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Resumo 
 
 

A biocatálise, e em particular a evolução dirigida de enzimas e posterior 

expressão em bactérias, permitiu aos químicos obter moléculas complexas com 

elevada estéreo- e regiosseletividade e baixo impacto ambiental. A Monoamina 

oxidase de Aspergillus niger (MAO-N) é uma oxidase, dependente de FAD e 

oxigénio, que catalisa a desaminação de aminas primárias. No Manchester 

Institute of Biotechnology foram efetuadas rondas sucessivas de evolução 

dirigida desta enzima, que permitiram a oxidação e resolução de aminas 

secundárias e terciárias. Contudo, não se encontra descrita na literatura a 

oxidação de compostos dimetoxilados com MAO-N. 

O uso de tetra-hidroisoquinolinas (THIQs) quirais na indústria farmacêutica é 

cada vez mais comum devido às suas importantes propriedades 

antimicrobianas, antibióticas, anti tumorais ou antimuscarínicas. Assim, é cada 

vez mais necessário o desenvolvimento de métodos de síntese assimétrica 

destes compostos. 

Neste trabalho procurámos funcionalizar THIQs através de métodos 

biocatalíticos. Para tal, estudámos a atividade várias variantes da MAO-N com 

derivados da THIQ. Os dados obtidos foram usados para a construção de uma 

nova variante capaz de oxidar a (S)-6,7-dimetoxi-1,2,3,4-tetra-hidroisoquinolina 

com um rendimento de 60%. Foi também efetuada a resolução de várias THIQs 

com as variantes de MAO-N disponíveis.  

Por fim, neste trabalho foi desenvolvida uma cascata enzimática com três passos 

sem purificação intermédia para a síntese de ácidos 1,2,3,4-tetra- 

-hidroisoquinolina-1-carboxílicos. Foram obtidas 1-cianotetra-hidroisoquinolinas 

com rendimentos superiores a 50% e o ácido tetra-hidroisoquinolina-1- 

-carboxílico com um rendimento de 13% (e.e. 88%). 

 

 

  



 

 

  



  

Keywords 
 

1,2,3,4-Tetrahydroisoquinoline; green chemistry; biocatalysis; directed 

evolution; substrate scope; 1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid; 

unnatural amino acids. 

Abstract 
 

Biocatalysis, and particularly the directed evolution of enzymes and further 

expression in bacterium, has allowed chemists to obtain complex molecules with 

improved stereo and regio-selectivity, at high reaction rates and with a low 

environmental impact. Monoamine oxidase from Aspergillus niger (MAO-N) is a 

FAD and oxygen dependent oxidase that catalyses the deamination of primary 

amines. Successive rounds of directed evolution at the Manchester Institute of 

Biotechnology have allowed the oxidation and deracemisation of secondary and 

tertiary amines with MAO-N variants. Nevertheless, significant activity of these 

mutants with dimethoxylated substrates is yet to be reported. 

Chiral tetrahydroisoquinoline (THIQ) derivatives are increasingly common in the 

pharmaceutical industry due to their antimicrobial, antibiotic, antitumor or 

antimuscarinic properties, demanding for easy and highly selective methods for 

their synthesis. 

In this work, we used biocatalytic methods to functionalize THIQs. First, we 

studied the substrate scope of MAO-N variants with several THIQs, and used the 

data obtained to construct a new mutant capable of oxidizing 

(S)-6,7-dimethoxy-1-methyltetrahydroisoquinoline with approximately 60% yield. 

Moreover, the deracemisation of several THIQs with MAO-N variants was 

performed with success.  

Finally, a one pot three step cascade using two distinct enzymes was developed 

for the selective synthesis of tetrahydroisoquinoline-1-carboxylic acids from 

simple tetrahydroisoquinolines, at low temperatures and in water.  

1-Cyanotetrahydroisoquinolines were obtained with good yields (>50%), and 

tetrahydroisoquinoline-1-carboxylic acid was obtained with 13% yield and 88% 

e.e.. 
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1.1 α-CHIRAL AMINES AND THEIR IMPORTANCE IN THE CHEMICAL 

INDUSTRY 

1.1.1 Overview 

Since the discovery of chirality by Louis Pasteur more than a century ago, its importance has 

spread to all areas of industrial and pharmaceutical chemistry.1 In fact, more than half of 

currently marketed drugs present a chiral centre and an increase in these values, driven by 

the rise in drug complexity, is expected.2 These compounds are usually administered in their 

cheaper racemic form, an equimolar mixture of both enantiomers, but history has shown that 

possible health hazards can mandate the use of an enantiopure drug. A common example can 

be found in Contergan®, an over-the-counter drug from the mid-20th century. This medicine 

contained the active ingredient thalidomide as a racemate and was widely advertised for the 

relief of morning-sickness in pregnant women. However, while (R)-thalidomide (2) was an 

effective sedative with great pharmaceutical properties, the (S) enantiomer (1) was 

teratogenic to foetus (Figure 1), causing severe malformations in over 10,000 children.3 An 

additional boost in the search for enhanced enantiopure drugs arose with FDA’s “chiral 

switch” program, fastening the approval procedure for single-enantiomer drugs from 

previously used racemic active principles (APIs).4 

 

Figure 1. Both enantiomers of thalidomide 

Chiral amines, particularly ones with an asymmetric carbon in α-position, represent a 

significant part of chiral drugs, as seen in the examples with relevant pharmacological 

application in Figure 2. Their potential extends to other chemical areas, providing useful 

scaffolds for chiral catalysts5, resolving agents6 and ligands in metal complexes7 for diverse 

applications. 
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Figure 2. Examples of α-chiral amine-based drugs currently marketed 

1.1.2 Synthetic routes to single-enantiomer α-chiral amines 

Various reliable routes for the synthesis of substituted amines have been developed and are 

extensively reported elsewhere.8,9 Similarly, several techniques have been reported in the 

search for their pure chiral analogues, by either chiral synthesis or posterior resolution.10 

Unfortunately, these methods still pose concerns, either by their low versatility, long            

multi-step procedures, low yields or selectivity or high environmental impact. Besides, even 

optimal laboratory procedures may not be adequate for industrial application due to 

complicated separation methods. The most common methods for the synthesis of 

enantiopure chiral amines are concisely explained in the following topics. 

1.1.2.1 Asymmetric synthesis 

Asymmetric synthesis encompasses the creation of a chiral centre from a prochiral 

compound, using either a chiral auxiliary or a chiral catalyst. In the first approach, a 

stoichiometric amount of a suitable compound is introduced and covalently bounds to a 

prochiral molecule to form an asymmetric centre with a particular configuration. Cleavage 

of the auxiliary leads to a pure chiral product. Instead, a chiral catalyst can be used in small 

amounts to increase the selectivity of a reaction involving a stereogenic centre, for example, 

by coordinating with the substrate. In both cases the cost of the chiral compound and its 
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separation process from the reaction product, as well as its recyclability, can be a major 

factor in the scale up of such processes.11 

Several synthetic routes have been developed according to these criteria. The asymmetric 

reduction of imines or enamides, either aliphatic or aromatic, with chiral Lewis bases12, 

metal complexes13 or organocatalysts14 can be considered the preferential route in large-

scale synthesis. Nevertheless, selective amination from aldehydes (reductive amination) or 

alkenes (hydroamination) along with some more complex approaches can also be used.10,15 

An example is found in the 2009 synthesis of sitagliptin (9), the API in the antihyperglycemic 

Januvia® (Scheme 1). The use of a rhodium catalyst for the enantioselective hydrogenation 

of the enamine (8) allowed, at the time, for a new one-pot route with high yield and purity 

(>95% e.e.), combined with a large reduction in waste production.16 

 

Scheme 1. Final step in the industrial synthesis of Sitagliptin by Merck & Co, Inc. 

 

1.1.2.2 Chiral pool synthesis 

“Chiral pool” is a synthetic strategy that uses cheap and easily obtainable enantiopure 

substrates as the starting point in the synthesis of complex chiral compounds, therefore 

eliminating the need for final resolution steps. This approach has some limitations as 

common chiral substrates are limited to some amino acids, hydroxy acids, sugars and other 

alkaloids. Still, techniques have been reported that allow inversion in the configuration of 

the enantiopure substrate, increasing the scope of this strategy.17 An example of a chiral pool 
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approach can be seen in the synthesis of tryptoline derivatives (11) from chiral tryptophan 

derivatives (10) (Scheme 2).18 

 

Scheme 2. Synthesis of tryptolines from chiral tryptophan derivatives. 

1.1.2.3 Crystallization 

Preferential crystallization stands as one of the first routes to obtain enantiopure compounds. 

In consists in the chemical property, first defined by Louis Pasteur, that some racemates tend 

to crystalize in mixtures of enantiopure crystals, that is, an enantiomer has a greater affinity 

to crystalize in a crystal of the same isomer.19 Unfortunately, only a small fraction of racemic 

compounds can be resolved by this technique. A particular downside is that even full 

recovery of the wanted isomer achieves only 50% yield.1 

An alternative technique with limited applicability was also found by Pasteur in 1853.20 

Diastereomer crystallization comprises the separation of an enantiomer by selective 

crystallization of the salt formed with a readily available enantiopure compound, alias, 

resolving agent. Praziquantel (PZQ) (12), to this moment the main API used in the treatment 

of schistosomiasis, is presented as an example. Besides not having any therapeutic effect, 

(S)-PZQ is extremely bitter and therefore undesirable in the formulation. Unfortunately, the 

presence of an amide bond has hindered the development of an asymmetric synthesis. 

Nevertheless, the diasteromeric crystallization of (13) with (-)-dibenzoyl-L-tartaric acid, 

followed by recrystallization, neutralization, extraction with dichloromethane (DCM) and 

acylation, to form (R)-Praziquantel (15) has recently been reported with 33% yield and 97% 

e.e. (Scheme 3). Moreover, the resolving agent could be recycled with 89% yield.21 
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Scheme 3. Diastereomer crystallization for the synthesis of (R)-PZQ 

 

1.1.2.4 Kinetic resolution 

Kinetic resolution explores the different reactivity of the enantiomers in a racemic mixture 

with a given compound, allowing a simple separation of the reacted and unreacted species. 

The final purpose of this technique is the selective full conversion of only one enantiomer, 

allowing a theoretical maximum yield of 50%.22  

A different and more appealing variant to this resolution method is the dynamic kinetic 

resolution (DKR). This approach allows a yield above 50% by assuming that both isomers 

are interchangeable during the reaction, sometimes using a catalyst to drive the process.23 

Recently, a different DKR methodology has been applied where a non-chiral reaction 

product, formed by a selective reaction with one isomer, is converted back to the reagent, 

with a non-selective catalyst, in a racemic manner. After several cycles, it is theoretically 

possible to obtain an enantiopure compound. 

In fact, DKR is experiencing an exponential growth driven by the recent boom in biocatalysis 

and genetic engineering. Enzymes are great catalysts due to their high selectivity, low cost 

and mild reaction conditions but, until now, the need to use reagents close to the enzyme’s 
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natural substrate has hindered further investigation. However, the consistent drop in the price 

of gene sequencing and synthesis and the large investment in the development of this area 

have supported the discovery of a broad range of enzymes and further appearance of several 

engineered enzymes with a wide substrate scope. The advantages and disadvantages of 

enzymatic dynamic kinetic resolution in current organic synthesis, by comparison with its 

chemical counterpart, are briefly presented in Figure 3.23 

 

 

Figure 3. Visual comparison between chemical and enzymatic DKR. 

 

One example of an enzymatic DKR is found in an article by Yasukawa et al., where both 

(R) (17) and (S) (18) enantiomers of simple amino acids could be obtained from their nitrile 

analogue (16) by a cascade reaction with a non-selective nitrile hydratase from Rhodococcus 

opacus and either a D-aminopeptidase from Ochrobactrum anthropic or a L-amino acid 

amidase from Brevundimonas diminuta (Scheme 4). Remarkably, α-amino-ε-caprolactam 

(ACL) racemase from Achromobacter obae was used in the interconversion of both amide 

enantiomers.24 
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Scheme 4. Synthesis of enantiopure amino acids by the DKR of racemic α-amino nitriles. 

1.1.3 Tetrahydroisoquinoline as an important building block in the chemical 

industry 

1.1.3.1 Overview 

The large family of isoquinolines alkaloids is ubiquitous in chemical research, with broad 

occurrence in nature and extensive application in all areas of industrial chemistry. Among 

them, the 1,2,3,4-tetrahydroisoquinoline (THIQ) scaffold (19) (Figure 4) has been 

extensively studied for its natural incidence in plants and humans.25 The interest in these 

particular compounds began with allegations of their relationship with chronical alcoholism 

and role in behavioural disorders. Studies in the expression of THIQ and its relation with 

blood alcohol levels in the brain began as early as 1934, but only in 1970 was any definitive 

evidence presented. It was shown that ethanol is oxidised to acetaldehyde by alcohol 

dehydrogenases in the brain, which then readily reacts with neurotransmitters to form 

THIQ’s such as salsolinol (21) (Figure 5).26 Studies have shown that some THIQs can be 

partially responsible for chronic alcoholism, greatly stimulating alcohol consumption. 

Nevertheless, several theories in the mechanism through which these heterocyclic 

compounds are synthesized remain unopposed.27 
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Figure 4. Structure of THIQ and atom number nomenclature adopted in this work 

Further research has determined that dopamine (20) derived THIQs such as salsolinol (21) 

and norsalsolinol (22) (Figure 5) actively modulate neurotransmission, catecholamine 

biosynthesis and mitochondrial activity28, particularly by its interaction with monoamine 

oxidase (MAO)29. Although no unequivocal proof has been reported, THIQ’s have also been 

greatly associated with Parkinson disease and attention-deficit/hyperactivity disorder 

(ADHD)30. It is reported that research in this area can potentially lead to new treatments 

based on THIQ’s. 

 

Figure 5. Structure of THIQ’s associated with brain disorders. 

1.1.3.2 Current applications 

The presence of a wide range of natural THIQ alkaloids and the previously mentioned 

studies of their impact in the human body lead to the development of derivatives with a wide 

range of biological activities. Indeed, these compounds have shown antidiuretic activity 

through the selective inhibition of M3 muscarinic receptors31, sleep-promoting activity by 

the inhibition of orexin receptors 1 and 232, anti-HIV (human immunodeficiency virus) 

activity by the inhibition of HIV-1 reverse transcriptase33 and high anticancer activity against 

breast cancer cells34. Moreover, some derivatives have proven to be good inhibitors of            

P-glycoproteins, transporter proteins associated to drug resistance and brain diseases such as 

Parkinson and Alzheimer.35  

Three sub-classes of THIQ’s with distinctive structures are presented in Figure 6. First, 

tetrahydroisoquinoline-3-carboxylic acid (TIC) derivatives (23) are constrained analogues 

of phenylalanine and its use in peptide-based drugs36 has shown remarkable potential for the 



Chapter I. Introduction 

11 

 

treatment of atherosclerosis, opioid-dependence, hepatitis C, among others. Quinapril 

(Accupril®: Pfizer) is, at the moment, the most important TIC derivative, acting as an 

angiotensin-converting-enzyme (ACE) inhibitor for the treatment of hypertension. Second, 

norcoclaurine (24), a 1-benzyltetrahydroisoquinoline found in high concentration in the 

fruits of Nandina domestica, is used as fat-burner and a mild anti-asthmatic.37 Derivatives 

of this scaffold include morphine and codeine, analgesics, aporphine, an antipsychotic, and 

tubocurarine, a muscle relaxant. Finally, protoberberine alkaloids such as berberine (25) are 

extensively marketed as food supplements for diabetics38 but have shown relevant 

cardiovascular, anti-cancer, anti-depressive and anti-inflammatory activities.39 

 

Figure 6. Examples of THIQ compounds in three major sub-classes with important 

biological activities. 

1.1.4 Asymmetric synthesis of C1 substituted tetrahydroisoquinolines 

To this day numerous methods have been reported for the synthesis of THIQs. In fact, the 

challenge presented in the stereo centre in C1 has also encouraged scientists to develop 

asymmetric routes to these compounds. Three common approaches towards C1 substituted 

THIQ’s - the Pictet-Spengler (A), Bischler-Napieralski (B) and Pomeranz-Fritsch-Bobbitt 

(C) reactions - are presented in this work, as seen in Scheme 5. Nevertheless, today’s 

scientists still struggle with its synthesis, as no method reported is without flaw. 
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Scheme 5. Main routes towards the asymmetric synthesis of 1-substituted THIQ’s. 

The Pictet-Spengler reaction was discovered more than 100 years ago, in 1911, for the 

synthesis of THIQ and it is now one of the most important reactions in the synthesis of 

heterocyclic compounds.40 Over the last 25 years, the remarkable progress in the asymmetric 

form of this synthesis has spurred a new area of investigation. Chemically, it is generally 

performed in aprotic solvents with acid catalysis and comprises the condensation of a 

phenylethylamine derivative (26) with an aldehyde (27) to form an iminium intermediate 

(28). This species is promptly attacked by the aromatic ring’s π system and restores 

aromaticity to form a THIQ (34) (Scheme 5).41 Several catalysts have been explored towards 

this synthesis, including chiral auxiliary groups42, Lewis and Brönsted acids43, 

organocatalysts44, among others. 

Notably, an enzymatic Pictet-Spengler synthesis of THIQs has also been developed through 

the use of norcoclaurine synthase (NCS), responsible in nature for the synthesis of                

(S)-norcoclaurine.45 Although wide applicability of this enzyme for                                                          

1-benzyltetrahydroisoquinolines is still to be reported due to its very limited substrate scope 

(it required a 7-OH aromatic substituent46), a remarkable bioengineering experiment allowed 

the expression of the THIQ alkaloid magnoflorine (39) using a combination of NCS, 

methyltransferases (MTs) and cytochrome P450 (CYP).47 A summary of the metabolic 

pathway can be seen in Scheme 6.  
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Scheme 6. Cascade enzymatic synthesis of magnoflorine from simple and available 

substrates.47  

The Bischler-Napieralski reaction, followed by hydrogenation, can also be used in the 

asymmetric synthesis of THIQ’s. An acylated dopamine derivative (29) reacts with 

appropriate catalyst, usually POCl3, P2O5 or ZnCl2, to form an iminium intermediate that 

promptly cyclizes into a 3,4-dihydroisoquinoline (30). This compound can then be 

asymmetrically reduced by a variety of methods to form the desired THIQ’s (34) (Scheme 

5).48  

Finally, the Bobbitt modification to the Pomeranz and Fritsch synthesis of quinolines allows 

for a rather complex synthesis of THIQ’s. In fact, this route requires two reductions to reach 

the target molecule or a reaction of the imine group prior to the final cyclization-                                 

-hydrogenation step. First, a N-benzyliminoacetaldehyde diethyl acetal compound (33) is 

formed by reaction of the free benzylaldehyde derivatives (31) with (32) (Scheme 5). The 

imine group is either reacted or reduced to its amine analogue and this intermediate is 

reductively cyclized to afford the desired core (34).49 Although not common in THIQ 

synthesis, this method has been successfully applied towards the synthesis of 

protoberberines, for example by Grajewska et al.50, where the presence of the imine 

intermediate proved advantageous as a reactive site for further functionalization.  
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1.2 BIOCATALYSIS: A GREEN PATH IN CHIRAL AMINE SYNTHESIS 

1.2.1 Overview 

The chemical synthesis of enantiopure chiral compounds often requires a compromise 

between yield and enantiomeric purity. Existing industrial procedures usually require 

additional resolution steps, greatly reducing the final yield and increasing the E-factor.51 In 

fact, by 2007, the pharmaceutical industry presented the highest E-factor, ranging from 25 

to 10052, due to rather complex chiral targets. Therefore, it has shown a particular interest in 

the development of cost-effective, sustainable alternatives to these resolution methods.53  

Nowadays, the development of biocatalytic synthetic methods can be highly appealing in 

synthetic chemistry due to the use of cheap, non-toxic and renewable catalysts that can 

achieve extremely high selectivity at mild pH, temperature and pressure conditions and with 

low waste production.54,55 Still, the use of water as a non-toxic solvent can limit the 

concentration of non-polar substrates and demand a final extraction step, leading to higher 

production costs.56 One acclaimed use of enzyme catalysis in industrial amine synthesis is 

the transaminase (TA)/pyridoxal phosphate (PLP) selective reductive amination of a 

diketone sitagliptin intermediate (40) (Scheme 7), substituting the previously mentioned 

chemical method (Scheme 1).57  

 

Scheme 7. TA catalysed amination in the synthesis of sitagliptin 

Biocatalysis can be defined, as said by Bornscheuer et al., as “the application of enzymes 

and microbes in synthetic chemistry, [using] nature’s catalysts for new purposes (…)”.58 Its 

first applications in chemical synthesis consisted in the direct use of cell extracts to convert 

a given substrate into a desired molecule. Since then, it has evolved to increase enzyme 

activity towards unnatural molecules, for example, through the use of evolution and 

heterologous expression techniques. Today’s research in biocatalysis focuses on two main 

challenges: the discovery and engineering of enzymes with broad substrate scope for the 
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production of complex chiral molecules, and the scale-up of these catalytic systems to 

industrial applications, increasing enzyme stability and maximum substrate concentration. 

In the following topic, the various steps required in a full biocatalytic research are described. 

1.2.2 Development of an enzymatic synthesis: main steps 

1.2.2.1 Enzyme discovery 

Enzyme discovery stands as the basis for all biocatalytic development. Traditionally, new 

enzymes were discovered by the culture of environmental samples with media enriched with 

a suitable substrate. However, this process was time consuming and not reliable in the 

discovery of specific enzymes. Moreover, over 99% of all microbes are still unculturable 

today. Fortunately, breakthroughs in deoxyribonucleic acid (DNA) sequencing and 

computer processing power allowed for more methodical alternatives such as 

metagenomics.59 

In metagenomics, the entire DNA of a given environmental sample is extracted and cloned 

into bacterial cloning vectors for later expression. The library of genes ultimately generated 

can then be sequenced and searched for homologous enzymes (Figure 7 - A). Although 

sometimes inaccurate, homology proposes that the similarity in structure presented by 

different enzymes can correspond to similar activities.  

A more thorough approach requires the phenotypic screening of all expressed enzymes from 

the environmental DNA with a substrate of interest (Figure 7 - B), followed by sequencing 

of the most promising results. Several more recent metagenomic approaches can be explored 

in the reference presented.60 
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Figure 7. Metagenomics in gene discovery 

1.2.2.2 Enzyme production: expression and purification 

In the XX century, the development of enzymatic synthesis proceeded at a slow pace, 

hindered by long production and purification procedures. In fact, the isolation of enzymes 

from their native species - animals, plants, fungi or bacteria – for biocatalysis proved to be 

sometimes laborious and inefficient, encouraging scepticism in future industrial 

applications. The discovery of recombinant DNA in 1970 revolutionized this field, allowing 

scientists to express a given enzyme in a different host – heterologous expression. 

Nowadays, recombinant expression is widely used, with most enzymes overexpressed in 

bacterial or fungal hosts. Typical organisms include Escherichia coli and Pichia pastoris 

due to their high expression, easy culture and accessible genetic manipulation. Moreover, 

commercial strains of these organisms have been genetically modified to increase either 

plasmid replication or translation, to reduce the number of endonucleases and to increase 

growth rate. The engineered strain can then be used for either cloning or expression 

purposes.61 

Several factors must be taken into account in the heterologous expression of protein. First, a 

pure sample of the gene of interest must be inserted into a suitable plasmid. A plasmid is a 

DNA molecule with self-replicating abilities, containing an appropriate origin of replication. 

This unit can also contain, among others, a transcription toolbox, markers for antibiotic 
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resistance and one or several genes. Circular plasmids are used in E. coli for extensive 

replication in the cytoplasm while linearized plasmids are used in P. pastoris for insertion in 

the host’s genome.62,63 

The plasmid must then be passively transported through the cell’s membrane to the 

intracellular medium. For that, it requires an increased membrane permeability generated by 

the exposure to harsh physical conditions, in a procedure called transformation. In E. coli a 

sudden rise in temperature in the presence of divalent cations is enough to force plasmid 

DNA to enter the cell through the cell pores (heat shock), while in P. pastoris a more delicate 

procedure is required to avoid cell damage where an electrical current can generate transient 

holes in the cell’s membrane (electroporation).62,63 Finally, the recombinant cell can be 

grown in an appropriate culture and purified with one of the procedures extensively reported 

elsewhere.64 

One additional topic must be addressed for the reader to fully understand the following work. 

Codon bias defines the preference of each organism for specific degenerate codons over 

others, establishing that adverse consequences can arrive from “silent mutations”. According 

to the literature, codon bias can affect protein folding and influence protein expression for a 

factor up to 1000. Several causes have been identified for this phenomenon, including 

differences in tRNA (transfer ribonucleic acid) and codon frequency, in the spacial proximity 

between codons recognized by the same tRNA and in the unfavourable interactions between 

specific consecutive tRNA’s.65 

Two different strategies can provide a quick solution to these problems. First, it is suggested 

that expression in a more complex organism, with a larger genome, can reduce the impact 

of frequency bias. This method can be particularly effective if the new organism has a 

smaller genetic distance to the native one. In alternative, and more effectively, it is now 

possible to codon-optimize a gene for a target organism with carefully designed algorithms 

and create the modified gene by de novo synthesis. Nevertheless, the costs of DNA synthesis 

remain significant for most research groups and must be taken into account. Also, and as 

mentioned before, codon-optimization can be ineffective, as significant changes to the codon 

sequence can alter protein folding and lead to the expression of inactive enzyme.65,66 
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1.2.2.3 Enzyme engineering 

The emergence of enzymes as sustainable catalysts in the transformation of natural 

chemicals has driven research for its application in non-natural compounds as well. Synthetic 

biology has addressed this issue with the development of enzyme engineering. Early 

experiments in mutagenesis were laborious and full mutation of all amino acids in a given 

enzyme, followed by its phenotypic screening, is still not physically possible. To explain, 

even the complete mutation of a 10 amino acid long protein requires the screening of over 

10 trillion sequences. To further difficult enzyme optimization, the misconception of 

additivity - the activity of a double mutated enzyme can be predicted as an improved activity 

of the two single mutants - has been more recently replaced for epistasis, in which the effect 

of a mutation can be affected by the remaining protein sequence. This concept can be 

summarized by the “fitness landscape” presented in Figure 8, where the route towards the 

enzyme with optimum activity can go through several misleading local maximus and even 

mutations that, in that particular step, cause a decrease in activity.67 

 

Figure 8. Simulated fitness landscape in directed evolution. The activity of a given enzyme 

 can be optimized to peak , where a local maximum can be mistaken for the optimal 

activity, or peak , where several misleading disadvantageous mutations are required to 

reach the global activity maximum. Adapted from Shaffe, T..68 
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Directed evolution tries to overcome this difficulty by mimicking natural evolution with a 

twist (Figure 9). For the purpose of this work, it can be defined as the protein engineering 

of enzymes, by iterative rounds of mutagenesis, for a pre-defined purpose. Procedures for 

the identification of the best desired mutants, selection or screening, are quite specific and 

will not be described in this chapter. Nevertheless, the reader is encouraged to explore solid-

-support selection methods and more recent high throughput screening assays.69 Nowadays, 

the procedures involved in generating enzyme variation are the most debatable and three of 

the most generally applied techniques are here summarized.  

Random mutagenesis by error-prone polymerase chain reaction (epPCR) is perhaps the first 

and most basic method in directed evolution (Figure 9 - 2a). It involves the use of altered 

PCR conditions to increase the error rate in DNA replication, generating randomly mutated 

DNA sequences. Although common, this method comprehends several limitations, including 

a high ratio of incomplete or insoluble proteins. In fact, it has been reported that up to 3 in 

every 64 mutations generate a new stop codon, leading only to partial protein expression. 

Furthermore, consecutive mutations and complete libraries cannot be obtained by this 

technique. Nevertheless, random mutation can still be important as a quick method to reveal 

unpredictable mutations that can alter a protein’s secondary structure and significantly 

improve its activity.70 

DNA shuffling was first reported by Stemmer et al. as a technique for the creation of highly 

chimeric gene libraries, formed by the fragmentation of several homologous genes, followed 

by recombination and PCR amplification (Figure 9 - 2b). Unfortunately, it is reported that 

a reduction in variability is usually found due to bias similar to the ones previously 

mentioned in epPCR. This technique has also been used to better assess multiple mutations 

by recombining single mutated gene fragments, obtained by either epPCR or site-directed 

mutagenesis.70,71 

In focus in this particular work is site-directed mutagenesis (SDM), an in vitro method that 

uses PCR with mutagenic primers to introduce specific sequence changes (Figure 9 - 2c). 

This technique is widely used in the creation of gene libraries, designing primers so that a 

mixture of bases is found at a specific location, in a so called degenerate codon. A list with 

the most used degenerate codons, encoding for different sets of amino acids, is referred 
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elsewhere. A large number of samples is usually required to attain all 20 amino acids in a 

given position, limiting the number of mutations viable in a research laboratory.70 

 

 

Figure 9. Example of an enzyme engineering experiment. It is highlighted that iterative 

cycles of this experiment are usually performed to achieve optimal activity. 
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1.2.3 Enzymes employed in chiral amine synthesis 

Several classes of enzymes have been used in the synthesis of chiral amines, through the 

kinetic resolution of racemic substrates or the asymmetric synthesis from ketones, imines or 

α-unsaturated acids. These classes are summed up in Figure 10.  

 

Figure 10. Enzymes used in the synthesis of chiral amines: examples  

Ammonia lyases (AL) (E.C. 4.3.1) are a sub-class of enzymes with narrow substrate scopes 

that catalyse the reversible break of a C-N bond, often forming a double bond in the process 

and releasing ammonia. Remarkably, a methylaspartate ammonia lyase variant has been 

reported that can catalyse the addition to 2-methylfumaric acid of a variety of primary amines 

containing alkyl, benzyl and electron-rich substituents.72 

Nevertheless, the reader is guided towards phenylalanine ammonia lyase (PAL) as a 

promising enzyme for future applications. This enzyme is specific for the deamination or 

synthesis of L-Phe and, to a lesser extent, L-Tyr,73 but directed evolution experiments have 

recently been reported that allow halogen substituents in the aromatic ring.74 Two important 

uses of this lyase, the synthesis of L-Phe (42 a), an aspartame precursor, and 2-halogenated 

phenylalanine75 (43), an indoline precursor (44), are presented in Scheme 8. 
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Scheme 8. PAL in the synthesis of amino acids. 

Amine dehydrogenases (AmDHs) (E.C. 1.4.1) are responsible for the asymmetric reductive 

amination of ketones, using ammonia and generating water as a by-product. These enzymes 

are usually NADH-dependent and require a recycling system such as glucose/glucose 

dehydrogenase (GDH).76 In a similar matter to ALs, AmDHs present very limited substrate 

scopes and have only recently been subjected to directed evolution. Still, a phenylalanine 

dehydrogenase (PheDH) mutant has been successfully used for the amination of 4-phenyl-           

-2-butanone (45) with >95% for conversion and >98% e.e. (Scheme 9).77 

 

Scheme 9. Asymmetric amination of 4-phenyl-2-butanone by a PheDH triple mutant 

Transaminases (E.C. 2.6.1), also called aminotransferases, catalyse the reversible transfer of 

NH2 from an α-amino acid to an α-keto acid, using PLP as an amine carrier.78 They can be 

classified as α-TA and ω-TA, depending on the amine’s position. Unfortunately, the 

application of these enzymes in industrial synthesis is progressing slowly as scientists 

struggle to overcome their severe product inhibition, and, for now, continuous product or 

sub-product extraction remains the overall industrial strategy.79 

ω-TAs have an increased versatility for future applications, accepting aldehydes, ketones or 

acids for the asymmetric synthesis of amines. In fact, these enzymes have been used in the 
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selective monoamination of diketones to form cyclic amine precursors.80,81 Remarkably, an 

enzymatic cascade has been reported for the one-pot synthesis of these heterocycles with a 

carboxylic acid reductase (CAR), a ω-TA and an imine reductase (IRED) (Scheme 10). In 

some cases highly enantiopure disubstituted molecules were readily obtained - (51) and 

(52).82 

 

Scheme 10. One pot CAR-ATA-IRED cascade for the asymmetric synthesis of piperidines 

As seen in the last example, IREDs can also catalyse the asymmetric synthesis of amines by 

the NADPH dependent reduction of imines or iminium ions. Unlike the previous examples, 

these enzymes can access primary, secondary and even tertiary amines starting from either 

ketones or imines. Although advantageous, these enzymes have only been explored for 

biocatalysis in the last five years.83 

An (R)-IRED from Streptomyces sp. was recently reported for its ability to synthesize a wide 

range of cyclic secondary and tertiary amines, from pyrrolidines to azepanes. In Scheme 11, 

the synthesis of 1-methyl and N-methyltetrahydroisoquinolines is presented with conversion 

reaching 98% and great enantiomer excesses.84 

 

Scheme 11. Asymmetric synthesis of tetrahydroisoquinolines with an (R)-IRED 
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Two enzymes have been extensively reported for the deracemisation of chiral amines. 

Lipases can catalyse the enantioselective hydrolysis or synthesis of esters (Esterases - E.C. 

3.1.1) and are currently one of the leading biocatalysts in lipid bio-industry. Moreover, they 

present high stability in organic solvents and an unusually high substrate scope, making them 

ideal for kinetic resolution experiments and future industrial application.85 

Candida antarctica Lipase B (CAL-B) is the most common lipase for organic synthesis, 

already applied in industrial synthesis by Bayer and BASF. In fact, BASF has developed an 

immobilization procedure for CAL-B, thus reducing the need for high catalyst 

concentration.86,87. Nevertheless, the more recent use of CAL-B in the DKR of primary 

amines is highlighted for its high yield, and metal complexes are commonly used in the ester 

hydrolysis. The synthesis of a norsertraline precursor (56) by the DKR of (55) with CAL-B 

and a ruthenium catalyst was reported with high yield (70%) and exceptional e.e. (99%), as 

seen in Scheme 12.88 

 

Scheme 12. Chemoenzymatic synthesis of norsertraline (57). 

Amine oxidases (AO) can also be used for the deracemisation of chiral amines. AO are 

oxidoreductases with important physiological functions in detoxification, cell growth, 

signalling and biosynthesis of alkaloids. They are found in numerous organisms and can be 

classified in two types: type I enzymes, copper-dependent, and type II enzymes, flavin-                   

-dependent. Type I AOs use copper and pyrroloquinoline quinone as co-factors and the 

formed imine remains covalently bound to the protein in the end of the reaction, limiting 

their applicability in biocatalysis. Type II AOs, on the contrary, are flavin-dependent and 

have been extensively used in enzymatic synthesis (E.C. 1.4.3.4).89  
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Several flavin adenine dinucleotide (FAD)-dependent AOs have been reported so far, 

including diamine oxidase90, several amino acid oxidases91 and 6-hydroxy-D-nicotine 

oxidase (HDNO). HDNO (E.C. 1.5.3.6) is a 49kDa monomeric enzyme found in some soil 

bacteria, such as Arthrobacter nicotinovorans, where it is a key enzyme in the degradation 

of nicotine. It has been assigned to the p-cresol methylhydroxylase-vanillyl-alcohol oxidase 

family and, remarkable, stands as the first discovered enzyme with the FAD co-factor 

covalently bound.92 Nowadays, it is estimated that approximately 10% of all flavoproteins 

have a covalently bond co-factor, significantly increasing the enzymes’ redox potential, 

protein stability and preventing co-factor release.93 

Crystal structure analysis has shown that HDNO possesses a large active centre, capable of 

accommodating additional substrates. In fact, a recent article by Heath, et. al. has studied the 

substrate scope of HDNO from Arthrobacter nicotinovorans and found it to be active with 

8 different amines, including substituted derivatives of nicotine. Moreover, a double mutant 

was engineered and used in the deracemisation of additional tetrahydroisoquinoline (58, 60 

and 61) and tryptoline (59) derivatives (Figure 11).94  

 

Figure 11. Deracemisation of tetrahydroisoquinoline and tryptoline derivatives with the 

E350L/E352D HDNO mutant. 

Monoamine oxidase (MAO) remains one of the most important AO, referred as “the mother 

of all amine oxidases” in a book published by SpringerMedicine.95 It catalyses the oxidative 

deamination of biogenic primary amines by producing H2O2. In humans, MAO exists mainly 

in the brain and peripheral tissues in the form of two isozymes: A and B. Although similar 

in sequence (70% sequence identity), these two isozymes differ in their accepted substrates 

and functions in the brain: MAO A shows higher affinity towards serotonin (62), 

norepinephrine (64) and dopamine (20) and has been related to aggressiveness while             
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MAO B has a higher affinity for phenylethylamine (63), benzylamine (65) and dopamine 

(20) and has been implicated in Parkinson’s disease (Figure 12).96 

 

Figure 12. Common MAO A and MAO B natural substrates 

Type I and II non-membrane bound MAO can be found in lower eukaryotes, oxidizing 

amines as nitrogen sources. From those, a flavin-dependent MAO from Aspergillus niger 

(MAO-N) has been extensively engineered for biocatalysis. Besides, its importance in the 

work here presented justifies the separate description that follows.97 

 

1.2.4 Monoamine oxidase from Aspergillus niger 

MAO-N was first cloned in 1995 by Schilling et al. with a butylamine-induced culture. In 

fact, the article suggests this enzyme as an evolutionary prototype of mammalian MAO-A 

and MAO-B.97 The same author readily cloned this enzyme in E-coli, reporting a length of 

495 amino acid residues correspondent to 55.6 kDa.98 

As previously stated, MAO-N is a FAD-dependent enzyme, but the mechanism through 

which the redox reaction occurs is still subject to controversy. According to our research, a 

computational study by Erdem et al. supports the polar nucleophilic mechanism proposed 

by Miller and Edmondson shown in Scheme 13. The authors found good correlations 

between the experimental reaction rate and activation energy of MAO-A with p-substituted 

benzylamines and quantum chemical calculations based on this mechanism.  99 
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Scheme 13. Modified polar mechanism for amine oxidation  

1.2.4.1 Crystal structure and active site 

As far as we can ascertain the crystal structure of MAO-N wild type (wt) has never been 

determined. Yet, Atkin et al. reported and analysed the structure of MAO-N D5, with five 

amino acid substitutions, back in 2008 (Figure 13). It is reported that its asymmetric unit is 

constituted by eight monomers each containing 17 α-helices and 21 β-sheets. Moreover, this 

enzyme shows a similar structure to human MAO near the FAD molecule, both showing a 

~30º angle in the isoalloxazine ring. MAO-N D5 also lacks a protruding helix present in 

MAO A and B, thought responsible for membrane binding.100 

The active site of MAO-N is formed by a single large hydrophobic cavity, on the re face of 

FAD’s ring system, and an “aromatic cage”, containing the co-factor and formed by the 

flavin and W430 and F466 amino acid residues. In fact, it is suggested these amino acids are 

essential to the enzyme’s activity, playing significant steric and electronic functions. The 

hydrophobic pocket extends to the protein surface, and three hydrophobic residues, M242, 

M246 and Y238, are proposed as a “gate” for substrate entrance into the active site. It is 

suggested that the hydrophobic character of this entrance channel can be determinant in 

MAO-N’s selectivity towards small cyclic non-polar substrates.  

Furthermore, it is noted that the amino acid residues mutated in all directed evolution 

experiments directly interfere with the active site, and Atkin et al. note that two of the most 

significant mutations alter the aromatic cage and the substrate binding site, possibly 

improving the electronic distribution and releasing steric constraints, respectively.100 
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Figure 13. Proposed hydrophobic cavity in MAO-N D5. Right: residues forming the 

hydrophobic cavity in green and the FAD co-factor in blue. Adapted from Atkin et al..100  

1.2.4.2 State of art: increasing the substrate scope of MAO-N by directed 

evolution 

Research in the use of MAO-N for biocatalysis started with substrate scope studies by Sablin 

et al.101, who limited the activity of this enzyme to a few simple primary amines. Since then, 

a remarkable work by the Turner group at the Manchester Institute of Biotechnology (MIB) 

has increased its utility by consecutives rounds of directed evolution and established efficient 

oxidation and deracemisation procedures. 

The first reported evolutionary studies on MAO-N date back to 2002, when Alexeeva et al 

used random mutagenesis and a solid phase colorimetric assay to discover a single MAO-N 

D1 mutant - N336S - with increased activity towards α-methylbenzylamine (AMBA) (66). 

In the same article, a DKR experiment with a reducing agent, ammonia-borane complex, 

was first reported for the synthesis of (R)-AMBA (68) with 77% yield and 93% e.e. (Scheme 

14).102 Soon after, the substrate scope of this mutant was determined, showing high activity 

toward a broader range of primary amines, preferably flanked by a small alkyl group and a 

bulky aryl group. Significant activity of any MAO-N variant towards                                                     

1-methyltetrahydroisoquinoline (1-MTQ), a secondary amine, is first stated in this article.103 
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Scheme 14. Dynamic kinetic resolution of AMBA 

Additional random mutagenesis was performed on MAO-N D1 by Carr et al. in order to 

increase MAO-N’s activity towards secondary amines. A double mutant - M248K/I246M - 

was found with high activity towards secondary amines and named MAO-N D3. This mutant 

presented a 5-fold increase in activity for 1-MTQ (69) relative to MAO-N D1. A small-scale 

deracemisation reaction was performed with this substrate to afford (R)-1-MTQ (71) with 

71% yield and 99% e.e. over 48 hours (Scheme 15). Moreover, immobilization of the 

enzyme in Eupergit C resin increased the yield to 95% while maintaining the e.e., but 

required 98 hours for completion.104 

 

Scheme 15. DKR in the deracemisation of 1-MTQ. 

Dunsmore et al. continued the previous work by screening a recently found MAO-N D5 

mutant – I246M/N336S/M348K/T384N/D385S – with a number of secondary and tertiary 

amines, reporting remarkable activity with N-methylated substrates. This new mutant was 

used in a chemoenzymatic reaction for the synthesis of chiral secondary amines (74) from 

prochiral aminoketone compounds (72) (Scheme 16).105  

Also, an article by Foulkes et al. reports the use of MAO-N D5 with nanoscale bioreduced 

Pd(0) particles/H2 for the deracemisation of 1-MTQ with 96% yield. However, it is stated 

that separate reactions are required for the oxidation and reduction steps, complicating the 

overall procedure.106 



Chapter I. Introduction 
 

30 

 

 

Scheme 16. Chemoenzymatic route for the synthesis of (R)-2-phenylpyrrolidine 

Surprisingly, an article outside Turner’s group was found regarding the directed evolution 

of MAO-N D5 for the deracemisation of mexiletine (75) (Figure 14). By SDM based on the 

results from docking studies, and posterior screening assays, Chen et al. reported three new 

mutants based on MAO-N D5 – F210V/L213C, F210V/I367T and F210V/L213C/I367T – 

with enhanced activity towards this substrate. According to their studies, the F210V 

mutation can widen both the binding cavity and entrance channel, and L213C and F210V 

mutations combined can cause the formation of a new disulphide bond that enlarges the 

binding pocket by disulphide bond stretching.107 

 

Figure 14. Structure of mexiletine 

Meanwhile, Rowles et al. further improved MAO-N activity for the deracemisation of 

crispine A.108 Four target residues from the entrance channel were identified by molecular 

modelling for their steric interaction with this substrate, and the parent enzyme subjected to 

two rounds of saturated double mutagenesis and solid-phase screening. A new mutant, 

MAO-N D9 C, was found with a 990-fold increase activity towards crispine A (76). The 

additional mutations – F210L/L213T/M242Q/M246T – widened the entrance channel by 

changing the orientation of the side-chains in these residues. Lastly, the deracemisation of 

crispine A with MAO-N D9 C is reported with >99% e.e. within 2 hours (Scheme 17). 
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Scheme 17. Deracemisation of crispine A with MAO-N D9 C 

Four enzymatic cascade reactions have been reported for the synthesis of highly enantiopure 

primary and secondary amines with great yield, by the use of additional enzymes (ω-TA, 

xanthine dehydrogenase (XDH) or IRED) or an artificial transfer-hydrogenase (ATHase). A 

brief summary of these reactions can be seen in Scheme 18.80,109–111  

  

Scheme 18. Enzymatic synthesis of enantiopure chiral amines with MAO-N D5 or D9 

variants 

The last reported MAO-N mutant within the literature is MAO-N D11, surprisingly obtained 

by a simple change in an already mutated residue in MAO-N D9 – W430H to W430G.112 It 

proved effective for the deracemisation of bulky amines such as                                                                  

1-phenyltetrahydroisoquinoline. This new mutant has been recently explored for the 
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deracemisation of 1-benzyl-N-methyltetrahydroisoquinoline derivatives (83), with excellent 

e.e. and good yields, and the synthesis of protoberberines (84) by a MAO-N D11/Berberine 

bridge enzyme (BBE)/NH3
.BH3 redox cascade, with excellent e.e. and yields (Scheme 

19).113,114 

 

Scheme 19. MAO-N D11 catalysed synthesis of enantiopure                                                                        

1-benzyltetrahydroisoquinoline derivatives. 

A recent unpublished work by Jane Kwok et al. at the Manchester Institute of Biotechnology 

reports a rational non-randomized method for the directed evolution of MAO-N starting 

from MAO-N D5.115 With it, they expect to achieve a more efficient search of the enzyme’s 

functional space in the future. This work in progress involves the creation of double mutant 

libraries in every segment of MAO-N’s secondary structure and use a solid-phase screening 

assay to determine the mutants responsible for an increased activity with α-AMBA. The 

researcher also states that the gene can be divided into three main regions: high variations, 

amino acid residues where mutations do not affect the enzyme’s activity; high conservations, 

where any mutation reduces or completely eliminates enzyme activity; and strong selections, 

where a tendency is found towards specific mutations when sequencing the mutants with 

increased activity. These last areas have enormous potential in engineering and, so far, nine 

residues have been identified that show strong selection – C50T, S81T, S81C, Y86T, F128L, 

S205T/S206N, A266V, A289V and I356V. Although most of these residues are thought to 
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alter the entrance channel or the position of the FAD tricyclic ring, some are distal to the 

active site and therefore may present an oligomer formation or solubilisation role. An image 

of the MAO-N D5 gene divided by these regions can be seen in Figure 15.  

 

Figure 15. Summary of the solid phase screening of MAO-N mutants, with the MAO-N 

gene marked with the previously mentioned areas: high variations, in blue, high 

conservations, in white with green letters marking the majority residue, and strong 

selections, in yellow.115 
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1.3 SCOPE OF THIS WORK 

Biocatalysis represents one of the most promising routes towards a sustainable future in the 

industrial production of fine chemicals. Particularly, monoamine oxidase from Aspergillus 

niger has been consistently engineered for the oxidation and deracemisation of chiral amines. 

Nevertheless, a limited substrate scope is still reported, and further evolution of this enzyme 

is still undergoing. As so, and given the opportunity presented by working with the Turner 

group, highly experienced in MAO-N expression and evolution, in this work we aimed to 

further develop this high potential oxidase, and explore its potential use in cascade reactions. 

To accomplish these goals, we: 

i) Established a target scaffold, THIQ, and devised a library of compounds capable of 

fully assessing MAO-N’s substrate scope. The library used contained THIQs with a 

methyl substituent in all the positions of the bicyclic ring as well as                                            

6,7-dimethoxytetrahydroisoquinoline (DMTHIQ) and 6,7-dimethoxy-1-                                    

-methyltetrahydroisoquinoline (1-M-DMTHIQ), as seen in Figure 16; 

 

Figure 16. Tetrahydroisoquinoline substrates used within the scope of this work. 

 

ii) Expressed MAO-N D5, D9 and D11 in E. coli and purified sufficient enzyme for the 

specific activity assays. Expression of MAO-N D9 in P. pastoris was also attempted; 



Chapter I. Introduction 
 

36 

 

iii) Perfected a colorimetric screening assay and used it to assess the activities of 11 MAO-

N variants (Table 1) – MAO-N D5, D9, D11 and eight promising variants from the 

previously mentioned Jane Kwok et al. work115, from now on defined as MAO-N D12 

(A-H) variants – with all the substrates previously mentioned; 

 

Table 1. MAO-N variants used in the specific activity assays. The mutations 

I246M/N336S/M348K/T384N/D385S are present in all the variants below. 

MAO-N 

variant 
C50 S81 F128 

S205 

/S206 
F210 L213 M242 I246 A266 A289 I356 W430 

D5 - - - - - - - - - - - - 

D9 - - - - L T Q T - - - H 

D11 - - - - L T Q T - - - G 

D12 (A) - - - - - - - - V - - - 

D12 (B) T - - - - - - - - - - - 

D12 (C) - - L - - - - - - - - - 

D12 (D) - - - - - - - - - - V - 

D12 (E) - C - - - - - - - - - - 

D12 (F) - T - - - - - - - - - - 

D12 (G) - - - T / N - - - - - - - - 

D12 (H) - - - - - - - - - V - - 

iv) Used the data obtained from the previous experiments to develop a new MAO-N D13 

mutant, based on MAO-N D9, and tested its ability to oxidize and deracemize 1-M-

DMTHIQ; 

v) Used MAO-N D5, D9, D11 and HDNO E350L/E352D - developed by Heath et al.94 

and from now on simply designated as “HDNO” - in the deracemisation of the chiral 

substrates aforementioned; 

vi) Presented the proof of concept for a novel one-pot three step synthesis of unnatural 

tetrahydroisoquinoline amino acids by the oxidation, cyanation and selective 

hydrolysis of their C1 unsubstituted counterparts



 

 

 

CHAPTER 2. EXPERIMENTAL 

SECTION 
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GENERAL INFORMATION 

MAO-N D5, D9 and D11 genes in pET16b plasmids were obtained from the plasmid library 

of the Manchester Institute of Biotechnology. Empty pPicZα C vectors from Invitrogen™ 

were used for protein expression in P. pastoris. Competent E. coli cells - BL21(DE3), NEB® 

5-alpha and Rosetta™ - were purchased from New England Biolabs® Inc.. Moreover, 

competent P. pastoris GS115 and X-33 cells from Invitrogen™ had been previously grown 

in the MIB and stored at -80ºC for use in this project. 

Substrates used in the specific activity assays and biotransformations were either 

commercially available by Sigma Aldrich and Flurochem or supplied by Orion Pharma, UK. 

The solvents used were high-performance liquid chromatography (HPLC) grade or 

analytical grade.  

1H and 13C NMR spectra were recorder on a Bruker Avance 400 (400.1 MHz for 1H and 

100.6MHz for 13C) without additional internal standard. Chemical shifts are reported in δ 

(ppm) and multiplicities defined as follows: s – singlet; d – doublet; t – triplet; m – multiplet. 

HPLC measurements were performed on Agilent machines equipped with diode arrays and 

1100 or 1200 series modules. Columns and conditions used in this work are indicated 

separately for each run.  

2.1 PLASMID SELECTION 

2.1.1 pET16b (E. coli) 

A 5711 base pair (bp) long pET16b vector was used in the expression of MAO-N variants 

(Figure 17). Apart from the origin of replication (ori), this plasmid first presents a gene 

encoding resistance to the antibiotic ampicillin (F), allowing for the selection of successful 

transformants in a medium with this particular antibiotic. Then, a lacI gene and a lac operon 

(C) are present and lead to a regulation of protein expression by lactose. LacI encodes for 

the expression of the lac repressor protein, which binds to the lac operon and stops the 

transcription of the gene of interest. The presence of either lactose or isopropyl β-D-1-                      

-thiogalactopyranoside (IPTG) induces protein expression by interacting with the lac 

repressor and preventing its binding to the operon.  
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Both the lac operon and the gene of interest are inserted between the T7 promoter (B) and 

T7 terminator (E), responsible for its the transcription by the T7 RNA polymerase present 

in the E. coli strains used. Although not naturally present in E. coli, this polymerase has been 

engineered into the bacteria as it synthesizes RNA at a much faster rate than the native 

polymerase. Finally, a chain of 10 histidine codons (D) is included and transcribed with 

MAO-N. In this manner, the histidines are translated in the end of the wanted protein and its 

strong coordination with Ni+2 can be used for a quick purification procedure.116 

 

Figure 17. Scheme of an empty pET16b plasmid. (A) Lac promoter; (B) T7 promoter; (C) 

Lac operon; (D) 10x Histidine Tag; (E) T7 terminator; (F) Ampicillin resistance marker. 

2.1.2 pPicZα C (P. pastoris) 

In this work a 3.6 kilobases (kb) pPicZ-α C vector was used for the insertion of MAO-N D9 

gene into the genome of P. pastoris (Figure 18). An increased transformation and expression 

complexity is found in this organism as the procedure involves the incorporation of the target 

gene into the organism’s genome. As so, some additional features are required in the 

plasmid.62  

First, an alcohol oxidase 1 (AOX1) promoter and terminator are used, allowing for a 

methanol induced protein expression. Then, the presence of a α-factor, expressed with the 

desired gene, causes the segregation of MAO-N D9 to the extracellular medium. Moreover, 

a 6x Histidine Tag is used to facilitate protein purification. Finally, an antibiotic (Zeocin™) 

resistance marker is introduced to allow the selection of successful transformants.62 
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Figure 18. Scheme of an empty pPicZα C plasmid. Adapted from Lezdey et al..117 

2.2 TRANSFORMATION PROTOCOLS 

2.2.1 E. coli BL21 (DE3) 

Available plasmid DNA of D5, D9 and D11 mutants of MAO-N in a pET16b vector were 

transformed into chemically competent E. coli BL21(DE3) cells by heat shock. 

Approximately 50 ng of circular plasmid DNA were added to 50 µL of cells, followed by 

thawing on ice for 30 minutes. The cells were heat shocked for 40 seconds at 42°C and left 

on ice for 2 minutes to reduce cell damage. Next, 300 µL of super optimal broth with 

catabolite repression (SOC) media was added and the mixture was left incubating for one 

hour at 37°C. The resulting culture was spread on lysogeny broth (LB) plates with ampicillin 

(100 mg/L) and left to grow overnight at 37°C. 

2.2.2 E. coli NEB® 5-alpha 

A similar procedure was used to transform MAO-N D9 plasmid DNA into a Bio-Rad NEB® 

5-alpha cloning strain. Low salt LB plates with Zeocin™ were required for a correct 

antibiotic selection when transforming MAO-N in a pPicZα C vector. 

2.2.3 E. coli Rosetta™ (DE3)  

The transformation was carried out using the procedure previously described in point 2.2.1. 
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2.2.4 P. pastoris GS115 

Transformation of the MAO-N D9 gene into Pichia pastoris GS115 cells was achieved by 

electroporation of the pPicZα C plasmid containing the gene of interest. First, circular 

plasmid DNA was linearized with a restriction enzyme digestion. 2 µL of a suitable 

restriction enzyme – PmeI, New England Biolabs® Inc. - was added to approximately 20 µg 

of plasmid DNA in 30 µL of water. After overnight incubation at 37°C, linearized plasmid 

DNA was purified using a QIAquick PCR Purification Kit. 

P. pastoris GS115 cells were grown on a LB plate for 96 hours at 30°C. A single colony was 

used to incubate 5 mL of YPD (yeast extract peptone dextrose) media in a 50 mL falcon tube 

and grown overnight at 30°C. Then, 500 mL of fresh medium in a 2 litre Erlenmeyer were 

inoculated with 0.1 mL or 0.2 mL of the overnight culture and left growing at 30°C until an 

OD600 between 1.3 and 1.5 is reached (approximately 16 hours). The incubation of two 

separate media with different amounts of cells allowed us to choose the one closer to the 

desired optical density (OD) for transformation. This value is extremely important as a 

higher cell density, passing the log phase, can lead to a reduction in cell viability after 

electroporation. 

Cells were then centrifuged at 1500 g and 4°C for 10 min. The cell pellet was collected and 

resuspended in 500 mL of ice-cold, sterile water and centrifuged again under the same 

conditions. This step was repeated one more time with 250 mL of water. 

Next, cells were resuspended in 20 mL of ice-cold, sterile 1 M sorbitol, transferred to a 50 

mL falcon tube and centrifuged again. Finally, the cells were resuspended in 1 mL of 1 M 

sorbitol to a final volume close to 1.5 mL and kept on ice to be used within the hour. 

For the electroporation step, 80 µL of cells were mixed with 5-10 µg of linearized DNA in 

an ice-cold 0.2 cm electroporation cuvette. After 5 min incubation on ice, the cells were 

pulsed at 2,500V for 5 ms using a Gene Pulser MXcell™ Electroporation System, Bio-Rad 

Laboratories. Ice-cold 1 M sorbitol (1 mL) was immediately added and cells left to 

regenerate for one hour at 30ºC without shaking. The mixture was then centrifuged and cells 

resuspended in 300 µL of sorbitol. 100 µL were spread on YPD plates containing 100, 500 

and 1000 mg/L of Zeocin™. Higher antibiotic concentration allowed for a better selection 

of multi-copy recombinants. The plates were incubated, protected from light, at 30°C for 5 
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days. Successful insertion was verified by Touchdown PCR using insert primers from the 

ligation independent cloning followed by agarose gel electrophoresis. 

2.2.5 P. pastoris X-33 

A similar procedure to the one used on 2.2.4 was applied to this transformation. 

2.3 GROWTH OF MAO-N IN E. coli 

A single colony was used to inoculate a 5 mL pre-culture of LB media with ampicillin                

(100 mg/L), which was grown at 37°C overnight. 2 L Erlenmeyer flasks containing 500 mL 

of Terrific Broth (TB) medium with ampicillin (100 mg/L) were inoculated with 2 mL of 

pre-culture and incubated for 48 hours at 25°C. Additional experiments with different 

incubation parameters were performed for MAO-N D9 and can be found in Table 2. 

One additional experiment was attempted using IPTG induction. To a 2 L Erlenmeyer flask 

containing 500 mL of TB medium with ampicillin (100 mg/L) was added 2 mL of pre-culture 

and incubated until an OD of 0.6-0.8 was reached. 1 M IPTG was added to a final 

concentration of 0.2 mM and the culture incubated at 20ºC overnight.  

After incubation, the cells were collected by centrifugation at 4000 rpm and 4°C for 30 

minutes, followed by resuspension in 15 mL of phosphate buffer (pH 8.0, 100 mM) and 

further centrifugation. The cell pellet was collected and collected and stored at -20°C. In 

standard conditions, approximately 10 g of cell paste were obtained per incubation.  

Table 2. Experiment parameters for MAO-N D9 expression in E. coli 

Experiment E. coli strain Medium Time (h) Temperature (ºC) 

1 BL21(DE3) TB 48 37 

2 BL21(DE3) TB 24 37 

3 BL21(DE3) TB 72 25 

4 BL21(DE3) TB 24 30 

5 BL21(DE3) TB 48 30 

6 BL21(DE3) LB 48 30 

7 NEB® 5-alpha TB 48 30 

8 Rosetta™ TB 48 30 



Chapter 2. experimental section 
 

44 

 

2.4 PURIFICATION OF MAO-N 

One gram of cell paste was resuspended in 10 mL of buffer A (100 mM KPi, pH 7.7, 5 mM 

imidazole) and cooled to 4°C. Cell lysis was achieved through ultrasonication (20 s on, 20 s 

off, 20 cycles). After centrifugation (20000 rpm, 4°C, 30 min) the supernatant was loaded 

on a column with approximately 1 mL of Ni-NTA Agarose from QIAGEN. The column was 

closed and mixed for 1 hour. After eluting and collecting the flow-through, 10 mL of buffer 

B (100 mM KPi, pH 7.7, 30 mM imidazole) was added the remove unbounded protein and 

collected as the wash-through. Finally, the protein was eluted with 10 mL of buffer C               

(100 mM KPi, pH 7.7, 250 mM imidazole) and collected in 1 mL fractions. 

All fractions were analysed by SDS-PAGE to ensure a correct purification. MAO-N 

containing fractions were pooled and concentrated using a Sartorius Vivaspin 20 spin 

column (30 kDa cut-off) with centrifugation at 4000 rpm for 20 minute cycles until a final 

volume near 2.5 mL was reached. The solution was then desalted using a PD-10 Sephadex 

column (GE Healthcare) to a final volume of 3.5 mL in phosphate buffer. 

2.5 SDS-PAGE 

Polyacrylamide gel electrophoresis (PAGE) is a technique used to separate macromolecules, 

for identification and quantification purposes, by its mobility in a polyacrylamide gel when 

subjected to an electric current. With proteins, sodium dodecyl sulphate (SDS) is commonly 

used to cause complete denaturation and simultaneously induce a negative charge to the 

protein, allowing a separation based mainly on size.  

In this work 20 µL of 2x Laemli Buffer (MicroMol) were added to 20 µL of protein sample. 

Proteins were denatured in a heat block at 104°C for 10 min and 20 µL of the resulting 

solution was applied to each well of the gel. A 10 to 180 kDa PageRuler™ Prestained Protein 

Ladder was added to the first well to confirm the expected weight of the protein and the gel 

run for 30 min at 230 V. 

2.6 PROTEIN QUANTIFICATION: BRADFORD PROTEIN ASSAY 

Purified protein was quantified using a Bradford protein assay. This assay is based in the 

binding of a dye (Coomassie Brilliant Blue G-250) to the protein, generating a shift in the 

absorption spectrum to a maximum of 595 nm. As so, it is possible to estimate the protein 
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concentration on a given sample by comparison of the absorption at 595 nm with one of a 

standard protein with a known concentration – in this case bovine serum albumin (BSA). 

The calibration curve used is presented in Equation 1 and the corresponding graph can be 

seen in Figure A1.1. 

𝑦 = 0.6543𝑥 + 0.3441  (𝑅2 = 0.994) 

Equation 1. Calibration curve for protein concentration in the Bradford protein assay 

In this assay, 200 µL of 1X Bradford reagent (Bio Rad) was added to 10 µL of either BSA 

or sample in a 96 well plate. After incubating at room temperature for at least 10 minutes, 

the absorbance at 595 nm was measured with a Tecan Infinite® M200 microplate reader.  

2.7 SPECIFIC ACTIVITY ASSAYS 

In a 96 well plate, 50 µL of horseradish peroxidase (HRP) (0.20 mg/mL in phosphate buffer), 

50 µL of a 10 mM solution of substrate in phosphate buffer (pH=8.0) and 50 µL of solution 

A were added to each well. 50 µL of a 0.10 or 0.05 mg/mL enzyme solution was quickly 

added and the absorbance at 510 nm was monitored at 30°C for the next 20 min using a 

Tecan Infinite® M200 microplate reader. Two replicas of each assay were made and the 

average value and standard deviation used in further calculations. 

Solution A: Previously mixed solution of 37.5 µL of 4-aminoantipirine (4-AAP) (50 mg/mL 

of water) and 150 µL of 2,4,6-tribromo-3-hydroxybenzoic acid (TBHBA) (75 mg/mL of 

DMSO), diluted to 1,500 mL with phosphate buffer. 

2.8 DNA PROTOCOLS 

2.8.1 Preparation of plasmid DNA from E. coli 

A single colony was used to inoculate a 5 mL LB culture with the appropriate antibiotic. The 

culture was incubated overnight at 37ºC and plasmid DNA was isolated using the QIAprep 

Spin Miniprep Kit, QIAGEN. In order to increase final plasmid concentration, 35 µL of 

nuclease-free warm water were used to elute the DNA.  
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2.8.2 Determination of DNA concentration 

DNA concentration was calculated using a NanoDrop ND-1000 spectrophotometer. The 

purity of the sample was assessed by the difference between in the absorbance spectrum of 

DNA – maximum at 260 nm - and proteins – maximum at 280 nm. A ratio of A260/A280 

between 1.8 and 2.1 was usually obtained and falls into standard values for pure DNA 

samples. 

2.8.3 Agarose gel electrophoresis 

An agarose gel consists in a matrix of polymeric oligosaccharides with pores that allow the 

passage of biomolecules. An electric current is applied that induces a migration of DNA 

towards the anode through the pores of the gel, generating a separation by molecular weight. 

In this experiment, a 1% agarose gel (0.5 g of agarose dissolved in 50 mL of TAE                       

(tris-acetate-EDTA) buffer) was prepared and allowed to solidify in the cast. Next, 5 µL of 

reaction mixture – typically the direct result of a PCR experiment – were mixed with 1 µL 

of 6x DNA Loading Dye and transferred to the agarose wells along with a 1 kb Prestained 

DNA Ladder. The gel was then run in TAE buffer at 100 V for 30 min and the results 

visualized under ultraviolet light. 

2.8.4 Ligation independent cloning: insertion of MAO-N D9 gene into pPicZα 

C empty vector 

Ligation independent cloning is a technique developed as an alternative to restriction 

enzyme/ligation cloning. It discards the need for a time consuming ligation step by 

amplifying both the insert and the empty plasmid with overhangs, that is, sequences of DNA 

non-complementary to the DNA being amplified. These overhangs are, however, 

complementary to each other, as described in Figure 19, and ligate once the results of both 

amplifications are combined. When all four overhangs are joined together, the desired 

circular plasmid with the gene of interest is obtained.  
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Figure 19.  Ligation independent cloning for the insertion of MAO-N D9 gene into a pPicZα 

C empty vector 

Primers for both the insert and the empty vector are presented in Table 3. Amplification of 

both DNA sequences was done by Phusion® PCR, according to Tables 4 and 5, and purified 

with a QIAGEN PCR purification kit. Successful amplification was verified by agarose gel 

electrophoresis and the linearized DNA was stored at -20ºC for further use. 

Table 3. List of the primers used in the ligation independent cloning. 

Primer 

name 
Sequence 

Forward 

Insert 
TCTCGAGAAAAGAGAGGCTGAAGCTATGACCTCCCGTGACGGTTACCAGT 

Reverse 

Insert 
AATGATGATGATGATGATGGTCGACCAAACGAGCCTTCACCTCCCTCTTC 

Forward 

Vector 
GAAGAGGGAGGTGAAGGCTCGTTTGGTCGACCATCATCATCATCATCATT 

Reverse 

Vector 
ACTGGTAACCGTCACGGGAGGTCATAGCTTCAGCCTCTCTTTTCTCGAGA 
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Table 4. Phusion® PCR mix 

Component HF buffer PCR 

H2O 36.5 µL 

5 x Phusion HF buffer 10 µL 

10 mM dNTPs 1 µL 

Primer mixture 10 mM 1 µL 

MAO-N D9 / pPicZα C plasmids 1 µL 

Phusion DNA polymerase 0.5 µL 

Table 5. Phusion® PCR cycle program. A) MAO-N D9; B) pPicZα C. 

Cycle step Temperature Time Cycles 

Initial denaturation 98ºC 30 s 1 

Denaturation 

Annealing 

Extension 

98ºC 

58ºC 

72ºC 

30 s 

30 s 

30s (A)/ 2 minutes (B) 

30 cycles 

Final extension 72% 5 minutes 1 

Both insert and vector DNA with overhangs were later mixed and incubated at room 

temperature until only circular plasmid was found on the agarose gel electrophoresis. The 

resulting plasmid was directly transformed in E. coli NEB® 5-alpha and an overnight culture 

(250 rpm, 37 ºC) was spread on a low salt LB/Zeocin™ plate and incubated at 37 ºC. 

Several colonies were chosen and used in an overnight culture at 37 ºC and 250 rpm. Plasmid 

DNA was purified and stored for future use in linearization/electroporation. 

2.8.5 Site-directed mutagenesis 

A site-directed mutagenesis experiment was performed for the mutation of the S205 and 

S206 amino acids of MAO-N D9. A set of primers was designed in such a way so the mutated 

region rested in the middle of the forward primer. This primer possessed two non-

complementary bases in its sequence that, despite not pairing with the DNA, are transcribed 

and alter the enzyme’s protein sequence.  

The following 25 base-long mutagenic primers (Table 6) were ordered through Eurofins 

Scientific© and dissolved to a concentration of 100 µmol/mL in nuclease-free water. 
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Table 6. List of mutagenic primers used in the double mutation (mutagenic base pairs in 

bold). 

Primer name Sequence 

Forward primer CTTAATGAACGGACTAATCTGGAAGCGTTGATATTGACC 

Reverse primer GCTCAACTCATCCCGGATTTGATCAATCCG 

Mutant strand synthesis (PCR) was prepared in 0.2 mL PCR tubes with the reagents 

presented in Table 7. Both High-Fidelity and GC buffers were used to ensure a good 

amplification. The cycle program used follows in Table 8. 

Table 7. Site-directed mutagenesis PCR reaction mix 

Component HF buffer PCR GC buffer PCR 

H2O 36.5 µL 35 µL 

5 x Phusion HF buffer 10 µL - 

5 x Phusion GC buffer - 10 µL 

10 mM dNTPs 1 µL 1 µL 

Primer mixture 10 mM 1 µL 1 µL 

Dimethyl sulfoxide - 1.5 µL 

MAO-N D9 plasmid DNA 1 µL 1 µL 

Phusion DNA polymerase 0.5 µL 0.5 µL 

Table 8. Site-directed mutagenesis PCR cycle program 

Cycle step Temperature Time Cycles 

Initial denaturation 98 ºC 30 s 1 

Denaturation 

Annealing 

Extension 

98 ºC 

58 ºC 

72 ºC 

30 s 

30 s 

2 minutes 

30 cycles 

Final extension 72 ºC 5 minutes 1 

Success in the amplification was verified by agarose gel electrophoresis. Resulting DNA 

was purified with a Qiagen PCR purification kit and transformed in E. coli cloning strain 

(NEB® 5-alpha) according to the protocol above. 
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After selective cell growth in LB plates with ampicillin, four random colonies were selected 

and used to incubate a 5 mL LB/Ampicillin medium which was grown overnight at 250 rpm 

and 37 ºC. Plasmid DNA was purified, concentrated and sent to sequencing to confirm a 

successful mutation. Finally, the mutated plasmid DNA was transformed in E. coli 

BL21(DE3) and cells grown according to the protocol above. 

2.9 BIOTRANSFORMATIONS 

2.9.1 Amine deracemisations with MAO-N D5/D9/D11 or HDNO 

To a 15 mL falcon tube with 5 mL of a 10 mM solution of substrate in phosphate buffer            

(pH 8.0), 0.5 grams of cell pellet were added. When required, the substrate was previously 

dissolved in 50 µL of DMSO. Five equivalents of ammonia-borane complex (BH3
.NH3) 

were also introduced and pH adjusted to 8 by addition of 1M HCl. 

The reaction mixture was incubated at 250 rpm and 37 ºC and the e.e. monitored by HPLC, 

working up small samples at appropriate time intervals. To a 250 µL aliquot of reaction 

mixture 40 µL of 5M NaOH and 250 µL of TBME were added. The solution was vigorously 

mixed and centrifuged at 13000 rpm for 1 min. The organic phase was separated, dried with 

anhydrous sodium sulphate and run on a normal-phase HPLC. Conversion was verified by 

normal-phase HPLC, by comparison with standards. When not commercially available, 

imine compounds were synthesized by large scale biotransformations and conversion 

determined by 1H NMR. These were directly used as standards for HPLC. 

2.9.2 MAO-N D9/D11 or HDNO imine formation reactions 

A similar procedure to the above mentioned was used for these biotransformations. 0.1 

grams of cell pellet were added to 1 mL of a 10 mM solution of substrate in phosphate buffer. 

The reactions were incubated at 250 rpm and 37 ºC and monitored by HPLC as previously 

described. When not commercially available, imine compounds were synthesized by large 

scale biotransformations and conversion determined by 1H NMR. These were directly used 

as standards for HPLC. 

Large scale biotransformations were done in a 5 mL scale and extracted after 48 hours with 

3 x 5 mL of ethyl ether. The organic phase was dried and concentrated, and the product was 

analysed by 1H and 13C NMR. 
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2.9.3 HPLC analysis: determination of the relative response factor 

The relative response factor (RRF) allows an accurate comparison of the concentration of 

two compounds in an HPLC run by its peak area. It can be calculated according to Equation 

2, whose values can be obtained from the HPLC runs of standards of each compound. 

𝑅𝑅𝐹(𝐴/𝐵) =
𝑃𝑎/𝐶𝑎

𝑃𝑏/𝐶𝑏
 ,  where P is the peak area, C the concentration of the sample injected and 

A and B different compounds. 

Equation 2. Relative response factor 

The determination of the RRF between 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline 

(A) and 6,7-dimethoxy-1-methyltetrahydroisoquinoline (B) is presented as an example. In 

Figure 20, equimolar standards of both compounds were run at the HPLC and peak area 

determined. In such conditions as 𝐶𝐴 = 𝐶𝐵, 

𝑅𝑅𝐹(𝐴/𝐵) =
𝑃𝐴

𝑃𝐵
⟹ 𝑅𝑅𝐹(𝐴/𝐵) =

54521.5

19347.8
= 2.82 

 

Figure 20. Normal phase HPLC trace (CHIRACEL® OD-H 250 mm x 4.6 mm, 5 µm, eluent: 

hexane/isopropanol/diethylamine = 90/10/0.1, 1 mL/min, 280 nm) of a 10 mM standard 

solution of either 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (top)or 6,7-dimethoxy- 

-1-methyltetrahydroisoquinoline (bottom). 

 



Chapter 2. experimental section 
 

52 

 

2.9.4 Nitrilase catalysed hydrolysis 

Commercially available lyophilized cell-free extract of six nitrilases was used in the 

following biotransformations. To 1 mL of a 20 mM solution of cyano substrate in phosphate 

buffer (pH 8.0) was added 3 mg of the corresponding enzyme. The mixture was incubated 

at 150 rpm and 30 ºC for 72 hours, after which a sample was taken and analysed by reverse-

phase HPLC. Additional 3 mg of enzyme were added and the reaction was incubated for 

more 48 hours, followed by new HPLC analysis. HPLC samples were prepared by 

centrifugation of a 200 µL aliquot at 13200 rpm followed by a 1:2 dilution of the supernatant 

in methanol and posterior 1:2 dilutions in methanol/water 50/50. Product concentration was 

calculated according to Equation 3, whose graphic can be consulted in Figure A1.2.  

 

𝑦 = 3807𝑥    (𝑅2 = 0.987) 

Equation 3. Calibration curve of tetrahydroisoquinoline-1-carboxylic acid concentration. 

 

2.10 CHEMICAL REACTIONS 

2.10.1 Cyanation of 3,4-dihydroisoquinolines 

A 1 M solution of potassium cyanide (1.5 eq.) was added to a 1.5 M solution of                              

3,4-dihydroisoquinoline in water previously acidified with diluted sulphuric acid, according 

to a procedure by Beumont et al..118 The reaction was left stirring at room temperature for 1 

hour. After extraction with ethyl ether, the yield was determined by 1H and 13C NMR. 

Decomposition of the cyano compounds occurred quickly at room temperature and, as so, 

the product was kept at -4 ºC. 
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3.1 PROTEIN EXPRESSION 

3.1.1 Protein expression in E. coli 

After transforming MAO-N D5, D9 and D11 plasmids into competent BL21(DE3) cells and 

expressing and purifying the protein using the protocol described in Chapter 2, the adequate 

MAO-N variant’s presence was verified by SDS-PAGE (Figure 21). Success was confirmed 

by the presence of a single band in the polyacrylamide gel between 60 and 70 kDa, eluted 

between fractions 2 and 7. With 495 amino acid residues, MAO-N has a molecular weight 

of approximately 60 kDa. 

 

Figure 21. SDS-PAGE gel of MAO-N variant’s purification. The protein ladder, marked at 

75 kDa, was run in the first well, followed by the flow-through (FT), the wash-through (WT) 

and the elution fractions by order. a) MAO-N D5; b) MAO-N D9; c) MAO-N D11. 
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The obtained solutions were subjected to the Bradford protein assay and protein 

concentrations calculated by comparison with a BSA calibration curve (Figure A1.1). 

Results show that 3.5 mL of MAO-N D5, D9 or D11 solutions had a concentration ranging 

from 0.63 to 1.59 mg/mL (Figure 22). Moreover, the increased number of mutations in 

MAO-N D9 and MAO-N D11 seem to difficult enzyme expression. These results were taken 

into account in the specific activity assays that follow. 

 

Figure 22. Protein concentration of MAO-N variants calculated by the Bradford Assay 

Additional expression of MAO-N D9 was attempted with different incubation conditions 

and E. coli strains but, unfortunately, SDS-PAGE analysis showed no significant amount of 

protein after purification. Troubleshooting of this results lead to the analysis of the DNA 

sequence of MAO-N wt, D5 and D9. Large differences were found in the codon frequencies 

of MAO-N wt and MAO-N D5, indicating that the D5 variant had been previously codon 

optimized for expression in E. coli – see 1.2.2.2 for further reference. On the other hand, 

MAO-N D9 sequencing showed this enzyme had not been codon optimized, which could 

justify its low expression in this organism. 

3.1.2 Protein expression in P. pastoris 

P. pastoris is a methylotrophic organism widely used for heterologous protein expression. It 

presents several advantages in its ability to secrete proteins and reach high cell densities. 

Moreover, it is a suitable host to test our hypothesis that MAO-N D9 did not express due to 

a lack of codon optimization, as yeast stands more similar to the native host, Aspergillus 

niger.62 
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In this work, MAO-N D9 gene was inserted in a pPicZα C empty vector by ligation 

independent cloning. Cloning success was confirmed by DNA sequencing. Also, the 

presence of the MAO-N gene was verified by subjecting the circular plasmid to two 

restriction enzymes, XhoI and BamHI, that selectively cut the gene in two segments of           

1872 bp and 3100 bp. Successful cleavage was verified by agarose gel electrophoresis 

(Figure 23). 

 

Figure 23. Agarose gel electrophoresis of MAO-N D9 in pPicZα C after action of the 

restriction enzymes XhoI and BamHI. 

The complete circular plasmid was linearized with a PmeI restriction enzyme for 

transformation into P. pastoris cells. Insertion of plasmid DNA in P. pastoris was achieved 

by electroporation. Unfortunately, transformation efficiencies for this organism are 

considerable lower than with E. coli as the plasmid needs not only to enter the cell but also 

be incorporated in the host’s genome. In order to achieve successful insertion, care must be 

taken with cell viability and concentration of DNA and cell in the electroporation cuvette. 

Moreover, cell growth with several concentrations of antibiotic is required for the selection 

of the best multi-copy recombinants, that is, multiple insertion of the gene in the host’s 

genome. 

Transformation of MAO-N into P. pastoris was attempted for five times before successful 

transformants were found. Even then, only two colonies grew on an YPD plate with            

1000 µg/ml Zeocin™. PCR of both colonies, with the previous primers from the ligation 

independent cloning, followed by agarose gel electrophoresis revealed the presence of a band 
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around 1.5 kb, corresponding to amplification of the MAO-N D9 gene (Figure 24). This 

confirmed a successful insertion of the target gene. Besides, the high intensity of the band 

suggests the insertion of multiple copies into the P. pastoris genome, therefore increasing 

the likelihood of high MAO-N D9 expression in future cell growth experiments. 

 

Figure 24. Agarose gel electrophoresis of the results from the Touchdown PCRs for the 

amplification of MAO-N D9 gene in P. pastoris’ genome. A) 1 kb DNA ladder; B) Unrelated 

run; C) Touchdown PCR with colony 1; D) Touchdown PCR with colony 2. 

3.2 SUBSTRATE SCOPE OF MAO-N IN THE OXIDATION OF 

TETRAHYDROISOQUINOLINES 

3.2.1 Overview 

A colorimetric specific activity assay was optimized to quickly determine the activity of 

MAO-N variants with THIQ substrates. MAO-N can catalyse the oxidation of primary and 

secondary amines to imines, producing hydrogen peroxide as a sub product. In the presence 

of HRP, H2O2 can catalyse the oxidative coupling of TBHBA with 4-AAP, producing a 

highly stable magenta dye (Scheme 20). Its concentration can be monitored measuring the 

absorbance at 510 nm. Moreover, when plotting absorbance vs time, a direct proportionality 

can be found between the slope of the graphic obtained and the specific activity of the 

enzyme. 
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Scheme 20. Oxidative coupling of TBHBA and 4-AAP 

Eleven different substrates were used in this analysis, as mentioned in Figure 16, and tested 

with the MAO-N variants found in Table 1. Besides the already reported MAO-N D5, D9 

and D11 mutants, eight mutants, selected from a library of single and double mutations on 

MAO-N D5 under development by Jane Kwok et al.115, were studied for the first time with 

THIQ substrates. The absorbance of all reactions was monitored over time, the specific 

activity calculated accordingly and the results presented in the following Figures 25 to 29. 

3.2.2 Specific activity assays 

The specific activity of MAO-N variants with α-AMBA (66) (see structure in Scheme 14) 

and THIQ (19) (see structure in Figure 16) is presented in Figure 25. α-AMBA was used 

as a positive control to confirm that the enzyme was expressed in its active conformation. 

As expected, all variants showed activity with this substrate. However, its similarity with the 

natural substrate of this enzyme seems to evidence that a greater change in the enzyme’s 

active site, as seen in MAO-N D11, can lead to a significant decrease in activity with simple 

substrates. 

Surprisingly, all MAO-N D12 variants had higher specific activities with THIQ than with  

α-AMBA, reaching a surprising 7-fold increase in activity for D12 (H). In fact, the new 

engineered mutants appeared to follow a different evolutionary route than the previously 

reported with MAO-N D9 and D11, maintaining and even improving MAO-N D5’s 

preference for unsubstituted THIQ over α-AMBA. 
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Figure 25. Specific activity of MAO-N variants with racemic α-AMBA – in blue – and 

THIQ – in grey. 

The procedure was repeated with MTQs. In Figure 26 and 27 it is possible to assess the 

influence of an increased steric hindrance near the amine group to the activity of all               

MAO-N variants. First, and as expected, MAO-N D9 showed significantly higher activity 

with this substrate than other mutants.  

 

Figure 26. Specific activity of MAO-N variants with 1-MTQ 
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Still, different results were found when comparing substitutions in the remaining positions 

of the pyrimidine ring, as these substrates were not easily accepted by any enzyme variant. 

First, and in contrast with MAO-N D9 and D11, the activity of MAO-N D12 variants with 

4-MTQ (86) (see structure in Figure 16) appeared to be much higher than with 3-MTQ (85) 

(see structure in Figure 16). Most importantly, MAO-N D12 mutants showed the highest 

activity so far reported for 4-MTQ, with an up to 17-fold improvement from MAO-N D5.  

 

Figure 27. Specific activity of MAO-N variants with 3-MTQ – in blue – and 4-MTQ – in 

grey. 

Next, the activity of MAO-N variants with THIQ with substituents in the aromatic ring was 

determined. Figure 28 shows that MAO-N D9 presented exceptional activity with 5,6 and 

8-MTQ - (87), (88) and (90), respectively (see structures in Figure 16). Nevertheless, the 

new MAO-N D12 mutants showed a significant increase in activity from MAO-N D5, up to 

16-fold. Consistent with the results is the higher acceptance by these new mutants of 5-MTQ, 

presenting a similar activity profile to MAO-N D5. Remarkably, some MAO-N D12 variants 

are now the most promising enzymes for the oxidation of these methylated THIQs. 

Finally, very low activities were found testing all MAO-N variants with 7-MTQ (89) (see 

structure in Figure 16), and only MAO-N D12 (C) and (G) showed any significant activity 

at 0.0051 and 0.027 U/mg, respectively. 
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Figure 28. Specific activity of MAO-N variants with 5-MTQ, in blue, 6-MTQ, in grey, and 

8-MTQ, in orange. 

It is known that MAO-N does not accept 6,7-dimethoxy substituents in its aromatic ring but 

no study as so far determined if mere steric hindrance is involved or a change in the 

electronic distribution of the molecule. Given the exceptional activity obtained from           

MAO-N D12 mutants with THIQs, in general, and particularly with 7-MTQ, the specific 

activity of all MAO-N variants with DMTHIQ (91) (see structure in Figure 16) and 1-M-

DMTHIQ (92) (see structure in Figure 16) was also determined and is presented in Figure 

29. 

All the enzymes tested showed very low activities with dimethoxylated substrates. 

Nevertheless, MAO-N D9, MAO-N D12 (C) and MAO-N D12 (G) had the highest activity 

of all variants with DMTHIQ. Remarkably, MAO-N D9 maintained its activity when tested 

with 1-M-DMTHIQ and MAO-N D12 (C) suffered only a slight decrease in activity. In 

contrast, MAO-N D12 (G) proved to be completely unable to oxidize this substrate. 
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Figure 29. Specific activity of some MAO-N variants with DMTHIQ, in blue, and                         

1-M-DMTHIQ, in grey. 

3.2.3 Final discussion 

In this section a specific activity assay was used to study the substrate scope of several 

engineered MAO-N variants with THIQ derivatives, with interesting results. A summary of 

the results aforementioned is presented in Figure 31. First, it seems clear that the substrate’s 

substitution pattern can have a huge influence in the enzyme’s activity (Figure 30). 

Although simple non-polar substitutions in the 5, 6 or 8 positions can maintain or even 

improve the activity of some MAO-N variants, substitutions in the 7 position do not seem to 

be accepted at all. Moreover, the four mutations present in MAO-N D9 and not in MAO-N 

D5, shown in Table 1, appear essential in the acceptance of small substituents in C1 by the 

enzyme. In fact, the low activity seen in MAO-N D11 with 1-MTQ, by comparison with 

MAO-N D9, indicates that the only different amino acid between these mutants, W430, may 

be responsible for this selective behaviour. 

Second, C3 and C4 substitutions can significantly hinder the enzyme’s activity, by either 

changing the electronic properties of the molecule, and subsequently altering the amine’s 

pKa, or making it difficult to accommodate the target molecule inside the active pocket. It 

is our belief that the increase in activity seen in some MAO-N D12 mutants supports the 

second hypothesis, as the change in the enzyme’s secondary structure, far from the aromatic 
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cage, is more likely to alter the shape or size of the active pocket and, therefore, its ability to 

accommodate larger substrates. 

 

Figure 30. Summary of the activity of MAO-N variants with methyl substituted THIQs, 

with the circles representing the carbons in which the methyl group was added. Green -high 

activity with most tested variants; orange – average activity with most tested variants; red – 

very low activity with all tested variants; blue – high activity only with MAO-N D9. 

Finally, the results showed remarkable activities for MAO-N D12 (C) and D12 (G) with 

dimethoxylated substrates, similar or even higher than the activity here reported with             

MAO-N D9. Nevertheless, while MAO-N D12 (C) maintained its activity with                                 

1-M-DMTHIQ, the (G) variant was completely inactive with this substrate. What’s more, 

this behaviour was comparable to the one seen in 1-MTQ, where this last variant showed 

complete loss in activity by the addition of a 1-methyl substitution. This suggests an inability 

by the enzyme to accept C1 substitutions, therefore limiting its substrate scope. As so and as 

previously stated, the increase in the size of the active pocket caused by the mutations present 

in MAO-N D9, especially in the W430 residue, can be essential for the accommodation of 

C1 substituted THIQ’s in the active site. 
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Figure 31. Summary of the mutants with best activity towards each one of the substrates 

tested. The values presented are relative to the best activity determined for α-AMBA            

(MAO-N D9) 

 

3.3 DIRECTED EVOLUTION OF MAO-N D9 BY SITE-DIRECTED 

MUTAGENESIS 

3.3.1 Overview 

The MAO-N D12 (G) mutant presented remarkable activity towards DMTHIQ, the highest 

activity ever reported by a MAO-N variant. Unfortunately, this mutant seems to lose all 

activity by the presence of a substitution in C1. On the other hand, MAO-N D9 presented 

similar activities with both substrates, easily accommodating the additional methyl group. 

Following the principle of additivity, explained in Chapter 1, we set out to see if the addition 

of the two additional mutations in MAO-N D12 (G) – S205T S206N – to MAO-N D9 could 

generate a new enzyme with increased activity towards 1-M-DMTHIQ. 
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3.3.2 Oxidation and deracemization of salsolidine 

The double point mutation was performed by both GC and HF PCR with designed mutagenic 

primers and success confirmed by sequencing of overnight cultures in NEB® 5-alpha. For 

the purposes of this work the new mutant was named MAO-N D13. 

MAO-N D13 was expressed in E. coli BL21(DE3) but purification did not yield any 

significant amount of protein. As so, specific activity assays couldn’t be performed with the 

new mutant. Nevertheless, biotransformations were set to verify the enzyme’s ability to 

oxidise (rac)-1M-DMTHIQ (92) to 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (96) 

and the results analysed by HPLC (Scheme 21). The relative response factor was 2.82, 

calculated as described in the experimental section. 

 

Scheme 21. Oxidation of 1-M-DMTHIQ with MAO-N variants 

MAO-N D9 was used as a negative control. A whole-cell biotransformation was set using 

MAO-N D9 in E. coli BL21(DE3) and its results presented in Figure 32. Only 0.92% yield 

was found after 4 days, confirming previous results that this mutant could not catalyse the 

aforementioned reaction. On the other hand, the new MAO-N D13 mutant achieved a 

remarkable yield of 29.8% in the same time period, showing an over 30-fold increase in 

activity. Amazingly, it appears to be the first ever recorded successful biotransformation of 

dimethoxylated tetrahydroisoquinolines with a MAO-N variant.  
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Figure 32. Normal phase HPLC trace (CHIRACEL® OD-H 250 mm x 4.6 mm, 5 µm, eluent: 

hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 280 nm) of three 

biotransformations: oxidation of (92) with MAO-N D9 (top), oxidation of (92) with  

MAO-N D13 (middle) and deracemisation of (92) with MAO-N D13 (bottom). RT[(S)-amine] 

= 21.79 min*; RT[(R)-amine] = 28.89 min* ; RT[imine] = 14.65 min. 

*Enantiomer peaks identified according to the literature.94 

Moreover, analysis of the remaining amine peaks showed a 49.5% enantiomeric excess of 

the (R) enantiomer (97), with no significant decrease in its peak area (by comparison with a 

10mM racemic standard), indicating MAO-N D13 to be very selective towards  

(S)-1-M-DMTHIQ (98). As so, the reaction yield could be calculated by the conversion of 

(98) to (96), estimated at approximately 60%. These results showed that MAO-N D13 could, 

in theory, be used for the kinetic resolution of racemic 1-M-DMTHIQ due to its high activity 

and selectivity towards one enantiomer. 

In light of these results, the dynamic kinetic resolution of 1-M-DMTHIQ with MAO-N D13 

and NH3
.BH3 was attempted. Unfortunately, no significant change in enantiomer 

concentration was found over a 4-day reaction period. The reaction rate appears too small to 

ensure enough cycles of oxidation-reduction in a reasonable time period. No further 
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reactions were attempted, but an increase in enzyme loading could, in theory, lead to better 

results. Nevertheless, the identification of a new MAO-N mutant with increased activity is 

still remarkable and can stand as a starting point for further directed evolution experiments 

targeting dimethoxylated substrates. 

3.4 DYNAMIC KINETIC RESOLUTION OF CHIRAL 

TETRAHYDROISOQUINOLINES 

3.4.1 Overview 

Pure chiral amines are increasingly common in the pharmaceutical industry, driving a 

constant search for new and sustainable methods towards their synthesis or resolution. In 

this section, four enzymes - MAO-N D5, D9, D11 and HDNO - were investigated for their 

ability to oxidase several chiral amines. 

DKR of chiral amines with MAO-N variants has been previously described in Chapter 1. It 

has remarkable advantages to common resolution methods, as it can reach 100% yield and 

have a low environmental impact. In this work, HDNO and an appropriate MAO-N variant, 

according to the literature, were used for the deracemisation of α-AMBA and several 

tetrahydroisoquinolines, as follows. 

3.4.2 Resolution of chiral amines 

3.4.2.1 α-Methylbenzylamine 

The deracemisation of α-AMBA with MAO-N D5 has been previously reported with great 

success, as stated in Chapter 1. In this work, both MAO-N D5 and HDNO were used in this 

reaction (Scheme 22) and, surprisingly, appear to have reverse selectivity. With MAO-N 

D5, an e.e. of 74% of the (R) enantiomer (68) was reached within 2 hours, and complete 

deracemization should shortly follow (Figure 33). Contrarily, an e.e. of only 16% of  

(S)-α-AMBA (99) was obtained with HDNO after two days, proving that, although selective 

towards this isomer, this enzyme is not very active. 
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Scheme 22. Deracemisation of α-AMBA with MAO-N D5 and HDNO 

 

Figure 33. Normal phase HPLC trace (CHIRACEL® OD-H 250 mm x 4.6 mm, 5 µm, eluent: 

hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of the deracemisation of 

α-AMBA with HDNO (top) or MAO-N D5 (bottom). RT[(R)-amine] = 8.77 min;  

RT[(S)-amine] = 10.67 min. 

 

3.4.2.2 1-Methyltetrahydroisoquinoline 

A similar procedure was used for 1-MTQ (Scheme 23) and the HPLC results shown in 

Figure 34. MAO-N D9 was the monoamine oxidase variant used in this experiment due to 

its high activity with this substrate, previously reported in Chapter 3. Full conversion to 

(R)-MTQ (71) was found with MAO-N D9 after two hours, while with HDNO only 29.9% 
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e.e. of (S)-MTQ (100) was attained after 2 days. Even so, this result presents an increase in 

activity for HDNO, by comparison with α-AMBA. 

 

Scheme 23. Deracemisation of 1-MTQ with MAO-N D9 and HDNO 

 

Figure 34. Normal phase HPLC trace (CHIRACEL® OD-H 250 mm x 4.6 mm, 5 µm, eluent: 

hexane/isopropanol/diethylamine = 98/2/0.1, 1 mL/min, 254 nm) of the deracemisation of 

1-MTQ with HDNO (top) or MAO-N D9 (bottom). RT[(S)-amine] = 12.13 min; RT[(R)-amine] = 

12.68 min. 

*Enantiomer peaks identified by comparison with known literature.103 
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3.4.2.3 Crispine A 

Finally, the deracemization of Crispine A, a known antitumor drug, was attempted with 

HDNO and MAO-N D11 (Scheme 24). Unfortunately, only 15.8% e.e. of (R)-Crispine (77) 

was found after 2 days (Figure 35). Also, HDNO proved to be either inactive or non-

selective towards this substrate. Nevertheless, the low activity of MAO-N D11 with Crispine 

A could be justified by the increased difficulty in the oxidation of tertiary amines, as no 

mention of catalytic loading was made in previous articles. 

 

 

Scheme 24. Deracemisation of Crispine A with MAO-N D11 and HDNO 
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Figure 35. Normal phase HPLC trace (CHIRACEL® OD-H 250 mm x 4.6 mm, 5 µm, eluent: 

hexane/isopropanol/diethylamine = 90/10/0.1 (top) or 95/5/0.1 (bottom), 1 mL/min, 254 nm) 

of the deracemisation of Crispine A with HDNO (top) or MAO-N D11 (bottom). RT[(S)-amine] 

= 12.13 min; RT[(R)-amine] = 12.68 min. 

*Enantiomer peaks identified by comparison with known literature.94  
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3.5 ONE POT THREE STEP CASCADE FOR THE C1 FUNCTIONALIZATION 

OF TETRAHYDROISOQUINOLINES 

3.5.1 Overview 

Functionalized THIQs can act as precursors to important alkaloids with known 

pharmacological applications. In this work, a one-pot three step cascade reaction was 

devised to synthetize tetrahydroisoquinoline-1-carboxylic acids (106) (Scheme 25). First, 

MAO-N D9, D12 (G) or HDNO were used in the conversion of several THIQs (103 a-e) to 

the corresponding 3,4-dihydroisoquinoline analogues (104 a-e), as described in Chapter 2. 

These were treated with potassium cyanide in an acid environment to yield                                          

1-cyanotetrahydroisoquinolines (105 a-d). The cyano compounds were then selectively 

hydrolysed by commercial nitrilases, and both the conversion and enantiomeric excess 

determined by reverse-phase HPLC. 

 

 

Scheme 25. Cascade reaction for the stereoselective synthesis of  

tetrahydroisoquinoline-1-carboxylic acids. Compound (19) was renumbered to (103a) to 

allow a better comprehension of the following results by the reader. 
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3.5.2 Synthesis of 3,4-dihydroisoquinolines 

3.5.2.1 Overview 

MAO-N D9, D12 (G) or HDNO were used in the oxidation of several THIQs. First, small 

biotransformations were set and analysed by HPLC. When near full conversion was reached 

within 48 hours, the biotransformations were replicated in a larger scale and analysed by 

1H NMR, as presented. The obtained 3,4-dihydroisoquinolines (104 a-e), confirmed by 

1H NMR, were used in the determination of response factors, and the final yield was 

calculated from the previous small scale HPLC runs. An exception is made for  

3,4-dihydroisoquinoline (104a) as the commercial imine standard was available. 

The 1H NMR spectrum of 5-methyl-3,4-dihydroisoquinoline as a direct result of the 

oxidation of 5-MTQ by MAO-N D9 is shown in Figure 36 as an example. First, the H-1 

peak can be seen at 8.25 ppm in the form of a triplet, coupling at long distance with the H-3 

protons. It suffers the inductive deshielding effect of the highly electronegative nitrogen 

atom, as well as the anisotropic deshielding effect caused by the C1=N double bond 

conjugated with the aromatic ring. 

Next, the signals correspondent to the three aromatic protons can be seen between 7.05 and 

7.20 ppm, all suffering the anisotropic effect of the aromatic ring. The signal from the H-8 

proton appears as a doublet, coupling with H-7, at a higher chemical shift due to the increased 

anisotropic effect from the C1=N bond and the inductive effect of the nitrogen atom. At  

7.14 ppm appears the H-7 signal as a triplet, by coupling of this proton with H-6 and H-8. 

Finally, the signal of H-6 appears at 7.07 ppm as a doublet, coupling with H-7. 

The signals from the aliphatic protons appear last in the 1H NMR spectrum, with H-3 and 

H-4 signals presenting an downfield shift due to their proximity to the heteroatom and the 

aromatic ring. In fact, the direct bond to the nitrogen atom causes a downfield shift of the  

H-3 signal (3.72 ppm) that appears as a double triplet by coupling with H-1 and the H-3 

protons.  Next, the signal from H-4 appears as a triplet at 2.62 ppm, coupling only with  

H-3. Finally, the H-9 protons’ signal from the methyl group appears as a singlet at 2.22 ppm, 

suffering only slightly the anisotropic effect of the aromatic ring. 

6-MTQ and 8-MTQ present similar 1H NMR spectra, with some slight differences in the 

chemical shift of the signals correspondent to the aromatic protons. Nevertheless, these 

signals were easily assigned by their multiplicity. On the other hand, the spectrum of  
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6,7-dimethoxy-3,4-dihydroisoquinoline shows significant differences due to the addition of 

electronegative atoms. First, the signals of the methyl protons adjacent to an oxygen atom 

appear as singlets at 3.83 and 3.85 ppm, suffering its deprotective inductive effect. Then, the 

aromatic protons’ (H-5 and H-8) signal present a downfield shift due to its ortho position to 

the methoxy groups, suffering an important resonance deprotecting effect. 

 

Figure 36. 1H NMR spectrum of 5-methyl-3,4-dihydroisoquinoline as a direct result of an 

oxidation by MAO-N D9  

 

3.5.2.2 3,4-Dihydroisoquinoline 

The oxidation of THIQ (103a) with MAO-N D9 or HDNO was monitored over a 48-hour 

period. A yield over 99% was reached with MAO-N D9, as shown in Figure 37. On the 

other hand, a reduced yield of 50.1% was determined for HDNO in this time period. 
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Figure 37. Normal phase HPLC trace (CHIRAPACK® IC™ 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of the oxidation of 

(103a) with HDNO (top) and MAO-N D9 (bottom). RT[amine]= 15.03 min; RT[imine]= 20.14 

min. 

3.5.2.3 5-Methyl-3,4-dihydroisoquinoline 

MAO-N D9 was used in the synthesis of 5-methyl-3,4-dihydroisoquinoline (104e) with 

>99% yield after 2 days, as reported in Figure 38. Oxidation with HDNO was also attempted 

but resulted only in a 23.3% yield.  

 

 1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.22 (s, 3H, H-

9); 2.62 (t, 2H, J 7.8 Hz, H-4); 3.72 (dt, 2H, J 7.8 and 2.0 Hz, 

H-3); 7.07 (d, 1H, J 7.3 Hz, H-6); 7.14 (t, 1H, J 7.3 Hz, H-7); 

7.18 (d, 1H, J 8.2 Hz, H-8); 8.25 (t, 1H, J 2.0 Hz, H-1). 
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Figure 38. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of the oxidation of 

(103e) with HDNO (top) and MAO-N D9 (bottom). RT[amine]= 12.01 min; RT[imine]= 9.51 

min. 

 

3.5.2.4 6-Methyl-3,4-dihydroisoquinoline 

MAO-N D9 successfully oxidised 6-MTQ (103b) with >90% yield in two days, as seen in 

Figure 39. This result is compatible with the high specific activity presented by this variant 

in the colorimetric assay. Moreover, HDNO also showed full conversion in this time interval. 

Still, an unknown compound in high concentration was detected by a peak at 10.4 min in the 

final HPLC, along with a decrease in the expected imine signal (7.49 min). The presence of 

an additional enzyme, expressed by the cell and capable of reacting with either the substrate 

or the product and thus generate a new compound, can explain this phenomenon. Also, but 

less likely, the unprompted oxidation of the imine (104b) to  

6-methyl-3,4-dihydroisoquinolin-1(2H)-one may have occurred. 

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.30 (s, 3H, 

H-9); 2.65 (t, 2H, J 7.8 Hz, H-4); 3.66-3.70 (m, 2H, H-3); 

6.91 (s, 1H, H-5); 7.03 (d, 1H, J 7.6 Hz, H-7); 7.11 (d, 1H, 

J 7.6 Hz, H-8); 8.24 (t, 1H, J 2.0 Hz, H-1). 
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Figure 39. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of the oxidation of 

(103b) with HDNO (top) and MAO-N D9 (bottom). RT[amine]= 8.34 min; RT[imine]= 7.49 

min. 

 

3.5.2.5 8-Methyl-3,4-dihydroisoquinoline 

Unsurprisingly, > 99 % yield was obtained in the oxidation of 8-MTQ (103c) with MAO-N 

D9. HDNO was also suitable for this reaction as a yield of 87% was achieved after only two 

days. The HPLC traces of both reactions can be seen in Figure 40. 

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.41 (s, 3H, H-

9); 2.64 (t, 2H, J 7.7 Hz, H-4); 3.62-3.67 (m, 2H, H-3); 6.92 

(s, 1H, J 7.4 Hz, H-5); 7.01 (d, 1H, J 7.4 Hz, H-7); 7.17 (t, 

1H, J 7.4 Hz, H-6); 8.57 (t, 1H, J 2.0 Hz, H-1). 
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Figure 40. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of the oxidation of 

(103c) with HDNO (top) and MAO-N D9 (bottom). RT[amine]= 11.36 min; RT[imine]= 10.48 

min. 

3.5.2.6 6,7-Dimethoxy-3,4-dihydroisoquinoline 

The oxidation of DMTHIQ (103d) with MAO-N D12 (G) and HDNO was attempted with 

limited success. Oddly, a shift was found in the substrate HPLC peak’s location between the 

standard (~20 min) and the biotransformation runs (~27 min), preventing a correct 

calculation of the relative response factor. Nevertheless, the area of the imine (104d) peak 

in Figure 41 – (top), related to the HDNO biotransformation, is consistent to the product 

peak areas in previous experiments (~80000). Moreover, previous articles report full 

conversion of this substrate with HDNO. As so, this value was associated to full conversion 

to the imine, and yield in the MAO-N D12 (G) biotransformation calculated accordingly – 

31.0 %. We highlight these values may not be accurate and must be used as reference with 

caution. 

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.61 (t, 

2H, J 7.5 Hz, H-4); 3.64-3.69 (m, 2H, H-3); 3.83 (s, 

1H, OCH3); 3.85 (s, 1H, OCH3); 6.60 (s, 1H, H-5); 

6.74 (s, 1H, H-8); 8.16 (t, 1H, J 2.0 Hz, H-1). 
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Figure 41. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 90/10/0.1, 1 mL/min, 254 nm) of the oxidation 

of (103d) with HDNO (top) and MAO-N D12 (G) (bottom). RT[amine]= 27.23 min; 

RT[imine]= 12.73 min. 

 

3.5.3 Synthesis of 1-cyanotetrahydroisoquinolines 

1-Cyanotetrahydroisoquinolines (105 a-d) were synthetized from the corresponding imines 

(104 a-d) by the addition of cyanide in acid medium, according to the mechanism presented 

in Scheme 26. The previously reported imines from large scale biotransformations were 

extracted and used directly. 1H NMR analysis was used to determine the yield of the 

synthesis of (104) and (105) compounds, as shown in the following example. 

 

Scheme 26. Mechanism for the cyanation of 3,4-dihydroisoquinoline with cyanide 

Figure 42 shows the 1H NMR spectrum of the reaction product from the cyanation of  

3,4-dihydroisoquinoline. It is possible to see two very distinct signals whose ratio allowed 

an easy and accurate determination of the yield. The signal (A), corresponding to the H-1 

proton from 3,4-dihydroisoquinoline, is present as a triplet at 8.26 ppm, as previously 

reported, while the signal corresponding to the same proton in  
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1-cyanotetrahydroisoquinoline appears as a singlet 4.96 ppm. Though suffering the 

deshielding inductive effect of the CN triple bond and nitrogen atom and the anisotropic 

effect of the aromatic ring, this proton did not suffer the previous anisotropic effect of the 

conjugated double bond, thus suffering a downfield shift. The presence of the equivalent 

THIQ (103), present due to an incomplete oxidation in the first step, can also be detected in 

some of the spectra by the presence of a singlet peak around 3.8 ppm, corresponding to the 

H-1 protons. 

Additional characteristic 1-cyanotetrahydroisoquinoline signals could be found in the 

spectrum. First, the presence of a multiplet signal corresponding to the four aromatic protons, 

indistinguishable due to the lack of additional effects besides the anisotropic effect of the 

aromatic ring. Then, the presence of a very characteristic ABXY system constituted by the 

H-3 (AB) and H-4 (XY) protons, leading to three distinct NMR signals: an AB system at 3.2 

ppm, in the form of a multiplet, and formed by the signals of the H-3 protons; a doublet of 

doublet of doublets signal (ddd) formed by the coupling of the HA-4 proton with HB-4 and 

both H-3 protons with different coupling constants; and a doublet of triplets (dt) formed by 

the coupling of the remaining HB-4 proton with HA-4 and with the two H-3 protons, in this 

case with similar coupling constants. An interesting phenomenon is therefore observed, as 

the orientation of the H-4 protons is not symmetrical and only one of them couples equally 

with both H-3 protons. Moreover, it could be verified that in most cases the central peaks of 

the ddd signal collapsed to form a larger central peak. Finally, the existence of a wide peak 

at 2.12 ppm, corresponding to the N-H proton, was also found in most spectra. 

Important differences can be found in an additional 1H NMR spectra of methylated  

1-cyanotetrahydroisoquinolines. First, the methyl groups can be identified by a singlet signal 

around 2.25 ppm. Then, the signals corresponding to the aromatic protons can be assigned, 

with the H-5 and H-7 protons appearing more protected and the H-6 and H-8 protons more 

deshielded. Finally, in the spectra of 6,7-dimethoxy-1-cyanotetrahydroisoquinoline, the 

signals corresponding to the methyl groups appears at 3.79 and 3.80 ppm, due to inductive 

effect of the oxygen atom, and the signals from the aromatic protons suffer a significant 

upfield effect, due to the resonance effect of their ortho position to the methoxy groups. 
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Figure 42. 1H NMR of the product from the cyanation of 3,4-dihydroisoquinoline 

Figure 43 further shows the 13C NMR spectrum of the same reaction and can serve as an 

example for the signal identification of 1-cyanotetrahydroisoquinolines. First, signals in the 

aliphatic area could be found at 28.23, 40.76 and 48.35 ppm, correspondent to the C-4, C-3 

and C-1, respectively. An downfield shift was found in the last two carbons due to the 

inductive deshielding effect of the proximity to an electronegative atom (NH) and the 

inductive effect in C-1 of the proximity to a CN group. Next, the signal corresponding to the 

CN carbon can be seen at 120.2 ppm, suffering an downfield shift by its different 

hybridization (sp) and the inductive effect of the nitrogen atom. Finally, the six signals 

corresponding to the aromatic carbon can be found between 125 and 135 ppm. First, the four 

CH signals could not be identified, appearing between 126 and 130 ppm. Then, the two 

quaternary carbon signals, C-4a and C-8a, were identified at a higher chemical shift (129.42 

and 134.71 ppm) due to the inductive effect of an additional C-C bond. The C-8a signal 

appears at a higher chemical shift due to the additional inductive effect of the proximity to 

the nitrogen atom. 
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Some differences can also be found in the 13C NMR spectrum of the nitriles synthetized. 

First, the signal corresponding to the methyl carbon appears with the lowest chemical shift, 

suffering only slightly the inductive effect of the ring. Then, the additional quaternary carbon 

formed by the presence of a methyl group suffers a downfield effect due to the additional  

C-C bond, in the range of 10 ppm. Major changes to this spectrum are seen with (105d) 

(Scheme 21). First, the signals corresponding to the CH carbons appear at a lower chemical 

shift, with C-8 suffering the additional inductive effect of the proximity to the cyano group 

and nitrogen atom. Then, a similar shift is found with the quaternary carbons C-4a and  

C-8a, whose signal appears at 120.99 and 126.95 ppm. Last, the signals corresponding to the 

C-6 and C-7 quaternary carbons suffer the highest downfield effect due to the additional 

inductive effect of the oxygen atom, appearing at 147.87 and 149.17 ppm. 

Figure 43. 13C NMR of the product from the cyanation of 3,4-dihydroisoquinoline 
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3.5.3.1 1-Cyanotetrahydroisoquinoline 

 

1-Cyanotetrahydroisoquinoline (105a) was synthesized from 

commercial 3,4-dihydroisoquinoline (104a) with 91.7 % yield. 

 

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.10 (s, 1H, NH); 2.70 (dt, 1H, J 16.6 and 3.6 

Hz, H-4); 2.86 (ddd, 1H, J 16.5, 10.1 and 6.3 Hz, H-4); 3.13 - 3.23 (m, 2H, H-3); 4.96 (s, 

1H, H-1); 7.05 – 7.20 (m, 4H, H-5/H-6/H-7/H-8). 

13C NMR (100.6, CDCl3): δ (ppm) = 28.23 (C-4); 40.76 (C-3); 48.35 (C-1); 120.20 (CN); 

126.59, 127.10, 128.45 and 129.90 (C-5, C-6, C-7 and C-8); 129.42 (C-4a); 134.71 (C-8a). 

 

3.5.3.2 1-Cyano-6-methyltetrahydroisoquinoline 

 

1-Cyano-6-methyltetrahydroisoquinoline (105b) was synthesized 

from 6-methy-3,4-dihydroisoquinoline (104b) with 82.6 % yield. 

Yield of the two-step synthesis of the cyano compound from  

6-MTQ was 70.7 %.  

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.25 (s, 3H, H-9); 2.66-2.72 (m, 1H, H-4); 2.83 

(ddd, 1H, J 16.4, 10.1 and 6.3 Hz, H-4); 3.14 - 3.25 (m, 2H, H-3); 4.94 (s, 1H, H-1); 6.90 (s, 

1H, H-5); 6.96 (d, 1H, J 7.9 Hz, H-7); 7.04 (d, 1H, J 7.9 Hz, H-8). 

13C NMR (100.6 MHz, CDCl3): δ (ppm) = 21.13 (C-9); 28.22 (C-4); 40.81 (C-3); 48.15 (C-

1); 120.29 (CN); 126.94, 127.46, 130.34 (C-5, C-7 and C-8); 129.82 (C-4a); 134.42 (C-8a); 

138.27 (C-6). 
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3.5.3.3 1-Cyano-8-methyltetrahydroisoquinoline 

 

1-Cyano-8-methyltetrahydroisoquinoline (105c) was synthesized from 

8-methyl-3,4-dihydroisoquinoline (104c) with 99.2 % yield. Yield of 

(102c) from 8-MTQ was 56.3 %. 

 

1H NMR (400.13 MHz, CDCl3): δ (ppm) = 2.28 (s, 3H, H-9); 2.68 (dt, 1H, J 16.6 and 2.7 

Hz, H-4); 2.93 (m, 1H, H-4); 3.19 – 3.24 (m, 2H, H-3); 4.92 (s, 1H, H-1); 6.86 – 7.00 (m, 

2H, H-5, H-7); 7.10 (t, 1H, J 7.6 Hz, H-6). 

13C NMR (100.6 MHz, CDCl3): δ (ppm) = 18.54 (C-9); 28.52 (C-4); 40.31 (C-3); 46.43  

(C-1); 119.39 (CN); 127.70, 128.27 and 128.37 (C-5, C-6 and C-7); 127.93 (C-4a); 134.67 

and 135.14 (C-8 and C-8a). 

 

3.5.3.4 1-Cyano-6,7-dimethoxytetrahydroisoquinoline 

 

1-Cyano-6,7-dimethoxytetrahydroisoquinoline (105d) was 

synthesized from 6,7-dimethoxy-3,4-dihydroisoquinoline (104d) 

with 71.9 % yield. Accumulated yield for the synthesis of (105d) 

from DMTHIQ was 62.3 %. 

 

1H NMR (400 MHz, CDCl3): δ (ppm) = 2.61 (dt, 1H, J 16.4 and 3.6 Hz, H-4); 2.80 (ddd, 

1H, J 16.4, 9.6 and 6.8 Hz, H-4); 3.16– 3.21 (m, 2H, H-3); 3.79 (s, 1H, OCH3); 3.80 (s, 1H, 

OCH3); 4.90 (s, 1H, H-1); 6.54 (s, 1H, H-5); 6.60 (s, 1H, H-8). 

13C NMR (100.6 MHz, CDCl3): δ (ppm) = 27.84 (C-4); 40.82 (C-3); 48.07 (C-1); 55.92 

(OCH3); 56.06 (OCH3); 109.36 (C-5); 111.97 (C-8); 120.29 (CN); 120.99 (C-4a); 126.96 

(C-8a); 147.87 and 149.17 (C-6 and C-7). 
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3.5.4 Nitrilase in the enantioselective hydrolysis of  

1-cyanotetrahydroisoquinoline 

To this moment, only 1-cyanotetrahydroisoquinoline was used in the nitrilase catalysed 

hydrolysis to tetrahydroisoquinoline-1-carboxylic acid (Scheme 27), according to the 

biotransformation described in Chapter 2. This substrate was used as is from previous 

experiments. The reaction was monitored by reverse-phase HPLC, showing loss of enzyme 

activity after 72 h. As so, more enzyme was added and the reaction monitored for an 

additional 48 h, leading to a total reaction time of 5 days. 

 

Scheme 27. Stereoselective hydrolysis of (105a) with nitrilases for the synthesis of 

tetrahydroisoquinoline-1-carboxylic acid. 

Yield in the synthesis of (106a) was determined by reverse-phase HPLC with a non-chiral 

column. A calibration curve was made with standard solutions of commercially available 

racemic product, as presented in Annex 1. Six different nitrilases from Prozomix® - N004, 

N006, N010, N014, N018, N020 – were tested for this reaction. Unfortunately, only N006 

showed significant activity, with a yield of 12.6 % calculated by comparing the carboxylic 

acid’s peak area in Figure 44 with the calibration curve mentioned. 

 

Figure 44. Reverse phase HPLC trace (ZORBAX Extend-C18 column 50 mm x 4.6 mm x 

3.5 µm, eluent: NH4OH 0.1 M pH=10/ methanol isocratic 90:10 (5 min), gradient from 90:10 

to 10:90 (over 15 min), isocratic 10:90 (10 min), 1 mL/min, 40ºC, 210 nm) of the 

biotransformation of unpurified (105a) with nitrilase N006. RT[acid]= 3.35 min;  

RT[imine]= 12.85 min; RT[cyano]= 12.99 min.  
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Next, the samples were run on a reverse-phase HPLC equipped with a chiral column, as 

shown in Figure 45. An enantiomeric excess of 88 % was found in the final run, evidencing 

the high selectivity of this nitrilase towards 105a. However, only the racemic standard was 

available and, therefore, it is impossible to determine to which enantiomer is this enzyme 

selective. 

 

Figure 45. Reverse-phase chiral HPLC trace (Chirobiotic T column 250 mm x 46 mm x 5 

µm, eluent: water/ methanol = 60/40/, 0.8 mL/min, 40ºC, 210 nm) of a 

tetrahydroisoquinoline-1-carboxylic acid 10mM standard (top) and the biotransformation of 

(105a) with nitrilase N006 (bottom). A and B identify the (106a) enantiomer peaks.  
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3.5.5 General discussion 

A proof of concept was presented for the enantioselective green synthesis of 

tetrahydroisoquinoline-1-carboxylic acids from commercially available THIQs. For this 

synthesis, a one-pot three-step route was envisioned and applied to a range of substituted 

THIQ’s. A summary the results can be found in Table 9. 

 

Table 9. Summary table for the results described in section 3.5. 

*Accumulated yield from (103) 

Substrate Imine (104 a-e) * Nitrile (105 a-d) * Acid (106a) * 

 

(103a) 

>99% MAO-N D9 

50.1% HDNO 
91.7% 

12.6% 

(88% e.e.) 

 

(103b) 

>90% MAO-N D9 

>99% HDNO 

(conversion) 

70.7% - 

 

(103c) 

>99% MAO-N D9 

86.7% HDNO 
56.3% - 

 

(103d) 

31.0% MAO-N D12 (G) 

>99% HDNO 
62.3% - 

 

(103e) 

>99% MAO-N D9 

23.3% HDNO 
- - 
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Results clearly show that MAO-N D9 promptly catalyses the oxidation of unsubstituted and 

5, 6 or 8-methyl THIQs with excellent yields. However, 3, 4 and 7 substitutions are still not 

tolerated by this variant. These results appear consistent to the specific activity assays and 

further attest the limited substrate scope of MAO-N. Nevertheless, HDNO proved to be a 

great alternative in the oxidation of dimethoxylated THIQ, increasing the range of 

tetrahydroisoquinoline alkaloids covered by this method. Sadly, scale-up considerably 

lowered the conversion, limiting the future steps of this synthetic route. 

All synthetized 3,4-dihydroisoquinolines were used in a cyanation reaction for the synthesis 

of 1-cyano compounds. Although good conversion was observed with all substrates, with a 

two-step overall yield over 57%, experiments showed that a slightly basic pH is required for 

the reaction to occur. Moreover, it is hypothesized that further studies in the scale-up of the 

enzymatic oxidation and further optimization of the cyanation procedure can potentially lead 

to overall yields over 90%. 

Finally, 1-cyanotetrahydroisoquinoline was chosen to study its selective hydrolysis with six 

commercial nitrilases by Prozomix®. From those, only the N006 variant showed any 

significant activity with this substrate, reaching 12.6% yield with a remarkable e.e. of 88%. 

The great selectivity of this enzyme does limit the yield to a maximum of 50%, therefore 

raising the theoretical yield to around 25%. Moreover, we conjecture that a more regular 

addition of new enzyme to the reaction could increase the final yield, as results have shown 

that the enzyme lost all activity after 72 h. Nevertheless, the yield obtained must be 

thoroughly analysed, as a green synthetic route towards these high value compounds, using 

cheap and available reagents and performed in water at low temperatures had not been 

previously reported. In fact, a 100-fold price valorisation can be found between the 

commercial amine and the racemic acid synthetized. 
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In this work, the potential of biocatalysis in the synthesis of chiral amines with industrial 

and pharmacological applications was explored. In particular, monoamine oxidase variants 

from Aspergillus niger were used in the deracemisation and functionalization of 

tetrahydroisoquinolines. Also, the substrate scope of MAO-N variants with these substrates 

was studied and its results used in the design of a new mutant for the deracemisation of 

salsolidine. 

It was determined that substitutions in the various positions of THIQ can seriously hinder or 

improve the activity of MAO-N variants. From these results a new mutant (MAO-N D13) 

was developed and proved effective in the oxidation of salsolidine. Unfortunately, DKR of 

this substrate could not be accomplished. Next, MAO-N variants and HDNO were used in 

the successful deracemisation of α-AMBA and several THIQ derivatives.  

Finally, a proof of concept is presented for the highly enantioselective one-pot three-step 

synthesis of tetrahydroisoquinoline-1-carboxylic acid from its C1 unsubstituted analogue. It 

is shown that this new cascade reaction can also potentially be applied to aromatic 

substituted THIQs. In fact, the production of a highly valuable chiral compound from a 

simple and easily obtainable derivative from petroleum can prove of great assistance in 

future industrial applications, placing a versatile functional group and therefore increasing 

its potential use as templates in the synthesis of tetrahydroisoquinoline alkaloids. More 

important, the synthesis of 1-carboxylic acid derivatives has only been briefly reported in 

the literature, and the pharmacological potential of this novel and complex α-amino acids 

remains to be explored. 

Nevertheless, the work performed during this master thesis stands only as a starting point in 

new potential routes for the development of MAO-N in biocatalysis. First, the expression of 

MAO-N D9 in the newly obtained Pichia pastoris cells must be finished to determine its 

ability to express large quantities of protein. If successful, this method can be used to express 

other variants and eventually substitute E. coli as the chosen organism for a relatively fast 

expression of great amounts of MAO-N. 

Moreover, the search for MAO-N variants with diverse substrate scopes should continue, as 

shown in the remarkable results of the substrate screening. As an example, new variants with 

increased activity for 3-MTQ and 4-MTQ could prove effective in the oxidation of these 

substrates. Also, additional mutations to MAO-N D13, possibly from the mutations in the 
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MAO-N D12 mutants, could finally lead to a successful and fast deracemisation of 

salsolidine.  

Considerable work is still required in the optimization of the enzymatic cascade shown 

above. Additional experiments could overcome the decrease in conversion verified in the 

scale-up of the amine oxidation, and optimization of the optimal pH conditions for the 

cyanation is still required. Moreover, the development of a protocol that does not require 

product extraction would prove advantageous in future applications, saving both time and 

solvents. Also, in a non-extracting protocol the use of a stoichiometric amount of cyanide 

would be preferential to avoid enzyme poisoning in the last step. Last, to increase the overall 

yield new nitrilases could be acquired and tested for its ability to selectively hydrolyse these 

cyano compounds. 

In a wider perspective, investigation of the applicability of this new synthetic route to 

different substrates could lead to an increasingly used method to chiral amino acids. Also, 

the discovery of new mutants with unreported and exciting new characteristics can stimulate 

new applications for these enzymes. Most importantly, the development, in this work, of 

new segments for future exploration can hopefully encourage the scientific community to 

re-orient its investigation back to this overlooked high-potential monoamine oxidase. 
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1.1.1.  ANNEX 1. CALIBRATION CURVES 
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Figure A1.1. Calibration curve for the determination of protein concentration. 

 

 

Figure A1.2. Calibration curve for the reverse-phase HPLC run of tetrahydroisoquinoline-

1-carboxylic acid 
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ANNEX 2. SPECIFIC ACTIVITY 

ASSAYS 
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Table A2.1. Specific activity of MAO-N variants with α-MBA. 

 

Table A2.2. Specific activity of MAO-N variants with THIQ. 

MAO-N variant 
Total Protein in the 

assay (mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,191 0,005 

MAO-N D9 0,005 0,31 0,01 

MAO-N D11 0,005 0,016 0,001 

MAO-N D12 (A) 0,005 1,16 0,02 

MAO-N D12 (B) 0,0013 1,66 0,01 

MAO-N D12 (C) 0,0025 1,97 0,03 

MAO-N D12 (D) 0,005 1,46 0,09 

MAO-N D12 (E) 0,002 0,90 0,01 

MAO-N D12 (F) 0,002 0,564 - 

MAO-N D12 (G) 0,005 1,663 - 

MAO-N D12 (H) 0,005 2,25 0,01 

 

 

 

 

 

 

MAO-N variant 
Total protein in the 

assay (mg) 

Specific activity  

(U/mg of protein) 

Associated error  

(U/mg of protein) 

MAO-N D5 0,005 0,106 0,000 

MAO-N D9 0,005 1,73 0,05 

MAO-N D11 0,005 0,053 0,006 

MAO-N D12 (A) 0,005 0,43 0,05 

MAO-N D12 (B) 0,0013 0,68 0,02 

MAO-N D12 (C) 0,0025 0,52 0,02 

MAO-N D12 (D) 0,005 0,47 0,06 

MAO-N D12 (E) 0,002 0,369 0,008 

MAO-N D12 (F) 0,002 0,31 0,04 

MAO-N D12 (G) 0,005 0,29 0,01 

MAO-N D12 (H) 0,005 0,77 0,06 
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Table A2.3. Specific activity of MAO-N variants with 1-MTQ. 

MAO-N variant 
Total Protein in the 

assay(mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,007 0,000 

MAO-N D9 0,0025 2,11 0,03 

MAO-N D11 0,005 0,146 0,005 

MAO-N D12 (A) 0,005 0,145 0,009 

MAO-N D12 (B) 0,0013 0,044 0,001 

MAO-N D12 (C) 0,0025 0,026 0,001 

MAO-N D12 (D) 0,005 0,04 0,01 

MAO-N D12 (E) 0,002 0,026 0,000 

MAO-N D12 (G) 0,005 0,046 0,000 

MAO-N D12 (H) 0,005 0,37 0,03 

 

Table A2.4. Specific activity of MAO-N variants with 3-MTQ. 

MAO-N variant 
Total Protein in the 

assay (mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 - - 

MAO-N D9 0,0025 0,0054 0,0000 

MAO-N D11 0,0025 0,0025 0,0000 

MAO-N D12 (A) 0,005 0,012 0,001 

MAO-N D12 (B) 0,0013 0,0061 0,0000 

MAO-N D12 (C) 0,0025 0,0233 0,0009 

MAO-N D12 (D) 0,005 0,0120 0,0007 

MAO-N D12 (E) 0,002 - - 

MAO-N D12 (F) 0,002 0,0056 0,0000 

MAO-N D12 (G) 0,005 0,026 0,002 

MAO-N D12 (H) 0,005 0,031 0,001 
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Table A2.5. Specific activity of MAO-N variants with 4-MTQ. 

MAO-N variant 
Total Protein in the 

assay(mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,007 0,002 

MAO-N D9 0,0025 0,0040 0,0001 

MAO-N D11 0,0025 0,0019 0,0007 

MAO-N D12 (A) 0,005 0,061 0,001 

MAO-N D12 (B) 0,0013 0,088 0,009 

MAO-N D12 (C) 0,0025 0,1084 - 

MAO-N D12 (D) 0,005 0,0566 0,0009 

MAO-N D12 (E) 0,002 0,04 0,01 

MAO-N D12 (F) 0,002 0,015 0,003 

MAO-N D12 (G) 0,005 0,098 0,001 

MAO-N D12 (H) 0,005 0,1238 - 

 

Table A2.6. Specific activity of MAO-N variants with 5-MTQ. 

MAO-N variant 
Total Protein in the 

assay(mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,25 0,04 

MAO-N D9 0,0025 1,32 0,02 

MAO-N D11 0,0025 0,0223 0,0009 

MAO-N D12 (A) 0,005 1,20 0,05 

MAO-N D12 (B) 0,0013 1,64 0,03 

MAO-N D12 (C) 0,0025 1,24 0,09 

MAO-N D12 (D) 0,005 1,74 0,09 

MAO-N D12 (G) 0,005 1,31 0,03 

MAO-N D12 (H) 0,005 2,04 0,06 
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Table A2.7. Specific activity of MAO-N variants with 6-MTQ. 

MAO-N variant 
Total Protein in the 

assay(mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,029 0,001 

MAO-N D9 0,0025 0,72 0,02 

MAO-N D11 0,0025 0,2619 0,0006 

MAO-N D12 (A) 0,005 0,185 0,003 

MAO-N D12 (B) 0,0013 0,258 0,003 

MAO-N D12 (C) 0,0025 0,40 0,01 

MAO-N D12 (D) 0,005 0,490 0,004 

MAO-N D12 (G) 0,005 0,44 0,01 

MAO-N D12 (H) 0,005 0,396 0,005 

 

Table A2.8. Specific activity of MAO-N variants with 7-MTQ. 

MAO-N variant 
Total Protein in the 

assay(mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 - - 

MAO-N D9 0,005 - - 

MAO-N D11 0,005 - - 

MAO-N D12 (A) 0,005 0,0005 0,0001 

MAO-N D12 (B) 0,0013 0,0002 0,0000 

MAO-N D12 (C) 0,0025 0,0051 0,0002 

MAO-N D12 (D) 0,005 0,0015 0,0001 

MAO-N D12 (E) 0,002 - - 

MAO-N D12 (G) 0,005 0,0269 0,0003 

MAO-N D12 (H) 0,005 0,0023 0,0004 
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Table A2.9. Specific activity of MAO-N variants with 8-MTQ. 

MAO-N variant 
Total Protein in the 

assay (mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 0,0303 0,0005 

MAO-N D9 0,0025 1,915 0,017 

MAO-N D11 0,0025 0,61 0,03 

MAO-N D12 (A) 0,005 0,218 0,008 

MAO-N D12 (B) 0,0013 0,2480 0,0008 

MAO-N D12 (C) 0,0025 0,248 0,002 

MAO-N D12 (D) 0,005 0,24 0,03 

MAO-N D12 (G) 0,005 0,21 0,01 

MAO-N D12 (H) 0,005 0,44 0,01 

Table A2.10. Specific activity of MAO-N variants with DMTHIQ. 

MAO-N variant 
Total Protein in the 

assay (mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 - - 

MAO-N D9 0,0025 0,0038 0,0001 

MAO-N D11 0,0025 0,0006 0,0002 

MAO-N D12 (A) 0,005 0,0006 0,0002 

MAO-N D12 (B) 0,0013 - - 

MAO-N D12 (C) 0,0025 0,0039 0,0003 

MAO-N D12 (D) 0,005 0,0012 0,0004 

MAO-N D12 (G) 0,005 0,0054 0,0002 

MAO-N D12 (H) 0,005 0,0016 0,0002 

Table A2.11. Specific activity of MAO-N variants with 1-M-DMTHIQ. 

MAO-N variant 
Total Protein in the 

assay (mg) 

Specific activity 

(U/mg of protein) 

Associated error 

(U/mg of protein) 

MAO-N D5 0,005 - - 

MAO-N D9 0,005 0,0036 0,0004 

MAO-N D11 0,005 0,0017 0,0001 

MAO-N D12 (A) 0,005 0,0000 0,0004 

MAO-N D12 (B) 0,0013 - - 

MAO-N D12 (C) 0,0025 0,0024 0,0008 

MAO-N D12 (D) 0,005 - - 

MAO-N D12 (G) 0,005 - - 

MAO-N D12 (H) 0,005 0,0005 0,0002 
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1.1.2.  ANNEX 3. RESPONSE FACTORS 
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Figure A3.1. Normal phase HPLC trace (CHIRAPACK® IC™ 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 95/5/0.1, 1 mL/min, 254 nm) of a 2.5 mM 

equimolar solution of tetrahydroisoquinoline (103a) and 3,4-dihydroisoquinoline (104a). 

 

 

Figure A3.2. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 90/10/0.1, 1 mL/min, 254 nm) of 5-MTQ (103a) 

(top) and 5-methyl-3,4dihydroisoquinoline (104e) (bottom) 10 mM standards for 

determination of the response factor. 
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Figure A3.3. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 90/10/0.1, 1 mL/min, 254 nm) of 6-MTQ (103b) 

(top) and 6-methyl-3,4dihydroisoquinoline (104b) (bottom) 10 mM standards for 

determination of the response factor. 

 

 

Figure A3.4. Normal phase HPLC trace (CHIRAPACK® OD-H 250 mm x 4.6 mm, 5 µm, 

eluent: hexane/isopropanol/diethylamine = 90/10/0.1, 1 mL/min, 254 nm) of 8-MTQ (103c) 

(top) and 8-methyl-3,4dihydroisoquinoline (104c) (bottom) 10 mM standards for 

determination of the response factor. 

 



 

 

 

ANNEX 4. NMR SPECTRA 
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Figure A4.1. 1H NMR spectrum of 5-methyl-3,4-dihydroisoquinoline 

 

Figure A4.2. 1H NMR spectrum of 6-methyl-3,4-dihydroisoquinoline 
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Figure A4.3. 1H NMR spectrum of 8-methyl-3,4-dihydroisoquinoline. The signals 

corresponding to its protons are identified in the figure in black. The markings in green 

identify the signals corresponding to an amine contamination due to only partial conversion. 

The remaining amine signals could not be unequivocally assigned. 

 

Figure A4.4 1H NMR spectrum of 6,7-dimethoxy-3,4-dihydroisoquinoline. The signals 

corresponding to its protons are identified in the figure in black. The markings in green 

identify the signals corresponding to an amine contamination due to only partial conversion. 
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Figure A4.5 1H NMR of the product from the cyanation of 3,4-dihydroisoquinoline. The 

signals corresponding to the protons of 1-cyano-6-methyltetrahydroisoquinoline are 

identified in the figure in black. Also, the signal corresponding to the H-1 proton of its imine 

analogue is identified in red. 

 

Figure A4.6 13C NMR of the product from the cyanation of 3,4-dihydroisoquinoline. The 

signals corresponding to the carbons of 1-cyanotetrahydroisoquinoline are identified in the 

figure in black. The markings identify the signals corresponding to the carbons of imine 

contamination - in red - due to only partial conversion. Remaining imine signals could not 

be unequivocally identified. 
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Figure A4.7 1H NMR of the product from the cyanation of  

6-methyl-3,4-dihydroisoquinoline. The signals corresponding to the protons of  

1-cyano-6-methyltetrahydroisoquinoline are identified in the figure in black. The markings 

identify the signals corresponding to the protons of both amine - in green – and imine – in 

red - contamination due to only partial conversion. Remaining amine and imine signals could 

not be unequivocally identified. 

 

Figure A4.8. 13C NMR of the product from the cyanation of  

6-methyl-3,4-dihydroisoquinoline. The signals corresponding to the carbons of  

1-cyano-6-methyltetrahydroisoquinoline are identified in the figure in black. The signals 

corresponding to the carbons of the amine and imine contaminations could not be 

unequivocally identified. 
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Figure A4.9 1H NMR of the product from the cyanation of  

8-methyl-3,4-dihydroisoquinoline. The signals corresponding to the protons of  

1-cyano-8-methyltetrahydroisoquinoline are identified in the figure in black. The markings 

identify the signals corresponding to the protons of both amine - in green – and imine – in 

red - contamination due to only partial conversion. Remaining amine and imine signals could 

not be unequivocally identified. 
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Figure A4.10 13C NMR of the product from the cyanation of  

8-methyl-3,4-dihydroisoquinoline. The signals corresponding to the carbons of  

1-cyano-8-methyltetrahydroisoquinoline are identified in the figure in black. The markings 

identify the signals corresponding to the carbons of both amine - in green – and imine – in 

red - contamination due to only partial conversion. Remaining amine and imine signals could 

not be unequivocally identified. 
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Figure A4.11 1H NMR of the product from the cyanation of  

6,7-dimethoxy-3,4-dihydroisoquinoline. The signals corresponding to the protons of 

1-cyano-6,7-dimethoxytetrahydroisoquinoline are identified in the figure in black. The 

markings identify the signals corresponding to the protons of both amine - in green – and 

imine – in red - contamination due to only partial conversion. Remaining amine and imine 

signals could not be unequivocally identified. 
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Figure A4.12 1H NMR of the product from the cyanation of  

6,7-dimethoxy-3,4-dihydroisoquinoline. The signals corresponding to the carbons of  

1-cyano-6,7-dimethoxytetrahydroisoquinoline are identified in the figure in black. The 

markings identify the signals corresponding to the carbons of imine contamination - in red - 

due to only partial conversion. Remaining imine signals could not be unequivocally 

identified. 

* Overlapping nitrile and imine signals. 

 


