in each session of training. (B) Total number of working errors in each session of 

training. (C) Number of reference errors in each session of training. n= 10 per group. Data 

expressed as mean ± SEM. A: *p< 0.05 in CL compared with CL block 1. B, C: *p< 0.05 in 

CL compared with CL block 7; #p< 0.05 in SL compared with SL block 7 (criterion).  



Chapter 5 

164 

5.3.2.Performance in the delayed win-shift task 

The CL group commenced the training phase with a significantly greater number of working 

memory errors but had improved by block 2 (trials 5-8, significant effect of block: F(6,120)= 

4.46, p < 0.001; Fig. 5.2A). There was no effect of litter size (F(1,120)= 0.014, p= 0.91) nor 

litter size x block effect (F(6,120)= 2.31, p= 0.038). 

In the test phase, there was no observed litter size effect (F(1,120)= 0.124, p= 0.73) or litter size 

x block effect (F(6,120)= 0.83, p= 0.55). There was a significant improvement in working 

memory only in the CL, but this was not apparent until block 7 (trial 25, p< 0.05). The CL 

rats also improved significantly more quickly in their reference memory in the test phase 

(significant effect of block: F(6,120)= 7.91, p< 0.001; Fig. 5.2C). By block 3 (trials 9-12) CL 

errors were statistically not distinguishable from criterion (block 7; trial 25), whereas the SL 

rats were still making more errors than at criterion until block 6 (trials 21-24, p< 0.05).  

 

5.4. Discussion 

In this study we investigated the effect of neonatal overfeeding on the DWSh in the radial 

arm maze and the Y-maze. Our results demonstrate that neonatally overfed rats had impaired 

memory in the DWSh task but not in the Y-maze. 

The slower acquisition of the DWSh task by the SL animals can be contrasted to studies 

performed in post-weaning HFD (dietary manipulation beginning at approximately 3 weeks 

of age) and in utero HFD exposure juvenile models of obesity using the MWM to assess 

spatial learning and memory. A number of studies show that juvenile HFD exposure did not 

impair learning acquisition in the MWM (Boitard et al., 2014, Goldbart et al., 2006, Lepinay 

et al., 2015, White et al., 2009a). In subsequent probe trials, HFD animals were shown to 

have no impairment 2 h post learning (Boitard et al., 2014), but with an increased learning-
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probe time of 2-4 days a memory deficit was observed (Boitard et al., 2014, Goldbart et al., 

2006, Lepinay et al., 2015, Page et al., 2014). These studies suggest that juvenile HFD 

exposure has a detrimental effect on spatial memory consolidation and recall. Furthermore, 

research by Boukouvalas et al. indicate that juvenile exposure to 45 kcal% HFD for 3 weeks 

is insufficient to affect acquisition, consolidation or recall of the MWM task (Boukouvalas et 

al., 2008), whereas 8 week HFD exposure of similar fat content in juvenile rats impairs 

spatial memory consolidation and recall (Boitard et al., 2014, Goldbart et al., 2006). These 

results imply a time dependent influence of juvenile HFD exposure to impair spatial 

consolidation and recall in the MWM. Transient inactivation of either the HPC or PFC by 

bilateral injection of lidocaine has been shown to impair performance in the DWSh task 

(Floresco et al., 1997). This could be indicative of a hippocampal or PFC dysfunction in 

neonatally overfed rats. 

Interestingly using a generational in utero model of obesity, HFD-fed dams exhibited no 

impairment of spatial memory, however their pups took longer to find the hidden platform in 

the MWM regardless of dietary manipulation denoting a spatial memory acquisition 

impairment (Page et al., 2014, White et al., 2009a). Pups from pregnant rats fed a control diet 

did not display any spatial memory deficit (Page et al., 2014, White et al., 2009a). This 

indicates that maternal diet may also play an influential role in reducing the capacity for 

spatial memory acquisition.  

The contrasting results in juvenile models of obesity between the reported no change in 

acquisition rate in the MWM and our observed impaired spatial memory acquisition in the 

DWSh task could potentially be due to these two behavioural tasks burdening motivational 

and motor systems differentially (Hodges, 1996, Ormerod and Beninger, 2002). The MWM 
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task is aversively motivated since animals have to swim to escape a pool of water. The 

DWSh task is appetitively motivated where animals gain food rewards.  

In the Y-maze, we show that neonatal overfeeding does not affect spatial acquisition, 

consolidation or recall in adult males and females. In contrast to our study, one research 

group has reported impairment of spatial memory following juvenile HFD exposure using 

similar one trial-one test behavioural tasks. Long-Evans rats fed a HFD consisting of 58 

kcal% fat for 12 weeks from weaning reported a spatial memory deficit using the 

spontaneous alternation task and NOIP behavioural tests (Underwood and Thompson, 2016b, 

Underwood and Thompson, 2016a). The memory deficit observed in these HFD females was 

independent of significant weight gain, fasting blood glucose or glucose tolerance change 

(Underwood and Thompson, 2016a). Authors suggest that young females exposed to HFDs 

are at larger risk of developing cognitive deficits. 

Considering this model our colleagues have previously shown that neonatally overfed rats 

manifest hypothalamic inflammation, with microgliosis in the paraventricular nucleus of the 

hypothalamus and an increase in the hypothalamic expression of pro-inflammatory genes 

(Cai et al., 2014, Ziko et al., 2014). In collaboration, we demonstrated that neonatally overfed 

rats also exhibited microgliosis in the HPC after 14 days overfeeding and this persisted into 

adulthood (De Luca et al., 2016). Furthermore, these changes were associated with poor 

performance in DWSh task and NORT relative to controls (De Luca et al., 2016). This 

provides evidence that central inflammation may be involved with impairments of spatial 

memory acquisition observed in neonatally overfed rats.  

In this chapter, we show that that neonatally overfed rats did not display impairment in spatial 

memory when tested in the Y-maze test. However in a behavioural task which requires the 

constant updating of new information, the DWSh task, neonatally overfed rats took longer to 
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learn than control litter rats. The possible mechanism by which this occurs may be due to 

inflammation in the HPC. 
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Chapter 6 - Memory and anxiety-like measures in 

an Alzheimer’s disease transgenic mice model fed a 

western diet  
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6.1. Background and rationale.  

Although ageing and genetic predisposition are undoubtedly the predominate risk factors for 

developing AD, epidemiological and clinical studies also substantiate the association with 

obesity (Anstey et al., 2011, Besser et al., 2014, Gustafson et al., 2012, Panza et al., 2010, 

Solfrizzi et al., 2004, Whitmer et al., 2005) and resulting comorbidities, including type 2 

diabetes (Barnes and Yaffe, 2011, Biessels et al., 2006, Kloppenborg et al., 2008, Kivipelto et 

al., 2001, Norton et al., 2014). The protracted period that precedes clinical manifestation of 

AD constrains the capability to obtain information on subtle changes in brain chemistry. 

Furthermore the non-existence of definitive AD diagnosis until an autopsy has been 

conducted has posed a considerable challenge in human studies. As such, transgenic animal 

models are beneficial for AD research. 

The widely used APPswe/PS1dE9 (APDE9) double transgenic mouse model of AD expresses a 

chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and mutant human 

presenilin 1 (PS1-dE9). These two mutations are related with familial AD and based on the 

amyloid hypothesis, which hypothesises an increased production or decreased removal of the 

APP proteolytic fragment, amyloid β-protein (Aβ), as the primary cause of AD (Hardy and 

Selkoe, 2002). These mice have been shown to display Aβ plaques in both the HPC and 

cortex by 4-6 months of age (Jankowsky et al., 2004, Volianskis et al., 2010). Behaviourally 

these mutant mice were also shown to have impaired passive avoidance behaviour (Phillips et 

al., 2011). Transient long term potentiation, the molecular basis of memory, has also been 

shown to be reduced in the HPC of these mice (Volianskis et al., 2010). Furthermore, at 6 

months of age, APDE9 mice took longer to learn and made more incorrect decisions in the T-

maze indicating a spatial learning and retention impairment (Phillips et al., 2011). Mutant 

mice tested in the MWM also displayed severely impaired performance with longer latencies 
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to reach a hidden platform at 8-16 months of age (Butovsky et al., 2006, Lalonde et al., 2005, 

Malm et al., 2007, O'Leary and Brown, 2009). This performance deficit in spatial learning 

ability may be present as early as 3 months of age (Gimbel et al., 2010) but others have 

shown no deficits at 6 months of age (Minkeviciene et al., 2008, Savonenko et al., 2005).  

Using the APDE9 transgenic mice model of AD, we hypothesise that visuo-spatial learning 

and memory is impaired as previously observed. Furthermore, this impairment of visuo-

spatial memory would be potentiated by weight gain through WD consumption. To 

investigate this hypothesis, we determined whether WD consumption altered the metabolic 

profile, spatial memory and anxiety measures in aged APDE9 transgenic mice. 

 

6.2. Methods 

6.2.1. Animals 

Forty 12 month old APDE9 transgenic mice with C57BL/6 background were graciously 

obtained from Associate Professor Siew Yeen Chai from Monash University. Male APDE9 

transgenic mice and C57BL/6 wild type controls were bred at Monash University (Clayton, 

Melbourne, Australia) and transported to RMIT University (Bundoora, Melbourne, Australia) 

for dietary manipulation and subsequent behavioural assessment.  

Mice were group housed at RMIT University animal facility, a controlled environment (20 ± 

1°C) with 12-h light/dark cycle (lights on at 07:00 h), with food and water ad libutum in the 

home cage. Behavioural tests were performed from 9:00 h to 19:00 h in a dedicated animal 

behaviour room. The experiments were performed in accordance with the Prevention of 

Cruelty to Animals Act 1986 and with approval from the RMIT University Animal Ethics 

Committee. 
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Seven mice were excluded from analysis as these mice died during the dietary manipulation 

period. Necropsies completed by the animal welfare officer here at RMIT revealed that mice 

died from strokes and/or old age. Two mice were excluded in Y-maze data analysis due to 

failure to move in acquisition and test phases. 

6.2.2. Dietary manipulation 

All animals were allowed to acclimatise after delivery for at least 1 week before 

commencement of dietary manipulation. Mice were fed one of two diets: either CON diet 

(SF04057, Speciality feeds, Australia) or WD (SF00-219, Speciality feeds, Australia) for a 

period of 8 weeks. The nutritional content of each diet is as seen in Table 2.1. 

6.2.3. Open field test 

Locomotor activity was assessed as described previously in Section 2.2.8. In brief, mice were 

placed individually in the test chamber for 10 min to monitor locomotor activity. Total 

distance travelled and average velocity was measured by Med Associates activity monitor 

software, version 4.  

6.2.4. Spatial memory in the Y-maze 

The Y-maze test was performed as described in Section 5.2.3. In brief, mice were habituated 

to the Y-maze and on the test day, mice were allowed to explore the maze for 10 min, having 

access to two of the three arms (home, or start arm, and familiar arm). The mice was then 

returned to its home cage for a 1 h ITI during which the maze was cleaned with 70% ethanol. 

The mice were then again placed back into the maze, this time having access to all arms for 5 

min. Both trial and test phases were recorded using a Legria FS200 digital video camcorder 

(Canon, Japan) for subsequent behavioural analysis. The number of entries to the novel arm 

and the time mice spent in each arm was recorded manually by stopwatch. 
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6.2.5. Light/dark preference test 

The light/dark preference test was performed as described in Section 2.2.9. In brief, number 

of entries and total time spent in either light or dark areas of the box was measured during the 

10 min test. 

6.2.6. Body composition 

At 8 weeks post diet, body composition (fat and lean mass, free water, and total water) of all 

mice was assessed by an EchoMRI™ Whole Body Composition Analyzer (EchoMRI™-900, 

EchoMRI, USA). Body fat composition was calculated by determining total fat (g) divided 

by total body weight (g) and expressed as a percentage. 

6.2.7. Glucose tolerance test 

At the end of the study, mice were fasted overnight, and then a glucose tolerance test (GTT) 

performed. Blood samples were collected from a single wound made by cutting the tip of the 

tail. Blood glucose levels were measured before and after an i.p. injection of D-glucose (2 

g/kg of a 0.5 g/ml solution) at 5, 10, 20, 30, 45, 60, 90, and 120 min using a commercial 

glucose testing kit (ACCU-CHEK, Roche Diagnostics, Germany). The trapezoidal rule was 

used to determine the area under the curve (AUC). 

6.2.8. Statistical analysis 

All data are presented as mean ± SEM. A p-value of < 0.05 was considered statistically 

significant. Statistical comparisons were made between groups by repeated measures three-

way ANOVA for body weights and glucose levels, two-way ANOVA for all other data. 

Further analysis by a post hoc Bonferroni's t-test was performed if a significant effect was 

detected by the ANOVA. 
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6.3. Results 

6.3.1. Animals 

There was a significant percentage of weight change over time for all groups (time effect: 

F(7,91)= 7.90, p< 0.001; Fig 6.1A).  WD exposed mice of both phenotypes also increased their 

body weight at a more pronounced rate than CON (diet x time: (F(7,91)= 22.47, p< 0.001). No 

effect of time x phenotype (F(7,91)= 1, p= 0.44) or time x phenotype x diet effect (F(7,91)= 1.64, 

p= 0.11) was observed. WD exposure was shown to significantly increase fat mass to body 

weight ratio (F(3,29)= 54.61, p< 0.0001; Fig. 6.1B). Both WT (p< 0.0001) and APDE9 (p< 

0.0001) WD fed mice had higher fat content compared to their control diet counterparts. 

6.3.2. Glucose tolerance testing 

Fasting blood glucose levels were not found to be different among the groups (WT Con: 6.64 

± 0.63 mmol/l, WT WD: 8.36 ± 0.30 mmol/l, APDE9 Con: 8.88 ± 0.64 mmol/l, APDE9 WD: 

8.23 ± 0.56 mmol/l). During the GTT, there was a change of glucose levels over time [time 

effect: (F(8,216)= 37.95, p< 0.001)]. WD exposure over time affected body weight [time x diet 

effect: (F(8,216)= 22.47, p< 0.001)] as well as an interactive effect of diet x phenotype x time 

effect: (F(8,216)= 2.15, p= 0.03). No diet or time x phenotype effect was observed (all F< 1). 

WD exposure in ADPE9 mice significantly decreased glucose tolerance as evidenced by 

increased blood glucose level from 30 to 90 min (p< 0.01). 

The glucose area under the curve of the animals was affected by diet (F(1,12)= 5.91, p= 0.03) 

and transgenic phenotype (F(1,12)= 5.61, p= 0.04) but no diet x transgenic phenotype was 

observed (F(1,12)< 1, p= 0.58). Post-hoc analysis shows that APDE9 mice fed a WD had 

significantly higher glucose AUC than CON WT mice (p< 0.01). 
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Figure 6.1. Metabolic measures. (A) Change in body weights during 8 weeks of feeding of 

CON or WD in WT and APDE9 mice. (B) Percentage fat composition of WT and APDE9 

transgenic mice fed a WD for 8 weeks. n= 6-9 per group. Data expressed as mean ± SEM, 

#p< 0.05 to APDE9 CON, †p< 0.05 to WT CON, ****p< 0.0001.  
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Figure 6.2. Glucose tolerance testing. (A) Blood glucose levels during GTT. (B) Area under 

the curve (AUC) of blood glucose profiles. n= 5-9 per group. Data expressed as mean ± 

SEM, #p< 0.05 compared to APDE9 CON, †p< 0.05 compared to WT CON and WT WD, 

*** p< 0.001.  
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6.3.3. Locomotor activity 

There was no effect of diet (F(1,29)= 2.62, p= 0.12), transgenic phenotype (F(1,29)= 4.02, p= 

0.06) nor diet x transgenic phenotype (F(1,29)< 1, p= 0.80) on distance travelled in the basal 

locomotor activity test. Velocity during the basal locomotor activity test was also assessed. 

No effect of diet (F(1,29)= 1.71, p= 0.20), transgenic phenotype (F(1,29)< 1, p= 0.92) nor diet x 

transgenic phenotype (F(1,29)= 1.85, p= 0.16) on velocity was observed. 

 

Table 6.1: Basal locomotor activity of APDE9 and WT mice fed CON or WD.  

  WT CON WT WD APDE9 CON APDE9 WD 

Distance (cm) 1254 ± 190 1091 ± 149 1382 ± 86 1298 ± 195 

Velocity (cm/s) 61 ± 10 47 ± 9 66 ± 20 54 ± 12 

 

6.3.4. Light/dark preference 

WD consumption regardless of transgenic phenotype significantly reduced the number of 

entries into the light area (F(1,29)= 10.12, p= 0.0035, Table 6.2). No transgenic phenotype 

effect (F(1,29)= 2.26, p= 0.14) or any post-hoc differences were observed. WD consumption 

also reduced the amount of time spent in the light area (F(1,29)= 7.56, p= 0.01). 

 

Table 6.2: Number of entries and time spent in light area of the light/dark preference test of 

APDE9 and WT mice fed CON or WD 

 WT CON WT WD APDE9 CON APDE9 WD 

Light area entries 24.33 ± 2.19 15.88 ± 2.25 32.17 ± 6.74 18.5 ± 2.99 

Light time (s) 400.59 ± 17.50 446.95 ± 23.79 360.45 ± 37.19 434.46 ± 20.40 

  



Chapter 6 

177 

 

 

 

Figure 6.3. Spatial memory test in the Y-maze. (A) Number of entries into the novel arm, (B) 

Time spent in the novel arm of APDE9 and WT mice fed CON or WD. n= 6-10 per group. 

Data expressed as mean ± SEM, *p< 0.05. 

  



Chapter 6 

178 

6.3.5. Spatial memory in the Y-maze 

There was no observed change in the number of entries in the novel arm between groups due 

to diet (F(1,27)= 2.33, p= 0.14), transgenic phenotype (F(1,27)< 1, p= 0.89) or diet x transgenic 

phenotype effect (F(1,27)< 1, p= 0.46; Fig. 6.3A). WD consumption also did not affect the time 

spent in the novel arm (F(1,27)= 2.72, p= 0.11) nor was there a diet x transgenic phenotype 

effect (F(1,27)< 1, p= 0.71). However, there was a significant effect of transgenic phenotype 

alone to affect time spent in the novel arm (F(1,27)= 6.42, p= 0.02). Post-hoc analysis revealed 

that WD fed APDE9 mice spend significantly less time in the novel arm in contrast the WT 

controls (p< 0.05; Fig. 6.3B). This suggests that the APDE9 mice had impaired spatial 

memory compared to WT controls. 

 

6.4. Discussion 

In this study we investigated the potential additive effect of WD exposure on metabolics 

markers and behaviour in the transgenic APDE9 AD mice model. WD exposure significantly 

caused a 21% increase in WT mice and a 27% body weight increase in APDE9 mice. Total 

fat content was markedly augmented by approximately 25% and 21% in WT and APDE9 

mice, respectively compared to control diet counterparts. Transgenic phenotype and diet were 

not shown to influence basal locomotor activity with no change in distance travelled and 

velocity in the open field test. Furthermore, anxiety levels measured by the light/dark 

preference test revealed no significant differences between WD exposed or APDE9 mice.  

In the Y-maze, APDE9 mice that consumed WD spent less time in the novel arm compared 

to WT CON indicating a spatial memory deficit. WD exposure alone in WT mice was 

insufficient to produce a spatial memory deficit which suggests an additive effect of APDE9 

phenotype and WD exposure to impair spatial memory. Our results are in concordance with a 
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MWM study where 27 weeks of HFD consumption impaired memory performance compared 

to APDE9 control diet mice (Ramos-Rodriguez et al., 2014).In subsequent probe trails 

APDE9 mice, regardless of diet, were shown to have impairment 24 h post learning and with 

increasing probe time of 72 hr, impairment was more pronounced in HFD exposed APDE9 

mice (Ramos-Rodriguez et al., 2014). When we consider the Tg2576 model, a spatial 

memory deficit was observed in HFD fed Tg2576 mice denoted by a longer escape latency 

(Winstanley et al., 2004) at an age where Tg2576 mice have yet to develop a spatial memory 

deficit (King and Arendash, 2002). 

It is noteworthy our results show that despite fasting blood glucose levels not being different 

between all groups, APDE9 WD mice interestingly showed impaired glucose tolerance 

(~90% increase of AUC compared to WT CON). We are unclear why this occurs, but this 

result has been replicated by our collaborators. Moreover it has been shown that APDE9 mice 

crossed with heterozygous leptin receptor deficient (db/+) mice developed glucose 

intolerance and insulin resistance, but had no change in fasting blood glucose, which support 

a link of AD models and obesity (Jiménez-Palomares et al., 2012).  

Previous studies have shown that the diabetes phenotype may accelerate memory impairment 

in other AD models (Ho et al., 2004, Takeda et al., 2010). AD transgenic mice (APP23) once 

crossed with ob/ob mice showed elevated fasting glucose and insulin levels and glucose 

intolerance and an exacerbated spatial memory deficit in the MWM compared to ob/ob mice 

(Takeda et al., 2010). Moreover, APP+-ob/ob mouse brains from this study showed increased 

vascular Aβ deposition and inflammation compared to WT, but no change compared to 

APP23 mice, tentatively suggesting that AD amyloid pathology may affect the pathogenesis 

of diabetes (Takeda et al., 2010). Another AD model using Tg2576 transgenic mice fed a 60 

kcal% HFD also showed an increase of body weight, glucose intolerance, and a >2 fold 
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increase of Aβ hippocampal generation relative to transgenic mice fed a control diet (Ho et 

al., 2004).  

Studies have also demonstrated commonalities between mechanisms triggered by Aβ plaque 

and mechanisms involved in peripheral insulin resistance in diabetes via defective brain 

insulin signalling (Bomfim et al., 2012, Craft, 2012, Ma et al., 2009, Takeda et al., 2011). 

One such mechanism through which HFD exposure in AD mice can significantly promote 

AD-type amyloidosis in the brain is through the impairment of insulin receptor signalling, 

resulting in elevation of γ-secretase, a protease complex which can cleave APP (Ho et al., 

2004). APDE9 mice fed a 45 kcal% HFD for 20 weeks showed a working memory deficit, 

assessed by NORT, which was independent to brain Aβ levels (Petrov et al., 2015). 

Significant decreases of insulin signalling and mitochondrial complex proteins suggests that 

mitochondrial dysfunction may also be a contributing factor to cognitive impairment in AD 

models (Petrov et al., 2015). In cell culture experiments, researchers have also shown that 

insulin may promote intracellular Aβ plaques accumulation through the acceleration of 

APP/Aβ trafficking to the plasma membrane (Gasparini et al., 2001).  

The presented results demonstrate that WD consumption for 8 weeks significantly increases 

body weight and fat content in both WT and APDE9 transgenic mice. Furthermore WD 

exposure impairs spatial memory, as assessed by the Y-maze, in APDE9 mice suggesting a 

link between the APDE9 phenotype and WD exposure to accelerate spatial memory deficits. 

Impaired glucose tolerance in APDE9 WD mice signify impaired insulin receptor signalling 

and may play a role in memory deficit. 
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Chapter 7 - General discussion  

  



Chapter 7 

182 

Obesity is a common problem worldwide, and is becoming more prevalent as countries 

become more affluent and industrialised. Consumption of a HFD, complemented with an 

increasing sedentary lifestyle, can dramatically increase this risk. Persistent and prolonged 

consumption of HFDs can instigate significant health impairments with dramatic increases in 

the risk of cardiovascular disease, type 2 diabetes and cancer. Recent epidemiological studies 

suggest an association with obesity and cognitive impairments. However, there is conflicting 

findings in both human clinical studies and animal studies on the presence and the exact 

nature of cognitive deficits seen in the obese phenotype. The studies undertaken in this thesis 

were designed to investigate the capacity of the obesity phenotype to impair specific types of 

cognitive behaviour in a rodent model. This was performed by examining behavioural 

outcomes in different animal models, being the WD and neonatal models of obesity. We also 

investigated whether cognitive impairments observed in the WD model of obesity is 

potentially mediated through the modification of higher order brain pathways. Moreover, we 

examined the interaction between AD and obesity to potentiate spatial memory impairments 

in APDE9 transgenic mice fed a WD. 

7.1. Summary of findings 

7.1.1. WD consumption effects on memory paradigms. 

In the first series of studies, we investigated whether WD consumption could sensitise food 

related cues and overwhelm internal physiological feeding control. 

Instrumental conditioning paradigm was performed in WD and CON animals. WD was 

shown not to affect instrumental conditioning acquisition using a random interval 30 

schedule. However, when tested in a progressive ratio instrumental conditioning task there 

was an observed reduced lever press response compared with control diet counterparts. 

Instrumental conditioning extinction was then tested under food deprivation. WD exposed 
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rats were not sensitive to motivational changes due to variations in states of food deprivation 

compared to control counterparts. Considering Pavlovian conditioning, there was no 

difference between WD and CON animals using a variable 90 s interval.  

Considering our previous usage of the WD model, these results were disappointing. However 

no one to date has shown a robust Pavlovian or instrumental conditioning deficit after 

manipulation of fat in the diet. One point to note is that we did not find consistent metabolic 

markers with the WD model of obesity in our two cohorts of animals considering they were 

of the same strain, had the same food source and were exposed to the same laboratory 

conditionings. In cohort one, WD animals were significantly heavier but no differences were 

observed in epididymal adipose tissue weight, while the opposite was found in cohort two. 

This suggests that the WD model of obesity may have variable effects amongst individuals. 

Conceivably the observed cognitive impairments reported in the literature may be associated 

with total adiposity rather than HFD consumption (see Section 7.2.1). 

Further to this, a third cohort (Chapter 3) demonstrated significant weight gain after WD 

consumption from week 8. We employed this cohort to investigate spatial memory in the 

DWSh task. WD did not affect acquisition or recall of the DWSh task indicated by (1) no 

difference in time required to criterion in the training phase nor (2) the number of within- and 

across-phase errors during the test phase between CON and WD rats.  

7.1.2. WD consumption alters brain neurochemistry. 

Considering the variable cognitive effects we have observed, we next turned to examining 

what brain changes occur as a result of WD consumption. Neuronal activation was 

determined in basal conditions and following environmental stimulation using Fos 

immunohistochemistry. The number of basal Fos neurons was unaffected by WD 

consumption in the PFC, striatum and HPC. However following environmental stimulation, 
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WD exposed rats had a selective increased number of immunoreactive Fos neurons in the 

striatum.  

The striatum is a convergence point for many different types of inputs all around the brain 

that include but are not limited to serotoninergic inputs (Pan et al., 2010b, Vertes, 1991) and 

dopaminergic (Nicola et al., 2000, Smith et al., 1994). Findings from Chapter 4 showed that 

WD consumption induced changes to the serotoninergic and dopaminergic systems. Western 

blot measurements showed a selective increase of 5-HT2C receptor and 5-HTT but not 5-HT2A 

receptor expression in the striatum. This increase was independent to any observed spatial 

memory deficit evaluated by the spontaneous alternation test in the Y-maze. The selective 

increase of expression may be due to negative feedback from reduced 5-HT concentration in 

the striatum however, total 5-HT levels would need to be measured to test this hypothesis.  

DA levels measured in the striatum were reduced in WD rats relative to control counterparts. 

DA turnover was also markedly reduced in the HPC of WD rats. Previous studies have 

reported that D2 receptor expression is also reduced in response to HFD feeding animals 

(Huang et al., 2005, Johnson and Kenny, 2010) and obese humans (Davis and Fox, 2008). It 

is known that D2 receptor plays an inhibitory role in dopaminergic transmission in the 

mesolimbic dopaminergic system (Nestler, 1994) and D2 knockout mice have demonstrated 

sensitivity to the locomotor and enhanced motivation for food reward in response to cocaine 

(Bello et al., 2011). Therefore, D2 receptor might be crucial in motivational behavioural 

responses food rewards. It could be hypothesized that WD consumption alters D2 receptor 

expression which can lead to the neuroadaptive response to decrease DA level in the striatum 

and DA turnover in the HPC.  
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7.1.3. Neonatal overfeeding can impair spatial memory acquisition in the DWSh task but not 

the Y-maze. 

Results from previous chapters indicate that WD consumption in adulthood can induce 

central neuronal and neurochemical changes, but not robust cognitive impairments. As such 

we turned our focus to a longer-term obesity model. The neonatal overfeeding model of 

obesity involves pups suckled in small litters, allowing for increased weight gain from P7 to 

adulthood. The early life nutritional environment can influence body weight and has 

important repercussions for metabolism and weight regulation as an adult. Our data from 

Chapter 5 indicated that although the early life over feeding model of obesity can cause 

significant weight gain in early life which persists until adulthood. Behavioural effects were 

variable. No impairment of spatial memory was observed in the Y-maze. However in the 

DWSh task, neonatally overfed rats made more spatial working memory errors than control 

litter counterparts indicating that adult neonatally overfed rats had an impairment of spatial 

memory acquisition. Work performed in conjunction with our collaborators, but outside the 

scope of this dissertation, indicate that central inflammation may be involved with 

impairments of spatial memory acquisition observed in neontally overfed rats (De Luca et al., 

2016). Neonatally overfed rats also exhibited microgliosis in the HPC after 14 days 

overfeeding and this persisted into adulthood whilst also associated with poor performance in 

DWSh task and NORT relative to controls (De Luca et al., 2016).  

7.1.4. Effect of WD consumption and APDE9 phenotype to impair spatial memory.  

By studying APDE9 transgenic mice we investigated the potential effect of WD consumption 

to accelerate AD behavioural pathogenesis. Findings from Chapter 6 show that both WT and 

APDE9 mice displayed a similar increase of weight and total fat percentage compared to 

control diet counterparts. Glucose intolerance was observed only in APDE9 WD mice and 
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not in WT WD mice or control diet equivalents. When we consider memory, a spatial 

memory deficit was only discernible in APDE9 mice fed a WD. This indicates again that WD 

consumption alone does not affect spatial memory.  

Speculatively and beyond the scope of this dissertation, defective brain insulin signalling has 

been seen in both AD and peripheral insulin resistance observed in diabetes which may be the 

fundamental mechanism underlying link between WD consumption and APDE9 phenotype to 

impair spatial memory (Bomfim et al., 2012, Craft, 2012, Ma et al., 2009, Takeda et al., 

2011).  

 

7.2. Conclusions to specific aims 

7.2.1. Are cognitive impairments associated with HFD consumption or weight gain? 

The aims of these animal models are to extrapolate to the human condition (HFD, obesity, 

cognitive impairment). It is clear from the previous literature there is much variability in 

experimental procedures and findings (Tables 1.2 and 1.3). Moreover in our laboratory, after 

developing multiple cohorts of rats fed the same composition of diet and fed for the same 

time period, variable amounts of weight gain, epididymal adipose tissue weight and cognitive 

performance was observed (Kosari et al., 2012, Jenkins et al., 2016, Ali et al., 2016, Nguyen 

et al., 2017), Chapters 2,3, and 4). 

The question exists whether HFD consumption itself or subsequent weight gain can influence 

cognitive status. The majority of rodent studies report body weight increases after HFD 

consumption and impairments in spatial learning and memory, motivation, Pavlovian 

conditioning, working memory and behavioural flexibility (Table 1.2). Thus, it is possible 

that increased adiposity and body weight per se might mediate the neurological perturbations, 
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as excess adipose tissue is highly metabolically active and is involved in several 

physiological and biochemical events such as inflammation, angiogenesis, hypertension, and 

vascular homeostasis.  

Nevertheless there have been some studies suggesting that cognitive impairments can be 

independent to any change of body weight after HFD consumption (Arvanitidis et al., 2009, 

Beilharz et al., 2016, Bocarsly et al., 2015, Boukouvalas et al., 2008, Francis et al., 2013, 

Hardy and Selkoe, 2002, Hargrave et al., 2016, Kanoski and Davidson, 2010, Kosari et al., 

2012, Underwood and Thompson, 2016a, White et al., 2009a). Indeed in the study from our 

laboratory, 12 weeks of 60 w/w% HFD feeding impaired spatial memory but actually caused 

a decrease in overall weight gain (balanced by an increase of calorific content) (Kosari et al., 

2012). Moreover, Kanoski and Davidson showed that HFD (40 kcal% fat) fed rats had a 

spatial working and reference memory impairment in the RAM that emerged as early as 72 h 

and was persistent till 10 days after HFD commencement without any change in body weight 

(Kanoski and Davidson, 2010). These data suggest that weight gain through the consumption 

of WD, or in broader context HFD consumption, is not a prerequisite for cognitive deficits 

observed in animal models of obesity. Furthermore WD consumption may not directly affect 

cognitive ability but is mediated through central and/or peripheral changes. 

7.2.2. Cognitive impairments and disparities between HFD animal studies. 

A challenge with the use of HFDs to induce an obese phenotype in animals is that there are 

variable parameters including duration of feeding, source of ingredients, and composition of 

dietary fat leading to varying responses in weight gain, glucose tolerance, insulin resistance, 

triglycerides, and other metabolic markers (Buettner et al., 2006, Ikemoto et al., 1996, Wang 

et al., 2002).  



Chapter 7 

188 

7.2.2.1. Duration of feeding 

The duration of HFD consumption that has been previously discussed in this thesis (see 

Table 1.2) have ranged from days to almost a year. Spatial memory impairments have been 

described as early as 72 hrs after HFD commencement in the RAM (Kanoski and Davidson, 

2010) and 10 days in the spontaneous alternation task (Hargrave et al., 2016). In our 

laboratory, we could not achieve consistent effects on cognition or metabolic markers after 3 

months dietary exposure.  

We can also not assume that there is a simultaneous effect on metabolic markers, brain 

changes and cognition. An interesting series of studies from the Chattipakorn laboratory, 

investigated this association. Rats were exposed to a HFD and when tested at 4 and 8 weeks 

after diet commencement there was no memory deficit in the MWM but a reduction of 

hippocampal long-term potentiation and long-term depression was observed (Pintana et al., 

2016, Pratchayasakul et al., 2015). After 12 weeks, once tested again in the MWM these rats 

did show an impairment of spatial acquisition (Pintana et al., 2016, Pratchayasakul et al., 

2015), demonstrating the timing difference in the presentation of molecular marker of 

memory and actual memory deficit. 

7.2.2.2. Fatty acid composition 

Fatty acid composition of the diet should also be considered as it may play a role in body 

weight regulation. It has been suggested that diets high in saturated fats induce the typical 

HFD phenotype, whereas diets high in polyunsaturated fatty acids (PUFA) and 

monounsaturated fatty acids (MUFA) may have less adverse and/or beneficial effects on 

body composition and insulin action (Abete et al., 2011, Shillabeer and Lau, 1994, Silva et 

al., 2006, Storlien et al., 1991, Storlien et al., 1996a, Storlien et al., 1996b, Takeuchi et al., 

1995). Saturated fats are more poorly used for energy and thus remain to be stored as 
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triglycerides whilst PUFAs and MUFAs are more readily used for energy when initially 

ingested (Leyton et al., 1987, Storlien et al., 2001). Different types of fatty acids display 

different metabolic behaviours such as oxidation and deposition rate differences that may 

contribute to weight change. The general consensus in animal studies is that the oxidation rate 

of the saturated fats decrease with increasing length of the carbon chains (McDonald et al., 

1980). While research suggest that MUFAs and PUFAs have higher oxidation rates than 

long-chain saturated fats (Marette et al., 1990). 

7.2.2.3. Source of dietary fat 

The source of fat and fatty-acid composition that comprise HFDs are inherently linked as 

most animal-derived fats are saturated fats and in contrast plants & fish-derived fats are 

generally unsaturated fats. The source of the fat component in these diets can vary between 

animal-derived fats (e.g., lard, fish oil or beef tallow) and plant oils (e.g., corn or safflower 

oil) (Buettner et al., 2007). Several epidemiological studies have showed the potential 

adverse effects of saturated fats on increasing the risk of developing cancer (Leosdottir et al., 

2005, Staessen et al., 1997), cardiovascular disease (Chen et al., 2011, Tucker et al., 2005) 

and mortality (Kromhout et al., 2000) whilst purporting the positive effects of fish oil 

(Gopinath et al., 2011, Konig et al., 2005, León et al., 2008, Yamagishi et al., 2008). 

Although research suggests that fats derived from animals and plants can produce comparable 

physiological responses, e.g. weight gain, hyperglycaemia, hyperinsulinemia, and 

hypertriglyceridemia after several weeks of consumption in animals (Buettner et al., 2007). 

However, fat derived from fish has been described to engender obesity resistance by 

decreasing body weight, serum insulin and glucose (Holness et al., 2003, Levy et al., 2004), 

triglycerides and induce hypertrophy of visceral fat pads (Yaqoob et al., 1995, Buettner et al., 

2007).  (Catta-Preta et al., 2012). Animal-derived HFD consumption has been reported to 
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produce impairments in behavioural flexibility measured by the VIDA task with the degree of 

impairment being highly associated with the level of animal-derived fat (Greenwood and 

Winocur, 1996, Greenwood and Winocur, 1990, Winocur and Greenwood, 1999). Further 

experiments are required to accurately compare and provide a qualitative measure whether 

different sources of fats and proteins can indeed influence cognition.  

7.2.2.4. Source of dietary protein 

The protein source in the diets may affect the induction of the obese phenotype and 

associated cognitive impairment due to the presence of soy. Soy represents the main protein 

source in almost all natural-ingredient commercially available formulated diets and contains 

phytoestrogens, a plant compound structurally similar to estradiol that can mimic its effects 

by binding to estrogen receptors (Lephart et al., 2004, Thigpen et al., 2004). The 

concentration of phytoestrogens in any diet is directly correlated with the soybean content 

(Thigpen et al., 1999, Thigpen et al., 2004). There are consistent reports that males 

outperform females in spatial memory tasks and are suggested to be due to presence of 

estradiol (Frye and Sturgis, 1995, Luine et al., 1998, Warren and Juraska, 1997). Oral 

administration of estradiol or phytoestrogens can result in a dose-dependent improvement in 

the performance of the RAM tests (Lephart et al., 2002, Pan et al., 2000, Pan et al., 2010a). 

As such, HFDs containing phytoestrogens derived from soy may attenuate or conceal its 

potential deleterious effects on cognition. 
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7.3. Future directions 

7.3.1. Dopaminergic and serotoninergic systems 

Our data suggests that WD consumption impairs dopaminergic system in the striatum and 

HPC. The specific mechanism, by which WD consumption modifies the dopaminergic 

system whether it is by DA synthesis, re-uptake or metabolism, is still unknown. Further 

experiments are required to determine whether WD consumption can induce any changes to 

DA receptor expression as well as the ability to alter DA synthesis and metabolism. There is 

a need to examine DA re-uptake with labelled DA to examine whether intracellular levels are 

reduced. 

Another consideration is the serotoninergic system and whether 5-HT2C receptor and 5-HTT 

expression changes are not localised only in the striatum but in other areas of the brain. 

HPLC analysis of 5-HT and its primary metabolite, 5-hydroxyindoleacetic acid should also 

be performed to ascertain to what extent the serotoninergic system is perturbed. 

7.3.2. Adipokines 

Beyond the scope of this PhD dissertation, the interactions of the adipokines, such as 

adiponectin and leptin, with cognitive impairment would be an interesting research prospect. 

As adipocytes produce a number of endocrine hormones that contribute to the regulation fat 

storage. An increase of visceral fat observed in obesity can reduce lipid storage capacity, 

leading to increased lipolysis and release of free fatty acids, inflammatory agents, and 

disturbed adipokine release (Engfeldt and Arner, 1988, McQuaid et al., 2011).  
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7.3.2.1. Adiponectin 

Adiponectin is the most abundant anti-inflammatory adipokine that has the ability to interfere 

with lipid synthesis & storage, neoglucogenesis and peripheral utilisation of glucose as well 

as modulating immune responses (Ouchi et al., 2003, Yamauchi et al., 2001). Preclinical 

studies suggest that adiponectin may induce weight loss by centrally increasing energy 

expenditure (Qi et al., 2004) and can also protect hippocampal neurons against chemical 

induced cytotoxicity (Qiu et al., 2011). Furthermore, central administration of adiponectin for 

1 week has been reported to increase of neuronal dendritic spines, dendritic arborisation and 

proliferation of neural progenitor cells in the adult DG (Zhang et al., 2016). In humans, 

obesity has been associated with lower levels of adiponectin than normal weight counterparts 

in both children (Stefan et al., 2002) and adults (Arita et al., 1999, Cnop et al., 2003, Jurimae 

et al., 2009, Matsubara et al., 2002). Whereas studies investigating the link between 

adiponectin and AD or MCI remains unclear with a study reporting lower serum adiponectin 

levels associated with worse cognitive performance (Teixeira et al., 2013) whereas others 

have reported either a non-significant change (Bigalke et al., 2011, van Himbergen et al., 

2012) or increase of adiponectin levels (Gu et al., 2010, Une et al., 2011) when compared to 

healthy counterparts. Authors do suggest the discrepant results may be due to the differences 

in cognitive status characterisation and sample sizes between studies (Teixeira et al., 2013). 

There is scarce data concerning adiponectin and its involvement in higher brain function. 

Only one study has investigated the role of adiponectin and learning behaviour. This study 

observed that infusions of adiponectin into the DG of the hippocampus in fear-conditioned 

mice facilitated extinction of contextual fear (Zhang et al., 2017). Adiponectin deficiency did 

not affect acquisition of contextual fear but impaired extinction learning (Zhang et al., 2017). 

Deletion of adiponectin receptor protein 2, but not adiponectin receptor protein 1, enhanced 

fear expression suggesting a link between adiponectin and learning (Zhang et al., 2017). 
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7.3.2.2. Leptin 

Leptin is an adipokine involved in the regulation energy homeostasis by interfering with 

hypothalamic signalling that controls long-term caloric intake and fat stores (Elmquist et al., 

1998, Friedman, 2010, Farr et al., 2014). Leptin also has been shown to be involved in 

memory processes with leptin deficient mice having impairments in hippocampal long-term 

potentiation & long-term depression (Harvey et al., 2006, Li et al., 2002, Shanley et al., 

2001), spatial memory in the T-maze (Farr et al., 2006). Whilst central administration of 

leptin improved performance in the RAM task (Paulus et al., 2005), MWM task (Oomura et 

al., 2006) and also has been reported to facilitate hippocampal long-term potentiation 

(Oomura et al., 2006, Wayner et al., 2004). Obese humans and animals have elevated serum 

leptin and impaired physiological responses to exogenously administered leptin, and are 

hence considered leptin-resistant (Caro et al., 1996, Considine et al., 1996, Frederich et al., 

1995, Halaas et al., 1997). Additionally, serum leptin levels have also been reported to be 

negatively associated with AD risk (Jane et al., 2014, Johnston et al., 2011, Lieb et al., 2009).  

7.3.3. Tumour necrosis factor (TNF)-alpha 

Tumour necrosis factor (TNF)-alpha is a cytokine involved in systemic inflammation mainly 

produced by macrophages but also by a broad variety of cell types such as mast cells and 

neurons. Its primary role is the regulation of the acute phase reaction of inflammation where 

it can induce fever, stimulate phagocytosis, and apoptotic cell death. Within the brain TNF-α 

regulates synaptic transmission, synaptic plasticity and neurogenesis. (Montgomery and 

Bowers, 2012). Thus it has a broad range of actions which can be either neuroprotective or 

neurotoxic. Obesity is characterized by low-grade inflammation both in peripheral tissues and 

in hypothalamic areas critical for energy homeostasis (Das, 2001, Thaler et al., 2012). 



Chapter 7 

194 

Overweight and obese children and adults have elevated serum levels of TNF-α and serum-

soluble TNF receptor p55 (sTNF-RI), which are closely associated with cardiovascular risk 

factors and cardiovascular and non-cardiovascular causes of death (Das, 2001). Whilst an 

intervention of regular exercise decreased BMI, percentage body fat, serum TNF-α and 

sTNF-RI (Tsukui et al., 2000, Zahorska-Markiewicz et al., 2000). In mice, differences in 

cognitive performance have been associated with TNF-α gene polymorphisms and TNF-α 

knockout mice display cognitive dysfunctions in a variety of tasks involving learning and 

retention, spatial learning/memory, cognitive flexibility, and learning effectiveness (Baune et 

al., 2008, Beste et al., 2010). The authors note that the absence of TNF was correlated with 

poor cognitive functioning and the deletion of both TNF-receptors reduced cognitive 

functioning (Baune et al., 2008)  

Consequently it would be important to inspect potential changes in adiponectin, leptin, 

circulating inflammatory agents such as TNF-α and adipokine levels in response to WD 

consumption and examine possible associations to cognitive impairment. 

 

7.4. Overall Conclusion 

The results of this PhD thesis have demonstrated that the obese phenotype induced by WD 

consumption singlehandedly does not affect cognition in the assortment of behavioural tasks 

employed testing different aspects of conditioning, motivation and spatial memory. Our 

biochemical data suggest that WD consumption induces central changes, particularly in the 

striatum. It is still unclear if the central biochemical changes presented in this thesis are 

associated with impairments of learning and memory reported in the literature. It is 

conceivable that these central biochemical changes precede impairment of learning and 

memory. Cognitive impairment arising from HFD consumption may be due to an interaction 
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of many external factors, such as diet duration and composition, but also internal factors such 

as consequent changes to neurotransmitter systems, central inflammation and signalling. This 

thesis also shows that neonatal overfeeding does not impair spatial memory in a one-trial one-

test spatial memory task but does diminish acquisition of the multi-trial spatial memory 

DWSh task. Furthermore, in an AD animal model we demonstrate that WD consumption 

alone does not affect spatial memory but there could possibly be interplay between the 

APDE9 mice phenotype and WD consumption having a deleterious effect of spatial memory. 
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