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This study contributes to the understanding of very low-energy fetch-limited environments by reporting the
evolution of a back-barrier beach (Ancão Peninsula, southern Portugal). It considers two timescales: a large-
scale evolution for the past 60 years based on aerial photograph analysis, and a small-scale beach evolution
based on monthly topographic surveys performed during three years of monitoring. Each timescale revealed
a different rate of evolution, the first reporting a modified beach response-type (from human activities), and
the second reporting a natural beach response-type. Human activities caused significant changes in the back-
barrier shore, whereas changes under natural forcing were much smaller, were less influential on the area's
evolution, and were not sufficient to counteract or mask the consequences of human activities. The findings
of the study should contribute to a better understanding about the large- and small- scale changes in other
back-barriers characterised by similar very low-energy conditions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Low-energy estuarine beaches are geographically more extensive
than oceanic beaches (Vila-Concejo et al., 2010); however, they
have received less scientific attention which has resulted in a poorer
understanding of their evolution and morphodynamics. Research
efforts on fetch-limited beaches have been focussed not only on iden-
tifying the main forcing factors and their relative importance in sedi-
ment transport, but also on predicting the beach morphological
response over time (Jackson, 1995; Nordstrom et al., 1996; Eliot et
al., 2006; Carrasco et al., 2011). Predicting morphological changes in
fetch-limited environments, or in other coastal systems, is a non-
trivial task due to the complexity of the underlying physical processes
involved and because of the sensitivity of system behaviour to natural
variability (Karunarathna et al., 2009). Furthermore, there are limits
to the predictability of morphological variables, which are related to
the issue of scale (Larson and Krauss, 1995; Larson et al., 2002). This
requires a better description of the changes occurring over each tem-
poral scale and a better specification for the cross-over between the
various scales. The main objective of this work is to quantify the
large-scale behaviour (from years to decades) of a low-energy
beach and to determine how such behaviour relates to small-scale
evolution (months to a few years). Also, local and regional spatial
frames are integrated to understand how they interact to explain
the evolution of the back-barrier environment.
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At the beginning of this study, three research questions were
raised: (a) Does a fetch-limited shore segment approach a quasi-
equilibrium state over years? (b) Does the beach respond to a season-
al hydrodynamic cycle? and (c) What are the main physical processes
responsible for change at different timescales? By answering these
questions, we intend to provide a basis for the discussion of controls
involved in inter-site variability in net budget trends and to contrib-
ute to the overall understanding of back-barrier coastal stretches.

2. Field site

The field site is located at Ancão Peninsula back-barrier (Fig. 1),
within the Ria Formosa lagoon (southern Portugal). This lagoon is
protected by a multi-inlet barrier island system that extends over
56 km in length and includes one peninsula, six islands and seven
tidal inlets (Fig. 1a). Tides in the area are semi-diurnal; average
ranges are 2.8 m for spring tides and 1.3 m for neap tides. The average
offshore significant wave height is 0.92 m (Costa et al., 2001). The
field site is sheltered from oceanic waves, and is therefore exposed
to a different wave and current regime from other coastal stretches
in the region. With the exception of wave regimes generated by ex-
ceptionally strong winds, predominant waves are small, of the order
of few centimetres in height (Carrasco et al., 2009). The back-barrier
beach is bounded by Ancão channel (Fig. 1b), which connects to
Ancão Inlet, located about 2250 m to the SE. Ancão Inlet is a small
inlet with a cyclic eastward migration pattern (Dias, 1988; Pilkey
et al., 1989; Vila-Concejo et al., 2002), exhibiting an ebb-dominated
behaviour (Andrade, 1990; Salles, 2001; Pacheco et al., 2010). The
field site extends along the shore over ~100 m and includes a low
and narrow sandy beach (Fig. 1b). The beach profile is presently
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Fig. 1. (a) Field site location, showing Ancão Peninsula back-barrier; and (b) a vertical aerial photograph (taken in 2007) showing themain beachmorphologies, profile a and profile j.
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composed of four different morphologies: backshore; beach face;
tidal flat; and a detached sand bank. The intermediate-steep beach
face (~39 m wide) presents a very narrow swash zone during high
tide. In contact with the beach face, a tidal flat with a gentle slope is
present (~44 m wide), ending in a small sand bank (~30 m wide)
parallel to Ancão tidal channel. Both the tidal flat and the sand bank
show no bedforms and are cut-off by a small oblique secondary
tidal channel.

Human occupation at the field site dates from the 1940s. Currently,
the site hosts a small number of dwellings (for local fishermen) in the
backshore area and an alongshore elevated footpath (Fig. 1b). Besides
human occupation, other human activities included dredging opera-
tions and the relocation of the inlet during the 1990s. The Ria Formosa
system has undergone an extensive environmental rehabilitation pro-
gramme to recover the natural dynamic equilibriumwhile decreasing
natural hazards (Ramos and Dias, 2000; Dias et al., 2003). This pro-
gramme included soft engineering techniques such as tidal channel
dredging, beach and dune nourishment, and the relocation of two in-
lets, including Ancão Inlet. Sand renourishment operations close to
Ancão Peninsula occurred in 1990, and between 1999 and 2000. In
1990, about 300,000 m3 were dredged from Ancão tidal channel
and deposited along Ancão Peninsula. Ancão Inlet was relocated in
1997 to a more westerly position, improving its hydrodynamic effi-
ciency and reducing navigational difficulties (see inlet positions
through time in Vila-Concejo et al., 2006). This relocation effectively
brought the inlet closer to the study area, from the former position
of 5600 m (1996) to 1740 m (2001). Between 1999 and 2000, about
570,000 m3 were dredged from the entire Ancão tidal channel and
placed in the vicinity of the oceanic beach of Ancão Peninsula
(Ramos and Dias, 2000). Dredging operations were responsible for
the Ancão tidal channel deepening and channel axis shift.

3. Methods

3.1. Large-scale data collection

Shoreline evolution over the last 60 years was calculated by analys-
ing a time-series of georeferenced aerial photographs (1947, 1976,
1989, 1996, 2001, 2005, and 2007). For the overall back-barrier shore-
line analysis, Ancão back-barrier was sub-divided into two sectors,
with the field site being located in sector 1. Digital Shoreline Analysis
System from the USGS (DSAS; Thieler et al., 2005) was applied to infer
shoreline displacements (for details see Thieler and Danforth, 1994;
Thieler et al., 2005). Shoreline change was determined based on the
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endpoint rate (EPR), according to Dolan et al. (1991). In the present
study the uncertainty in data and methods used for long-term data col-
lection is related to the accuracy of photographic interpretation of the
shoreline. Errors associated with long-term rate-of-change statistics in-
clude the inherent aerial photo georeferencing error, which is more sig-
nificant in areas where changes in shoreline positions are small, as
occurs in the case of this study. The RMS error associated with aerial
photo georeferencing is reported in Table 1. The statistical uncertainty
for the long-term evolution rate at each transect was reported at the
99% confidence interval. The determined mean least square estimate
(LSE), which includes the above errors using the EPR method, was
5 m for the overall Ancão Peninsula and 2 m for the field site. The
obtained results represent best estimates and can be used to assess gen-
eral tendencies.

The long-term evolution of the beach profile was assessed by the
comparison of recent profiles (2008) with topographic data mea-
sured around 1944–1945 (source, Instituto Portuário Transportes
Marítimos).

3.2. Small-scale data collection

The small-scale analysis reports the main beach volumetric ten-
dencies with respect to wind (wave driver) conditions. Wind data,
and topographic data were collected from April 2005 to March
2008. Prevailing wind directions and maximum and mean wind
speeds were accessed every 30 min from Faro airport, 2 km north of
the study area with no obstacles in between (Fig. 1; Weather
Underground, 2008). Ten cross-shore profiles (from a, in the east, to
j, in the west, see Fig. 1) with 10 m spacing were measured during
each survey. Volumes were determined for the main morphologies,
in relation to mean sea level (MSL). Errors associated with topograph-
ic maps and with volume computations resulted from equipment
error (maximum vertical error of ±0.003 m, quoted by the manufac-
turer), fieldwork operational errors (mean horizontal error of 0.01±
0.07 m, and mean vertical error of 0.00±0.002 m, based on test sur-
veys) and surface interpolation method errors (maximum difference
between interpolations with different methods of 0.39%).

4. Results

4.1. Large-scale evolution and morphological changes

The mean shoreline-change rate for the overall Ancão Peninsula
back-barrier between 1947 and 2007 was 0.1 m yr−1. Sector 1 (con-
taining the field site) presented a mean and a maximum back-
barrier shoreline-change rate of 0.05 and 0.69 m yr−1, respectively
(Fig. 2a). Sector 2, in the eastern part of Ancão Peninsula, presented
the most dynamic evolution, with a mean and a maximum back-
barrier shoreline-change rate of 0.22 and 4.04 m yr−1, respectively
(Fig. 2a). Back-barrier shoreline-change rates at the field site were
relatively small, of about 0.09 m yr−1 between 1947 and 2007, and
direct towards the mainland (dune field advance towards Ancão
tidal channel; Fig. 2b). Maximum accretion values were recorded
Table 1
Total RMS error associated with georefer-
enced aerial photographs (in metres).

Date RMS

1947 3.11
1976 1.73
1989 1.46
1996 1.13
2001 0.49
2005⁎ -
2007 1.39

⁎ Orthophoto.
between 2001 and 2005 (1.22 m yr−1, Table 2). The beach, the near-
shore, and Ancão tidal channel evolved in separate ways, on which
basis five main periods of evolution were distinguished (aerial
photos, Fig. 3; Table 2): (a) between 1947 and 1976, with no major
shoreline changes; (b) between 1976 and 1989, and (c) between
1989 and 2001, both characterised by important changes occurring
in the nearshore and at Ancão tidal channel; (d) between 2001 and
2005, characterised by changes occurring in the beach and nearshore;
and (e) between 2005 and 2007, characterised by beach and near-
shore stability (see evolution and morphological description in
Table 2).

The morphological changes since 1947, as described, are also visi-
ble in profile view (Fig. 3, bottom right diagram). Around 1944–1945,
in the absence of nearshore morphologies (tidal flat and sand bank),
the beach face dipped directly into the Ancão tidal channel. The
sandy beach was very narrow when compared with the 2008 topog-
raphy. Over the ensuing decades since 1944–1945, substantial sedi-
ment accumulation occurred in the nearshore, which led to the
development of both the tidal flat and sand bank, and subsequent
shoreline displacement towards the tidal channel. The Ancão tidal
channel migrated towards the mainland (i.e., to the northeast).

4.2. Small-scale evolution, wind, grain-size, and volumetric changes

Between 2005 and 2008, W–NW winds prevailed with a mean di-
rection of 210° during summer and 181° during winter (with higher
percentage of NE winds), and with a few episodes of easterly winds
(mostly at the end of 2007 and beginning of 2008). Maximummonth-
ly intensities occurred associated with S–SE winds. Wind velocity was
generally low to moderate with a mean wind velocity of ~4 m s−1.
Maximum wind velocity in 2005 was 15 m s−1 (from the SW), in
2006 was 14 m s−1 (from the SW to the W), in 2007 was 17 m s−1

(from the SW), and in 2008 was 15 m s−1 (from the SE).
Beach volume variations were small, with a maximum variation be-

tween surveys of 47 m3 (Fig. 4). Slope gradients did not change over the
study period. Maximum volumetric variation for the backshore and
beach face between 2005 and 2008 was +0.18 m3 m−1 and
+4.88 m3 m−1, respectively, whereas maximum volumetric variation
on the tidal flat and the sand bank between 2005 and 2008 was
+4.50 m3 m−1 and −3.45 m3 m−1, respectively (Fig. 4). The back-
shore has a minimal variation, while the beach face shows considerable
variation, indicating no similarity in trendbetween them(Fig. 4a and b).
The nearshore evolved as an independent sub-system, with analogous
volumetric variations within it, indicating the absence of cross-shore
transport between the tidal flat and the sand bank (Fig. 4c and d).
There was no marked seasonality in beach evolution (Fig. 4e), nor any
significant correlation between volume and prevailingwind conditions.
The results reveal that the influence of wind (and wind-driven waves)
on the beach was almost non-existent.

5. Discussion and conclusions

5.1. Linking timescales

The studied back-barrier beach is itself a channelmargin, and conse-
quently vulnerable to changes in the respective tidal channel and sur-
rounding areas. Two timescales were articulated to provide a broad
overview of changes over the past 60 years. Each timescale described
a different rate of evolution, the first (large-scale) reporting a modified
beach response-type, and the second (small-scale) reporting a natural
beach response-type. Differences between them are described later. Be-
sides operating at different time-steps, the timescales are complemen-
tary since information can be transferred from one to the other.

At the large-scale the beach recorded advance towards Ancão tidal
channel, partly from natural beach accretion but mostly human im-
posed (Section 4.1). Two major periods of change occurred: between



Fig. 2. (a) Ancão back-barrier shoreline evolution between 1947 and 2007; and (b) shoreline displacements between 1947 and 2007 at the study area (aerial photo from 2007).
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1947 and 1996 (before human interventions) with minor changes ob-
served for the beach profile, and after 1996 (prior to human interven-
tions) with deep changes observed for the beach profile (nearshore
development) and surrounding tidal channel. Human activities leading
to change comprised dredging and inlet relocation. Before human inter-
ventions the natural back-barrier beach was originally composed of
backshore, beach face, and various sand spits forming the tidal flat
(between 1947 and 1996, Fig. 3). The back-barrier, as a channel margin,
was relatively stable, but Ancão tidal channel was suffering an intense
infilling, like in other parts of the lagoon (Carrasco et al., 2008). The
area was affected by a few sand spits and small tidal channels (photo
1989, Fig. 3), probably relics of a former position of the Ancão Inlet
flood delta (as observed in other case studies by Godfrey and Godfrey,
1974; Kraft et al., 1979).

Dredging took place far from the back-barrier shoreline, and the
Ancão channel axis was transposed towards the mainland (with
profound profile changes between ~1944–1945 and 2005, Fig. 3).
Channel axis transposition promoted morphological changes at the
nearshore, namely sand bank development (Table 2). After 1996,
both beach face and nearshore evolved at different rates. The newly
detached sand bank operated as a natural protection to the beach,
resulting in nearshore displacement towards Ancão tidal channel
(between 2001 and 2005, Table 2). Since its artificial construction
between 1996 and 2001, the sand bank has evolved by adjusting its
shape to the time-varying forcing mechanisms (Fig. 3). Besides
dredging, with Ancão Inlet relocation in 1997, current velocities at
the field site increased in intensity as a result of the decreasing dis-
tance to the inlet.

The small-scale analysis is critical for understanding the period
between 2005 and 2007, and illustrates a natural beach response-
type (without human interventions). Rates of evolution between
2005 and 2008 (Section 4.2) should be in agreement with the

image of Fig.�2


Table 2
Shoreline displacements between 1947 and 2007 (positive values indicate displacement towards the Ancão tidal channel), back-barrier morphologies and related changes.

Period Mean displacement
(m yr−1)

Back-barrier morphologies Major morphological changes

1947–1976 0.05 backshore, beach face • Beach face and nearshore stability
The beach profile was short and the foreshore contacted directly with Ancão tidal channel. Human
occupation was limited to small and traditional settlements associated with the fishing industry.

1976–1989 −0.05 backshore, beach face,
tidal flat

• sand spit development
• channel infilling
The beach was narrow, and the beach face was the major compartment, with no evidence of a
prominent nearshore. A few sand spits were observed at Ancão tidal channel. These spits had
limited width and were split by several tidal channels (see photo 1989, Fig. 3). The channels in
between the sand spits merged to form the tidal flat.

1989–1996 0.08 backshore, beach face,
tidal flat

• sand spit development
• dredging
After 1989, there was a reduction in human occupation in the dune field. Sand was dredged from
Ancão tidal channel (1990), and was used to replenish the ocean shore.

1996–2001 −0.22 backshore, beach face,
tidal flat, sand bank

• dredging
• sand bank development
• tidal channel axis migration with changes in the channel margins
Sand spits were again modified by dredge operations in Ancão tidal channel during the late 1990s
(Section 2; see dredge channel in photo 1996, Fig. 3). Simultaneously, the back-barrier beach became
wider and another detached compartment (the sand bank) started to form close to Ancão tidal channel
(after 1996, Fig. 3). The sand bank was an impact of dredging. Besides changes in the density of human
occupation, between 1996 and 2001 an elevated footpath was also constructed across the dune field.

2001–2005 1.22 backshore, beach face,
tidal flat, sand bank

• sand bank evolving
• changes in tidal channel margins
By 2001, the back-barrier profile was exhibiting the four well-developed compartments/morphologies:
backshore, beach face, tidal flat, and sand bank. High shoreline displacements occurred
(towards the tidal channel) as a consequence of the incorporation of the sand bank into the beach.

2005–2007 0.15 backshore, beach face,
tidal flat, sand bank

• nearshore stability
There were no major shoreline displacements or morphological changes. In 2005, both the sand
bank and secondary tidal channel were established as important features for the evolution of the
upper beach profile.
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morphological changes observed in aerial photographs between 2005
and 2007 (Section 4.1). Over a monthly timescale beach evolution
was small and continuous (Fig. 4), similar to the very sheltered meso-
tidal beaches described in Short (2006); (tide-dominated beach and
N

Fig. 3. Field site evolution between 1947 and 2007; beach profile evolution between 1944–1
f located at a middle position; sb corresponds to the sand bank.
tidal flat, Section 4.2). Beach face and nearshore were independent
sub-systems operating in different ways. The only relationship be-
tween them is that the nearshore offers protection to wind-induced
waves that impact on the beach. There was no demarcation of
945 and 2008. The dotted box in aerial photographs represents the field site with profile

image of Fig.�3


Fig. 4. Volumetric variations at (a) backshore; (b) beach face; (c) tidal flat; (d) sand bank; and (e) overall area.
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seasonal beach behaviour (Fig. 4e), in contrast to the behaviour
described for other low-energy beaches (e.g., Nordstrom, 1980;
Travers, 2007), and the beach underwent less conspicuous changes
in response to relatively energetic (wind- and wave-driven) events
than is the case for high-energy fetch-limited beaches. Contrary to
most oceanic beaches (e.g., Wright and Short, 1984; Dubois, 1988),
the studied back-barrier showed a reluctance for cyclic changes
(Fig. 4); the small monthly shift between erosion and accretion
around the mean volume suggests a slow response to forcing (rate
of reaction; Fig. 4e). Volumetric changes were small because of the
low to moderate prevailing wind intensities, and consequently
because of the low breaking wave energy.

5.2. Beach inheritance

Human activities left a strong imprint and consequent inheritance
in the system, instilling morphological changes that were neither
erased nor counteracted by the cumulative back-barrier evolution
trends (Section 4.1; Table 2). It was demonstrated that a back-
barrier coastal stretch can remain relatively unchanged for a long pe-
riod due to low-energy conditions, revealing a beach lagging behind
prevailing conditions, and a small chance of reaching a full morpho-
logical response before the same conditions change; the outcome is
that it appears to change little over time (e.g., Fig. 4e). The capacity
of the beach to exhibit major morphological changes is small and
the response time is not necessarily immediate. Therefore, the
momentary beach state on the back-barrier beach is not a contempo-
rary response to prevailing hydrodynamics but reveals the system
memory and evolution associated with continuously acting processes
(Section 4.2). In the absence of human interventions, the field site
would experience much smaller shoreline advance rates than those
observed after such activities, and the natural beach profile would
look very similar to the one observed in ~1944–1945 (with a natural
propensity to channel infilling; Fig. 3).

Although back-barrier resources may not be immediately appeal-
ing, they have value because of their uniqueness, and because they
are sometimes close to human populations, as is the case of Ancão
back-barrier. The low perceived value of back-barrier beaches often
results in loss of beach habitats as the shoreline is modified to accom-
modate human uses or shore protection methods (Nordstrom, 1992).
The findings of this study provide reasonable approximations for the
beach changes involving both natural and human dynamics (e.g.,
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volumetric variability or shoreline displacement rates) and indicate
the slow adjustment magnitude of these very low-energy systems.
Therefore, any human action (even “working with nature” ap-
proaches such as dredging, dune fencing or nourishment) should be
regarded as having a “permanent” (decades) imprint, disruptive of
the past conditions and generating new conditions that will take
long time to be changed.
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