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ABSTRACT 
 

AIDS Dementia Complex (ADC) is a neurodegenerative disorder implicated in HIV-1 

infection that is associated with elevated levels of the neurotoxin, quinolinic acid 

(QA) which causes a cascade of events to occur, leading to the production of reactive 

oxygen species (ROS), these being ultimately responsible for oxidative neurotoxicity. 

In clinical studies, Non-nucleoside reverse transcriptase inhibitors (NNRTIs), 

efavirenz (EFV) and nevirapine (NVP) have been shown to potentially delay the 

progressive degeneration of neurons, thus reducing the frequency and neurological 

deficits associated with ADC. Despite these neuroprotective implications, there is still 

no biochemical data to demonstrate the mechanisms through which these agents offer 

neuroprotection. The present study aims to elucidate and further characterize the 

possible antioxidant and neuroprotective mechanisms of NVP and EFV in vitro and in 

vivo, using QA-induced neurotoxicity as a model. 

 

Research has demonstrated that antioxidants and metal chelators have the ability to 

offer neuroprotection against free radical induced injury and may be beneficial in the 

prevention or treatment of neurodegeneration. Hence the antioxidant and metal 

binding properties of these agents were investigated respectively.  Inorganic studies, 

including the 1, 1-diphenyl-2 picrylhydrazyl (DPPH) assay, show that these agents 

readily scavenge free radicals in vitro, thus postulating the antioxidant property of 

these agents. The enhancement of superoxide radical generation and iron mediated 

Fenton reaction by QA is related to lipid peroxidation in biological systems, the extent 

of which was assayed using the nitroblue tetrazolium and thiobarbituric acid method 

respectively. Both agents significantly curtail QA-induced lipid peroxidation and 

potentially scavenge superoxide anions generated by cyanide in vitro. Furthermore, in 

vivo results demonstrate the ability of NVP and EFV to protect hippocampal neurons 

against lipid peroxidation induced by QA and superoxide radicals generated as a 

consequence thereof.  

 

The alleviation of QA-induced oxidative stress in vitro possibly occurs through the 

binding of iron (II) and / or iron (III), and this argument is further strengthened by the 

ability of EFV and not NVP to reduce iron (II)-induced lipid peroxidation in vitro 
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directly. In addition the ferrozine and electrochemistry assay were used to measure 

the extent of iron (II) Fe2+ and iron (III) Fe3+ chelation activity. Both assays 

demonstrate that these agents bind iron (II) and iron (III), and prevent redox recycling 

of iron and subsequent complexation of Fe2+ with QA which enhances neuronal 

damage.   

 

Both NNRTIs inhibit the endogenous biosynthesis of QA by inhibiting liver 

tryptophan 2, 3-dioxygenase activity in vivo and subsequently increasing hippocampal 

serotonin levels. Furthermore, these agents reduce the turnover of hippocampal 

serotonin to 5-hydroxyindole acetic acid. NVP and not EFV increase 5-hydroxyindole 

acetic acid and norepinephrine levels in the hippocampus. The results of the pineal 

indole metabolism study show that NVP increases the synthesis of melatonin, but 

decreases N-acetylserotonin, 5-hydroxyindole acetic acid and 5-hydroxytryptophol 

levels. Furthermore, it shows that EFV decreases 5-hydroxyindole acetic acid and 

melatonin synthesis. Behavioural studies using a Morris water maze show that the 

post-treatment of rats with NVP and EFV significantly improves QA-induced spatial 

memory deficits in the hippocampus.  

 

This study therefore provides novel information regarding the neuroprotective 

mechanisms of NVP and EFV. These findings strengthen the argument that these 

NNRTIs not only have antiviral effects but possess potential neuroprotective 

properties, which may contribute to the effectiveness of these drugs in the treatment 

of ADC.  
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CHAPTER 1 

 

LITERATURE REVIEW 

 

 
1.1. AIDS DEMENTIA COMPLEX (ADC) 

 

1.1.1. Background and Epidemiology 

 

Human Immunodeficiency virus type-1 (HIV-1) continues to spread globally. Currently, 

40 million people worldwide are estimated to be infected, of which 37 million are adults 

and 3 million are children. More than 3 million die every year because of various 

complications associated with the illness and its progression to acquired immune 

deficiency syndrome (AIDS) (Kumar et al., 2007). HIV infection of the central nervous 

system (CNS) leads to severe neurological complications in about 25 % of adults and half 

of children with AIDS (Navia et al., 1986; Price et al., 1988). 

 

The mechanisms involved in the pathogenic consequences involve, neurological 

disorders, neuropsychological dysfunctions, motor disturbances, behavioural changes and 

neurobehavioural disorders including HIV-Associated dementia (HAD), which 

progresses to AIDS dementia complex (ADC) (Navia et al., 1986; Price et al., 1988; 

Kumar et al., 2007). As many as 25-50 % of adult patients and children with AIDS suffer 

from neurological manifestations, including impaired psychomotor functions and 

memory which progresses to clinical disorders associated with cognitive motor disorder 

and dementia, which independently predict shortened survival (Navia et al., 1986; Price 

et al., 1988; Lipton, 1994; McGuire and Marder, 2000).  

 

ADC, the syndrome of cognitive and motor dysfunction observed after HIV-1 infection is 

the most common cause of neurological dysfunction (Elder and Sever, 1988). The 
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delivery of the virus in the brain through infected macrophages, allows for long term 

persistence of HIV-1 in the CNS and its preferred localization in the subcortical and 

striatal circuitaries (Ho et al., 1985; Wiley et al., 1986).  

 

1.1.2.   Pathology and pathogenesis of ADC 

HIV infection in the brain is characterized by widespread reactive astrocytosis, myelin 

pallor, and infiltration predominantly by monocytoid cells, including blood-derived 

macrophages, resident microglia and multinucleated giant cells. However, numbers of 

HIV-infected cells, multinucleated giant cells or viral antigen in CNS tissue do not 

correlate well with measures of cognitive function (Glass et al., 1995; Masliah et al., 

1997; Kaul et al., 2001). The pathological features closely associated with the clinical 

signs of ADC include increased numbers of microglia (Glass et al., 1995), evidence of 

excitotoxins (Heyes et al., 1991; Giulian et al., 1996), decreased synaptic and dendritic 

density (Masliah et al., 1997; Everall et al., 1999) and selective neuronal loss (Masliah et 

al., 1992; Fox et al., 1997). 

1.1.2.1.  Viral Proteins 

 

Extracellular protein shed from virions and infected cells, particularly the envelope 

glycoprotein, gp120 has profound effects on neuronal and astrocytic cell function with 

resultant neurotoxicity around infected macrophages producing viral antigens 

(Brenneman et al., 1988; Pulliam et al., 1993; Dawson and Dawson, 1994; Toggas et al., 

1994). gp120 exerts potent toxic effects on hippocampal neurons, which also become 

depleted in the brains of ADC patients (Masliah et al., 1992). The neurotoxicity operates 

in a nitric oxide (NO) dependent manner that requires calcium (Ca2+) and glutamate, the 

primary excitatory amino acid in the brain (Dawson and Dawson, 1994). This occurs 

through activation of voltage sensitive Ca2+ channels and glutamate sensitive N-methyl-

D-aspartate (NMDA) channels leading to unregulated Ca2+ influx and neuronal 

dysfunction via an excitotoxic mechanism (Dawson and Dawson, 1994; Lipton, 1994). In 

addition, cell damaging superoxide anions (O2
●¯) also induced by gp120, play a role in 

mediating neurotoxicity (Dawson and Dawson, 1994).  
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Figure 1.1:  Current model of HIV-related neuronal damage involving cell-cell 

signalling (Kaul et al., 2001). 

 

1.1.2.2.  HIV-1 infected and activated macrophages 

 

HIV-1-infected macrophages migrate into the brain and constitute the principal route of 

viral entry into the CNS (Gartner, 2000). Immune-stimulated macrophages/microglia 

directly damage neurons by releasing excitotoxic substances including eicosanoids, 

platelet activating factor (PAF), NO and QA (Achim et al., 1993; Nottet and Gendelman, 

1995; Lipton et al., 1994), which engenders excessive Ca2+ influx and free radical (NO 

and O2
●¯ ) formation through excessive activation of NMDA receptors. In addition, 

indirect neurotoxicity is mediated by macrophage- and microglial-derived inflammatory 

cytokines, such as interleukin (IL) and tumour necrosis factor-alpha (TNF-α), free 

radicals and viral proteins (Dreyer et al., 1990; Giulian et al., 1993; Lipton and 

Gendelman, 1995).  
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The levels of these potential neurotoxins are elevated in the cerebrospinal fluid (CSF) or 

brain tissue of patients with the neurologic disorder (Achim et al., 1993; Griffin et al., 

1994; Sei et al., 1995). Of the cytokines, TNF-α mediates neurotoxicity by activation of 

neuronal α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) subtype of 

glutamate receptor channels (Gelbard et al., 1993). Furthermore as shown in Figure 1.1., 

cytokines inhibit astrocytic glutamate reuptake, compounding the processes leading to 

Ca2+ influx and neuronal damage via voltage dependent Ca2+ channels and NMDA 

operated receptor channels (Fine et al., 1996). 

 

 

1.2.   NEURODEGENERATION 

 

1.2.1.    Mechanisms of neurodegeneration 

   

1.2.1.1.  Introduction 

 

Neuronal cell death can be initiated by three inter-related mechanisms, namely free 

radicals and oxidative stress, excitotoxicity and mitochondrial dysfunction (Alexi et al., 

1998; Beal, 2000), resulting in neurodegenerative disorders, which are morphologically 

characterised by progressive cell loss in specific neuronal populations (Jellinger, 2001). 

Two types of cell death have been discussed in neurodegeneration: necrosis and 

apoptosis. Necrosis is a passive pathological process, arising from spontaneous insults 

such as trauma and stroke and ultimately leads to an inflammatory response (Ankarcrona 

et al., 1995; Clarke, 1999; Levin et al., 1999).  

 

Whilst apoptosis, involves gene-directed programmed cell death which is triggered by 

oxidative stress, toxins and viruses (Wyllie et al., 1980; Majno and Joris, 1995; Reed, 

2000 and Yuan and Yankner, 2000). 

 

1.2.1.2.  Free radicals and Oxidative stress 
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The interest in the role of oxygen-free radicals generally known as reactive oxygen 

species (ROS) in experimental and clinical medicine has grown in the last two decades 

(Halliwell and Gutteridge, 1999). Free radicals can be defined as molecules or molecular 

fragments containing one or more unpaired electrons in atomic or molecular orbitals. 

These unpaired electrons confer a considerable degree of reactivity to the free radical 

(Halliwell and Gutteridge, 1999; Valko et al., 2004). In most circumstances, ROS are 

products of metal-catalyzed reactions, macrophage inflammatory response and 

mitochondria-catalyzed electron transport reactions (Cadenas, 1989). However, in 

biological systems levels of these radicals are controlled through deactivation of 

antioxidant defense systems (Alexi et al., 2000). Mediation of damage to cell structures 

including lipid membranes, proteins and nucleic acids by ROS results in oxidative stress 

due to an imbalance between free radical production and antioxidant defense mechanisms 

(Poli et al., 2004; Valko et al., 2004). Radical-related damage to DNA, proteins and 

lipids has been proposed to play a key role in the development of cancer (Johnson, 2004), 

arteriosclerosis (Witztum, 1994) and neurodegenerative disorders such as Parkinson’s 

Disease (PD) (Alexi et al., 2000; Koutsilieri et al., 2002), Alzheimer’s Disease (AD) (De 

la Monte et al., 2000; Ansari et al., 2006;), Herpes Simplex Encephalitis (HSE) (Valyi-

Nagy and Dermody, 2005) as well as ADC (Lipton and Rosenberg, 1994; Mollace et al., 

2001). 

 

1.2.1.2.1.   Superoxide Radical 

 

The O2
●¯ is generated through the reduction of molecular O2 by the mitochondrial 

respiratory chain (Boveris and Cadenas, 1975), where electrons passing through the 

electron transport chain (ETC), directly “leak” from complexes I and III onto O2, the 

ultimate electron acceptor (Halliwell and Gutteridge, 1990; Turrens, 1997). Intracellular 

accumulation of O2
●¯ plays a key role in oxidative chain reactions through excitotoxicity 

and disturbed Ca2+ homeostasis, yielding highly toxic oxidants such as hydroxyl radicals 

(HO●) from H2O2 by making ferrous ion (Fe2+) available for the Fenton reaction (Stohs 

and Bagchi, 1995; Liochev and Fridovich, 2001). Accumulations of such toxic free 

radicals, increases the susceptibility of brain tissues to oxidative damage leading to either 

direct injury via membranous lipid peroxidation, protein and DNA oxidation or indirect 
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damage via inflammation and apoptosis (Traystman et al., 1991; Kuroda and SiesjÖ, 

1997; Chan, 2001). 

  

1.2.1.2.2.   Hydroxyl Radical 

 

The HO● is highly reactive and is known to react close to its site of formation in vivo 

(Valko et al., 2006). As mentioned above, the majority of HO● generated come from 

metal-catalyzed breakdown of H2O2. According to the Fenton reaction, O2
●¯ participates 

in the Haber-Weiss reaction to form the reactive HO● (Liochev and Fridovich, 2002). The 

formation of this radical can be accounted for when the Haber-Weiss reaction is catalyzed 

by traces of transition metal ions, such as Fe2+ and ferric ion (Fe3+) in the Fenton reaction 

(Halliwell and Gutteridge, 1986; Liochev and Fridovich, 2002), as shown in equations 

1.1, 1.2, 1.3. 

 

 

Fe3+  +      O2
●¯                         Fe2+ + O2                            equation 1.1. Fenton  

                                                                                                                             Reaction 

Fe2+  +    H2O2                           HO● +   OH¯ + Fe3+            equation 1.2.     
 

                                                                                                                  

O2
●¯   +   H2O2

    metal catalyst       O2  +  HO● +  OH¯         equation 1.3.   Haber-Weiss                               

                                                                                                                          Reaction 

 

 

 

 

 

 

 

1.2.1.2.3.   Peroxyl Radical (ROO●) 

 



Literature Review 

 7

The peroxyl radical is typical of additional radicals that are derived from O2 and can be 

formed in living systems. The simplest ROO● is the dioxyl (hydroperoxyl) radical HOO●, 

the conjugate acid of O2
●¯. HOO● formation is as a result of the reaction between O2

●¯ 

with any substrate containing acidic protons (Collins et al., 2001). Perhaps the most 

interesting feature of HOO● is the diversity of those biological reactions in which they 

participate, including DNA cleavage, protein backbone and lipid modification (Halliwell 

and Gutteridge, 1989) and the synergistic enhancement of O2
●¯ enhanced DNA damage 

(Valko et al., 2006). The intermittent citation of detection and measurement of lipid 

peroxidation has been used as evidence to support the involvement of ROO● reactions in 

toxicology and human diseases (Gutteridge, 1995; Cadenas and Sies, 1998).       

 

1.2.1.2.4.   Nitric Oxide (NO) 

 

Due to its extraordinary properties, NO acts as an important oxidative biological 

signalling molecule in diverse physiological processes, including neuronal transmission, 

synaptic plasticity in the CNS as well as regulation of the immune system (Archer, 1993; 

Bergendi et al., 1999; Alderton et al., 2001). Inflammatory processes cause oxidative 

burst resulting in the release of both O2
●¯ and NO by cells of the immune system. 

Therefore it is under such conditions, that the two react to produce a much more 

oxidatively active molecule, peroxynitrite anion (ONOO-) which may promote apoptosis 

(Radi et al., 1991; Van der Vliet et al., 1994; Carr et al., 2000). 

 

1.2.1.2.5.   Peroxynitrite Anion 

 

The wide spectrum of toxicity in biological systems associated with the highly oxidizing 

and short lived ONOO¯ involves, DNA fragmentation, lipid peroxidation, protein 

oxidation and nitration, inhibition of mitochondrial respiration and a reduction in cellular 

antioxidant defenses (Misko et al., 1998; Carr et al., 2000; Szabó, 2003; Viràg et al., 

2003). Such events lead to apoptotic cell death at lower concentrations and necrosis at 

higher concentrations of ONOO¯ (Viràg et al., 2003). 

1.2.1.3.  Mitochondrial dysfunction 
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Excitotoxicity (section 1.2.1.4.) and respiratory poisons such as cyanide (section 1.2.4.) 

lead to mitochondrial dysfunction, which in turn may lead to depression of oxidative 

phosphorylation, the consequences of which are leakage of electrons and a reduction in 

ATP production (Zhang et al., 1990; Alexi et al., 2000). In the presence of O2, these 

electrons are involved in the formation of free radicals including O2
●¯ which ultimately 

leads to oxidative stress (Beal, 2000). Oxidative stress is also associated with the opening 

of pores in the inner mitochondrial membrane which causes changes in ion homeostasis, 

breakdown of mitochondrial membrane potential and ultimately necrotic cell death 

(Hengartner, 1998; Beal, 2000). 

 

The brain uses the most energy in the human body, accounting for 20 % of the total 

oxygen consumption despite accounting for only for 2 % of the total body mass (Papa, 

1996). Neurons, like muscle cells and especially cardiac muscle cells, are particularly 

vulnerable to the effects of mitochondrial damage due to their high dependence on energy 

(Thyagarajan and Byrne, 2002; Schon and Manfredi, 2003). Consequently, many well-

recognized mitochondrial diseases have CNS consequences (Thyagarajan and Byrne, 

2002), including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s 

disease (HD) (Beal, 2000; Orth and Shapira, 2001; Moro et al., 2002; Van Houten et al., 

2006) and ADC (Akaike et al., 1990; Schwarz, 1996). They all share the common 

features of mitochondrial Ca2+ and ATP or ROS metabolism disturbances (Brookes et al., 

2004). 

 

1.2.1.4.  Excitotoxicity 

Glutamate-mediated excitotoxicity is a mechanism of neuronal cell death mediated by 

overstimulation of glutamate receptor sub-types, such as NMDA and AMPA (Griffiths et 

al., 2000). Excessive NMDA receptor stimulation allows for an influx of sodium (Na+) 

and Ca2+ ions (Cotman et al., 1989). It is this disturbance in ion homeostasis that induces 

several detrimental intracellular signals such as mitochondrial Ca2+ overload and release 

of cytochrome c (Cyt c), free radical generation (NO, O2
●¯, HO●) (Choi 1992; Dykens 

1994; White and Reynolds 1996), lipid peroxidation and chromatin condensation 
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(Bonfoco et al., 1995; Tenneti, 1998; Budd et al., 2000; Ghatan et al., 2000) that 

contribute to neuronal death by apoptosis or necrosis. 

 

As shown in Figure 1.2., there exist two separate excitotoxic mechanisms: 

 

(1) The influx of Na+ is accompanied by the influx of chloride ions, creating an osmotic 

imbalance between the neuron and extracellular environment. As a result water flows into 

cells, causing swelling, damage and lysis, which constitute necrosis (Olney, 1969; 

Rothman and Olney, 1987; Choi, 1987, Tilson and Mundy, 1995). 

 

(2) The massive Ca2+ ion influx triggers activation of intracellular calcium-dependent 

enzymes including lipases, proteases and nucleases, causing a delayed toxicity that 

accounts for most cell deaths due to the hyperstimulation of glutamatergic system 

(Cotman et al., 1989; Choi, 1992;). 

 

Increases in intracellular Ca2+ may cause mitochondrial dysfunction (section 1.2.1.3) by 

depression of oxidative phosphorylation and activation of nitric oxide synthase (NOS), 

which catalyzes production of the toxic NO (Zhang et al., 1990; Kiedrowski et al., 1992). 

The consequences of which are discussed in section 1.2.1.2.4. 

Activation of a lipase type of enzyme, phospholipase 2 (PLA2) by Ca2+ ions results in the 

release of arachidonic acid and polyunsaturated fatty acids (PUFAs) from membranes. 

These are further metabolized by cyclooxygenase or lipoxygenases, further causing free 

radical generation (Traystman et al., 1991). The free radicals in turn promote elevations 

in Ca2+ ions concentrations, precipitating a vicious cycle, which enhances further cell 

damage (Mattson and Mark, 1996). In addition the released arachidonic acid inhibits 

glutamate uptake into neurons and glial cells thus prolonging the excitotoxic action of 

this amino acid on its receptors (Volterra et al., 1992). The metabolic and neurochemical 

perturbations arising as a result of excitotoxicity occur in many neurodegenerative 

disorders including depression (Hayley et al., 2005; Yao and Reddy, 2005) and AD 

(Olney et al., 1995; Hynd et al., 2004). 
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Figure 1.2.  A modified diagram showing mechanisms of excitotoxicity.  Stimulation 

of glutamate receptors and cellular pathways ultimately leads to excitotoxicity by 

increasing oxidative stress and ultimately apoptotic cell death (Epstein and Gendelman, 

1993). 

 

1.2.2.   Oxidation of biological molecules 

 

1.2.2.1.  Introduction 

 

In living organisms, various ROS can form by different ways. Normal aerobic respiration 

stimulates polymorphonuclear leukocytes and macrophages, and peroxisomes appear to 

be the main endogenous sources of most of the oxidants produced by cells (Halliwell and 

Gutteridge, 1989; Davies 1994; Robinson et al., 1997). ROS induce some oxidative 

damage to biomolecules which may lead to ageing, cancer, and other diseases (Kehrer, 

1993; Aruoma, 1994). As a result of this, ROS have been implicated in more than 100 

diseases, including malaria, AIDS, heart disease, stroke, arteriosclerosis, diabetes, and 
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cancer (Tanizawa et al., 1992; Hertog et al., 1993; Duh, 1998; Alho and Leinonen, 1999; 

Yildirim et al., 2000).  

 

1.2.2.2.  Oxidation of proteins 

 

Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-

dependent reactions and autoxidation of lipids (Kim et al., 1985; Rivet et al., 1985; 

Davies, 1987; Stadtman, 2004).  The consequent protein oxidation is O2- dependent, and 

involves several propagating radicals, notably alkoxyl radicals (Barron et al., 1955; 

Davies et al., 1987; Neuzil and Stocker, 1993; Stadtman, 1997), to produce protein 

hydroperoxides which further react to form protein carbonyls (Stadtman, 1992; 

Butterfield and Stadtman, 1997). 

Oxidative modification of proteins can lead to diminished specific protein functions, 

which may ultimately result in cell death (Hensley et al., 1995; Butterfield et al., 1997; 

Dean et al., 1997). Cells can detoxify some of the reactive species, e.g. by reducing 

protein hydroperoxides to unreactive hydroxides. However, certain oxidized proteins 

gradually accumulate with time, and together with possible alterations in the rate of 

production of oxidized proteins, may contribute to the observed accumulation and 

damaging actions of oxidized proteins during aging and in pathologies such as diabetes, 

atherosclerosis and neurodegenerative diseases including AD to produce protein 

hydroperoxides which further react to form protein carbonyls (Stadtman, 1992; 

Butterfield et al., 1997). 

1.2.2.3.  Oxidation of nucleic acids 

Free radicals can damage DNA through a number of mechanisms including direct 

alteration of base pairs resulting in miscoding and some pre-mutogenic changes (Olinski 

et al., 2002). Miscoding can result in a decrease in critical proteins within neurons 

(Jaruga et al., 1999). Modification of nucleic acids by ROS can induce chromosomal 

aberrations with high efficiency (Cerutti, 1985), suggesting that chromosomal damage 

exhibited in neurons of patients with PD, might be related to abnormally high oxidative 

stress (Mosley et al., 2006). ROS including HO● are known to react with all components 
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of the DNA molecule, damaging both purine and pyrimidine bases (Figure 1.3.), as well 

as the deoxyribose backbone (Dizdaroglu et al., 2002), causing permanent modification 

of genetic material, which represents the first steps involved in mutagenesis, 

carcinogenesis and ageing (Mannet, 2000; Cooke et al., 2003). Among the most 

promising biomarkers of oxidative damage to nucleic acids is nucleoside 8-

hydroxyguanine (8-OH-G), the oxidized base produced by free radical attack on DNA by 

C8-hydroxylation of guanine as shown in Figure 1.3. This is one of the most frequent 

nucleic acid modifications observed under conditions of oxidative stress (Loft and 

Polsen., 1996). 

HN
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Figure 1.3.  A modified reaction of guanine with hydroxyl radical to form a guanine 

radical which in turn  is oxidized to a hydroxyguanine (Shigenaga et al., 1989). 

 

This reaction with HO●  proceeds via addition to double bonds of  the DNA bases, such 

as guanine to form a guanine radical, as shown in Figure 1.3., which then undergoes 

oxidation to form a hydroxyguanine, both a mutagenic and carcinogenic species 

(Shigenaga et al., 1989). The oxidized DNA base product formed is often used as a good 

biomarker for free radical-mediated DNA damage and oxidative stress in organisms 

(Halliwell and Gutteridge, 1989; Helbock et al., 1999). Since guanine bases are 

particularly sensitive to oxidation, the oxidized DNA bases always exist at some basal 

level, although cells have numerous repair systems to remove such species (Lindahl and 

Wood, 1999). In the event that these species occur at critical sites which are not quickly 

repaired, functional problems can occur (Klaunig et al., 1998). 

 

1.2.2.4.  Lipid Peroxidation 
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Neuronal membranes, being the ‘site of action’ for many essential brain functions have 

an abundant supply of PUFAs, which makes them highly vulnerable to lipid peroxidation 

(LP) (Halliwell and Gutteridge, 1989; Calabrese et al., 2000). LP is a mode of oxidative 

injury triggered and promoted by different radical and nonradical ROS or by the catalytic 

decomposition of preformed lipid hydroperoxides in tissues by several agents including 

most transition metals and microsomal cytochromes (Slater, 1984; Halliwell and 

Gutteridge, 1989; Niki et al., 2005). The peroxidative injury not only causes structural 

and functional derangement of phospholipid bilayer of membranes but also produces 

several deleterious aldehydic end products including malondialdehyde (MDA) and 4-

hydroxynonenal (4-HNE), which may inflict secondary damage to proteins and DNA 

(Halliwell and Gutteridge, 1989; Janero, 1990; Uchida, 2003; Luo and Shi, 2005).  

 

Schematic diagram of the sequence of events in LP 

 

• Cell damage → HO● + CH2 → C●H →conjugated diene + O2 → CHO2
● + CH2→ 

 

      C●H + lipid peroxide 

 

• Fe2+-complex + lipid peroxide → CHO● 

 

• Fe3+-complex + lipid peroxide → CHO●
2 + H+ + Fe2+-complex 

 

Hydrogen (H) abstraction from a methylene group (-CH2-) in the side chain of an 

unsaturated fatty acid by free radicals provides the first step of a peroxidation sequence in 

membranes.  The removal of the H atom leaves behind an unpaired electron on the 

carbon (-C●H-) to which it was originally attached. The presence of a double bond in the 

fatty acid weakens the C-H bonds on the carbon atom adjacent to the double bond, 

facilitating the removal of H (Halliwell and Gutteridge, 1989). The resulting carbon-

centred radical stabilizes by molecular rearrangement to form a conjugated diene (Figure 

1.4.), which reacts with O2 (which is hydrophobic and concentrates in to the interior of 
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membranes) to form CHOO●. These radicals are capable of abstracting H from adjacent 

fatty acid side chains to form lipid hydroperoxides (C in Figure 1.4.), which marks the 

propagation step of LP. When combined, the carbon-centered radical (A Figure 1.4.), 

undergoes minor reactions including cross linking of fatty acid side chains and attack of 

protein membranes. The CHOO● (B in Figure 1.4.), may also attack protein membranes 

and form singlet oxygen (1O2), a highly reactive species capable of damaging 

macromolecules within cells, when combined with each other (Halliwell and Gutteridge, 

1989). 

 

Extensive LP in biological membranes results in the following: (1) alterations in fluidity 

and increase in permeability to H+ and other ions. (2) Inactivation of membrane-bound 

receptors and enzymes (Gutteridge and Halliwell, 1990). The eventual alterations in 

membrane fluidity and membrane potential, permits leakage of ions such as Ca2+ into 

cells, causing cells to rupture and release its contents including lysosomal hydrolytic 

enzymes (Halliwell, 1994).  
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Figure 1.4.  An outline of the mechanism of LP (Gutteridge and Halliwell, 1990). 

 

1.2.3.   Metal ions 

 

The ions of transition metals including copper (Cu) and iron (Fe) are involved in many 

free radical reactions leading to generation of ROS (Halliwell and Gutteridge, 1989) as 

shown in Figure 1.5. In case of Fe, the Fe2+ accelerates lipid oxidation by breaking down 
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hydrogen and lipid peroxides to reactive free radicals via the Fenton Reaction, shown in 

section 1.2.1.3.3., equation 1.1 and 1.2 (Halliwell and Gutteridge, 1984; Miller, 1996). 

 

 

O2 O2 
. - H2O H2O

hydroxyl radical .OH

singlet oxygen 1O2

metal-peroxo [Me-OO]

Lipid peroxidation

LOO .
LO .

DNA damage
gene activation

Cancer

Neurodegeneration

superoxide generating
        systems

+e-

SOD

Protein
oxidation

Cu Fe

 

Figure 1.5.       A modified pathway of metal-induced oxidative stress (Valko et al., 

2005).  

 

The reduction of Fe3+ by O2
●¯augments the Fenton reaction, thus regenerating Fe2+ and 

producing HO● as in the iron-catalyzed Haber-Weiss type of reaction (section 1.2.1.3.3., 

equation 1.3.). 

 

As shown in Figure 1.5., Fe dependent formation of HO● is detrimental to cells, since this 

radical can react at diffusion-limited rates with various biomolecules, including lipids, 

proteins and DNA (Valko et al., 2005). Oxidative damage to these biological molecules 



Literature Review 

 17

consequently results in various disorders including cancer and neurodegeneration. In 

addition, cells try to prevent its formation and remove H2O2 to inactive sites (Fahn and 

Cohen, 1992). Notably the HO● has a short half life but however H2O2 crosses the blood-

brain barrier where it is converted to HO● in brain tissue, causing detrimental damages to 

neurons. 

 

Certain pathological states of the CNS such as ADC are associated with increased Fe 

accumulation (Savarino et al., 1999), thus enhancing the generation of ROS, LP and 

neurodegeneration. The role of Fe in neurodegeneration has been further discussed in 

chapter 5, section 5.2. 

 

1.2.4.  Cyanide 

 

Cyanide is one of the most potent respiratory poisons not only known to man but in all 

aerobic forms of life (Yen et al., 1995). The nerve cells of the respiratory centre are prone 

to damage by acute doses of cyanide because of enhanced susceptibility to hypoxia 

(Greer and Jo, 1995). It exerts its toxicity through histotoxic hypoxia and mitochondrial 

dysfunction (section 1.2.1.3.) (Bhattacharya and Lakshmana Rao, 2001) causing 

alterations in ionic homeostasis and elevated Ca2+ levels. The elevation of Ca2+ in the 

brain (Johnson et al., 1987) and cytosol often leads to increased oxidative stress and 

excitotoxicity. In addition, Ca2+ activates phospholipases and proteases causing surface 

blebbing and cytoarchitectural defects of neuronal cells (Nicotera et al., 1989). 

 

1.2.5.   Quinolinic acid  

 

1.2.5.1.  Introduction 

 

QA is a neuroactive metabolite of the tryptophan-kynurenine pathway that is normally 

present in nanomolar concentrations in human brain and cerebrospinal fluid (CSF) and is 

often implicated in the pathogenesis of a variety of human neurological diseases (Chao et 

al., 1996; Lipton, 1998). Substantial increases in QA have been found in the brain and 

CSF of patients with inflammatory neurological disorders because it is produced by 
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immune activated macrophages and microglia (Heyes et al., 1998; Huengsberg et al., 

1998).   

 

1.2.5.2.  Biosynthesis of quinolinic acid 

 

1.2.5.2.1.   Introduction 

 

Tryptophan (TRP) is an essential amino acid having various important biological 

functions. In mammals, about 90 % of dietary TRP is metabolized along the kynurenine 

pathway (KP) (Musajo and Benassi, 1964; Price et al., 1965; Wolf, 1974), which 

represents the major catabolic route of the essential amino acid TRP over multiple 

metabolic steps (Figure 1.6.). 

Among the metabolites, some are neurotoxic while others can be neuroprotective. The 

neurotoxic mechanism of 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid 

involves the generation of O2
●¯ and H2O2, which contribute to oxidative processes that 

are implicated in the production of reactive free radicals (Eastman et al., 1992; Goldstein 

et al., 2000; Vazquez et al., 2000) and potentiation of QA- induced neurotoxicity 

(Guidetti and Schwarcz, 1999). In contrast, kynurenic acid (KYNA) is an antagonist of 

the excitotoxic NMDA receptors which preferentially prevents QA-induced 

neurodegeneration (Foster et al., 1984). Hence KP is mostly implicated in the 

pathophysiology of various diseases associated with inflammation leading to brain injury, 

such as multiple sclerosis, ADC and cerebral malaria (Stone, 2001; Stone et al., 2003; 

Nemeth et al., 2005). 
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Figure 1.6.  Graphical representation of the KP. Tryptophan (2, 3)-dioxygenase 

(TDO), indoleamine (2, 3)-dioxygenase (IDO) catalyze the formation of kynurenine. 

Formamidase, Kynurenine-3-hydroxylase, Kynureninase and 3-Hydroxyanthranilic acid 

oxygenase (3-HAO) regulate the QA/Kynurenic Acid balance (Sas et al., 2007). 

1.2.5.2.2.   Enzymes regulating the Kynurenine Pathway 
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1.2.5.2.2.1.  Tryptophan-2-3-dioxygenase  

 

Tryptophan-2-3-dioxygenase (TDO) is a haeme-containing dioxygenase, present in the 

liver of mammals, including humans and rats. This enzyme is involved in catalyzing the 

addition of molecular O2 across the 2, 3-double bond of the indole ring of TRP, leading to 

the cleavage of the indole ring to form N-formylkynurenine (Tanaka and Knox, 1959; 

Hayaishi and Nozaki, 1969; Leeds et al., 1993; Dick et al., 2001). There is a considerable 

proportion of the enzyme that is present as the apoenzyme form, and is therefore inactive 

until the additional haeme is made available, either by the administration of haeme 

precursors in vivo or by the addition of haematin during incubation in vitro (Bender, 

1982). 

  

1.2.5.2.2.1.1. TDO regulation 

 

1.2.5.2.2.1.2. TDO induction 

 

The activity of TDO determines the relative TRP flux into the serotogenic and KP. 

Hepatic TDO is specific for TRP as the substrate (Hayaishi, 1980) and is subject to 

hormonal as well as substrate induction (Knox and Auerback, 1955). Its activity is 

enhanced by TRP concentration (Satyanarayana and Rao, 1980; Smith et al., 1980; Saito 

et al., 1990), high cortisol (Salter and Pogson, 1985) and haeme or its precursor 5-

aminolaevulinate (5-ALA) (Badawy et al., 1987). 

 

Haeme is required for activity and reversible binding of the inactive apoenzyme (Figure 

1.7.) to form the oxidized and inactive holoenzyme (Knox and Piras, 1966). TRP then 

binds to the inactive holoenzyme reducing it to the fully active form. The binding of L-

TRP to the enzyme induces a fundamental change in the ligand binding affinity of the 

catalyst in addition to increasing the reactivity of the haeme iron towards the substrate 

(Makino et al., 1980). The sequential events in enzymatic catalysis due to substrate 

induction include; (1) Enzyme saturation by activator haeme, and (2) Increased levels of 

total enzyme concentrations (Frieden et al., 1961). 
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Apoenzyme + L-Tryptophan                            Holoenzyme 
(inactive)                                                                                  (reduced + active) 

         + Heme  

 
                                                                 
                                       O2 + L-Tryptophan           L-Tryptophan - O2 

 

 

                                      
                                    Holoenzyme 
                                                             (inactive + oxidized) 

 

Figure 1.7.  The activation of TDO (modified from Walsh, 1996). 

 

1.2.5.2.2.1.3. TDO inhibition 

 

The administration of novel indoles with inhibitory effects on TDO and serotonin (5-HT) 

reuptake (Madge et al., 1996), ultimately lead to increased concentrations of L-TRP and 

5-HT in CSF, which could be vitally important for antidepressant therapy (Hardeland and 

Rensing, 1968; Walsh and Daya, 1998). In addition Walsh and Daya (1997) demonstrated 

that melatonin (aMT) and 5-HT can differentially regulate TDO activity, with the former 

and latter exhibiting competitive and allosteric inhibition. 
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1.2.5.2.2.2.  Indoleamine-2-3-dioxygenase  

 

Indoleamine-2-3-dioxygenase (IDO) is the second enzyme that catalyzes oxidative 

cleavage of the indole ring of TRP through incorporation of molecular O2 or O2
●¯ (Hirata 

and Hayaishi, 1971; Tanigushi et al., 1977). It is an interferon-induced protein (Yoshida 

et al., 1981), widely distributed in mammalian extrahepatic tissues including brain, lung, 

gastric and intestinal mucosa, kidney, heart and adrenal gland. Besides interferon, IDO is 

also induced by bacteria (Yoshida and Hayaishi, 1978; Urade et al., 1983), virus 

infections (Yoshida et al., 1979) and tumour cells (Yoshida et al., 1984). 

 

IDO has a broader specificity than TDO (Figure 1.6.), as it catalyses oxidative cleavage 

of various indoleamines, including 5-hydroxytryptophan, tryptamine, 5-HT as well as 

aMT (Hirata and Hayaishi, 1972). The induction of IDO causes a marked increase in TRP 

catabolism in the body with the production of kynurenine and total depletion of TRP in 

the cells as shown in Figure 1.6 (Bertazzo et al., 2001).  

 

1.2.5.2.2.3. Formamidase 

 

The immediate product of TDO and IDO, formylkynurenine (Figure 1.6.) is rapidly 

hydrolyzed into kynurenine by the tissues formamidase. This enzyme has low substrate 

specificity and is able to release formate from a variety of aryl-formylkynurenines 

although its greatest activity is towards N-formylkynurenine (Bender, 1975; Stone, 1993). 

 

1.2.5.2.2.4.  Kynurenine-3-hydroxylase 

 

Kynurenine-3-hydroxylase is a flavin adenine dinucleotide (FAD)-dependent 

monoxygenase which governs the conversion of L-KYN to 3-hydroxykynurenine (3-HK)  

(Schwarcz and Pellicciari, 2002). It is localized in the outer mitochondrial membrane and 

present in the brain at low activity (Antunes, 1998). In the presence of nicotinamide 

adenine dinucleotide hydrogen (NADPH) an electron donor, the prosthetic group FAD is 

reduced to dihydroflavin adenine dinucleotide (FADH2) which is subsequently oxidized 

to FAD by molecular O2 (Breton et al., 2000).  
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1.2.5.2.2.5.    Kynureninase 

 

Kynureninase is a cytosolic and pyridoxal phosphate-dependent enzyme that catalyses the 

hydrolysis of both L-KYN and 3-HK into anthranillic acid and 3-hydroxyanthranillic acid 

respectively as shown in Figure 1.6. (Braunstein et al., 1949; Schwarcz and Pellicciari, 

2002). Inhibition of this enzyme results in an increase in urinary and plasma KYN and 3-

HK with the resultant modification of the cerebral concentration of the metabolites and 

delayed QA metabolism (Stone, 1993). 

 

1.2.5.2.2.6.   3-Hydroxyanthranilic acid oxygenase 

 

3-Hydroxyanthranilic acid oxygenase (3-HAO) is an anabolic enzyme that is responsible 

for the synthesis of QA via an unstable intermediate 2- acroleylaminofumurate QA 

(Schwarcz, 1993). The enzyme is present in the mitochondrial membrane (Stone, 1993) 

and at excitatory synapses (Antunes, 1998), thus allowing QA to act on NMDA receptors 

(Schwarcz, 1993; Stone, 1993). Increase in QA production causes lesions, which in turn 

increase the activity of 3-HAO. Several excitatory amino acids, TRP and KYNA have no 

influence on the enzyme with regard to its activity (Stone, 1993). 

 

1.2.5.2.3. The Effect of QA biosynthesis on Brain Indoleamine Metabolism 

 

TRP is hydroxylated to 5-hydroxytryptophan by tryptophan hydroxylase (T5H), which is 

present in high concentrations in the pineal gland, and is the rate-limiting step in the 

synthesis of 5-HT (Lovenberg et al., 1968). Thus enhanced TRP catabolism by the TDO 

enzyme (Hayaishi, 1980) and IDO (Heyes et al., 1993; Mellor and Munn, 1999) during 

QA biosynthesis in the KP, reduces the amount of TRP available in the brain for 

conversion to 5-HT. A negative correlation exists between free plasma TRP levels and 

depression during acute TRP depletion (McDougle et al., 1993), where a lack of the 

amino acid has a pronounced effect on the depressive symptoms (Curzon and Bridges, 

1970) in pathological conditions such as ADC. Hence the indoleamine hypothesis, asserts 

that modifications in the 5-HT neuronal function are a core feature of depression (van 
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Praag, 1982). Post-mortem studies have shown reduced levels of plasma TRP (Delgado et 

al., 1990), concentrations of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-

HIAA) (Gibbons and Davis, 1986) in brains of depressed or suicidal patients.  

5-HT is an important regulator of various physiological and biochemical processes and it 

acts as a neurotransmitter at central and peripheral regions (Kema et al., 2000). As shown 

in Figure 1.8., it can be N-acetylated to form N-acetyl serotonin (NAS), in a reaction 

catalyzed by the enzyme N-acetyltransferase (NAT) or oxidized by monoamine oxidase 

(MAO) to 5-hydroxyindole acetaldehyde, which is further oxidized to 5-HIAA by 

acetaldehyde dehydrogenase (ADH) (Lerner and Case, 1960; Weissbach et al., 1960). 

However, a significant portion of the aldehyde may also be reduced to 5-

hydroxytryptophol, when the redox potential of brain shifts to a more reducing state than 

normal (Bender, 1983).  

All 5-hydroxyindoles namely, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-HIAA, 5-

hydroxytryptophol and NAS can be methylated by hydroxyindole-O-methyl transferase 

(HIOMT) (Axelrod and Weissbach, 1960; Axelrod and Weissbach, 1961) to form 5-

methoxytrptophan, 5-methoxytryptamine, 5-methoxyindole acetic acid, 5-

methoxytryptophol and aMT (Klein and Notides, 1969). 

In the last several years, aMT, the chief secretory product of the pineal gland (Reiter, 

1991), has been found to be both a direct free radical scavenger and a potent antioxidant 

(Tan et al., 1993; Hardeland et al., 1995; Reiter et al., 1997), in addition to its function as 

a neurohormone. It has been demonstrated to reduce oxidative damage in the CNS 

(Reiter, 1998). Hence patients with a reduction in aMT secretion are more prone to 

depression and susceptible to neurodegeneration. 
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Figure 1.8.  Schematic representation of pineal indole metabolism (modified from 

Young and Silman, 1982). 

 
1.2.5.3. The Neurotoxicity of QA 
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QA is an established agonist at receptors for the glutamate analogue NMDA that has 

become a widely used tool for the study of neuronal damage resulting from activation of 

these receptors (Stone and Perkins, 1981; Perkins and Stone, 1983; Stone, 1993; Behan et 

al., 1999). Excessive activation of glutamate receptors in mammalian brain represents a 

cytotoxic mechanism that is potentially involved in neurodegenerative processes (Coyle 

and Puttfarcken, 1993). Since QA is not readily metabolized in the synaptic cleft, it 

stimulates NMDA receptors for prolonged periods resulting in Ca2+ influx into neurons 

entraining a destructive sequence of events within cells which enhances generation of 

ROS and often molecular damage and cell death (Choi, 1987; Hartley et al., 1993; 

Atlante et al., 1997; Perez Velazquez et al., 1997). Studies by Stipêk et al, (1997) showed 

that QA was able to modulate LP through its interaction with Fe2+ to form QA- Fe2+ 

complexes that mediate generation of ROS which are implicated in alterations of profiles 

of some endogenous antioxidants (Rodríguez- Martinez et al., 2000). 

 

1.2.5.3.1.   Impairment of Learning and Memory  

 

1.2.5.3.1.1.  Introduction 

 

Memory formation and excitotoxic cell death in the hippocampus involves excitatory 

glutamatergic neurons, especially of the NMDA type (Haberny et. al., 2002; Silva,  

2003), which has three basic features including high permeability to Ca2+ ions, voltage 

dependent blockage by magnesium (Mg2+) ions and slow gating kinetics. These features 

make the NMDA receptor ideally suitable for mediating plastic changes in the brain, such 

as learning and memory (Dairam, 2005).  

 

1.2.5.3.1.2.  The Hippocampus 

 

This is the most medial portion of the cerebral cortex developed from the stalk, of the 

original cerebral vesicle (Smythies, 1970). The hippocampus is a bi-lateral limbic 

structure which plays a role in emotion, motivation and memory (Amaral and Witter, 

1989; Butler, 1993). Each hippocampus consists of two thin sheets of neurons, 
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resembling two C’s: the dentate gyrus (DG) and the Ammon’s horn or Cornu Ammonis 

(CA), leaning together at the top and spread apart at the base (Figure 1.9.).  

 

 

 
 

Figure 1.9.  Cross sections through the major regions of the hippocampus. 

(www.neuroscience.bham.ac.uk/.../hippocampus.png). 

 

 

The Ammon’s horn, also known as the hippocampus proper has four divisions (CA1-

CA3), of which the most important are the CA1 and CA3. The stratum pyramidale is the 

principle cell layer of the Ammon’s horn that contains cells bodies of pyramidal cells, 

whilst the stratum granulosm consisting of cell bodies of granule cells, constitutes the 

main cell layer of the DG. Although the DG is commonly included as part of the 

hippocampus, it is cytoarchitectonically distinct from the hippocampus proper (Amaral, 

1978; Bayer, 1985; Amaral and Witter, 1989). The hippocampal region (the CA field, the 
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dentate gyrus and subicular complex) is important for mammalian memory (Squire 

1992), and damage to these regions impairs performance on a variety of tasks of learning 

and memory (Eichenbaum and Cohen, 2001; Broadbent et. al., 2004) 

 

1.2.5.3.1.3.  Long Term Potentiation 

 

The stimulation of glutamatergic fibre pathways in the hippocampus enhances synaptic 

neurotransmission between stimulated axons and post-synaptic cells that initiates long 

term potentiation (LTP) (Bliss and Lomo, 1973; Danysz and Parsons, 2003). LTP is an 

example of plastic changes in the brain and is believed to model basic mechanisms of 

memory formation.  

 

As shown in Figure 1.10., the initiation of LTP results in massive release of glutamate, 

which binds to both NMDA and AMPA receptors. The binding of glutamate alone on 

NMDA receptors is insufficient to bring about ion channel opening. Thus it is the 

continuous activation of the AMPA receptors that causes massive influx of Na+ ions 

across the postsynaptic membrane leading to depolarization required to remove the 

positively charged Mg2+ from the narrow region in the NMDA receptor. Once the Mg2+ 

ion has dissociated from the receptor, the ion channel opens to allow the passage of Na+ 

and Mg2+ ions (Bliss and Collingridge, 1993; Lodish et al., 1995).   It is only at this stage 

where Ca2+ ions can freely enter the cell via the NMDA receptor channel and initiate a 

number of enzymatic processes that enhance synaptic strength (Dairam, 2005). Thus loss 

of hippocampal NMDA receptors, which have a pivotal role to play in LTP, will result in 

learning and memory impairment. 
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Figure 1.10.  Diagram showing the involvement of NMDA and AMPA receptors in the 

induction of LTP (Danysz and Parsons 2003). 

 

 

1.3.   NEUROPROTECTION 

 

1.3.1.   Introduction  

 

The phenomenon of neuroprotection involves both mechanisms and strategies used to 

protect against neuronal injury and degeneration of the CNS, following acute disorders 

including, stroke, nervous system injury/trauma or chronic neurodegeneration (Slikker et 

al., 1999, Fahn and Sulzer, 2004). 

 

1.3.2.   Antioxidant therapy 

 

The overproduction of ROS can be detoxified by endogenous antioxidants, causing the 

cellular stores to be depleted (Candelario-Jalil et al., 2001). According to Halliwell and  
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Gutteridge (1989), “an antioxidant is any substance that when present at low 

concentrations compared to those of an oxidizable substrate significantly delays or 

inhibits oxidation of that substrate”. In addition, the antioxidants can act at different 

levels in the oxidative sequence. 

 

1.3.2.1.  Enzymatic antioxidant systems 

 

The principal cellular defence systems against oxygen free radicals are superoxide 

dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) (a haeme enzyme) 

(Figure 1.11.).  These enzymes scavenge reactive chemical species and help to maintain 

cells in a reduced state (Fahn and Cohen, 1992).  

 

 

O2
O2

.- H2O

H2O  +  O2

H2O

e-
SOD

CAT

GPX

GSSG

GSH

 
 

Figure 1.11.  An outline of the three main antioxidant enzymes involved in preventing 

formation of ROS. Abbreviations: Superoxide Dismutase (SOD), Catalase (CAT) and 

Glutathione Peroxidase (GPX), Oxidized Glutathione (GSH) and Reduced Glutathione 

(GSSG), modified from Reiter, 1995. 
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The breakdown of O2
●¯ by SOD yields H2O2 and O2. There are two distinct SOD’s in 

eukaryotes; the manganese-containing SOD localized in the mitochondrial matrix and the 

copper- zinc-containing SOD found in the cytoplasm. H2O2 is converted to water (H2O) 

in the presence of CAT and GPx, thus delaying the generation of the potent HO● and the 

progression of the Fenton reaction (section 1.2.1.3.2.) (Fahn and Cohen, 1992). Besides 

metabolizing H2O2 to H2O, GPx also functions as a peroxynitrite reductase which 

removes the highly damaging ONOO¯ (section 1.2.1.3.5.) (Sies et al., 1997).  

 

Due to low CAT activity in the brain, GPx acts as the major enzyme for the detoxification 

of H2O2 in the brain (Bharath et al., 2002). Glutathione (GSH) is the major cellular thiol 

participating in the maintenance of cellular redox status of the neuron and neuronal 

mitochondria. A decreased level of GSH may severely impair normal cellular functions 

(Butterfield et al., 2002). 

 

1.3.2.2.   Metal  Chelators  

 

Fe cations are known to generate free radicals through the Fenton and Haber-Weiss 

reaction as described in section 1.2.1.2.2 (Halliwell and Gutteridge, 1990). Hence through 

metal ion-chelation activity, the antioxidant molecule reduces the concentration of the 

catalyzing transition metal in LP, thus preventing oxyradical generation and the 

consequent oxidative damage (Kehrer, 1993; Duh et al., 1999). It is reported that 

chelating agents reduce the redox potential by forming σ-bonds with a metal, thereby 

stabilising the oxidised form of the metal ion (Gordon, 1990; Srivastava et al., 2006). 

 

Evidence shows that neurotoxicity resulting from increased Fe content in the substantia 

niagra of post-mortem parkinsonian brains (Gerlach et al., 1994) and in AD patients 

(Perry et al., 2003), is mediated by H2O2 (Behl et al., 1994). Hence agents with the ability 

to chelate Fe and thus reduce its content in the brain could be of therapeutic importance 

in oxidative stress-induced CNS disorders. Such agents include desferrioxamine, an Fe 

chelator, usually used to reduce brain Fe content in models of Fe-loaded rats (Ward et al., 

1995). 
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1.3.2.3. Free radical scavengers 

 

1.3.2.3.1.   Introduction 

 

Free radical scavengers are antioxidants, which are oxidized in place of biomolecules 

(Halliwell and Gutteridge, 1989) and undergo radical terminating reactions with other 

free radicals, thus reducing further initiation of oxidative damage.  The scavenging of free 

radicals by antioxidants, either involves hydrogen abstraction or addition to form an 

antioxidant radical (Halliwell and Gutteridge, 1989). In addition, this radical is 

insufficiently reactive to cause hydrogen abstraction or addition of biomolecules because 

of the delocalization of the unpaired electron in the aromatic ring (Halliwell and 

Gutteridge, 1989). 

 

1.3.2.3.2.   Endogenous scavengers of free radicals 

 

Vitamin E and Vitamin C are both important free radical scavengers that work 

synergistically to prevent oxidation of membranes (Buechter, 1988; Fang et al., 2002). 

Vitamin E, an important natural antioxidant in living cells is known as a “chain-breaking 

antioxidant”. It has the ability to transfer its phenolic hydrogen to lipid peroxyl radicals 

(LOO●), thereby terminating LP chain reactions and preventing further peroxidation of 

PUFAs in membrane phospholipids with the formation of a relatively unreactive vitamin 

E radical (Palozza and Krinsky, 1991; Fang et al., 2002).  

 

Vitamin C is another compound which acts as an important free radical scavenger in the 

aqueous phase within cells and plasma. As a reducing agent, it reacts with a vitamin E 

radical to yield a vitamin C radical while generating vitamin E. In addition, the vitamin C 

radical is converted back to Vitamin by GSH (Buechter, 1988; Fang et al., 2002). 

 

1.3.2.3.  Melatonin 

 

Melatonin (N-acetyl-5-methoxytryptamine) is a naturally occurring chemical mediator 

that is predominantly synthesized in the pineal gland (Shida et al., 1994; Costa et al., 
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1995). The synthesis of the hormone is under rhythmic control (Reiter, 1987) with peak 

levels produced at night in darkness. aMT, a lipophilic molecule, is able to traverse 

almost every organ in the body (Reiter et al., 1995). It has been demonstrated (Morgan 

and Williams, 1989) that it can bind to specific membrane receptors as well as receptors 

in the nuclei (Acuña-Castroviejo et al., 1993).  

 

Although the exact mechanism of its action on receptors is yet to be determined, aMT has 

been demonstrated to be a powerful antioxidant and free radical scavenger (Tan et al., 

1993). It chelates Fe (Limson et al., 1998), and scavenges the ONOO- (Cuzzocrea et al., 

1997; Gilad et al., 1997) and the HO● which is generated from H2O2 via the Fenton 

reaction (Tan et al., 1993; Stasica et al., 1998). In addition, aMT not only stabilises cell 

membranes allowing them to resist free radical processes more effectively (Garcia et al., 

1998) but it also stimulates antioxidative enzymes including SOD and GPx (Antolin et 

al., 1996; Barlow-Walden et al., 1995; Reiter, 1998; Albarran et al., 2001). Hence 

stimulation of these enzymes reduces oxidative damage by converting toxic radicals and 

reactive oxygen intermediates to non-toxic products. 

 

1.3.3.   Anti-Excitotoxin therapy 

 

One of the consequences of oxidative stress and ROS, as mentioned earlier in section 

1.2.1.4., is an increase in extracellular glutamate associated with subsequent excitotoxic 

neuronal cell death (Mattson, 2003). Hence prevention of excitotoxicity may have 

therapeutic potential in both PD (Alexi et al., 2000) and HD (Hynd et al., 2004), where 

the pathology involves this phenomenon. 

 

Memantine, an uncompetitive NMDA receptor antagonist (Grossberg et al., 2006) and 

riluzole are believed to inhibit glutamate release and so reduce excitotoxicity (Bensimon 

et al., 1994; Kriz et al., 2003; Traynor et al., 2003) in AD.  Memantine has been shown to 

reduce clinical deterioration (Reisberg et al., 2003) without interfering with the 

physiological actions of glutamate required for memory and learning whilst riluzole 

shows neuroprotective properties against hypoxic brain damage and cerebral ischemia 

(Mufson et al., 1999). 
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1.3.4.   Non-nucleoside reverse transcriptase analogues 

 

1.3.4.1.  Introduction 

 

The Non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) of HIV-1 have been 

studied extensively in recent years in both laboratory and clinical settings. The NNRTIs 

are a structurally and chemically dissimilar group of antiretrovirals that are potent and 

highly selective inhibitors of HIV-1 RT. The NNRTIs comprise a structurally diverse 

series of compounds that are highly specific for inhibition of the HIV-1 RT (Young, 

1993). The compounds bind to a common site on the RT heterodimer that is distinct from 

the enzyme’s active site (Wu et al., 1991; Dueweke et al., 1992; Smerdon et al., 1994). 

Kinetically, the NNRTIs’ inhibitory activities are generally non-competitive with respect 

to the template-primer and nucleotide substrate (Frank et al., 1991; Koop et al., 1991; 

Althaus et al., 1993; Carroll et al., 1993). The compounds appear to function by 

mediating a noted decrease in the enzyme’s polymerizing activity (Spence et al., 1995). 

The compounds are active in their native state, requiring no phosphorylation or other 

activity-dependent alteration. They are extensively metabolized in the liver; very little 

drug is excreted unchanged (Murphy and Montaner, 1996). 

 

1.3.4.2.  Efavirenz  

 

1.3.4.2.1.   Introduction 

 

Efavirenz (EFV, DMP 266) (Figure 1.12.) belongs to the NNRTIs class of drugs, and has 

gained a definitive and important place in the treatment of HIV-1/AIDS as part of 

combination therapy (Ward et al., 2003).  
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Figure 1.12.  Structure of EFV (modified from Wang et al., 2001). 

 

It alters the function of the reverse transcriptase enzyme, rendering it incapable of 

converting viral RNA to DNA (Young et al., 1995). EFV has a sustained antiretroviral 

efficacy when used in combination with either a protease inhibitor (PI) or/and nucleoside 

reverse transcriptase inhibitors (NRTIs) and exhibits clinical activity in reducing plasma 

levels of HIV-1 RNA (Benedek et al., 1999).   

 

1.3.4.2.2.   Pharmacology 

 

1.3.4.2.2.1.  Dosing 

 

The usual adult dose of EFV is 600 mg per day (usually given at bedtime) (DuPont 

Pharmaceuticals, 1998), and is usually taken on an empty stomach at bedtime to reduce 

neurological and psychiatric adverse effects. 



Literature Review 

 36

1.3.4.2.2.2.  Adverse Effects 

 

The principal adverse effects of EFV involve the central nervous symptoms which 

include: dizziness, drowsiness, insomnia, depression and euphoria. These tend to occur in 

about 50 % of patients and during the first days of therapy and may resolve while 

medication is continued. Occasionally, EFV causes skin rash early in therapy in up to 28 

% of patients (Katzung, 2004). 

 

1.3.4.2.2.3.  Drug interactions 

 

 EFV is extensively metabolized by the cytochrome P450 enzymes, primarily CYP3A4 

(Eagling et al., 1995; Adkins and Noble, 1998; Barry et al., 1999). All currently available 

PIs are inhibitors of CYP3A4, therefore, drug-drug interactions should be expected when 

EFV is coadministered with them. It has been reported that ritonavir produces a 21 % 

increase in EFV concentrations (Pfister et al., 2003). Therefore, appropriate dose 

adjustments may be necessary for these drugs. Drugs including phenobarbital, rifampin 

and rifabutin, induce CYP3A4 activity thereby increasing the clearance of EFV resulting 

in lowered plasma concentrations in patients (Katzung, 2004). 

 

1.3.4.2.3.   Pharmacokinetics 

 

1.3.4.2.3.1.  Absorption 

 

Animal studies suggest the oral bioavailability of this drug is about 40 %, and studies in 

humans have shown that bioavailability is increased by 50 % following a high-fat meal. 

Time-to-peak plasma concentrations were 3–5 hours and steady-state plasma 

concentrations were reached in 6 to 10 days (DuPont Pharmaceuticals, 1998). EFV is 

highly protein-bound (> 99.5 %), predominantly to albumin. In one small study, doses of 

200–600 mg once daily produced mean CSF concentrations of 0.69 % of the 

corresponding plasma concentration. This proportion is about 3-fold higher than the non-

protein-bound (free) fraction in plasma (Balani et al., 1996). 
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1.3.4.2.3.2.  Distribution 

 

EFV is widely distributed in body compartments and is likely to be effective in protected 

tissues such as the CNS (Taylor et al., 2001; Wynn et al., 2002). 

 

1.3.4.2.3.3.  Metabolism 

 

Studies in humans and in vitro studies using human liver microsomes have demonstrated 

that EFV, being a substrate (Mutlib et al., 1999; Smith et al., 2001), an inhibitor (Von 

Moltke et al., 2001), and an inducer of cytochrome P450 (Mouly et al., 2002), exhibits 

multiple interactions with the P450 system. It is principally metabolized by the 

cytochrome P450 system to hydroxylated metabolites with subsequent glucuronidation of 

these hydroxylated metabolites that include 8- and 7-hydroxyEFV, which are essentially 

inactive against HIV-1 (Mutlib et al., 1999). 

 

1.3.4.2.3.4.  Excretion 

 

In vitro experiments with hepatocytes in culture and pharmacokinetic studies of EFV 

disposition in healthy volunteers and HIV-infected patients suggest that hepatic 

metabolism is the major route of EFV elimination (Fiske et al., 1999). 
 

 

1.3.4.3.  Nevirapine 

 

1.3.4.3.1.   Introduction 

 

Nevirapine (NVP) (Figure 1.13.), formerly known as BI-RG-587 (NVP), is a potent 

NNRTI specific for HIV-1 which shows good characteristics for development as a 

potential therapeutic agent (Merluzzi et al., 1990). It belongs to the dipyridodiazepinone 

analogues, which bind directly to RT and blocks the RNA- and DNA-dependent DNA 

polymerase activities by causing a disruption of the catalytic site of the enzyme (Merluzzi 

et al., 1990; Richman et al., 1991).  
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Figure 1.13.  Modified structure of NVP (Riska et al., 1999). 

 

 

NVP was the first NNRTI widely introduced in clinical practice and is regarded to be a 

potent (Murphy et al., 1999) and an effective component of highly active antiretroviral 

therapy (HAART) used in the treatment of HIV - 1 (Carr et al., 1996; D'Aquila et al., 

1996;  Harris et al., 1998; Montaner et al., 1998). In addition, it has good penetration into 

the CNS, making it an attractive option for patients with HIV-associated CNS disease 

(Yazdanian et al., 1999). 

 

1.3.4.3.2.   Pharmacology 

 

1.3.4.3.2.1.  Dosing 

 

Due to its long half-life, NVP can be given as part of a twice-daily dosing regimen 

(Cheeseman et al., 1995; Miller et al., 

1997)http://www.journals.uchicago.edu/CID/journal/issues/v32n1/000421/000421.text.ht
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ml - 

rf7#rf7http://www.journals.uchicago.edu/CID/journal/issues/v32n1/000421/000421.text.h

tml - rf8#rf8. 

Adults:  The recommended dose of NVP is 200 mg once a day for the first 14 days, 

then 200 mg twice a day in combination with other antiretroviral agents (Mirochnik et al., 

2000). 

 

Paediatrics:  The recommended dose of NVP for children is based on age and weight. 

The oral dose of patients from 2 months up to 8 years of age is 4 mg/kg once daily for the 

first 14 days followed by 7 mg/kg twice daily thereafter. For patients 8 years and older 

the recommended dose is 4 mg/kg once daily for two weeks followed by 4 mg/kg twice 

daily thereafter. The total daily dose should not exceed 400 mg for any patient 

(Mirochnik et al., 2000). 

 

1.3.4.3.2.2. Adverse Effects 

 

The most common adverse effect of NVP is the development of mild or moderate rash in 

32-48 % patients (Havlir et al., 1995; Carr et al., 1996). Severe or life-threatening skin 

reactions have been observed in 0.5 % of patients, including Stevens-Johnson syndrome, 

which is a toxic epidermal necrolysis and hypersensitivity reaction (Murphy and 

Montaner, 1996). NVP may cause severe or life-threatening liver toxicity, usually 

emerging in the first six weeks of treatment (González de Requena et al., 2001). 

 

1.3.4.3.2.3.  Drug interactions 

 

In vivo studies in humans and in vitro studies with human liver microsomes have shown 

that NVP induces the cytochrome P450 enzymatic system (Sahai et al., 1997; Murphy et 

al., 1999). Evidence has shown that rifampicin decreases serum NVP concentrations at a 

level similar to those produced by EFV (Lopez-Cortes et al., 2001) and ritonavir (Burman 

et al., 1999; Pozniak et al., 1999).  It seems reasonable to assume that overall; 

cytochrome enzyme system induction by rifampicin is the main mechanism responsible 

for the decrease in serum concentrations of NVP produced in patients receiving anti-
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tuberculosis therapy that contains rifampicin (Esteban et al., 2001). Due to inductive 

effects of this drug, caution must be exercised when using with methadone, oral 

contraceptives, as well as PIs including ritonavir (Back et al., 2003). 

1.3.4.3.3.   Pharmacokinetics 

 

1.3.4.3.3.1.  Absorption 

 

NVP is readily absorbed (> 90 %) after oral administration in healthy volunteers and in 

adults with HIV-1 infection. Absolute bioavailability in 12 healthy adults following 

single-dose administration was 93 ± 9 % (mean ± SD) for a 50 mg tablet and 91 ± 8 % 

for an oral solution. NVP tablets and suspension have been shown to be comparably 

bioavailable and interchangeable at doses up to 200 mg (Murphy et al., 1999). 

 

1.3.4.3.3.2.  Distribution 

 

NVP is well absorbed orally with > 90 % bioavailability, distributes well to all tissues, 

and is approximately 60 % bound to plasma proteins (Murphy and Montaner, 1996). 

 

1.3.4.3.3.3.  Metabolism 

 

NVP is extensively biotransformed via cytochrome P450 through oxidative metabolism 

to several hydroxylated metabolites namely 2- and 3-hydroxyNVP glucuronide (Riska et 

al., 1996; Riska et al., 1999).  

 

1.3.4.3.3.4.  Excretion 

 

Renal excretion is the primary mode of elimination, accounting for 81.3 ± 11.1 % of the 

radiolabeled dose compared with faeces (10.1 ± 1.5 %). Excretion of the NVP parent 

compound in urine represented approximately 2.7 % of the dose (Riska et al., 1999). 
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1.4. RESEARCH OBJECTIVES 

 

 Immune activated macrophages and microglia release neurotoxins such as oxidative free 

radicals and QA, which are implicated in pathogenesis of different disorders such as AD 

(De la Monte et al., 2000), PD (Koutsilieri et al., 2002) as well as ADC (Mollace et al., 

2001). Recent studies suggest that NNRTIS are of therapeutic importance in patients with 

ADC (Enting et al., 1998; Tashima et al., 1998). 

 

The first objective of this study was conducted to determine the potential neuroprotective 

effects of the NNRTIs, EFV and NVP under a number of neuropathological conditions 

and to attempt to elucidate the mechanism of neuroprotection, should it be occurring, 

using various inorganic studies and biological assays. These experiments include: 

 

1) Measuring the antioxidant and free radical scavenging potential of these agents in the 

presence of various neurotoxins in rat brain homogenates as well as in hippocampal 

neurons.  

2) Metal binding studies involving Fe2+ and Fe3+ were conducted by electrochemical 

analysis. 

 

The second objective was to investigate the effect of NVP and EFV on the enzyme 

responsible for QA production in the KP. Due to the implication of QA in spatial memory 

deficits and progressive degeneration of neurons, a decrease in the synthesis of QA could 

be beneficial. Hence the effect of EFV and NVP on the enzyme responsible for QA 

production will be assessed. Furthermore, due to the inverse relationship between TDO 

activity and brain 5-HT, any effect exhibited by these on TDO activity will be 

investigated by measuring levels of brain 5-HT and related neurotransmitter levels in the 

hippocampus. High brain 5-HT levels are of importance in alleviating or preventing 

depression, hence the effect of NVP and EFV on 5-HT metabolism was also determined.  
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These studies mentioned above would provide important information on the possible 

antidepressant properties of these drugs as well as any effects that they may possess in 

inhibiting the enzyme responsible for the synthesis of endogenous, QA, a potent 

neurotoxin. 

 

It is hoped that this study enhances further understanding of the beneficial use of NVP 

and EFV in ADC. In addition, the knowledge gained could ultimately lead to further 

research on the use of these NNRTIs in the treatment of other neurodegenerative diseases 

associated with depression. 
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CHAPTER 2 

 

 

FREE RADICAL SCAVENGING ACTIVITY 
 

 
2.1. INTRODUCTION 

 

ROS are free radicals generated in many redox processes that induce oxidative 

damage to biomolecules such as proteins, lipids and DNA (Figure 2.1) (Farber, 1994). 

The most commonly formed ROS are O2 
● ¯ and HO●, and non-free radicals, such as 

H2O2 and 1O2. Biomolecule degeneration, followed by initiation and propagation 

driven oxidative chain reactions, cause accelerated aging, inflammation and 

neurodegenerative diseases (Castro and Freeman, 2001), such as AD (De la Monte et 

al., 2000), PD (Koutsilieri et al., 2002) as well as ADC (Mollace et al., 2001). 

 

Cells have several antioxidant defence mechanisms that play an important role in the 

elimination of ROS and lipid peroxides, and therefore, protect the cells against such 

toxic effects of ROS and lipid peroxides (Halliwell, 1991; El-Habit et al., 2000). 

These defence mechanisms include antioxidative enzymes, such as SOD, CAT, and 

GPx and of small molecules such as GSH and vitamins C and E (Fridovich, 1999). 

The efficiency of the antioxidant defence system is altered under pathological 

conditions (Aruoma, 1994; Halliwell, 1994), as the detoxifying mechanisms are often 

inadequate to remove the continuously produced ROS (Halliwell et al., 1992). The 

imbalance between ROS and antioxidant defence mechanisms leads to oxidative 

stress and LP (El-Habit et al., 2000). 
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Figure 2.1.  Source: Alzheimer's Disease Unraveling the Mystery. US Department 

of Health and Human Services, National Institute of Health, NIH Publication 

Number: 02-3782, 2002; 36. (www.nia.nih.gov/Alzheimers/Resources/HighRes.htm). 

 

Based on the growing interest in free radical biology and the lack of effective 

therapies for most degenerative diseases, the search for antioxidants in protection 

against these diseases is warranted (Robak and Marcinkiewicz, 1995). Antioxidants 

play an important role in preventing or alleviating neurodegeneration, by reducing the 

oxidative damage to cellular components caused by ROS (Ceriello, 2003). Hence, 

compounds exhibiting antioxidant activity have the potential to reduce and/ or prevent 

neurodegenerative disorders via direct radical scavenging (Figure 2.2.), chelation of 

catalytic metal ions and delayed oxidation of biomolecules through inhibition of chain 

initiation reactions and continued hydrogen abstraction (Ames et al., 1993; Robak and 

Marcinkiewicz, 1995; Jackson et al., 2002). 
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In vitro model systems to investigate antioxidant activity against various ROS are a 

valuable tool in classifying and screening for potential antioxidants to be used in vivo 

(Halliwell et al., 1995). Hence the evaluation of existing in vitro mechanisms in 

predicting a specific aspect of antioxidant activity behaviour in vivo is of major 

importance (Bartasiute et al., 2007). 

 

 

 

Figure 2.2.  Mechanism of action of vitamin E by binding to the free radical and 

neutralising its unpaired electron (www.uic.edu/.../Vitamin%20E%20Chemistry.htm). 

 

Pharmacological efforts to attenuate oxidative injury in degenerative diseases have 

typically focused on drugs with antioxidant properties. Such approaches provide a 

‘first line of defence’ against free radicals. The free radical scavenging activity of 

antioxidants can be based on the ability to scavenge the stable radical 1, 1-diphenyl-2-

picryl-hydrazil (DPPH) (Oyaizu, 1986). The DPPH free radical (DPPH● ) reacts with 

hydrogen donors to form the corresponding colourless, hydrazine analogue (DPPH: 

H) (Figure 2.3), by either accepting an electron or hydrogen radical to become a stable 

diamagnetic molecule (Soares et al., 1997). In this assay, the nitrogen-centred DPPH 

free radical acts as both an oxidizable substrate and as the reaction indicator molecule 

(Dorman et al., 2003) 
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Figure 2.3.  A modified reaction of DPPH● with an antioxidant (RH) to form the 

stable diamagnetic molecule (DPPH): H. (Prakash, 2001). 

 

This assay provides information on the scavenging ability of antioxidants towards the 

stable free radical. Because of the odd electron, DPPH shows a strong absorption 

band at 517 nm in visible spectroscopy. As this electron becomes paired off in the 

presence of free radical scavenger, the absorption band vanishes, and the resulting 

decolorisation is stochiometric with respect to the number of electrons taken up 

(Badmis et al., 2003). The degree of discoloration indicates the scavenging potential 

of the antioxidant.   

 

There exist two mechanisms for antioxidants to scavenge DPPH (Brand-Williams et 

al., 1995; Litwinienko and Ingold, 2003). The first is a direct H atom- abstraction 

process (Equation 2.1.), and the second is a proton concerted electron-transfer process 

(Equation 2.2.). 

 

DPPH ●  +  RXH  →  DPPHH + RX ●   (1)      Equation 2.1. 

 

DPPH●  +  RXH  →  DPPH⎯  +  RXH● +    → DPPHH + RX ●   (2)     Equation 2.2. 

Where X represents O, N, S or C 



Free Radical Scavenging Activity 

 47

  

2.2.  THE COMPARATIVE FREE RADICAL SCAVENGING  

REACTIONS AND ANTIOXIDANT ACTIVITIES OF NVP AND   

EFV. 

 

2.2.1.  Introduction 

 

The brain is particularly susceptible to free radical damage because of its high 

utilization of O2 and its relatively low concentration of antioxidant enzymes and free 

radical scavengers (Brannan et al., 1981; Reiter, 1995; Reiter, 1998).  The mechanism 

by which free radicals induce tissue injury is attributed to the ability to initiate the 

apoptosis of brain cells (Lipton and Nicotera, 1998; Raha and Robinson, 2001), hence 

agents that reduce free radical generation could potentially delay the progression of 

neurodegeneration. This experiment was conducted to determine the free radical 

scavenging effects of increasing concentrations of NVP or EFV (100-200 µg/ml) on 

the DPPH radical in vitro. 

 

2.2.2.  Materials and Methods 

 

2.2.2.1. Chemicals and Reagents 

EFV and NVP were kindly supplied by Aspen Pharmaceutical Company, South 

Africa. 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) was purchased from the Sigma 

Chemical Corporation, St. Louis, MO, U.S.A. DPPH, efavirenz and nevirapine were 

dissolved in absolute ethanol before use. 

2.2.2.2. DPPH Assay 

 

The free radical scavenging activity of EFV and NVP was measured by 1, 1-diphenyl-

2-picryl-hydrazil (DPPH) using a modified method of Brand-Williams et al., (1995).  

 

Briefly, 1.2 ml of DPPH (0.1 mM) dissolved in absolute ethanol was incubated for a 

period of 5 hours with 0.3 ml of NVP or EFV at final concentrations of 100 µg/ml and 
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200 µg/ml. The absorbance was measured at 517 nm against absolute ethanol as the 

blank at different time intervals for 5 hours. In the presence of the compounds capable 

of donating H-atom or an electron there is a decrease in absorbance at 517 nm. The 

lower absorbance of the reaction mixture indicates a higher free radical scavenging 

capacity.  

 

The DPPH radical scavenging activity was calculated using the following equation:  

 

Scavenging activity (%) = {(Ao – A1)/Ao} x 100  

 

Where Ao is the absorbance of the control reactions which consisted of DPPH and 

were free of EFV and NVP. A1 is the absorbance of DPPH in the presence of the test 

compound. 

 

2.2.2.3. Statistical Analysis 

 

All results were analyzed using a one-way analysis of the variance (ANOVA) 

followed by the Student-Newman-Keuls Multiple Range Test. The level of 

significance was accepted at p < 0.05 (Zar, 1974).  

 

2.2.3. Results 

 

Fig. 2.4. shows that both NNRTIs have free radical scavenging properties with NVP 

being more effective than EFV. At 200 µg/ml NVP scavenges approximately 21 % of 

the DPPH free radicals while EFV scavenges approximately 13 %. 
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Figure 2.4:  Percentage scavenging activity of DPPH radical by NVP and EFV. 

Each point represents the mean ± S.D. (n=3). 

 

 

2.2.4.  Discussion 

 

The pivotal role of radical damage in various neurological conditions has stimulated 

research on the potential use of antioxidants to slow or prevent the progression of 

these processes (Bartasiute et al., 2007). Research has demonstrated that antioxidants 

have the ability to offer neuroprotection against free radical induced injury and may 

be beneficial in the prevention or treatment of neurodegeneration (Anoopkumar-

Dukie et al., 2003; Santamaria et al., 2003).  

 

Oxidative degradation of susceptible biomolecules and cellular systems is a multi-step 

process involving chain initiation and propagation steps (Halliwell and Gutteridge, 

1989). The prevention of the chain initiation step by scavenging various ROS is 
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considered to be an important antioxidant mode of action. Therefore, it was 

considered important to characterize the ability of these NNRTIs to scavenge the 

DPPH radical.  

 

The model of scavenging the stable DPPH radical is a widely used method to evaluate 

antioxidant activities. This study shows that both agents effectively scavenge the 

DPPH radical (Figure 2.4.). The effect of antioxidants on DPPH radical scavenging is 

due to their hydrogen donating ability. Based on the structure of EFV and NVP, it is 

possible that the pyridine moieties as well as the ketone group on EFV are responsible 

for free radical scavenging activities as these have delocalized electrons to donate. 

 

Through hydrogen donation, these NNRTIs prevent the abstraction of hydrogen from 

susceptible PUFAs and therefore the initiation of free radical-mediated chain 

reactions in cells. Hence, these results suggest that the antioxidant mechanism 

displayed by both agents, are possibly due to oxidative chain termination by radical 

scavenging capacity. 

 

2.3. Conclusion 

The antioxidant activity of NVP and EFV can be correlated to the radical -scavenging 

potency exhibited by these agents in this study. 
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CHAPTER 3 

 

LIPID PEROXIDATION 

 

 

3.1.  INTRODUCTION 

 

The PUFAs composition of membrane phospholipids plays a direct role in a variety of 

multicellular processes, including inflammation (Grimble, 1998) and immunity 

(Yehuda and Mostofsky, 1997) with implications for neurodegenerative diseases. 

While several biomolecules may be affected, oxidative damage to lipids is of 

particular significance especially in the CNS because of its enrichment in PUFAs 

(Bassett and Montine, 2003) such as docosahexanoic acid (22:6) (Moriguchi et al., 

2000 ; Crawford et al., 2003), linoleic acid (18:2) and arachidonic acid (20:4) (Gamor 

et al., 1999). PUFAs composition of neural membranes is a key factor for brain 

structural development and biologic functions (Crawford et al., 2003) and enhanced 

peroxidation of PUFAs, leads to cellular oxidative stress and generation of reactive LP 

products such as MDA (Esterbauer, 1982). The amount of MDA present is measured 

as an index of LP and marker of oxidative stress (Janero, 1990). 

Oxidation of lipids in biological systems proceeds via a chain reaction consisting of 

three phases: initiation, propagation, and termination as shown in Figure 3.1. 

(Halliwell and Gutteridge, 1990). In the former case, peroxidation occurs by 

abstraction of a hydrogen atom from the lipid substrate (LH) to generate a highly 

reactive lipid radical (L●).  The lipid peroxyl radical (LOO●) formed in the 

propagation phase, can abstract a hydrogen atom from a number of in vivo sources, 

such as DNA and proteins, to generate free radicals and lipid hydroperoxides (LOOH) 

(Bentinger et al., 2007). These in turn propagate the radical chain which once 

initiated, is extremely difficult to terminate (Krinsky, 1992). The use of antioxidants 

such as -tocopherol ( -TOH) is another mechanism essential to limit radical-

induced LP (Palozza and Krinsky, 1991).  
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Figure 3.1.  Overview of LP. Abbreviations: NRP, non radical product; LOOH, 

lipid hydroperoxide; -TOH, -tocopherol; -TO●, -tocopherol radical; LH, lipid 

substrate; LOO●, lipid peroxyl radical. (Waldeck and Stocker, 1996). 

 

 

LP products modify the physical characteristics of biological membranes (Servanian 

and Ursini, 2000), and because direct analysis of endogenous primary LP products is 

complicated, the extent of LP is typically assessed by measuring levels of secondary 

oxidation products (Janero, 1990). The primary lipid oxidation products, LOOH, are 

unstable and decompose to form secondary products such as aldehydes and ketones 

through a multitude of reaction pathways (Esterbauer and Schaur, 1990). The 

resulting diverse array of breakdown products, coupled with the small in vivo 

concentration of these products, presents a challenge for accurate quantification of LP 

(Janero, 1990). 
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 Figure 3.2.  Reaction between 1 molecule of MDA and 2 molecules of TBA to 

produce a pink MDA-TBA complex (modified from Mead et. al., 1986). 

  

The most used assay for LP is the thiobarbituric acid (TBA) test, which relies on the 

production of a coloured adduct from the reaction of LP products and TBA (Janero, 

1990). The test material is heated at low pH with TBA resulting in a pink chromogen, 

formed by a MDA-TBA complex (Figure 3.2.) which is extracted into butanol and 

measured by absorbance at 532 nm or by fluorescence at 553 nm (Gutteridge and 

Halliwell, 1990). Some of the MDA detected in the TBA test result from the 

breakdown of LOOH during the peroxidation process itself (Janero, 1990), but most is 

generated during the acid-heating stage of the test (Gutteridge and Halliwell, 1990). 

 

 However, because TBA reacts with a number of other oxidation products including 

other unsaturated aldehydes (Kosugi et al., 1987) and endoperoxides from enzymatic 

routes (Shimizu et al., 1981), this test is non-specific (Janero, 1990). Therefore, the 

TBA test can only give a crude measure of LP by quantifying MDA levels formed.  

 

 

 

 

 

 

 

 

 

 



Lipid Peroxidation 

 54

3.2.  THE COMPARATIVE EFFECTS OF NVP AND  EFV ON QA- 

INDUCED LIPID PEROXIDATION IN RAT BRAIN     

HOMOGENATE IN VITRO. 

 

 

3.2.1.   Introduction  

 

QA is involved in the neurocytotoxicity associated with several major inflammatory 

brain diseases (Stone, 2001) such as ADC (Heyes et al., 1991) and other viral brain 

infections (Heyes et al., 1992). The massive elevation of QA concentration within the 

brain produced by immune activated macrophages and activated microglia in 

pathological states such as ADC and HSE (Heyes et al., 1998; Huengsberg et al., 

1998; Pláteník et al., 2001),   forms an integral part of the inflammatory response in 

the CNS (Heyes et al., 1992; Stone, 1993) and exerts neurotoxicity through 

excitotoxic (Schwarcz et al., 1983; Stone 1993) and oxidative (Santamaría et al., 

2001) mechanisms.  

 

Since QA-induced neurotoxicity is mediated at least in part by generation of 

excitotoxins and free radicals in the brain, the following study was aimed at 

investigating the effect of QA on LP in rat brain homogenate in vitro, in the absence 

and presence of NVP or EFV. 

 

3.2.2. Materials and Methods 

 
3.2.2.1. Chemical Reagents 

QA, butylated hydroxytoluene (BHT), 2-thiobarbituric acid (TBA) and 1, 1, 3, 3-

tetramethoxypropane (99 %) were purchased from Sigma Chemical Corporation, St 

Louis, MO, U.S.A. EFV and NVP were kindly supplied by Aspen Pharmaceutical 

Company, Port Elizabeth, South Africa. Trichloroacetic acid (TCA) ethanol and 

butanol were purchased from Saarchem, Johannesburg, South Africa. All other 

reagents used were of the highest quality available. QA, TBA and TCA were prepared 

by dissolving in Milli-Q water while NVP, EFV and BHT were prepared by 

dissolving in absolute ethanol. 
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3.2.2.2. Animals 

 

Adult male Wistar rats, purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) were used throughout the study. The animals were 

housed under artificial illumination with a daily photoperiod of 12 hours (lights on at 

06h00). The animal-house temperature was maintained at a constant 20 oC to 24 oC, 

while an extractor fan ensured the constant removal of stale air. The rats (200-250 g) 

were housed five per cage with food and water provided ad libitum. The Rhodes 

University Animal Ethics Committee approved all protocols for the experiments. 

 

3.2.2.3.  Brain Removal 

Rats were sacrificed by neck fracture and decapitated. The brain was exposed by 

making an incision through the bone on either side of the parietal structure, from the 

foramen magnum to near the orbit. The calvarium was removed, exposing the brain, 

which was easily removed for use in experiments. 

 

3.2.2.4.   Preparation of Tissue 

Once the brain was removed, it was weighed and rapidly homogenized in a glass-

teflon hand held homogenizer in iced cold 0.1 M phosphate buffered saline (PBS), at 

pH 7.4 to yield a 10 % w/v homogenate. This was used immediately for assay. PBS 

buffer was used as it has been shown not to scavenge free radicals (Anoopkumar- 

Dukie et al., 2001).  

 

3.2.2.5.  Preparation of the MDA Standard Curve 

 

1, 1, 3, 3-Tetramethoxypropane was used as a standard. Varying concentrations of the 

standard were prepared in reaction tubes using PBS as the diluent. To these tubes 

BHT (0.5 ml) and TCA (1 ml) was added. An aliquot of 2 ml of this solution was 

added to TBA (0.5 ml) and incubated for 1 hour. A calibration curve was generated 

by measuring the absorbance at 5 nmole intervals. The absorbance was read at 532 
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nm using a GBC UV/VIS 916 spectrophotometer and plotted against the 

concentration (Appendix I). 

 

3.2.2.6.  Lipid Peroxidation Assay  

 

A modification of the TBA Assay as described by Placer et al. (1966) was used.  

 

Triplicate samples of rat brain homogenate (1 ml) contained 1mM QA (100 µl) in the 

absence and presence of increasing concentrations (0-1mM) of NVP AND EFV (100 

µl). The samples were incubated at 37 oC for an hour in an oscillating water bath. 

Control samples did not contain QA or test compounds. The reaction was terminated 

at the end of the incubation period by the addition of 1 ml TCA (15 % in milli-Q 

water) and 0.5 ml BHT (0.5 % in ethanol) to each sample. The samples were heated at 

95 oC for 15 minutes in a water bath to release protein-bound MDA. Following this, 

samples were cooled and centrifuged at 2000 x g for 20 minutes to yield a protein-free 

supernatant. This supernatant (2 ml) was then transferred to a clean set of test tubes 

and 0.5 ml TBA (0.33 % in milli-Q water) was added. All samples were heated at 95 
oC for an hour in a water bath to allow for the formation of the MDA-TBA complex. 

After rapidly cooling the test tubes on ice, 2 ml butanol was added to extract the pink 

complex. The samples were then centrifuged at 2000 x g for 15 minutes. An aliquot of 

the extracted complex in butanol (the top layer) was read at 532 nm using a GBC 

UV/VIS spectrophotometer. MDA levels were then determined from a standard curve 

generated from 1, 1, 3, 3-tetramethoxypropane as described in section 3.2.2.5. Final 

results were expressed as MDA (nmoles /mg tissue). 

 

3.2.2.7. Statistical Analysis 

 

This was performed as described in section 2.2.2.3. 

 

3.2.3. Results 

 

Figure 3.3. illustrates that 1 mM QA significantly increases the amount of MDA in 

comparison to control (p < 0.001), and both agents blunt the 1 mM QA-induced LP. 

The latter response from EFV proceeds in a concentration-dependent manner and 
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suppression of MDA is highly significant for each concentration of the drugs used in 

comparison to samples with QA alone. The drugs alone have no significant effect on 

LP (p > 0.05). 
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Figure 3.3.  Effect of 1 mM QA alone and in combination with either EFV or NVP 

on LP in rat brain homogenate in vitro. Each bar represents the mean ± SD (n = 5). # 

(p < 0.001) and ns (p > 0.05) in comparison to control and * * * (p < 0.001); * * (p < 

0.01) and * (p < 0.05) in comparison to 1 mM QA (ANOVA and Student–Newman–

Keuls Multiple Range Test). 

 

3.2.4.   Discussion 

 

Rios and Santamaria (1991) reported that the effect of QA on LP involves increased 

free radical generation and therefore QA-induced neurotoxicity could be partially 

attenuated by free radical scavengers (Stone et al., 1993; Tan et al., 1993; Behan et 

al., 1999). The ability of these agents to prevent the initiation of free radical-mediated 
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chain reactions associated with PUFAs and consequently LP possibly emanates from 

the possible free radical scavenging properties demonstrated in chapter 2.  

 

The oxidising activity of QA on LP in vitro requires the obligatory presence of Fe2+ 

ions and this mechanism involves Fe2+- chelation by QA (Stipek et al., 1997). Tissue 

homogenization releases metal ions especially Fe from storage sites within cells 

(Barber, 1963; Gutteridge and Stocks, 1976). Ultraviolet-visible absorption spectra 

have shown the ability of 2-pyridinecarboxylic moiety containing compounds such as 

QA to chelate Fe2+ ions (Figure 3.4) (Iwahashi et al., 1999).  

 

 
 

Figure 3.4.  Structure of 2-pyridinecarboxylic acid moiety/ Fe2+ ion complex 

(Iwahashi et al., 1999). 

 

 

Upon addition of H2O2 the visible band disappeared, indicating the oxidation of Fe2+ 

ions in the Fe2+ ion / 2, 6-pyridinecarboxylic complex  (Iwahashi et al., 1999) to Fe3+ 

ions with the subsequent formation of the potent HO● radical (Equation 3.1.). This 

radical is potent enough to initiate LP.  
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Fe 2+ / 2, 6-pyridinecarboxylic + H2O2 

→ Fe 3+ + OH - + HO● + 2, 6-pyridinecarboxylic.                              Equation 3.1. 

 

The ability of the QA-Fe2+ complex to inhibit the auto-oxidation of Fe2+ (Murakami et 

al., 1998), allows Fe to be kept in the ferrous form which participates in the Fenton 

reaction, hence weak chelation of Fe2+ by QA could enhance the Fenton reaction and  

subsequently, LP. Furthermore the potential of Fe3+ to undergo redox recycling 

(Gutteridge, 1994) in the presence of O2
●¯ provides a constant supply of Fe2+ for the 

Fenton reaction.  

 

Stipek and his co-workers in 1997 postulated that in the presence of desferoxamine, 

an Fe chelator, the increase in QA-induced LP is abolished. Therefore it is evident 

that the ability of these NNRTIs to ameliorate QA-induced LP is possibly related to 

an ability to strongly bind Fe2+ and/ or Fe3+. If these agents strongly bind endogenous 

Fe2+ in rat brain homogenate, then fewer of these ions will be available to participate 

in the Fenton reaction and bind QA to form the QA-Fe2+ complex. Similarly strong 

Fe3+ binding by these NNRTIs would prevent the redox recycling of this ion and the 

subsequent formation of Fe2+. Therefore the possibility of NVP and EFV binding Fe2+ 

and Fe3+ ions shall be investigated in Chapter 5. 
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3.3. THE EFFECT OF QA ALONE AND IN COMBINATION WITH 

NVP OR EFV IN THE RAT HIPPOCAMPUS IN VIVO. 

 

3.3.1.    Introduction 

 

The intrahippocampal (i.h) injection of QA, induces neuronal lesions (Schwarcz et al., 

1983) causing neurodegeneration (Southgate and Daya, 1999) through excitotoxicity 

and oxidative stress. Although both agents significantly (p < 0.001) protect against 

QA-induced LP in vitro (section 3.2.3.), this experiment aims to determine if NVP 

and EFV could alter the deleterious effects initiated by QA in vivo on lipid 

biomolecules. 

 

3.3.2.  Materials and Methods 

 

3.3.2.1. Chemicals and Reagents 

 

As described in section 3.2.2.1. Sodium phenobarbitone was purchased from Merck, 

Germany and was used at a concentration of 60 mg/ml. 

 

3.3.2.2.  Animals 

 

Adult male Wistar rats were purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) and cared for as described in section 3.2.2.1. 

 

3.3.2.3. Drug Treatment 

 

The rats were divided into four groups of five each (Table 1).The control and QA 

groups received PBS while the remaining two groups received daily doses of 5 mg kg-

1 (0.25 mL) of drug (NVP or EFV) injected intraperitoneally (i.p), five days prior to 

i.h QA injection. On the 6th day, after dosing the animals with the respective drug or 

vehicle, the animals were bilaterally injected with QA directly into the hippocampal 

region. QA was dissolved in PBS made up to pH 7.4. A dose of QA (120 nmol) was 

used to induce neurotoxicity as this concentration of QA is known to cause severe 
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behavioural disturbances and total loss of hippocampal neurons (Schwarcz et al., 

1984).  Following the i.h injections of QA, the animals in group 3 and 4 received 

subsequent daily doses of the drugs respectively, each day for five days, while as 

before; the animals in groups 1 and 2 received daily doses of drug vehicle (PBS) for 

five days. 

 

Table 3.1.  Treatment regime for each group of animals 

 

Treatment 

group 

Daily i.p injection 

for 5 days prior to 

i.h injection. 

i.h injection Daily i.p injection for 5 

days after stereotaxic 

surgery 

1 (control) drug vehicle 2μL  PBS drug vehicle 

2 (drug (-) ) drug vehicle 120 nmol QA drug vehicle 

3 (drug (+) ) 5 mg kg-1 EFV 120 nmol QA 5 mg kg-1 EFV 

4 (drug (+) ) 5 mg kg-1 NVP 120 nmol QA 5 mg kg-1 NVP 

 

 

3.3.2.4. Surgical Procedures 

 

3.3.2.4.1. Anesthesia 

 

Diethyl ether anesthesia was employed for all surgical procedures carried out. 

Animals were placed, one at a time, in a desiccator containing cotton wool soaked in 

diethyl ether. Once the animals were sedated, and were removed and placed on the 

operating surface. A small conical flask containing cotton wool soaked in ether was 

placed approximately 3cm from the rats’ nose. This flask remained in this position 

throughout surgery, except in cases where respiration became too weak. A good 

indication of the depth of anesthesia was monitored by the colour of the limbs and 

tail, which displayed a faint, almost pale pinkness. This was indicative of the optimum 

level of anesthesia, meaning a satisfactory rate and depth of respiration with good 

narcosis. A purple colour of the limbs was an indication of cyanosis. 
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3.3.2.4.2.  Bilateral Intrahippocampal QA Injection 

 

QA was injected intrahippocampally using stereotaxic surgical techniques. Each 

animal was anaesthetized as described above in section 3.3.2.4.1. QA was dissolved 

in phosphate buffered saline (PBS), pH= 7.4, and (120 nmol in 2 µL) was infused 

bilaterally into the hippocampii employing rat brain stereotaxic apparatus (Stoelting, 

IL, USA). The skull was orientated according to the König and Klippel stereotaxic 

atlas (1963). After a saggital cut in the skin of the skull, the bregma suture was 

located and bilateral holes were manually formed with a 21 gauge needle at the 

following coordinates; 4.0 mm anterior, 2.5 mm lateral to the saggital suture. Care 

was taken not to lesion the meninges. A Hamilton syringe, with a 26s gauge cannula 

with an outer diameter of 0.47 mm was used to inject 120 nmol of QA in 2 µL of 

PBS, pH= 7.4., 3 mm ventral of the dura. The rats in the control group were sham-

lesioned with injections containing PBS only. Each injection was administered at a 

rate of 1 µL per minute and the cannula was left in situ for a further 2 minutes to 

allow for passive diffusion away from the cannula tip and to minimize spread into the 

injection tract. The cannula was then slowly removed and the scalp was closed with 

sutures. Animals were kept warm until recovery from the anesthesia. 

 

3.3.2.4.4. Sham Lesioned Rats 

 

The rats used as controls were subjected to the same surgical procedures described in 

section 3.3.2.3. However, stereotaxic injections into the hippocampus were free of QA 

and comprised solely of PBS. 

 

3.3.2.4.5. Dissection of the Hippocampus 

 

On the 6th day following the i.h injection of QA, the brains were removed as described 

in section 3.2.2.3 and the hippocampii rapidly dissected according to a modified 

method of Glowinski and Iversen, (1966). 
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3.3.2.5.    Preparation of Tissue 

 

The preparation for each portion of the hippocampal tissue was performed as 

described for each whole brain in section 3.2.2.4. However, the homogenate 

concentration was 5 % w/v instead of 10 % w/v. 

 

3.3.2.6. Lipid Peroxidation Assay 

 

The assay was performed as described in section 3.2.2.6. However, no exogenous QA 

or test compound was added and the first incubation at 37 oC for an hour was omitted. 

The assay resumed with the termination of LP by addition of TCA and BHT to the 

triplicate samples of rat brain homogenate. 

 

3.3.2.7. Statistical Analysis 

 

This was performed as described in section 2.2.2.3. 

 

3.3.3.   Results 

 

As shown in Figure 3.5., a two-fold increase (p < 0.001) in MDA levels in 

comparison to the control treated rats is observed following i.h. injection of QA (120 

nmol). However, single daily i.p doses of either NVP or EFV (5 mg kg-1) for five days 

are able to significantly reduce QA-induced MDA production (p < 0.001). 

Furthermore NVP significantly reduces LP to below basal control levels. 
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Figure 3.5.  Effect of QA alone and in combination with NVP or EFV in rat 

hippocampal homogenate in vivo. Each bar represents the mean ± S.D; n = 5. # 

(p < 0.001) in comparison to control; * * * (p < 0.001) in comparison to QA 

(ANOVA and Student–Newman–Keuls Multiple Range Test).  

 

3.3.4.  Discussion 

 

The potent in vivo induction of LP by QA is in agreement with the in vitro study 

discussed in section 3.2.3, which shows severe QA-induced LP in rat brain 

homogenate. The intrahippocampal administration of QA results in an increase in 

MDA level production (Figure 3.5.). These results are parallel to those of Santamaria 

and Rios (2003), who postulated that QA induces LP in the CNS by overstimulating 

NMDA receptors resulting in excessive intracellular Ca2+ influx, which sets off a 

cascade of events that culminate in free radical generation, subsequently causing 

neuronal damage. Free radical formation therefore significantly contributes to QA-

induced damage. During LP, sulfhydryl groups on NMDA receptors of the 
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glutamatergic system in the hippocampus are damaged (Van der Vliet and Bast, 

1992). Hence QA-induced LP in vivo may inactivate these receptors, consequently 

reducing the incidence of LTP at the glutamatergic synapses which have survived the 

excitotoxic insults (Müller, 2006). Although the amelioration of QA-induced LP by 

these agents could improve memory function, this possibility will be investigated in 

Chapter 8. 

 

Antioxidants are necessary for preventing the formation of free radicals and they 

inhibit some of the deleterious actions of free radicals on lipids, DNA and proteins 

(Halliwell, 1996). The observed reduction in MDA levels in rats following 

administration of NVP and EFV is one indicator of the antioxidant and free radical 

scavenging activity of these agents. 

 

Since high Fe levels accumulate in the basal ganglia following single unilateral 

injections of QA into rat ventral-striatal regions (Shoham et al., 1992), it is possible 

that intrahippocampal injections of QA cause a similar effect, consequently forming 

complexes with Fe which may enhance HO● production and further initiate LP in this 

manner (Müller, 2006). The decrease in QA-induced MDA production demonstrated 

by these agents indicates a possibility of Fe binding and free radical scavenging 

activity. This further strengthens the argument that these NNRTIs have free radical 

scavenging activities. 

 

Although NVP has been shown to effectively reduce LP associated with tissue injury 

(Strzelecki et al., 2001), there is no evidence of its antioxidant activity and 

biochemical effect in an in vivo animal study. It may be argued that binding of MDA, 

the product of QA-induced LP by NVP, produces MDA levels that are below those of 

the control. However, instead, NVP could possibly be competing with QA to bind 

NMDA receptors. This points to the possibility that NVP could act directly on these 

receptors or indirectly via second messenger processes that in turn influence NMDA 

receptor processes. Further studies have to be implemented in order to augment this 

possibility. 
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3.3.5.    Conclusion 

 

Although, QA significantly induces LP in rat brain homogenates, NVP and EFV have 

the ability to blunt this effect. Hence this study provides substantial and novel 

information regarding the potential of these agents as free radical scavengers in QA-

induced neurodegenerative disorders. 
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CHAPTER 4 

 

SUPEROXIDE ANION ASSAY 
 

 

4.1. INTRODUCTION 

 

The brain uses the most energy in the human body, accounting for 20 % of the total 

oxygen consumption despite accounting for only 2 % of the total body mass (Papa, 

1996). The mitochondria consume nearly 85 % to 90 % of the cell’s O2 to support 

oxidative phosphorylation and subsequent synthesis of ATP.  

 

 

 

 

Figure 4.1.   Mitochondrial superoxide production and disposition. (Szeto, 2006). 
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O2 normally serves as the ultimate electron acceptor and is reduced to water. 

However, electron leakages through complexes I and III to O2 generates ROS such as 

O2
●¯ (Turrens, 1997) (Figure 4.1).  

 

SODs such as MnSOD and CuZnSOD, catalyze the dismutation of O2
●¯ to H2O2 and 

molecular O2, hence maintaining intracellular concentrations of O2
●¯ under control 

(Equation 4.1).  

 

 

        2O2
●¯ + 2H+        SOD            H2O2 + O2                Equation 4.1 

 

ROS concentrations are governed by the balance between the production of ROS and 

their elimination by antioxidants. An appropriate balance is crucial to normal cell and 

tissue function. Under pathological conditions, enzyme activity is reduced, hence 

there exists an imbalance between the amount of O2
●¯ formed and the ability of the 

enzymes to remove it and consequently leading to oxidative stress (Muscoli et al., 

2003). Oxidative stress, leading to the formation of free radicals, has been implicated 

in a final common pathway for neurotoxicity in a wide variety of acute and chronic 

neurologic diseases (Lipton and Rosenberg, 1994). Excessive stimulation of 

excitatory amino acid receptors in these disorders may trigger the production of free 

radicals. In particular, neurotoxicity associated with overstimulation of NMDA 

receptors is thought to be mediated by an excessive Ca2+ influx, leading to a series of 

potentially neurotoxic events (Lipton and Rosenberg, 1994). Such events include 

NOS activation and Ca2+ overload of mitochondria, leading to the generation of more 

O2
●¯ and NO (Lafon-Cazal et al., 1993). 

 

An increasing amount of O2
●¯ interacts with NO to yield the highly toxic ONOO− 

(Equation 4.2), which causes oxidative and nitrative damage to the mitochondria and 

ultimately leads to cell death pathways (Figure 4.2) (Radi et al., 1991; Van der Vliet 

et al., 1994). 
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               O2

●¯ + NO●                      ONOO¯                Equation 4.2 
 

 

Excess O2
●¯ leads to the formation of many other ROS, including OH● and 

perhydroxyl radicals (OH2
●). At physiological pH, O2

●¯ chemically dismutates to 

H2O2, which further reacts with O2
●¯ in the Haber-Weiss reaction to form the highly 

destructive OH● (Cheeseman and Slater, 2003).  Accumulation of toxic free radicals 

increases the susceptibility of brain tissues to oxidative damage leading to either 

direct injury via membranous LP, protein and DNA oxidation or indirect damage 

through inflammation and apoptosis (Figure 4.2) (Traystman et al., 1991; Kuroda et 

al., 1997; Chan, 2001).  

 

 

 

 

Figure 4.2. A diagram showing the effects of superoxide anion (O2
●¯) and its 

derivates on biological molecules (Afonso et al., 2007). 
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One strategy to protect the brain is to decrease oxidative damage by scavenging the 

excessively produced toxic free radicals. The nitroblue tetrazolium (NBT) assay was 

used as a reliable method to assay for O2
●¯ generated in the presence of the drugs in 

combination with toxic agents such as potassium cyanide (KCN) and QA. The 

principle behind the assay involves the reduction of NBT to water insoluble nitroblue 

diformazan (NBD), which can be extracted using glacial acetic acid and quantified by 

spectrophotometric analysis. 
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4.2. THE COMPARATIVE EFFECTS OF EFV AND NVP ON 

CYANIDE-INDUCED SUPEROXIDE ANION GENERATION IN 

THE RAT HIPPOCAMPUS IN VITRO. 

 

 

4.2.1. Introduction 

 

Cyanide, a well established respiratory poison, exerts its toxic effects by inhibiting 

cytochrome oxidase a1a3, the terminal electron acceptor enzyme of the mitochondrial 

electron transport chain (ETC) (Albaum et. al., 1946; Isom and Way 1984). These 

electrons have the capacity to leak out of the mitochondria resulting in the generation 

of free radicals, which exert destructive effects on cellular components with 

neurodegeneration being one such consequence. Other studies have shown that 

cyanide produces elevated levels of brain Ca2+ (Johnson et. al., 1987), which is 

associated with free radical-induced damage of neuronal membranes (Braughler et. 

al., 1985). 

 

Antioxidant enzymes such as SODs, as well as antioxidant vitamins A, C and E 

protect biological membranes from the destructive effects of free radicals (Halliwell 

and Guteridge, 1989; Fahn and Cohen, 1992; Fang et al., 2002). Oxidative stress is 

believed to play an important role in cyanide induced neurotoxicity due to the 

inhibition of antioxidant enzymes by cyanide (Ardelt et. al., 1989). Such 

neurotoxicity has been recognized to cause cellular anoxia in the brain (Ballantyne, 

1987; Yamamato and Tang, 1996) and dopaminergic toxicity accompanied by 

impaired motor function (Gunasekar et. al., 1996). Hence, the administration of 

antioxidants to cyanide toxified animals should have ameliorating influences on the 

severity of the resultant tissue damage.  

 

The objective of this study was to therefore ascertain the protective effects of NVP 

and EFV against cyanide induced O2
●¯ in rat brain homogenate.   
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4.2.2. Materials and Methods 

 

4.2.2.1. Chemicals and Reagents 

 

KCN, nitroblue diformazan (NBD), nitroblue tetrazolium (NBT) and QA were 

purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. Glacial acetic 

acid and ethanol was purchased from Saarchem, Johannesburg, South Africa. All 

other chemicals used were of the highest quality available from commercial sources.  

 

4.2.2.2. Animals 

 

Adult male rats of the Wistar strain, weighing between 250-300 g were purchased 

from the South African Vaccine Producers (Johannesburg, South Africa). The animals 

were housed in a controlled environment with a 12-hour light: dark cycle, and were 

given access to food and water ad libitum. The Rhodes University animal ethics 

committee approved protocols for the experiments 

 

4.2.2.3. Brain Removal 

 

Rats were sacrificed and the brains removed s described in section 3.2.2.3. 

 

4.2.2.4. Preparation of Tissue 

 

Each brain was weighed and rapidly homogenized in a glass-teflon hand held 

homogenizer in ice cold 0.1 M PBS at pH 7.4 to obtain a homogenate concentration 

of 10 % w/v. This is necessary to prevent lysosomal damage of the tissue. PBS buffer 

was used as it has been shown not to scavenge free radicals (Anoopkumar- Dukie et 

al., 2001).  

 

4.2.2.5. Preparation of  the NBD Standard Curve 

 

Nitroblue diformazan (NBD) was used as a standard. A series of NBD standards (0-

400 nmoles/ml) were prepared in triplicate using glacial acetic acid as a diluent to 

give a final volume of 1 ml. A calibration curve was generated by measuring the 
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absorbance at 10 µM intervals at 560 nm using a GBC UV/VIS 916 

Spectrophotometer and plotting these against the molar equivalent weight of NBD 

(Appendix II). 

 

4.2.2.6. Nitroblue Tetrazolium Assay 

 

The assay procedure was a modification of Das et al., 1990; Ottino and Duncan, 1997. 

Samples of rat brain homogenate (1 ml), in triplicate, contained 1 mM KCN (250 µL) 

in the absence and presence of increasing concentrations of either NVP or EFV (250 

µL) at final concentrations of 0.125, 0.25, 0.5, 0.75 and 1 mM and 0.4 ml NBT (0.1 % 

dissolved in ethanol and then made up to the required volume with milli-Q water). 

The samples were incubated in an oscillating water bath for 1 hour at 37 oC. Control 

samples did not contain KCN, NVP or EFV. 

 

The reaction was terminated and the NBD formed extracted by centrifuging the 

samples for 10 minutes at 2000 x g followed by resuspension of the pellets with 2 ml 

of glacial acetic acid. To remove insoluble debris, the samples were centrifuged for 5 

minutes at 2000 x g. An aliquot of the supernatant (extracted NBD in glacial acetic 

acid) was read at 560 nm using a GBC UV/VIS Spectrophotometer. NBD levels were 

then determined from a standard curve generated as described in section 4.2.2.5. Final 

results were expressed as diformazan (nmoles /mg tissue). 

 

4.2.2.7. Statistical Analysis 

 

This was performed as described in section 3.2.2.7. 

 

4.2.3. Results 

 

Figure 4.3. illustrates that 1 mM KCN has a significant effect (p < 0.001) on 

O2
●¯generation in vitro, in comparison to the control. Co-incubation of rat brain 

homogenate with EFV and NVP significantly (p < 0.001) reduces this effect. These 

drugs alone have no effect on O2
●¯ generation. 
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Figure 4.3.  The effect of NVP and EFV on 1 mM KCN-induced O2
●¯ generation 

in whole rat brain homogenate in vitro. Each bar represents the mean ± S.D; (n=5). # 

(p < 0.001) in comparison to control; *** (p < 0.001), ** (p < 0.01), * (p < 0.05) and 

ns (p > 0.05) in comparison to KCN (ANOVA and Student-Newman-Keuls Multiple 

Range Test). 

 

 

4.2.4. Discussion 

 

The results from this chapter demonstrate that KCN is a potent neurotoxin which 

results in the generation of O2
●¯ in vitro as evident from Figure 4.3. Cyanide inhibits 

antioxidant enzymes and disrupts the mitochondrial ETC (Way, 1984), and 

consequently the homeostatic ATP-dependent Na2+/ K+ and Ca2+ pumps. This leads to 

increased levels of intracellular Ca2+, which activate numerous neuronal Ca2+-
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dependent events and ultimately resulting in oxidative stress and free radical 

generation that will cause cellular damage (Southgate and Daya, 1999; Andreyev et 

al., 2005).  

 

As stated earlier, the destructive effects exerted on cellular components by ROS, 

culminate in neurodegenerative diseases. Free radical scavengers, therefore become 

increasingly important as a means of reducing or preventing the effects of ROS and 

their respective inducers. Results from Figure 4.3, clearly indicate that both agents 

significantly reduce the conversion of NBT to NBD by the O2
●¯. These agents reduce 

the levels of O2
●¯either by possibly reducing and / or preventing the influx of Ca2+ or 

scavenging these free radicals. The possibility that NVP and EFV may prevent the 

influx of Ca2+ into the mitochondria and reduce O2
●¯ generation needs to be further 

investigated.  

 

This study confirms that these agents possess antioxidant properties in the presence of 

the neurotoxin, KCN, in rat brain homogenate in vitro. However these properties were 

further investigated to ascertain antioxidant effects in vivo. Since it is not possible to 

use KCN in vivo, it was decided to investigate the antioxidant effects in vivo using 

QA. 
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4.3. THE COMPARATIVE EFFECTS OF EFV AND NVP ON QA-

INDUCED SUPEROXIDE RADICAL GENERATION IN THE 

RAT HIPPOCAMPUS IN VIVO. 

 

4.3.1. Introduction 

 

QA induced neurotoxicity results from the activation of ion channels, leading to the 

influx of Ca2+ into cells (Stone, 1993) and consequently free radical generation 

(Southgate and Daya, 1999). Among the ROS produced by these cells, O2
●¯plays a 

key role in oxidative chain reactions, yielding highly reactive oxidants such as OH● 

that are extremely toxic for neurons and endothelial cells (Cadenas and Davies, 2000; 

Chan, 2001). Since NVP and EFV significantly reduce QA-induced LP in 

experiments 3.2 and 3.3, it was decided to determine whether these agents could 

reduce or prevent the QA-induced O2
●¯ generation in rat hippocampal tissue. The 

concentration of QA, NVP and EFV used in this experiment was similar to that used 

in experiment 3.3. 

 

4.3.2. Materials and Methods 

 

4.3.2.1. Chemicals and Reagents 

 

As per section 4.2.2.1. In addition, Quinolinic acid (2, 3-pyridinedicarboxylic acid) 

and diethyl ether were purchased from Sigma Chemical Corporation, St Louis, MO, 

U.S.A. All other chemicals used were of the highest quality available from 

commercial sources. QA was prepared by dissolving in Milli-Q water. 

 

4.3.2.2. Animals 

 

Adult male Wistar rats were purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) and cared for as described in section 4.2.2.2. 
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4.3.2.3. Dosing of Animals 

 

As described in section 3.3.2.2. 

 

4.3.2.4. Surgical Procedures 

 

These procedures were conducted as described in section 3.3.2.3 

 

4.3.2.5. Nitroblue Tetrazolium Assay 

 

The assay procedure was a modification of Das et al., 1990; Ottino and Duncan, 1997. 

Homogenate (1 ml) was incubated with 0.4ml of 0.1 % NBT in a shaking water bath 

for 1hour at 37 oC. The remainder of the experiment was conducted as described in 

section 4.2.2.6. 

 

4.3.2.6.  Statistical Analysis 

 

Final results were expressed as nmoles of Diformazan/ mg tissue and analyzed for 

statistical significance as described in section 2.2.2.3. 

 

4.3.3. Results 

 

The intrahippocampal infusion of QA (120 nmols) significantly (p < 0.001) increases  

O2
●¯ generation (Figure 4.4). The treatment of the animals with either NVP or EFV 

markedly (p < 0.001) reduces the QA-induced O2
●¯ generation. 
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Figure 4.4. The effect of NVP and EFV on QA-induced O2
− generation in rat 

hippocampus. Each bar represents the mean ± S.D. (n=5). # (p < 0.001) in comparison 

to control; *** (p < 0.001) in comparison to QA (ANOVA and Student-Newman-

Keuls Multiple Range Test). 

 

 

4.3.4. Discussion 

 

Free radical destruction of neurons has been linked to a number of neurological 

diseases and to the normal aging processes of the CNS (Bonilla et al., 1999; Gilad et 

al., 1997). The results show that intra-hippocampal injections of QA cause a 

significant induction of O2
●¯generation and LP in the rat hippocampus. The 

significant in vivo pro-oxidant effects of QA are attributed to sustained stimulation of 

NMDA receptors (Stone and Perkins, 1981; Stone, 1993; Santamaría et al., 2003; 

Pérez-Severiano et al., 2004,) which results in Ca2+ dependent increase in oxidative 

stress (Hartley et al., 1993; Atlante et al., 1997; Perez Velazquez et al., 1997) and 

mitochondrial dysfunction (Hengartner, 1998; Beal, 2000) which induces O2
●¯ 

production (Choi 1992). It has previously been shown that QA induces O2
●¯ 



Superoxide Anion Assay 

 79

generation in rat hippocampus (Schwarcz et al., 1983; Santamaria et al., 2001b) and 

treatment of the animals with antioxidants reduces or prevents the QA-induced 

neurotoxicity (Sies, 1997; Pérez-Severiano et al., 2004). The results of the present 

study show that both agents significantly reduce QA-induced O2
●¯ generation (Figure 

4.4). The alteration in Ca2+ levels by QA, which results in the generation of ROS, 

could therefore be attenuated by these NNRTIs, which would also explain the potent 

action exhibited by these agents observed in Figure 4.4. Possible mechanisms by 

which NVP and EFV exhibit neuroprotective properties include the reduction of Ca2+ 

dependent oxidative stress by either preventing the generation of the O2
●¯  or 

scavenging the free radicals generated. These findings demonstrate an ability of both 

agents to mitigate radical-induced brain injury. The present study reports the 

antioxidant and protective role of these agents against QA-induced neurotoxicity in 

rat brain, thus supporting the hypothesis that NNRTIs have the ability to protect 

against HIV-induced neurodegeneration. 

 

4.3.5.  Conclusion 

 

NVP and EFV have been shown, in the present study, to possess potent antioxidant 

activity at inhibiting both KCN and QA-induced O2
●¯generation. The results of this 

study not only show that NVP and EFV limit the undesirable effects of QA, but 

provide confirmation, of the antioxidant properties previously shown by these agents 

in chapter 2, section 2.2.3. This study therefore, suggests that the antioxidant 

properties of these agents could be exploited as a possible therapeutic approach 

against HIV-induced neurodegenerative disorders. 
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CHAPTER 5 

 

IRON CHELATION STUDIES 

 
 

5.1. INTRODUCTION 

In biological systems, Fe usually exists in the form of Fe2+ and Fe3+, with Fe3+ being 

relatively biologically inactive. However, it can be reduced to Fe2+, (Strlic et al., 

2002), and oxidized back through Fenton type reactions, with production of HO●, or 

Haber–Weiss Cycle reactions with O2
●¯ (Kehrer, 2000).  

Fe is required in the CNS to facilitate important cellular functions including electron 

transport, myelination of axons, and synthesis of neurotransmitters. Fe deficiency, as 

well as Fe overload, can be deleterious to the CNS, and balancing the beneficial and 

harmful effects is an essential aspect of cell survival. Fe, being the most abundant 

transition metal in the brain, is considered the most potent potential toxin. The 

increased level of brain tissue Fe has been implicated as a major generator of ROS 

which are capable of damaging biological molecules such as lipids, carbohydrates, 

proteins, and nucleic acids (Riederer et al., 1989; Youdim et al., 1993). Oxidative 

stress resulting from the increased Fe levels, and possibly also from defects in 

antioxidant defence mechanisms, is widely believed to be one of the causes 

responsible for neuronal death in neurodegenerative diseases (Riederer and Lange, 

1992; Dawson and Dawson, 1996). 

Redox-dependent reactions have proven to be important in regulating numerous 

processes that determine the physiological and pathophysiological function of cells 

and tissues. Consistently, strategies to modulate intracellular redox status by 

antioxidants and other redox enhancing agents show remarkable therapeutic potential 

(Sen, 1998).  
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Chelating agents may inactivate metal ions and potentially inhibit and/or decrease the 

metal-dependent processes and incidences associated with neurodegeneration 

(Finefrock et al., 2003). 

In 1997, Stipek and co-workers postulated that in vitro, QA induces LP by 

complexing with Fe in brain homogenates. The direct interaction and possible 

complexation of Fe with NVP and EFV as a possible mechanism for reducing LP was 

investigated using the TBA assay, ferrozine assay and electrochemical analysis. 
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5.2.  THE EFFECT OF IRON (II) ALONE AND IN COMBINATION 

WITH EFV OR NVP ON LIPID PEROXIDATION IN RAT 

BRAIN HOMOGENATE IN VITRO. 

 

 

5.2.1.  Introduction 

 

The brain in addition to having an abundant supply of PUFAs also contains a high 

content of transition metals such as copper and Fe in several regions (Halliwell and 

Gutteridge, 1989; Calabrese et al., 2000). In biological systems Fe acts as the LP pro-

oxidant via the Fenton reaction through the formation of the LP initiating OH• 

(Halliwell and Gutteridge, 1984; Miller, 1996) as shown below in equation 5.1. 

 

 

Fe2+ +  H2O2 → Fe3+ + OH • + OH ⎯                          Equation 5.1. 

 

 

The Fenton reaction occurs in the presence of ethylenediamine tetraacetate (EDTA) 

which complexes Fe3+ to form a soluble complex which generates OH • and initiates 

LP in the presence of reducing agents such as ascorbate, which promote the redox 

recycling of soluble Fe complexes (Rauhala et al., 1998). 

 

The Fenton reaction has been implicated in the lipoperoxidative effect of QA in vitro, 

and in section 3.2.3., NVP and EFV significantly reduce QA-induced LP in vitro. 

Therefore the direct effects of these NNRTIs on the Fenton reaction in LP were 

investigated. 
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5.2.2.            Materials and Methods 

 

5.2.2.1.          Chemicals and Reagents 

 

Chemicals and reagents used were as described in section 3.2.2.2., with the exception 

of QA. In addition, ferrous sulphate (FeSO4.7H2O) was obtained from Merck, 

Darmstadt, Germany. EDTA was obtained from Holpro Chemical Corp., 

Johannesburg, South Africa. H2O2 was obtained from BDH Laboratory Supplies, 

Pool, England and ascorbic acid was obtained from Saarchem, Krugersdorp, South 

Africa.   

 

5.2.2.2.             Animals 

    

As described in section 3.2.2.1. 

 

5.2.2.3.                Brain Removal  

 

This was performed as described in section 3.2.2.3. 

 

5.2.2.4.                Preparation of Tissue 

 

As described in section 3.2.2.4. 

 

5.2.2.5.                 Preparation of the MDA Standard Curve 

 

As described in section 3.2.2.5. 

 

5.2.2.6.              Lipid Peroxidation Assay 

 

The assay was performed as described in section 3.2.2.6. However, triplicate samples 

of rat brain homogenate (1 ml) containing 1mM Fe2+ (100 µL) in the absence and 

presence of increasing concentrations (0-1 mM) of NVP and EFV (100 µL), together 

with 0.2 mM H2O2 (100 µL), 100 µM EDTA (100 µL) and 1 mM ascorbic acid (100 
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µL) incubated in a shaking water bath for an hour at 37 oC. Control samples had no 

Fe2+ or the test compound.  

 

5.2.2.7.            Statistical Analysis 

 

This was performed as described in section 2.2.2.3. 

 

5.2.3.              Results 

 

Figure 3.5. illustrates that 1 mM Fe2+ in the presence of H2O2 and ascorbate, increases 

the amount of MDA produced in comparison to the control. EFV has the ability to 

significantly (p < 0.001) reduce 1 mM Fe2+-induced LP in a concentration dependent 

manner. In the presence of 1 mM Fe2+, NVP has no significant effect on LP in 

comparison to samples containing 1 mM Fe2+ alone. 
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Figure 5.1.  Effect of 1 mM Fe2+ alone and in combination with NVP or EFV on 

LP in rat brain homogenate in vitro. Each bar represents the mean ± S.D; n = 5. # (p < 

0.001) and ns (p > 0.05) in comparison to control; * * * (p < 0.001) and ns (p > 0.05) 

in comparison to 1 mM Fe2+ alone (ANOVA and Student–Newman–Keuls Multiple 

Range Test). 

 

 

5.2.4.  Discussion 

 

A combination of Fe and ascorbate represents a physiologically relevant pro-oxidant 

system in the brain (Sen et al., 2006), and the ability of 1 mM Fe2+ to produce 
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significant amounts of MDA in comparison to control indicates the potential role 

demonstrated by the Fenton reaction on LP. 

By-products of LP such as LOOH (lipid hydroperoxide) react with EDTA-Fe3+ / QA-

Fe2+ complexes and decompose to alkoxyl and peroxyl radicals (Halliwell and 

Gutteridge, 1989) as shown in equations 5.2.and 5.3. These radicals together with 

OH● produced during the Fenton reaction and in the presence of Fe2+ and Fe3+ ions 

can abstract H● from PUFAs in membranes, further stimulating LP. 

 

 

LOOH  +  Fe2+-complex →  Fe3+-complex  + OH ⎯ + L- O●              Equation 5.2. 

   alkoxyl radical 

 

LOOH  +  Fe3+-complex  →   L-O- O ●  + H + +  Fe2+-complex           Equation 5.3. 

                                                        peroxyl            further reaction to 

                                                         radical             alkoxyl radical         

                                                          

 

The finding that NVP shows no significant effect (p > 0.05) on Fe2+-induced LP in 

comparison to QA-induced LP (section 3.2.3.), indicates that NVP reduces LP only 

via free radical scavenging and not by interference with the Fenton reaction. The 

ability of NVP to scavenge free radicals was demonstrated in section 2.2.3, and in 

chapter 4. 

 

Since EFV significantly reduces Fe2+-induced LP (p > 0.001), the argument that EFV 

may be binding Fe2+ and/ or Fe3+ ions is strengthened. The concentration dependent 

decrease that occurs could also be attributed to scavenging of free radicals, 

particularly those associated with Fe2+-induced LP such as alkoxyl radicals, HO● and 

O2
●¯, as shown in Chapter 4. 
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5.3. THE COMPARATIVE EFFECTS OF EFV AND NVP ON THE 

INHIBITION OF THE FERROZINE-IRON (II) COMPLEX. 

 

 

5.3.1.  Introduction 

 

Ferrozine (Figure 5.2.) forms purple complexes with Fe2+ ions (Figure 5.3.) in a 

quantitative manner (Decker and Welch, 1990; Dinis et al., 1994) with a metal to 

ligand chelation ratio of 1 to 3 (Figure 5.3.). In the presence of chelating agents, the 

formation of the Fe2+- ferrozine complex is reduced or inhibited resulting in a 

decrease in the colour of the complex.  

 

 
 

Figure 5.2.  Representation of the ferrozine ligand. The left figure is a stick 

representation whereas the right figure is a ChemDraw® representation of the ligand. 

The carbon atoms are green, the hydrogens are white, the nitrogen atoms are blue, the 

oxygen atoms are red, and the sulphur atoms are yellow. 

(http://www.chemistry.wustl.edu/~edudev/Ferritin/FerritinGraphics/ferrozine_net.gif)

. 
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Figure 5.3.  Molecular stick representation of the Fe2+-ferrozine complex where 

Fe2+ is complexed with three (3) ferrozine ligands. The carbon atoms are green, the 

hydrogens are white, the Fe 2+ is purple, the nitrogen atoms are blue, the oxygen 

atoms are red, and the sulphur atoms are yellow. 

(http://www.chemistry.wustl.edu/~edudev/LabTutorials/Ferritin/FerritinGraphics/fefe

rr_net.gif). 

 

 

Measurement of colour reduction allows estimation of the chelating activity of the 

coexisting chelator (Yamaguchi et al., 2000). The chelation of Fe2+ ions, which are 

required for free radical production by the Fenton reaction (Equation 5.1.), could be of 

significant relevance in the clinical therapeutics of progressive neurodegenerative 

disorders (Cuajungco et al,  2000). Therefore, the ability of NVP and EFV to chelate 

Fe2+ was investigated using the ferrozine assay. 
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5.3.2.             Materials and Methods 

 

5.3.2.1. Chemicals and Reagents 

 

NVP and EFV were kindly supplied by Aspen Pharmaceutical Company, South 

Africa. Ferrous chloride (FeCl2) and 3-(2-Pyridyl)-5, 6-bis (4-phenyl-sulfonic acid)-1, 

2, 4-triazine (Ferrozine) were purchased from the Sigma Chemical Corporation, St. 

Louis, MO, U.S.A. 

 

5.3.2.2. Chelating Activity of NVP and EFV 

 

The chelating activity on Fe2+ ions by NVP and EFV was measured by the method of 

Decker and Welch, (1990). Briefly, 1 ml solution containing either 100 or 200 µM 

EFV or NVP was added to 3.7 ml of H2O. This mixture was then reacted with 0.1 ml 

of 2 mM FeCl2 and 0.2 ml of 5 mM ferrozine. The absorbance of the solutions was 

measured spectrophotometrically at 562 nm at different time intervals for 90 minutes. 

The lower absorbance of the mixture indicates higher chelating activity. 

  

The percentage chelation activity on the Fe2+- ferrozine complex with time, was 

calculated using the following equation: Chelating activity (%) = {(Ao – A1)/Ao} x 

100, where Ao is the absorbance of the control reactions and A1 is the absorbance in 

the presence of the test compounds.  

 

5.3.3.  Results 

 

Figure 5.4. shows that both agents have the capacity to sequester Fe2+ and hence 

inhibit the formation of the Fe2+ - ferrozine complex. EFV has a higher chelating 

potency than NVP since at 200 µg/ml EFV chelates approximately 10 % of the Fe2+ 

ions while NVP chelates approximately 7 %. 
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Figure 5.4.  Percentage inhibition of Fe2+-ferrozine complex by NVP and EFV. 

Each point represents the mean ± S.D. (n=3). 

 

 

5.3.4.  Discussion  

 

Antioxidants prevent or delay oxidative damage of biomolecules through scavenging 

radicals and binding to the metal ions. In this assay both agents reduce the formation 

of the Fe2+-ferrozine complex (Figure. 5.4.), suggesting the chelation of Fe2+ ions. At 

both concentrations (100-200 µg/ml) EFV shows a greater ability to inhibit the Fe2+-

ferrozine complex and therefore a greater affinity and chelating activity of Fe2+ than 

NVP. This could be attributed to the multidentate character and increased steric 

hindrance associated with the molecular structure of NVP. 

 

It may therefore be concluded that Fe2+ is more likely to be bound by EFV than NVP, 

hence fewer of these ions will be available to participate in the Fenton reaction and 

bind QA to form the QA-Fe2+ complex. This provides an adequate explanation for the 
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inhibition of Fe2+-induced LP by EFV and not NVP, and another mechanism through 

which EFV reduces QA-induced LP (section 3.2.3).  

 

The relatively high Fe2+ chelating activity of these agents is of great significance, 

because it has been proposed that the transition metal ions contribute to the oxidative 

damage in neurodegenerative disorders, and one of the lines of treatments entails 

binding of transition metals (Vardarajan et al., 2000; Bush, 2003).  
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5.4.  AN ELECTROCHEMICAL ANALYSIS OF IRON (III) ALONE   

AND IN THE PRESENCE OF NVP OR EFV. 

 

5.4.1.  Introduction 

 

The transfer of electrons during a chemical reaction is the basis for electrochemical 

analysis (Pecsok et al., 1968). Electrochemistry has been used successfully in metal-

ligand interactions (Limson et al., 1998; Matlaba et al., 2000). The ability of metal 

ions in solution to accept and donate electrons, allows for both qualitative and 

quantitative analysis. For trace metal ions in solution it is necessary to employ a 

preconcentration step, for isolation at the working electrode where the reactions take 

place (Limson, 1998). The introduction of a ligand to a metal solution increases the 

preconcentration of the metal at the electrode resulting in the increase in current. In 

the present study, adsorptive stripping voltammetry (ASV) was employed to 

determine the interaction between NVP and EFV with Fe3+.  

 

The sequence of steps that occur in ASV is given by equations 5.4 -5.6. The formation 

of a metal-ligand complex (Equation 5.4) is followed by its controlled interfacial 

accumulation (deposition) onto a working electrode at a fixed deposition potential 

during the deposition step (Equation 5.5) (Limson et al., 1998). The reduction of the 

adsorbed metal complex involves the application of a potential in the negative 

direction, during which reduction of the adsorbed metal complex occurs, releasing the 

metal and ligand back into solution (Equation 5.6) (Limson et al., 1998). 

 

 

Mn+    +     nLaq                →       MLn
n+, aq                           Equation 5.4. 

 

MLnn+, aq                                  →          MLnn+, ads                           Equation 5.5. 

 

MLnn+, ads   +   xe-           →        M (n-x) +   + nL            Equation 5.6. 

 

where M is the metal and L the ligand. 
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This technique relies on the natural tendencies of analytes in solution to adsorb at the 

surface of the electrode in solution (Limson, 1998). Theoretically, when a suitable 

ligand is added to a metal solution, the reduction wave observed for the metal ligand 

complex should exhibit a significant change in current strength as well as a potential 

shift over the reduction potential of the metal alone in solution. 

 

The affinity of the ligand for the metal is expressed by the extent of an increase in 

current response of the metal on addition of the ligand, whilst the stability of the metal 

complex and the strength of the metal-ligand bond are determined by the extent of the 

shift in the reduction potential (Limson et al., 1998). A more negative potential shift 

may occur due to strong metal-ligand interactions, hence indicating a lower tendency 

for the metal-ligand complex to become reduced and a positive shift is associated with 

weaker metal-ligand interactions (Limson, 1998). At relatively high ligand 

concentrations, a decrease in current indicates a possible competition between the free 

ligand and the metal –ligand complex for the binding sites at the electrode, while at 

low ligand concentrations, it is more likely to be due to the formation of strong metal-

ligand bonds where the metal is not easily reduced (Limson, 1998). 

 

5.4.2.  Materials and Methods 

 

5.4.2.1. Chemicals and Reagents 

 

As described in section 5.2.2.1. Tris-HCl was purchased from the Sigma Chemical 

Corporation, St. Louis, MO, U.S.A and anhydrous ferric chloride (FeCl3) was 

purchased from BDH Laboratory Supplies, Poole, England. 

 

5.4.2.2. Apparatus 

 

Adsorptive stripping voltammograms (ASVs) were recorded on the Autolab PGSTAT 

30 (Netherlands) voltammeter equipped with a Metrohm (Sweden) VGA cell stand. A 

3 mm diameter glassy carbon electrode (GCE) was employed as a working electrode 

for voltammetric experiments.  
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A silver/silver chloride (KCl=3 M) and a platinum wire were employed as reference 

and auxiliary electrodes, respectively, for all electrochemical work. Prior to use and 

between scans, the GCE was cleaned by polishing with alumina on a Buehler pad, 

followed by washing in nitric acid and rinsing in Milli-Q water. 

  

5.4.2.3. Adsorptive Stripping Voltammetry 

 

All solutions were degassed with nitrogen. For all experiments 0.01 mM of Fe3+ was 

introduced into an electrochemical cell containing the electrolyte, 0.2 M Tris–KCl 

buffer, pH 7.4 which was then deareated for 5 minutes. Thereafter, an optimum 

deposition potential for Fe3+ was identified and applied for 60 s to effect the formation 

and adsorption of the metal ion onto the GCE. A potential scan in the negative 

direction from the deposition potential to at least 0.50 V beyond the reduction of the 

metal was applied, at a scan rate of 0.10 V s−1, to strip the adsorbed metal species 

from the electrode.  

 

During the stripping step, current responses due to the reduction of the metal species 

were measured as a function of potential to generate voltammograms. The procedure 

was repeated between successive additions of an appropriate concentration of the 

ligand (0-0.06 mM) to the electrolyte containing the metal ion in the electrochemical 

cell. All potential values quoted are referenced against the silver/silver chloride 

reference electrode. Current vs concentration and potential vs concentration plots 

were constructed to measure the extent of shifts in current response and reduction 

potential of the metal species with increasing concentrations of the ligand. 

 
5.4.3.  Results 
 
In Figure 5.5., the ASV for 0.01 mM Fe3+ alone in 0.2 M tris-HCL, pH 7.4 buffer 

shows a peak reduction potential of 5.14 x 10-6 A at -0.41 V. Upon addition of 0.01 

mM NVP, there is an increase in current response with a slight shift in the reduction 

potential of 0.03 V to a more negative potential. The addition of increasing 

concentrations of NVP causes a significant concentration-dependent decrease in the 

current response in comparison to 0.01 mM NVP. 
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 In Figure 5.6., the ASV for 0.01 mM Fe3+ alone in the electrolyte shows a peak 

reduction potential  of  5.52 X 10 -6 A at -0.41 V. In the presence of increasing 

concentrations of EFV, there is a significant concentration-dependent decrease in the 

current response and a slight shift in the reduction potential to a more negative 

potential.  
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Figure 5.5.  ASVs of Fe3+ (0.01 mM) alone and in the presence of increasing (0.01-

0.06 mM) concentrations of NVP. 
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Figure 5.6.  ASVs of Fe3+ (0.01 mM) alone and in the presence of increasing (0.01-

0.06 mM) concentrations of EFV. 

 

Figure 5.7. illustrates the overall concentration-dependent decrease in reduction 

potential of Fe3+, exhibited by NVP and EFV. This effect is greater for efavirenz (ΔEP 

= -9.03), than for NVP (ΔEP = -5.18). 

Figure 5.8. depicts an overall reduction in peak current response of Fe3+ with 

concomitant increases in ligand concentration. This effect is greater for NVP (ΔIA = -

0.68), than for EFV (ΔIA = -0.62). 
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Figure 5.7.  Effect of increasing concentrations of NVP and EFV on the reduction 

potential of 0.01 mM Fe3+. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Iron chelation studies 

 98

 

y = -0.6753x + 4.8498

y = -0.6209x + 3.779

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

Fe 3+ ( 0.01 mM) and ligand (x 0.01 mM)

Cu
rr

en
t (

x 
10

 -6
) A

NVP EFV Linear (NVP) Linear (EFV)

 
 

Figure 5.8.  Effect of increasing concentrations of NVP and EFV on the peak 

current response of 0.01 mM Fe3+. 

 

 

5.4.4.  Discussion 

 

During the Fenton reaction (Equation 5.1.), Fe3+ is reduced to Fe2+, therefore in the 

presence of chelators, the reduction potential of Fe2+ and/ or Fe3+ is altered 

(Winterbourn, 1995). The reduction potential is an indication of the stability and 

strength of complexes formed with Fe3+ and the ease with which Fe3+ is reduced in the 

complex (Limson et al., 1998). Both agents have the ability to form complexes with 

Fe3+ which have more negative reduction potentials than Fe3+ alone as shown in 

Figures 5.5. and 5.6.  

 

The gradient of Figure 5.7. allows for an estimation of the magnitude of the reduction 

potential shift at increasing concentrations of NVP and EFV, which in turn measures 

the stability of the complexes formed. The gradient for EFV (ΔEP = -9.03) is 

relatively larger in comparison to NVP (ΔEP = -5.18), thus indicating the formation of 

a more stable complex with Fe3+.  
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This in turn reflects the difficulty in reducing the complex as compared to the 

reduction of Fe3+ alone. Through this strong binding of Fe3+, EFV prevents the 

reduction of Fe3+ to Fe2+, thus less Fe2+ will be available to participate in the Fenton 

reaction. Therefore this could be one of the neuroprotective mechanisms through 

which EFV reduces Fe2+ -induced LP (section 5.2.3). 

As previously mentioned in Chapter 3, the oxidizing effects of QA on LP in vitro, 

requires the presence of Fe2+ and this mechanism involves Fe2+ –chelation by QA 

(Stipek et al., 1997). By binding Fe3+, these agents prevent the reduction of Fe3+ to 

Fe2+ and consequently reduce the amount of Fe2+ available to participate in the 

formation of the QA- Fe2+ complex and the subsequent LP associated therewith. Thus, 

this could be another mechanism through which these agents reduce QA-induced LP 

(section 3.2.3). 

 

The decrease in peak current response which occurs in a concentration-dependent 

manner (Figure 5.8.) after the formation of metal-ligand complexes observed in 

Figures 5.5. and 5.6., most likely indicates that the reduction rate of the complexes is 

lower than that of the metal species. This implies that the complexes formed are 

strong enough to prevent the reduction of Fe3+ to Fe2+ thus reducing current flow.  

 

5.4.5.   Conclusion 

 

The binding of Fe2+ and Fe3+ ions by these agents, is of great relevance to the Fenton 

reaction, where Fe2+ generates the toxic HO● and is oxidized to Fe3+, the stable 

oxidation state of Fe which reacts to form insoluble polymers which are toxic to cells. 

The fact that both agents bind Fe3+, may thus suggest that these NNRTIs remove 

unbound Fe3+, preventing it from recycling back to Fe2+, the form responsible for free 

radical formation. The neuroprotective activities of NVP and EFV could be ascribed 

to their known free radical scavenging properties (Chapter 2) and Fe-chelating 

effectiveness (Chapter 5). Due to the lipophilic nature and ability to penetrate the 

blood-brain barrier, these agents are able to facilitate the removal of toxic metals from 

the CNS. These studies therefore suggest an important role for these agents and a 

further increase in the prospects for the clinical application of these potent 

antioxidants in ADC. 
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CHAPTER 6 

 

 

THE BIOSYNTHESIS OF QUINOLINIC ACID 

 
 

6.1. INTRODUCTION 

 

Tryptophan (TRP) is an essential amino acid which is required in several 

physiological processes. In addition to protein synthesis (Sidransky, 1976), more than 

90 % of the total TRP is degraded in the liver through the kynurenine pathway (KP) 

as shown in Figure 6.1. (Musajo and Benassi, 1964; Price et. al., 1965; Wolf, 1974; 

Young et al., 1978).  The KP not only occurs in the CNS, but in the periphery and 

such dynamics of this pathway involves interplay between KP metabolism in the 

periphery and brain (Schwarcz and Pellicciari, 2002). Along this pathway, TRP is first 

oxidized to N-formylkynurenine, which is quickly catabolised to kynurenine. In the 

liver this step is catalyzed primarily by tryptophan 2, 3-dioxygenase (TDO) (Schimke 

et al., 1965; Knox, 1966).  

 

TDO has high substrate specificity for L-TRP and can be regulated by glucocorticoids 

(Knox and Mehler, 1951; Schimke et al., 1965; Voigt and Sekeris, 1980) and TRP 

itself (Knox, 1951, 1966), although possibly by different mechanisms (Civen and 

Knox, 1959). Saturation of this enzyme with haeme or with haeme precursor, 5-ALA 

results in an increased activity of this enzyme and enhanced L-TRP catabolism 

(Badawy and Evans, 1975). The untoward effect of enhanced TDO activity is not only 

an increase in blood-borne kynurenines which are responsible for the biosynthesis of 

the neurotoxin QA, but also a reduction in the availability of TRP for uptake into the 

brain (Müller, 2006). Thus changes in TRP concentrations in peripheral blood may be 

significant as a determinant of the concentration of 5-hydroxytryptamine (5-HT) in 

the brain, in which case acute depletion of TRP consequently affects serotonergic 

functions (Sidransky, 1976; Young and Leyton, 2002).  
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Figure 6.1.  Graphical representation of the oxidative tryptophan metabolism along 

the KP showing the metabolites and enzymes of this pathway. Tryptophan (2, 3)-

dioxygenase (TDO) and indoleamine (2, 3)-dioxygenase (IDO) catalyze the formation 

of kynurenine (Sas et al., 2007). 
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The role of TDO in the regulation of 5-HT is of significance considering that the 

majority of patients suffering from depression, AD and ADC have elevated cortisol 

levels (Curzon, 1988; Freda and Bilezikian, 1999) and that corticoids are potent 

inducers of TDO activity (Salter and Pogson, 1985). Such induction of liver TDO 

enhances blood-borne kynurenines which are converted to the neurotoxin QA in the 

brain which ultimately leads to progressive hippocampal damage (Sapolsky et al., 

1986; Seckl and Olsson, 1995). Since the hippocampal formation forms part of the 

limbic-hypothalamic–pituitary-adrenal (LHPA) axis, any increase in cortisol levels 

activates receptors which influence neuronal excitability, neurochemistry and 

structural plasticity (McEwen, 2000), thus impairing neuronal plasticity and possibly 

contributing to neurodegeneration. 

 

One of the major metabolites formed by the KP is QA, which binds to glutamate 

receptors activated by NMDA. QA is an agonist at these receptors and may be 

neuroexcitotoxic at physiological concentrations (Perkins and Stone, 1983; Schwarcz 

et al., 1983). Elevated levels of QA have been found in the CSF of people with 

dementia due to AIDS and cerebral malaria as well as the lesions associated with AD 

which have been shown to enhance neuronal damage (Heyes et al., 1989; Guillemin 

et al., 2005). 

 

A reduction in the synthesis of QA via TDO inhibition could attenuate the amount of 

brain damage (Stone, 2003) and impaired neuronal plasticity. Hence the aim of this 

chapter is to assess the ability of these NNRTIs to ameliorate the activity of TDO, the 

enzyme which catalyses the first step in the conversion of TRP to QA. 
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6.2. THE EFFECT OF NVP AND EFV ON TDO ACTIVITY IN 

RAT LIVER HOMOGENATE IN VIVO. 

 

6.2.1. Introduction 

 

Enhanced TRP degradation is observed in diseases concomitant with cellular immune 

activation. Disturbed metabolism of TRP affects biosynthesis of 5-HT, and it appears 

to be associated with an increased susceptibility for depression (Widner et al., 2002). 

TRP is required for 5-HT synthesis, the rate-limiting step of which is the conversion 

of TRP to 5-HT by T5H. This enzyme is thought to be fully saturated with substrate 

in vivo (Knowles and Pogson, 1984).  

 

Since TDO is the rate-limiting enzyme for the conversion of TRP through the KP, 

inhibition of this enzyme makes more TRP available for conversion to 5-HT. 

(Schwarcz and Pellicciari, 2002). This will in turn increase the saturation of T5H, 

which is known to be unsaturated under normal conditions, and increase 5-HT 

availability in the brain (Pogson et al., 1989).  

 

Previously an association was found between decreased TRP concentrations in 

patients with HIV infection and progressed cognitive inability (Fuchs et al., 1990). 

Patients with HIV infection present with decreased TRP and increased kynurenine 

concentration thus indicating accelerated TRP degradation. Antiretroviral Therapy 

(ART) has been shown to have the ability to significantly reduce TRP degradation: 

TRP concentration increases whereas kynurenine concentration decreases, and 

improves cognitive impairment (Judd et al., 2000; Suarez et al., 2001). Hence the 

increase in TRP concentrations during ART could relate to the improved depressive 

symptoms in patients with HIV infection (Judd et al., 2000).  

 

Antiretroviral agents that reduce extrahepatic TRP oxidation have proven effective in 

reducing QA concentrations clinically, thereby lowering the risk of ADC (Heyes et 

al., 1991). However, such a relationship has to be proven in future studies. Thus, due 

to the potential reduction in TRP catabolism and the consequential decrease in the 
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biosynthesis of QA associated with ART in ADC, the effect of NVP and EFV on the 

activity of the total, holo- and apoenzyme of TDO was determined. 

 

6.2.2. Materials and methods 

 

6.2.2.1. Chemicals and Reagents 

 

EFV and NVP were kindly supplied by Aspen Pharmaceutical Company, Port 

Elizabeth, South Africa. Haematin, L-TRP, Folin’s reagent and bovine serum albumin 

(BSA) were purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. All 

other reagents were purchased from Merck, Darmstadt, Germany and were of the 

highest chemical purity. 

 

6.2.2.2. Animals 

 

Adult male Wistar rats, purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) and cared for as described in section 3.2.2.2. 

 

6.2.2.3. Treatment regimes 

 

The animals were treated in a similar manner as described in section 3.3.2.2 except 

that there were no intrahippocampal injections of QA. Rats were divided into 3 

groups, control, EFV and NVP treated. The rats were injected intraperitoneally with 

drug, 5mg/kg/day for 5 days. On the morning of the 6th day the rats were sacrificed by 

neck fracture. The livers were rapidly removed, perfused with 0.9 % saline then 

frozen in liquid nitrogen and stored at -70 oC until use. 

 

6.2.2.4. Preparation of the Tissue 

The livers were thawed, chopped into fine pieces and homogenised with 60 ml 

140 mM KCl/2.5 mM NaOH using a glass–teflon hand held homogeniser in 0.01 M 

PBS pH 7.4, to give a final concentration of 10 % w/v. The homogenate was then 

sonicated for a period of 2 minutes at 30 s intervals for complete removal of the 

enzyme from cells. The entire procedure, where possible, was conducted on ice.  
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6.2.2.5.  Determination of TDO Activity 

A modification of the method described by Badawy and Evans (1975). 

An aliquot of 15 ml homogenate was added to a flask containing 12.5 ml water. An 

aliquot of haematin (100 µL) at a final concentration of 2 μM (Badawy and Evans, 

1975) was added to samples that were used to determine the total activity of the 

enzyme. This was stirred for 1 min to allow for the activation of the enzyme. Finally, 

2.5 ml of 0.03 M L-TRP was added to all flasks and gently stirred. The assay was 

conducted in triplicate. Aliquots of 3 ml of the assay mixture was transferred to test 

tubes, stoppered under carbogen and incubated for 1 h at 37 °C in an oscillating water 

bath. The enzyme activity was determined in the absence and presence of haematin in 

order to determine the activity of the holo- and apoenzyme of TDO. The apoenzyme 

in isolation is inactive but in the presence of haematin becomes fully active. The 

holoenzyme activity was measured in the absence of haematin while the total activity 

was measured in the presence of added haematin. The reaction was terminated with 

the addition of 2 ml of 0.9 M TCA to the reaction mixture and incubated for 2–4 min. 

The mixture was filtered through a Whatman no. 1 filter paper. Filtrate (2.5 ml) was 

added to 1.5 ml of 0.6 M NaOH and vortexed. The kynurenine present in the solution 

was measured at 365 nm spectrophotometrically using the molar extinction coefficient 

of kynurenine: ε = 4540 M− 1.cm− 1. The blank consisted of 2 ml TCA and 1.5 ml 

NaOH. The TDO activity was expressed as nmol/mg protein/min. Protein estimation 

was performed using the method described by Lowry et al., 1951. 

6.2.2.6.  Protein Assay 

 

Protein estimation was done using the method previously described by Lowry et al., 

(1951). A calibration curve was generated using BSA which was prepared in Milli-Q 

water (1 ml) at concentration intervals of 60 µg/ml. The aliquots of BSA were 

incubated with copper reagent (6 ml) for 10 minutes at room temperature.  

 

Folin’s reagent (0.3 ml) was added and samples were left to stand for 30 minutes in 

the dark, at room temperature. The absorbance was then read at 500 nm on a GBC 

916 UV/VIS spectrophotometer and the curve generated by plotting concentration 

against absorbance (Appendix III). 
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6.2.2.7.   Statistical Analysis 

 

The results were analysed as described in section 2.2.2.3. 

 

6.2.3.    Results 

 

As shown in Figure 6.2 and 6.3., it is evident that EFV and NVP, administered 5 

mg/kg/day for five days induce a significant (p < 0.001) decrease in the apoenzyme, 

holoenzyme and total enzyme activity of TDO. 
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Figure 6.2.  Effect of EFV (5mg/kg/day for 5 days) on TDO enzyme activity in rat 

liver homogenate in vivo. Each bar represents the mean ± SD (n = 5). *** (p < 0.001) 

in comparison to control (ANOVA and Student- Newman-Keuls Multiple Range 

Test). 
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Figure 6.3.  Effect of NVP (5 mg/kg/day for 5 days) on TDO enzyme activity in rat 

liver homogenate in vivo. Each bar represents the mean ± SD (n = 5). *** (p < 0.001) 

in comparison to control (ANOVA and Student- Newman-Keuls Multiple Range 

Test). 

 

6.2.4. Discussion  

Liver TDO plays an imperative role in determining the levels of circulating TRP in 

the blood (Badawy et. al., 1981). An increase in the activity of this enzyme enhances 

the conversion of TRP to N-formylkynurenine, thus reducing the amount of TRP 

available for uptake into the brain (Badawy, 1979). Thus agents, which inhibit TDO, 

increase plasma levels of TRP and subsequently induce a rise in brain TRP and 5-HT 

levels (Daya et al., 1989). Tricyclic anti-depressants inhibit TDO and this could be 

part of their mode of action in attenuating depression (Badawy and Evans, 1981). 

 

The inhibition of TDO occurs via two mechanisms:  
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(a) Interference with the conjugation of the apoenzyme and its co-factor, haeme by 

some agents (Badawy et al., 1981) 

 

(b)  The structure-activity relationship of the test compound at the active site of the 

co-enzyme. The presence of an indole -NH group has been reported to be essential for 

substrate binding to the catalytic site of TDO (Uchida et al., 1992). Hence test 

compounds which possess at least an indole-NH group, competitively inhibit the 

binding of TRP to the inactive holoenzyme, thereby inhibiting holoenzyme activity, 

whilst those without the indole-NH group demonstrate non-competitive inhibition 

(Uchida et al., 1992). Compounds without the indole-NH such as NVP and EFV, may 

non-competitively inhibit TDO at this level by interfering with TRP binding through 

interaction at a site other than that designated for TRP, consequently leading to 

decreased holoenzyme activity. However, this needs to be further investigated. 

 

The inhibition of TDO by these NNRTIs appears to occur at the apoenzyme level as 

well (Figure 6.3 and 6.4.), which implies that NVP and EFV probably interfere with 

the conjugation of haeme to the apoenzyme.  

 

Because T5H is approximately 50 % saturated with TRP in vivo (Pogson et al., 1989), 

5-HT levels will be more sensitive to decreases in TRP than increases in TRP. 

Therefore, an increased availability of TRP in the presence of these agents will 

increase the activity of T5H, and therefore increase the synthesis and vesicular stores 

of 5-HT (Schaechter and Wurtman, 1989). It has been shown that the inhibition of 

liver TDO results in the elevation of brain TRP and 5-HT concentrations and a 

decrease in peripheral kynurenine levels (Curzon and Bridges, 1970; Walsh and Daya, 

1998).  

 

Thus the consequential neuronal damage contributed by QA in the CNS (Stone, 

1993), particularly as a result of TDO induction by endogenous corticoids associated 

with ADC and depression is ameliorated. Therefore apart from increased TRP levels, 

through TDO inhibition, these agents could also reduce QA production and the 

consequential impaired neuronal plasticity associated therewith. Although the results 

imply that NVP and EFV could cause a rise in circulating TRP levels resulting in 

elevated brain 5-HT levels, this possibility is further investigated in Chapter 7. 
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6.2.5. Conclusion  

Liver TDO is an important enzyme in the metabolism of TRP, a precursor of 5-HT 

synthesis. The treatment of animals with NVP or EFV (5mg/kg/day for 5 days) 

decreases the total holoenzyme as well as the total apoenzyme activity of TDO. Since 

this enzyme activity is reduced, it is possible that more TRP is available for 5-HT 

synthesis. The amount of 5-HT and other biogenic amine levels will be measured in 

the following chapter. The inhibition of TDO may also reduce the synthesis of the 

excitatory amino acid, QA.   
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CHAPTER 7 

 

 

THE BIOSYNTHESIS AND METABOLISM OF 

SEROTONIN 
 

 

7.1.     INTRODUCTION 

 

Viral infections have been shown to have substantial effects on neurotransmitters in 

the brain, especially the catecholamines (Zalcman et al., 1994) and the indoleamine, 

5-HT (Dunn, 1992). In addition, neuropathology and certain clinical symptoms of 

HAD also confirm dysfunctions in monoamine neurotransmitters systems, such as 

dopamine (DA) (Hriso et al., 1991), and 5-HT (Kumar et al., 2001), which result in 

neurocognitive deficits and mental health problems (Kumar et al., 2007). Subsequent 

findings of high viral load in the hippocampus and basal ganglia, areas of the brain 

rich in both dopaminergic and serotonergic activities, led to the concept that deficits 

in DA and 5-HT might be associated with the neurological disorders, cognitive 

impairments and behavioural changes (Dursun, 1993; Kumar et al., 2001). The 

neurological problems and behavioural changes observed in patients with ADC were 

found to be similar to those found in subcortical dementia of PD (Hriso et al., 1991; 

Nath et al., 2000).  

 

It has been demonstrated that CSF levels of 5-HT, were severely diminished in 

patients with ADC (Kramer and Sanger, 1990; Kumar et al., 2001). Furthermore, 

while levels of 5-HT are significantly decreased in patients with ADC, there was no 

change in the levels of 5-hydroxyindole acetic acid (5-HIAA), the major metabolite of 

5-HT (Kumar et al., 2007). Depression may involve functional abnormality of one or 

more of monoamine systems in the brain (Fuxe et al., 1970). On the other hand, 

evidence accumulated over half a century ago has implicated the involvement of 

another monoamine neurotransmitter, norepinephrine (NE), in depression. Thus 
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activation rather than suppression of monoaminergic activity seems to be linked to 

antidepressant activity by enhancing serotonergic (Lapin and Oxenkrug, 1969; Blier 

and de Montigny, 1990) and noradrenergic systems (Schildkraut, 1965) via reuptake 

inhibition (van Praag, 1982b) and liver TDO activity inhibition causing elevation of 

brain TRP and 5-HT concentrations (Badawy and Evans, 1981; Walsh and Daya, 

1998). 

  

Since NVP and EFV have been shown to inhibit liver TDO activity in the previous 

chapter (section 6.2.5), and considering the role of monoamine synthesis and 

metabolism dysfunction in ADC, PD and depression as illustrated above, an 

investigation into the effects of these agents on the monoamine levels in the 

hippocampus was carried out to assess the ability of these NNRTIs to alleviate 

biochemical consequences of the disorders. 
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7.2. THE EFFECT OF NVP AND EFV ON 5-HT AND RELATED  

 NEUROTRANSMITTER LEVELS IN RAT HIPOCCAMPUS  

 HOMOGENATE IN VIVO. 

 

 

7.2.1. Introduction 

 

Alterations in brain 5-HT levels are known to result in mood disorders, particularly 

depression (van Praag, 1982). Brain 5-HT is synthesized from TRP, which is taken up 

from the peripheral circulation (Badawy et al., 1981). In turn, the availability of TRP 

for 5-HT synthesis in the brain depends on the rate of TDO activity. Thus an inverse 

relationship exists between the activity of this enzyme and brain 5-HT levels (Daya et 

al., 1989). The inhibition of TDO by NVP and EFV (section 6.2.5), may ultimately 

lead to a rise in brain 5-HT and its major metabolite, 5-HIAA.  

 

5-HT is known to play a role in NE release in the brain (Xi-Ming Li et al., 2002). 

These neurotransmitters are synthesized within the brain from their precursors, the 

large neutral amino acids, TRP and tyrosine (TYR) respectively, the latter being also 

the precursor of DA (Curzon and Sarna, 1984; Lucca et al., 1994). Both these 

molecules may thus compete for transport into the brain via the neutral amino acid 

transporter (Müller, 2006). Hence an increase in peripheral TRP through TDO 

inhibition by NVP and EFV may possibly reduce brain uptake of peripheral TYR by 

increasing 5-HT and reducing NE. 

 

The existence of a distinct inter-reliance between the two monoaminergic systems, led 

to an investigation into the effects of NVP and EFV on 5-HT, 5-HIAA and NE levels 

in rat brain. In this study, much attention was focused on the hippocampus as the 

importance of this brain region lies in brain functions, such as emotion, motivation, 

learning and memory, which may be related to the expression of depression (Leonard 

and Kafoe, 1976; Sapolsky et al., 2000). 
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7.2.2.   Materials and Methods 

 

7.2.2.1.             Chemicals and Reagents 

 

EFV and NVP were kindly supplied by Aspen Pharmaceutical Company, Port 

Elizabeth, South Africa. Heptane sulphonic (HSA) acid, EDTA, triethylamine (TEA), 

phosphoric acid (PA), perchloric (HCLO4) acid, NE, 5-HT and 5-HIAA were 

purchased from Sigma Chemical Corporation, St Louis, MO, U.S.A. HPLC grade 

acetonitrile (ACN) was purchased from Saarchem, Johannesburg, South Africa.   

 

7.2.2.2.      Animals 

 

Adult male Wistar rats, purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) and cared for as described in section 3.2.2.2. 

 

7.2.2.3.   Drug Treatment 

 

Animals were cared for and treated as described in section 3.3.2.2.  

 

7.2.2.4.  Brain Removal 

 

On the morning of the 6th day (after receiving EFV or NVP, 5mg/kg/day for 5 days) 

the animals were killed by neck fracture and the hippocampus of each rat was 

removed and frozen in liquid nitrogen and stored at -70 oC. 

 

7.2.2.5.   Preparation of Tissue 

 

The brain regions were thawed on ice, weighed and individually homogenised (1 

mg/10 μL) in ice-cold HCLO4 (0.1 M) containing 0.01 % EDTA, by sonication at 50 

Hertz for 30 seconds using an ultrasonic cell disruptor. The homogenate was kept on 

ice for 20 minutes before being centrifuged at 10 000 x g for 10 minutes using a 

bench top centrifuge. The supernatant (10 μL) obtained was directly injected into the  
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High Performance Liquid Chromatography-Electrochemical Detector (HPLC-ECD) 

system for analysis (Muralikrishnan and Mohanakumar, 1998). 

 

7.2.2.6.   Instrumentation 

 

Samples were analyzed on an isocratic HPLC system coupled to an electrochemical 

detector. The chromatographic system consisted of a Waters Millipore Model 510 

pump, Waters electrochemical detector and a Rikadenki chart recorder. The chart 

speed was set at 15 cm/h. Samples were introduced into the system using a Rheodyne 

Model 772Si fixed loop injector, fitted with a 20 μL loop. 

 

7.2.2.7.  Chromatographic Conditions 

 

Separation was achieved using a C18 (Waters Spherisorb©, 5μm, 250 x 4.6mm n-

octadecylsilane column). The mobile phase consisted of 8.32 mM HSA, 0.27 mM, 

EDTA, 13 % ACN, 0.4-0.45 % TEA and 0.2-0.25 % PA (v/v) and made to 1000 ml 

using Milli-Q water. Mobile phase was degassed twice using a 0.45 μM membrane 

filter prior to use. The mobile phase was recycled but was changed every 3 days. The 

flow rate was set at 0.6 ml/min and the electrochemical detection was performed at 

+0.74 V. Results were expressed as pmoles/mg tissue. 

 

7.2.2.8.  Statistical Analysis 

 

The results were analysed as described in section 2.2.2.3. 

 

7.2.3.   Results 

 

Table 7.1. illustrates that the hippocampus of rats treated with NVP and EFV show a 

significant increase in the levels of 5-HT (p < 0.001) and a decrease in 5-HT turnover 

(p < 0.001) in comparison to controls. NVP exhibits significantly higher levels of NE 

(p < 0.001) and 5-HIAA (p < 0.01) in comparison to EFV. 
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Table 7.1. Effect of NVP and EFV on rat hippocampal NE, 5-HT and  

                        5- HIAA levels. 

 

Treatment 

Groups 

 

NE  

(pmoles/mg 

tissue) 

5-HT  

(pmoles/mg 

tissue) 

5-HIAA 

(pmoles/mg 

tissue) 

5-HT turnover 

 

(5-HIAA : 5-HT) 

 

Control 

 

2.00 ± 0.63   

 

0.77 ±  0.32 

 

 

2.50 ± 0.46 

 

0.56 ± 0.1 

 

NVP 

 

3.41 ± 0.34  * * * 

 

2.10 ± 0.34  * * * 

 

3.73 ± 0.63  * *  

 

0.31 ± 0.6  * * * 

 

Control 

 

1.58 ± 0.415   

 

0.38 ± 0.07 

 

2.40 ± 0.24 

 

0.30 ± 0.3 

 

EFV 

 

1.80 ± 0.423  ns 

 

0.80 ± 0.39 * * * 

 

2.75 ± 0.53  ns 

 

0.19 ± 0.6 * * * 

 

 

Each value represents the mean ± SD (n=4). *** (p < 0.001), ** (p < 0.01) and ns (p > 

0.05) in comparison to controls. All results were analyzed using one-way analysis of 

variance (ANOVA) followed by the Student-Newman-Keuls Multiple Range Test. 

 

 

7.2.4. Discussion 

 

The involvement of 5-HT in the pathogenesis of depression and its mechanistic role in 

the action of antidepressant drugs has been well established (Delgado et al., 1990; 

Briley and Moret, 1993). The interest in the correlations between 5-HT and 

depression was stimulated by the finding that the first generation of antidepressants 

enhance the availability of 5-HT at central receptors (van Praag, 1982). As shown in 

Table 7.1, both agents significantly (p < 0.001) increase hippocampal 5-HT levels. 

This increase could possibly through inhibition of the TDO enzyme, as shown in 

Chapter 6, section 6.2.5.  
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5-HT is known to play a role in NE release (Xi-Ming Li et al., 2002) by stimulating 

 5-HT3 receptors on noradrenergic axon terminals (Shachar et al., 1997), thus the 

increased 5-HT levels by NVP, may have triggered the elevated response to NE 

levels. Although the increase in NE levels by NVP could be another mechanism 

through which this agent can assist in elevating the mood of depressed patients, 

further studies are required to substantiate this possibility. Furthermore, inhibition of 

TDO and thus increased brain TRP levels is confirmed to be one of the most likely 

mechanisms of increased brain 5-HT levels by these agents.  

 

The majority of 5-HT is oxidized by the enzymes monoamine oxidase (MAO) and 

aldehyde dehydrogenase (ADH) to 5-HIAA (Wurtman et al., 1968). Thus, the rise in 

hippocampal 5-HIAA levels after treatment with NVP may be a result of increased 

hippocampal 5-HT levels available as substrate for MAO. NVP may also have the 

ability to affect the functioning of the enzyme, ADH. This would mean less 5-

hydroxyindole acetaldehyde is converted to 5-hydroxytryptophol and more was 

converted to 5-HIAA. Conversely, the decrease in 5-HT turnover could imply the 

ability of these agents to slow 5-HT metabolism thus maintaining the increased levels 

for longer (Müller, 2006) As a result, NVP and EFV could be useful particularly in 

ADC, where 5-HT turnover is increased (Moeller and Pirke, 1990). 

 

Currently there is much interest in the role played by postsynaptic 5-HT1A receptors in 

the inhibition of 5-HT cell firing induced by administration of 5-HT1A agonists (Ceci 

et al., 1994; Celada et al., 2001). It is well known that elevated extracellular 5-HT 

concentrations within the somatodendritic regions will suppress serotonergic neuronal 

cell firing via its action at the inhibitory presynaptic 5-HT1A receptors (Blier and de 

Montigny 1985; Dawson and Nguyen, 1998). Electrophysiological data has 

demonstrated the desensitization of presynaptic 5-HT receptors during chronic 

treatment with 5-HT specific reuptake inhibitors (Blier et al., 1987) allowing an 

enhancement in synaptic 5-HT, particularly in terminal areas (Bel and Artigas, 1993; 

Blier and de Montigny, 1994).  

 

The combined action of these agents through TDO inhibition and decreased 5-HT 

metabolism may produce 5-HT levels greater than either effect alone, which may lead 

to a faster down regulation of 5-HT 1A/1D/1B receptors and hence a faster return to 
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normal firing and release as well as maintaining enhanced synaptic 5-HT prior to 

autoreceptor down regulation, thus enhancing the onset of postsynaptic changes in 

processing and prompting rapid therapeutic onset (Bel and Artigas, 1993; Blier and de 

Montigny, 1994). 

 

The ability of these NNRTIs to elevate brain 5-HT raises a possibility of increased 

aMT synthesis in the pineal gland. To assess the extent to which this hypothesis holds 

true, the effect of these agents on 5-HT metabolism will be investigated in section 7.3. 
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7.3.            THE EFFECT OF NVP AND EFV ON  INDOLE METABOLISM     

                        IN RAT PINEAL GLANDS IN VIVO. 

 

 

7.3.1.   Introduction 

 

The pineal gland, considered to be the “seat of the soul” by Descartes (1596-1650), 

has received extensive attention in the past two decades. Many studies have 

established the pineal gland as a fully functional organ that is responsible not only for 

indoleamine synthesis, and exists as an integral and essential component of the 

neuroendocrine system (Wainwright, 1977; Reiter, 1989). The elevated 5-HT 

concentrations in the pineal, exhibit a striking diurnal rhythm which remains at a 

maximum level during daylight hours and falls by more than 80 % soon after the 

onset of darkness as the 5-HT is converted to aMT, 5-hydroxytryptophol and other 

methoxyindoles (Axelrod et al., 1965 ; Klein and Weller, 1970). 

 

Indole metabolism in the pineal gland occurs in the pinealocytes. The concentrations 

of pineal 5-HT may be reduced mainly via two pathways:  

 

i) N-acetylation  to form NAS through the action of the enzyme NAT,  

ii) Oxidative deamination by MAO (Axelrod et al., 1969).  

 

The primary functions of this organ, allows for coordination of effects of light/dark 

cycles on physiology, through secretion of one of the metabolites of 5-HT, the 

neurohormone, aMT (Arendt, 1988). In addition, there is evidence which suggests the 

actions of aMT to be pharmacologically and physiologically relevant (Reiter, 1997), 

through scavenging free radicals. Collectively, this data is indicative of the 

antioxidant role displayed by aMT in organisms (Reiter, 1997). Hence this study 

investigates whether NVP and EFV have the potential to manipulate 5-HT pineal 

metabolism to increase 5-HT and/ or aMT. 

 

In order to obtain an overall picture of indole metabolism in the pineal gland, the 

organ culture technique was used to monitor the indole metabolites with 
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pharmacological and biochemical manipulations. The assay used in this study was 

previously described by Klein and Notides, 1969 and modified by Daya et al., 1989. 

The organ culture technique used allows room for the manipulation of experimental 

conditions, to avoid complications of in vivo interactions. The pineal gland is ideal for 

organ culture due to its small size, and its ability to remain viable for as long as six 

days under optimum conditions. It is able to utilize exogenous radioactive (14C) 5-HT 

to produce various indoles including aMT (Daya et al., 1989), thus the direct effects 

of NVP and EFV on 5-HT metabolism, are established.  

 

As much as 95 % of the synthesized indoles are secreted into the culture medium 

which can then be isolated and quantified. Isolation of the pineal indoles is achieved 

by using the Bi-dimensional Thin Layer Chromatography (TLC) system (Klein and 

Notides, 1969). This method not only effectively separates trace quantities of the 

pineal indoles, but it accurately determines quantities of the components of such 

mixtures (Skoog and West, 1980). TLC separation is achieved on a planar surface to 

allow for a 2-dimensional operation, and only samples which could be partially 

separated with one solvent alone, may be completely separated by the combined 

solvents. Hence two different solvent systems can be utilized in developing a single 

chromatogram (Ewing, 1960).     

 

7.3.2.   Materials and Methods 

    

7.3.2.1.   Chemicals and Reagents 

 

EFV and NVP were kindly supplied by Aspen Pharmaceutical Company, Port 

Elizabeth, South Africa. 14C labelled 5-HT was obtained from Amersham 

International, England. The culture medium, Minimum Essential Medium (MEM), 

was purchased from Highveld Biological (PTY) LTD, Lyndhurst, South Africa and 

fortified with the antibiotics, amphotericin B, streptomycin and benzyl penicillin 

(Hoechst, South Africa). The aluminium TLC plates coated with silica gel 60, Type 

F254 (0.25 mm), were purchased from Merck, Darmstadt, Germany. Beckman  

 

Ready-Sol multipurpose liquid scintillation fluid was purchased from Beckman RIIC 

Ltd, Scotland. The indole standards, 5-HT, N-acetylserotonin (NAS / aHT), aMT, 5-
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hydroxytryptophol (5-HTOH/ HL), 5-methoxytryptophol (5-MTOH/ ML), 5-

methoxytryptamine (5-MT), 5-hydroxyindole acetic acid (5-HIAA/HA) and 5-

methoxyindole acetic acid (5-MIAA/ MA) were purchased from Sigma Chemicals 

Co, St Louis, USA. Ascorbic acid, ethanol, chloroform and glacial acetic acid were 

purchased from Saarchem, Krugersdorp, South Africa. 

 

7.3.2.2.    Animals 

 

Adult male Wistar rats, purchased from the South African Vaccine Producers 

(Johannesburg, South Africa) and cared for as described in section 3.2.2.2. 

 

7.3.2.3. Drug Treatment 

 

Animals were cared for and treated as described in section 3.3.2.2.  

 

7.3.2.4.   Pineal Gland Removal 

 

On the morning of the 6th day (after receiving NVP or EFV, 5mg/kg/day for 5 days) 

the animals were killed by neck fracture. The brain was exposed in the manner 

described in section 3.2.2.2, and the pineal organ was carefully removed. The stalk 

and any tissue adhering to the gland were also removed. 

 

7.3.2.5.   Organ Culture of the Pineal Glands 

 

The pineal glands were removed and individually placed into sterile borosilicate (75 x 

10 mm) Kimble containing 52 µL of MEM culture medium, supplemented with 

penicillin (100 U/ml), streptomycin (100 µg/ml) and amphotericin B (2.5 µg/ml). 14C 

5-HT (8 µL) with a specific activity 55mCi/mmoles was added. The tubes, the test 

compounds were then saturated with carbogen (95 % Oxygen: 5 % Carbon dioxide) 

and immediately sealed. The tubes were incubated for a period of 24 hours at 37 oC in 

the dark in a Forma Scientific model 3028 incubator.  

 

The incubation was terminated after 24 hours by the removal of the pineal glands 

from the culture medium. The culture medium was then analyzed by TLC. 
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7.3.2.6.   Separation of Indoles by Thin Layer Chromatography 

 

A modification of the technique employed by Klein and Notides (1969) was used to 

separate the radiolabelled indoles. The TLC plates were activated by placing these in 

an oven at 100 oC for 10 minutes. Ten µL of the culture medium was spotted on a 10 

x 10 cm TLC plate, to form a spot no larger than 4–5mm. The spotting took place 

under a gentle stream of nitrogen to aid in the drying of the spotted-media. Drying 

with nitrogen prevented the atmospheric oxidation of the indoles. The indole standard 

solutions prepared using 1 mg of each of the pineal metabolites: 5-HT, aMT, 5-MT, 

NAS, 5-HIAA, 5-MIAA, 5-MTOH and 5-HTOH, were vortexed after addition of 2.5 

ml 1 % ascorbic acid (an antioxidant) in 0.1 M HCl. Thereafter, 10 µL of the standard 

solution containing all the indoles, was spotted on top of the already spotted culture 

medium, the standard was dried under nitrogen. 

 

The spotted TLC plates were placed in a TLC tank which containing chloroform: 

methanol: glacial acetic acid (93:7:1, Solvent A). Glacial acetic acid allows for 

complete separation of 5-MIAA from 5-HIAA. The plate was allowed to develop 

until the solvent front had reached 9 cm from the starting point. The plate was 

removed from the tank and dried under a stream of nitrogen. Once the required 

distance was reached, the plate was dried under a stream of nitrogen and placed in a 

second solvent system (ethyl acetate, Solvent B) at right angles to the first direction. 

Ethyl acetate separates 5-HTOH from NAS and it improves separation of aMT from 

5-MIAA and 5-MTOH.  The small amount of acid which remains on the gel from the 

first solvent development enhances the effective separation by solvent B. 5-HT and 5-

MT remain at the origin (Klein and Notides, 1960). 

 

 Once the plate was dried under nitrogen again, this was placed under a UV Visible 

light to detect the indole spots. The spots were cut out and placed in scintillation vials 

containing 3 ml Beckman Ready-Sol multipurpose liquid scintillation fluid. The vials 

were tightly sealed and shaken for a period of 30 minutes.  

 

The radioactivity of each metabolite was quantified by a Beckman LS 2800 

scintillation counter. The results were obtained as counts per minute (CPM) and 
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corrected for the counting efficiency of the scintillation counter to disintegrations per 

minute (DPM). The results were expressed as DPM / 10 µL /pineal. 

 

7.3.2.7.   Statistical Analysis 

 

The results were analysed as described in section 2.2.2.3. 

 

7.3.3.   Results 

 

Figure 7.1 shows a typical bi-dimensional TLC of the pineal indole metabolites. Clear 

separation of the six spots was achieved and the positions of the metabolites were 

identified by following the schematic representations of the chromatogram in Figure 

7.1. As discussed in section 7.3.2.6., 5-HT and 5-MT do not migrate from the origin, 

therefore the results expressed for the origin are those of 5-HT and 5-MT. 
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Figure 7.1. A typical bi-dimensional thin layer chromatogram illustrating the 

location of the pineal indole metabolites (Klein and Notides, 1969). 
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Figure 7.2.  Effect of NVP on indole metabolism in rat pineal gland in vivo. Each 

bar represents the mean ± SD; n=4. *** (p < 0.001), ** (p < 0.01), * (p < 0.05) and ns 

(p > 0.05) in comparison to controls (ANOVA and Student-Newman-Keuls Multiple 

Range Test). 

  

 

Figure 7.2. shows that there is a significant decrease in the DPM / 10 µL /pineal for 

NAS (p < 0.05), 5-HIAA (p < 0.001) and 5-HTOH (p < 0.05) of NVP treated group in 

comparison to the control group, while a significant increase in the DPM / 10 µL 

/pineal is observed for aMT (p < 0.01) and 5-MIAA (p < 0.001). The effect of NVP 

on 5-HT + 5-MT is insignificant. 
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Figure 7.3.  Effect of EFV on indole metabolism in rat pineal gland in vivo. Each 

bar represents the mean ± SD; n=4. *** (p < 0.001), ** (p < 0.01), * (p < 0.05) and ns 

(p > 0.05) in comparison to controls (ANOVA and Student-Newman-Keuls Multiple 

Range Test). 

 

 

Figure 7.3. shows that there is a significant decrease in the DPM / 10 µL /pineal for 5-

HT + 5-MT (p < 0.001), 5-HIAA (p < 0.01) and aMT (p < 0.05) of EFV treated group 

in comparison to the control group, while the effect of EFV on NAS, 5-MTOH, 5-

HTOH and 5-MIAA (p > 0.05) is insignificant. 

 

 

7.3.4. Discussion 

 

The rat pineal gland metabolizes radiolabelled 5-HT to various pineal indoleamines 

when subjected to organ culture. The effect of exogenous substances on indole 

metabolism can then be assessed by comparing drug treated pineals to untreated ones. 

5-HT can either be taken up by pinealocytes for conversion to NAS and then aMT or 
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by the sympathetic nerve terminals where it is subjected to MAO degradation to form 

5-HIAA and 5-HTOH (Olivieri et al., 1990). As shown in Figure 7.3., the decrease in 

5-HT + 5-MT after treatment with EFV is thus related to increased uptake and 

utilization of 5-HT at one or both of these two sites. It is unlikely to be due to a 

decrease in 5-MT, as this would elevate 5-HT since less of it is converted to 5-MT. 

Since there is a significant decrease in one of the metabolites of 5-HT formed in the 

pinealocytes, namely aMT, then the increased uptake and utilization of 5-HT after 

treatment with EFV most likely occurs at the sympathetic nerve terminals and not in 

the pinealocytes. 

                                                                  

Most 5-HT undergoes deamination by MAO and then oxidised to 5-HIAA by the 

enzyme ADH, or reduced to 5-HTOH by aldehyde reductase (AR).  The significant 

decrease in 5-HIAA (Figure 7.2. and 7.3.), could be due to the inhibitory effects of 

these agents on ADH, whilst an inhibitory effect on AR reduces synthesis of 5-HTOH 

as indicated in Figure 7.2.  However, it is also interesting to note that the decrease in 

5-HIAA and 5-HTOH synthesis is accompanied by an increase in the production of 5-

MIAA and 5-MTOH (Figure 7.2.). Therefore it is possible that this agent has 

stimulatory effects on HIOMT enzyme which catalyses the conversion of hydroxyl 

indoles to methoxy metabolites.                                         

 

NE stimulates T5H to convert TRP to 5-hydroxytryptophan (Wurtman et al., 1971) 

and eventually 5-HT, which is acted upon by NAT to NAS. In the presence of NE and 

β-adrenergic receptor agonist, NAT activity is increased between 30- and 100-fold 

(Klein et al., 1970), thus enhancing NAS production.  

 

Although NVP significantly enhances NE release in rat hippocampus (section 7.2.3.), 

which in turn stimulates NAT activity and increases NAS levels in the pineal, Figure 

7.2. shows a significant reduction in NAS levels. Thus it could be possible that the 

amounts of NE produced may not be sufficient to induce NAT activity. 

 

An increase in NAT activity produces a greater concentration of substrate for HIOMT 

which then synthesizes an increased concentration of aMT. However, it appears that 

NVP has an inhibitory effect on NAT and a stimulant action on HIOMT, as indicated 
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by an increase in aMT (Figure 7.2.). On the other hand, EFV shows no significant 

effects on NAS levels, but reduces aMT synthesis. Therefore this agent may have 

inhibitory effects on HIOMT activity. It is therefore necessary to determine the effect 

of these NNRTIs on NAT and HIOMT activity.  

 

Reduced levels of aMT are secreted from the pineal of patients with depression, and 

whether the increased amounts of aMT produced by the rat pineal gland in the 

presence of NVP are sufficient to regain the normal physiological concentrations of 

aMT is debatable. Furthermore, it is unlikely that the rise in aMT induced by NVP is a 

consequence of inhibition of TDO in the liver as it has been shown (Daya et. al., 

1989), that such inhibition does not alter aMT levels. A possible reason for the NVP-

induced increase in aMT synthesis could be a direct effect of this drug on the aMT 

synthesis pathway in the pineal gland.  

 

Therefore future studies involving enzyme activity and pineal function are required, in 

order to establish the effects these agents have on 5-HT metabolism. 

 

7.3.5. Conclusion 

 

These studies provide novel information that these agents not only affect hippocampal 

neurotransmitter levels but also pineal indole metabolism. Both NNRTIs induce a rise 

in 5-HT and 5-HIAA levels and a decrease in 5-HT turnover, which implies that these 

agents may have the potential to slow 5-HT metabolism, allowing for potentiated 5-

HT effects in depression associated with ADC. The rise in aMT induced by NVP in 

rats indicates that this agent could play a significant role in neuroprotection as aMT 

has been shown to be a potent antioxidant.  
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CHAPTER 8 

 

 

LEARNING AND MEMORY 

 
 

8.1.  INTRODUCTION 

 

Learning depends on experience and leads to the acquisition of new behaviour. Many 

studies have identified conditioning as a universal learning process (Tsitolovsky et al., 

2004). Classical and operant conditioning are the two different types of conditioning 

that yield different behavioural patterns (Deporter, 1992; Eldema, 1992; Sylwester, 

1993). The typical paradigm for classical conditioning, involves repeatedly pairing a 

conditioned stimulus (CS) with an unconditioned stimulus (UCS) to produce an 

unconditioned response (UCR), hence the CS acquires the ability to evoke a 

conditional response (CR) (http://en.wikipedia.org/wiki/Psychology_of_learning; 

Guthrie, 1935; Hull, 1943). Pavlov experimentally discovered this type of learning, 

and found out that when food (UCS) is paired with the sound of a bell (CS), it evokes 

salivation, the UCR in dogs (Anderson, 2000). On the other hand, operant 

conditioning occurs when a response to a stimulus is reinforced (Tsilovosky et al., 

2004) and it deals with the modification of voluntary behaviour. The classic study of 

operant conditioning was done in 1898 and 1933 by Thorndike who discovered that 

by placing a hungry cat in a box (stimulus) with food outside (the reinforcer), the cat 

learns how to press a specific area of the box in order to escape and eat the food. With 

time the random behaviour of the cat diminished (Anderson, 2000) and when placed 

in the box, finding the area to press became instinct.  

There are several ways to classify memories, based on duration, nature and retrieval 

of information. A basic and generally accepted classification of memory is based on 

duration of memory retention, and identifies two distinct types of memory, short-term 

and long-term. Short-term memory (STM) is supported by transient patterns of 
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neuronal communication, dependent on regions of the frontal and parietal lobe, and it 

occurs in the form of either reference or working memory (Baddeley, 1992). Working 

memory retains rapidly changing information and it is useful for “trial-specific 

information”, while reference memory refers to the memory of information that 

remains constant over a relatively long period of time and is required for “task-

specific information” (Honig, 1978; Olton et al., 1979). Long-term memory (LTM), 

on the other hand, is maintained by more stable and permanent changes in the neural 

connections widely spread throughout the brain (Eldema, 1992; Sylwester, 1993). 

More recently it was suggested that LTM, can be divided into declarative and non-

declarative memory (Schacter, 1987; Squire et al., 1993). While declarative memory 

involves the ability to store and recall (semantic memory) or recognise events and 

situations (episodic memory) (Lesch and Pollatsek, 1993), non-declarative memory 

refers to internal, rather than external information and is reinforced through extensive 

practice, conditioning, or habits such as brushing teeth or reading a book. Memory 

processing occurs in three main stages mainly, encoding, storage and retrieval. The 

encoding stage processes and combines received information for storage, whilst 

storage requires a physiological change to occur first before memory can be stored. 

During the retrieval phase, the stored memory is retrieved and the process of encoding 

is reversed, by using either recognition or recall (van der Veeen et al., 2006). 

The nervous system and the brain are the physical foundation of the human learning 

process. Although neuroscience links observations about the biological basis of 

consciousness, perception, memory, and learning with the actual physical processes 

that support such behaviour. This theory is still "young" and is undergoing rapid, 

controversial development (Deporter, 1992; Edelman, 1992; Sylwester, 1993). 

Throughout the history of research on animal learning there have been conflicting 

views concerning the fundamental issue of what animals learn (Packard and 

McGaugh, 1996).  

 

Cognitive theorists such as Tolman proposed that animals acquire knowledge of 

‘‘what leads-to-what’’ that result in expectations of the consequences of their 

behaviour (Packard and McGaugh, 1996). In contrast, following the pioneering work 

of Thorndike and Pavlov, other theorists proposed that animal learning consists of the 

formation of stimulus–response (S-R) habits (Hull, 1943; Guthrie, 1935) or simply, 
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the learning of motor responses. In experiments addressing this issue, rats were 

trained in mazes and subsequently tested in a variety of ways in an attempt to discover 

whether the learning was based on acquisition of knowledge or learning of responses 

(Tolman et al., 1946; Blodgett et al., 1949; Hill and Thune, 1952). 

 

Disturbances in structure and or function of the nervous system emerging from injury, 

diseases, development of abnormalities and the presence of toxins cause neurological 

disorders. The relationship between neurobiology and behaviour is important as it is 

often that abnormal behaviour that first presents as a sign of neurological disorder. 

Hence such changes bring about clues as to which anatomical or chemical site of the 

nervous system is attacked (Bondy, 1985) and permit integration of explicit 

behavioural assessment into a wide variety of ongoing studies and chronic bioassays 

(Dairam, 2005). 
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8.2.    THE EFFECT OF QA ALONE AND IN COMBINATION  WITH        

EFV AND NVP ON RAT SPATIAL REFERENCE MEMORY IN 

VIVO.                          

                                            

 

8.2.1.   Introduction 

 

The hippocampus is considered as a brain region critical for the acquisition, 

consolidation and retrieval of several kinds of memory (Squire 1992; Eichenbaum 

2000) that are non-specific for the type of information, such as declarative memory, 

(Cohen and Eichenbaum, 1991 and Eichenbaum et al., 1992) working memory or 

spatial mapping of recent memories (Buzsaki et al., 1982 and Olton, 1990), reference 

memory (Olton et al., 1979) and configural learning. (Sutherlane and Rudy, 1989) 

The hippocampus has been traditionally linked to cognitive functions, particularly 

spatial memory, at least in rodents (Morris et al., 1982 and Silva et al., 1998). 

Previous studies have shown that hippocampus has an exclusive role in working 

memory or spatial mapping of recent memories (Buzsaki et al., 1982 and Olton, 

1990). The hippocampal regions which consist of the CA fields, dentate gyrus and 

subicular complex, are part of a system that is important for mammalian memory 

(Squire, 1992). Damage to these regions impairs learning and memory (Eichenbaum 

and Cohen, 2001). It has been thought that the hippocampus may be particularly 

essential for tasks that depend on relating or combining information from multiple 

sources, as in spatial memory tasks (O'Keefe and Nadel, 1978). It has been reported 

that hippocampal lesions impair recognition memory performance in humans (Manns 

et al., 2003), monkeys (Beason-Held et al., 1999; Zola et al., 2000) and rodents 

(Clark et al., 2000; Clark et al., 2001). In the rodent, hippocampal lesions 

encompassing 40 % of the total hippocampal volume markedly impair learning in the 

water maze (Moser et al., 1993; Moser et al., 1995). A loss of hippocampal neurons 

had been considered a hallmark of normal aging and, furthermore, to be a substrate of 

age-related learning and memory deficits. Because the neuron is the basic functional 

unit of the nervous system, it is of fundamental importance to establish, as a first step 

in identifying the structural basis of age-related decline in memory, the extent to 

which neuron numbers correlate with performance on tasks known to involve the 
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hippocampus, such as the Morris water maze (Morris, 1984). CA1 pyramidal neurons 

are a subpopulation of hippocampal neurons that are the most sensitive to cognitive 

deficits (Olsen et al., 1994). There was a significant correlation between working 

memory impairments and the neuronal cell loss in hippocampal CA1 subfield of 

demented rats (Stepanichev et al., 2004). 

 

The hippocampus plays an important role in episodic memory, such that lesioning of 

this limbic structure after learning a spatial orientated task induces spatial memory 

deficits (Winocur et al., 2005). Memory formation in the hippocampus involves 

stimulation of excitatory glutamatergic neurons, especially of the NMDA type 

(Haberny et al., 2002; Silva, 2003). Although the NMDA receptor plays an important 

role in memory formation, excessive stimulation by agonists such as QA can induce 

neuronal dysfunction, cell damage or even death. NMDA receptor-mediated neuronal 

damage and impaired hippocampal LTP have been implicated in the neurocognitive 

deficits associated with ADC (Lipton, 1994, Lipton, 1998). QA is known to cause 

lesioning in the hippocampus (Schwarcz et al., 1984; Speciale et al., 1987) and 

consequently resulting in spatial memory deficits (Moser et al., 1993; Clark et al., 

2000; Zola et al., 2000; Clark et al., 2001; Manns et al., 2003). Furthermore, since 

QA concentrations are elevated in the brain tissue and CSF of patients with ADC, and 

there is a direct correlation between the degree of elevation of CSF QA and the degree 

of neuropsychological deficit observed (Archim et al., 1993; Brew et al., 1996) due to 

lesioning of the hippocampus (Price et al., 1988; Masliah et al., 1992) it was decided 

to assess whether NVP and EFV, the current treatment of HIV/AIDS, could attenuate 

QA-induced memory impairment in ADC. 

 

Several authors suggest that the dorsal hippocampus is particularly involved in the 

acquisition of water-maze spatial memory tasks (Hock and Bunsey 1998; Hampson et 

al 1999; Ferbinteanu and McDonald 2001; Hölscher, 2003; Pothuizen et al., 2004). 

The most frequently used paradigm to evaluate learning and memory abilities in 

rodents is the Morris water task (D’Hooge and De Deyn, 2001), which is a spatial 

navigation task in which the animal swims to find a hidden platform, using extra-

maze visual and other sensory cues (Lipton et al., 1991) to locate it. To assess 

hippocampal dependent spatial learning and memory, mice were trained in a standard 

Morris water maze task (Morris et al., 1982; Silva et al., 1998; Stackman et al., 2002).  
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It was suggested that the short time periods that the rats are allowed to remain on the 

platform after each swimming trial are used for spatial orientation in the service of 

acquiring the spatial relationships between the platform and the cues in the 

environment (Sutherland and Dyck, 1984). Since the platform location remains 

unchanged throughout the test trials, this task predominantly measures spatial 

reference memory rather than working memory. The operant type of learning is 

employed in this task by training the rats to swim and escape from the opaque tank of 

water onto the hidden platform. The Morris water maze test is generally presented as 

taxing spatial memory, and thus is sensitive to the ability to consolidate and deal with 

spatial representations depending on hippocampal functions. The task itself may also 

be sensitive to non-cognitive biases (Lindner , 1997, van der Staay, 2002), or be 

solved by strategies that either do not exclusively rely upon the constitution and use of 

a cognitive map such as, path integration or the ability to integer, represent and use 

self-movements  ( Sutherland and Hamilton, 2004). After training, the hippocampi of 

the rats are lesioned and these animals undergo treatment. Local lesions in the CNS 

are a common tool to interfere with brain structures and neurotransmitter systems, 

respectively, to assess their relevance for the behaviour and basal brain functions (File 

et al., 1979). The effects of the water maze task experienced before lesioning on 

spatial memory, is determined by reintroducing the rats to the same water maze and 

assessing the latency (time in seconds) to escape to the platform (Morris, 1981).  

 

8.2.3.    Materials and Methods 

 

8.2.3.1. Chemicals and Reagents 

 

All chemicals and reagents were as per section 4.2.2.1. 

 

8.2.3.2. Animals 

 

Adult male Wistar rats were housed and cared for as described in section 3.2.2.2. 
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8.2.3.3. Animal training in the Morris water maze task 

 

The apparatus consisted of a circular water tank (150cm in diameter and 40 cm high). 

A platform (12.5 cm in diameter and 31cm high) invisible to the rats, was set inside 

the tank, which was filled with water maintained at approximately 23 oC to a height of 

33 cm. The platform was submerged 2 cm below the surface of the water. The tank 

was located in a large room where there were several brightly colored cues external to 

the maze: these were visible from the pool and could be used by the rats for spatial 

orientation. The position of the cues remained unchanged throughout the study. For 

each training session each rat was put into the water at one of four starting positions, 

the sequence of the positions being selected randomly. Training was conducted for 7 

consecutive days, twice a day with each session consisting of 4 trials. Animals were 

trained for 7 days before being subjected to the treatment protocol. 

 

8.2.3.4.  Surgical procedures and treatment regimes 

 

For the purpose of these experiments, rats were divided into four groups as described 

in the table 8.1.  

 

Table 8.1.  Treatment regimes for the behavioural studies 

 

Treatment Regime i.h. injection (2 

μL) 

Received daily dose for 5 

days after i.h. injection 

Control PBS Vehicle 

QA (i.h.) + vehicle 120 nmoles QA Vehicle 

QA + EFV (5 mg/kg/day for 5 days) 120 nmoles QA EFV 5mg/kg/day 

QA + NVP (5 mg/kg/day for 5 days) 120 nmoles QA NVP 5mg/kg/day 

 

After 7 days of training, animals were divided into the above 4 groups and received 

intrahippocampal injections as described above. Surgical procedures were conducted 

as described in section 3.3.2.3. Thereafter the animals were dosed intraperitoneally 

with either EFV or NVP at a dose of 5mg/kg/day for 5 days. On the morning of the 6th 
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day, animals were re-introduced to the water maze task and test trials were conducted 

for 7 days with animals receiving 1 test trial a day. 

 

8.2.3.5. Morris water maze test of spatial reference memory 

 

During test trials, rats were placed into the tank at the same starting point, with their 

heads facing the wall of the tank. The time taken for each rat to find the hidden 

platform from the starting point was measured by a person unaware of the 

experimental conditions.  

 

8.2.3.6. Statistical analysis 

 

 All results were analysed using repeated measures ANOVA with group as a factor 

and latency to escape measured over 7 days. Student-Newman-Keuls multiple range 

test was used for post hoc analysis. The level of significance was accepted at p < 0.05 

(Zar, 1974). 

 

8.2.4.      Results 

In Figure 8.1. and 8.2., the results of the statistical analysis show a significant 

difference in latency to escape between the EFV (F = 15.77, p < 0.001) and NVP 

treated groups (F= 18.81, p < 0.001). Post hoc analyses (Student-Newman-Keuls’ 

Multiple Range test) show that the latency to escape (over 7 days) of rats that received 

intrahippocampal injections of QA was significantly longer compared to the control 

group (p < 0.001).  

The EFV and NVP treated animals which also received intrahippocampal injections 

of QA significantly show faster escape times in comparison to the QA alone group 

(p < 0.001) (Figure 8.1. and 9.2.). There is no significant difference between the 

latencies to escape of the control group in comparison to the drug treated groups (p > 

0.05). 
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Figure 8.1.  Performance of the rats in the water maze task. Each point represents 

the mean latency ± SD to escape of 5 rats. Trials were conducted once daily, every 

day for 7 days. Results were analyzed using repeated measures ANOVA with group 

as a factor and latency measured over 7 days. Student-Newman-Keuls multiple range 

test for multiple group comparison was used for post hoc analysis. 
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Figure 8.2.  Performance of the rats in the water maze task. Each point represents 

the mean latency ± SD to escape of 5 rats. Trials were conducted once daily, every 

day for 7 days. Results were analyzed using repeated measures ANOVA with group 

as a factor and latency measured over 7 days. Student-Newman-Keuls multiple range 

test for multiple group comparison was used for post hoc analysis. 

 

 

8.2.3.   Discussion 

Memory formation in the hippocampus involves stimulation of excitatory 

glutamatergic neurons, especially of the NMDA type (Haberny et al., 2002; Silva, 

2003). The NMDA receptors are critically involved in various types of synaptic 

plasticity, including LTP, a neural process underlying memory and learning in the 

hippocampus (Collingridge and Bliss, 1987; Bliss and Collingridge, 1993; Asztely 

and Gustafsson, 1996). The normal physiological stimulation of the NMDA receptors 

evokes an influx of Ca2+, known as the calcium signal, required during development 

of LTP (Bliss and Collingridge, 1993; Asztely and Gustafsson, 1996; Danysz and 
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Parsons, 2003). Although NMDA receptors play an important role in memory 

formation, excessive stimulation by agonists such as QA can induce neuronal 

dysfunction, cell damage or even death (Stone, 1993; Nakai et al., 1999). QA is an 

analogue of aspartate, which is a known agonist at NMDA receptors (Stone and 

Perkins, 1981; Perkins and Stone, 1983; Stone, 1993). The concentrations of QA in 

the CNS have been shown to rise several hundred-fold in some circumstances, such as 

infection by HIV, to levels that produce a marked activation of NMDA receptors 

(Heyes et al., 1991).  

The presence of QA on the postsynaptic neuron, results in temporal uncoordinated 

and continuous pathological stimulation of NMDA receptors, producing enhanced 

noise, thus decreasing the probability of detecting the relevant calcium signal (Danysz 

and Parsons, 2003), produced in response to the firing of the presynaptic neuron. The 

firing of hippocampal neurons during the test trails (after lesioning), occurs when 

partial cues are detected and the retrieval processes of autoassociation are placed in 

motion (Müller, 2006). The potentiated synapses in all groups of rats are formed by 

induction and subsequent expression of LTP between CA1 and CA3 subfields of the 

hippocampus, in the encoding and storage processes during the 7 days of training. 

However in QA lesioned rats, the Ca2+ signal generated in the glutamatergic synapses 

is not detected, suggesting that CA1 cells are unable to operate as recorders for the 

recalled information from the CA3 cells, as a result the recalled information is not 

efficiently represented to enable initiation of recalling (Müller, 2006). 

The ability of 120 nmoles of QA to significantly reduce the retrieval of spatial 

memory as shown in Figure 8.1.and 8.2., could also be due to postsynaptic neuronal 

degeneration of the potentiated glutamatergic synapses, as a result of overstimulation 

of ionotropic glutamate receptor sub-types, such as NMDA and AMPA. It is these 

properties of QA that alter the ability of the rats to retrieve spatial reference memory. 

However, treatment of the animals with EFV and NVP, improves behavioural 

response in comparison to the QA treated group. In addition, both agents appear to be 

effective in improving memory to the extent that there is no significant difference in 

comparison to the control group (p > 0.05).  

The ability of NVP and EFV to improve spatial reference memory deficits induced by 

QA, a product of HIV-induced neurotoxicity, could possibly be due to a reduction in 
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the noise-to-signal ratio as well as scavenging ROS (section 2.2.3; 3.2.3 and 3.3.4) 

hence protecting the hippocampus from QA-induced neurotoxicity. Since NMDA 

receptors are vital for brain function (Forrest et al., 1994) memory formation and 

learning (Bliss and Collingridge 1993), and QA has been demonstrated to reduce the 

number of NMDA receptors in rat hippocampus (Southgate et al., 1998; Nakai et al,. 

1999), It is possible that these NNRTIs may reduce the loss of receptors and hence 

prevent the loss of hippocampal neurons thereby improving the QA-induced spatial 

reference memory deficit. Although these results may suggest this possibility, it is not 

yet known whether these agents bind to NMDA receptors, hence histological and 

receptor binding studies have to be implemented in order to augment this possibility. 

8.2.4.    Conclusion 

 

NVP and EFV treated animals have lower escape latencies compared to the untreated 

animals that also received intrahippocampal injections of QA. This effect is 

speculated to be related to the ability of these agents to protect against QA-induced 

hippocampal neurodegeneration, hence improve retrieval of the spatial information 

stored in potentiated synapses through LTP and autoassociation at the NMDA 

receptors. 
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CHAPTER 9 

 

SUMMARY OF RESULTS AND GENERAL 

CONCLUSIONS  

 
 

9.1. SUMMARY OF RESULTS 

 

Oxidative stress-induced neuronal death implicated in ADC is often associated with 

an immune response, in which microglia are activated to produce and release many 

neurotoxic products including oxidative free radicals and QA, which have the ability 

to cause neurodegeneration. Although there are several hypotheses for the 

involvement of causative agents in neuro-AIDS, there is particularly a strong case for 

believing that the excitotoxin QA may have special relevance to the development of 

CNS dysfunction and damage in ADC. Numerous studies point to a neuroprotective 

potential for NNRTIs, EFV and NVP, which currently are the drugs of choice in the 

treatment of HIV/AIDS. 

 

 Free radicals cause deleterious oxidative damage to biological molecules leading to 

various neurodegenerative disorders including ADC. Therefore in Chapter 2, the 

antioxidant effect of these NNRTIs was determined based on the percentage 

scavenging of DPPH radicals. The results show that, NVP and EFV scavenge the 

DPPH radical and this is speculated to be through hydrogen donation. In addition this 

helps to prevent further initiation of free radical-mediated chain reactions in cells by 

preventing the abstraction of hydrogen from susceptible PUFAs.  

 

Increased ROS formation and oxidative stress are important features involved in QA-

induced neurotoxicity, ultimately causing oxidative damage to biological molecules 

including lipids, proteins and DNA. Chapter 3 illustrates that QA significantly 

induces LP in rat brain homogenates in vitro and that both, NVP and EFV blunt this 

effect. It is speculated that in vitro, QA forms complexes with Fe2+ ions that enhance 
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the Fenton reaction to produce HO● which in turn participates in LP. The possibility 

of the NNRTIs binding to Fe2+ and Fe3+ and reducing Fe2+-induced LP in rat brain 

homogenate was investigated in chapter 5. Both NNRTIs once again, reduce QA-

induced LP in vivo, which is thought to occur through NMDA-dependent 

excitotoxicity in addition to the free radicals produced by the QA-Fe2+ complex. The 

results of this chapter speculate that this effect could be related to the ability of these 

agents to either scavenge the free radicals being produced or binding Fe2+ and / or 

Fe3+ ions. Furthermore, NVP reduces QA-induced LP in vivo, below control levels, 

and this may possibly be related to interactions with NMDA receptors. More studies 

are required to augment this possibility. In addition since QA inactivates NMDA 

receptors which have an important function in learning and memory, a reduction in 

QA-induced neurotoxicity by these agents is thought to be of therapeutic value in 

improving learning and memory function. Hence this possibility was investigated in 

Chapter 8. 

 

Since Chapters 2 and 3 demonstrate that NVP and EFV have antioxidant and free 

radical scavenging properties, it was decided to determine if these agents could 

scavenge, the toxic, O2
●¯. Initially, in vitro experimental results illustrate that KCN 

acts as a potent inducer of O2
●¯ production in rat brain homogenate, and that both 

agents significantly attenuate this effect. Hence the ability of these agents to reduce 

KCN-induced O2
●¯ formation was speculated to be possibly through a reduction and / 

or prevention of Ca2+ influx or scavenging of O2
●¯. Intrahippocampal injections of 

QA induce a significant increase in O2
●¯, and the presence of this free radical in vivo 

is influenced by NMDA stimulation associated with QA, which implies that the 

reduction in O2
●¯ generation brought about by NVP and EFV is most likely and 

primarily related to the ability of these agents to prevent O2
●¯ formation rather than 

scavenging this free radical. 

 

In view of the possibility that NVP and EFV alleviate QA enhanced Fe2+-induced LP 

through chelation of Fe2+ and Fe3+ , the purpose of Chapter 5 was to conduct Fe 

chelation studies. The possibility of the NNRTIs to directly inhibit the Fenton reaction 

was assessed by conducting Fe2+-induced LP in vitro. Rat brain homogenates exposed 

to Fe2+ exhibited significant LP by a mechanism which may involve Fe-mediated 

decomposition of lipid hydroperoxides to yield alkoxyl or peroxyl radicals, leading to 
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the chain reaction of LP. EFV exhibits an inhibitory effect on Fe2+-induced LP, hence 

its ability to ameliorate QA-induced LP was speculated to be through binding of Fe2+ 

and/ or Fe3+. Furthermore, the decrease in QA-induced LP by NVP was speculated to 

be through free radical scavenging and not by interference with the Fenton reaction as 

indicated by the non-significant effect on Fe2+-induced LP in vitro. The ferrozine 

assay was used to determine Fe2+ chelating activity by these NNRTIs, and the results 

demonstrate that EFV has a greater chelating activity than NVP, indicating that it is 

more likely to bind Fe2+ and therefore provides an adequate explanation for its 

significant inhibition of Fe2+-induced LP. The ASVs from electrochemical analysis 

confirms the metal binding and further characterized the redox potentials of the 

complexes in comparison to the free Fe3+. It was concluded that the NVP- Fe3+ and 

EFV- Fe3+ complexes are more difficult to reduce than the respective free metal ion. 

These results also demonstrate stronger Fe3+ binding for EFV than NVP. Thus 

through binding Fe2+ and Fe3+, these NNRTIs may prevent redox recycling of Fe3+ to 

Fe2+ and consequently reduce the amount of Fe2+ available to participate in the 

formation of the QA- Fe2+ complex and the subsequent LP associated therewith. 

Furthermore, these results provide an adequate explanation for the inhibition of QA-

induced LP by these agents (Chapter 3). 

 

The KP is involved in the synthesis of the neurotoxin QA, and Chapter 6 aims to 

assess the effect these NNRTIs have on the biosynthesis of QA by measurement of 

the activity of the enzyme TDO, which is involved in catalyzing the conversion of 

TRP, a precursor of 5-HT synthesis to QA. The untoward effect of enhanced TDO 

activity is that it induces TRP catabolism, thus increasing blood-borne kynurenines 

for the biosynthesis of QA, and reducing the availability of TRP for uptake into the 

brain, where it is utilized for the synthesis of the neurotransmitter 5-HT. In vivo 

studies demonstrate that the treatment of animals with NVP and EFV (5mg/kg/daily 

for 5 days) decreases the apo-, holo- and total enzyme activity of TDO.  It was 

proposed that both NVP and EFV most likely interfere with the conjugation of haeme 

to the apoenzyme by competitive inhibition.  

 

The inhibition of TDO may not only reduce the synthesis of the excitatory amino 

acid, QA but increases amounts of TRP for 5-HT synthesis. 5-HT has emerged as an 

important neurotransmitter in normal brain function and abnormal synthesis, 
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utilization and metabolism are appalling. Hence, Chapter 7 investigated the effect of 

NVP and EFV on these aspects of 5-HT and other biogenic amines. 

 

NVP and EFV (5mg/kg/daily for 5 days), both increase the production of 5-HT in the 

hippocampus. The study confirms the earlier findings in Chapter 6 that both NNRTIs 

have profound inhibitory effects on liver TDO activity, which culminates in a rise in 

central 5-HT levels. It was therefore concluded that TDO inhibition and thus 

increased brain TRP is confirmed to be the most likely mechanism of increased brain 

5-HT levels by these NNRTIs. NVP also induces a rise in hippocampal 5-HIAA 

levels which was attributed to the fact that there is increased hippocampal 5-HT levels 

available as substrate for ADH and MAO which oxidize 5-HT to 5-HIAA. However 

despite this, 5-HT turnover was reduced, which could imply that both NNRTIs may 

have the potential to slow the metabolism of 5-HT, thus maintaining the increased 

levels for longer.  

 

 The results of the pineal organ culture showed that EFV treatment decreases the 

pineal level of 5-HT + 5-MT. It was hypothesized that this effect is related to an 

increased uptake and utilization of 5-HT at the sympathetic nerve terminals and not in 

the pinealocytes. The significant decrease in 5-HIAA is observed and is thought to 

occur via ADH inhibition, whilst an inhibitory effect on AR reduces synthesis of 5-

HTOH as indicated in NVP treated pineals.  However, it is also interesting to note that 

the decrease in 5-HIAA and 5-HTOH synthesis in NVP treated animals is 

accompanied by an increase in the production of 5-MIAA and 5-MTOH. Therefore it 

is possible that this agent has stimulatory effects on HIOMT. In addition, NVP 

increases aMT synthesis by the pineal gland. This increase was thought to be as a 

result of NVP’s effect on the aMT synthesis pathway in the pineal gland rather than 

the inhibition of TDO. Although increased NE levels stimulate NAT activity , thus 

increasing pineal NAS levels, the decrease in pineal NAS levels shown by NVP 

treated animals is speculated to be as a result of insufficient NE available to induce 

NAT activity.  

 

Therefore the direct effect of NVP on NAT activity needs to be investigated. These 

results also indicate that the mechanism of action of these agents is not only confined 

to the hippocampus but also the pineal gland with regard to alteration of 
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indoleamines. The resultant increase in pineal aMT levels following NVP 

administration could have implications in neuroprotection as aMT has been 

demonstrated to be a potent antioxidant in the brain. 

 

Since the hippocampus plays a major role in learning and memory, lesioning of this 

limbic structure would induce spatial memory deficit. QA is known to cause lesioning 

in the hippocampus, hence Chapter 8 demonstrates that i.p. post-treatment of NVP 

and EFV, improves QA-induced spatial memory deficits in the hippocampus, in a 

Morris water maze task model of behavioural studies. QA significantly affects the 

animal’s performance in the water maze by virtue of the longer latencies to escape to 

the platform when compared to the control group. NVP and EFV treated animals have 

shorter latencies to escape in comparison to the untreated animals that also received 

intrahippocampal injections of QA. Therefore this experiment speculates that the 

reduced spatial memory deficits could be related to the ability of these NNRTIs to 

protect against QA-induced hippocampal neurotoxicity. NVP treated animals had 

shorter latencies to escape when compared to EFV treated animals. This effect may be 

related to the ability of NVP to protect against QA-induced hippocampal neuronal 

damage to below control levels, as shown in Chapter 3. 
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9.2. CONCLUSIONS 

 

Some of the factors implicated in the pathogenesis of neurodegenerative disorders 

such as AD, PD and ADC, include free radicals (Gutteridge 1995; Floyd 1999; 

McCord 2000), excitotoxicity (Choi 1985; Rothman and Olney 1987) as well as an 

imbalance in metal homeostasis (Bush 2000). Since there is no cure for these 

debilitating diseases, current therapeutic strategies which aim to delay the onset and/ 

or slow down the progression of the diseases will be of therapeutic value. This study 

has demonstrated that the NNRTIs, EFV and NVP may possibly have the potential to 

be used in the treatment or prevention of other neurological disorders such as AD and 

HSE.  

 

NVP and EFV have shown to possess antioxidant and metal binding properties, which 

may also contribute towards the neuroprotection offered by these agents. Both agents 

reduce LP, scavenge the O2
●¯, bind Fe2+ and Fe3+, protect rat hippocampal neurons 

against QA-induced neurotoxicity and subsequently reduce QA-induced spatial 

memory deficits. EFV demonstrated stronger interactions with Fe2+ and Fe3+, hence 

exhibiting significant reduction in Fe2+-induced LP in vitro.  

 

Both NVP and EFV inhibit TDO and increase 5-HT levels in the hippocampus. 

Furthermore, NVP but not EFV increases the pineal synthesis of aMT, a well 

established neuroprotectant. Hence this could be another mechanism through which 

NVP may offer neuroprotection although it was stated that this increase is not due to 

TDO inhibition. TDO inhibition also may be a mechanism through which these agents 

reduce the synthesis of QA, and consequently decrease excitotoxicity and the 

subsequent neurodegeneration associated therewith. 

 

Thus from the preceding evidence, the possible mechanisms of neuroprotection, by 

which these agents function provides a variety of alternatives in attenuating various 

biochemical processes that are exhibited in neurodegeneration. Furthermore, this 

study highlights the potential therapeutic benefits that these agents could have in 

treating the neurodegenerative disorder, ADC. 
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CHAPTER 10 

 

 

RECOMMENDATIONS FOR FUTURE STUDIES 

 
In Chapter 3, the NNRTIS reduce QA-induced neurotoxicity in vivo. QA has been 

shown to enhance synaptosomal glutamate release, resulting in indirect excitotoxicity 

through elevation of glutamate levels in the synaptic cleft (Tavares et al., 2005). 

Hence the effect of these agents on synaptosomal glutamate release needs to be 

further investigated. Excitotoxicity produced by sustained NMDA receptor activation 

by QA is associated with elevated cytosolic Ca2+ concentrations, followed by Ca2+ 

dependent enhanced free radical production, which leads to molecular damage and 

often cell death (Stone and Perkins, 1981; Santamaría et al., 2003; Pérez-Severiano et 

al., 2004). Thus apart from scavenging the free radicals generated, these NNRTIs may 

also reduce intracellular Ca2+ concentrations and / or interact directly with NMDA 

receptor or indirectly via second messenger processes that in turn influence NMDA 

receptor processes. Further studies need to be conducted in order to determine the 

effect, if any, of these NNRTIs on NMDA receptors and the binding of Ca2+. 

 

KCN may induce LP through disruption of the mitochondrial ETC (Way, 1984), 

which consequently leads to increased levels of intracellular Ca2+, and ultimately free 

radical generation and oxidative stress (Southgate and Daya, 1999; Pillay et al., 

2002).  The effect of KCN on LP is reduced by the co-incubation of the homogenate 

with the NNRTIs, as illustrated in Chapter 4. NVP and EFV may initiate this effect by 

scavenging the free radicals generated. It was also thought that these agents prevent 

the influx of Ca2+ into the mitochondria or prevent the inhibition of the mitochondrial 

enzyme a1a3. Further research needs to be conducted on the effects of these NNRTIs 

on the mitochondria.  

 

In Chapter 6, the treatment of the animals with NVP and EFV (5 mg/kg/day for 5 

days), decreases the apo-, holo- and total enzyme activity of TDO. It was proposed 
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that these agents may be interfering with conjugation of haeme to the apoenzyme by 

competitive inhibition. This effect needs to be further explored. Another area of 

further research would be an investigation into the effect of these NNRTIs on the 

biosynthesis of QA by measurement of the activities of other enzymes involved in 

catalyzing the conversion of TRP to QA, namely IDO and 3-HAO. The cofactors, 

O2
●¯ and Fe2+ are required for the activity of IDO and 3-HAO respectively, and since 

these NNRTIS have demonstrated the ability to reduce QA-induced O2
●¯ generation 

in vivo, and bind Fe2+ as illustrated in Chapter 4 and 5 respectively. Further studies 

are necessary to investigate the effect these agents have on the activity of both 

enzymes.  

 

The enzymes, MAO and ADH are implicated in the oxidation of 5-HT to 5-HIAA, 

and NVP increases 5-HIAA levels in the hippocampus. Hence more studies involving 

mechanisms through which this agent increases 5-HIAA needs to be established. It is 

also suggested that the effect of this agent on the enzyme responsible for 5-HT 

metabolism, MAO-A, also be studied, as this would provide a further understanding 

into the effects it has, regarding the role it plays in altering brain 5-HT levels. NVP 

increases aMT synthesis. It is unlikely that the rise in aMT is a consequence of 

inhibition of TDO in the liver but rather a direct effect on the pineal gland. More 

research needs to be conducted on the direct effects of NVP on the aMT synthesis 

pathway.  

 

QA has been reported by some authors to cause selective pyramidal cell death in the 

hippocampal CA1, CA3 and CA4 regions (Behan et al., 1999), which are responsible 

for learning and memory. In Chapter 8, both agents illustrate the ability to 

significantly improve QA-induced spatial memory deficits. Hence the ability of these 

agents to protect against pyramidal cell death, if any, needs to be further investigated 

using both apoptotic and histological analyses. These investigations will provide 

useful information pertaining to the degree to which the neuroprotection offered by 

these agents dictates the efficiency of spatial reference memory. 
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