
Syddansk Universitet

Bayesian inference with information content model check for Langevin equations

Krog, Jens F. C. ; Lomholt, Michael Andersen

Published in:
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)

DOI:
10.1103/PhysRevE.96.062106

Publication date:
2017

Document version
Peer reviewed version

Citation for pulished version (APA):
Krog, J. F. C., & Lomholt, M. A. (2017). Bayesian inference with information content model check for Langevin
equations. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 96(6), [062106]. DOI:
10.1103/PhysRevE.96.062106

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Jan. 2018

http://dx.doi.org/10.1103/PhysRevE.96.062106


Bayesian inference with information content model check for Langevin equations

Jens Krog and Michael A. Lomholt
MEMPHYS - Center for Biomembrane Physics, Department of Physics, Chemistry,

and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
(Dated: November 7, 2017)

The Bayesian data analysis framework has been proven to be a systematic and effective method
of parameter inference and model selection for stochastic processes. In this work we introduce an
information content model check which may serve as a goodness-of-fit, like the χ2 procedure, to
complement conventional Bayesian analysis. We demonstrate this extended Bayesian framework
on a system of Langevin equations, where coordinate dependent mobilities and measurement noise
hinder the normal mean squared displacement approach.

PACS numbers: 02.50.-r, 05.10.Gg, 05.40.-a

I. INTRODUCTION

Stochastic processes are commonly used for model-
ing of single particle tracking (SPT) experiments in bio-
physics. The motion of the particle is assumed to be
partly diffusive, but the possibility of effects such as ac-
tive transport and drift due to flow or some effective po-
tential often cannot be ruled out a priori. Standard tools
to distinguish these effects are the estimation of mean
square displacement (MSD) or correlations [1, 2]. How-
ever, if the environment is heterogeneous then the situ-
ation easily becomes too complex for estimators such as
the MSD to resolve the mechanisms of the underlying
dynamics.

An alternative approach is offered by Bayesian analy-
sis [3–5], which gives a systematic method for comparing
different models of the investigated particle dynamics.
The approach simultaneously provides a way of selecting
the most probable model among different candidates and
provides the most probable associated parameter values
together with their uncertainties. A Bayesian approach
to analysing SPT trajectories has previously been ap-
plied to model selection among hidden Markov models
[6–9], diffusion in varying potentials [10–12], and param-
eter estimation for optical traps [13], to name just a few
examples.

While the Bayesian approach is excellent at choosing
the best among specified candidate models and their pa-
rameters it does not provide a measure of how well the
specified models actually describe the data, i.e., it lacks
goodness-of-fit measures like the χ2 procedure of least-
squares fitting.

In this article we demonstrate how Bayesian infer-
ence can be applied efficiently on SPT data with models
that takes the form of a Langevin equation using the
nested sampling algorithm introduced by Skilling [14].
The Langevin equation form allows for position or time
dependent forces as well as mobilities. Additionally we
supplement the Bayesian approach by coupling it with
a goodness-of-fit test that checks whether typical trajec-
tories generated from the models using typical inferred
parameters reproduce the information content of the ob-
served trajectories at different time scales. The approach
is implemented in Matlab, and the code is available at

GitHub [15].
The article is organised as follows. In Section II we

introduce the general Langevin equation on which we ap-
ply the Bayesian inference and information content model
check as explained in Section III. In Section IV we demon-
strate how the approach works on synthetic data with a
position dependent mobility and we finally conclude in
Section V.

II. GENERIC STOCHASTIC DIFFERENTIAL
EQUATIONS

We will assume that a theoretical analysis of the sys-
tem at hand has resulted in a stochastic differential equa-
tion for an observable x on the form of a Langevin equa-
tion

dx

dt
= a(x, t) + b(x, t)ξ(t). (1)

Both the deterministic term a(x, t) and the coefficient
b(x, t) of the stochastic term should be known functions
except for a limited number of unknown parameters. The
stochastic nature is supplied through the noise function
ξ(t). In the following we will assume that ξ(t) is a white
noise idealization of the physical noise, such that

〈ξ(t)ξ(t′)〉 = δ(t− t′), (2)

with an Ito interpretation when b(x, t) is not a constant
[16]. The characteristics of the process under investiga-
tion will then be determined from the other two func-
tions, a and b in Eq. (1). These functions may take on
many forms, depending on the system and observable of
interest.

An example of a system that can be brought on such
a form is a particle under the influence of a force f and
with a position dependent mobility µ(x). The probability
distribution p(x, t) for the particle position x at time t
obeys a Fokker-Planck equation

∂tp(x, t) = −∂x[µ(x)fp(x, t)− kBTµ(x)∂xp(x, t)], (3)

where kBT is Boltzmann’s constant times temperature.
This equation generalises the usual high friction limit of
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Kramers’ equation [17] to the situation with position de-
pendent mobility. The order of the second partial deriva-
tive ∂x relative to µ(x) is fixed by the condition that the
Boltzmann distribution should be a stationary solution
when the force f is conservative. We have not indicated
a dependence of position or time in the force f , since in
later sections we will take it to be constant. The Fokker-
Planck equation can be converted to the form of the
Langevin equation (1) giving for the Ito interpretation
of the noise [16]

dx

dt
= µ(x)f + kBT

∂

∂x
µ(x) +

√
2kBTµ(x)ξ(t), (4)

where the coordinate dependent µ(x) appears in the de-
terministic as well as the stochastic term. We only study
the one dimensional case here, but generalizations of this
equation to higher dimensions are straightforward.

If the noise is assumed to be negligible, then Eq. (4)
can be used to obtain deterministic equations of motion
for x, which can be fitted to obtain the correct form of the
deterministic terms. On the other hand, if the mobility
and the force are independent of x, then mean-squared-
displacement techniques may be employed to unveil char-
acteristics of the stochastic dynamics. The Bayesian in-
ference approach, however, relies on none of these as-
sumptions, and can be used to infer the functional form
of µ(x), and thus the best underlying model, in any case
where a Langevin equation on the form (4) can be found.

III. BAYESIAN PARAMETER INFERENCE
AND MODEL TESTING

In the following we will refer to a specific functional
form of the underlying Langevin equation (1) as a model,
M . Labeling the different models via a subscript i, model
selection through the knowledge of some experimentally
observed data x then follows the logic of Bayes’ theorem

P (Mi|x) =
P (x|Mi)P (Mi)

P (x)
. (5)

Here, the left hand side is called the posterior probabil-
ity for the model Mi given the data, while P (x|Mi) is
the likelihood of Mi. P (Mi) is the prior probability of
the model, and may be set equal for all models to achieve
impartial judgement. The denominator in (5) is indepen-
dent of the model, and may be seen as a normalization
constant.

To compare the posterior probabilities of a set of
models, one must then simply calculate the likelihoods
P (x|Mi). As each model Mi contains a number of pa-
rameters θ, this is found by marginalizing over the un-
known parameters,

P (x|Mi) =

∫
P (x|θ,Mi)P (θ|Mi)dθ, (6)

where P (x|θ,Mi) and P (θ|Mi) are the likelihood func-
tion and prior probability, respectively of the parame-
ters for the model Mi. Considering each possible set

of parameters θ as representing a unique model, Zi =
P (x|Mi) is often referred to as the evidence for that class
of models, and used to compare the relative merit of these
classes.

Assuming that the positions x0, x1, . . . , xN constitut-
ing x are sampled at closely spaced times t0, t1, · · · , tN
such that the force f and mobility µ vary very little dur-
ing a time interval we can integrate Eq. (4) over each
time interval to obtain the likelihood function

P (x|θ,Mi) =

N∏
j=1

1√
2πσ2

j

exp

[
− (xj − xj)2

2σ2
j

]
. (7)

with the following means and variances for each new po-
sition

xj ≡ 〈x(tj)〉
= xj−1 + [µ(xj−1)f + kBT∂xµ(xj−1)] (tj − tj−1),

(8)

σ2
j ≡ 〈(xj − xj)2〉

= 2kBTµ(xj−1) (tj − tj−1). (9)

By defining the priors P (θ|Mi) the integrand of Eq. (6)
is known, and a numerical integration may be performed
to obtain the evidence Zi and posterior probability

P (θ|x,Mi) =
P (x|θ,Mi)P (θ|Mi)

Zi
(10)

for the parameters of each model. The evidences, de-
pending on the given likelihoods P (x|θ,Mi) and on the
user defined priors P (θ|Mi), constitute a degree of plau-
sibility of the model Mi. An evidence ratio Z1/Z2 = 10
may be interpreted, assuming impartial priors, as a 91%
chance of M1 being the better model of the two. As
long as careful attention is given to the process of prior
assignment, this estimate will yield reliable conclusions.
One thing to be aware of, though, is situations where
one model is an expansion of another simpler model by
the addition of a parameter θ that can deviate from the
fixed value in the simpler model θnorm. If the prior for θ
is very broad in the sense that very little is known about
the true value of θ, then the Bayesian analysis may yield
the highest evidence for the model with θ = θnorm, even
though the true value is different from θnorm. This re-
flects the fact that for very broad priors a small deviation
will be evaluated as unimportant within the Bayesian
framework, until a sufficient amount of data is accumu-
lated. Finding relatively small effects requires relatively
large amounts of data in any analysis. The dependence
of model selection on the broadness of a prior is, however,
absent in frequentistic approaches. The discrepancy be-
tween the two approaches is called Lindley’s paradox and
has been discussed extensively. See for instance [18] for
a discussion in the context of high energy physics.
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A. Measurement noise effects

If the subject of investigation is a process where an
error is connected to the data collection process itself,
it may be necessary to distinguish between this mea-
surement noise and the noise native to the underlying
stochastic dynamics.

The presence of measurement noise η shifts the true
values xtrue, such that we observe

xj = xtruej + ηj , (11)

where we assume a zero mean Gaussian measurement
noise with 〈ηiηj〉 = δi,jσ

2
mn. This is appropriate for situ-

ations where the coordinate is determined by averaging
an intensity profile at each measurement.

If the inherent noise of the system does not depend on
the coordinate, we can adjust the mean xj and variance
σ2
j of the true coordinates to incorporate the measure-

ment noise through an iteratively calculated mean x̃j and
variance σ̃2

j [19]. In Appendix A we derive (alternatively,
see for instance [19]) that for constant mobility µ and
force f

x̃j = xj −
σ2
mn

σ̃j−1
(xj−1 − x̃j−1) (12)

σ̃2
j = σ2

j + σ2
mn

(
2− σ2

mn

σ̃2
j−1

)
, (13)

with the starting values x̃1 = x1 and σ̃2
1 = σ2

1 + 2σ2
mn.

The likelihood is then computed by replacing xj and σj
in Eq. (7) with x̃j and σ̃j .

If µ and f are not independent of position x, then the
evaluation of the the mean and variance given in Eqs. (8)
and (9) is in principle not possible, since µ and f depend
on the true positions. However, if µ and f varies only
slowly on the length scale σmn associated with the mea-
surement noise, then we can, to a good approximation,
use the observed positions when evaluating Eqs. (8) and
(9). In the following we will assume this weak depen-
dence of µ and f on position and evaluate them in this
way.

We remark that we model the noise as independent
between measurements of the position. However, there
is a number of effects that can lead to correlations in the
measurement noise. For instance, a cameras finite expo-
sure time gives rise to scalded motion blur [20]. Including
such effects in the modelling would of course be beneficial
if they are expected to be substantial.

B. Information and model testing

So far we have only discussed how the Bayesian setup
generates relative degrees of plausibility of different mod-
els, but not touched upon the problem of determining
whether or not the set of models available actually can
match the data well. A way to test the latter is to com-
pare properties of the data with replicated data from the

models. The nested sampling framework offers a readily
accessible property: the Shannon information [21]. For
a model M we can quantify the information that some
observation x gives us about the parameters of the model
as

H =

∫
P (θ|x,M) ln

P (θ|x,M)

P (θ|M)
dθ. (14)

Using Eq. (10) the corresponding expression takes the
form [22]:

H =
1

Z(M)

∫
P (x|θ,M)P (θ|M)ln

(
P (x|θ,M)

Z(M)

)
dθ.

(15)
This can also be read as the posterior average of mi-
nus the information content in the observation, with the
factor Z(M) included to make the argument of the loga-
rithm unitless.

In order to evaluate the merit of a model, we use the
fact that the information content should be similar to
typical values for replicated observations generated from
the model with parameters taken from the posterior. We
thus have a measure to be used for comparison. By draw-
ing a sample of parameters θ∗ from the posterior distri-
bution

P (θ∗|M,x) =
P (θ∗,x|M)

P (x|M)
=
P (x|θ∗,M)

P (x|M)
P (θ∗|M).

(16)
and using these to generate a replicated trajectory x∗ we
can calculate

h(x∗, θ∗) = ln

(
P (x∗|θ∗,M)

Z(M)

)
, (17)

where Z(M) = P (x|M). Generating several pairs of θ∗

and x∗ we obtain a cluster of h-values. If the models
describe the original data x well with respect to infor-
mation content, then H should be somewhere within this
cluster of h-values for replicated data. We demonstrate
this with examples in Section IV.

As an alternative way of representing the check of
whether the information content of the original data is
typical with respect to the posterior of the Bayesian in-
ference we calculate, by averaging over many draws of θ∗

and corresponding x∗, the posterior predictive p value
[23]

p = 〈Θ[h(x∗,θ∗)− h(x,θ∗)]〉, (18)

where Θ(x) is the Heaviside function. This p value is
the probability of replicated data being more extreme
with respect to information content than the observation
x. If the original data x is well described by the model,
then the p value should not be extreme, i.e., improbably
close to zero or one. In particular, if the model con-
tains the true underlying model as a special case and the
posterior probability for the parameters is narrowly dis-
tributed around their true values, then the above p value
should be uniformly distributed between zero and one.
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However, since the posterior probability distribution is
obtained based on the same observational data that is
used for the calculation of the p value, then the distribu-
tion of p values will tend to concentrate more towards a
value of one half [23]. In any case we conclude that the
model describes the data well with respect to informa-
tion content if the p value is not extremely close to zero
or one. The information measure regarded here is conve-
nient because it is readily available from the calculations
used for the Bayesian analysis. For a more involved pro-
cedure addressing a uniformly distributed measure see
[24]. Note that this analysis does not require the com-
parison between different models, but yields a check of
the absolute quality of a model in contrast to the rela-
tive one yielded by the evidence ratios. If an observed
data set is not typical for the model with respect to in-
formation content, then the model is likely to miss a key
aspect of the underlying process, even though this model
has yielded the highest evidence of the ones tested.

Since the information content of the data can be quite
closely related to the evidence of the model, then the
model check as described above might not be a very strin-
gent test. We suspect that this is the reason why the
authors have not been able to find this particular model
check described elsewhere. To improve on the stringency
of the model check, we additionally rescale the data by
only considering every n’th data point in the series and
in turn generate replicated tracks with correspondingly
longer but fewer time steps. The information content of
a reduced track x∗n for parameters θ∗ is then calculated
as

h(x∗n, θ
∗) = ln

(
P (x∗n|θ

∗,M)

Zn(M)

)
, (19)

where Zn(M) =
∫
P (xn|θ,M)P (θ|M)dθ with xn being

the reduced original data. The p value is then found as
before, and the posterior average becomes

Hn =
1

Z(M)

∫
P (x|θ,M)P (θ|M)ln

(
P (xn|θ,M)

Zn(M)

)
dθ.

(20)
Obtaining these quantities for a number of different n
provides a more stringent test that models will fail if
their probability distribution do not scale in a proper way
with step size compared with the distribution ingrained
in the experimentally observed steps. We demonstrate
this later, for instance for the case of overlooked mea-
surement noise displayed in Fig. 7. To make the above
reasoning more precise we have detailed it for a case of
diffusive Gaussian models in Appendix B.

We have framed the discussion in this subsection in the
language of information theory, since our inspiration for
choosing this particular model check has come from the
concept of “typical set” [3]: in essence the model check
tests whether the observed data belongs to the typical
set of the inferred model. Another way to phrase this is,
that the check examines whether the observed data be-
longs to the very many possible trajectories of the model
that does not have an unlikely high or small value for

their probability density, i.e., the model fails the check if
the observed trajectory is an extreme case of high or low
probability density relative to typical trajectories pro-
duced by the model.

We remark that there is a number of approaches
to model selection involving information criteria, which
rank models based on their predictive accuracy as mea-
sured by information content of the data [23, 25]. Some-
times in these approaches the models are optimized on
part of the data and then cross-validated on another part.
This is different from the approach in this article, where
the full data-set is used for model selection and parame-
ter fitting, and then also used for model checking.

IV. IMPLEMENTATION AND EXAMPLES

To demonstrate the Bayesian inference method and the
information content model check, we will examine artifi-
cial data samples generated by the Langevin equation on
the form shown in Eq. (4), with the mobility,

µ(x) = D0|x|α, (21)

similar to what has been theoretically investigated in [26].
D0 has dimension of length1−αtime−1force−1, and the
force f as well as the exponent α will be assumed to be
either zero or a nonzero constant. By letting the force be
constant while the mobility varies we essentially analyse a
situation complementary to the setup investigated in [11],
where the force was assumed to be a polynomial in x. We
stress that any set of functions µ(x), f(x) could have been
chosen, as long as µ(x) was differentiable. By choosing
values for D0, α, f , and σ2

mn as well as a starting point
x0, we use (12) and (13) to generate the steps iteratively.
To specify the assumptions of the models we consider we
use the subscripts ”pull” and ”free” to signify whether
or not the model assumes a nonzero force f , while ”mn”
and ”clean” specifies whether or not the model takes into
account measurement noise. Throughout all examples we
set kBT = 1.

To calculate the respective evidences Zi = P (x|Mi),
as given in Eq. (6), we specify the use of a Jeffreys prior
for D0 ∈ [10−4; 102], such that

P (D0|Mi) =
1

D0 ln 106
Θ

(
3−

∣∣∣∣log10

(
D0

10−1

)∣∣∣∣) , (22)

allocating the same amount of probability within each
decade, while assigning the uniform priors

P (α|Mi) = 1
4Θ(2− |α|), (23)

P (f |Mpull) = 1
2Θ(1− |f |), (24)

P (σ2
mn|Mmn) =

1

100
Θ(100− σ2

mn). (25)

We choose to use the Jeffreys prior for parameters where
the correct order of magnitude might not be known be-
forehand, and uniform priors for parameters that may
vanish or be negative, or where the order of magnitude
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FIG. 1. (a) Sample track along with a deterministic fit.
(b) - (e) Likelihoods for variations of single parameters (right)
around the maximum likelihood point for the best candidate
model, which in this case is Mpull,clean. The dashed lines
represent the true values.

may be estimated from the experimental background in-
formation. If the amount of data is not too small then
the specific choice of prior should have negligible influ-
ence on the inference results for the parameter values as
long as the prior is nonzero in the peak of the likelihood.
As discussed earlier, then the specific choice of prior can
influence the result for model selection (Lindley’s para-
dox). Thus care must be taken to make the prior reflect
the a priori expectations for the parameters in the spe-
cific experiment. For a suggestion of a non-informative
approach towards this using reference priors see [27].

The integral in Eq. (6) is evaluated numerically with
the nested sampling algorithm [28], in which stochas-
tic sampling of the parameter space is performed via a
Markov chain Monte Carlo (MCMC) technique. From
an initial uniform distribution of sample points within
parameter space, the sample with the lowest likelihood
is progressively removed and replaced by a new sample
within the remaining volume of parameter space with
higher likelihood. The MCMC technique generates this
new sample and ensure that it is independent of the re-
maining samples and as such is once again uniformly
distributed. Through such sampling, inferred parameter
values are automatically included through the estimated
posterior probability landscape. The inferred posterior
distribution can then be used to generate the samples
needed for the information content estimates in Eq. (17).

A. Noise free data

In the left side of Fig. 1 an artificial sample track is dis-
played that we will apply the Bayesian inference method
on. For now we consider data with no measurement noise,
so we focus on two models, Mfree,clean and Mpull,clean,
where both D0 and α are free parameters, while σ2

mn = 0,
but where only the latter model allows a nonzero force.

Integrating over all of parameter space, we find

ln Zpull,clean − ln Zfree,clean = 2.42± 0.15. (26)

Thus Zpull,clean/Zfree,clean ≈ 11.3, which strongly favors
the model with a nonzero force. We obtain uncertainty
for the ratio of the evidences via the inferred information
[14]. For Mpull,clean we obtain the inferred values shown
in Table I.

Parameter Inferred value True value Fitted value
D0 0.174± 0.039 0.2 N/A
α 1.001± 0.091 1.0 0.553± 0.050
f −0.277± 0.097 -0.3 N/A
D0 × f −0.048± 0.022 -0.06 −0.148± 0.012

TABLE I. Bayesian-inferred, true and naively fitted parame-
ters for the data in Fig. 1.

As expected the parameter values are inferred with rea-
sonable uncertainty. The plots in the right side of Fig. 1
show the development of the likelihood function as the
parameters are varied one at a time, showing a slightly
skewed distribution for D0 as it is restricted to be pos-
itive. This illustrates how Bayesian inference describes
the entire parameter space in terms of the associated
likelihood of the data. In addition, by examining the
likelihood as a function of the noise parameter we see
how the best model correctly is the one without noise.

For comparison, we also estimate the parameters in
this example via simple fitting, by removing all (physical)
noise terms, i.e. second derivative terms in the Fokker-
Planck equation (3) from which we then recover a deter-
ministic differential equation1:

dxdet
dt

= µ(x)f = D0f |xdet|α, (27)

where xdet(t) is uniquely determined by the initial con-
dition. Solving this equation then leads to an expres-
sion for xdet(t) which is fitted to the data in Fig. 1 via
the native fit function in Matlab, showing the best fit
in red dots. Note that only the product of D0 and f
appears in the deterministic expression (27), such that
neither may be fitted individually. As is evident from
Table I, this naive fitting procedure fails to estimate the
parameters correctly although the parameter space has
been decreased. This is not surprising, as the simple fit-
ting procedure considers the noise to be independently
and identically distributed. In reality, the positions are
highly correlated in the fluctuating time series considered
here. As the deterministic approach does not include any
knowledge about the fluctuations of the measured quan-
tities, regular χ2 testing cannot be employed as a model

1 As the noise term is coordinate dependent, the mean squared
displacement method of estimating noise cannot be employed.
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check. The ability to deal with probabilities for fluctuat-
ing data rather than just an averaged curve enables the
Bayesian approach to estimate the noise and hence the
mobility µ independently of the force2.

Taking the data from Fig. 1 and the correspond-
ing inference, we calculate the information for changed
timescales by considering only the data points x1+in for
integer i. We draw parameters to generate new tracks
via Eq. (16) with Mpull,clean. The generation of one hun-
dred tracks for each scaling and the associated measures
of information h(xn,θ

∗) are shown in Fig. 2 along with
the mean of the information for the model as given in
Eq. (20). The value of Zn(M) is estimated with prior
samples from the nested sampling run on the non-scaled
original data. Any error in this estimate will only cause
a shift in the collective information content estimates,
leaving all comparisons and p values unaffected.
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FIG. 2. The inferred mean information Hn for the data set
in Fig. 1 assuming the model Mpull,clean along with the in-
formation h∗ = h(x∗

n,θ
∗) for replicated tracks from the same

model and corresponding p values.

Evidently, the information measures for the replicated
tracks are distributed around the information of the orig-
inal data such that we conclude that the original data set
is within the “typical set” for the model with respect to
information content.

On the other hand, if only the model with no force
(Mfree) is used to perform the parameter inference and
replicated track generation, the picture in Fig. 3 appears.
When the force is set to zero, the replicated data for
the model deviate considerably from the original data in
terms of the information. Note that this is the case even
though the original analysis has located the best possible

2 The shortcomings for the fitting procedure may of course be
remedied by more sophisticated methods, such as a stepwise fit-
ting procedure with changing variance as the one employed in
[29], which, however, requires many more data points. Such tech-
niques take a step towards the Bayesian approach by analysing
the maximum likelihood parameters, while not exploring their
distribution.
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FIG. 3. Information measures as in Fig. 2 for the data set in
Fig. 1 assuming the model Mfree.

available parameters for the model. This warns us that a
critical aspect of the process has been overlooked, namely
the inclusion of the force.

Since the force parameter adds a drift to the system,
the lack of such a parameter might have been easily de-
tectable from visual inspection of the data alone. Con-
versely, a significant measurement noise might not be de-
tected by simple inspection. If this effect is neglected in
the analysis however, the comparison of the information
of the original data versus that of replicated data will
reveal the flaw in the model.

B. Noisy data

The generation of noisy data is simply done by gener-
ating clean data as above and then adding noise with the
appropriate variance afterwards. In Fig. 4 an artificial
data set contaminated with random noise is shown along-
side slices of the likelihood function around the inferred
maximum likelihood parameters.

By reusing the priors from the previous example to
compare the calculated evidences for the models with
and without measurement noise (Mfree,clean,Mfree,mn),
we find

ln Zfree,mn − ln Zfree,clean = 10.62± 0.14, (28)

such that Zfree,mn/Zfree,clean ∼ 4.1×104, firmly establish-
ing superiority of the noise model. The inferred parame-
ters for the model are shown in Table II.

Parameter Inferred value True value
D0 0.21± 0.22 0.2
α 0.94± 0.49 1.0
σ2
mn 2.49± 0.61 2.0

TABLE II. Inferred and true parameters for the data in Fig. 4



7

0 50 100

t

-5

0

5

10

15

20

x

(a)

-1 -0.5 0 0.5 1

f
P
(d
a
ta
|θ
) (d)

LikelihoodSimulated data

-2 -1 0 1 2

α

P
(d
a
ta
|θ
) (c)

0 0.2 0.4

D0

P
(d
a
ta
|θ
) (b)

0

σ
2
mn

P
(d
a
ta
|θ
) (e)

FIG. 4. (a) A clean sample track in solid blue along with
the same track with measurement noise pollution in orange
circles. (b) - (e) Likelihoods for variations of single parameters
around the maximum likelihood point for the best candidate
model (Mfree,mn). The true values are marked by the green
dashes. Note that the likelihood curves are one dimensional
slices of a four dimensional function.

The inferred diffusion coefficient has a large uncertainty
which is expected in the presence of large measurement
noise. At this level, however, the true value is still well
within the error. Note that the likelihood function for
D0 is shown at a specific (the maximum likelihood) point
for the remaining parameters, which is why it does not
correspond at a one-to-one basis to the estimate given
in Table II. We display the likelihood evolution under
variation of the force parameter in order to visualize the
likelihood landscape around this point, even though the
models with zero force yield higher evidences. As ex-
pected, the force is inferred to be close to zero. Evidently
the Bayesian method can detect and correctly estimate
measurement noise in this example.

As discussed at the end of Subsection III A, an im-
portant caveat is that the coordinate dependent mobility
conflicts with the assumptions for the noise inference. If
the noise is too large, then the mobility at the true po-
sition may be poorly estimated by the mobility at the
measured position, reducing reliability of the analysis.
On the contrary, if the measurement noise is too small to
influence the data significantly, the noise will likely not
be discovered in smaller data sets.

To demonstrate possible inaccuracies of the first kind,
we infect the data in Fig. 1 with a very large measurement
noise (σ2

mn = 40 in native units) and display the inference
results in Fig. 5. The large noise hinders the inference
of the diffusion constant, while still correctly enables the
model comparison (with Zpull,mn/Zpull,clean ∼ 1018) and
inference of the noise parameter.

From our experience, the largest inherent inaccuracy
we encounter is the statistics itself, i.e., the amount of
data points. In addition, if the coordinate does not
change by more than an order or magnitude, the expo-
nent α is hard to determine, and therefore all other pa-
rameters are inaccurately estimated. This error can be
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FIG. 5. (a) The data from Fig. 1(a) is reproduced in solid
blue while the orange circles represent data with a large added
measurement noise (σ2

mn = 40). (b) - (e) Likelihoods for vari-
ations of single parameters around the maximum likelihood
point for the best candidate model (Mpull,mn) are shown, dis-
playing inaccuracy caused by the large measurement noise.

amended, if the system is predicted to have a particular
value for α.

Once again, we compare the inferred information to
that of replicated tracks generated from parameters
drawn via Eq. (16) for the model with noise. The re-
sults are shown in Fig. 6. The large measurement error

-150 -100 -50 0 50 100 150

0

1

2

3

4

5

6

7

FIG. 6. Information measures as in Fig. 2 for the data set in
Fig. 5 assuming the model Mpull,mn.

effects dominate this data set, and the analysis deems the
data set to be typical for the model, providing a check of
whether critical aspects have been overlooked.

In contrast, carrying out the analysis without a mea-
surement error, the information comparison yields the
results shown in Fig. 7. In this case, where the mea-
surement error has been overlooked, the replicated data
yield different amounts of information than the actual
data. Note once again, that this is despite the fact that
the Bayesian inference has found the most likely values
for the parameters to use for the model. Even though
the measurement error in this case would neither pro-
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FIG. 7. Information measures as in Fig. 2 for the data set in
Fig. 5 assuming the model Mpull,clean.

duce a mean drift or a relatively substantial contribution
to the mean squared displacement at large times, it is re-
vealed by the information comparison and determined by
the Bayesian inference. Note also that the information
content model check for the unscaled data does not re-
veal that a substantial measurement error has been over-
looked. This exemplifies that the undersampling of data
can be crucial for the information content model check
as discussed further in Appendix B.

V. CONCLUSIONS

We have demonstrated that Bayesian inference offers
a straightforward method of analysis to systems where
forces and/or mobilities are coordinate dependent while
also taking into account the stochastic nature of the dy-
namics. This was found to be contrasted with a simple
analysis where deterministic equations of motion were fit-
ted to a trajectory yielding parameter values off the un-
derlying true values. While also being able to compare
the relative merit of several models, the Bayesian analy-
sis provides estimates of the parameters for each model
via their posterior probability distribution that are con-
sistent with the underlying true values.

One limitation of a strict Bayesian approach is that it
does not necessarily reveal serious shortcomings of the
candidate models, since it only supplies their relative
merits. Here, we found that a combination with a fre-
quentistic approach turns out to be useful. The infor-
mation content model check combined with undersam-
pling was shown to be able to detect such shortcomings
of models even in the case where the model was the best
“fit”. This includes “obvious” parameters such as an ex-
tra force as well as measurement error parameters which
are harder to discover by visual inspection. The test will
not capture all kinds of shortcomings though. Thus it
could be beneficial to supplement it with further model
checks. In particular ones that match key properties of
the specific system at hand.

We expect the Bayesian inference coupled with the
information content model check approach presented in
this article to have many applications within the field of
single particle tracking.
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Appendix A: Measurement noise inference

The conclusions of this section have been drawn in [19].
We rederive the results here in order to align the notation.
We assume that the actual coordinate xtruei is polluted
by noise ηi to produce the observed coordinates

xi = xtruei + ηi

= xtruei−1 + ∆xtruei + ηi

= xi−1 − ηi−1 + ∆xtruei + ηi. (A1)

where the ηi are independent and Gaussianly distributed
with zero mean and variance σ2

mn and ∆xtruei = xtruei −
xtruei−1 .

For the displacement ∆xtruei we assume that the aver-
age E(∆xtruei ) = ∆x̄ and variance Var(∆xtruei ) = σ2

d are
independent of the coordinates. Thus after the first step
their conditional covariances are

Cov(x1, x1|x0) = σ2
d + 2σ2

mn

Cov(x1, η1|x0) = σ2
mn (A2)

Cov(η1, η1|x0) = σ2
mn,

and

P

([
η1
x1

]
|x0
)
∼ N

([
0

x0 + ∆x̄

]
,

[
σ2
mn σ2

mn

σ2
mn σ2

d + 2σ2
mn

])
.

(A3)
where N(µ,Γ) represents a Gaussian distribution with
mean µ and covariance matrix Γ. Now assume that we
know x̃i and σ̃2

i such that

P

([
ηi
xi

]
|xi−1

)
∼ N

([
0
x̃i

]
,

[
σ2
mn σ2

mn

σ2
mn σ̃2

i

])
. (A4)

where xi−1 is a vector containing as elements
x0, x1, . . . , xi−1. To iterate we then need to find x̃i+1

and σ̃2
i+1. We can infer P (ηi|xi) via

P (ηi|xi) =
P (ηi, xi|xi−1)

P (xi|xi−1)
. (A5)

where

P (xi|xi−1) =
1√

2πσ̃2
i

exp

(
− 1

2σ̃2
i

(xi − x̃i)2
)
. (A6)
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Combining Eqs. (A4), (A5) and (A6), one obtains
the Gaussian probability density function P (ηi|xi), from
which we read off the conditional mean and variance for
ηi

E(ηi|xi) =
σ2
mn

σ̃2
i

(xi − x̃i) (A7)

Var(ηi|xi) = σ2
mn

(
1− σ2

mn

σ̃2
i

)
(A8)

to be used with Eq. (A1) to obtain

x̃j+1 = E(xj+1|xj) = xj + ∆x̄− σ2
mn

σ̃2
j

(xj − x̃j) , (A9)

σ̃2
j+1 = Var(xj+1|xj) = σ2

d + σ2
mn

(
2− σ2

mn

σ̃2
j

)
, (A10)

with the initial values given in Eq. (A3).

Appendix B: Information for scaled tracks

In this appendix we will demonstrate that diffusive
Gaussian models will pass the information content model
check if no scaling of steps is performed. To do this we
begin by looking at the logarithm of a Gaussian likeli-
hood

h(x∗,θ) = lnP (x∗|θ,M)− lnZ(M)

= −N
2

ln(2π)− 1

2
ln detΓ− lnZ(M)

− 1

2
(x∗ − µ)TΓ−1(x∗ − µ). (B1)

Here N is the size of the replicated observations x∗, Γ is
the model covariance, µ the mean and T denotes trans-
position. We would like to compare the typical h(x∗,θ)
with the corresponding values for the real observations
h(x,θ). We will do this by comparing their averages
over the random draws of x∗ and θ, i.e., comparing

H∗ =

∫
h(x∗,θ)P (x∗|θ,M)P (θ|x,M)dx∗dθ (B2)

with

H =

∫
h(x,θ)P (x∗|θ,M)P (θ|x,M)dx∗dθ

=

∫
h(x,θ)P (θ|x,M)dθ. (B3)

Since a difference between H∗ and H can only arise from
the last term in Eq. (B1) we will define

h̃(x∗,θ) = −1

2
(x∗ − µ)TΓ−1(x∗ − µ) (B4)

and compare the corresponding H̃∗ and H̃ defined simi-
larly to Eqs. (B2) and (B3).

H̃∗ is straightforwardly evaluated. If we average
h̃(x∗,θ) over x∗, indicating this average over the dis-
tribution P (x∗|θ,M) by 〈. . . 〉x∗ , we get

〈(x∗ − µ)TΓ−1(x∗ − µ)〉x∗ =

Tr
[
Γ−1〈(x∗ − µ)(x∗ − µ)T 〉x∗

]
= Tr

[
Γ−1Γ

]
= N,

(B5)

since µ and Γ is the mean and covariance of the compo-
nents of x∗. Thus we have that H̃∗ = −N/2.

To evaluate H̃ we need to specify some of the param-
eter dependence in the model. Here we will assume that
all the elements of the covariance matrix scale in the
same way with a single parameter, e.g., a diffusion con-
stant. Thus we can write Γ = λΓ1 where λ represents the
scaling with the parameter and Γ1 is independent of λ.
Furthermore, we will assume a Jeffreys prior for λ, i.e.,

that over a broad range of λ we have P (θ|M) = λ−1f(θ̂),

where f is some function of the remaining parameters θ̂.
The range over which this is true is assumed to be much
broader than the peak of the posterior for λ. With these
assumptions we have Γ−1 = λ−1Γ−11 and we can rewrite

H̃ conveniently as

H̃ =

∫
h̃(x,θ)

P (x|θ,M)P (θ|M)

Z(M)
dθ

= Z(M)−1
∫
λ−1f(θ̂)

[
(2π)NλN det Γ1

]−1/2
(B6)

× (−λ)
d

dλ
exp

[
− 1

2λ
(x− µ)TΓ−11 (x− µ)

]
dλdθ̂

Doing a partial integration, using the assumption of
broadness of the prior λ-range relative to the posterior
to discard the boundary terms, we get

H̃ = Z(M)−1
∫ (
−N

2

)
λ−1f(θ̂)

[
(2π)NλN det Γ1

]−1/2
(B7)

× exp

[
− 1

2λ
(x− µ)TΓ−11 (x− µ)

]
dλdθ̂

If we take the factor −N/2 out of the integral, then the
remaining integral becomes exactly the evidence Z(M).

Thus we have that H̃ = −N/2 just like for H̃∗.
We have thus found that on average the replicated ob-

servations x∗ will have the same information content as
the real observations for this class of Gaussian models.
We therefore extend the test by scaling the time steps,
i.e., omitting data points. To see why this can make a
diffusive Gaussian model fail, we can look at determin-
istic motion with constant velocity, i.e., steps given by
∆xi = v∆t, where v is the velocity and ∆t the duration
of the steps. If we apply the above test with Brownian
motion without drift as the model then we would get

h̃(x,θ) = −1

2

N∑
i=1

∆x2i
2D∆t

= −1

2
N
v2∆t

2D
(B8)
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where D is the diffusion constant of the Brownian dif-
fusion model. As the derivation above shows, then the
Bayesian analysis will provide a posterior for D that is
peaked around D = v2∆t/2, such that h̃(x,θ) has typi-
cal values around −N/2. However, if one now only keeps
every n’th data point, then one will have a step dura-
tion of ∆t′ = n∆t with a total of N ′ = N/n steps. This

will give values of h̃(xn,θ) for the remaining data points
xn that are unchanged in this case, since N ′∆t′ = N∆t.

But the values of h̃(x∗n,θ) will on average be reduced

by n since H̃∗n = −N ′/2 for the reduced replicated data
sets x∗n (this follows from a calculation similar to Eq.
(B5)). Thus the predicted scaling of the step deviation
does not match the scaling inherent in the observations,
and therefore Brownian motion without drift will fail the
model check when the scaling of the data is included in
the check.
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