
The Empire Strikes Back: The end of Agile as we know it?

Jeffry S. Babb1, Jacob Nørbjerg2, David J. Yates3, Leslie J. Waguespack3

1 West Texas A&M University, Canyon, Texas, USA

2 Copenhagen Business School, Frederiksberg, Denmark
3 Bentley University, Waltham, Massachusetts, USA

Abstract. Agile methods have co-evolved with the onset of rapid change and

turbidity in software and systems development and the methodologies and

process models designed to guide them. Conceived from the lessons of practice,

Agile methods brought a balanced perspective between the intensions of the

stakeholder, the management function, and developers. As an evolutionary

progression, trends towards rapid continuous delivery have witnessed the

advent of DevOps where advances in tooling, technologies, and the

environment of both development and consumption exert a new dynamic into

the Agile oeuvre. We investigate the progression from Agile to DevOps from a

Critical Social Theoretic perspective to examine a paradox in agility – what

does an always-on conceptualization of production forestall and impinge upon

the processes of reflection and renewal that are also endemic to Agile methods?

This paper is offered as a catalyst for critical examination and as an overt call to

action to engage in emancipatory scholarship in advocacy for the Agile

development team. Under threat of disenfranchisement and relegation to

automation, we question how a tilt towards DevOps will preserve key elements

in the tenets and principles of the Agile methods phenomenon.

Keywords: Agile Methods, Continuous Delivery, Critical Social Theory,

DevOps, Iteration Pressure, Learning, Reflective Practice.

1 Introduction

In 2001, a wonderfully disruptive phenomenon was formally proffered to the world

of software and systems development in the form of the Agile Manifesto – an

espousal of principles and values which advocated for a progressive view on the art

and craft of software and systems artifact realization. Levied in the context of classic

“waterfall” conceptions of systems development, the set of methodologies gathered

under the “agile” umbrella was a response to changes in the context of software and

systems development. Also, the proliferation of information and knowledge, wrought

by a world rapidly inter-connecting via the Internet, likely played its own part. The

Agile Manifesto may be rightly considered an utterance of emancipation from staid

and ossified beliefs and norms regarding the practice of development, manifested in –

at least in the eyes of some – the CMM-inspired software process improvement

efforts of the previous decade [14, 38, 39, 46]. Sixteen years later, the extent of

disruption and transformation brought about by a world extensively inter-connected

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenArchive@CBS

https://core.ac.uk/display/145235247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by the Internet is staggering if not even fully comprehensible from the perspective of

the halcyon days of the fin de siècle.

While Agile practice heralded (and mostly delivered) on an accentuation of the co-

creative possibilities inherent in a stakeholder-developer partnership, a partnership

that is mediated with rituals and habits centered on regular discursive emergence,

among the compelling aspects of Agile is its focus on the rapid delivery of customer

value. To wit, some of the reflective and learning-centered aspects of Agile methods

were frequent casualties of the “first shots” of many Agile-driven software projects.

Rapid delivery, and the network effects of prolific delivery, have somewhat saturated

the development space (with tools, frameworks, automation, and knowledge) where

expectations of pace may outstrip learning and reflection inherently [5, 6, 25].

Agile practices themselves are giving way to the evolutionary phenomenon that is

DevOps [18, 30] or even its companion, Continuous Delivery [34] and Deployment

[28] (Continuous* – we will use the moniker DevOps in the remainder of the paper)

[21]. DevOps offers a new conceptualization of Agile practice which is consistent

with the logic of accumulation. DevOps emerged from the benefits of Agile software

development pertinent to shortened release cycles. Thus, a central tenet of DevOps is

to reach a state where applications are released faster and more frequently. In this

context, a process management response is to introduce tools to increase automation

and continuous delivery [28]. While Agile software development constituted an ethos

of theory and practice focused on organizational change through its collaboration and

learning focus, DevOps places more emphasis on implementing organizational

change to achieve organizational goals and on traditional notions of standard

processes, automation, and – not the least – data driven process and product

improvements [19, 21, 34, 43].

In this paper, we present a position on Agile’s evolution towards DevOPs as a

means of developing discourse, from a critical philosophy of science, to better

understand a paradox of agility: will the embrace of the customer and managerial

benefits of Agile methods, evident in the DevOps and continuous evolution,

undermine the learning and renewal aspects of Agile methods? With Agile methods,

strains of legitimate democratization of the developer as reflective practitioner were

resonantly and resolutely clear. With DevOps, where developer is primarily engaged

in rapid delivery, we see the developer in danger of being relegated to an automaton

and cog.

In this paper, offered to generate discussion and inquiry, we ponder a paradox

evident when we consider Agile’s high pace in contrast with its espoused values

centered on learning and renewal. We summarize different stages of Agile theory and

practice over the past 18-20 years with examples drawn from our own field studies,

the studies of others, and the original descriptions of Agile processes. Directly, we

question Agile’s future by consider its past and how it has fared in practice. We begin

with a prequel: Software Process Improvement and the Capability Maturity Model.

2 Prequel: The Capability Maturity Model and Software Process

Improvement

In the early 1990’s a novel approach to improve software development and

management gained traction: Software Capability Maturity Models. See for example

[22, 46]. The models contained a set of managerial, developmental and organizational

processes for software development organizations to adopt and apply to reach higher

levels of process maturity, and thereby increasing levels of predictability, control,

and, ultimately, efficiency, of their software development. With the help of these

maturity models, an organization could assess their software processes and initiate

improvements; i.e. changes to processes, practices, management and organizations,

needed to climb to a higher level.

The models sparked an interest in Software Process Improvement among software

development organizations and researchers [24, 32] as well as much criticism.

Software engineers criticized the models for aiming to convert software development

into an industrial assembly line process, which would stifle the creativity and

flexibility required to control the uncertainties inherent in software development.

Particularly the data-driven continuous improvements (level 5) were believed to result

in incremental improvements to a fundamentally flawed process in need of radical

change [14]. Others have pointed to the strong authoritarian and bureaucratic

perspective on organizations and management espoused by the models and to the lack

of appreciation of the organizational dynamics and politics of software developing

organizations [38, 39]. Critics have also claimed that the models are too cumbersome

and costly for small to medium sized software companies to use [10, 47].

3 Rebellion: Agile principles and practices

The Agile Manifesto was remarkable in its attempt to balance historically

competing forces in software and systems development – the demands of the

customer, the concerns of management, and the efficacy of the development team.

When considering the tenets proffered in the Agile Manifesto, traditional software

process values are acknowledged for their utility, but they are augmented with

principles that highlight balance, largely between the developers and customer.

Processes, tools, documentation, contracts, and planning are all concepts central to the

inherent desire for management to control risks, costs, and productivity. These are all

natural byproducts of creating systems where profitability is at stake. The language

used in the Agile Manifesto’s twelve principles clearly describes a balance that is

customer focused and outcomes oriented. Some themes are emergent in the principles

where management are scarcely mentioned and, when mentioned, are then referred to

as “business people.” This may or may not be naiveté, but that is unlikely considering

the gravitas of the signatories.

It is reasonably self-evident that Agile methods have had great impact on the

software and systems development world [1, 17, 20]. Not stated in the Agile

manifesto and principles are the means of routinizing and controlling these methods

of practice [13]. Thus, there are epistemological concerns afoot in our consideration

of Agile methods and whether they have lost their way. While the original tenets and

principles behind the Agile Manifesto may seem simple guidelines, they espouse an

ethos and epistemology of practice that remains important. They speak to a “whole

package” that includes customer orientation, individual excellence, reflective practice,

technical excellence, and responsiveness to change. A 2012 survey of practitioners

bears this out [53]. When asked whether (and what) would be changed about the

Agile Manifesto’s principles, most suggestions focused on communication, learning,

and collaboration. At issue is whether these connect to viable and working product,

which depends on the competency and disposition of the team [12]. Agile is difficult,

and its feedback focus, where quicker cycles offer early detection of problems, is just

one ingredient. Another, that is perhaps losing ground, is renewal via learning and

reflection.

Toward this end, we will briefly discuss three core values often associated with

Agile software development, which can be extracted from the 12 principles: ongoing

customer contact; learning teams; and empowered and self-organizing teams. Based

on findings from studies of Agile practice we will discuss how these principles (and

their associated practices) have unfolded in practical Agile software development

projects. Further in our exploration of these aspects of Agile methods, we seek to

develop an important core line of inquiry. How has the characterization of the

“agility” in these methods regressed from an ideal of the “agile” (nimble and

reflective) practitioner as an artisanal master of craft with a keen eye to productivity,

learning and renewal in a reflective practice to a “mechanical turk” available to

produce software and systems “tidbits” akin to the way a short-order cook delivers

fast food [29, 31]? While such a characterization may appear too brash on first blush,

it is worth entertaining at this progressed juncture in the history of Agile methods as

they have intermingled with the iterative, lean, and continuous delivery aspects of the

uptake of Agile methods that have ontological and epistemological considerations for

Information Systems researchers.

3.1 Ongoing customer contact

The principle of a customer on site being in close contact with the development

team was among the early casualties in the practical application of Agile software

development [7, 26]. Particularly small software companies with few developers and

many customers found it impractical or impossible to have customers and teams

communicate frequently. Among other reasons for infrequent or lacking customer

contact cited are: customers' lack of time commitment and understanding of Agile

practices, distance (off shore development), and the customer representative's

insufficient skills and experience [26].

The developers and companies apply different tactics to overcome the lack of

customer contact, particularly a customer proxy or product owner, who acts on behalf

of the customer when defining and interpreting user stories, planning a development

cycle, and assessing outcomes. The lack of direct contact between the developers and

the customer will, however, cause information distortion and delays, leading to

misunderstood requirements, rework, increasing costs, and potential loss of customers

[26, 41].

3.2 Learning teams

Agile software development espouses the idea of self-empowered teams that reflect

upon and improve their skills and work practices on an ongoing basis. Agile methods

such as XP and Scrum embody this principle in practices such as pair programming,

frequent customer contact, stand-up meetings and retrospectives. These practices are,

however, strongly adapted or omitted in Agile software development projects with

dire implications for in-team learning and reflection [6, 25]. Developers frequently

refer to lack of time and an increasing focus on producing software when they explain

why learning and reflection practices are omitted or strongly adapted. Particularly

very small companies with limited resources and a strong need to ship (and bill)

software tend to omit practices such as pair programming and retrospectives.

Elsewhere, we have warned that this iteration pressure and the increasing attention to

productivity at the expense of team – and individual – development and improvement,

may have long term negative effects on the team's performance and agility [6, 25].

3.3 Empowered self-organizing teams: Agile or short term resource

management?

Agile software development is supposed to be organized in teams who work on a

single project for a customer. The team is empowered and self-organizing, meaning

that it manages the backlog of tasks, prioritizes and selects tasks for a Sprint or

timebox, and distributes work among the team members.

Observations of Agile software practices reveal, however, an erosion of these

practices and a general change in the meaning of 'team' and 'project'. In very small

companies, where customers far outnumber the developers, each developer is

effectively team of one, which is allocated to several projects; i.e.; one for each

customer. Customer contact, task management and prioritization are furthermore the

responsibility of the manager/owner in such organizations [7]. With variations, we

have seen similar patterns emerge in larger organizations in Denmark as well as in the

United States, as briefly illustrated in the following examples.

The startup. The startup develops an innovative software product, and employs

about 10 developers, all working in the same room, but loosely organized into teams

based on the product architecture. Stories are defined and managed by a management

group and allocated to sprints and teams. The team breaks the stories down into tasks,

which are allocated to individual developers. The team uses Kanban boards,

burndown charts, and other information radiators to manage the Sprint.

The mature SME. The mature SME is a web-agency, which develops web-sites

and portals for different customers. The customers range from small to very large

private and public companies and organizations. The relationship can extend for

several years beyond the initial development of a site. The developers are organized

into teams, each working for several customers. The team structure is not fixed,

however, with developers being moved between teams to close resource gaps. Each

team has a project manager, who is the primary liaison between the company and the

customer, although other team members can participate in meetings with customers.

Tasks are negotiated with the customer, and assigned to developers by the project

manager in two week Sprints. In other words, can a developer work on several

different 'projects' during a Sprint?

These are just a few examples, representative of what we have observed in

companies in both Denmark and the United States. We believe they reveal a general

trend in the application of Agile software development, at least in certain kinds of

software development organizations.

3.4 Whatever happened to the Agile principles?

We observe that modern software organizations embrace the Agile ideals of

evolutionary development, short cycles, and adaptive planning, but that several of the

principles – or ideals – associated with Agile development seem to have been

abandoned or heavily modified: The customer proxy or product owner has replaced

the 'customer on site', and team learning and reflection has given in to iteration

pressure and frequent deliveries. Loosely coupled individuals, managed by a project

or product manager, have replaced the self-organizing team, and a Sprint is a planning

frame where each developer is assigned a selection of tasks to solve for several

customers.

There are probably several drivers behind these developments, but the quest for

higher productivity and shorter turn-around times – note that the duration of a Sprint

or timebox has been reduced to only two weeks (or less!) over the past decade – seem

plausible candidates.

4 Continuous integration, continuous deployment and DevOps:

Standardize, measure, improve!

The Agile approach to software and systems development brought programmers,

testers and quality assurance employees together to ensure closer collaboration as a

team and shorten the time between software releases from several months or years to

weeks. The DevOps approach aims to further increase the IT organisations’

capabilities to react fast and release new software versions frequently – possibly

several times per day. [21].

Continuous integration, continuous deployment and DevOps aims towards a

continuous flow from task definition over programming to test, delivery and

deployment. It depends on standard architectures and automated build, test, and

deployment processes. Measurements of the software development process and the

product in use are fed back to development to define changes or additions to the

product and improvements to the process.

While there is still not much research about DevOps practices and their

implications, it appears that the move to DevOps, among others, is accompanied by a

further reduction in team control and authority towards outside managers supported

by extensive metrics [19].

5 Discussion: Adopting a Critical Response

Agile methods arguably co-evolved with the proliferation of Internet use and

ubiquitous access to the World Wide Web [9]. What is certain is that many aspects of

responding to “Internet speed” are fatiguing to the human element of software

development and technical operations, even with advent of more capable and more

sophisticated tools. Some responses – frequent iterations culminating in continuous

delivery and continuous deployment [28, 34]; gravitating to fixed architectural

patterns; componentization and reuse, for example, as embodied in microservices

[35]; performing quality assurance earlier and more frequently [48]; amplified

feedback; and, method tailoring – all present challenges to the human element. The

high velocity of the current environment, producing such a frenzy around emerging

tooling and frameworks causes visible and apparent fatigue [15] and even burnout

[18].

Bansler [8] characterizes three traditions in Scandinavian research in systems

development that have some direct bearing on our characterization of the progression

of Agile methods: systems-theoretical, socio-technical, and critical. This is so as

Scandinavian research on systems development, and the antecedent/guiding theories

often referenced, consistently reflect Agile principles in their own espoused world-

view. See Table 1 below.

Table 1 Relating Traditions in Scandinavian Research to Agile Principles

Agile Principle Related Research Tradition

Emphasis on Individuals Sociotechnical Systems

Emphasis on balancing quality with

human concerns

Sociotechnical Systems

Critical Theory

Learning and adaptation Appreciative Systems

Participative Development Participatory Design

Accepting and Leveraging Change Soft Systems Methodology

Self-organizations Complex Adaptive Systems

Minimum Viable Product Sociotechnical Systems

Reflective Practice Reflective Practice

(Adapted from Nerur et al. [42])

The sociotechnical perspective is aligned with Agile and DevOps according to the

democratizing aspects assumed on issues related to open design; early customer

value; egalitarian views on power, authority, and information; and continuous

improvement and learning [18, 42]. Agile and DevOps also favor system theoretic

perspectives in that problem solving and setting require a balanced perspective on

matters such as complexity, the proclivities of the participants and stakeholders of the

system, and role of chaos and entropy in design that favors early and iterative

development [20, 30]. In this regard, Checkland’s Soft Systems Methodology [16]

strongly considers a general systems theoretic component.

From both a sociotechnical perspective, we consider the impacts of iteration

pressure and how it has transformed Agile practice. Specifically, we appeal for a

consideration of these issues via the lens of the critical/neohumanist paradigm [36].

Relegation of the developer to code-producer is a departure from the tenets of Agile

methods and Critical Social Theory (CST) encourages researchers to assume a value-

laden inquiry with aim to question the shift to “neo-Taylorism” afoot in the evolution

of Agile methods [40]. It is useful, if not overly simplistic, to consider the phase shift

that Agile may be experiencing as it has encountered and digested aspects of the

“Lean” movement and similar influences from the Japanese automobile

manufacturing from the late 20th century.

Whereas some Agile methods have taken their clues from the Lean phenomenon

from the start, there is a distinct end of the spectrum of Agile methods that is arguably

aligned with a “human-centrism.” This is evident in aspects of Extreme Programming

[11] and Scrum [51]. Whereas Agile methods such as Scrum took care in minimizing

the “us-vs-them” dichotomy between management and workers, developer relegation

under iteration pressure reintroduces these aspects [40]. To wit, it would seem that

some “democratic Taylorism” is envisioned in Agile methods’ evolution towards the

Lean and Continuous paradigms [2] inherent in DevOps.

Without considerable time afforded for renewal and learning through reflection,

the “trappings” of Agile’s Manifesto and principles may be visible at the surface, but

are they still implementable with 1-week or 2-week sprints? The necessity of

standardization inherent in all process optimizations is understandable, but the

epistemology of technical rationality [49] inherent in these optimizations brings into

question how learning will occur. Despite the inherent wisdom in “refactoring

mercilessly to patterns” – as an example – questions arise as to how this inherently

technically rational view will allow for the adaptation and innovation also inherent in

Agile methods.

To appropriate CST in this case, we uphold its assertions: researchers are capable

of inquiry that is value laden and that seeks to expose injustice. The creativity and

freedom assumed in the original characterizations of Agile methods are in danger of

being subsumed into a knowledge interest that is purely technically rational and

practical. The relevance of our inquiry, as engaged scholars desirous of direct action,

would naturally lead to a knowledge interest rooted in emancipation. Consistent with

the underlying concerns outlined by Habermas [23], to take a critical theoretic

perspective on the evolution of the Agile paradigm that charts a course away from a

human-centricity, is to consider the mediating and moderating role of technology in

the social relations upon which Agile methods are founded [37]. Further, we argue

that an emancipation imperative exists in the call to action that is the Agile Manifesto

and its principles. The Agile Manifesto and its principles introduce a dialectic that

seeks to maximize benefits to developers, management, and customers with

equanimity and equality.

5.1 The Emancipation Imperative

Central to a critical theoretic response to not just the lacuna we characterize in

Agile’s epistemology, but to the continued mis-calibration between the necessity of

technical rationality and the imperative to recognize that human potential is shaped by

our own innovations [44]. We would be naïve to think that this reshaping is always

for the better. As it has been suggested that critical theoretic treatments are

tantamount to a “missing paradigm” in information systems research, its value may

persist inherently given the perturbations our own systems cause to known order.

Rhetorically, are we hoist by our own petard?

Howcroft and Trauth [27] outline key themes in critical research that are relevant

to the “agile” paradox. First, the emancipatory component of critical theory has a

focus on freeing individuals from adverse or detrimental power relations which lead

to disenfranchisement, alienation, and domination. Further, a willingness to undertake

critique of tradition – to disrupt the status quo by revealing and highlighting

incongruences, anomalies, and inequities to foment positive change. A

nonperformance (conformance) theme highlights tools and mechanisms designed to

bolster managerial efficiency over human considerations.

5.2 Strategies for Emancipation

Poignantly, CST calls for critique of the technological determinism also known as

technical rationality. In Agile’s progression towards DevOps, the efficacy and

efficiency of the artifact is often the sole determinant of quality. Further, CST values

reflection in a manner where some advocacy and interest is inherent in the researcher,

making the process value-laden: in this sense, it is to act in advocacy for justice.

Myers and Klein [33] offer a set of principles for critical research from which some

validation of the arguments made in this paper is possible. See Table 2 below.

Table 2 Applying Principles the of CST to the Agile Paradox (Myers and

Klein, 2011)

Myers and Klein Critical Theory

Elements

This Paper’s Position

Insight The “agile” paradox: Agile’s

progression towards continuous

delivery and lean principles may

unwittingly upset the balance between

learning/renewal and production to

disenfranchise developers.

Critique: Core Concepts from Critical

Social Theorists

Habermas: reason in practice requires

reflective judgment and critique such

that the renewal of practice is possible

by “seeing” the totality of the problem.

Critique: Taking a value position The lean-influenced continuous delivery

evolution of Agile is relegating the

reflective practice component of Agile

development for the developers

involved.

Critique: Revealing and Challenging

Norms

In a neo-Taylorist manner, DevOps

emphasizes the feedback of automation

and artificial intelligence over the time

for reflection.

Transformation: Individual

Emancipation

Pauses for reflection required for the

renewal of human insight and

repertoire. This time and occasion is

characterized as an afterthought in the

nascent elaborations on DevOps.

Transformation: Improvements to

Society

As a result of rapid feedback vis-à-vis

automation, are we becoming smarter?

Or, will innovation in software and

systems dry up as quick cycles stifle

innovation?

Transformation: Improving Social

Theories

Argyris and Schön [4] theory of action

and Schön’s [49, 50] epistemology of

reflective practice remains relevant and

a context from which critical

investigations are possible.

We appropriate these principles here in a call to action to Information Systems

Researchers. In a previous call to action (emergent about the same time that Agile

methods had emerged), which largely resulting in the contemporary design science

movement in IS research, various voices arose asking a simple question: where is the

IT artifact in our research [3, 45, 52]? We extend this call here by suggesting that

Agile methods, and their evolutionary progression, so central in delivering many

compelling IT artifacts, are worthy of our inquiry. The rush to the incorporation of

“smart” and “lean” processes into our development cycles requires some pause,

caution, and reflection in order to appreciate what is gained and lost.

6 Conclusion

This paper has presented a position which characterizes how an evolution towards

continuous delivery and DevOps that presents a number of paradoxical conundrums.

In the face of these developments, we take the position that the implications for

learning and reflection are understudied and present the principle call to action around

which this paper is designed. Where speed is paramount, quality becomes harder to

sustain and cost is difficult to manage. Fred Brooks talked about building “one to

throw away” and it is likely that, given “Internet speed,” many projects are

“throwaways” as the foundations upon which they are built are now irrelevant and

perhaps unsupportable. Managers and developers face an “always on” mode where

the boundaries between projects, be they parallel or linear, are grey and fuzzy. When

there is no beginning and no end, what is the subject of a Sprint retrospective or

review? What is the basis for learning? What is a Sprint when operation is

continuous? Increasingly, learning is at least partially – if not fully – delegated to

algorithmic machine learning based on data-driven tooling, which is far more capable

of learning through aggregation without leveraging the very human use of metaphor.

When quality is negotiable versus, for example, reliability and security, and the

creativity wrought by metaphor is subsumed, then high velocity development is at risk

of yielding a “lowest common denominator” product where distinction based on

quality is irrelevant.

Whereas Agile and DevOps emanated from seasoned professionals who had the

benefit of a pre- and proto-Internet era to cultivate their ideas, the cadence of high

velocity is likely so fast that their innovation would have been missed in a

contemporary environment. This may be why DevOps has a more hurried and urgent

feel to it. As a cultural movement, it lacks a manifesto and also lacks consistent

prescriptive methodologies. These phenomena make the discourse around DevOps

fluid at best and confusing or incomprehensible at worst. It is therefore not surprising

that DevOps is still evolving and a successful implementation, even in the most

capable organizations, requires a journey that takes years of effort and often remains

challenging to scale.

This paper is offered as both a metaphoric “discussant” and a call to action. The

emphasis on rapid value and delivery, even when necessary in web and cloud

environments, calls into question when and where renewal through reflective practice

may occur. Ships can’t stay at sea indefinitely; some rest and refit – learning from

experience and (re)calibrating repertoire – is necessary. We have presented an

argument that the learning paradox (another form of unpaid debt) arising from agility

may have deleterious effects not only on the quality of the product (which has proven

to be negotiable in the “Internet speed” era), but also on developer enfranchisement to

the process. To adopt a critical social theoretic stance in this issue is to consider how

to emancipate both the developer, and perhaps Agile methods, from this growing

imbalance. Another approach would be to disavow Continuous and DevOps from its

Agile past – which, although possible, is not practical. We call on more engaged

scholarship, and in utilization of an action learning cycle, to better understand the

“agile” learning paradox and its implications for future practice. This is so as the

design, development, implementation, and maintenance of systems remains a core

concern of the discipline.

References

1. Abrahamsson, P., Conboy, K., & Wang, X. (2009). ‘Lots done, more to do’: The current

state of agile systems development research. European Journal of Information Systems 18,

281-284.

2. Adler, P. (1995). ‘Democratic Taylorism’: The Toyota Production System at NUMMI. In

Lean work: Empowerment and exploitation in the global auto industry, 207-219.

3. Alter, S. (2003). Sidestepping the IT Artifact, Scrapping the IS Silo, and Laying Claim to

‘Systems in Organizations’. Communications of the AIS 12(1), 30.

4. Argyris, C., & Schön, D. A. (1974). Theory in Practice: Increasing Professional

Effectiveness. Jossey-Bass, San Francisco, CA.

5. Babb, J. S., Hoda, R., & Nørbjerg, J. (2013). Barriers to Learning in Agile Software

Development Projects. Agile Processes in Software Engineering and Extreme

Programming, 14th International Conference, H. Baumeister, & B. Weber. Springer Verlag,

Vienna, Austria 149, 1-15.

6. Babb, J. S., Hoda, R., & Nørbjerg, J. (2014). Embedding Reflection and Learning into Agile

Software Development. IEEE Software 31(4), 51-57.

7. Babb, J. S., Hoda, R., & Nørbjerg, J. (2014). XP in a Small Software Development

Business. Adapting to Local Constraints. 5th Scandinavian Conference on Information

Systems (SCIS), T. H. Commissio, J. Nørbjerg, & J. Pries-Heje, Ringsted, Denmark,

Springer.

8. Bansler, J. (1989). Systems development research in Scandinavia: Three theoretical schools.

Scandinavian Journal of Information Systems 1(1), 3-20.

9. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003). Is ‘Internet-

speed’ Software Development Different? IEEE Software 20(6), 70-77.

10. Basri, S., & O'Connor, R. V. (2010). Understanding the Perception of Very Small Software

Companies towards the Adoption of Process Standards. 17th EuroSPI Conference, Springer,

Grenoble, France.

11. Beck, K. (2004). Extreme Programming Explained: Embrace Change, 2nd ed. Addison-

Wesley, Reading, MA.

12. Berczuk, S. (2007). Back to basics: The role of agile principles in success with an

distributed scrum team. Agile Conference (AGILE).

13. Binstock, A. (2012). Interview with Alan Kay, Dr. Dobb's, July 10.

14. Bollinger, T. B., & McGowan, C. (1991). A Critical Look at Software Capability

Evaluations. IEEE Software 8(4), 25-41.

15. Cancialosi, C. (2016). DevOps, culture change and the brass ring of velocity. Forbes, March

28.

16. Checkland, P. B. (1981). Systems Thinking, Systems Practice. John Wiley & Sons,
Chichester, UK.

17. Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research 20(3), 329-354.

18. Davis, J., & Daniels, K. (2016). Effective DevOps: Building a Culture of Collaboration,

Affinity, and Tooling at Scale. O’Reilly Media, Sebastopol, CA.

19. Dennehy, D., & Conboy, K. (2016). Going with the flow: An activity theory analysis of

flow techniques in software development. Journal of Systems and Software.

20. Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and Software Technology 50(9-10), 833-859.

21. Fitzgerald, B., & Stol, K.-J. (2015). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software.

22. Haase, V., Messnarz, R., Koch, G., Kugler, H. J., & Decrinis, P. (1994). Bootstrap: Fine-

Tuning Process Assessment. IEEE Software 11(4), 25-35.

23. Habermas, J. (1972). Knowledge and Human Interests. Heinemann Educational, London,

UK.

24. Hansen, B., Rose, J., & Tjørnehøj, G. (2004). Prescription, Description, Reflection: The

Shape of the Software Process Improvement Field. International Journal of Information

Management (24), 457-472.

25. Hoda, R., Babb, J. S., & Nørbjerg, J. (2013). Toward Learning Teams. IEEE Software 30(4),

95-98.

26. Hoda, R., Noble, J., & Marshall, J. (2011). The impact of inadequate customer collaboration

on self-organizing Agile teams. Information and Software Technology (53), 521-534

27. Howcroft, D., & Trauth, E. M., Eds. (2005). Handbook of Critical Information Systems

Research: Theory and Application. Edward Elgar Publishing, Cheltenham, UK.

28. Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley, Reading, MA.

29. Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality management on Amazon

Mechanical Turk. ACM SIGKDD Workshop on Human Computation, 64-67.

30. Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook: How to Create

World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolution

Press, Portland, OR.

31. Levitt, G. M. (2000). The Turk, Chess Automation. McFarland & Company, Incorporated

Publishers.

32. Mathiassen, L., Pries-Heje, J., & Ngwenyama, O., Eds. (2002). Improving Software

Organizations. From Principles to Practice. Addison-Wesley, Reading, MA.

33. Myers, M. D., & Klein, H. K. (2011). A Set of Principles for Conducting Critical Research

in Information Systems. MIS Quarterly 35(1), 17-36.

34. Neely, S., & Stolt, S. (2013). Continuous Delivery? Easy! Just Change Everything (Well,

Maybe It Is Not That Easy). Agile Conference (AGILE).

35. Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media, Sebastopol, CA.

36. Ngwenyama, O. K. (1991). The critical social theory approach to information systems:

Problems and challenges. Information systems research: Contemporary approaches and

emergent traditions, 267-280.

37. Ngwenyama, O. K. (1993). Developing end-users' systems development competence. An

exploratory study. Information and Management (25), 291-302.

38. Ngwenyama, O., & Nielsen, P. A. (2003). Competing Values in Software Proces

Improvement: An Assumption Analysis of CMM From an Organizational Culture

Perspective. IEEE Transactions on Engineering Management 50(1), 100-112.

39. Nielsen, P. A., & Nørbjerg, J. (2001). Assessing Software Processes: Low Maturity or

Sensible Practice. Scandinavian Journal of Information Systems 13(1-2), 23-36.

40. Niepcel, W., & Molleman, E. (1998). Work design issues in lean production from a

sociotechnical systems perspective: Neo-Taylorism or the next step in sociotechnical

design? Human relations 51(3), 259-287.

41. Nørbjerg, J., & Shakir, S. N. (2015). The End of the Line: Project Management Challenges

in Small Software Shops in Pakistan. Strategic Project Management, K.-M. Osei-Bryson &

C. Barclay. CRC Press, Boca Raton, FL, 107-131.

42. Nerur, S., Cannon, A., Balijepally, V., & Bond, P. (2010). Toward an Understanding of the

Conceptual Underpinnings of Agile Development Methodologies. Agile Software

Development: Current Research and Future Directions, Springer, Germany, 15-29.

43. Olsson, H. H., & Bosch, J. (2014). Post-deployment Data Collection in Software-Intensive

Embedded Products. Continuous Software Engineering, J. Bosch, Springer, 143-154.

44. Orlikowski, W. J., & Baroudi, J. J. (1991). Studying Information Technology in

Organizations: Research Approaches and Assumptions. Information Systems Research (2),

1-28.

45. Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary: Desperately seeking the

'IT' in IT research—A call to theorizing the IT artifact. Information Systems Research 12(2),

121-134.

46. Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability Maturity Model

for Software, v. 1.1. Software Engineering Institute, Carnegie Mellon University,

Pitssburgh, PA.

47. Pino, F. J., Garcia, F., & Piattini, M. (2008). Software process improvement in small and

medium software enterprises: A systematic review. Software Quality Control 16(2), 237-

261.

48. Roche, J. (2013). Adopting DevOps Practices in Quality Assurance. Communications of the

ACM 56(11), 38-43.

49. Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic

Books, New York, NY.

50. Schön, D. A. (1987). Educating the Reflective Practitioner: Toward a New Design for

Teaching and Learning in the Professions. Jossey-Bass, San Francisco, CA.

51. Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum (vol. 1).

Prentice Hall, Upper Saddle River, NJ.

52. Weber, R. (2003). Still desperately seeking the IT artifact. MIS Quarterly 27(2), iii-xi.

53. Williams, L. (2012). What agile teams think of agile principles. Communications of the

ACM 55(4), 71-76.

