
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Economics School of Economics 

9-2017 

Simulation-based Estimation and Inference of Production Simulation-based Estimation and Inference of Production 

Frontiers Frontiers 

Thomas Tao YANG 

Yichong ZHANG 
Singapore Management University, yczhang@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research 

 Part of the Econometrics Commons 

Citation Citation 
YANG, Thomas Tao and ZHANG, Yichong. Simulation-based Estimation and Inference of Production 
Frontiers. (2017). 1-59. Research Collection School Of Economics. 
Available at:Available at: https://ink.library.smu.edu.sg/soe_research/2119 

This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge 
at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Economics 
by an authorized administrator of Institutional Knowledge at Singapore Management University. For more 
information, please email libIR@smu.edu.sg. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/145236783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Simulation-based Estimation and Inference of

Production Frontiers∗

Thomas Tao Yang† Yichong Zhang‡

September 27, 2017

Abstract

This article proposes two novel estimation and inference approaches for production

frontiers based on extreme quantiles of feasible outputs. The first approach linearly

combines two extreme quantiles to reduce the estimation bias, and uses a subsampling

method to construct point estimates and confidence intervals. The second approach can

accommodate any finite number of extreme quantile estimates by way of the Approx-

imate Bayesian Computation method. The point estimators and confidence intervals

are then obtained through the Markov Chain Monte Carlo algorithm. The estimations

and inferences of both approaches are justified asymptotically. Their finite sample

performances are illustrated through simulations and an empirical application.
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1 Introduction

The estimation of the production frontier (or data envelope) arises naturally in and applies to

many fields such as manufacturing, health care, transportation, education, banking, public

services, and portfolio management. A survey by Gattoufi, Oral, and Reisman (2004) listed

over 1,400 references to the topic of data envelopment. However, the estimation and inference

of production frontiers are complicated by the fact that the parameter of interest is on the

boundary, and thus is non-regular.

In this article, we propose two novel estimation and inference approaches for the fron-

tier. Our approaches are robust to certain amount of outliers as they are based on extreme

quantiles, rather than the sample maximum, of feasible outputs. In addition, our approaches

correct the downward bias between the extreme quantile and the production frontier by mod-

ern simulation-based methods, which avoid analytically estimating the bias. Consequently,

our estimators and the followed inferences are not contaminated by errors from the bias

estimation.

Our first approach uses a linear combination of two extreme quantiles to estimate the

frontier, and a subsampling method to construct point estimators and confidence intervals.

We refer to it as the subsampling approach. The second approach is able to utilize any finite

number of extreme quantiles. It treats the extreme quantile estimates as new observations

and approximates their likelihood using their joint asymptotic distribution. It then puts a

prior on the production frontier, draws the posterior distribution by Markov Chain Monte

Carlo (MCMC) method, and constructs point estimators and confidence intervals based on

the posterior distribution. Because the likelihood is approximated, we refer to this approach

as the Approximate Bayesian Computation (ABC) approach. We use a feasible normalizing

factor in both approaches, without imposing additional restrictions. The inferences of both

approaches are justified asymptotically.
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Our article contributes to three branches of literature: the estimation and inference of

production frontiers, the inference of extreme quantiles, and the ABC inference. We relate

them one by one as follows.

A pioneering work by Deprins, Simar, and Tulkens (1984) first introduced the free-

disposal hull (FDH) estimator of production frontiers. Its asymptotic properties have been

studied by Park, Simar, and Weiner (2000) and Daouia, Florens, and Simar (2010). Given

convexity of the production frontier, another important work by Kneip, Park, and Simar

(1998) considered the data envelopment analysis (DEA) estimators. The asymptotic prop-

erties of DEA estimators have been investigated by Kneip et al. (1998), Gijbels, Mammen,

Park, and Simar (1999), Jeong (2004), Jeong and Park (2006), Kneip, Simar, and Wilson

(2008), and Park, Jeong, and Simar (2010). However, neither the FDH or DEA estimators

are robust to any outliers. In addition, the inference of the FDH estimator requires estimat-

ing the convergence rate, while a valid inference for the DEA estimator is still lacking, to

the best of our knowledge. Recognizing those drawbacks, Cazals, Florens, and Simar (2002)

and Aragon, Daouia, and Thomas-Agnan (2005) suggested estimating an expected frontier,

but it does not envelope the data. Daouia et al. (2010) and Daouia, Girard, and Guillou

(2014) proposed using intermediate quantiles, and then extrapolating to the boundary. Var-

ious bias correction methods are proposed which require certain higher-order expansion of

the tail distribution. Our approaches do not require the frontier to be convex, and thus are

in spirit closer to the FDH estimator. We use extreme, rather than intermediate, quantiles

to construct estimators and correct bias using simulation-based methods. Consequently,

our approaches are robust to a few outliers and do not rely on any higher-order expansion

assumption of the tail distribution.

The literature on the inference of extreme quantiles includes Bertail, Haefke, Politis, and

White (2004), Chernozhukov and Fernández-Val (2011), and Zhang (2016), in the contexts

of percentiles, linear quantile regressions, and quantile treatment effects, respectively. Our
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article complements the literature by studying the production frontier with a new feature of

the estimand on the boundary. Our first approach conducts inference by subsampling, which

is also the case in Simar and Wilson (2011) but for the FDH estimator. Unlike theirs, our

subsampling inference approach is for extreme quantiles but not sample maximum, and does

not require knowledge of the convergence rate. Recently, Müller and Wang (2016) studied

the inference of extreme quantiles by what they referred to as fixed-k asymptotics. Our ABC

approach takes inspiration from their idea of treating fixed-k estimates as new observations.

We differ from them by considering the boundary and adopting the MCMC method for infer-

ences. Our ABC approach is also in spirit close to the small-bandwidth asymptotics studied

in Cattaneo, Crump, and Jansson (2010), because it relies on the alternative asymptotics

and (approximate) finite sample inference.

The ABC method was first considered by Bickel and Yahav (1969) and Ibragimov and

Has’minskii (2013). Recently, Chernozhukov and Hong (2003), Forneron and Ng (2015),

Jun, Pinkse, and Wan (2015), Yu (2015), and Chen, Christensen, O’Hara, and Tamer (2016)

considered ABC in M-estimations, GMM, Maximum-score type estimations, threshold re-

gressions, and partially identified models, respectively. Creel, Gao, Hong, and Kristensen

(2015) went one step further and justified the use of kernel regression instead of the MCMC

method to implement the ABC approach. We contribute to this literature by applying ABC

to first-stage estimates instead of the original data. We mainly exploit two advantages of the

ABC method. First, it can simultaneously produce point estimates and confidence intervals.

Since our parameter of interest is non-regular (i.e., not asymptotically normal), the standard

inference based on normal critical values does not work. The ABC approach provides an valid

alternative. Second, as has been pointed out by Hirano and Porter (2003), Chernozhukov

and Hong (2004), and Ibragimov and Has’minskii (2013), the Bayesian estimator is the most

efficient for non-regular cases. Our Bayesian estimator, based on the ABC method, utilizes

multiple first-stage estimates in an optimal manner and automatically corrects for the mean
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(with L2 loss function) and median (with L1 loss function) bias. The idea of using ABC as

an estimator-combination device appears to be new to the literature.

The rest of the article is organized as follows. Section 2 lays out the setup of the article.

Section 3 derives the asymptotic properties of extreme quantiles in our context. Section 4

investigates the asymptotic properties of two inference approaches. Section 5 examines the

two inference procedures on simulated data, and compares them with the procedure proposed

in Daouia et al. (2010). Section 6 applies both approaches to an empirical application. We

conclude with Section 7. All proofs are collected in the Appendices.

Throughout this article, capital letters, such as A, X, and Y , denote random elements

while their corresponding lower cases denote realizations. C denotes an arbitrary positive

constant that may not be the same in different contexts. For a sequence of random variables

{Un}∞n=1 and a random variable U , Un  U indicates weak convergence in the sense of

van der Vaart and Wellner (1996). Convergence in probability is denoted as Un
p−→ U .

2 Setup

Let x ∈ <p+ and y ∈ <q+ be vectors of production factors (inputs) and outputs, respectively.

Technology is the set of all feasible pairs of (x, y), i.e.,

T = {(x, y) ∈ <p+ ×<
q
+|x can produce y}.

We are interested in the estimation and inference of the production frontier (or efficient

boundary) of technology T, which is the locus of optimal production plans (maximal achiev-

able output for a given level of inputs), i.e.,

φ(x) = sup{y|(x, y) ∈ T}.
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Researchers observe a random sample of pairs of outputs and inputs {Xi, Yi}ni=1 such that

for each i = 1, · · · , n, (Xi, Yi) ∈ T.

Assumption 1. {Yi, Xi}ni=1 is i.i.d. p0 = P (X ≤ x) > 0.

Below, we consider only the univariate output case, i.e., q = 1. If the outputs are multi-

dimensional, then we can denote the univariate Yi as the productivity efficiency score, which

is defined as Yi = max(Y 1
i , Y

2
i , · · · , Y

q
i ). All the results in this article can by applied to

studying the frontier of the new pair (Xi,Yi)
n
i=1. The same productivity efficiency score was

also considered by Park et al. (2000) and Daouia and Simar (2007). In addition, we follow

the literature and assume free disposability.

Assumption 2. If (x, y) ∈ T, then (x′, y′) ∈ T for any (x′.y′) such that x′ ≥ x (componen-

twise) and y′ ≤ y.

Let F (y/x) = P (Y ≤ y|X ≤ x) be the “non-standard conditional distribution” in the

production frontiers literature. Then under Assumption 2,

φ(x) = sup{y ≥ 0|F (y/x) < 1}. (2.1)

We propose to estimate the production frontier at x by q̂n(τn), where

q̂n(τn) = arg min
q

n∑
i=1

ρτn(Yi − q)1{Xi ≤ x}, (2.2)

ρτ (u) = (τ − 1{u ≤ 0})u is Koenker and Bassett’s (1978) check function, and τn is some

sequence that is smaller than and converges to 1. We further denote q(τn) = F−1(τn/x)

where F−1(τn/x) = inf{y : F (y/x) ≥ τn}. We omit the dependence of q(τn) and q̂n(τn) on x

for brevity. Based on this notation, φ(x), the production frontier at x, is q(1).

There is a trade-off between efficiency and robustness underlying the choice of τn. Note

that q̂n(τn) naturally estimates q(τn), and thus is a downward-biased estimator of the produc-
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tion frontier with bias q(τn)− q(1) ≡ q(τn)− φ(x). As τn approaches one, the bias becomes

smaller. However, the estimator becomes less robust as well because a smaller proportion of

the data are used for estimation. On the other hand, if τn is relatively too far away from one

(but still close to one), the bias between q(τn) and q(1) plays a significant role in the mean

squared error (MSE), which is not asymptotically negligible. Existing inference methods of

the production frontier belong to the latter case that

n(1− τn) = kn →∞ and kn/n→ 0, (2.3)

where this τn makes the bias asymptotically non-negligible. Instead, we consider alternative

asymptotics and treat τn as closer to one than as assumed in (2.3).

Assumption 3. τn = 1− k
n

for some k ∈ (0,∞) and kp0 is not an integer.

The sequence of τn is referred to as the extreme quantile index by Chernozhukov (2005)

and Daouia et al. (2010), and as fixed-k asymptotics by Müller and Wang (2016). Comparing

with (2.3), the first part of Assumption 3 treats kn as fixed at k, which does not diverge to

infinite as sample size increases. However, since k can be greater than 1, we still use interior

data points, rather than the maximum of the feasible outputs, for inference. Therefore, our

inference procedures are robust to (a certain amount of) outliers, although it is indeed less

robust than the existing inference with τn defined in (2.3). The second part of Assumption

3 is to guarantee that the limiting objective function of our minimization problem in (2.2)

has a unique minimizer. We view this assumption as mild because we have the freedom to

choose k and the integers are sparse on the real line.
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3 Asymptotic Properties

Before stating the regularity condition for our asymptotic results, we first introduce some

definitions. We say the cumulative distribution function (CDF) F belongs to the domain of

attraction of type III generalized extreme value (EV) distributions if as z → 0 and any v > 0,

1− F (z1 − vz)

1− F (z1 − z)
→ v−1/ξ,

where z1 = sup{z|F (z) < 1}, ξ is the EV index, and ξ < 0.

Assumption 4. The conditional CDF of Yi given Xi ≤ x belongs to the domain of attraction

of type III generalized EV distributions with the EV index ξ0 < 0.

Assumption 4 states that 1 − F (y/x) decays polynomially as y approaching q(1) or

equivalently, F (y/x) has a Pareto-type upper tail. This condition is common in the litera-

ture on the inference of extreme quantiles and production frontiers, e.g., Chernozhukov and

Fernández-Val (2011), Daouia et al. (2010), Park et al. (2000), Zhang (2016). Appendix I

contains a consistent estimator of the EV index.

Let αn = 1/(q(1)− q(1− 1/n)), Ẑn(k) = αn(q̂n(τn)− q(1)), Ẑc
n(k) = αn(q̂n(τn)− q(τn)),

{Ei}∞i=1 be an i.i.d. sequence of standard exponential random variables, Ji = η(
∑i

l=1 El/p0)

where η(·) = (·)−ξ0 .

Theorem 3.1. If Assumptions 1–4 hold, then Ẑn(k)  Z∞(k) where Z∞(k) = −Jh for

some h ∈ [kp0, kp0 + 1]. In addition, Ẑc
n(k) Z∞(k) + η(k).

Several comments are in order. First, Theorem 3.1 establishes the asymptotic distribution

of q̂n(τn), in which τn is of the extreme order. Second, because kp0 is not an integer, there is

exactly one integer in [kp0, kp0 + 1]. Third, Theorem 3.1 does not directly lead to a feasible

inference because the convergence rate αn is unknown. Park et al. (2000) and Simar and

Wilson (2011) imposed additional assumptions so that the convergence rate becomes known
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up to a constant. Such conditions are not required for our approaches. The following is one

way to estimate αn from the literature. By means of Assumption 4, we know αn = cnn
ξ0

where ξ0 is the EV index of the upper tail of F (y/x) and cn is a slowly varying function.

In order to obtain a valid estimator of the convergence rate αn, it is common practice to

assume cn → c ∈ (0,∞). Then, a valid estimator of αn can be constructed by replacing c

and ξ0 with their estimates. However, the assumption that cn → c ∈ (0,∞) excludes the

cases where cn decays to zero (e.g., cn = log−1(n)) or diverges to infinity (e.g., cn = log(n)).

In Corollary 3.1 below, we follow the idea of Bertail et al. (2004) and Chernozhukov and

Fernández-Val (2011) which propose a feasible convergence rate α̂n that does not require any

additional assumption on the tail distribution of the feasible output.

Assumption 5. Choose two constants k0 > 0 and m > 1 such that neither k0p0 nor mk0p0

is an integer and mk0p0 > k0p0 + 1.

Assumption 6. ω̂1 and ω̂2 are two random weights such that ω̂1 + ω̂2 = 1, ω̂1
p−→ ω1, and

ω̂2
p−→ ω2.

For a generic k that satisfies Assumption 3, let Z̃∞(k) = Z∞(k)/(Z∞(k0) − Z∞(mk0)),

where Z∞(k) = −(
∑h(k)

i=1 Ei/p0)−ξ0 and h(k) is the unique integer that satisfies kp0 ≤ h(k) ≤

kp0 + 1.

Corollary 3.1. Let α̂n = (q̂n(1− k0/n)− q̂n(1−mk0/n))−1, τnl = 1− kl/n for l = 1, · · · , L.

If Assumptions 1, 2, and 4–6 hold, and Assumption 3 holds for k = k0,mk0, k1, · · · , kL, then


α̂n(q̂n(τn1)− q(1))

...

α̂n(q̂n(τnL)− q(1))

 

Z̃∞(k1)

...

Z̃∞(kL)

 ,

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− (ω1q(τn1) + ω2q(τn2))

]
 
ω1Z

c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
, (3.1)
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and

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− q(1)

]
 

ω1Z
c
∞(k1) + ω2Z

c
∞(k2)− ω1η(k1)− ω2η(k2)

Z∞(k0)− Z∞(mk0)
. (3.2)

Corollary 3.1 shows that α̂n is a feasible normalizing factor. The asymptotic distributions

with the new normalizing factor serve as the cornerstone of our estimation and inference

procedures, which we will turn to next.

4 The Estimation and Inference

As pointed out by Bickel and Freedman (1981) and Zarepour and Knight (1999), under

the extreme quantile asymptotics, the standard bootstrap inference is inconsistent. In the

following, we consider two alternative simulation-based inference methods.

4.1 The Subsampling Approach

We construct valid point estimators and confidence intervals for q(1) based on the following

two observations from Corollary 3.1. First, for τnj = 1−kj/n, j = 1, 2, we can estimate q(1)

by ω̂1q̂n(τn1) + ω̂2q̂n(τn2) and the critical values of the limiting distribution of

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− q(1)

]

is the same as those for

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− (ω1q(τn1) + ω2q(τn2))

]
,
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given

ω1 + ω2 = 1 and ω1η(k1) + ω2η(k2) = 0.
1 (4.1)

Second, using the subsampling method, we are able to compute the critical value of the

limiting distribution of

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− (ω1q(τn1) + ω2q(τn2))

]
.

To exploit these two observations, we choose ω̂1 and ω̂2 that solve the sample version of

(4.1):

ω̂1 + ω̂2 = 1 and ω̂1k
−ξ̂
1 + ω̂2k

−ξ̂
2 = 0, (4.2)

where ξ̂ is a consistent estimator of ξ0. Then, we compute the critical values for the distri-

bution of

(Z∞(k0)− Z∞(mk0))−1

[
ω1Z

c
∞(k1) + ω2Z

c
∞(k2)

]
,

which is the limiting distribution of

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− (ω1q(τn1) + ω2q(τn2))

]
.

Using these critical values, we can construct valid estimators and confidence intervals for

q(1).

To implement, we compute the critical value using the subsampling method with replace-

ment. Let b be the subsample size. For notation, the estimator computed using (2.2) with

quantile index τ and the full sample is denoted as q̂n(τ). The same estimator, but computed

using the subsample, is denoted as q̂b(τ). We follow the procedure below to compute the

1The intuition of how this linear combination reduces the downward bias is as follows. Equation (4.1)
leads to a ω1 greater than 1 and a negative ω2 = 1 − ω1, assuming k1 > k2. Consequently, we compensate
the downward bias of q̂n(τn1) to q(1) by (ω1 − 1)(q̂n(τn1)− q̂n(τn2)).
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critical value of

(Z∞(k0)− Z∞(mk0))−1

[
ω1Z

c
∞(k1) + ω2Z

c
∞(k2)

]
.

1. Compute ω̂1 and ω̂2 using (4.2) with the full sample.

2. Compute q̂n(τn1), q̂n(τn2), and α̂n = (q̂n(1 − k0/n) − q̂n(1 −mk0/n))−1 using the full

sample. Let τb1 = 1− k1/b and τb2 = 1− k2/b. Compute q̂n(τb1) and q̂n(τb2) using the

full sample.

3. For the s-th subsample, compute q̂b(τb1), q̂b(τb2), and α̂b, in which

α̂b = 1/(q̂b(1− k0/b)− q̂b(1−mk0/b)).

Define Z̃∗b,s = α̂b

(
ω̂1(q̂b(τb1)− q̂n(τb1)) + ω̂2(q̂b(τb2)− q̂n(τb2))

)
.

4. Repeat step 3 for s = 1, · · · , S and obtain a collection of {Z̃∗b,s}Ss=1.

5. Denote Ĉ1−α as the 1−α quantile of {Z∗b,s}Ss=1. Compute the median-unbiased estimator

q̂SS and 1− α confidence interval (CISS1−α) for ω1q(τn1) + ω2q(τn2) as

q̂SS = ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− Ĉ0.5/α̂n

and

(ω̂1q̂n(k1) + ω̂2q̂n(τn2)− Ĉ1−α/2/α̂n, ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− Ĉα/2/α̂n),

respectively.

Due to the non-regularity of the parameter of interest, like other inference procedures (e.g.,

Simar and Wilson (2011) and Daouia et al. (2010)), the subsampling procedure requires sev-

eral tuning parameters, namely {k0, k1, k2}, m, S, and b. We discuss these tuning parameters

in detail in Section 5.3.
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Assumption 7. Assume ξ̂ is a consistent estimator ξ0, and ω̂1 and ω̂2 are computed based

on (4.2).

Unlike the asymptotic distribution, the consistency of an estimator of the EV index can

be established under mild conditions, e.g., Resnick (2007). A consistent estimator of ξ0 is

contained in Appendix I.

Theorem 4.1. If Assumptions 1, 2, and 4–7 hold, and Assumption 3 holds for k = k0, mk0,

k1 and k2, S →∞, b→∞, and b/n→ 0 polynomially in n, then

P (q(1) ≤ q̂SS)→ 0.5 and P (q(1) ∈ CISS1−α)→ 1− α.

Theorem 4.1 shows we can linearly combine two extreme quantile estimators to cancel

the bias and construct a median unbiased estimator and a valid confidence interval for q(1).

4.2 The ABC Approach

In this section, we consider how to combine more than two estimators in some optimal (and

potentially nonlinear) manner to infer the production frontier.

Denote Z̃n(kl) = α̂n(q̂n(τnl)− q(1)) for τnl = 1− kl/n, l = 1, · · · , L. Then, Corollary 3.1

shows 
Z̃n(k1)

...

Z̃n(kL)

 

Z̃∞(k1)

...

Z̃∞(kL)

 .

We view (Z̃n(k1), · · · , Z̃n(kL)) as new observations, whose joint density is parametrized by

q(1) and converges to the joint PDF of (Z̃∞(k1), · · · , Z̃∞(kL)), which is denoted as f(·; ξ0, p0).

Note the limiting density also depends on ξ0 and p0, because for any l = 1, · · · , L, Z̃∞(kl) =

13



Z∞(kl)/(Z∞(k0)− Z∞(mk0)) in which Z∞(k) = −(
∑h(k)

i=1 Ei/p0)−ξ0 .

Although we cannot calculate the exact finite sample likelihood of (Z̃n(k1), · · · , Z̃n(kL)),

we can approximate it by its limit. Then, by putting a prior on q(1), we can write down the

posterior distribution and conduct Bayesian inference.

To implement, we first estimate (ξ0, p0) by (ξ̂, p̂) so that only q(1) is left unknown. Let

π(·) and ρ(·) be the prior of q(1) and a loss function, respectively. The Bayesian estimator

q̂BE of q(1) minimizes the average risk, i.e.,

q̂BE = arg min
q

∫
U

ρn(q−q) f(α̂n(q̂n(τn1)− q), · · · , α̂n(q̂n(τnL)− q); ξ̂, p̂)π(q)∫
U
f(α̂n(q̂n(τn1)− q′), · · · , α̂n(q̂n(τnL)− q′); ξ̂, p̂)π(q′)dq′

dq, (4.3)

where ρn(u) = ρ(α̂nu) and U is the support of π(·) that has q(1) as its interior point. Let

v = α̂n(q − q(1)), v′ = α̂n(q′ − q(1)), z = α̂n(q − q(1)), and ẐBE
n = α̂n(q̂BE − q(1)). Then

ẐBE
n = θBEn (Z̃n(k1), · · · , Z̃n(kL); ξ̂, p̂),

where

θBEn (z1, · · · , zL; ξ, p) = arg min
z

Qn(z, z1, · · · , zL; ξ, p), (4.4)

Qn(z, z1, · · · , zL, ξ, p) =

∫
Un

ρ(z − v)
f(z1 − v, · · · , zL − v; ξ, p)π(q(1) + v/α̂n)∫

Un
f(z1 − v′, · · · , zL − v′; ξ, p)π(q(1) + v′/α̂n)dv′

dv,

and Un = α̂n(U − q(1)). As αn →∞, the RHS of the above converges to

Q∞(z, z1, · · · , zL; ξ, p) =

∫
<
ρ(z − v)

f(z1 − v, · · · , zL − v; ξ, p)∫
< f(z1 − v′, · · · , zL − v′; ξ, p)dv′

dv. (4.5)

Further denote ZBE
∞ = θBE∞ (Z̃∞(k1), · · · , Z̃∞(kL); ξ0, p0),

θBE∞ (z1, · · · , zL; ξ, p) = arg min
z

Q∞(z, z1, · · · , zL; ξ, p), (4.6)
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and

θ̃BEt (z1, · · · , zL; ξ, p) = arg min
γ

∫
Kt

ρ(γ − v)f(z1 − v, · · · , zL − v; ξ, p)dv, (4.7)

where Kt = [−t, t] for t ≥ 1.

Assumption 8. 1. ρ(u) is convex and bounded by a polynomial function of u.

2. (h(k0), h(mk0), h(k1), · · · , h(kL)) are distinct from each other.

3. (ξ̂, p̂)
p−→ (ξ0, p0).

4. θBE∞ (z1, · · · , zL; ξ, p) and θBEn (z1, · · · , zL; ξ, p) are continuous in (z1, · · · , zL) ∈ <L and

(ξ, p) at (ξ0, p0). There exist absolute constants C and B independent of n and any

(ξ, p) in a neighborhood of (ξ0, p0), such that

|θBEn (z1, · · · , zL; ξ, p)|+ |θBE∞ (z1, · · · , zL; ξ, p)| ≤ C
L∑
l=1

|zBl | a.s.

5. There exist constants Ct and Bt potentially dependent on t, such that, uniformly over

(ξ, p) in a neighborhood of (ξ0, p0),

|θ̃BEt (z1, · · · , zL; ξ, p)| ≤ Ct

L∑
l=1

|zBtl | a.s.

6. f(z1, · · · , zL; ξ, p) is continuous in (z1, · · · , zL) ∈ <L and (ξ, p) at (ξ0, p0), and decays

exponentially to zero as zl → ∞, for all l = 1, · · · , L, uniformly over a neighborhood

of (ξ0, p0).

7. π(·) is bounded and continuous at q(1).

8. Q∞(z, Z̃∞(k1), · · · , Z̃∞(kL); ξ0, p0) is finite over a nonempty open set Z0 and uniquely

minimized at some random variable ZBE
∞ w.p.1..
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Several comments are in order. First, Assumption 8.1 is common in Bayesian estimations,

e.g., Chernozhukov and Hong (2003) and Chernozhukov and Hong (2004). Both l1 and l2 loss

functions satisfy this assumption. Second, Assumption 8.2 ensures the limiting likelihood

is well-defined. Third, we adopt a consistent estimator ξ̂ of ξ0 in Appendix I and use

p̂ = 1
n

∑n
i=1 1{Xi ≤ x}, which is consistent to p0. Fourth, Assumptions 8.4 and 8.5 can

be verified directly because it is possible to write down f(z1, · · · , zL; ξ, p) analytically. We

provide one example in Proposition 4.1. Note that, unlike the standard Bayesian estimation,

here we only deal with a finite sample with L observations. In the example with L = 1 after

Theorem 4.2,

θBE∞ (z; ξ, p) = z − c(ξ, p)

in which the c(ξ, p)’s under l1 and l2 loss functions are just the median and mean of the

random variable with density f(z; ξ, p), respectively. If we use the uninformative prior,

θBEn (z1, · · · , zL; ξ, p) is the same as θBE∞ (z1, · · · , zL; ξ, p), and thus Assumption 8.4 holds.

Fifth, Assumption 8.5 is mild as we allow the constants C and B to depend on t. Similarly,

in the example with L = 1,

θ̃BEt (z; ξ, p) = z − ct(z, ξ, p)

in which the ct(z, ξ, p)’s under l1 and l2 loss functions are med(U |U ∈ z−Kt) and E(U |U ∈ z−

Kt), respectively, where the random variable U has density f(z; ξ, p). Clearly |θ̃BEt (z; ξ, p)| ≤

Ct = t. Sixth, Assumption 8.6 holds because Z̃∞(k) behaves as a gamma random variable,

whose tail decays exponentially. Seventh, Assumptions 8.1 and 8.4-8.6 induce various inte-

grability conditions which are necessary for applying the dominated convergence theorem.

Last, Assumption 8.8 implies the limiting objective function has a unique minimizer, which

is necessary for applying the argmin theorem in van der Vaart and Wellner (1996). This type

of assumption is common in the literature of Laplace-type estimations, e.g., Chernozhukov

and Hong (2003) and Chernozhukov and Hong (2004).
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Theorem 4.2. If Assumptions 1, 2, 4, 5, and 8 hold, and Assumption 3 holds for k =

k0,mk0, k1, · · · , kL, then ẐBE
n  ZBE

∞ .

We take the special case of L = 1 to illustrate the distribution of ZBE
∞ . When the loss

function is quadratic, i.e., ρ(u) = u2, ZBE
∞ minimizes

∫
(z − v)2f(Z̃∞(k)− v; ξ0, p0)dv.

By the first-order condition and simple calculations, we obtain

ZBE
∞ = Z̃∞(k)− EZ̃∞(k).

The new limit ZBE
∞ is the demeaned version of the limit (i.e., Z̃∞(k)) of the original estimator.

Since ZBE
∞ has the smallest MSE, it must be mean-unbiased. This illustrates our ABC

approach can automatically correct for the bias of the original estimator. Similarly, when

ρ(u) = |u|, the Bayesian estimator is asymptotically median-unbiased, i.e., it minimizes the

mean absolute deviation (MAD).

Next, we confirm this optimality of the Bayesian estimator for the general case with

L > 1. Let θn(·; ξ̂, p̂) be a (random) function of (z1, · · · , zL) and K be a compact subset of

<. Denote the finite average risk of θn in K as

ARρ,K(θn) =

∫
K

∫
<L
ρ(θn(z1, · · · , zL; ξ̂, p̂)− v)f(z1 − v, · · · , zL − v; ξ̂, p̂)dz1 · · · dzLdv/Λ(K),

(4.8)

where ρ(·) and Λ(·) are the loss function and the Lebesgue measure, respectively. Because

we treat the normalized first stage estimates (z1, · · · , zL) as data, θn(·; ξ̂, p̂), as a function of

data, is also called an estimator. For a generic sequence of estimators {θn(·; ξ̂, p̂)}n≥1, the
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asymptotic average risk is defined as

AARρ({θn}) = lim sup
t→∞

lim sup
n→∞

ARρ,Kt(θn),

in which Kt is defined after (4.7).

Theorem 4.3. If the assumptions in Theorem 4.2 hold, then

AARρ({θBEn }) = Eρ(ZBE
∞ ).

In addition, Let Θn be the collection of all estimators based on (Z̃n(k1), · · · , Z̃n(kL), ξ̂, p̂).

Then

inf
θn∈Θn

AARρ({θn}) = AARρ({θBEn }).

Theorem 4.3 shows that the Bayesian estimator achieves the infimum of the asymptotic

average risk over all estimators in Θn. As a corollary, by choosing the loss function to be

a variant of the check function, we can show that the posterior quantiles can be used to

construct valid point estimators and confidence intervals.

Corollary 4.1. Let q̂BE(0.5), q̂BE(τ ′), and q̂BE(τ ′′) be the Bayesian estimators that solve

(4.3) with the loss function ρ̃τ (u) = (1{u > 0}−τ)u and τ = 0.5, τ ′ and τ ′′, respectively. Let

ZBE
∞ (0.5), ZBE

∞ (τ ′) and ZBE
∞ (τ ′′) be the limits of α̂n(q̂BE(0.5)− q(1)), α̂n(q̂BE(τ ′)− q(1)) and

α̂n(q̂BE(τ ′′) − q(1)), respectively. If 0 < τ ′ < τ ′′ < 1 and ZBE
∞ (0.5), ZBE

∞ (τ ′) and ZBE
∞ (τ ′′)

are continuously distributed at zero, then

P (q(1) ≤ q̂BE(0.5))→ 0.5 and P (q(1) ∈ CIBE(τ ′′ − τ ′))→ τ ′′ − τ ′,

where CIBE(τ ′′ − τ ′) = {q̂BE(τ ′), q̂BE(τ ′′)}.
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The Bayesian estimator q̂BE(τ) is just the τ -th posterior quantile. Corollary 4.1 shows we

can construct a median-unbiased estimator and a valid confidence interval based on posterior

quantiles. To implement the MCMC method (such as the Metropolis-Hastings algorithm)

and obtain the posterior distribution, we have to evaluate f(·; ξ, p) at

(α̂n(q̂n(τn1)− q), · · · , α̂n(q̂n(τnL)− q)).

Next, we derive an analytical form of f(u1, · · · , uL; ξ, p), which is the joint PDF of

(Z̃∞(k1), · · · , Z̃∞(kL)).

Assumption 9. h(k0) < h(mk0) < h(k1) < · · · < h(kL).

The order of h’s is needed to derive a simple formula for the joint PDF but is not required

for Theorem 4.2. Essentially, Assumption 9 requires that h(k0) and h(mk0) are smaller

than all the other h’s, which makes it much easier to handle the common denominator

Z∞(mk0)− Z∞(k0) in Z̃∞(kl) for l = 1, · · · , L.

Proposition 4.1. Let fh be the PDF of a gamma random variable with shape and scale

parameters being equal to h and 1, respectively. If Assumption 9 holds, then

f(u1, · · · , uL; ξ, p)

=

∫
(−1/ξ)Lũ(t, s)−L/ξ

[ L∏
l=1

u
−1/ξ−1
l fhl−hl−1

(vl − vl−1)

]
fh(k0)(s)fh(mk0)−h(k0)(t)dsdt,

where hl = h(kl) for 1 ≤ l ≤ L, h0 = h(mk0), vl = (ulũ(t, s))−1/ξ for 1 ≤ l ≤ L, ũ(t, s) =

(t+ s)−ξ − s−ξ, and v0 = t+ s.
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Using Proposition 4.1, for any given (s, t), we can analytically compute

(−1/ξ)Lũ(t, s)−L/ξ
[ L∏
l=1

u
−1/ξ−1
l fhl−hl−1

(vl − vl−1)

]
.

We then compute f(u1, · · · , uL; ξ, p) by generating (s, t) independently as gamma random

variables with parameters (h(k0), 1) and (h(mk0)− h(k0), 1), respectively, and applying the

Monte Carlo integration. Given the analytical form of f(u1, · · · , uL; ξ, p), the estimates

(q̂n(τn1), · · · , q̂n(τnL)), and the feasible convergence rate α̂n, we can generate MCMC draws

from the posterior

f(α̂n(q̂n(τn1)− q), · · · , α̂n(q̂n(τnL)− q); ξ̂, p̂)π(q).

Then, we can use these MCMC draws to compute q̂BE, which is just the mean or median

of the posterior sample depending on whether ρ(u) = u2 or ρ(u) = |u| is used. We can also

construct CIBE(1−α) using the α/2-th and (1−α/2)-th posterior quantiles. Similar to the

subsampling approach, the ABC approach also requires several tuning parameters, namely

(k0, · · · , kL) and m. We will discuss the choices of these tuning parameters in Section 5.3.

5 Simulations

In this section, we investigate the finite-sample performances of our estimation and inference

procedures.

5.1 Data generating processes

We consider the following two data generating processes (DGPs), which have been considered

in various previous papers, e.g., Aragon et al. (2005), Martins-Filho and Yao (2008), and
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Daouia et al. (2010):

DGP 1: Yi = X0.5
i Ui, i = 1, 2, . . . , n, X ∼ Unif(0, 6) and U ∼ Unif(0, 1),

DGP 2: (Xi, Yi), i = 1, 2, . . . , n, are uniformly distributed in the triangle {(x, y) : 0 ≤

x ≤ 6, 0 ≤ y ≤ x}.

We assume {Xi, Yi}ni=1 in both DGPs are i.i.d. sequences. The frontier φ(x) is x0.5

and x for the first and second DGP, respectively. Through simple calculations, the EV

index ξ0 = −0.5 for all x ∈ [0, 6] in both settings. In addition, P (X ≤ x) = x/6 and

P (X ≤ x) = (x/6)2 for 0 ≤ x ≤ 6 in DGP 1 and 2, respectively.

5.2 Estimation of the EV index

We compare three different inference procedures, namely, the two procedures we propose in

Section 4, and the one based on the intermediate quantile of feasible output, as proposed

by Daouia et al. (2010) (i.e., ϕ̂∗1(x) in their paper). All three inference procedures require

the estimation of the EV index ξ0. We obtain ξ̂ via the standard Pickands-type estimator

as discussed in Appendix I, i.e.,

ξ̂ =
1

log(2)
log

(
q̂n(4τn)− q̂n(2τn)

q̂n(2τn)− q̂n(τn)

)
.

Resnick (2007) and Daouia et al. (2010) have suggested using a τn in (0, 0.25]. Since the

estimation of ξ0 is not the main focus of this article, we simply set τn = 0.1 and τn = 0.08 for

n = 5, 000 and n = 10, 000, respectively, following Zhang (2016) and Chan, Hou, and Yang

(2017). Daouia et al. (2010, Section 3.2) proposed a sophisticated data-driven procedure

to select τn. Some preliminary simulations show that both the simple method and the

data-driven method of choosing τn work well and the corresponding results are similar. In

addition, in order to ensure a fair comparison, for each Monte Carlo replication, all three

inference procedures considered are forced to use the same ξ̂ .
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5.3 Tuning parameters

Other than the tuning parameter τn in the estimation of ξ0, the remaining tuning parameters

are the spacing parameter m, the extreme quantile indices {kl}Ll=0,2 the number of quantiles

used in the ABC method L, the number of subsamples S, and the subsample size b. How

to choose those tuning parameters optimally is an important yet challenging problem. Here,

we provide some rules of thumb based on either the existing literature on extreme quantile

estimation or our own simulation experience. We leave the formal analysis on the higher-

order impact of the tuning parameters to future research.

Given Theorem 3.1, the effective quantile indices that affect the asymptotic behaviors of

our estimators are {h(kl)}Ll=1. We choose {h(kl)}Ll=1
3 from a range [h1, h2]. The lower bound

h1 is determined by how much tolerance we have for outliers. Based on the theoretical

results in the previous section, both our inference approaches are robust to bh1c number of

outliers. The upper bound h2 takes the form of max(C1, C2bp̂) for two constants C1 and

C2. First, in order to guarantee a good approximation of extreme quantile asymptotics,

Chernozhukov and Fernández-Val (2011) suggested that the effective quantile indices should

be less than 40 or 80. To be cautious, we choose C1 = 40. Second, for the subsample with

size b, the effective subsample size is bp0. In order to guarantee a good approximation of

extreme quantile asymptotics for the subsample, we need τ = h(k)/bp0 to be close to zero.

This implies the second requirement that h(k) ≤ C2bp0. We view τ is sufficiently close to

zero if τ ≤ 0.1 and set C2 = 0.1. This gives the upper bound that h2 = max(40, 0.1bp̂) by

replacing p0 with its estimator p̂. Furthermore, for numerical stability, we choose {kl}Ll=0

and m to ensure equal spaces between those effective quantile indices to be used, that is,

(h (k0) , h (mk0) , h (k1) , · · · , h (kL)). We provide more detail on the choice of m below. For

the choice of b, we suggest the following rule from D’Haultfoeuille, Maurel, and Zhang (2017)

2For the subsampling method, only (k0, k1, k2) are used even if L ≥ 3.
3When computing h(k), the estimator p̂ of p is used.
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and Zhang (2016) which works well for samples with moderate sizes (e.g., from 800 to 10,000):

b =

⌊[
0.4np̂− 1

7
(np̂− 300)+ −

2.3

28
(np̂− 1000)+ −

7

40

(
1− log 5000

log np̂

)
(np̂− 5000)+

]/
p̂

⌋
,

where (·)+ = max (·, 0) and buc is the floor of u. For a fixed x, the effective sample and

subsample sizes are np0 and bp0, respectively. The proposed b satisfies bp0 →∞ and bp0
np0
→ 0

as np0 →∞. For L, we do not recommend L > 3 for np0 under 5, 000. We also prefer L = 2

to L = 3 for np0 under 2,000. Our concern is that, in order to use higher fixed quantile

indices for larger L, we need larger samples to approximate them well.

For practical implementation, the number of replications S for the subsampling approach

and the lengths of both the burn-in sequence and the whole MCMC sequence for the ABC

approach should be set as large as computationally possible. We suggest using 5,000, 10,000,

and 20,000, respectively. For the initial value of the MCMC, we use the point estimator of

some high quantile computed from (2.2). The acceptance rate for the MCMC sequence

should be around 30%. In our implementation, we use the Metropolis-Hastings algorithm

with a Gaussian proposal distribution. The standard deviation σ of the Gaussian proposal

distribution serves as a tuning parameter to control the acceptance rate. We find that setting

σ to be equal to or slightly less than the difference between the 97.5% and 2.5% quantiles of

the posterior distribution usually can result in about 30% acceptance rate.

We denote our subsampling approach, ABC approach with L = 2 and L = 3, and the

method proposed in Daouia et al. (2010) as “Sub,”“ABC L = 2,”“ABC L = 3” and “DFS,”

respectively. For our approaches, we report the results from two sets of ({kl}3
l=0,m), which

are denoted as S1 and S2 and correspond to

(h(k0), h(mk0), h(k1), h(k2), h(k3)) = (15, 21, 27, 33, 39) and (10, 15, 20, 25, 30) ,

respectively. Note that m = 21
15
≈ 1.4 and 1.5 in S1 and S2, respectively. Chernozhukov and
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Fernández-Val (2011) suggested using m = 1 + sp
k0

, where sp ∈ [2, 20].4 In S1 and S2, the

corresponding sp’s are 6 and 5, respectively, which satisfy the formula. When computing

“Sub” and “ABC L = 2,” we use only (h(k0), h(mk0), h(k1), h(k2)). In addition, we use h(k3)

when computing “ABC L = 3.” Based on our further simulations, other sets of ({kl}3
l=0,m)

which satisfy the above rule of thumb also work well. We do not report them due to the

length limit. Furthermore, we omit the results corresponding to “ABC L = 3 S2” because

these results are similar to those for “ABC L = 3 S1.” For “DFS”, we report the results

with two sets of tuning parameters, namely, kn = 0.15nP and kn = 0.20nP (kn from their

notations). These two sets are denoted as “DFS S1” and “DFS S2.” Finally, we set the

number of observations to n = 5, 000. Further simulation results with n = 10, 000 can be

found in Appendix J. All simulations are repeated 5, 000 times.

5.4 Results

We construct 95% confidence intervals using three procedures, namely “Sub,” “ABC,” and

“DFS.” Daouia et al. (2010) found their method does not work well for effective sample size

np0 under 1,000. We find similar results for our approaches. We conjecture it is mainly be-

cause the EV index estimator is too imprecise in this case. We only report reasonable results

of the coverage probabilities and average lengths of the CIs for φ(x) at x = 2.2, 3.3, 4.4, 5.5

and x = 3.3, 4.4, 5.5 for DGP 1 and 2, respectively. When n = 5, 000, the corresponding

minimum effective sample sizes np0 are 1,833 and 1,513, respectively.

Tables 1 and 2 report the coverage rates and average lengths of the 95% confidence

intervals for each inference procedure. Further improved results with n = 10, 000 can be

found in Appendix J.

4The original formula in Chernozhukov and Fernández-Val (2011) is m = 1+ d+sp
k0

where d is the dimension
of the regressors. In our case, there is no regressor so d = 0.
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Table 1: DGP 1, n = 5, 000

Sub ABC DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 2.2 0.943 0.952 0.921 0.929 0.900 0.940 0.920
np0 ≈ 1833 (0.502) (0.503) (0.236) (0.225) (0.192) (0.453) (0.453)

x = 3.3 0.945 0.951 0.928 0.934 0.920 0.971 0.953
np0 ≈ 2750 (0.486) (0.489) (0.233) (0.222) (0.190) (0.539) (0.539)

x = 4.4 0.944 0.948 0.937 0.945 0.925 0.984 0.974
np0 ≈ 3667 (0.478) (0.481) (0.232) (0.221) (0.189) (0.615) (0.615)

x = 5.5 0.952 0.946 0.940 0.941 0.938 0.994 0.987
np0 ≈ 4583 (0.476) (0.479) (0.232) (0.221) (0.188) (0.686) (0.686)

Notes: The coverage rates and average lengths of the CIs (in parentheses) are reported.

Table 2: DGP 2, n = 5, 000

Sub ABC DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 3.3 0.945 0.947 0.910 0.913 0.890 0.921 0.895
np0 ≈ 1513 (1.247) (1.245) (0.577) (0.558) (0.469) (1.026) (1.026)

x = 4.4 0.945 0.946 0.932 0.934 0.918 0.969 0.951
np0 ≈ 2689 (1.193) (1.203) (0.571) (0.547) (0.462) (1.306) (1.307)

x = 5.5 0.945 0.946 0.941 0.938 0.934 0.992 0.986
np0 ≈ 4201 (1.159) (1.195) (0.573) (0.549) (0.465) (1.613) (1.614)

Notes: The coverage rates and average length of the CIs (in parentheses) are reported.

Several remarks are in order. First, comparing the coverage rates across three methods,

we find the subsampling approach performs best. The ABC approach always undercovers,

but its coverage rates improve and converge to the nominal 95% as the effective sample size

increases. We conjecture this improvement is due to the fact that the estimator of the EV

index becomes more accurate as the effective sample increases. The CIs constructed using

the DFS approach undercover when the effective sample size is small and overcover when

the effective sample size is large. However, it should be noted that, for simplicity, we do

not choose the optimal tuning parameters (especially kn) for DFS. This may be one of the

reasons for their relatively inferior performances.

Second, comparing the average lengths across three methods, we find the ABC approach
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has the shortest CI. In particular, “ABC L = 2” and “Sub” are based on the same set of

extreme quantile estimators, but the length of CIs for the latter are more than double. This

confirms our theoretical results that the ABC approach is more efficient. In addition, the

average lengths of “ABC L = 3” are about 20% shorter than those of “ABC L = 2.” This

implies there is information gain by including more extreme quantile estimators. However,

the coverage rates also become worse when L = 3. Between the subsampling approach and

DFS, the average lengths are comparable but the subsampling approach performs better

when the effective sample size is greater than 2,000.

Third, comparing the results for S1 and S2, we find both the coverage rates and average

lengths are quite stable, for both subsampling and ABC approaches. This indicates neither

approach is sensitive to the tuning parameters, as long as the rules of thumb are satisfied.

Finally, comparing the results with n = 5, 000 and n = 10, 000 in Appendix J, we find

both the coverage rates and the average lengths improve as the sample size increases. This

indicates the validity of the fixed-k type asymptotics, which both our approaches rely on.

The coverage rates of DFS become larger as we use larger samples and sometimes go up to

99%. But again, this may be because we do not choose the tuning parameters optimally for

DFS.

Tables 6–9 in Appendix J also contain the performances of the point estimators from the

three procedures. Overall, the posterior median from the ABC approach with L = 3 has the

best performance in terms of mean absolute deviations and root mean squared errors.

To sum up, our methods work well with and are not sensitive to reasonable choices of

tuning parameters. The subsampling approach has very accurate and stable coverage rates

while the ABC approach produces the shortest CIs and most accurate point estimators.

However, we also want to emphasize that these results do not mean our methods ourperform

the existing method in the literature. First, the performances of “DFS” reported here can

still be improved. Second, the procedure set forth in Daouia et al. (2010) is based on
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the intermediate, rather than extreme, quantile estimators. This indicates their approach

can tolerate more outliers. As put by Daouia et al. (2010), “ It is difficult to imagine

one procedure being preferable in all contexts. Hence, a sensible practise is not to restrict

the frontier analysis to one procedure . . . .” We view our approaches as alternatives to the

existing inference procedures in the literature. Our simulation study shows the performances

of our approaches are satisfying.

6 An Empirical Application

We apply our inference approaches to the frontier analysis of French post offices observed in

1994. The same dataset is also used in Daouia et al. (2010). In this context, X and Y denote

the quantity of labor and the logarithm of volume of the delivered mail, respectively.5 The

total number of observations is 4,000, which is close to what we consider in our simulations.

The summary statistics of the data are in Table 3.

Table 3: Summary Statistics

MEAN STD MIN LQ MEDIAN UQ MAX

X 1592 790 177 1128 1338 1730 4405
Y 7.709 0.612 3.829 7.349 7.698 8.062 9.576

Notes: STD = standard errors, LQ = 25% quantile, UQ = 75% quantile.

We use the same sets of tuning parameters as in the simulations with details in Section

5.3. The “DFS S1” estimator of the frontier serves as the benchmark. It appears there are

two possible outliers in the data (shown as circles in Figure 1). We then report the results

with and without outliers in Figures 1 and 2, respectively. Given our h(k0) is greater than

2 in both setups “S1” and “S2,” even with the outliers, our inference procedures should still

5We use log of the volume of delivered mail to smooth the data; otherwise data points are too scarce
around the frontier, which makes the estimation and inference volatile. We thank Valentin Zelenyuk for his
insightful suggestion on this transformation.
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be valid.
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Figure 1: Estimation and Inference with Outliers

We consider three inference procedures, namely “Sub S1,”“ABC L = 2 S1, ”and “ABC

L = 3 S1.” The point estimators and the associated 95% confidence intervals of the frontier

at each value of (800, 850, 900, ...,max(X)) are reported.
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Figure 2: Estimation and Inference without Outliers

Several comments regarding Figures 1 and 2 are in order. First, the point estimators

and confidence intervals from our approaches are basically the same with or without the

outliers, confirming the robustness of our approaches. Second, the point estimators of our

approaches are above those of “DFS S1.” It is clear from the figures that our estimators in
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general envelope the data while “DFS S1” does not. The lengths of the confidence intervals

of the ABC approach is shorter than those of the subsampling approach, which is consistent

with our theoretical and simulation findings. Specifically, the average lengths of the CIs of

“Sub S1” and “ABC L = 2 S1” over x ∈ (800, 850, 900, ...,max(X)) are 0.731 and 0.430,

respectively. The ratio of the average lengths between these two approaches is in line with

the one obtained from our simulations.

7 Conclusion

In this article, we propose two novel estimation and inference procedures for production

frontiers. Our procedures are based on extreme quantile estimators, and thus are robust to

a few outliers. The subsampling approach has stable coverage rates across different effective

sample sizes while the ABC approach is more efficient and has shorter CIs. The asymptotic

validity of both procedures is theoretically justified. The application to the French post

offices dataset shows that these two approaches are practical alternatives to the existing

inference methods in the literature.
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A Proof of Theorem 3.1

Denote L(u, v) = (v − u)1{u < v}.

Ẑn(k) = arg min
z

n∑
i=1

1

αn

[
αn(Yi − q(1))− z

][
1− k

n
− 1{αn(Yi − q(1)) ≤ z}

]
1{Xi ≤ x}

= arg min
z

n∑
i=1

1

αn

[
αn(Yi − q(1))− z

][
1{αn(Yi − q(1)) > z} − k

n

]
1{Xi ≤ x}

= arg min
z

1

n

n∑
i=1

1{Xi ≤ x}kz +
n∑
i=1

L(−αn(Yi − q(1)),−z)1{Xi ≤ x}

= arg min
z

1

n

n∑
i=1

1{Xi ≤ x}kz +

∫
L(u,−z)dN̂n

=− arg min
z
− 1

n

n∑
i=1

1{Xi ≤ x}kz +

∫
L(u, z)dN̂n,

(A.1)

where N̂n =
∑n

i=1 1{−αn(Yi − q(1)) ∈ ·, Xi ≤ x} is a point process. We denote

− 1

n

n∑
i=1

1{Xi ≤ x}kz +

∫
L(u, z)dN̂n

as the sample objective function. We derive the asymptotic distribution of Ẑn(k) in two

steps. In the first step, we derive the limit of the sample objective function point-wise in

z. Since the check function ρτ (u) and thus the sample objective function are convex, the

point-wise convergence in z is sufficient for the uniform convergence in z. Given the uniform

convergence of the sample objective function, in the second step we show that the limit

objective function has a unique minimizer Z∞(k) with probability one. Then, we can apply

the argmin theorem detailed in van der Vaart and Wellner (1996) to establish the weak

convergence of Ẑn(k).

Step 1:

For the RHS of (A.1), the first term converges to −p0kz point-wise in z. For the second term,
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we can show that the point process N̂ weakly converges to N , a Poisson random measure

with mean measure µ([a, b]) = p0(η−1(b) − η−1(a)). In addition, note that both N̂n and N

are random measures on <+ = [0,∞) because Yi ≤ q(1) for any i ≥ 1. Then for any fixed

z ≥ 0 and u ∈ <+, |L(u, z)| is bounded by z, vanishes for u ≥ z, and is continuous in u.

Then, by the continuous mapping theorem, we have, point-wise in z,

∫
L(u, z)dN̂n  

∫
L(u, z)dN.

Now we show

N̂n  N.

Let Ui = αn(Yi − q(1)). Given Chernozhukov (2005, Lemma 9.3 and 9.4), it suffices to show

that, for any 0 ≤ a < b <∞,

nP (−Ui ∈ [a, b], Xi ≤ x)→ p0(η−1(b)− η−1(a)).

Note that F (y/x) ≡ P (Y ≤ y|X ≤ x). Then,

nP (−Ui ∈ [a, b], Xi ≤ x) =np0P (−Ui ∈ [a, b]|Xi ≤ x)

=p0P (Yi ∈ [q(1)− b

αn
, q(1)− a

αn
]|Xi ≤ x)/(1− F (q(1)− 1

αn
/x))

=p0

F (q(1)− a
αn
/x)− F (q(1)− b

αn
/x)

1− F (q(1)− 1
αn
/x)

→p0(η−1(b)− η−1(a)).

By Resnick (1987, Proposition 3.7 and 3.8), N(·) can be written as
∑∞

i=1 1{Ji ∈ ·}. There-

fore, the sample objective function will converge to

−kp0z +

∫
L(u, z)dN = −kp0z +

∞∑
i=1

L(Ji, z)
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weakly and uniformly over z ∈ <+.

Step 2:

From the first-order condition of the limit objective function, we find that Z∞(k) = −Jh for

an integer h satisfying kp0 ≤ h ≤ kp0 + 1. Since kp0 is not an integer, the limiting objective

function has a unique minimizer. This concludes the proof of the first part of the theorem.

For Ẑc
n(k), we note that

Ẑc
n(k) = Ẑn(k) + αn(q(1)− q(τn)) Z∞(k) + η(k)

because

αn(q(1)− q(τn)) =
q(1)− q(1− k

n
)

q(1)− q(1− 1
n
)
→ η(k).

B Proof of Corollary 3.1

For the first claim, denote Ẑn(k) = αn(q̂n(1− k/n)− q(1)), k = k0,mk0, k1, · · · , kL. By the

proof of Theorem 3.1, we have



Ẑn(k0)

Ẑn(mk0)

Ẑn(k1)

...

Ẑn(kL)


 



Z∞(k0)

Z∞(mk0)

Z∞(k1)

...

Z∞(kL)


,

where

(−Z∞(k0),−Z∞(mk0),−Z∞(k1), · · · ,−Z∞(kL))

= arg min
z0,zm0,z1,··· ,zL

Q∞(z0, k0) +Q∞(zm0,mk0) +
L∑
l=1

Q∞(zl, kl)

37



and

Q∞(z, k) = −kp0z +
∞∑
i=1

L(Ji, z).

Then we have
α̂n(q̂n(τn1)− q(1))

...

α̂n(q̂n(τnL)− q(1))

 

Z∞(k1)/(Z∞(k0)− Z∞(mk0))

...

Z∞(kL)/(Z∞(k0)− Z∞(mk0))

 =


Z̃∞(k1)

...

Z̃∞(kL)

 .

The denominator Z∞(k0) − Z∞(mk0) is nonzero because Z∞(k0) = −Jh0 and Z∞(mk0) =

−Jh′0 for h0 ∈ (k0p0, k0p0 +1) and h′0 ∈ (mk0p0,mk0p0 +1), respectively, and by Assumption

5, h0 6= h′0 because mk0p0 > k0p0 + 1.

For the second result, note that

ω̂1α̂n(q̂n(τn1)− q(τn1)) =ω̂1
α̂n
αn
Ẑc
n(k1) ω1(Z∞(k0)− Z∞(mk0))−1Zc

∞(k1).

Similarly, ω̂2α̂n(q̂n(τn2)− q(τn2)) ω2(Z∞(k0)− Z∞(mk0))−1Zc
∞(k2). Therefore,

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− (ω1q(τn1) + ω2q(τn2))

]
=α̂n

[
ω̂1(q̂n(τn1)− q(τn1)) + ω̂2(q̂n(τn2)− q(τn2))

]
+α̂n

[
(ω̂1 − ω1)q(τn1) + (ω̂2 − ω2)q(τn2)

]
=
ω1Z

c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
+ op(1) + α̂n

[
(ω̂1 − ω1)(q(τn1)− q(1)) + (ω̂2 − ω2)(q(τn2)− q(1))

]
=
ω1Z

c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
+ op(1),

where the second and last equalities hold because ω̂1 + ω̂2 = 1 and α̂n(q(τnj)− q(1)) = Op(1)

for j = 1, 2, respectively.

The last result holds because ω̂1 + ω̂2 = 1, αn(q(1) − q(τn1)) = η(k1), and αn(q(1) −

q(τn2)) = η(k2).
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C Proof of Theorem 4.1

We organize the proof into three steps. In the first step, we show

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− q(1)

]
 

ω1Z
c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
.

In the second step, we show that for j = 1 and 2,

α̂b(q̂b(τbj)− q̂n(τbj)) Zc
∞(kj).

Then, given the consistency of ω̂1 and ω̂2, we have

Z̃∗b = α̂b

[
ω̂1

(
q̂b(τb1)− q̂n(τb1)

)
+ ω̂2

(
q̂b(τb2)− q̂n(τb2)

)]
 

ω1Z
c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
,

which is the same as the limiting distribution of

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− q(1)

]
.

In the third step, we show that the distribution of ω1Zc∞(k1)+ω2Zc∞(k2)
Z∞(k0)−Z∞(mk0)

is continuous. There-

fore, the critical value Ĉ1−α of Z̃∗b is a consistent estimator of the critical value C1−α of

ω1Zc∞(k1)+ω2Zc∞(k2)
Z∞(k0)−Z∞(mk0)

. This concludes the proof of Theorem 4.1.

Step 1:

Because ξ̂
p−→ ξ, ω1 and ω2 solve the following equations:

ω1 + ω2 = 1 and ω1η(k1) + ω2η(k2) = 0.
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Therefore, by Corollary 3.1, we have

α̂n

[
ω̂1q̂n(τn1) + ω̂2q̂n(τn2)− q(1)

]
 

ω1Z
c
∞(k1) + ω2Z

c
∞(k2)

Z∞(k0)− Z∞(mk0)
.

Step 2:

We note that

α̂b(q̂b(τbj)− q̂n(τbj)) = α̂b(q̂b(τbj)− q(τbj))− α̂b(q̂n(τbj)− q(τbj)) = I + II.

We aim to show that

I  (Z∞(k0)− Z∞(mk0))−1Zc
∞(kj) and II

p−→ 0.

For the first claim, let Pni =
∑b

l=1 1{Inl = i} where (In1, · · · , Inb) is a multinomial vector

with parameter b and probability ( 1
n
, · · · , 1

n
) and

Ẑc
b (kj) = αb(q̂b(τbj)− q(τbj))

where αb = 1/(q(1) − q(1 − 1/b)). Then, following an argument similar to the proof of

Theorem 3.1, we have

Ẑc
b (kj) = − arg min

z
−1

b

n∑
i=1

Pni1{Xi ≤ x}kz +
n∑
i=1

PniL(−αb(Yi − q(1)), z)1{Xi ≤ x}.

Lemma H.2 shows that, point-wise in z,

− 1

b

n∑
i=1

Pni1{Xi ≤ x}kz p−→ −kp0z (C.1)
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and
n∑
i=1

PniL(−αb(Yi − q(1)), z)1{Xi ≤ x} 
∫

L(u, z)dN (C.2)

in which N(·) is exactly the same Poisson random measure as defined in the proof of Theorem

3.1. Given (C.1) and (C.2), we can conclude that Ẑc
b (kj) Zc

∞(kj). In addition, similar to

the proof of Corollary 3.1, we can show that

α̂b/αb
p−→ (Z∞(k0)− Z∞(mk0))−1.

Thus, we have established that

I  (Z∞(k0)− Z∞(mk0))−1Zc
∞(kj).

For term II, denote fx(y) as the conditional density of y given X ≤ x. Then, by Theorem

I.1, we have

(n/(1− τbj))1/2fx(q(1− kj/b))
(
q̂n(τbj)− q(τbj)

)
= Op(1).

Therefore,

II =α̂b

(
q̂n(τbj)− q(τbj)

)
=
α̂b
αb
αb

(
q̂n(τbj)− q(τbj)

)
=Op(1)×Op(

αb
(nb)1/2fx(q(1− kj/b))

).

Note that, f−1
x (q(τn)) = q′(τn). In addition, we claim, as τ → 1,

q′(τ)(1− τ)

q(1)− q(τ)
→ −ξ0. (C.3)

Note for a > b, q(1−b(1−τ))−q(1−a(1−τ))
q(1)−q(τ)

→ a−ξ0 − b−ξ0 . By the monotonicity of the density,6 we

6Here we implicitly assume the density is monotone decreasing. If it is monotone increasing, we can
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have
q′(1− b(1− τ))(a− b)(1− τ)

q(1)− q(τ)
≥q(1− b(1− τ))− q(1− a(1− τ))

q(1)− q(τ)

≥q
′(1− a(1− τ))(a− b)(1− τ)

q(1)− q(τ)
.

Therefore,

lim sup
τ→1

q′(1− a(1− τ))(1− τ)

q(1)− q(τ)
≤ a−ξ0 − b−ξ0

a− b
.

Let a = 1 and b ↑ 1, we have

lim sup
τ→1

q′(τ)(1− τ)

q(1)− q(τ)
≤ −ξ0.

Similarly, using another half of the inequality, we can show

lim inf
τ→1

q′(τ)(1− τ)

q(1)− q(τ)
≥ −ξ0

and (C.3) holds. By (C.3),

αb
(nb)1/2fx(q(1− kj/b))

=
q′(1− kj/b)

(q(1)− q(1− 1/b))(nb)1/2
∼ −ξ0k

−1
j (b/n)1/2 → 0.

Step 3

We note that, for any z ∈ <,

P (Zc
∞(k) = z) ≤

∞∑
h=1

P (−Jh = z − η(k)) = 0.

So Zc
∞(k) is continuous, and thus is ω1Zc∞(k1)+ω2Zc∞(k2)

Z∞(k0)−Z∞(mk0)
.

simply reverse the order of the inequality. The results still hold.
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D Proof of Theorem 4.2

Let (z1n, · · · , zLn) and (z1, · · · , zL) be in the joint supports of (Z̃n(k1), · · · , Z̃n(kL)) and

(Z̃∞(k1), · · · , Z̃∞(kL)), respectively, such that

(z1n, · · · , zLn)→ (z1, · · · , zL).

By Assumption 8, f(z1, · · · , zL; ξ, p) is continuous in all its arguments and π(q(1) +

v/α̂n)→ π(q(1)). Furthermore, ρ(z−v)f(z1−v, · · · , zL−v; ξ, p)π(q(1)+v/α̂n) is dominated

by an integrable function of v. Therefore, by the dominated convergence theorm, we have,

point-wise in z,

Qn(z, z1n, · · · , zLn, ξ̂, p̂)
p−→ Q∞(z, z1, · · · , zL; ξ0, p0).

In addition, since ρ(·) is convex in z, so be Qn(·) and Q(·). In view of Lemma H.1, we have

verified (i) and assumed (ii) and (iii) in Assumption 8. Therefore, by Lemma H.1,

θBEn (z1n, · · · , zLn, ξ̂, p̂)
p−→ θBE∞ (z, z1, · · · , zL; ξ0, p0)

where θBEn (·) and θBE∞ (·) are defined in (4.4) and (4.6), respectively. Since the sequence

(z1n, · · · , zLn) is arbitrary, we have

θBEn (z1, · · · , zL, ξ̂, p̂)
p−→ θBE∞ (z1, · · · , zL, ξ0, p0)

uniformly over (z1, · · · , zL) in any compact subset of the joint support of (Z̃∞(k1), · · · , Z̃∞(kL)).
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In addition, we note that 
Z̃n(k1)

...

Z̃n(kL)

 

Z̃∞(k1)

...

Z̃∞(kL)

 .

Therefore, by the continuous mapping theorem,

ẐBE
n ≡ θBEn (Z̃n(k1), · · · , Z̃n(kL), ξ̂, p̂) ZBE

∞ ≡ θBE∞ (Z̃∞(k1), · · · , Z̃∞(kL); ξ0, p0).

This concludes the proof.

E Proof of Theorem 4.3

The argument follows the proof of Chernozhukov and Hong (2004, Theorem 8). First, the

proof of Theorem 4.2 implies

θBEn (z1, · · · , zL, ξ̂, p̂)
p−→ θBE∞ (z1, · · · , zL; ξ0, p0),

where θBE∞ (z1, · · · , zL; ξ, p) is defined in (4.6). In addition,

f(z1 − v, · · · , zL − v; ξ̂, p̂)
p−→ f(z1 − v, · · · , zL − v; ξ0, p0).

By Assumption 8,

ρ(θBEn (z1, · · · , zL; ξ̂, p̂)− v)f(z1 − v, · · · , zL − v; ξ̂, p̂)

is dominated by an integrable function w.r.t. (z1, · · · , zL) for any v ∈ Kt with t fixed, because

ρ(·) increases at most polynomially in its argument, θBEn (z1, · · · , zL; ξ̂, p̂) is polynomial in
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(z1, · · · , zL), f(·; ξ, p) decreases exponentially in its arguments, and for every fixed t, Kt is

compact. Therefore, by the dominated convergence theorem, as n→∞

∫
<L
ρ(θBEn (z1, · · · , zL; ξ̂, p̂)− v)f(z1 − v, · · · , zL − v; ξ̂, p̂)dz1 · · · dzL

p−→
∫
<L
ρ(θBE∞ (z1, · · · , zL; ξ0, p0)− v)f(z1 − v, · · · , zL − v; ξ0, p0)dz1 · · · dzL.

(E.1)

By (4.6) and a change of variable argument, we have, for any v,

θBE∞ (z1, · · · , zL; ξ0, p0)− v = θBE∞ (z1 − v, · · · , zL − v; ξ0, p0).

Furthermore, by construction, f(·; ξ0, p0) is the joint PDF of (Z̃∞(k1), · · · , Z̃∞(kL)). There-

fore,

the RHS of (E.1) =

∫
<L
ρ(θBE∞ (z1, · · · , zL; ξ0, p0))f(z1, · · · , zL; ξ0, p0)dz1 · · · dzL

=Eρ(θBE∞ (Z̃∞(k1), · · · , Z̃∞(kL); ξ0, p0)) = Eρ(ZBE
∞ ),

where the last equality holds because ZBE
∞ = θBE∞ (Z∞(k1), · · · , Z∞(kL); ξ0, p0). Then, we

have, for every fixed t,

lim sup
n→∞

∫
Kt

∫
<L
ρ(θBEn (z1, · · · , zL; ξ̂, p̂)−v)f(z1−v, · · · , zL−v; ξ̂, p̂)dz1 · · · dzL/Λ(Kt) = Eρ(ZBE

∞ ).

Taking lim supt→∞ on both sides, we have

AARρ({θBEn }) = Eρ(ZBE
∞ ).

To prove the second result, for each t ≥ 1, we denote q̃BEn,t as the Bayesian estimator with
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prior π(q) = 1{α̂n(q − q(1)) ∈ Kt}, i.e.,

α̂n(q̃BEn,t − q(1)) = θ̃BEt (Z̃n(k1), · · · , Z̃n(k1), ξ̂, p̂)

where θ̃BEt (z1, · · · , zL; ξ, p) is defined in (4.7). Next, we show

lim sup
t→∞

lim sup
n→∞

ARρ,Kt(θ̃
BE
t (·; ξ̂, p̂)) = Eρ(ZBE

∞ ). (E.2)

Following the proof of Theorem 4.2, for fixed t, as n→∞, we have

θ̃BEt (z1, · · · , zL; ξ̂, p̂)
p−→ θ̃BEt (z1, · · · , zL; ξ0, p0)

uniformly over (z1, · · · , zL) in any compact subset of the joint support of (Z̃∞(k1), · · · , Z̃∞(kL)).

Therefore, as n→∞,

ρ(θ̃BEt (z1, · · · , zL; ξ̂, p̂)− v)f(z1 − v, · · · , zL − v; ξ̂, p̂)

p−→ρ(θ̃BEt (z1, · · · , zL; ξ0, p0)− v)f(z1 − v, · · · , zL − v; ξ0, p0).

In addition, by Assumption 8.5, for fixed t, ρ(θ̃BEt (z1, · · · , zL; ξ̂, p̂)− v)f(z1− v, · · · , zL−

v; ξ̂, p̂) is dominated by some function that is integrable w.r.t. z1, · · · , zL over <L. Therefore,

by the dominated convergence theorem,

lim sup
n→∞

ARρ,λt(θ̃
BE
t (z1, · · · , zL; ξ̂, p̂))

=

∫ t

−t

∫
<L
ρ(θ̃BEt (z1, · · · , zL; ξ0, p0)− v)f(z1 − v, · · · , zL − v; ξ0, p0)dz1 · · · dzLdv/2t

=

∫ 1

−1

∫
<L
ρ(θ̃BEt (z1, · · · , zL; ξ0, p0)− tu)f(z1 − tu, · · · , zL − tu; ξ0, p0)dz1 · · · dzLdu/2

=

∫ 1

−1

∫
<L
ρ(θ̃BEt (z1 + tu, · · · , zL + tu; ξ0, p0)− tu)f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu/2.

(E.3)

46



By the definition of θ̃BEt ,

θ̃BEt (w1 + tu, · · · , wL + tu; ξ0, p0)− tu

= arg min
γ

∫ t

−t
ρ(γ + tu− v)f(w1 + tu− v, · · · , wL + tu− v; ξ0, p0)dv

= arg min
γ

∫
<
1{v ∈ (t− tu,−t− tu)}ρ(γ − v)f(w1 − v, · · · , wL − v; ξ0, p0)dv.

Since u ∈ (−1, 1), as t → ∞, 1{v ∈ (t − tu,−t − tu)} ↑ 1. Therefore, by the bounded

convergence theorem,

∫
<
1{v ∈ (t− tu,−t− tu)}ρ(γ − v)f(w1 − v, · · · , wL − v; ξ0, p0)dv

→
∫
<
ρ(γ − v)f(w1 − v, · · · , wL − v; ξ0, p0)dv.

Then, by Lemma H.1, as t→∞

θ̃BEt (z1 + tu, zL + tu; ξ0, p0)− tu→ θBE∞ (z1, · · · , zL; ξ0, p0). (E.4)

Following (E.3), in order to show (E.2), it suffices to show, as t→∞

∫ 1

−1

∫
<L

∣∣∣∣ρ(θ̃BEt (z1 + tu, · · · , zL + tu; ξ0, p0)− tu)− ρ(θBE∞ (z1, · · · , zL; ξ0, p0))

∣∣∣∣
× f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu/2

=

∫ 1

−1

∫
<L

[
ρ(θ̃BEt (z1 + tu, · · · , zL + tu; ξ0, p0)− tu)− ρ(θBE∞ (z1, · · · , zL; ξ0, p0))

]−
× f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu/2

+

∫ 1

−1

∫
<L

[
ρ(θ̃BEt (z1 + tu, · · · , zL + tu; ξ0, p0)− tu)− ρ(θBE∞ (z1, · · · , zL; ξ0, p0))

]+

× f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu/2

=It + IIt → 0.

47



For It, we have

[
ρ(θ̃BEt (z1+tu, · · · , zL+tu; ξ0, p0)−tu)−ρ(θBE∞ (z1, · · · , zL; ξ0, p0))

]−
≤ ρ(θBE∞ (z1, · · · , zL; ξ0, p0))

which, by Assumption 8.4, is integrable w.r.t. f(z1, · · · , zL; ξ0, p0)dz1 · · · dzL. Therefore, by

(E.4) and the dominated convergence theorem, we have It → 0.

In addition, by (4.7),

∫ 1

−1

∫
<L
ρ(θ̃BEt (z1 + tu, · · · , zL + tu; ξ0, p0)− tu)f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu

=

∫ t

−t

∫
<L
ρ(θ̃BEt (z1, · · · , zL; ξ0, p0)− v)f(z1 − v, · · · , zL − v; ξ0, p0)dz1 · · · dzLdv/2t

≤
∫ t

−t

∫
<L
ρ(θBE∞ (z1, · · · , zL; ξ0, p0)− v)f(z1 − v, · · · , zL − v; ξ0, p0)dz1 · · · dzLdv/2t

=

∫ 1

−1

∫
<L
ρ(θBE∞ (z1, · · · , zL; ξ0, p0))f(z1, · · · , zL; ξ0, p0)dz1 · · · dzLdu/2.

Therefore,

0 ≤ IIt ≤ It → 0.

This concludes (E.2). If there exists a sequence of estimators, denoted as {θ̆n}, such that

θ̆n ∈ Θn and it achieves strictly smaller asymptotic average risk than the Bayesian estimator

θBEn , then for infinitely many t and n,

ARρ,Kt(θ̆n) < ARρ,Kt(θ̃
BE
t (·; ξ̂, p̂)).

This is a contradiction because, by construction,

θ̃BEt (·; ξ̂, p̂) ∈ arg min
θ∈Θn

ARρ,Kt(θ).

This concludes the proof.
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F Proof of Corollary 4.1

Denote ẐBE
n (τ ′) = α̂n(q̂BE(τ ′)− q(1) = θBEn (Z̃n(k1), · · · , Z̃n(kL); ξ̂, p̂). Then we have

P (q̂BE(τ ′) > q(1)) = P (ẐBE
n (τ ′) > 0)→ P (ZBE

∞ (τ ′) > 0).

Next, we show

P (ZBE
∞ (τ ′) > 0) = τ ′.

Suppose not, then there exists a nonzero constant c such that P (ZBE
∞ (τ ′) > c) = τ ′ or

equivalently, by the first order condition,

Eρ̃τ ′(ZBE
∞ (τ ′)− c) < Eρ̃τ ′(ZBE

∞ (τ ′)).

Similar to the proof of the first result in Theorem 4.3, we can show Eρ̃τ ′(ZBE
∞ (τ ′)− c) is the

asymptotic average risk for the estimator θBEn (·; ξ̂, p̂)− c, i.e.,

AARρ̃τ ′
({θBEn (·; ξ̂, p̂)− c}) = Eρ̃τ ′(ZBE

∞ (τ ′)− c) < Eρ̃τ ′(ZBE
∞ (τ ′)) = AARρ̃τ ′

({θBEn (·; ξ̂, p̂)}).

On the other hand, θBEn (·; ξ̂, p̂)− c ∈ Θn. Therefore, we reach a contradiction to the second

result in Theorem 4.3. This implies

P (ZBE
∞ (τ ′) > 0) = τ ′.

Then

P (q̂BE(τ ′) ≤ q(1) ≤ q̂BE(τ ′′))→ P (ZBE
∞ (τ ′′) > 0)− P (ZBE

∞ (τ ′) > 0) = τ ′′ − τ ′.
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G Proof of Proposition 4.1

We consider the CDF evaluated at (u1, · · · , uL) such that u1 < u2, · · · , < uL. Note that

Z∞(k) = −Jh(k) = −(γ
h(k)
1 /p)−ξ,

where γji =
∑j

l=i El. Therefore,

P (Z̃∞(h(k1)) ≤ u1, · · · , Z̃∞(h(kL)) ≤ uL)

=EP (Z̃∞(h(k1)) ≤ u1, · · · , Z̃∞(h(kL)) ≤ uL|γh(k0)
1 , γ

h(mk0)
1 )

=EP
(

(γ
h(k1)
1 )−ξ

(γ
h(mk0)
1 )−ξ − (γ

h(k0)
1 )−ξ

≤ u1, · · · ,
(γ

h(kL)
1 )−ξ

(γ
h(mk0)
1 )−ξ − (γ

h(k0)
1 )−ξ

≤ uL

∣∣∣∣γh(k0)
1 , γ

h(mk0)
1

)
=EP

(
γ
h(k1)
h(mk0)+1 ≤ [u1((γ

h(mk0)
1 )−ξ − (γ

h(k0)
1 )−ξ)]−1/ξ − γh(mk0)

1 , · · · ,

γ
h(kL)
h(mk0)+1 ≤ [uL((γ

h(mk0)
1 )−ξ − (γ

h(k0)
1 )−ξ)]−1/ξ − γh(mk0)

1 |γh(k0)
1 , γ

h(mk0)
1

)

(G.1)

Notice that

(γ
h(k1)
h(mk0)+1, · · · , γ

h(kL)
h(mk0)+1) ⊥⊥ (γ

h(k0)
1 , γ

h(mk0)
1 ).

Let s = γ
h(k0)
1 , t = γ

h(mk0)
h(k0)+1, ũ = (t+ s)−ξ − s−ξ, respectively. Then,

The RHS of (G.1)

=

∫
P

(
γ
h(k1)
h(mk0)+1 ≤ (u1ũ(t, s))−1/ξ − t, · · · , γh(kL)

h(mk0)+1 ≤ (uLũ(t, s))−1/ξ − t
)

× fh(k0)(s)fh(mk0)−h(k0)(t)dsdt.
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Take derivatives w.r.t. (u1, · · · , uL), we obtain that

f(u1, · · · , uL; ξ, p)

=

∫
(−1/ξ)Lũ(t, s)−L/ξ

[ L∏
l=1

u
−1/ξ−1
l fhl−hl−1

(vl − vl−1)

]
fh(k0)(s)fh(mk0)−h(k0)(t)dsdt,

where hl = h(kl) for L ≥ l ≥ 1, h0 = h(mk0), vl = (ulũ(t, s))−1/ξ for L ≥ l ≥ 1, and v0 = t.

H Technical Lemmas

We first recall the convexity lemma attributed to Geyer (1996) and Knight (1999), which we

use repeatedly in our proof.

Lemma H.1. Suppose (i) a sequence of convex lower-semicontinuous functions Qn: < 7→ <

marginally converges to Q∞: < 7→ < over a dense subset of <, (ii) Q∞ is finite over a

nonempty open set Z0, and (iii) Q∞ is uniquely minimized at a random variable Z∞, then

any argmin of Qn, denoted Ẑn(1), converges in distribution of Z∞.

The following lemma is used to prove Theorem 4.1.

Lemma H.2. If the assumptions in Theorem 4.1 hold, then

−1

b

n∑
i=1

Pni1{Xi ≤ x}kz p−→ −kp0z

and
n∑
i=1

PniL(−αb(Yi − q(1)), z)1{Xi ≤ x} 
∫

L(u, z)dN.

Proof. To establish the first result, we compute the characteristic function of 1
b

∑n
i=1 Pni1{Xi ≤
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x}. Let ĩ be the imaginary unit,

E exp(
ĩt

b

n∑
i=1

Pni1{Xi ≤ x}) =

[
E exp(

ĩt

b

n∑
i=1

1{Inl = i}1{Xi ≤ x})
]b

=

[
E exp(

ĩt

b
1{XInl ≤ x})

]b
=

{
1− E

[
ĩt

b

b

n

n∑
l=1

(
1− exp(

1

b
1{Xl ≤ x})

)]}b

Note that

1

n

n∑
l=1

(
1− exp(

1

b
1{Xl ≤ x})

)
=

(
1− exp(1/b)

)(
1

n

n∑
i=1

1{Xl ≤ x}
)

p−→ p0.

Therefore, by the dominated convergence theorem,

E exp(
ĩt

b

n∑
i=1

Pni1{Xi ≤ x})→ exp(̃itp0)

and thus −1
b

∑n
i=1 Pni1{Xi ≤ x}kz p−→ −kzp0.

For the second part, denote N̂∗ =
∑n

i=1 Pni1{−αb(Yi − q(1)) ∈ ·, Xi ≤ x}. We have

EPni = b/n and N̂ ≡
∑b

i=1 1{−αb(Yi − q(1)) ∈ ·, Xi ≤ x}  N by the proof of Theorem

3.1. Then, by Resnick (2007, Proposition 6.2),

P (N̂∗ ∈ ·|Data)
p−→ P (N ∈ ·).

Taking expectation on both sides, we obtain that N̂∗  N. Then, by the continuous mapping

theorem, we have ∫
L(u, z)dN̂∗  

∫
L(u, z)dN.
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I Estimations of the intermediate quantile and EV in-

dex

In this section, we consider the asymptotic properties of the estimator q̂n(τn) when (1 −

τn)n → ∞. In addition, we propose estimating the EV index by a Pickands-type estima-

tor and show it is consistent. One example of intermediate τn, which is relevant to the

subsampling inference proposed in Section 4, is τn = 1 − kj/b for j = 1 and 2, because

(1− τn)n = kjn/b→∞. We also need ξ̂ when computing ω̂1 and ω̂2 in Theorem 4.1. The re-

sults in this section have already been established in the order statistics literature by Daouia

et al. (2010). Since we approach the problem from the quantile regression perspective, we

include these results for completeness. In addition, by clearly stating the assumptions for

each result, we illustrate that our simulation-based inference methods do not require the

second-order approximation, in contrast to the existing literature.

Assumption 10. τn → 1 and (1− τn)n→∞ polynomially in n.

Assumption 11. The conditional density of Y given X ≤ x exists and is denoted as fx(·).

There exist some y0 such that fx(·) is monotonic for y ≥ y0.

Theorem I.1. Let λn = n1/2fx(q(τn))(1 − τn)−1/2. If Assumption 1, 4, 10, and 11 hold,

then

λn(q̂n(τn)− q(τn)) N (0, p−1
0 ).

Proof. Let ∆̂n = λn(q̂n(τn)− q(τn)). Then we have

∆̂n = arg min
∆

−Wn∆ +Gn(∆)
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in which

Wn = (n(1− τn))−1/2

n∑
i=1

1{Xi ≤ x}(τn − 1{Yi ≤ q(τn)})

and

Gn = (n(1− τn))−1/2

n∑
i=1

1{Xi ≤ x}
∫ ∆

0

(1{Yi ≤ q(τn) +
s

λn
} − 1{Yi ≤ q(τn)})ds.

By the usual triangular array CLT, we have

Wn  N (0, p0).

Next, we aim to show that, point-wise in ∆, Gn(∆)
p−→ p0∆2

2
. Given this, by the convexity

lemma in Pollard (1991), we have

∆̂n − p−1
0 Wn

p−→ 0

and thus

∆̂n  N (0, p−1
0 ).

So it suffices to show Gn(∆)
p−→ p0∆2

2
. First, by the mean value theorem,

EGn(∆) =
np0√

n(1− τn)

∫ ∆

0

(F (q(τn) +
s

λn
/x)− F (q(τn)/x))ds

=
p0∆2

2

fx(q(τn) + s̃/λn)

fx(q(τn))

→p0∆2

2
.

To see this, we first note that λn = Ln(n(1− τn))1/2(1− τn)ξ → +∞ where Ln is some slowly

varying function and the EV index ξ < 0. In addition, because n(1 − τn) → ∞, for any
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constant l > 1,

s

λn
=

s(q(lτn)− q(τn))

(n(1− τn))1/2
∫ l

1
fx(q(τn))
fx(q(tτn))

dt
≤ q(lτn)− q(τn).

If fx is monotone increasing at its upper tail, then ξ ≥ −1 and

fx(q(τn) + s̃/λn)

fx(q(τn))
∈
[
fx(q(τn))

fx(q(τn))
,
fx(q(lτn))

fx(q(τn))

]
→ [1, lξ+1].

Since the above bounds hold for any l > 1, by letting l ↓ 1, we have

fx(q(τn) + s̃/λn)

fx(q(τn))
→ 1.

The case in which fx(·) is monotone decreasing in its upper tail can be handled similarly.

Last, we show that Var(Gn(∆))→ 0.

Var(Gn(∆)) =
p0

1− τn
Var

(∫ ∆

0

(1{Yi ≤ q(τn) +
s

λn
} − 1{Yi ≤ q(τn)})ds

)
≤ p0

1− τn
E
(∫ ∆

0

(1{Yi ≤ q(τn) +
s

λn
} − 1{Yi ≤ q(τn)})ds

)2

≤ p0∆2

(n(1− τn))1/2

fx(q(τn) + ∆̃/λn)

fx(q(τn))
→ 0.

This concludes that Gn(∆)
p−→ p0∆2

2
and thus the proof.

Next, we consider the Pickands-type estimator of the EV index as described in Resnick

(2007, Section 4.5). For some positive integer R, {wr}Rr=1 is a set of weights which sum up

to one. We estimate ξ by

ξ̂ =
R∑
r=1

−wr
log(l)

log

(
q̂n(mlrτn)− q̂n(lrτn)

q̂n(mlr−1τn)− q̂n(lr−1τn)

)
,

in which τn is an intermediate order quantile index that satisfies Assumption 10, l and m

are positive constants, and {q̂n(mlrτn), q̂n(lrτn)}Rr=0 are computed based on (A.1) using the
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full sample.

Theorem I.2. If the assumptions in Theorem I.1 hold, then

ξ̂
p−→ ξ0.

Proof. By Theorem I.1, we know that, for any intermediate order quantile index τn,

q̂n(τn)− q(τn) = Op(λ
−1
n ).

Therefore,

q̂n(mlrτn)− q̂n(lrτn)

qn(mlrτn)− qn(lrτn)
=1 +

q̂n(mlrτn)− q(mlrτn)

qn(mlrτn)− qn(lrτn)
− q̂n(lrτn)− q(lrτn)

qn(mlrτn)− qn(lrτn)

=1 +Op(((qn(mlrτn)− qn(lrτn))λn)−1).

In addition,

(qn(mlrτn)− qn(lrτn))λn = (n(1− τn))1/2

∫ mlr

lr

fx(q(τn))

fx(q(tτn))
dt = O((n(1− τn))1/2).

So,

q̂n(mlrτn)− q̂n(lrτn)

q̂n(mlr−1τn)− q̂n(lr−1τn)
∼(1 +Op((n(1− τn))−1/2))

qn(mlrτn)− qn(lrτn)

qn(mlr−1τn)− qn(lr−1τn)

∼(1 +Op((n(1− τn))−1/2))l−ξ0
p−→ l−ξ0 .

Then, by the continuous mapping theorem,

ξ̂
p−→

R∑
r=1

wrξ0 = ξ0.
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J Additional simulation results

Tables 4 and 5 report the coverage rates and average lengths of three procedures with n =

10, 000.

Table 4: DGP 1, n = 10, 000

Sub ABC DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 1.1 0.949 0.934 0.922 0.920 0.906 0.840 0.777
np0 ≈ 1834 (0.355) (0.330) (0.166) (0.158) (0.135) (0.227) (0.227)

x = 2.2 0.940 0.947 0.933 0.935 0.920 0.909 0.909
np0 ≈ 3666 (0.338) (0.332) (0.164) (0.157) (0.134) (0.309) (0.309)

x = 3.3 0.944 0.951 0.935 0.941 0.927 0.976 0.953
np0 ≈ 5500 (0.334) (0.312) (0.164) (0.155) (0.133) (0.374) (0.374)

x = 4.4 0.942 0.950 0.937 0.937 0.935 0.989 0.977
np0 ≈ 7334 (0.327) (0.314) (0.163) (0.155) (0.133) (0.432) (0.432)

x = 5.5 0.954 0.951 0.947 0.947 0.934 0.996 0.990
np0 ≈ 9166 (0.331) (0.313) (0.164) (0.156) (0.133) (0.480) (0.480)

Notes: The coverage rates and average lengths of the CIs (in parentheses) are reported.

Table 5: DGP 2, n = 10, 000

Sub ABC DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 3.3 0.941 0.948 0.932 0.935 0.921 0.926 0.886
np0 ≈ 3026 (0.838) (0.794) (0.399) (0.385) (0.326) (0.690) (0.690)

x = 4.4 0.949 0.944 0.939 0.941 0.932 0.974 0.951
np0 ≈ 5378 (0.818) (0.777) (0.399) (0.385) (0.325) (0.905) (0.905)

x = 5.5 0.949 0.954 0.947 0.944 0.943 0.994 0.985
np0 ≈ 8402 (0.798) (0.768) (0.398) (0.383) (0.323) (1.125) (1.125)

Notes: The coverage rates and average lengths of the CIs (in parentheses) are reported.

Tables 6–9 report the finite sample performances of the point estimators from the three

procedures. In particular, we consider the median-unbiased estimator for the subsampling

approach, the posterior mean and median for the ABC approach, and the point estimator
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proposed by Daouia et al. (2010). Here we report the bias (BIAS), mean absolute deviation

(MAD), and root mean squared error (RMSE).

Table 6: DGP 1, n = 5, 000, Performances of point estimators

Sub ABC mean ABC median DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 2.2 np0 ≈ 1833

BIAS 0.005 0.002 0.015 0.013 0.011 0.004 0.002 0.003 0.016 0.018
MAD 0.067 0.062 0.050 0.046 0.044 0.047 0.043 0.042 0.091 0.103
RMSE 0.087 0.079 0.066 0.060 0.057 0.061 0.055 0.054 0.119 0.135

x = 3.3 np0 ≈ 2750

BIAS 0.002 0.000 0.013 0.010 0.007 0.002 0.000 0.000 0.011 0.012
MAD 0.064 0.006 0.047 0.044 0.038 0.044 0.042 0.037 0.088 0.102
RMSE 0.082 0.078 0.061 0.057 0.049 0.057 0.053 0.046 0.115 0.133

x = 4.4 np0 ≈ 3667

BIAS 0.001 0.000 0.012 0.010 0.008 0.001 0.000 0.000 0.008 0.009
MAD 0.064 0.059 0.047 0.043 0.040 0.044 0.040 0.039 0.089 0.101
RMSE 0.081 0.074 0.060 0.055 0.051 0.055 0.051 0.049 0.114 0.130

x = 5.5 np0 ≈ 4583

BIAS 0.000 0.000 0.013 0.010 0.007 0.002 0.000 0.000 0.009 0.011
MAD 0.062 0.059 0.045 0.043 0.038 0.042 0.037 0.037 0.088 0.102
RMSE 0.079 0.075 0.059 0.055 0.049 0.054 0.047 0.047 0.144 0.131

Table 7: DGP 2, n = 5, 000, Performances of point estimators

Sub ABC mean ABC median DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 3.3 np0 ≈ 1513

BIAS 0.008 0.007 0.035 0.036 0.025 0.008 0.006 0.006 0.047 0.054
MAD 0.170 0.155 0.127 0.118 0.112 0.120 0.110 0.108 0.227 0.259
RMSE 0.221 0.202 0.166 0.154 0.146 0.154 0.141 0.139 0.305 0.347

x = 4.4 np0 ≈ 2689

BIAS 0.000 0.000 0.030 0.028 0.018 0.003 0.000 0.000 0.026 0.031
MAD 0.158 0.147 0.116 0.109 0.101 0.110 0.102 0.098 0.217 0.249
RMSE 0.201 0.189 0.150 0.140 0.128 0.139 0.140 0.123 0.280 0.324

x = 5.5 np0 ≈ 4201

BIAS 0.007 0.002 0.033 0.029 0.021 0.006 0.001 0.002 0.022 0.028
MAD 0.155 0.146 0.114 0.108 0.097 0.107 0.101 0.094 0.217 0.248
RMSE 0.201 0.188 0.145 0.139 0.124 0.135 0.128 0.118 0.278 0.317
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Table 8: DGP 1, n = 10, 000, Performances of point estimators

Sub ABC mean ABC median DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 1.1 np0 ≈ 1834

BIAS 0.002 0.002 0.011 0.009 0.007 0.003 0.001 0.002 0.012 0.014
MAD 0.046 0.045 0.035 0.033 0.031 0.032 0.031 0.030 0.065 0.075
RMSE 0.061 0.058 0.046 0.043 0.041 0.042 0.040 0.039 0.088 0.101

x = 2.2 np0 ≈ 3666

BIAS 0.001 0.000 0.009 0.008 0.006 0.001 0.000 0.000 0.007 0.009
MAD 0.046 0.043 0.033 0.031 0.029 0.031 0.029 0.028 0.064 0.073
RMSE 0.058 0.055 0.043 0.040 0.037 0.040 0.037 0.035 0.082 0.094

x = 3.3 np0 ≈ 5500

BIAS 0.000 0.000 0.009 0.007 0.006 0.000 0.000 0.000 0.005 0.006
MAD 0.045 0.042 0.032 0.030 0.028 0.030 0.028 0.027 0.063 0.072
RMSE 0.057 0.054 0.042 0.038 0.035 0.038 0.036 0.034 0.081 0.093

x = 4.4 np0 ≈ 7334

BIAS 0.009 −0.002 0.008 0.006 0.005 0.000 -0.002 0.000 0.007 0.008
MAD 0.045 0.041 0.032 0.030 0.027 0.030 0.029 0.026 0.063 0.072
RMSE 0.057 0.053 0.041 0.039 0.035 0.038 0.036 0.033 0.081 0.093

x = 5.5 np0 ≈ 9166

BIAS 0.000 0.000 0.009 0.008 0.041 0.001 0.000 0.000 0.006 0.006
MAD 0.044 0.041 0.032 0.030 0.027 0.030 0.028 0.026 0.063 0.072
RMSE 0.055 0.052 0.041 0.038 0.034 0.038 0.035 0.033 0.080 0.091

Table 9: DGP 2, n = 10, 000, Performances of point estimators

Sub ABC mean ABC median DFS

S1 S2 L=2 S1 L=2 S2 L=3 S1 L=2 S1 L=2 S2 L=3 S1 S1 S2

x = 3.3 np0 ≈ 3026

BIAS -0.004 -0.001 0.018 0.019 0.011 0.000 -0.001 -0.002 0.017 0.021
MAD 0.110 0.104 0.081 0.076 0.070 0.076 0.072 0.068 0.153 0.177
RMSE 0.140 0.133 0.104 0.098 0.090 0.097 0.090 0.086 0.197 0.228

x = 4.4 np0 ≈ 5378

BIAS -0.002 0.000 0.019 0.019 0.018 0.000 0.000 -0.002 0.012 0.014
MAD 0.108 0.104 0.079 0.075 0.067 0.075 0.070 0.065 0.154 0.177
RMSE 0.138 0.132 0.101 0.096 0.085 0.094 0.088 0.082 0.198 0.229

x = 5.5 np0 ≈ 8402

BIAS 0.000 0.000 0.018 0.018 0.009 -0.001 -0.002 -0.004 0.012 0.012
MAD 0.108 0.100 0.076 0.073 0.065 0.072 0.067 0.063 0.156 0.179
RMSE 0.137 0.127 0.098 0.093 0.082 0.091 0.086 0.078 0.197 0.226
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