Synthesis of Novel Inhibitors of 1-Deoxy-D-xylulose-5-phosphate Reductoisomerase as Potential Anti-malarial Lead Compounds

A thesis submitted in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
Of Rhodes University

By

Marius Kudumo Mutorwa
B.Sc.Hons (Rhodes University)

Abstract

This research has focused on the development of novel substrate mimics as potential DXR inhibitors of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), an essential enzyme in the mevalonate-independent pathway for the biosynthesis of isoprenoids in Plasmodium falciparum. DXR mediates the isomerisation and reduction of 1-deoxy-D-xylulose-5phosphate (DOXP) into 2C-methyl-D-erithrytol 4-phosphate (MEP) and has been validated as an attractive target for the development of novel anti-malarial chemotherapeutic agents.

Reaction of various amines with specially prepared 4-phosphonated crotonic acid in the presence of the peptide coupling reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), has afforded a series of amido-phosphonate esters in moderate to good yields (48\% 73%) which, using a $\mathrm{RuCl}_{3} / \mathrm{CeCl}_{3} / \mathrm{NaIO}_{4}$ catalyst system, have been dihydroxylated to furnish the dihydroxy-amido phosphonate ester pro-drugs; subsequent hydrolysis under microwave irradiation has afforded the corresponding phosphonic acids. A second series of potential inhibitors viz., 3-substituted aniline-derived phosphonate esters, their corresponding phosphonic acids and mono-sodium salts, have also been successfully synthesised. In these compounds, the essential functional groups are separated by one, two, three or four methylene groups, Deprotonation of the 3 -substituted aniline substrates, followed by reaction with the appropriate ω-chloroalkanoyl chloride produced the ω-chloroamide intermediates, which were subjected to the Michaelis-Arbuzov reaction to afford the diethyl phosphonate esters in moderate to good yields (48\%-74\%). Microwave-assisted TMSBrmediated cleavage of the phosphonate esters furnished the phosphonic acids, neutralisation of which afforded the mono-sodium salts.

Furan-derived phosphate esters and phosphonic acids have been prepared as conformationally-restricted DOXP analogues. Functionalization at C-5 of the trityl-protected furan was achieved using the Vilsmeier-Haack formylation and Friedel-Crafts acylation reactions and, following de-tritylation, phosphorylation and oximation, using hydroxylamine hydrochloride, the novel oxime derivatives have been isolated as a third series of potential DXR inhibitors in very good yields (87% - 96%). Finally, in order to exploit an additional binding pocket in the PfDXR active site, a series of N-benzylated phosphoramidic derivatives were obtained in seven steps from the starting material, diethyl phosphoramidate. The

known inhibitors, fosmidomycin and its acetyl derivative FR900098, were also successfully synthesised as standards for STD-NMR binding and inhibition assays. In all, over 200 compounds (136 novel) have been prepared and appropriately characterised using 1-and 2D NMR and IR spectroscopic analysis and, where necessary, HRMS or combustion analysis.

Saturation Transfer Difference (STD) protein-NMR experiments, undertaken using selected compounds, have revealed binding of most of the ligands examined to EcDXR. Computersimulated docking studies have also been used to explore the preferred ligand-binding conformations and interactions between the ligands and essential DXR active-site residues, while DXR-enzyme inhibition assays of selected synthesised ligands have revealed certain patterns of inhibitory activity.

AKNOWLEDGEMENTS

Foremost I would like to thank my supervisor, Professor Perry T. Kaye, for his dedication, guidance, unfailing advice and patience. I'm grateful to have had the privilege of working under your supervision and for your energy, always encouraging me to never give up throughout the course of my study. Thank you to my co-supervisor, Dr Rosa Klein, for her guidance and support in every aspect of this study; in the laboratory, in the analysis of data and in the writing-up stage.

To my parents, John and Agnes Mutorwa, thank you for your love, care, prayers, understanding and for the opportunity you have given me to pursue my studies. To my siblings, Nelson, Clemens and Wilhelmine, thank you for your love, support and always believing in me.

In addition, I wish to extend my gratitude and acknowledgement to:-

- Rhodes University Department of Chemistry academic and technical staff, for their meaningful inputs throughout the course of this research.
- Professor Mike Davies-Coleman for his guidance, advice and being a source of inspiration.
- Dr Kevin Lobb and Ms. Anne Conibear, for the guidance and patience, in teaching me computer modelling and STD-NMR techniques.
- Prof Greg Blatch and Dr Jess Goble (Department of Biochemistry, Rhodes University) and Miss Taryn Bodill (Rhodes University Centre for Chemico- and Biomedicinal Reseach) for their assistance and support, and work in purifying EcDXR and conducting the bio-assays.
- University of Stellenbosh Central Analytical Facility for recording the HRMS data and Mr Francis Chindeka at the Nanotechnology Innovation Centre (NIC) for conducting the elemental analysis.
- Rhodes University for the financial assistance.
- My fellow colleagues in Lab F22, who over the years, have supported and encouraged me, and for providing a pleasant working environment.

I owe much thanks to all my friends in Grahamstown for the moral support, interest and encouragement. Special thanks to Eleph Gula-Ndebele, Asanda Chuma, Theodore Moyo, Laura Wener, Lulama Mciteka, Tina Dreier, Yung-Chaun Chen, Tunga Muganhiri, Zenzo Madubeko-sibanda and Mandla Gagayi.

DEDICATION

To my parents,
John and Agnes Mutorwa
and my siblings,
Nelson, Clemens and Wilhelmine

TABLE OF CONTENTS

Abstract i
Acknowledgements iii
Dedication v
Table of contents vi

1. INTRODUCTION 1
1.1. History of malaria 1
1.2. Global impact of malaria
1.2.1. Epidemiology of malaria 4
1.3. Biology and life cycle of the malaria parasite 8
1.3.1. Biological differences amongst malaria parasite species 10
1.3.2. Clinical symptoms and diagnosis of malaria 10
1.4. Current anti-malarial drugs: Mechanism of action and resistance 11
1.4.1. Quinolines 11
1.4.1.1. Mechanism of action and resistance 14
1.4.2. Artemisinin and its derivatives 15
1.4.2.1. Mechanism of action and resistance 16
1.4.3. The Antifolates 17
1.4.3.1. Mechanism of action and resistance 17
1.4.4. Hydroxynaphthoquinones 18
1.4.4.1. Mechanism of action and resistance 18
1.4.5. Antibiotics 19
1.5. Synthetic approaches to current anti-malarial drugs
1.5.1. Synthesis of 4 -aminoquinolines, quinoline aryl-amino alcohols and 8-aminoquinolines 19
1.5.2. Synthesis of Artemisinin and its derivatives 23
1.6. Strategies for the discovery of new anti-malarial drugs 25
1.6.1. Development of analogues of existing anti-malarial drugs 26
1.6.2. Natural products 34
1.6.3. Rational drug design: inhibition of new biological targets 36
1.7. 1-Deoxy-D-xylulose-5-phosphate reductoisomerase as a target for anti- malarial drug design 38
1.7.1. Isoprenoid biosynthesis via the mevalonate-independent pathway 38
1.7.2. Catalytic mechanism of DOXPreductoisomerase (DXR) 40
1.7.3. Molecular structure of DXR
1.7.3.1. Structure and conformational dynamics of DXR 42
1.7.3.2. DXR catalytic site: ligand-binding residues and binding of co-factors 42
1.7.3.3. Kinetic parameters of DXR 46
1.7.4. The design of DXR inhibitors: fosmidomycin and DOXP analogues 47
1.8. Previous work in the group and aims of the present study 51
2. DISCUSSION 54
2.1. Synthesis of dihydroxy-amido phosphonate esters and phosphonic acid derivatives as novel DXR inhibitors 54
2.2. Synthesis of 3-substituted aniline-derived phosphonate esters and phosphonic acids 81
2.2.1. Preparation of the chloroacetyl chloride-derived anilides 82
2.2.1.1. Reaction of 3 -substituted anilines with acetyl chloride 82
2.2.1.2. Phosphonation of chloroacetamides via Michaelis- Arbuzov reaction 85
2.2.1.3. Hydrolysis of methyl phosphonate esters using TMSBr 88
2.2.2. Preparation of the ω-chloropropionyl chloride-derived anilides 91
2.3. Synthesis of furan-derived phosphate analogues as conformationally restricted
DOXP analogues 100
2.3.1. Protection of 3 -furanmethanol via tritylation 101
2.3.2. Functionalization of the 5 -position of the furan ring 102
2.3.3. De-tritylation and phosphorylation using mild acid hydrolysis 110
2.3.4. Preparation of the phosphorylated furanyl oximes 114
2.4. Synthesis of N-benzyl substituted phosphoramidic acid derivatives based on a de-novo design strategy 117
2.4.1. Synthesis of the diethyl phosphoramidate acetal 353 via silylation and alkylation 119
2.4.2. Synthesis of the N-substituted benzyl phosphoramidate acetals 354a-d 121
2.4.3. Synthesis of N-benzyl substituted phosphoramidic acid derivatives 123
2.5. Enzyme-binding and -inhibition studies
2.5.1. Synthesis of fosmidomycin and FR900098 as biological standards 129
2.5.2. Saturation Transfer Difference (STD) protein NMR binding studies 134
2.5.3. Enzyme inhibition assays 140
2.6. Molecular modeling and simulated docking studies 143
2.7.Conclusions 154
3. EXPERIMENTAL 158
3.1. General Procedures 158
3.2. Dihydroxy-amido phosphonate esters and their corresponding phosphonic acids 159
3.3. 3-Subtituted aniline-derived phosphonate esters and their corresponding phosphonic acids 181
3.4. Furan-containing phosphoric acid derivatives 250
3.5. N-Benzyl substituted phosphoramidic acid derivatives 263
3.6. Synthesis of fosmidomycin and FR900098 283
3.7. Saturation Transfer Difference (STD) NMR binding Studies 288
3.8. NADPH-dependent DXR inhibition assay 288
3.9. Modelling and simulated docking studies 289
4. REFERENCES 290

1. INTRODUCTION

1.1. History of malaria

The interaction and evolution of malaria and humans can be traced back to ancient human civilizations, more than 5000 years ago. ${ }^{1}$ The evidence of this affiliation or co-existence is authenticated within the manuscripts and writings of the Romans, Chinese, Indians, Greeks and Egyptians. ${ }^{1}$ This includes the identification of malarial antigen molecules from skin and lung samples extracted from Egyptian mummies dating from the periods 3200 and 1304 B.C. Enlarged spleens, a phenomenon associated with malaria, have also been detected in mummies aged more than 3000 years old. ${ }^{1}$ Documentation within the Chinese Classic of internal Medicine "Nei Ching", written around 2700 B.C, alludes to the characteristic symptoms observed in patients afflicted with malaria; specifically recurring fevers, enlarged spleens, headaches and chills. ${ }^{1-2}$

From the fifth century B.C. onwards, the identification and description of the disease along with its devastating effects are illustrated in the writings of several well-known philosophers and writers. ${ }^{1}$ They include Homer (ca. $8^{\text {th }}$ Century B.C.) Sophocles (496-406 B.C.), Hippocrates (460-370 B.C.), Plato (428-347 B.C.), Aristotle (384-322 B.C.) and Shakespeare (1564-1616). ${ }^{1-3}$ During the Roman Empire and throughout the middle ages, malaria became more prevalent due to the growth in population worldwide and the increase of migration of people across nations. By the beginning of the $18^{\text {th }}$ century, malarial infections were prominent and widespread across all continents. ${ }^{1}$ Furthermore, the intermittent illness had acquired various descriptive names, such as jungle fever, swamp fever and marsh fever, as a result of its association with tropical and low-lying water environments. In Western Europe, specifically Italy, the term mal'aria (meaning bad air) was used to express the cause and pathogenicity of the parasite in malaria victims. ${ }^{1,3}$

Throughout the $19^{\text {th }}$ century, particularly from the 1850 's onwards, scientists and pathologists made numerous unsuccessful attempts to isolate, identify and culture the pathogenic organism responsible for malaria. ${ }^{1}$ The discovery of the malaria-causing parasite in the blood of the human host was achieved through the work of a French surgeon, Charles Louis Alphonse Laveran, in $1880 .{ }^{1}$ This finding was facilitated by previous work done by

Heinrich Meckel in 1847, who observed the discolouration of organs in patients suffering from intermittent fevers. The discolouration was due to the presence of the reddish-brown malaria pigment, hemozoin, and Laveran initially proposed that it was the transparent, flake-like or granular form hemozoin molecules that was the cause of the disease. ${ }^{1,3}$ In addition to noticing the presence of hemozoin particles in the red blood cells of an infected person, Laveran also observed several forms of the mobile, flagellated male gametocytes as well as the spherical, motionless female gametocytes of the malaria parasite and subsequently proposed that the disease was caused by the single-celled protozoan organism Plasmodium, which he referred to as Oscillaria malariae. ${ }^{1-3}$ Over the following decade, Laveran's observations were supported by detection of the parasite within human host red blood cells through experiments conducted by Marchiafava and Celli in 1884, Golgi in 1886, and MacCallum and Opie in $1897 .{ }^{1-3}$ Following the successful identification of Plasmodium as the causative agent of malaria, scientists began to investigate and postulate modes of transmission of the parasite. Both Laveran and Manson suggested that mosquitoes were vectors of the disease. ${ }^{1}$ Manson, who in 1878 had established the ability of mosquitoes to transmit the infectious microfilariae from the blood of patients suffering from elephantiasis, hypothesized that mosquitoes could be infected in a similar manner by the malaria pathogen as a result of its exflagellation morphology. Consequently, Manson influenced his apprentice and colleague, Ronald Ross, to perform experiments that would substantiate the mosquito transmission of malaria. ${ }^{1}$

Ross, a physician in the British Indian Medical Service, commenced his investigation on mosquitoes as possible vectors of the malaria parasite in India in 1895. Initially, he successfully disproved the hypothesis (postulated by Manson) that the parasites were transferred from the mosquitoes to a new human host through the ingestion of water contaminated with the eggs of infected mosquitoes. ${ }^{1-2}$ Furthermore, he suggested that the transmission of the malaria plasmodia from mosquitoes to humans occurred through a bite or during feeding and concluded that the development of the human malaria parasite favoured a particular mosquito species, notably Anopheles. ${ }^{2}$ On 20 August 1897, Ross ultimately confirmed the Anopheles mosquitoes as vectors of human malaria when he observed the development of the oocyst and the presence of the black granular malaria pigment, hemozoin, within the stomach of mosquitoes which had fed on a malaria-infected
patient. ${ }^{1,3}$ A few years later, Ross demonstrated that malaria parasites infecting birds (i.e. sparrows and crows) developed into oocysts in the mosquito gut and subsequently migrated as sporozoites to the mosquito salivary glands from which they infected more birds during blood meals. He anticipated a similar transmission mechanism for human malaria, of which the experimental evidence was presented in 1898 by Grassi, Bignami and Bastianelli. ${ }^{1,3}$ The Italian scientists reported the transmission of the malaria parasite Plasmodium vivax (P. vivax), through the bite of the vector Anopheles Claviger, to a healthy volunteer. In addition, they also described the sporogonic cycle of Plasmodium falciparum (P. falciparum) and Plasmodium malariae (P. malariae) pathogens in anopheline mosquitoes. ${ }^{1}$ In 1900, Grassi suggested a host tissue development phase for the malaria parasite, due to the difference in the structure of the nucleus in parasites initially observed in the host erythrocytes (trophozoites) and the parasites within the salivary glands of the mosquito vector. ${ }^{1-3}$ The discovery of the Plasmodium malaria parasite in the tissues of both primate and human hosts was achieved in 1948 by H.E. Shortt and Garnham. ${ }^{1,3}$ Upon infecting (either through a mosquito bite or intravenous injection of sporozoites from the mosquito salivary glands) rhesus monkeys with Plasmodium cyanomolgi and human volunteers with P. vivax parasites, respectively, Shortt and Garnham detected the maturation of the malaria parasites in the livers of both simian and human hosts. In subsequent work, they established the tissue phases for the human malarial parasite P. falciparum (in 1949), P. ovale (1954) and P. malariae (1959). ${ }^{1,3}$ The latent tissue phase, referred to as hypnozoite, was observed and described by Krotoski and co-workers between 1980 and 1985 . 1,3 This stage of the parasite's developmental cycle provided experimental evidence of the clinical relapse when humans afflicted with the disease lack the pathogen in their bloodstream and appear to be cured, but experience the disease's symptoms years later. ${ }^{1,3}$

Over the last half century, considerable efforts and advances have been made in the field of malarial research, particularly in understanding the biochemistry of the malaria vector and parasite, as well as in the discovery and design of drugs to prevent or cure malaria. These include:- the isolation of artemisinin from Artemisia annua in 1971 as a potential antimalarial compound; the successful culturing of the pathogenic P. falciparum parasite within red blood cells by Trager; the development of several effective diagnostic test kits for the
detection of malaria parasite antigens; and the completion of the genome sequencing of the vector Anopheles gambiae (A. gambiae) and the parasite P. falciparum in 2002. ${ }^{3-7}$

1.2. Global impact of malaria

1.2.1. Epidemiology of malaria

Malaria is a vector-borne disease caused by protozoan parasites of the genus plasmodium and is regarded as the most deadly parasitic infection afflicting humans. ${ }^{1}$ Four plasmodia species are traditionally considered to account for all malarial infections in humans; Plasmodium ovale (P. ovale), Plasmodium vivax (P. vivax), Plasmodium malariae (P. malariae) and Plasmodium falciparum (P. falciparum). ${ }^{1}$ However, naturally acquired infections in humans have recently been reported for the parasite Plasmodium knowlesi (P. knowlesi), which has been traditionally associated with monkeys. ${ }^{8,9}$ P. vivax is geographically the most widespread of the parasites due to its ability to mature in mosquitoes at both low and high temperatures and under tropical climatic conditions. ${ }^{2,9}$ In West Africa, P. vivax is absent as the majority of the population do not possess the Duffy antigen receptor, which the parasite requires for entry into the human host's red blood cells. ${ }^{10}$ P. falciparum is however, the most virulent human malaria parasite causing the majority of severe clinical cases. P. ovale and P. malariae are less common both in terms of geographic distribution and human infectivity. ${ }^{10}$ The female Anopheles mosquito is the vector responsible for the transmission of malaria. ${ }^{2,10}$ There are ca. 70 Anopheles species differing in behavioural characteristics which are considered vectors of malaria. Variations in mosquito behaviour include host feeding preference (zoophilic or anthropophilic), biting habit (endophagic or exophagic) and resting behaviour (endophilic or exophilic). ${ }^{2,10}$ A. gambiae and A. funestus are considered the most important malaria vector species in Africa and their behavioural patterns (anthropophilic, endophilic and endophagic), along with their high transmission efficiency and density, are factors which have been attributed to the enormous burden caused by malaria on the African continent. ${ }^{6,11,12}$

The distribution of malaria, however, is worldwide with the disease being endemic in 106 countries across all the continents except Antarctica and Australia. Of the 106 malaria endemic countries, 43 are on the African continent. ${ }^{13}$ Recent estimates suggest that more
than 50% of the world's population (3.3 billion) are living in malarious areas and are exposed to the disease. ${ }^{14}$ Geographically, the disease is most prevalent within the tropical and sub-tropical regions (as depicted in figure 1). ${ }^{1,14}$ Sub-Saharan Africa bears the greatest burden, accounting for approximately 90% of all reported clinical cases with, 85% of all malaria associated deaths occurring amongst children under 5 years old and pregnant women. ${ }^{10,13-14}$ The severity of the disease in Africa is due to the fact that nearly all infections are caused by the most virulent malaria parasite, P. falciparum. ${ }^{10}$

Figure 1. Estimated global malaria incidence per 1000 population. ${ }^{14}$ (Reproduced with permission from the World Health Organisation).

The epidemiology of malaria is complex and the level of endemicity of the disease varies considerably within a given endemic region. Human activities at both a population and individual level have influenced the distribution pattern of malaria. ${ }^{15-16}$ The promotion of economic and agricultural development and the movement of populations (including urbanization and tourism), have contributed directly and indirectly to an increase in malarial transmission intensity. ${ }^{15-17}$ It is estimated that approximately 25000 tourists and travellers from non-endemic countries are exposed to the disease annually upon visiting malaria endemic regions. ${ }^{17}$

The global impact and public health threat of malaria is staggering. According to the World Health Organization (WHO) world malaria report 2010, the disease was responsible for 225 million clinical episodes in 2009, of which 781000 resulted in death. ${ }^{13}$ Although efforts have been made to reduce the burden of malaria, the prevalence of the disease has remained high and in some cases increased. ${ }^{10,13-14}$ Reports from Burkina Faso indicate a 3 -fold increase in the number of malaria cases, whereas in Ethiopia, there is evidence suggesting a shift in parasite infection cases from predominantly P. vivax to P. falciparum. ${ }^{18-19}$ Several factors are attributed to the increase in malaria prevalence worldwide. These include the emergence and spread of drug-resistant malaria parasites, particularly the virulent P. falciparum, towards chemotherapeutic drugs such as chloroquine. ${ }^{9,16}$ Chloroquine-resistant parasites were originally reported in South America (Venezuela and Colombia) and South East Asia (Thailand and Cambodia) in the late 1950's, but are now widespread in all malaria endemic regions. ${ }^{16}$ Moreover, insecticide-resistant mosquitoes (e.g. A. gambiae and A. funestus) have emerged recently. ${ }^{20}$ Several studies on the interaction between malaria and HIV co-infection have suggested that the immune-suppression effect of HIV enhances malaria transmission by increasing susceptibility and plasmodium parasite density within the host, thus increasing the symptomatic malarial episodes, especially in pregnant women. ${ }^{21-23}$ In addition, malaria adversely affects HIV-infected individuals by triggering CD4 cell activity and increasing viral loads, consequently accelerating the progression of HIV/AIDS. ${ }^{22-23}$

Most parasitic diseases, including malaria, commonly occur in poor or developing countries and are rarely encountered in the developed countries. ${ }^{10}$ Consequently, the financial incentive (i.e. the generation of profits) for pharmaceutical companies in wealthy nations to discover and develop new anti-malarial drugs for the developing world populations is low and, as a result, progress in the discovery of new and effective anti-malarial drugs has been slow. ${ }^{10}$ Other factors considered to contribute to the increase in the incidence of malaria include:- climatic instability; social unrest; failure in implementing effective malaria-control programmes; and weak public health service systems. ${ }^{2,9,17}$ The past few years have witnessed increased efforts and commitment from international organizations towards controlling and ultimately eliminating malaria and its associated burdens. The Roll Back Malaria (RBM) partnership was established in 1998 to provide a coordinated global approach to fight malaria. RBM is an initiative whose vision is "a world free from the burden
of malaria" and its goals include reducing the global malaria morbidity and mortality cases reported in the year 2000:- i) by 50% by the end of 2010 ; and ii) by 75% or more by the year 2015. ${ }^{13-14}$ The Global Malaria Action plan was launched by the RBM partnership in September 2008, to re-define the goals and accelerate the efforts required to reach these targets. ${ }^{13}$ The fight against malaria is prioritised by the United Nations through the Millennium Development Goals (MDG's) and by African countries through the Abuja Declaration of 2000. ${ }^{24-25}$ Other important organizations committed to overcoming malaria at a global level include:- the Malaria Vaccine Initiative; the Multilateral Initiative on Malaria (MIM); and the Global Fund to fight HIV/AIDS, Tuberculosis and Malaria. ${ }^{26-28}$

The complex life cycle of the plasmodium parasite has presented several approaches to malaria control and prevention, which are currently being exploited. ${ }^{13,29}$ These control measures include:- i) the reduction of mosquito population densities through environmental management (by water treatment and the application of larvacides); ii) the use of chemoprophylactic and therapeutic drugs for prevention and treatment purposes [e.g. Artemisinin Combination Therapy (ACT)]; iii) the use of Indoor Residual Spraying (IRS) within households with WHO-approved insecticides (e.g. DDT and pytheroids) to reduce and interrupt malaria transmission and; iv) the use of Insecticide-Treated Nets (ITNs) and long-lasting ITNs (LLITNs) as barriers for reducing the transmission of malaria infections. ${ }^{29}$ With the high prevalence of malaria worldwide, the World Health Organisation (WHO) has endorsed the limited use of indoor residual spraying (IRS) with DDT as a method for malaria vector control until a less harmful alternative is obtained. IRS and ITNs vector-control methods are limited as they are heavily dependent on a single class of insecticides that require widespread usage, which increases the development of resistance by mosquito vectors. ${ }^{13,29}$ Brooke and colleagues documented the emergence of pyrethroid-resistant A. funestus vectors. ${ }^{30}$ Furthermore, the lifespans of ITNs and LLINTs are approximately 6 months and 3 years, respectively, thus requiring regular re-treatment and replacement, which is not financially viable in the long term. ${ }^{9,29}$

New malaria vector control strategies are being investigated. One such approach involves the infection of the Anopheles vectors with entomopathogenic fungi such as Beauveria bassiana and Metarhizium anisopliae. ${ }^{31}$ Another vector control method being considered is the construction of transgenic mosquitoes, which are incapable of transmitting the
plasmodium parasite. ${ }^{32}$ Research on the development of malaria vaccines is ongoing, but requires continued funding from public and private organizations and it seems unlikely that an effective vaccine will become available for at least another decade. ${ }^{9,29,33}$

1.3. Biology and life cycle of the malaria parasite

The malaria parasites are host-specific and the life cycle is accomplished in two hosts, the human and the Anopheles mosquito (Figure 3). ${ }^{34}$ The parasite life cycle is complex with several asexual reproduction stages in the human host and sexual reproduction stages in the mosquito.

Figure 2. The life cycle of Plasmodium parasites in the human and mosquito. ${ }^{34}$ (Reproduced with permission.)

Human malaria infections are initiated by the injection (through a bite during a blood-meal) of plasmodium sporozoites within the saliva of an infected mosquito into the host's bloodstream. ${ }^{34}$ The circulating sporozoites enter the hepatocytes in the liver shortly after inoculation and start to divide mitotically - the pre-erythrocytic stage. Invasion into the hepatocytes is mediated by specific binding of the parasite circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP) to heparin sulphate proteoglycans on the hepatocytes. ${ }^{35}$ The intra-hepatocytic sporozoites divide asexually into pre-erythrocytic schizonts, each containing $c a .1 \times 10^{3}-30 \times 10^{3}$ merozoites. Eventually, merozoites are released upon rupture of hepatocytes into the bloodstream and invade red blood cells (RBCs) to start the erythrocytic asexual phase. During invasion of RBCs, merozoites attach to RBC surface binding receptors (duffy glycoprotein for P. vivax and glycophorins for P. falciparum), undergo apical re-orientation, enter the erythrocytes through junctional movement and induce the formation of parasitophorous vacuoles. ${ }^{10,36}$

Inside the erythrocytes, merozoites differentiate into ring trophozoites that ingest haemoglobin and nutrients within the vacuole and mature into multi-nucleate schizonts. The mature schizonts differentiate into thousands of merozoites causing the RBCs to swell and rupture, releasing the merozoites into the bloodstream which subsequently attach and re-infect new RBCs, such that the erythrocytic cycle is repeated. These repeated cycles lead to exponential growth of infected RBCs and it is during the bursting of erythrocytes that the clinical symptoms of malaria appear in the infected person. ${ }^{10,36}$ During the erythrocytic cycle, a proportion of merozoites follow a different developmental pathway and develop into male and female gametocytes, the sexual forms of the parasite. ${ }^{36}$ The stimulus that triggers gametocytogenesis is not fully understood, but is likely to be the response of the host immune system to the infection. Gametocytes are ingested by a female anopheles mosquito during a blood-meal and develop in the midgut of the mosquito into male and female gametes. Fertilization occurs to form a zygote that develops into an ookinete. The ookinete migrates through the midgut epithelium and matures into an oocyst under the basal membrane. The oocyst undergoes maturation to generate sporozoites which, upon rupture, migrate through the hemocoel to the salivary glands from where they are injected and infect humans during the next blood-meal taken by the mosquito. ${ }^{10,37}$

1.3.1. Biological differences amongst malaria parasite species

There are species-specific biological differences within the plasmodium parasite generic life cycle. In P. vivax and P. ovale, a percentage of sporozoites invading the hepatic cells develop into hypnozoites (hypnozoite stage) which remain dormant in the liver. ${ }^{10}$ The presence of hypnozoites may cause relapse of clinical malaria symptoms months to years after the initial infection. Several differences in the biology of P. falciparum account for its higher pathogenicity and ability to cause the most severe manifestation of malaria. ${ }^{10}$ P. falciparum modifies the surfaces of infected RBCs causing them to adhere:- to the endothelium of capillaries (sequestration); to uninfected RBCs (rosetting); and to platelets (clumping). Adherence protects the parasite from the host's immune response mechanisms and from being removed from circulation into the spleen. ${ }^{38}$ In addition, the P. falciparum genome contains the very large and diverse var gene family (ca. 60 genes) which encodes for the P. falciparum Erythrocyte Membrane Protein 1 (pfEMP1). ${ }^{10}$ pfEMP1 mediates parasite binding to the various host receptors and, through a phenomenon known as antigenic variation, allows the parasite to evade host immune responses. ${ }^{10,38}$ Several var genes encode for proteins that mediate adherence to Intercellular Adhesion Molecule 1 (ICAM-1) in the brain and adhesion to Chondroitin Sulphate A (CSA) in the placenta. Sequestration of parasites to these molecules is associated with cerebral malaria and the severe clinical manifestations observed in pregnant women. ${ }^{38}$

1.3.2. Clinical symptoms and diagnosis of malaria

The clinical symptoms of malaria occur during the erythrocytic life cycle phase of the parasite when RBCs rupture. Symptoms for uncomplicated malaria infections include fever, chills, headache, vomiting, diarrhoea, convulsions and muscular pains. ${ }^{10,17}$ Severe malaria is a complex disorder that affects several tissues and organs, and complications include renal failure, hypoglycaemia, hepatic dysfunction, severe anaemia, cerebral malaria, respiratory distress and metabolic acidosis. ${ }^{9-10}$ The standard method for diagnosing malaria involves light microscopy of thick and thin Giemsa-stained blood smears on glass microscope slides. Several advances have been made in the development of alternative diagnostic methods including:- fluorescence microscopy of parasite nuclei stained with acridine orange; rapid
dipstick immunoassays of various malaria antigens; and polymerase chain reaction (PCR) based assays. ${ }^{9,17}$

1.4. Current anti-malarial drugs: mechanism of action and resistance

Malaria is curable if it is diagnosed properly and treatment is provided promptly. The malaria chemotherapeutic drugs are generally classified into 3 groups, based on the plasmodium parasite life cycle phase they act on or interrupt, viz.,:- i) tissue schizonticides, which act against the development of liver stage parasites ii) blood schizonticides, which prevent parasite development at the intra-erythrocytic stage and iii) gametocides, which inhibit the maturation of sexual forms of the parasites. ${ }^{39}$ The intra-erythrocytic phase of the parasite's life cycle is the most susceptible stage and is generally targeted by the available chemotherapeutic agents. Malaria chemotherapy currently relies on five classes of compounds, viz.,:- quinolines, artemisinins, anti-folates, hydroxynapthoquinones and antibiotics. ${ }^{39}$

1.4.1. Quinolines

Quinolines are heterocyclic aromatic compounds containing the quinoline nucleus $\mathbf{1}$, which comprises a pyridine ring fused to a benzene ring; they are also referred to as 1azanaphthalenes, benzopyridines or even, heterocyclic amines. ${ }^{40}$ The nitrogen atom is located next to the benzene ring and the chemistry of quinolines reflects a preference for electrophilic aromatic substitution on the benzene ring and nucleophilic aromatic substitution on the pyridine ring. The quinoline ring system is found in many natural products such as alkaloids, particularly in those with pronounced biological activities. ${ }^{41}$

Many anti-malarial drugs (figure 3) are derivatives of quinine 2, an alkaloid first isolated from the bark of the cinchona tree in Peru and used, in Western medicine, to treat patients suffering from malaria since the $18^{\text {th }}$ century. ${ }^{42-43}$ The structure of quinine $\mathbf{2}$ was elucidated by Paul Rabe in 1908, but its formal total synthesis was achieved by Woodward and Doering in 1944. The use of quinine for prophylaxis and treatment of uncomplicated malaria cases is limited due to its toxicity and adverse effects. However, it has excellent efficacy and is still used against highly drug-resistant parasites and to treat severe cases of malaria. ${ }^{42-43}$ Since the 1940's, several quinoline anti-malarial analogues, based on quinine as a template, have
been synthesized. Some of these compounds exhibit better pharmacological profiles and include:- the 4 -aminoquinolines (4-AQs) such as chloroquine 3 and amodiaquine 4; arylamino alcohols such as mefloquine 5, halofantrine 6 and lumefantrine 7; and 8aminoquinolines such as primaquine $\mathbf{8}$ and tafenoquine $9 .{ }^{42,44-45}$

1

2

6

7

3

4

8

5

9

Figure 3: Structures of quinoline, quinine and selected anti-malarial drugs.

Chloroquine 3 [CQ; N^{\prime}-(7-chloroquinolin-4-yl)- N, N-diethylpentane-1,4-diamine] has been used extensively for the treatment of malaria due to its low toxicity, low cost and excellent efficacy but, during the 1960's, resistant-parasites emerged. ${ }^{45}$ In vivo, chloroquine $\mathbf{3}$ is metabolised by cytochrome P450 through a series of de-ethylation steps to yield the bisdesethyl compound 10. Further oxidation produces the aldehyde $\mathbf{1 1}$ and then the carboxylic acid $\mathbf{1 2}$, which is finally dealkylated to 4 -aminoquinoline (4-AQ) 13 (Scheme 1). ${ }^{44,46}$ CQresistant strains are presently widespread in most malaria-endemic regions.

Amodiaquine 4 is structurally related to CQ, containing a 4-hydroxy anilino group in the mannich side chain. Amodiaquine $\mathbf{4}$ is regarded suitable for prophylaxis use due to its long half-life. In vivo, amodiaquine 4 is rapidly dealkylated into its active derivative, N desethylamodiaquine (N-DEAQ). ${ }^{44,46}$ Although amodiaquine 4 is more active in parasite clearance than CQ and effective against CQ-resistant strains of P. falciparum, its clinical use has been limited by the development of hepatotoxicity and agranulocytosis in patients, along with the possibility of cross-resistance with CQ. ${ }^{17,45}$

Scheme 1. Metabolic degradation of chloroquine $\mathbf{3}$ in vivo by cytochrome P450.

Mefloquine $\mathbf{5}$ and halofantrine $\mathbf{6}$ are therapeutic agents developed by the Walter Reed Army Institute and are active against CQ-resistant plasmodium parasites. ${ }^{17}$ As with amodiaquine 4, mefloquine's long half-life has made it useful as a prophylactic drug; however, when used for treatment of malaria, it is usually administered with artesunate (see p. 13). ${ }^{17,45}$ Regrettably, its long half-life has led to the development of resistant plasmodium strains. In addition, the use of mefloquine 5 has been restricted due to frequently reported neuropsychiatric side effects, e.g. acute psychosis. ${ }^{17}$ The use of halofantrine $\mathbf{6}$, a substituted phenanthrene related to chloroquine 3, as a therapeutic agent has been restricted by its erratic absorption profile and its association with cardiotoxicity effects, such as cardiac arrhythmias. ${ }^{17}$ Lumefantrine $\mathbf{7}$, which is structurally related compound to halofantrine 6, was synthesized in China in the 1970's and has been shown to act synergistically with artemether (see p. 15) for the treatment of uncomplicated P. falciparum malaria. This course of therapy is relatively safe, but there are concerns about the therapeutic potential of lumefantrine $\mathbf{7}$ due to the possibility of cross resistance with chloroquine $\mathbf{3}$ and mefloquine 5. ${ }^{17,45}$

Primaquine 8, $[(R, S)-N$-(6-methoxyquinolin-8-yl)pentane-1,4-diamine], is an 8aminoquinoline synthesized to target the maturation of parasite gametocytes (gametocytocidal activity), but is also active in the pre-erythrocytic stages (hypnozoites) of P. falciparum, P. ovale and P. vivax. ${ }^{44-45}$ The drug is often referred to as an anti-relapse agent, as it interrupts the hypnozoite (dormant) stages, which leads to relapse in malaria infections. A disadvantage of primaquine $\mathbf{8}$ includes its short half-life as it is readily oxidised
to its carboxy derivative. Structural modifications of primaquine $\mathbf{8}$ directed the synthesis of the analogue tafenoquine $\mathbf{9}$, which has a much longer half-life and improved anti-parasitic activities. However, both primaquine $\mathbf{8}$ and tafenoquine $\mathbf{9}$ exhibit toxicity effects, including gastrointestinal effects and haemolysis in G6PD deficient patients. ${ }^{17,45}$

1.4.1.1. Mechanism of action and resistance

Quinoline anti-malarial drugs generally have the same mechanism of action, arising from their accumulation within the food vacuole (FV) of the plasmodium parasite during the erythrocytic stage of the life cycle (Figure 4). ${ }^{47-48}$ The catabolism of haemoglobin within the FV provides the parasite with a source of nutrients and amino acids which are essential for its biosynthetic pathways and growth. Toxic haem (ferriprotoporphyrin) moieties are generated as by-products during haemoglobin degradation, which are subsequently polymerized by the parasite to non-toxic haemozoin (malaria pigment) crystals. Quinolineantimalarial drugs typically interrupt the haem-detoxification process, through the formation of drug-haemozoin complexes and/or binding of the drug to the growing face of the haemozoin crystals, causing the termination of growth. ${ }^{45-47}$ The consequent accumulation of toxic haem molecules within the FV renders the parasites susceptible to oxidative stress, leading to death as shown in figure 4. Anti-parasitic functions may also include the inhibition of haemoglobin proteolysis, i.e. inhibition of aspartic and cysteine protease activity and the raising of the FV pH. ${ }^{45,47}$

The mechanism of resistance against quinoline anti-malarial drugs is not fully understood and is still being investigated. The general current consensus is that plasmodium parasites, particularly P. falciparum, develop resistance to these drugs through:- i) specific point mutations in the pfcrt gene, which result in the reduced binding affinity of the drugs to haem molecules; and ii) mutations in the pfmdr 1 gene encoding for P-glycoprotein (Pgh-1), resulting in the amplification of the gene, leading to reduced drug accumulation in the FV and a decrease in drug concentrations via efflux from the FV. ${ }^{45-48}$

Figure 4: Proposed mode of action of CQ and related quinoline anti-malarials. ${ }^{48}$ (Reproduced with permission.)

1.4.2. Artemisinin and its derivatives

Artemisinin (quinghaosu) 14 is a sesquiterpene trioxane lactone, isolated from the Chinese medicinal herbal plant, Artemisia annua, and has exceptional anti-plasmodial activity against drug-resistant parasite strains. ${ }^{45}$ To improve the potency of artemisinin 14 and address drawbacks, such as poor solubility, short plasma half-life and limited bioavailability, simple chemical modifications of artemisinin 14 have resulted in the development of semisynthetic analogues. ${ }^{44-45}$ Reduction of artemisinin 14 afforded dihydroartemisinin (DHA) 15 which is roughly seven times more potent than artemisinin 14 in vitro, while alteration of the lactone carbonyl group at C-10 led to the development of artemisinin derivatives, such as artemether 16, arteether 17 and sodium artesunate 18 (Figure 5). ${ }^{44-45}$ Artemether 16 and arteether $\mathbf{1 7}$ are oil-soluble drugs which are administered via intramuscular injection, whilst artesunate 18 is water-soluble and is suitable for both oral and intravenous administration. ${ }^{17,45}$ These analogues $(\mathbf{1 6 - 1 8)}$ are all rapidly hydrolysed in vivo to the hemiacetal 15 , which is then metabolized through glucuronidation.

Due to the short plasma half-lives of artemisinin drugs, high rates of recrudescent infections are frequently reported when they are administered as mono-therapeutic agents. To reduce recrudescence of infections and the development of resistant-parasites, the general recommendation is to combine artemisinin drugs is in combination with another effective,
long-acting, anti-malarial drug - an approach termed Artemisinin-based Combination Therapy (ACT). ${ }^{9,49}$ Several ACT formulations are currently available, including:- artemetherlumefantrine; artesunate-amodiaquine and dihydroartemisinin-piperaquine. A major obstacle in the use of ACT's as first-line therapeutics, especially in poor, malaria-endemic countries, is their cost. Treatment with ACTs is approximately ten times more expensive than with mono-therapy treatments. ${ }^{9}$

14

$16 \mathrm{R}=\mathrm{CH}_{3}$
$17 R=\mathrm{C}_{2} \mathrm{H}_{5}$
$18 \mathrm{R}=\mathrm{CO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COONa}$

Figure 5. Artemisinin and its synthetic derivatives as anti-malarial agents.

1.4.2.1. Mechanism of action and resistance

Artemisinin 14 and its analogues are believed to be active against all the erythrocytic stages of the malaria parasite's life cycle. It has been suggested that the presence of the endoperoxide bridge is essential for the anti-parasitic effect of the drugs. ${ }^{43-45}$ The mechanism of action remains uncertain, but it has been suggested that it involves the reductive cleavage of the endo-peroxide moiety through interaction with intra-parasitic haem (iron-mediated) to generate free-radical species. These highly reactive radical species alkylate various parasite membranes including the endoplasmic reticulum, mitochondrial and plasma membranes, thus leading to their destruction (Figure 6). ${ }^{43-45}$

Figure 6. Proposed mode of action of artemisinin $14 .{ }^{45}$

More recently, the P. falciparum sacro-endoplasmic reticulum Ca^{2+}-ATPase (pfATP6) has been identified as an important target for artemisinin and its analogues. ${ }^{45}$ There are currently no reported clinical cases of parasite resistance to artemisinin derivatives, although there are reports of reduced efficacy of the drugs both in vitro and in vivo at the Thailand-Cambodia border. ${ }^{9,45}$

1.4.3. The Antifolates

The antifolate anti-malarial drugs affect the pre-erythrocytic and erythrocytic stages of the parasite life cycle, in particular, the folate biosynthetic pathway. ${ }^{45}$ Several compounds that inhibit this pathway have been developed including pyrimethamine 19, sulphadoxine 20 and proguanil 21, shown in Figure 7. Proguanil 21 is converted in vivo to its active metabolite, the cyclic triazine cycloguanil 22, by cytochrome P_{450}. Pyrimethamine 19 and sulphadoxine 20 are generally used in combination therapy with each other, as they exhibit synergistic activity due to the fact that they both act on enzymes in the same biosynthetic pathway. ${ }^{45}$ The long half-lives of these drugs have resulted in their use as prophylactic agents for intermittent preventive therapy in pregnancy (IPTp) and infants (IPTi). ${ }^{17}$

Figure 7. Current antifolate malaria chemotherapeutic drugs

1.4.3.1. Mechanism of action and resistance

The molecular targets of antifolates are well defined and, in contrast to other anti-malarial drugs, the mechanism of action has been comprehensively described. ${ }^{44}$ Pyrimethamine 19 and proguanil 21 are competitive inhibitors of the enzyme, dihydrofolate reductase (DHFR), which catalyses the reduction of 7,8 -dihydrofolate to tetrahydrofolate with concomitant oxidation of the NADPH co-factor. ${ }^{45,50}$ The sulfonamide $\mathbf{2 0}$ competitively inhibits another enzyme within the pathway, dihydropteroate synthase (DHPS), which catalyses the formation of 7,8-dihydropteroate from 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydro-
pteridine diphosphate and p-aminobenzoic acid ($p-A B A$). The inhibition of these two enzymes prevents formation of tetrahydrofolate co-factors, which are critical for the biosynthesis of pyrimidine and amino acids such as methionine and serine. The lack of pyrimidine inhibits DNA synthesis, whilst a deficiency in amino acids prevents parasite growth. ${ }^{45,50}$ Plasmodium resistance towards antifolates has developed rapidly and is widespread. Mutations in the dhfr and dhps gene encoding for the DHFR and DHPS enzymes have resulted in structural modified enzymes, particularly in the enzyme active-sites, thus preventing the drugs from binding competitively. ${ }^{45,50}$

1.4.4. Hydroxynaphthoquinones

Atovaquone 23 \{2-[trans-4-(4'-chlorophenyl)cyclohexyl]-3-hydroxy-1, 4-naphthaquinone\} (Figure 8), was successfully developed by Glaxo Wellcome and is used in fixed-dose combination with proguanil 21 for chemo-prophylaxis and treatment of uncomplicated malaria infections. ${ }^{17,25}$ When used as a mono-therapy agent, a high rate of recrudescence occurs. However, a synergistic effect and improved activity is achieved when used in combination with proguanil 21.

23

24

Figure 8. Ubiquinone 24 and its synthetic analogue atovaquone 23.

1.4.4.1. Mechanism of action and resistance

The anti-malarial activity of atovaquone involves the interruption of mitochondrial electron transport and subsequent collapse of the mitochondrial membrane potential in the parasites. Atovaquone is a structural analogue of ubiquinone 24 (Figure 8), which binds competitively and inhibits the cytochrome bc_{1} complex, thus interfering with electron transfer from ubiquinone to cytochrome $C .{ }^{45,51}$ The collapse of the mitochondrial membrane potential has been associated with apoptosis. The mechanism of resistance in Plasmodium parasites towards atovaquone is attributed to point mutations within the cytochrome b
gene, which result in amino acid alterations in the catalytic site of the enzyme, thus reducing binding affinity of the drug. ${ }^{51}$

1.4.5. Antibiotics

Antibiotics which are currently being used as anti-malarial agents include clindamycin, azithromycin, ciprofloxacin and doxycycline (Figure 9). The anti-malarial activities of these compounds involve the inhibition of DNA replication (DNA gyrase, RNA polymerase) and inhibition of protein synthesis by interacting with the 23 S ribosomal RNA unit in plasmodium species. ${ }^{45}$

Figure 9. Anti-malarial antibiotics

1.5. Synthetic approaches to current anti-malarial drugs

1.5.1. Synthesis of 4-aminoquinolines, quinoline aryl-amino alcohols and 8aminoquinolines.

Woodward and Doering achieved the first formal synthesis of quinine 2 in 1944, with a lack of stereocontrol at the four asymmetric centres in the molecule and hence, experienced difficulty in separating the isomers (Figure 10). ${ }^{52-53}$

quinine
2

epi-quinine
25

quinidinine
26

epi-quinidinine
27

Figure 10. Quinine 2 and selected stereoisomers.

The first stereo-selective, total synthesis of quinine was reported by Stork and co-workers; the retrosynthetic strategy they adopted is summarised in Figure $11 .{ }^{53}$

Figure 11. Stork's retrosynthetic approach to quinine 2. ${ }^{53}$
The desired stereoselective synthesis of quinine $\mathbf{2}$ was achieved through the construction of the azido aldehyde 34 (Scheme 2), trisubstituted piperidine 39 (Scheme 3) and deoxyquinine 41 (Scheme 4) as key intermediates. ${ }^{53}$ The synthesis of compound 34 involved a 7-step process starting from (S)-4-vinylbutyrolactone $\mathbf{2 8}$. The vinyl lactone $\mathbf{2 8}$ was opened in the presence of diethylamine to give the primary alcohol in situ, which was protected as its tertbutylsilyl (TBS) derivative 29. Alkylation of the TBS derivative $\mathbf{2 9}$ afforded the diethylamide 30, which was deprotected with p-toluenesulfonic acid (PPTS) in EtOH to afford the trans-3,4-disubstituted butyrolactone 31. Reduction of the lactone 31 using diisobutylaluminium hydride (DIBAL-H) led to the corresponding lactol, which was subjected to the Wittig reaction with methoxymethylene triphenylphosphorane to introduce an additional C -atom, thus furnishing the alcohol 32. The alcohol $\mathbf{3 2}$ was efficiently transformed to the azide 33, which was converted to the desired azido aldehyde 34 by hydrolysis in a two-phase system. ${ }^{53}$

The synthesis of the trisubstituted piperidine 39 (Scheme 3) involved the lithiation of 6-methoxy-4-methylquinoline $\mathbf{3 5}$ at C-6 and subsequent addition of the azide $\mathbf{3 4}$ via the carbonyl group to afford a mixture of the two epimers of secondary alcohol 36. The mixture was exposed to Swern oxidation to obtain the corresponding azidoketone 37, which was converted with triphenylphosphine in THF to the tetrahydropyridine 38. Reduction of 35 with sodium borohydride in THF/MeOH mixture efficiently yielded the expected piperidine $39 .{ }^{53}$

Scheme 2. Synthesis of the azido aldehyde 34. Reagents and conditions: i) $\mathrm{Et}_{2} \mathrm{NH} / \mathrm{AlMe}_{3}$, TBSCl/imidazole/DMF ii) LDA, $-78^{\circ} \mathrm{C}, \mathrm{ICH}_{2} \mathrm{CH}_{2} \mathrm{OTBDPS}$ iii) PPTS, $\mathrm{EtOH}, 12 \mathrm{~h}$, xylenes, reflux 810 h ; iv) DIBAL-H, $-78^{\circ} \mathrm{C}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHOMe}$; v) $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{DEAD},(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}$; vi) $5 \mathrm{~N}-\mathrm{HCl}, \mathrm{THF} / \mathrm{DCM}$.

Scheme 3. Synthesis of the trisubstituted piperidine 39. Reagents and conditions: i) LDA, THF, $-78^{\circ} \mathrm{C}, 34$ in THF, aq. NaHCO_{3}; ii) DMSO, $(\mathrm{ClCO})_{2}, \mathrm{Et}_{3} \mathrm{~N}$; iii) $\mathrm{Ph}_{3} \mathrm{P}$, THF, reflux; iv) NaBH_{4}, $\mathrm{MeOH} / \mathrm{THF}$.

The completion of the synthesis of quinine 2 (Scheme 4) was achieved by deprotection of the silyl group of piperidine 39 to yield the alcohol 40 . The quinuclidine ring of deoxyquinine 41 was formed by mesylation of the alcohol 40 in the presence of pyridine and cyclization by refluxing in acetonitrile. Deoxyquinine 41 was then oxidised to yield quinine $2 .^{53}$

Scheme 4. Completion of the synthesis of quinine 2. Reagents and conditions: i) $\mathrm{HF} / \mathrm{CH}_{3} \mathrm{CN}$; ii) $\mathrm{MsCl} / \mathrm{Py}, \mathrm{DCM}$; iii) $\mathrm{CH}_{3} \mathrm{CN}$, reflux; iv) $\mathrm{NaH} / \mathrm{DMSO}$, then O_{2}.

More recently, Jacobsen et al. ${ }^{54}$ and Kobayashi et al. ${ }^{55}$ have both published routes for the total, enantioselective synthesis of quinine $\mathbf{2}$ and its epimer quinidine 26. The retrosynthetic strategy adopted by Jacobsen and co-workers is summarised in Figure 12.

Figure 12. Jacobsen's retrosynthetic strategy to quinine and quinidinine. ${ }^{54}$
The cost-effective total synthesis of chloroquine $\mathbf{3}$ has been achieved by the Surrey and Hammer method (Scheme 5). ${ }^{56-57}$ This involves the condensation of m-chloroaniline 42 with ethyl ethoxalylacetate 43 to yield the aniline derivative 44, which undergoes pyrolytic cyclization to generate the carboxylate ester 45. Subsequent hydrolysis produces the corresponding acid derivative 46, thermal decarboxylation of which affords 4hydroquinoline 47. The chlorination of 47 is achieved with phosphorus oxychloride to yield 4,7-dichloroquinoline 48, which is subjected to nucleophilic substitution with 4-diethylamino-1-methylbutylamine 49 to give chloroquine $3 .{ }^{56-57}$ More recently, Margolis et $a l .{ }^{58}$ have reported the synthesis of chloroquine $\mathbf{3}$ using a palladium catalyst system.

Scheme 5. Surrey and Hammer's total synthesis of chloroquine 3. ${ }^{56-57}$
The four reaction step synthesis of mefloquine $\mathbf{5}$ has been described by Lutz et al. ${ }^{59}$ (Scheme 6). The initial step involves the condensation of ethyl 4,4,4-trifluoroacetoacetate 50 and o-trifluoromethylaniline 51 with polyphosphoric acid (PPA) to obtain the 4-quinolone
52. Bromination using POBr_{3} produces 4-bromoquinoline 53, which is treated with BuLi, followed by CO_{2}, to yield the 4-quinolinecarboxylic acid 54 . The introduction of 2pyridyllithium 55 yields the pyridyl ketone $\mathbf{5 6}$, which is subjected to hydrogenation to afford mefloquine 5.

Scheme 6. Lutz's synthesis of mefloquine 5. ${ }^{59}$

The large scale synthesis of primaquine $\mathbf{8}$ by Elderfield et al., ${ }^{60}$ is illustrated below (Scheme 7). This involves condensation of 1,4-dibromopentane 55 with potassium phthalimide 56 to obtain the phthalimido bromide 57. Substitution of bromine by 6 -methoxy-8aminoquinoline 58 yields the phthalimido-quinoline intermediate $\mathbf{5 9}$, which is subsequently reacted with hydrazine to remove the phthalimido moiety and afford primaquine 8.

Scheme 7. Synthesis of primaquine 8 by Elderfield. ${ }^{60}$

1.5.2. Synthesis of Artemisinin and its derivatives

Over the last two decades, the total synthesis of the sesquiterpene endoperoxide lactone artemisinin 14 and its derivatives has been explored, since extraction from the herb A.
annua gives the compound in low yields. ${ }^{61}$ Schmidt and Hofheinz developed the first complete synthetic route for artemisinin 14 from (-)-isopulegol. ${ }^{62}$ Starting with (+)isolimonene 60, Ravindranathan et al. ${ }^{63}$ completed the total stereoselective synthesis of artemisinin 14 via an intra-molecular Diels-Alder reaction, whilst Avery and co-workers detailed a 10-step stereoselective synthesis from (R)-(+)-pulegone. ${ }^{64}$ Recently, Yadav and coworkers have described the complete synthesis of artemisinin 14 in fewer steps, with high stereoselectivity and high overall yield (Scheme 8). ${ }^{65}$ The synthetic route involves regioselective exocyclic hydroboration of (+)-isolimonene $\mathbf{6 0}$ with dicyclohexyl borane $\mathbf{6 1}$ to afford the alcohol 62 in 82% yield.

Scheme 8. Yadav's total stereoselective synthesis of artemisinin $14 .{ }^{65}$

The alcohol 62 was oxidized using Jones reagent into its corresponding acid 63, which was then subjected to iodolactonization with KI and I_{2} in aq. NaHCO_{3} to obtain the diastereomeric iodolactones 64 and 65. Alkylation of iodolactone $\mathbf{6 4}$ was achieved via an intramolecular radical reaction using Chatgilialoglu's reagent and methyl vinyl ketone 66, to form the alkylated lactone $\mathbf{6 7}$. Treatment of the keto moiety of $\mathbf{6 7}$ with ethanedithiol in the
presence of $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ afforded the diastereomeric thioketal lactones 68 and 69 in overall quantitative yield. Subsequent hydrolysis and esterification of the thioketal lactone 69 in the presence of diazomethane yielded the ester 70, which was oxidized with PCC to afford the keto derivative 71. Transformation of the keto ester $\mathbf{7 1}$ to the corresponding methyl vinyl ether $\mathbf{7 3}$ was achieved via the Wittig reaction with the triphenylphosphonium salt $\mathbf{7 2}$ and $2 \mathrm{M}-$ KHMDS. In the presence of $\mathrm{HgCl}_{2} \cdot \mathrm{CaCO}_{3}$, the thioketal $\mathbf{7 3}$ was deprotected to furnish the intermediate 73a. Subsequent photo-oxidation using O_{2} with Rose Bengal and acid hydrolysis afforded the artemisinin $14 .{ }^{65}$

The transformation of artemisinin 14 into its derivative DHA 15 is conveniently achieved by reduction of the C-10 carbonyl group to the alcohol with sodium borohydride. In the presence of boron trifluoride-diethyl ether and the appropriate alcohol, DHA 15 is converted through an oxonium ion intermediate into the ester analogues 16, 17 and 18 and anhydroartemisinin $\mathbf{7 4}$ (Scheme 9). ${ }^{61,66}$

Scheme 9. Synthesis of DHA and artemisinin analogues.

1.6. Strategies for the discovery of new anti-malarial drugs

The need to develop new anti-malarial chemo-therapeutic and prophylactic agents has been increased by the emergence of plasmodium parasites which are resistant to the currently available drugs. ${ }^{67}$ Approaches which are currently being pursued include:- i) the development of analogues of existing anti-malarial drugs through chemical modifications; ii) the discovery of biologically active natural products; and iii) the rational design of compounds which are active against new biological targets. ${ }^{67-68}$

1.6.1. Development of analogues of existing anti-malarial drugs

Chemical modification of existing anti-malarial therapeutics represents an effective and relatively inexpensive strategy. ${ }^{44,67}$ In the quest to synthesize new quinoline anti-malarials with greater potency and better pharmacological profiles, structure-activity relationship (SAR) studies of chloroquine $\mathbf{3}$ have been carried out to identify the structural features that are necessary for anti-plasmodial activity, and these are summarised in Figure 13. ${ }^{45-46}$

Figure 13. Structural features of chloroquine and their effect on anti-plasmodial activity.

Synthetic strategies in the design of new 4- and 8-AQs have focused on:- i) nucleophilic substitution of the quinoline nucleus; and ii) alteration of the length of the side chain and the nature of the terminal amino group on the side chain at C-4. ${ }^{45-46,69}$ Solomon and coworkers recently modified the side chain amino group of 4-AQs in order to study the effect of introducing heterocyclic moieties on the biological activity; their approach is summarised in Scheme 10. In the presence of N, N-dicyclohexylcarbodiimide (DCC) as a dehydrating agent or in refluxing toluene alone, the desired thiazolidin-4-ones 78-86, 5-methyl-thiazolidin-4ones 87-95, 1,3 thiazinan-4-ones $\mathbf{9 6 - 1 0 4}$ and 2,3-dihydrobenzo[e][1,3]thiazin-4-ones 105113 were produced from the appropriate 4-AQ's 76a-c, the aldehydes 75a-c and the mercapto acids 77a-d. ${ }^{70}$ In another study, Wolf et al. ${ }^{71}$ described the synthesis and biological activity of 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas with the variation of the side-chain length. The condensation of dasyl chloride 114 and ethanolamine afforded the sulphonamide derivative 115, which was treated with methanesulfonyl
chloride to obtain the mesylate 116. The desired sulfonamides 118a-f were formed by reacting the mesylate $\mathbf{1 1 6}$ with a series of quinoline-diamines $\mathbf{1 1 7}$ (Scheme 11).

Scheme 10. Synthesis of heterocyclic derivatives as 4-AQ analogues.

The reaction of the diamine 119 with the appropriate isocyanate and isothiocyanate 120 furnished the corresponding ureas and thioureas 126a-f. In addition, 119 was coupled with various acids $\mathbf{1 2 7}$ to afford the 7-chloro-4-aminoquinolyl-derived amides 128a-b.

Scheme 11. Synthesis of novel 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas.

In two related synthetic and anti-plasmodial activity studies, Chibale et al. ${ }^{72-73}$ synthesized a series of α-acylamino amides and lactams, based on the 4-AQ pharmacophore with variation in the side chain length, using Ugi isocyanide multi-component reaction chemistry. The reaction of 4,7-dichloroquinoline 129 with selected alkyl diamines afforded the quinoline derivatives 130, which were transformed into the Ugi adduct 134 in the presence of the aldehyde 131, an isocyanide 132 and a carboxylic acid 133. Using similar reaction conditions and resin-bound macroporous p-toluenesulfonic acid 137, the anticipated lactams 138 were isolated in reasonable yields (Scheme 12). ${ }^{73}$

Scheme 12. Synthesis of α-acylamino amides and γ - and δ-lactams using Ugi isocyanide multi-component reaction chemistry. Reagents and conditions: i) $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$ ii) $135-140^{\circ} \mathrm{C}, 3 \mathrm{~h}$ iii) $\mathrm{MeOH}, \mathrm{rt}, 12-18 \mathrm{~h}$ iv) $\mathbf{1 3 7}$, 1 h v) filter, wash vi) $3 \% \mathrm{NH}_{3} / \mathrm{MeOH}$, filter, wash.

Novel compounds based on the modification of the quinoline ring system have also been explored. Guy et al. ${ }^{74}$ reported the synthesis of 9 -aminoacridine derivatives, which were screened for anti-malarial activity against chloroquine-resistant strains (Scheme 13). Treatment of the substituted salicylic acids 139 with methyl iodide and with trifluoromethanesulfonic anhydride furnished the triflates 140, which were coupled with substituted anilines 141 using the Buchwald protocol to yield the diaryl amines 142. The 9chloroacridines 143 were generated by hydrolysis of the methyl esters 142, followed by Friedel-Crafts cyclization with POCl_{3}. In a parallel synthesis, 1,3-diaminopropane 144 was mono-protected with the nosyl group to obtain 145, which was treated with a series of carboxylic anhydrides 146. The resulting amides were reduced in situ with boranedimethylsulfide complex to afford the corresponding secondary amines 147 . Subsequent reductive amination reactions with the aldehydes 148 , followed by deprotection of the
nosyl group afforded the free amines 149, which were coupled with the acridines 143 to generate the products $\mathbf{1 5 0} .^{74}$

Scheme 13. Convergent synthesis of 9 -aminoacridines from 9-chloroacridine and diaryl amines. Reagents and conditions: i) Mel, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$ ii) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM},-78{ }^{\circ} \mathrm{C}$ to rt iii) 141, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{BINAP}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene iv) $\mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 8{ }^{\circ} \mathrm{C}$, overnight v) POCl_{3}, $120^{\circ} \mathrm{C}, 1 \mathrm{~h}$ vi) 2-nitrobenzenesulfonyl chloride, DCM, $0^{\circ} \mathrm{C}$ to rt , overnight vii) $\mathbf{1 4 6}$, pyridine, THF viii) BH_{3}-dimethyl sulfide complex, THF, $60{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} \mathrm{ix}$) 148 , sodium triacetoxyborohydride, THF, sonicated, $35{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} x$) Benzenethiol, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, degassed $\mathrm{CH}_{3} \mathrm{CN}$, under argon xi) phenol, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, $3 \AA ̊$ molecular sieves, DMSO, $100^{\circ} \mathrm{C}$, 2 h xii) DMSO, $100{ }^{\circ} \mathrm{C}$, 4 h , methyl isocyanate polystyrene resin, overnight, rt.

Synthetic approaches to new 8-AQ derivatives have been reported. Thus, Gomes et al. ${ }^{75}$ recently described the synthesis of $8-A Q$ derivatives containing the imidazolidin-4-one ring and examined their rate of hydrolysis under physiological conditions (Scheme 14). The synthesis involved coupling of primaquine $\mathbf{8}$ with N -Boc protected amino acid to give the N Boc protected intermediate 152, which upon deprotection, afforded the amino acid derivative 153. Subsequent intramolecular cyclization of the intermediate 153 with an aldehyde or ketone furnished the desired product 154.

Scheme 14. Synthesis of imidazolidin-4-ones of primaquine analogues. Reagents and conditions: i) N, N^{\prime}-dicyclohexylcarbodiimide (DCCI), HOBt, N^{α}-Boc-protected amino acid (BocAAOH); ii) TFA, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ iii) $\mathrm{Me}_{2} \mathrm{CO}$ or cyclic ketones or $3,4-(\mathrm{MeO})_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHO}$ in MeOH , $\mathrm{Et}_{3} \mathrm{~N}$, molecular sieves.

The discovery of ferrochloroquine (FQ) 155 as a potential anti-malarial drug has stimulated research into the design of metal-based aminoquinoline analogues. ${ }^{76}$ Several organometallic compounds related to FQ have been successfully synthesized (Figure 14). ${ }^{76-79}$

Figure 14. Metal-based 4-aminoquinoline anti-malarials.

The synthetic strategy for accessing the quinoline metal-complex 155 involves an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction between 4,7-dichloroquinoline $\mathbf{1 2 9}$ and the metallocene amine $\mathbf{1 6 0}$ in the presence of 1-methyl pyrrolidinone (NMP) and base. ${ }^{77-78}$ Alternatively, compound 129 may be reacted with the diamine 161 to afford the substituted quinoline amine 162 , which upon treatment with the metallocenes 163 and 164 in the presence of sodium borohydride in methanol, gives the desired products 165 and 166 (Scheme 15). ${ }^{78}$

Scheme 15. Synthesis of ferrochloroquine derivatives as potential anti-malarials.

Research on the development of new artemisinin derivatives with improved potency has focused on replacement of the C-10 hydroxyl group in DHA $\mathbf{1 5}$ by groups that are not readily susceptible to reduction or hydrolysis. ${ }^{44-45}$ Other structural modifications of the lactol ring system have involved derivatization at C-3, C-9, C-11 and C-13 respectively. In addition, compounds containing the peroxide moiety (1,2,4-trioxanes and tetraoxanes) have been used as synthetic scaffolds for the construction of potential novel inhibitors related to artemisinin 14. ${ }^{44,61} \mathrm{O}^{\prime}$ Neill et al. ${ }^{80}$ anticipated that accumulation of the C-10 ether linked diamino artemisinin analogues, would increase in the parasite food vacuole, thus increasing their anti-plasmodial activity. Their approach involved coupling DHA 15 with 1,4phenylenedimethanol 167 in the presence of boron trifluoride-diethyl ether $\left(\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}\right)$ to afford the alcohol 168, which was treated with mesyl chloride to obtain the corresponding mesylate 169. The desired diamino analogues 171 were isolated upon condensation of the mesylate 169 with the appropriate diamino nucleophiles 170 (Scheme 16).

Scheme 16. Synthesis of C-10 ether linked diamino analogues of DHA 15.

Chemical modification at the C-10 position was also investigated by Beué et al. ${ }^{81}$ through the synthesis of artemisinin analogues containing a fluorine substituent at the hemiacetyl carbon (C-10) and the α-methylene carbon (C-11) of DHA. The reaction of DHA 15 with the alcohol $\mathbf{1 7 2}$ in the presence of $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ or TMSCl yielded the flurorinated artemisinin ether 173. The fluorinated artemisinin alcohol 174 was produced by reacting artemisinin 14 with a molar equivalent of TMSCF_{3} and $t-\mathrm{BAF} .3 \mathrm{H}_{2} \mathrm{O}$ at room temperature for 25 hours, shown in scheme 17. The poor bio-availability and short plasma half-lives of the current artemisinin drugs are due to the susceptibility to hydrolysis of the acetyl group in vivo. ${ }^{45}$ Thus, the design of C-10 carba-analogues have been investigated by several research groups in the expectation that these compounds would be less prone to hydrolysis and exhibit long half-
lives. Such an approach, reported by O'Neill et al., ${ }^{82}$ involved the synthesis of fluorinated carba-analogues of artemisinin 14, with either an ether or ester linkage (Scheme 18).

Scheme 17: synthesis of fluorine-substituted artemisinin derivatives.

DHA 15 was coupled with allyltrimethylsilane 175 to yield allyldeoxoartemisinin 176. Ozonolysis and subsequent reduction with sodium borohydride of the alkene afforded the alcohol 177, which was either deprotonated and reacted with appropriate substituted benzyl bromides 178 to obtain the ether products 179 or esterified with the corresponding substituted fluorinated acid chlorides $\mathbf{1 8 0}$ to yield the ester analogues 181.

Scheme 18. Synthesis of C-10 carba-analogues of artemisinin 14.
Yuthavong et al. ${ }^{83}$ have reported the synthesis of artemisitene 185 , the oxidized form of DHA 15. The regiospecific transformation of artemisinin 14 to 185 was achieved through a one-pot synthesis involving lithiation to yield the enolate 182, formation of the phenylselenide bromide 183 and oxidation of which afforded the selenide species 184. Subsequent elimination of selenoxide gave the desired product 185 as a single isomer (Scheme 19). Michael addition of Grignard reagents to artemisitene 185 furnished the

Michael adducts 187 and 188, while, reaction of another molecule of artemisitene 185 with the enolate intermediate 186 afforded the dimer 189 (Scheme 20). ${ }^{83}$

Scheme 19. Synthesis of artemisitene 185.

Scheme 20. Michael addition of nucleophiles to artemisitene $\mathbf{1 8 5}$ using Grignard reagents.

The design and synthesis of hybrid molecules as anti-malarial agents has recently been explored and offers a unique approach. These 'dual inhibitors' are envisaged to act against more than one target within the plasmodium parasite, thus making them potent against drug-resistant plasmodium strains. ${ }^{84}$ Quite recently, N'Da and co-workers described the synthesis and biological activity of artemisinin-quinoline hybrid dimers, ${ }^{85}$ and their synthetic strategy is outlined in Scheme 21. Initially, DHA 15 was treated with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ and ethyl bromide 190 in DCM to obtain 2-(10ß-dihydroartemisinoxy)ethyl bromide 191, which was subsequently reacted with various aminoquinolines 192-197 in DMF at between $70^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ for 4 to 6 hours to yield the desired artemisinin-quinoline hybrids 198-203.

Scheme 21. Synthesis of artemisinin-quinoline hybrid molecules.

1.6.2. Natural products

Natural products derived from plants, bacteria and marine organisms are crucial sources for the discovery of lead compounds targeting various diseases and also offer novel scaffolds for the synthesis of analogues with improved potency and better pharmacokinetic profiles. ${ }^{41,86}$ Importantly, the two classes of current anti-malarial chemo-therapeutic agents i.e. quinolines and artemisinins, originate from plants. Natural products with anti-malarial activity that have been isolated from various plants and organisms include:- i) alkaloids such as naphthylisoquinolines, indoles and manzamines; ii) terpenes including diterpenes and sesquiterpenes; iii) flavonoids; iv) chalcones; and v) coumarins. ${ }^{86}$ Representative examples of compounds belonging to these classes are illustrated in Figure 15.

The extraction and purification of natural products is often challenging and, consequently, poor yields are frequently obtained. New synthetic methodologies for the construction of novel compounds are continually being reported. ${ }^{86}$ The alkaloid febrifugine $\mathbf{2 1 0}$ and its stereoisomer, isofebrifugine 211, are present in traditional Chinese medicines used to treat fevers associated with malaria. These isomers have been isolated from the root of Dichroa febriguga and exhibit potent anti-plasmodial activity, but toxic side effects have limited their use. ${ }^{44,86}$ The synthesis of compounds $\mathbf{2 1 0}$ and $\mathbf{2 1 1}$ has been reported and chemical modifications have afforded potentially less toxic analogues. Scheme 22 outlines the asymmetric synthesis of the stereoisomers $\mathbf{2 1 0}$ and $\mathbf{2 1 1}$ reported by Takeuchi et al. ${ }^{87}$

dioncophylline A

Indoles

cryptolepine

Flavonoids

Manzamines

manzamine $Y \quad R=O H, R_{1}=H$
8-hydroxymanzamine $A R=H$,
$R_{1}=\mathrm{H}, \mathrm{OH}$

abruquinone B
Chalcones

(-)-methyllinderatin

licochalcone A

Figure 15. Anti-malarial natural products.

The approach involves reductive dynamic optical resolution of racemic-3-piperidones 204 using baker's yeast to obtain the chiral ketone 205 and alcohol 206. The alcohol 206 is converted via intramolecular bromoetherification with NBS to give the cyclic ether 207, dehydrobromination and bromoetherification of which affords a diastereomeric mixture of the methoxy intermediate 208. The quinazolinone $\mathbf{2 0 9}$ is produced by deacetalization of intermediate 208 and subsequent coupling with 4(3H)-quinazolinone. Hydrogenolysis of 209 then affords isofebrifugine $\mathbf{d - 2 1 0}$, which is transformed upon heating to its isomer $\mathbf{d} \mathbf{- 2 1 1}$.

Scheme 22. Asymmetric synthesis of febrifugine and isofebrifugine.

In addition to isolating several novel naphthylisoquinoline alkaloids and exploring their antiplasmodial activity, Bringmann et al. ${ }^{88}$ synthesized a fluorescence-labelled analogue 219 of the natural product dioncophylline A 212. The attachment of a fluorescent moiety allows for the detection of dioncophylline A in malaria parasite-infected host erythrocytes. Their synthetic approach is outlined in Scheme 23. Bromination and O - and N -benzyl protection of dioncophylline A 212 afforded the N,O-dibenzylated -5-bromodioncophylline A 213, which was lithiated in situ and formylated with DMF to furnish the aldehyde 214; subsequent deprotection produced the phenol 215. Coupling of the sulfonyl amine 218 via reductive amination with compound 215 yielded the desired fluorescence-labelled analogue 219.

Scheme 23. Synthesis of fluorescence-labelled dioncophylline A analogue.

1.6.3. Rational drug design: inhibition of new biological targets

Advances in molecular biology and the development of sophisticated computational methods have led to the rational approach to drug design. ${ }^{68}$ This innovative approach depends on the identification of pathogen enzymes as biological targets and the subsequent development of ligands that bind within the active-site and/or alter the biological function
of the target enzyme. ${ }^{68}$ Knowledge of the 3D-structure of the target enzyme, including a detailed understanding of the ligand-receptor binding site, may be obtained using x-ray crystallography, NMR spectroscopy and computer-aided molecular modelling techniques. Other approaches which are often integrated into the rational drug design process include;virtual screening, synthetic combinatorial chemistry, high-throughput screening, docking, quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR). ${ }^{68}$ The rational design and optimization of potential inhibitors typically involves in silico binding affinity and in vitro biological activity studies as well as studies of the pharmacokinetic properties of the ligand of interest. ${ }^{68}$ Biological pathways and enzymes in plasmodium species that have recently been targeted for the discovery of new antimalarial drugs are summarised in Table $1 .{ }^{67,89}$ One such target, which has been identified recently and which is the focus of this synthetic study, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) - an enzyme which functions in the non-mevalonate pathway within the apicoplast organelle of plasmodium parasites. ${ }^{67,89}$

Table 1. P. falciparum targets for novel drug design. ${ }^{89}$

Target	Enzyme/process	Inhibitor
Membrane biosynthesis	Phospholipid synthesis (choline transporter)	G-25
Parasite proteases	Plasmepsins, falsipains	Leupeptin, pepstatin
Shikimate pathway	5-enolpyruvyl shikimate-3-phosphate synthase	Glyphosate
Apicoplast	DNA synthesis (DNA gyrase) Type II fatty acid biosynthesis (Fab H, Fab I)	Quinolones Thiolactomycin, triclosan
Mitochondrial system	Cytochrome C oxidoreductase	Atavoquone
Redox system	Thioredoxin reductase	5,8-Dihydroxy-1,4- naphthoquinone Buthionine sulfoximine
Isoprenoid biosynthesis	1-deoxy-D-xylulose-5- phosphate reductoisomerase	5-Fluoroorotate

1.7. 1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) as a target for anti-malarial drug design

1.7.1. Isoprenoid biosynthesis via the mevalonate-independent pathway

Isoprenoids are derived from the five-carbon isomeric isoprene units isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), and form a large and structurally diverse class of natural products. ${ }^{90}$ Currently, more than 30000 isoprenoids have been discovered and these compounds are involved in carrying out various essential biological functions in all living organisms including:- i) electron transport processes (ubiquinone); ii) signal transduction (prenylated proteins); iii) growth regulation (steroid hormones and cytokinins) and; iv) membrane modulators (sterols). ${ }^{91}$ The precursors for isoprenoid biosynthesis, IPP and DMAPP, are constructed via two different biosynthetic routes. In mammals, plants, fungi and some bacteria, the precursors are synthesized by the mevalonate (MVA) pathway, discovered in the 1950's and summarized in Figure 16. ${ }^{90}$ This biosynthetic route involves Claisen condensation of two molecules of acetyl-CoA 220 to form acetoacetyl-CoA 221, which further condenses with another molecule of acetyl-CoA producing 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 222. Two successive nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of HMG-CoA 222 produce MVA 223, which is phosphorylated twice to yield mevalonic-5-diphosphate (MVA-PP) 225. Subsequent decarboxylation of MVA-PP gives IPP 226, which isomerizes via a 1,3-proton shift to give DMAPP 227. ${ }^{92}$

AAS = acetoacetyl-CoA synthase; HMGS = HMG-CoA synthase; HMGR = HMG-CoA reductase; MK = mevalonate kinase; PMK = phosphomevalonate kinase; PMD = mevalonate diphosphate decarboxylase

Figure 16. The mevalonate (MVA) pathway for isoprenoid biosynthesis. ${ }^{92}$

The second pathway, termed the non-mevalonate or DOXP/MEP pathway, was discovered in 1993 and occurs in most eubacteria as well as plastids of algae and higher plants. ${ }^{91}$ Both pathways operate in higher plants, leading to cytosolic isoprenoids (sterols) via the MVA pathway and plastidic isoprenoids (carotenoids) are synthesized through the DOXP/MEP pathway. The DOXP/MEP pathway consists of the seven enzymatically catalysed steps summarized in Figure 17. ${ }^{91,93}$

Figure 17. The reaction steps of the DOXP/MEP pathway. ${ }^{93}$

The initial step, catalysed by the thiamine diphosphate-dependent DXP synthase (DXS) involves the condensation of pyruvate $\mathbf{2 2 8}$ and glyceraldehyde-3-phosphate $\mathbf{2 2 9}$ to form 1-deoxy-D-xylulose 5-phosphate (DOXP) 230. In the next step, DOXP reductoisomerase (DXR) catalyses the conversion of DOXP 230 into 2-C-methyl-D-erythritol 4-phosphate (MEP) 231 through an intramolecular rearrangement and NAPDH-dependent reduction step. ${ }^{91}$ Subsequent cytidylylation of MEP 231 affords 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) 232, which is phosphorylated at the C-2 hydroxyl group by CDP-ME kinase to yield 4-diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate (CDP-MEP) 233. In the next step, CDP-MEP 233 is transformed through cyclization into 2-C-methyl-D-erythritol 2,4cyclodiphosphate (MECPP) 234 by MEcPP synthase. ${ }^{91}$ The reduction and dehydration of MECPP 234 by 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate (HMBPP) synthase affords HMBPP 235 which, upon further reduction and dehydration catalysed by HMBPP reductase,
produces IPP 226, which is then isomerised by isopentenyl diphosphate (IPP) isomerise to DMAPP 277. ${ }^{91,93}$

A large number of human bacterial pathogens such as Escherichia coli, Mycobacterium tuberculosis, Helicobacter pylori and the malaria plasmodium species, utilize the DOXP/MEP pathway exclusively for the biosynthesis of isoprenoids. ${ }^{91,93}$ With regard to P. falciparum, enzymes within this pathway have thus been identified as targets for the rational design of novel anti-malarial drugs. Importantly, the absence of functionally equivalent enzymes in the human host has made the DOXP/MEP pathway an attractive target for therapeutic intervention. ${ }^{93,94}$ A key enzyme in the pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), has been validated as a suitable target for a new class of antimalarial drugs as its catalytic activity is specifically inhibited by the antibiotic fosmidomycin 236 and its acetyl derivative FR900098 237 (Figure 18). ${ }^{93,95}$

fosmidomycin 236

FR900098 237

Figure 18. Inhibitors of the DXR enzyme.

1.7.2. Catalytic mechanism of DOXP reductoisomerase (DXR)

The catalytic mechanism for the conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) 230 to 2-C-methyl-D-erythritol-4-phosphate (MEP) 231 by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) has been extensively studied in recent years. ${ }^{91,96-97}$ This transformation is the committed step in the non-mevalonate pathway and involves the formation of the intermediate 2-C-methyl-D-erythrose-4-phosphate 238, apparently via an intramolecular rearrangement followed by an NADPH-dependent reduction step. The presence of one of the divalent metal cations $\mathrm{Co}^{2+}, \mathrm{Mn}^{2+}$ or Mg^{2+} is essential for enzyme function. ${ }^{93,97}$ Although conclusive evidence is yet to the provided, three different mechanisms for the intramolecular rearrangement step 230-231 (Figure 17) have been proposed. These are: - i) retro-aldol/aldol rearrangement; ii) α-ketol rearrangement; and iii) 1,2-hydride/methyl shift type mechanism, as depicted in Figure 19. ${ }^{97}$ The retro-aldol/aldol mechanism (Figure 19a) involves the deprotonation of the C-4 hydroxy group of DOXP 230,
followed by C-3 and C-4 bond cleavage to give the enol/enolate of 3-hydroxyacetone $\mathbf{2 3 9}$ and glycoaldehyde-3-phosphate $\mathbf{2 4 0}$. The recombination of these two moieties via an aldol addition reaction generates a new $\mathrm{C}-\mathrm{C}$ bond between carbon atoms derived from $\mathrm{C}-2$ and C 4 of $\mathbf{2 3 0}$ to furnish intermediate $\mathbf{2 3 8} .{ }^{93,97}$ The α-ketol rearrangement mechanism (Figure 19b) involves oxidation of the C-3 hydroxy group of DOXP 230 to the ketone, concomitant with migration of the 1-hydroxy-2-phosphoethyl moiety to the ketone C-2 to give the intermediate $238 .{ }^{97}$ Support for such a reaction mechanism is provided by acetohydroxy acid isomeroreductase catalysed reaction enzyme, involved in the biosynthetic pathway of the amino acids isoleucine, valine and leucine. ${ }^{91,98}$ The third mechanism (Figure 19c) proposed by Argyrou et al. ${ }^{97}$ involves a 1,2-hydride shift of the C-3 proton to the ketone C-2 carbonyl group of DOXP 230, with a sequential 1,2-methyl shift to generate the intermediate 238. Subsequent reduction of the intermediate $\mathbf{2 3 8}$ with NADPH yields MEP 231.
A. retro-aldol/aldol mechanism

Figure 19. Proposed mechanisms for the DXR-catalysed conversion of DOXP $\mathbf{2 3 0}$ to MEP 231.

The stereochemistry of the DXR catalysed rearrangement and NADPH-dependent reduction steps have been investigated using recombinant DXR enzymes from Synechocystis, E. coli and M. tuberculosis. ${ }^{97,99-100}$ These studies indicated that the NADPH co-factor and the
migrating C-4 moiety are located on opposite faces of the metal-DOXP complex. The migration of the C-4 moiety to C-2 on the re-face of the intermediate $\mathbf{2 3 8}$ is followed by attack of the C-4 pro-S hyride from NADPH, as depicted in Figure 20. In addition, it was established that the C-1 pro-S hydrogen of MEP $\mathbf{2 3 1}$ is generated from the C-3 hydrogen of DOXP 230, thus classifying DXR as a class B dehydrogenase enzyme. ${ }^{99-100}$

Figure 20. Stereochemical features of DXR-catalysed conversion of DOXP to MEP. $\mathrm{H}^{*}=$ NADPH pro-S hydrogen transferred to form MEP. ${ }^{99-100}$

1.7.3. Molecular structure of DXR

Various research groups have successfully solved and published X-ray crystallographic structures of the DXR enzyme from a variety of organisms, including:- E. coli, M. tuberculosis, Z. mobilis and, more recently, T. maritima and Y. pestis. ${ }^{91,101-109}$ However, a well-defined crystal structure of P. falciparum DXR (PfDXR) has yet to be published, although two homology models generated using comparative protein modelling, have been reported by Singh et al. and by Goble et al., respectively. ${ }^{110-111}$ The generation of these structures of the DXR enzyme has revealed important key features including:- i) the structure and conformational dynamics of DXR; ii) the ligand and metal binding residues of the catalytic site; and iii) kinetic parameters of DXR.

1.7.3.1. Structure and conformational dynamics of DXR

Analyses and evaluation of the architecture of EcDXR from the published crystal structures reveal that DXR exists as an 86 kDa homo-dimer, with each monomeric unit comprising of three distinct domains arranged in a pronounced cleft-like or V-shaped structure, as
illustrated in Figure 21. ${ }^{101-105}$ The three domains are:- i) an N -terminal binding domain (residues 1-150) consisting of several parallel-stranded β-sheets and α-helices that binds the NADPH co-factor; ii) a central or connective domain (residues 150-285) consisting of the active site and the flexible or catalytic loop; and iii) the C-terminal, four-helix bundle domain (residues 312-398), connected to the catalytic domain and providing structural support for the active site. ${ }^{101,103,105}$ Structural analyses of the published apo-enzyme showed significant mobility of the catalytic and C-terminal domain of the three, protein conformers present in the asymmetric unit of the crystal. ${ }^{101}$ In addition, the apparent flexibility seen for the catalytic loop suggests that DXR is structurally flexible and undergoes conformational change upon substrate binding, with the catalytic loop folding over the active site as a 'lid', thus shielding the active site from the solvent environment. ${ }^{101,103-105}$ In the PfDXR homology model structure, Goble et al. ${ }^{111}$ established structural similarities between PfDXR and EcDXR.

Figure 21. Ribbon representation of the EcDXR monomer showing the three domains, the NADPH co-factor, the N-terminal domain (blue); the connective domain (red); the catalytic loop (ochre); C-terminal four-helix bundle domain; and NADPH (yellow). Adapted from the structure published by Reuter et al. ${ }^{101}$

1.7.3.2. DXR catalytic site: ligand-binding residues and binding of co-factors

X-ray crystal structures of DXR complexed with combinations of the substrate DOXP 230, the inhibitor fosmidomycin 236 and the co-factors, NADPH and the metal cations (Mn^{2+}, Mg^{2+}), have permitted identification of the active-site residues involved in their binding. ${ }^{102-}$ ${ }^{105}$ These structures reveal that the DXR active-site is comprised of three regions:- i) the phosphonate binding pocket; ii) the divalent-metal cation binding site; and iii) a relatively narrow hydrophobic region accommodating the carbon backbone of the substrate or inhibitor. ${ }^{103,105}$ A crystal structure of ECDXR determined by Mac Sweeney et al. ${ }^{105}$ reveals the phosphonate moiety of fosmidomycin $\mathbf{2 3 6}$ occupying the positively charged phosphonate binding pocket and interacting with active site residues Ser186, Gly187, Ser222, Met225, Asn227, Lys228 and lle250 (Figure 22), with its carbon backbone of 236 aligned parallel to the $\operatorname{Trp} 212 \beta$-indole ring ca. $4 \AA$ away; the hydroxamate moiety of the inhibitor adopts a planar configuration and interacts with the metal via a bidentate chelation. ${ }^{105}$

Figure 22. The EcDXR active site with fosmidomycin 236 interacting with binding residues. Fosmidomycin is shown in ball and stick format (coloured by element), NADPH in ball and stick format (coloured yellow) and amino acid residues shown in wireframe format (coloured by element). Adapted from EcDXR PDB code 1Q0L ${ }^{105}$

The structure of EcDXR complexed with DOXP 230 and NADPH reveal similar binding interactions, with the negatively-charged phosphonate moiety of DOXP interacting with residues Ser186, Ser222, Asn227 and Lys228. ${ }^{105}$ The carbon backbone of the molecule again aligns parallel to the β-indole ring of $\operatorname{Trp} 212$ whilst:- the C-2 carbonyl oxygen interacts with Glu152 and Ser151; the C-3 hydroxyl group interacts with Lys125 and Glu231; and the C-4 hydroxyl group binds to Glu 152, Asn227 and Lys228, respectively. Also, NADPH is shown to interact with several residues in the N-terminal domain including Gly11, Ser12, Gly14, Ala35, Gly36 and Ala105. ${ }^{105}$ Yajima et al. ${ }^{103}$ observed that the binding of NADPH to EcDXR structure results in stabilization of the active site, with a more ordered flexible loop region. ${ }^{103}$ Structural analyses of EcDXR complexed with fosmidomycin $\mathbf{2 3 0}$ and NADPH show the close binding proximity of the co-factor to the substrate 230, as shown is Figure 23. ${ }^{105}$

Figure 23. The EcDXR active site with substrate DOXP 230 and NADPH interacting with specific binding residues. The close proximity of NADPH (shown in ball and stick format and coloured yellow) to DOXP (shown in ball and stick format and coloured by element) is essential for catalytic activity. Amino acid residue Trp212 is represented in stick format (coloured green). Adapted from EcDXR PDB code 1Q0Q. ${ }^{105}$

The position of NADPH relative to the DOXP 230 in the active site is significant for the catalytic activity of DXR, as the C-4 pro-S hydrogen of NADPH is transferred to C-2 to form MEP. ${ }^{99}$ NADPH is considered to interact with active-site residues before the substrate DOXP (or the inhibitor) binds and induces folding of the flexible loop over the active site. Several residues have been identified as essential for the correct positioning of DOXP $\mathbf{2 3 0}$ within the DXR catalytic site. These include residues His153, Gly185, Ser186, His209, Trp212, Met214,Glu231 and His257. ${ }^{102,104,112}$ The two residues Ser186 and His209, which form part of the flexible loop, have been implicated in tight DXR-NADPH-ligand binding complexes, whilst Gly185 and Met214 are described as 'hinges' for the folding-mechanism of the catalytic loop. ${ }^{105,113}$ The position of the divalent metal cation in MtDXR was established by Henriksson et al. ${ }^{107}$ and in EcDXR by Steinbacher et al. ${ }^{104}$ The metal cation is assumed to anchor the substrate in the desired conformation required for the rearrangement step and to stabilize the intermediate 238 through electrostatic interactions. ${ }^{97,107}$ The C-2 carbonyl oxygen and C-3 hydroxyl group of DOXP 230 has been shown to coordinate to the metal cation; a water molecule and the active-site residues Asp150, Glu152 and Glu231 have also been identified as metal-chelating groups, resulting in the distorted octahedral coordination complex shown in Figure 24. ${ }^{105,107}$ The interaction of fosmidomycin 236 with the metal cation is similar and involves a water molecule and the residues Asp151, Glu153 and Glu222 in MtDXR, and residues Asp150, Glu152 and Glu231 in EcDXR to form an octahedral coordination sphere (Figure 24). ${ }^{103,105,107}$

Figure 24. Chelation of the divalent metal cation by DOXP 230 and fosmidomycin 236. ${ }^{105,107}$

1.7.3.3. Kinetic parameters of DXR

The kinetic parameters for DXR enzymes isolated from several organisms have been studied and quantified, and are summarised in Table $2 .{ }^{114}$ The catalytic activity of DXR is optimal
within a pH range of $7-8.5$ and temperature range of $50-60^{\circ} \mathrm{C}$. Studies have indicated DXR to have a preference for NADPH as oppose to NADH as co-factor and a higher affinity for Mg^{2+} over Mn^{2+} in vivo. ${ }^{97,114}$ The Michaelis constant $\left(K_{m}\right)$ describes the binding affinity of the substrate for the enzyme and quantifies the concentration of substrate at which the reaction occurs at half its maximum rate; whilst the catalytic constant ($\mathrm{K}_{\text {cat }}$) measures the catalytic efficiency of the enzyme. ${ }^{92}$

Table 2. Kinetic parameters ${ }^{\text {a }}$ for DXR from several organisms. ${ }^{114}$

DXR enzyme	$\mathbf{K}_{\mathrm{m}}(\boldsymbol{\mu M})$	$\mathbf{K}_{\text {cat }}(\mathbf{1} /[\mathrm{S}])$
E. coli	$3-250$	$29-38$
Z. mobilis	300	14
S. coelicolor	190	19.2
M. tuberculosis	$4-240$	$2.1-5.3$
A. Thaliana	132	4.4
T. maritima	40000	0.29
${ }^{\text {P }}$ Parameters determined with substrate DOXP, NADPH and divalent metals $\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}$ or Co^{2+}		

1.7.4. The design of DXR inhibitors: fosmidomycin and DOXP analogues

1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an attractive target for the rational design of new anti-malarial chemotherapeutic drugs due to the fact that:- i) the vital DOXP/MEP pathway for isoprenoid biosynthesis is present in P. falciparum, the most pathogenic species; and ii) neither DXR nor functionally homologous enzymes are present in humans, thus precluding undesirable side-effects during chemotherapy. ${ }^{91,93}$ Also significant was the discovery of fosmidomycin 236, an antibiotic isolated from Streptomyces lavendulae, as a specific and competitive inhibitor of DXR. ${ }^{95,115}$ Jomaa et al. ${ }^{116}$ established the anti-malarial activity of fosmidomycin 236 and its acetyl derivative FR900098 237, both of which inhibited the rodent malaria parasite P. vinckei in a dose-dependent manner. In vivo studies showed that fosmidomycin 236 was non-toxic and highly efficient in the treatment of patients with acute uncomplicated P. falciparum malaria, albeit with a high recrudescence rate. Unfortunately, the poor pharmacological properties exhibited by fosmidomycin 236 and FR900098 237, such as low bioavailability and short plasma half-life, due to its high hydrophilicity, have limited their use as therapeutic drugs. ${ }^{91,95}$

However, the potent and specific DXR inhibitory activity of compounds 236 and $\mathbf{2 3 7}$ has encouraged structure-activity relationship studies and synthetic approaches towards the design of analogues as potential DXR inhibitors. The availability of DXR crystal structures (discussed above) with bound substrate 230 and fosmidomycin 236, have assisted in identifying the negatively charged hydroxamate functionality and phosphonate moiety as critical structural groups required for antimalarial activity. ${ }^{103,105}$ The C-2 carbonyl oxygen and C-3 hydroxyl group in DOXP $\mathbf{2 3 0}$ and the hydroxamate functional group in fosmidomycin are involved in divalent-metal cation chelation; whilst the phosphonate moiety occupies the phosphonate binding site. In addition, Mac Sweeney et al. ${ }^{105}$ observed that a defined distance (C-spacer) between these two polar functional groups is necessary for potent antimalarial activity. Synthetic strategies towards new DXR inhibitors have thus focused on:i) the introduction of substituents in the C-backbone of DOXP 230 and fosmidomycin 236; ii) functionalization of the phosphonate moiety; and iii) modification of the hydroxamate group.

In recent years, various fosmidomycin analogues based on modification of the phosphonate group (Figure 25), have been synthesised and evaluated for their anti-malarial activities. With the aim of improving the bioavailability, prodrugs of fosmidomycin 236 and FR900098 237, the phosphodiaryl 241, acyloxyalkyl ester 242 and alkyoxycarbonyloxyethyl 243 analogues, showed a two-fold increase in anti-malarial efficacy in comparison to fosmidomycin 236 after oral administration in mice infected with P. vinckei, although the ester linkage is prone to hydrolysis in vivo. ${ }^{117-119}$ In other studies, Yajima et al. ${ }^{120}$ reported the synthesis of the bi-phosphonates 244 and 245 which exhibited inhibitory activity against ECDXR with IC_{50} values of 4 and $7 \mu \mathrm{M}$ respectively; and Woo et al. ${ }^{121}$ designed fosmidomycin analogues by replacing the phosphonate group with a phosphate (246-247), carboxylate (248) and sulfamate (249) moiety. The biological activity of these novel compounds against recombinant Synechocystis sp. DXR showed that the phosphate 246 and its acetyl analogue $\mathbf{2 4 7}$ exhibited greater potency than fosmidomycin 236, but subsequent cleavage by phosphatases resulted in inactivation. ${ }^{121}$ Recently, a coordination-structure based approach was used by Song et al..122 to develop the lipophilic DXR inhibitors $\mathbf{2 5 0}$ and with moderate (IC_{50} of 4.5 and $1.4 \mu \mathrm{M}$) anti-inhibitory activity.

244

245

Figure 25. Fosmidomycin analogues, based on modification of the phosphonate moiety, as DXR inhibitors.

Analogues of fosmidomycin 236 and FR900098 237, in which the C-spacer between the phosphonate and hydroxamate moieties is functionalized, have been synthesised and their DXR activity evaluated (Figure 26). Van Calenbergh et al. ${ }^{123-126}$ have synthesised:- i) α, β unsaturated α-aryl-substituted analogues 252-254 of FR900098 237; ii) α-aryl-substituted fosmidomycin analogues $\mathbf{2 5 5}$-258; iii) conformationally-restricted cyclopropyl analogues $\mathbf{2 5 9}$ and 260; and, recently, iv) the α-halogenated analogue 261. ${ }^{123-126}$ In vitro, the anti-malarial activity of the analogues 255-258 and $\mathbf{2 6 1}$ analogues was comparable with that of fosmidomycin 236; whilst analogues 252-254 and 259-260 exhibited low to zero antimalarial activity.

Figure 26. Fosmidomycin analogues, based on the functionalization of the C-spacer, as DXR inhibitors.

Structural studies of DXR have suggested that variation in the length of the C-spacer would decrease the binding affinity of potential inhibitors in the DXR active site, leading to reduced activity. ${ }^{105}$ Interestingly, other studies have indicated the presence of a hydrophobic binding pocket beyond the phosphonate-moiety binding site and also a hydrophobic pocket within the active-site, located between the C-backbone α-position and the phosphonate binding
region. ${ }^{127-129}$ These additional binding sites may be exploited and direct the synthesis of novel compounds with better DXR inhibitory activity. Structural modification of the metalbinding hydroxamate moiety has also been explored. Mercklé et al. ${ }^{130}$ synthesised the cyclic analogue 262, which showed DXR inhibitory activity in the $\mu \mathrm{M}$ range. The design of fosmidomycin analogues in which the hydroxamate functionality has been inverted or its orientation reversed to a hydroxamic acid group has also been investigated (Figure 27). Kuntz et al. ${ }^{131}$ synthesised the hydroxamic analogues $\mathbf{2 6 3}$ and $\mathbf{2 6 4}$ which exhibited the same activity as fosmidomycin 236 against recombinant EcDXR; while Kurz et al. ${ }^{132-133}$ has reported the synthesis of carboxylic acid 265 and hydroxyurea 266 analogues of fosmidomycin 236. Recently, Kurz et al. ${ }^{134}$ reported the synthesis of α-phenyl substituted hydroxamic analogues and demonstrated the inhibitory activities of these analogues to be as potent as those of fosmidomycin $\mathbf{2 3 6}$ against recombinant PfDXR and the multidrugresistant K1 P. falciparum strain. ${ }^{134}$

265

$268 \mathrm{R}=\mathrm{Me}$

Figure 27. DXR inhibitors based on the modification of the hydroxamate moiety.

Various research groups have reported the synthesis of structural analogues of the substrate DOXP 230 as potential inhibitors of DXR (Figure 28). Hoeffler et al. synthesised DOXP analogues $\mathbf{2 6 9}$ and $\mathbf{2 7 0}$ with one of the hydroxyl groups absent at either the C-3 or C-4 position, and showed that these compounds acted as mixed-type inhibitors of EcDXR. ${ }^{135}$ Kinetic analyses of EcDXR activity in the presence of these inhibitors indicated that the C-3 and C-4 hydroxyl groups are essential for catalytic transformation of DOXP 230 to MEP 231, but not critical for inhibition activity. The analogues 271-273 inhibited ECDXR at mM concentration, showing that compounds with neutral or negatively charged donor atoms can coordinate with the metal cation in the active site, whilst the ethyl DOXP analogue $\mathbf{2 7 4}$ and the trifluoromethyl analogue 275, exhibited steric interactions upon chelation at the
metal-binding site. ${ }^{136-137}$ The design of inhibitors which target the NADPH binding domain of DXR have also been explored. Link et al. ${ }^{138}$ reported the synthesis of the 3 ', N^{6}-disubstituted adenosine NADPH analogue 276 (Figure 28), using a polymer-assisted solution-phase method. Biological evaluation of compound $\mathbf{2 7 6}$ revealed moderate anti-malarial activity (low mM) against P. falciparum strain Dd2 as well as EcDXR inhibitory activity. ${ }^{138}$ However, the study did not confirm the binding of the analogue $\mathbf{2 7 6}$ to the NADPH binding site and hence, the DXR inhibition observed could not be correlated with the anti-plasmodial activity.

Figure 28. Structural analogues of DOXP and NADPH as DXR inhibitors.

1.8. Previous work in the group and aims of the present study

In an effort to develop novel adenosine triphosphate (ATP) analogues as potential glutamine synthetase (GS) inhibitors for the treatment of tuberculosis various compounds were prepared, including the anilide 277 (Figure 29). ${ }^{139-141}$ Serendipitously, this compound was found to exhibit an explicit binding interaction with EcDXR in Saturation Transfer Difference (STD) protein-NMR experiments. Furthermore, EcDXR inhibition assay studies revealed that ligand $\mathbf{2 7 7}$ exhibited low-level inhibition of the enzyme, thus highlighting its potential as a lead compound in the design and synthesis of novel DXR inhibitors. In a cognate study in our group, ${ }^{129,142}$ the heterocyclic phosphonate esters 278a-e and 280a-e and their corresponding phosphonic acid salts 279a-e and 281a-e (Figure 29) were synthesised. In these compounds the benzene ring in compound 277 has been replaced by various heterocyclic systems. The potential of these analogues to act as DXR inhibitors was evaluated in silico and in vitro. EcDXR inhibition studies of these analogues, however,
revealed that they exhibited minimal to moderate inhibitory activity, whilst the presence of an additional binding pocket was observed during the in silico exploration of the DXR active site. ${ }^{129,142}$ The presence of this additional binding pocket led to the de novo design of a new class of potential inhibitors.

277

281 ae

Figure 29. DXR inhibitors synthesised in our research group.

As indicated in the previous section, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a key enzyme functioning in the biosynthesis of isoprenoid precursors in malariapathogenic Plasmodium species and has been validated as a target for anti-malarial chemotherapy. ${ }^{93-95}$ Moreover, the antibiotic fosmidomycin $\mathbf{2 3 6}$ is a potent and selective DXR inhibitor of the virulent P. falciparum parasite. ${ }^{95,115}$ With detailed knowledge of the DXR active-site architecture, the aim of this research has been to design and prepare novel compounds as potential DXR inhibitors. More specifically, the project has involved the following parallel phases.

1. The synthesis and characterization of:-
i. dihydroxy-amido phosphonate esters and their corresponding phosphonic acids as DOXP and fosmidomycin analogues;
ii. furan-derived phosphate esters and phosphonic acids as conformationally restricted DOXP analogues;
iii. several series of 3-substituted aniline-derived phosphonate esters and their corresponding phosphonic acids as potential DXR inhibitors;
iv. N-substituted benzylphosphoramidic acid derivatives as fosmidomycin analogues; and
v. the known inhibitors fosmidomycin 236 and FR900098 237 for use as standards in DXR binding and inhibition studies.
2. Biochemical and Microbiological studies, including:-
i. the use of Saturation Transfer Difference (STD) protein-NMR experiments to detect the binding of selected synthesised compounds to EcDXR; and
ii. DXR-enzyme inhibition assays of selected ligands to examine their ability to inhibit EcDXR and PfDXR activity.
3. Molecular modelling, including simulated docking studies of selected ligands to establish preferred ligand-binding conformations, using the Cerius ${ }^{2}$ LigandFit module and Autodock version 4.0.

2. DISCUSSION

With reference to the detailed aims and objectives, this discussion will focus on:- the synthesis of dihydroxy-amido phosphonate esters and phosphonic acid derivatives (Section 2.1), 3-substituted aniline scaffolds (Section 2.2), furan-derived phosphates (Section 2.3) and N-benzyl substituted phosphoramidic acid derivatives (Section 2.4) as novel DXR inhibitors; the synthesis of fosmidomycin and FR900098 as standards for biological studies (Section 2.5); STD-NMR binding studies (Section 2.5), enzyme inhibition assays (Section 2.5); and docking studies (Section 2.6) of selected synthesised compounds.

2.1. Synthesis of dihydroxy-amido phosphonate esters and phosphonic acid derivatives as novel DXR inhibitors

Structure-activity relationship (SAR) studies of the DXR enzyme with the natural substrate DOXP 230 and of known inhibitors fosmidomycin 236 and FR900098 237 have led to the identification of structural groups which are considered critical for the inhibitory activity of DXR. ${ }^{103,105}$ These include the hydroxamate functionality and the phosphonic acid group, illustrated in Figure 30. A distance of three carbon atoms between these two functional moieties appears to be essential for inhibition of DXR. Our strategy for the synthesis of the first series of novel DXR inhibitors thus involved:- i) mimicking the alkyl backbone of DOXP 230 to retain enzyme-ligand binding specificity; and ii) modifying the phosphonate and hydroxamate moieties to obtain analogues with improved inhibitory activity.

Figure 30. Design strategy for the construction of novel DXR inhibitors, showing essential structural features.

In the design and synthesis of the dihydroxy-amido phosphonate esters 292 and their corresponding phosphonic acid derivatives $\mathbf{2 9 3}$, three synthetic routes were investigated, all of which commenced with ethyl (E)-crotonate; these are outlined in Scheme 24.

Scheme 24. Synthetic routes explored in the synthesis of the dihydroxy-amido phosphonate esters 292 and their corresponding acid derivatives 293.

The initial step in Approach 1 (Scheme 24) involved bromination at the allylic position of commercially available ethyl (E)-crotonate $\mathbf{2 8 2}$, in the presence of a stoichiometric quantity of N -bromosuccinimide (NBS) as a source of bromine and a catalytic quantity of benzoyl peroxide, to obtain ethyl 4-bromocrotonate $\mathbf{2 8 3}$ in 56% yield (Scheme 25). ${ }^{143}$ This reaction is referred to as the Wohl-Ziegler bromination and involves a free-radical mechanistic
pathway, initiated by the non-ionic fission of the weak N-Br bond. ${ }^{144}$ The use of NBS and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ in this method provides several advantages. Firstly, the poor solubility of NBS in CCl_{4} ensures that the concentration of molecular bromine and hydrogen bromide (reagents generated in situ) are constantly kept low such that the bromination occurs exclusively at the allylic position and side reactions arising from addition across the double bond are prevented. ${ }^{145}$ Secondly, the resulting by-product, succinimide, is insoluble in cold CCl_{4} thus simplifying isolation of the product 283.

Scheme 25. Synthesis of compound 283 via Wohl-Ziegler bromination. ${ }^{143}$ Reagents and conditions: i) NBS, benzoyl peroxide, $\mathrm{CCl}_{4}, 3 \mathrm{~h}$, reflux.

Figure 31 shows the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 8 3}$, indicating the two 4-methylene protons resonating as a doublet at 3.99 ppm . The 2 - and 3 -vinylic protons resonate as a doublet at 6.02 ppm and multiplet at 6.99 ppm , respectively whilst the 2^{\prime}-methyl protons resonate as a triplet at 1.26 ppm and the 1'-methylene protons as a quartet at 4.18 ppm .

Figure 31. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 8 3}$ in CDCl_{3}.

Synthetic inhibitors of the DXR enzyme are typically characterised by the presence of a phosphonate moiety, which occupies the hydrophilic phosphate binding pocket in the DXR catalytic site. ${ }^{105,117-122}$ Several synthetic methods have been described, of which the Michaelis-Arbuzov reaction is one of the most versatile, for affording access to phosphonates, phosphinates and phosphine oxides. ${ }^{146-148}$ Thus, by subjecting compound 283 to Michaelis-Arbuzov reaction conditions, the phosphonate ethyl ester $\mathbf{2 8 4}$ was obtained in reasonable yield (62%). The reaction involves the formation of an unstable trialkoxyphosphonium salt intermediate 294 by nucleophilic attack ($S_{N} 2$) of triethyl phosphite on the electrophilic alkyl halide 283. ${ }^{147-148}$ Subsequent halide ion mediated dealkylation of the intermediate $\mathbf{2 9 4}$ via another $\mathrm{S}_{\mathrm{N}} 2$ reaction affords the desired phosphonate ethyl ester $\mathbf{2 8 4}$ and an alkyl halide 295 (Scheme 26).

Scheme 26. Synthesis of phosphonate ethyl ester 284 via the Michaelis-Arbuzov reaction.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic analysis confirmed the formation of the product $\mathbf{2 8 4}$. The
${ }^{1}$ H NMR spectrum (Figure 32) showed the presence of the 4-methylene proton signal as a double doublet at 2.70 ppm . The splitting of these methylene protons is due to the coupling to the adjacent ${ }^{31} \mathrm{P}$ nucleus with a characteristic coupling constant of $c a .23 \mathrm{~Hz}$ and coupling to the adjacent vinylic proton ($J=7.6 \mathrm{~Hz}$). The overlapping multiplets at 4.10 ppm and 1.27 ppm are due to the 1' and 1"-methylene and 2' and 2"-methyl protons of the carboxylate and phosphonate ester ethyl groups, while the 2- and 3 -vinylic protons resonate at 5.91 ppm and 6.85 ppm , respectively. Analysis of the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 33) clearly shows the characteristic splitting of the phosphonate methylene carbon (C-4) signal at ca. 29.9 ppm with a large coupling constant of 138 Hz , due to the coupling to the ${ }^{31} \mathrm{P}$ nucleus. The splitting of the signals corresponding to $1^{\prime \prime}$ - methylene and $2^{\prime \prime}$-methyl carbons at 62.2 ppm and at 16.3 ppm , respectively, is also clearly evident, whilst the 2 - and 3 -vinylic carbon
signals appear at 125.8 ppm and 137.8 ppm , respectively; the C-1 carbonyl carbon signal is observed at 165.5 ppm . The ${ }^{31} \mathrm{P}$ NMR spectrum showed a characteristic singlet at $c a .25$ ppm, confirming the presence of the phosphonate moiety.

Figure 32. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 8 4}$ in CDCl_{3}.

Figure $33.400 \mathrm{MHz}^{\text {pom }(1)}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 8 4}$ in CDCl_{3}.

In our design of novel DXR inhibitors, emphasis was placed on the construction of ligands in which the hydroxamate group, present in the known inhibitors fosmidomycin 236 and FR900098 237, is 'rearranged' into an amide moiety. The amide oxygen and nitrogen atoms are expected to chelate to the hard divalent metal cation, thus increasing the binding affinity of the molecules in the DXR active site. Although various research groups are involved in the design of novel DXR inhibitors, very few inhibitors bearing the amide functional group have been synthesised or their biological activity reported. Recently, Kurz et al. reported the synthesis of DXR inhibitors with a reversed orientation of the hydroxamate group, which exhibited similar anti-plasmodial activity against PfDXR as the known inhibitors fosmidomycin 236 and FR900098 237. ${ }^{149}$ Furthermore, in our strategy, it was reasoned that by varying the substituents on the nitrogen atom, the hydrophobicity of the molecules could be tuned and additional binding interactions with the active site residues could be explored.

Various literature approaches were examined in an attempt to synthesize the phosphonated crotonamide derivatives 285a-g directly from the phosphonated ethyl ester 284 (Scheme 27). ${ }^{150-152}$

Scheme 27. Attempted synthesis of phosphono-crotonamide derivatives 285a-g via various literature methods. ${ }^{150-152}$

Usually, the aminolysis of esters requires drastic reaction conditions, such as high temperatures and long reaction times. In addition, strong alkali metal catalysts are often used to achieve this transformation. ${ }^{153-154}$ Driscoll et al., however, reported the direct conversion of esters to the corresponding amides under fairly mild conditions, isolating the products in good yields. ${ }^{150}$ We explored this method for the transformation of the phosphonated ethyl ester 284 to the phosphonated crotonamides 285a-g (Scheme 27, Approach 1), but, although the reaction mixtures were stirred for several days and monitored by TLC, no products were observed and only the starting materials were recovered.

The next approach to be explored for the amidation of the phosphonated ethyl ester 284, involved the use of a metal complex as a convenient source of the nucleophilic amine to achieve the transformation. Weinreb et al. reported the reaction of trimethylaluminum with various amines to produce the dimethylaluminum amides in situ, which upon treatment with a variety of carboxylic esters furnished the corresponding carboxamides in satisfactory yields (69-100\%). ${ }^{155}$ In a similar approach, Solladie-Cavallo reacted lithium aluminium hydride 296 with various amines 299a-d (Scheme 28) to generate the lithium aluminumamido complexes 300a-d in situ with liberation of hydrogen. ${ }^{151}$ Subsequent addition of the ester $\mathbf{3 0 1}$ to the metal-amido complexes 300a-d and, ester $\mathbf{3 0 2}$ to metal-amido complex 300b, afforded the desired carboxamides 303a-d and 304b in good yields, the former together with the diol 305.

Scheme 28. Synthesis of amides from esters using lithium aluminium-amido complex 298. ${ }^{151}$

We therefore attempted the conversion of compound 284 to the corresponding phosphonated crotonamide derivatives 285a-g using Solladie-Cavallo's methodology ${ }^{151}$ (Scheme 27, Approach 2). The reaction was monitored by TLC but only trace amounts of the products appeared to be formed. The conjugation in compound $\mathbf{2 8 4}$ presumably deactivates the acyl carbon to nucleophilic attack by the metal-amido complex. The molar ratio of the lithiumaluminum-amido complexes 300a-d relative to compound 284 and the reaction time were then increased in an attempt to improve the yields, but this resulted in a mixture of products and Approach 2 was abandoned. Interestingly, competing reactions in the metalamido complex catalysed conversion of esters to amides have also been described by Roskamp et al., who used a mixed tin-amide complex generated via a metathesis reaction of tin chloride and bis(trimethylsilyl)amido-lithium. ${ }^{156}$

Hamelin et al. successfully synthesised a variety of carboxamides by reacting different esters and amines under solvent-free conditions in the presence of potassium tert-butoxide (t BuOK) and microwave irradiation. ${ }^{152}$ Based on this work, we subjected the phosphonated ethyl ester 284 and several amines to similar reaction conditions in the hope of isolating the desired phosphonated crotonamide derivatives 285a-g (Scheme 27, Approach 3). However, after filtration and evaporation of the solvent in vacuo, only the starting materials were recovered. Increasing the reaction time and temperature resulted in formation of a black solid, reflecting the decomposition of the substrate $\mathbf{2 8 4}$ at the elevated temperature.

In the synthesis of various carboxylic acid derivatives, including amides, acid chlorides are often used as activated acyl intermediates. ${ }^{157-158}$ Several reagents are commonly used for the conversion of carboxylic acids to their corresponding acid chlorides; these include phosphorous trichloride, thionyl chloride and oxalyl chloride. ${ }^{158-160}$ Given the difficulties experienced in the direct conversion of the phosphonated ethyl ester $\mathbf{2 8 4}$ to the amide derivatives 285a-g, we explored the generation of the more reactive acid chloride, using ethyl (E)-crotonate 282 as the model substrate (Scheme 24, Approach 2). Initially, compound $\mathbf{2 8 2}$ was saponified using potassium hydroxide in ethyl alcohol to obtain, after acidification and recrystallisation, crotonic acid $\mathbf{2 8 6}$ as white crystals. Compound $\mathbf{2 8 6}$ was characterised by ${ }^{1} \mathrm{H}$ NMR and IR spectroscopy, and converted to its corresponding acid chloride $\mathbf{2 8 7}$ using oxalyl chloride and a catalytic quantity of dimethylformamide (Scheme
29). The acid chloride 287 was purified by distillation and IR analysis showed the characteristic acyl chloride absorption band at $1757 \mathrm{~cm}^{-1}$.

Scheme 29. Conversion of ethyl (E)-crotonate 282 to its corresponding acid $\mathbf{2 8 6}$ and acid chloride 287.
Reagents and conditions: i) KOH in EtOH, r.t., 24 h then $\mathrm{H}_{3} \mathrm{O}^{+}$ii) $(\mathrm{COCl})_{2}$, DMF, $4 \mathrm{~h}, \mathrm{~N}_{2}$.

With the crotonyl chloride 287 successfully formed, the crotonamides 288c-g were synthesised in reasonable to good yields by treatment of the acid chloride $\mathbf{2 8 7}$ with a molar equivalent of each of the appropriate amines in the presence of triethylamine (Scheme 30). The synthesis of N -methylcrotonamide 288a and N -ethylcrotonamide 288b, however, required a different approach, as the amines used to obtain these amides were used as their hydrochloride salts. Proton sponge ${ }^{\circledR}$ [1,8-bis(dimethylamino)naphthalene], ${ }^{161}$ was used as a strong non-nucleophilic base $\left(\mathrm{pK}_{\mathrm{a}}=12.34\right)$ to free the amines from their hydrochloride salt in situ, before treatment with the acid chloride 287 at $0{ }^{\circ} \mathrm{C}$. Proton sponge has been successfully used in our group to promote nucleophilic substitution reactions of amine hydrochloride salts with coumarin substrates to furnish novel coumarin derivatives as potential HIV-1 protease inhibitors. ${ }^{162}$ The crotonamides 288a-g were all characterised by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectroscopic analysis. Figure 34 shows the ${ }^{1} \mathrm{H}$ NMR spectrum of N benzylcrotonamide 288g.

Scheme 30. Synthesis of crotonamides 288a-g from crotonyl chloride 287.
Reagents and conditions: i) $\mathrm{RNH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{O}^{\circ} \mathrm{C}$ to r.t., 24 h ii) $\mathrm{RNH}_{2} . \mathrm{HCl}$, proton sponge, pyridine, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, r.t., 24 h .

Figure 34. $400 \mathrm{MHZ}^{1} \mathrm{H}$ NMR spectrum of N -benzylcrotonamide $\mathbf{2 8 8} \mathrm{g}$ in CDCl_{3}.

The next step was expected to involve allylic bromination of the crotonamides 288a-g using the Wohl-Ziegler method ${ }^{143}$ to obtain the brominated crotonamides 289a-g (Scheme 31). Attempted reaction of crotonamides 288a-g in the presence of NBS and a catalytic quantity of azobis(isobutyronitrile) (AIBN) in refluxing toluene was unsuccessful. Due to the sensitivity of this method to the solvent and temperature, different reaction conditions (Table 3) were investigated in an attempt to form compound 289f. Even under these varied conditions, the desired product could not be isolated. Competing reactions could include conjugate addition of hydrogen bromide, generated in situ, to the alkene group of the crotonamide $\mathbf{2 8 8 f}$.

Scheme 31. Attempted synthesis of brominated-crotonamides 289 using Wohl-Ziegler reaction.

Reagents and conditions: i) NBS, benzoyl peroxide, $\mathrm{CCl}_{4}, 3$ hours, reflux.

Table 3. Attempted bromination of crotonamide $\mathbf{2 8 8 f}$ under various reaction conditions.

Compound $\mathbf{2 8 8 f}$ (equiv.)	NBS (equiv.)	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Catalyst	Time (h)
1	1.2	toluene			
1	1	reflux			
1	1	1	toluene toluene benzene CCl_{4}	r.t. r.t. reflux reflux	AIBN AIBN AIBN benzoyl peroxide benzoyl peroxide benzoyl peroxide AIBN

A variety of coupling reagents have been developed for the formation of amide bonds directly from carboxylic acids and amines; these include N, N^{\prime}-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIC), 1,1'-carbonyldiimidazole (CDI) and 1-ethyl-3-(3dimethylaminopropyl)carbodiimide (EDC). ${ }^{163-166}$ With the success achieved in phosphonating compound 283 to afford the phosphonated ethyl ester 284, but the failure to obtain the brominated crotonamides 289a-g, the next strategy (Scheme 24, Approach 3), which involved direct coupling of γ-phosphonated crotonic acid 291 with amines, was explored.

The previously synthesised substrates $\mathbf{2 8 3}$ and $\mathbf{2 8 4}$ were efficiently transformed, using appropriate procedures, to furnish the γ-phosphonated carboxylic acid 291 (Scheme 32). Thus, hydrolysis of compound $\mathbf{2 8 3}$ afforded the brominated carboxylic acid $\mathbf{2 9 0}$ quantitatively; subsequent phosphonation using the Michaelis-Arbuzov ${ }^{146}$ reaction gave the desired carboxylic acid 291. Compound 291 was also obtained by hydrolysis of the phosphonated ethyl ester 284.

Scheme 32. Synthesis of the phosphonated carboxylic acid 291.
Reagents and conditions: i) KOH in EtOH , r.t., 24 h then $\mathrm{H}_{3} \mathrm{O}^{+}$ii) triethyl phosphite, 9 h , reflux, N_{2}.

Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{2 8 4}$ (Figure 32) and compound 291 (Figure 35), clearly reveals the disappearance of the 1'-methylene and 2'-methyl protons of the carboxylate ester moiety, as the overlapping multiplets at 4.15 ppm and 1.33 ppm integrate for the 1"-methylene and 2"-methyl protons of the phosphonate ester ethyl groups alone. The 4-methylene protons resonate at 2.81 ppm as a double doublet due to coupling to the ${ }^{31} \mathrm{P}$ nucleus, while the broad signal at $c a .5 .10 \mathrm{ppm}$ is assigned to the carboxylic acid proton.

Figure $\mathbf{3 5} .400 \mathrm{MHZ}^{1} \mathrm{H}$ NMR spectrum of phosphonated carboxylic acid 291 in CDCl_{3}.

Having synthesised compound 291 in reasonable yield, we decided to prepare the amidophosphonate esters 285a-g using EDC as the coupling reagent, in the presence of hydroxybenzotriazole (HOBt) and the appropriate primary amines (Scheme 33). The use of EDC-mediated coupling (as opposed to DIC- or DCC-mediated coupling) was motivated by the fact that EDC and its urea by-product are water soluble; hence, any excess reagent and by-product are easily separated from the desired products by aqueous extraction. ${ }^{166}$

Scheme 33. Synthesis of amido-phosphonate esters 285a-g using EDC-mediated coupling. Reagents and conditions: i) EDC, $\mathrm{HOBt}, \mathrm{RNH}_{2}, \mathrm{DCM}, 24$ h, r.t., N_{2}.

The mechanism of the EDC-mediated coupling involves deprotonation of the carboxylic acid 291 by EDC 306 to produce the carboxylate anion 307 and the activated carbodiimide species $\mathbf{3 0 8}$ and then, the highly electrophilic O-acylisourea intermediate $\mathbf{3 0 9}$. HOBt $\mathbf{3 1 0}$ is added to form the less reactive ester intermediate 311, which undergoes a nucleophilic acyl substitution by amines, to furnish, in our case, the desired amide derivatives 285a-g (Scheme 34). The HOBt suppresses competing reactions, including the formation of a stable N -acylurea by acyl migration and the formation of an acid anhydride in the presence of unreacted carboxylic acid. ${ }^{166}$

291
$\mathrm{R}_{1}=-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

Scheme 34. Mechanism of the EDC-mediated coupling reaction of carboxylic acid 291 to form the amido-phosphonate esters 285a-g.

The amido-phosphonate esters 285a-e and $\mathbf{2 8 5}$ g are all new compounds, and were fully characterised by NMR spectroscopy and elemental analysis. The COSY spectrum of compound $\mathbf{2 8 5}$ c is illustrated in Figure $\mathbf{3 6}$, while Figure 37 shows the HSQC spectrum of compound 285g. The couplings between the different protons present in compound 285c are clearly evident in the COSY spectrum (Figure 36). The 3"-methylene protons ($J=7.2 \mathrm{~Hz}$) couple with the 2 "-methylene protons, which couple in turn, to the 1 "-methylene protons. The complex splitting pattern observed for the 1'-methylene protons is due to coupling to the 2 -methyl protons and the ${ }^{31} \mathrm{P}$ nucleus. The 2 -vinylic proton resonates as a double doublet ($J=13.6$ and 1.6 Hz), indicative of coupling to the 3 -vinylic proton and the allylic 4 methylene protons. In addition to coupling to the 2 -vinylic proton, the 3 -vinylic proton also exhibits coupling to the 4 -methylene proton as well as long range coupling to the ${ }^{31} \mathrm{p}$ nucleus.

Figure 36. COSY spectrum of compound $\mathbf{2 8 5 c}$ in CDCl_{3}.

The assignment of the carbon signals for compound $\mathbf{2 8 5} \mathrm{g}$ was achieved by analysis of the HSQC spectrum (Figure 37). The 1'- methylene and 2'-methyl carbon signals corresponding to the phosphonate ethyl ester groups resonate at 63.6 ppm and 16.1 ppm , respectively. Both of these signals are split into doublets, with coupling constants of 6.7 and 5.8 Hz , due to coupling with the ${ }^{31} \mathrm{P}$ nucleus. The 4 -methylene carbon signal at 35.4 ppm also appears as a doublet due to coupling with the adjacent ${ }^{31} \mathrm{P}$ nucleus, but with a much larger coupling constant of 143.9 Hz , while the $1^{\prime \prime}$ '-methylene carbon signal resonates as a singlet at 43.5 ppm . The 2 - and 3 -vinylic carbon signals appear at 124.8 ppm and 138.3 ppm , respectively. The aromatic carbon signals are assigned as follows:- the signal at 127.5 ppm correlates to

C-5"; the signal at 127.8 ppm to $\mathrm{C}-3^{\prime \prime}$ and $\mathrm{C}-7^{\prime \prime}$; C-4" and C-6" correspond to the signal at 128.7 ppm and the signal at 140.3 ppm to the C-2" quaternary carbon.

Figure $\mathbf{3 7}$. HSQC spectrum of compound $\mathbf{2 8 5} \mathrm{g}$ in CDCl_{3}.

With the novel amido-phosphonate esters 285a-g successfully prepared, attention could be given to the final synthetic step required to furnish the targeted dihydroxy-amido phosphonate esters 292. This involved dihydroxylation of the alkene double bond. The hydroxyl groups were expected to hydrogen-bond with DXR active-site residues, such as Glu 152, Asn 227, Lys 228 and Glu $231 .{ }^{105}$ Various methods can be used to accomplish dihydroxylation of alkenes. These include:- i) oxidation with KMnO_{4} in an alkaline solution, in the presence of a phase transfer catalyst ii) osmium tetraoxide-mediated asymmetric dihydroxylation using a stoichiometric quantity of oxidant such as tert-butylhydroperoxide, $\mathrm{H}_{2} \mathrm{O}_{2}$ or N -methylmorpholine- N -oxide; and iii) the Prevost-Woodward reaction using iodine in the presence of an equivalent of silver acetate or silver benzoate. ${ }^{167-169}$ Under anhydrous conditions (Prevost conditions), a vicinal diol with anti stereochemistry is formed, while in the presence of water (Woodward conditions), the syn-diol product is obtained. ${ }^{169}$ However, over-oxidation of alkenes has been reported when using KMnO_{4}, while the toxicity and high cost associated with OsO_{4} and, the cost of the expensive silver salts, limit the use of these reagents. In addition, these reactions depend on the nucleophilicity of the π -electron-rich alkene double bond whereas in our analogues 285a-g, the double bond is deactivated towards electrophilic attack as a result of conjugation with the carbonyl group. Consequently, a different dihydroxylation approach was considered.

Plietker et al. have recently developed a $\mathrm{RuCl} /{ }_{3} / \mathrm{CeCl}_{3} / \mathrm{NaIO}_{4}$ catalyst system for the dihydroxylation of deactivated alkenes, furnishing racemic syn-diol products in excellent yields. ${ }^{170-171}$ This ruthenium-based catalytic system has also been successfully used in our group to synthesise dihydroxy coumarin derivatives as intermediates in the construction of potential HIV protease inhibitors. ${ }^{162}$ Dihydroxylation of the phosphonated ester 284 (as a model substrate) using this catalytic system afforded the phosphonate diol $\mathbf{3 1 3}$ (Scheme 35), the structure of which was confirmed by NMR spectroscopy and elemental analysis. The mechanism of the reaction involves [3+2]-cycloaddition of ruthenium tetraoxide $\mathbf{3 1 4}$ (generated in situ from ruthenium trichloride) to the double bond in compound $\mathbf{2 8 4}$ to form the ruthenium(VI)-complex 315, which is oxidised to the ruthenate ester 316. ${ }^{171}$ Subsequent protonation of the cyclic ruthenate ester $\mathbf{3 1 6}$ under acidic conditions leads to the highly electrophilic ruthenate complex 317, which undergoes nucleophilic addition of water at the metal centre and cleavage of the ruthenium-oxygen bond, furnishing the desired syn-diol

313 and re-generation of the catalyst (Scheme 36). The acid-accelerated nucleophilic addition via protonation resembles the acid-catalysed hydrolysis of carboxylate esters. ${ }^{172}$

Scheme 35. Dihydroxylation of phosphonate ester 284 using the ruthenium-based catalyst system.
Reagents and conditions: i) RuCl_{3} ($0.25 \mathrm{~mol} \%$), NaIO_{4} (1.5 eq.), CeCl_{3} ($10 \mathrm{~mol} \%$), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3: 3: 1), 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$.

Scheme 36. Mechanism for the dihydroxylation of compound 284 using the rutheniumbased catalyst system.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 38) of compound 313 reveals the 1'-methylene and 2'-methyl proton signals of the phosphonate ethyl ester group overlapping with the signals for the ethoxy group at ca. 4.11 ppm and 1.28 ppm , respectively. The spectrum also confirmed the absence of the vinylic proton signals which had previously appeared between 6 and 7 ppm , supporting dihydroxylation of the double bond. The signals for the 2 - and 3 -methine protons appear at 4.35 and 4.33 ppm , respectively, while the pair of multiplets at 2.10 ppm and 2.3
ppm correspond to the diastereotopic methylene protons. The splitting pattern of these methylene protons reflects coupling to the adjacent ${ }^{31} \mathrm{P}$ and $3-\mathrm{H}$ nuclei, as well as to each other.

While the overlap of signals in the ${ }^{1} \mathrm{H}$ NMR spectrum may preclude unambiguous characterisation of the product, the well resolved ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 39) clearly supports identification of the product as the dihydroxy derivative 313. Thus, the 1'methylene and 2'-methyl carbon signals corresponding to the phosphonate ethyl ester group resonate as doublets, due to coupling with the ${ }^{31} \mathrm{P}$ nucleus, at 62.0 and 16.3 ppm , respectively. The signals at 14.0 ppm and 61.8 ppm correspond to the 1 "-methylene and 2^{2} methyl carbons of the ethoxy group; the 4-methylene carbon resonates as a doublet ($J=$ 139.1 Hz) at 29.2 ppm , while the 3 - and 2-methine carbon signals appear at 67.7 ppm and 73.6 ppm , respectively. The C-1 carbonyl signal appears at 172.7 ppm .

Figure 38. $400 \mathrm{MHZ}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 1 3}$ in CDCl_{3}.

Figure $39.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of compound 313 in CDCl_{3}.

Given the successful dihydroxylation of the phosphonated ester 284, using the rutheniumbased catalyst, the amide analogues 285a-g were treated similarly to generate the dihydroxy-amido phosphonate esters 292a-g in reasonable yields (47\% - 53\%, Scheme 47). These compounds were fully characterised by NMR spectroscopy, elemental analysis and IR spectroscopy; the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are illustrated in Figures 40 and 41.

Scheme 47. Synthesis of dihydroxy-amido phosphonate esters 292a-g using rutheniumbased catalyst system.

Reagents and conditions: i) RuCl_{3} ($0.25 \mathrm{~mol} \%$), NaIO_{4} (1.5 eq.), CeCl_{3} (10 mol \%), $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(3 / 3 / 1), 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 40) of compound 292a shows the 2'-methyl and 1'-methylene proton signals corresponding to the phosphonate ethyl ester group resonating at 1.20 ppm and 4.03 ppm , respectively. The 1'-methylene signal is split into a multiplet due to coupling to $2^{\prime}-$ methyl protons and the ${ }^{31} \mathrm{P}$ nucleus. The signals corresponding to the diastereotopic 4methylene protons resonate as a pair of multiplets as a result of geminal coupling to each other, as well as vicinal coupling to the 3 -methine proton and coupling to the ${ }^{31} \mathrm{P}$ nucleus. The 3-methine proton signal is observed as a quartet $(J=7.2 \mathrm{~Hz})$ at 3.46 ppm , while the 2 methine proton resonates as a doublet ($J=7.6 \mathrm{~Hz}$) at 4.21 ppm , respectively. The signal corresponding to the $1^{\prime \prime}$-methyl group is observed as a singlet at 2.70 ppm , while the signals for the hydroxyl and amide protons appear at 2.30 ppm and 10.29 ppm , respectively. IR spectroscopic analysis showed the hydroxyl group absorption band at $3241 \mathrm{~cm}^{-1}$ and amide carbonyl group absorption band at $1675 \mathrm{~cm}^{-1}$.

Figure $40.400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 292a in CDCl_{3}.

In the ${ }^{13} \mathrm{C}$ spectrum of compound 392a (Figure 41), the 1'-methylene and 2'-methyl signals corresponding to the phosphonate ethyl ester group resonate as doublets, due to coupling
to the adjacent ${ }^{31} \mathrm{P}$ nucleus, at 61.4 ppm and 16.3 ppm , respectively. The 4 -methylene signal appears as a doublet ($J=141.2 \mathrm{~Hz}$) at 29.2 ppm , while the 3 - and 2-methine signals resonate at $58.7 \mathrm{ppm}(J=10.9 \mathrm{~Hz})$ and $80.0(J=13.2 \mathrm{~Hz}) \mathrm{ppm}$, respectively. The signal at 168.6 ppm corresponds to the carbonyl carbon.

Figure 41. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 9 2}$ a in CDCl_{3}.

The dihydroxy-amido phosphonate esters 292a-g were expected to be sufficiently lipophilic to facilitate absorption across phospholipid membranes, and thus serve as ester pro-drug analogues of DOXP 230 and fosmidomycin 236, being hydrolysed in vivo by plasma esterases. ${ }^{117-118,173}$ Consequently, we considered it necessary to prepare the corresponding phosphonic acid derivatives 293a-g as substrates for in vitro enzyme-binding and -inhibition assays. An established method for the cleavage of the ethoxy groups of phosphonate esters involves the use of trimethylsilyl bromide (TMSBr) at room temperature in dichloromethane, followed by hydrolysis. ${ }^{174}$ This methodology has been successfully used in our group and a thorough kinetic study of the reaction has been reported. ${ }^{129,142}$ Natarajan et al. have reported the microwave-assisted modification involving reaction of phosphonate esters in acetonitrile to obtain the corresponding phosphonic acids in excellent yields
(95\%). ${ }^{175}$ This modification ${ }^{175}$ was therefore used and the phosphonate esters 292a-g were treated with two equivalents of TMSBr in acetonitrile for ten minutes under microwave irradiation, followed by hydrolysis (Scheme 38), to furnish the dihydroxy-amido phosphonic acids 293a-g in good yields (> 62\%). The phosphonic acids 293a-g, which are all new compounds, were fully characterised by spectroscopic (NMR and IR) and elemental analysis.

Scheme 38. Hydrolysis of dihydroxy-amido phosphonate esters 292a-g using TMSBr. Reagents and conditions: i) $\mathrm{TMSBr}, \mathrm{CH}_{3} \mathrm{CN}, 100{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$ ii) $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(95: 5 \mathrm{v} / \mathrm{v})$, stir for 30 min, r.t.

The reaction involved the consecutive trans-esterification of each of the phosphonate ester groups of 292a-g leading to the formation of the bis(trimethylsilyl) esters 318a-g, which were hydrolysed readily to the phosphonic acids 293a-g upon treatment with aqueous methanol (Scheme 39).

	R
a	Me
b	Et
c	Pr
d	Pr
e	But
f	Ph
g	CH
Ch	

Scheme 39. Step-wise cleavage of phosphonate ethyl esters 292a-g with TMSBr.

Comparison of the ${ }^{1}$ H NMR spectra of the phosphonate ester $\mathbf{2 9 2 d}$ and the phosphonic acid 293d (Figure 42) clearly shows the disappearance of the signals corresponding to the 2'-
methyl and 1'-methylene phosphonate ethyl ester groups at 1.31 ppm and 4.10 ppm , respectively, and the emergence of a broad signal at 10.14 ppm corresponding to the phosphonic acid protons. Assignment of the hydroxyl signals in compound 293d was assisted by analysis of the HMBC spectrum, which indicated correlation between the hydroxyl proton attached to C-2 and the C-1 carbonyl carbon signal. The IR spectrum reveals a broad hydroxyl group absorption band at ca. $3304 \mathrm{~cm}^{-1}$. The assignment of all the protons in compound 293d is illustrated in Figure 42 (bottom spectrum). In Figure 43, comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{2 9 2 b}$ and $\mathbf{2 9 3 b}$ also indicate the successful cleavage of the phosphonate ethyl ester moeity in 292b (top spectrum), as the signals corresponding to the ethyl groups, resonating at 16.1 ppm and 63.6 ppm , are absent in the spectrum of compound 293b (bottom spectrum).

Figure 42. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of phosphonate ester 292d (top) and corresponding phosphonic acid 293d (bottom) in CDCl_{3}, showing the disappearance of the phosphonate ethyl ester signals (circled) upon hydrolysis.

Figure 43. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of phosphonate ester 292b (top) and corresponding phosphonic acid 293b (bottom) in CDCl_{3}, showing the disappearance of the phosphonate ethyl ester signals (circled) upon hydrolysis.

Thus, following the set-backs encountered with Approaches 1 and 2 (Scheme 24), the desired DOXP and fosmidomycin analogues 293a-g were finally accessed via Approach 3 (Scheme 24) as outlined in Scheme 40; with the yields for the selected steps summarised in Table 4. A selection of the prepared dihydroxy-amido phosphonate esters 292a-g and corresponding phosphonic acids 293a-g were subjected to STD-NMR enzyme binding studies (Section 2.5), using EcDXR.

Scheme 40. Access to DOXP and fosmidomycin analogues 293a-g via Approach 3.

Table 4. Yields (\%) for selected steps in the preparation of the DOXP and fosmidomycin analogues 293a-g (Scheme 43).

	R						
a	Me	285a	54	292a	67	293a	80
b	Et	285b	48	292b	69	293b	77
c	Pr	285c	71	292c	67	293c	72
d	pri	285d	62	292d	71	293d	78
e	But	285e	65	292e	66	293e	73
f	Ph	$285 f$	59	292f	62	293f	62
g	$\mathrm{CH}_{2} \mathrm{Ph}$	285g	73	292g	67	293g	74

2.2. Synthesis of 3 -substituted aniline-derived phosphonate esters and phosphonic acids

As mentioned previously (section 1.8, p. 51), the anilide 277 was serendipitously discovered to exhibit binding interactions with EcDXR in STD protein experiments, and shown to possess low-level inhibitory activity towards EcDXR. Consequently, we have sought to prepare several series of analogues of compound 277, with emphasis on the: - i) introduction of various meta-substituents on the benzene ring and; ii) alteration of the number of methylene groups between the amide functionality and the phosphonate group. The synthetic routes to the series of 3 -substituted aniline-derived phosphonate esters (321a-g, 323a-g, 325a-g and 327a-g) are outlined in Scheme 41. With regard to DXR structure-activity studies, the amide moiety was expected to serve as a metal-chelating group in the DXR active site and the phosphonate moiety to occupy its appropriate binding pocket. Moreover, the benzene ring should provide a degree of hydrophobicity and the anilide system a measure of conformational rigidity. The distance between the essential amide and phosphonate groups was varied, to establish the effects on DXR active-site binding and in vitro inhibitory activity.

Scheme 41. Synthetic routes towards 3-substituted aniline-derived phosphonate esters.

2.2.1. Preparation of the chloroacetyl chloride-derived anilides 321a-g.

2.2.1.1. Reaction of 3-substituted anilines with chloroacetyl chloride.

The 3-substituted anilines 319a-g were deprotonated with sodium hydride in THF, and then treated with chloroacetyl chloride (Scheme 42) to furnish the chloroacetamides 320a-g in good yields ($62 \%-92 \%$). The nucleophilicity of the primary amines 319a-g is enhanced by deprotonation, and attack at the more electrophilic carbonyl carbon in chloroacetyl chloride leads to preferential nucleophilic acyl substitution.

Scheme 42. Formation of chloroacetamides 320a-g.

The structures of all of the chloroacetamides 320a-g were confirmed by NMR and IR spectroscopic analysis. The ${ }^{1} \mathrm{H}$ NMR spectra all exhibit the presence of the characteristic chloromethylene singlet at $c a .4 .3$ ppm, as shown in Figure 44 for compound 320f. Figures 45 and 46 show the DEPT 135 and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 2 0 f}$, respectively. Analysis of the DEPT 135 spectrum (Figure 45) clearly showed the chloromethylene signal at 43.4 ppm and allowed for the identification of the CH signals of the benzene ring and, identification of the carbonyl and quaternary carbon signals in the ${ }^{13} \mathrm{C}$ spectrum (Figure 46). The assignment of the benzene ring proton signals was assisted by analysis of the COSY spectrum, shown in Figure 47. The aromatic proton signals were assigned following the identification of the $2^{\prime}-\mathrm{H}$ singlet at 8.60 ppm and $5^{\prime}-\mathrm{H}$ triplet $(J=7.2 \mathrm{~Hz})$ at 7.62 ppm ; the $4^{\prime}-$ and $6^{\prime}-\mathrm{H}$ protons both resonate at 7.95 ppm and couple with the $5^{\prime}-\mathrm{H}$ proton. Analysis of the HSQC and HMBC spectra confirmed the assignment of the aromatic proton and carbon signals.

Figure 44. $400 \mathrm{MHZ}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 0 f}$ in DMSO- d_{6}.

Figure 45. DEPT 135 NMR spectrum of compound $\mathbf{3 2 0 f}$ in DMSO- d_{6}.

Figure 46. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 0 f}$ in DMSO- d_{6}.

Figure 47. COSY NMR spectrum of compound $320 f$ in DMSO- d_{6}.

In addition to isolating compound $\mathbf{3 2 0}$ g, the N, O-bis-chloroacetylated product $\mathbf{3 2 0}$ h was also obtained in 11 \% yield when 3 -aminobenzyl alcohol $\mathbf{3 1 9 g}$ was reacted with sodium hydride and chloroacetyl chloride. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the bis-chloroacetylated product 320h (Figure 48), the $2^{\prime \prime}$ - and 4 '-chloromethylene protons resonate as a singlet at 4.19 ppm , while the 1'-methylene proton signal of the ester group appears at 4.32 ppm . The broad signal at 8.23 ppm corresponds to the amide proton. IR spectroscopic analysis revealed the presence of the amide carbonyl absorption band at $1673 \mathrm{~cm}^{-1}$ and the ester carbonyl absorption band at $1738 \mathrm{~cm}^{-1}$.

Figure 48. $400 \mathrm{MHZ}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 0}$ in CDCl_{3}.

* mineral oil impurities from the storage of NaH .

2.2.1.2. Phosphonation of chloroacetamides via Michaelis-Arbuzov reaction.

Given the success in obtaining the chloroacetamides 320a-g, the next step involved the introduction of the phosphonate ester group via the Michaelis-Arbuzov reaction. ${ }^{146}$ Thus, the chloroacetamides 320a-g were treated with triethyl phosphite under reflux for ca. 9 hours under inert atmosphere, to furnish the phosphonate esters 321a-g in reasonable yields ($48 \%-72 \%$). Compounds 321b-g are all new and were fully characterised by NMR spectroscopy and high-resolution mass spectrometry. Figure 49 shows the ${ }^{1} \mathrm{H}$ NMR
spectrum of compound $\mathbf{3 2 1 b}$. The triplet at 1.34 ppm and the quintet at 4.17 ppm are characteristic of the phosphonate ethyl ester moiety, and hence, were observed for all of the phosphonate esters synthesised in the series. In addition, the disappearance of the chloromethylene singlet at 4.20 ppm and the emergence of the characteristic phosphonate 2'-methylene proton signal at 2.97 ppm , resonating as a doublet with large coupling constant ($J=20.8 \mathrm{~Hz}$) due to ${ }^{31} \mathrm{P}$ nucleus coupling, clearly indicated the formation of the desired product. The singlet at 3.78 ppm corresponds to the methoxy methyl protons, while the amide proton resonates at 8.85 ppm .

Figure 49. $400 \mathrm{MHZ}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 1}$ b in CDCl_{3}.
In the ${ }^{1} \mathrm{H}$ NMR spectrum for compound 321d (Figure 50), the characteristic triplet and quintet signals corresponding to the phosphonate ethyl ester moiety are clearly seen at 1.35 ppm and 4.18 ppm ; the 2 '-methylene proton resonates at 2.99 ppm , with a large coupling constant of 20.8 Hz .

Figure 50. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 1 d}$ in CDCl_{3}.

The complex coupling observed in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of the 3 fluoro analogue 321d (Figure 50) between 6.60 ppm and 7.80 ppm is reproduced in Figure 51 and is worthy of further discussion. The $4-\mathrm{H}$ nucleus resonates at 6.74 ppm as a triplet of doublets due to coupling to the ${ }^{19} \mathrm{~F}$ nucleus ($J=2.0 \mathrm{~Hz}$), in addition to coupling to both the 5$\mathrm{H}(J=6.0 \mathrm{~Hz})$ and $2-\mathrm{H}(J=2.4 \mathrm{~Hz})$ nuclei. The doublet at 7.09 ppm corresponds to $6-\mathrm{H}$, which couples to $5-\mathrm{H}(J=6.4 \mathrm{~Hz}$), while the $5-\mathrm{H}$ nucleus resonates at 7.16 ppm as a triplet of doublets, as a result of coupling to the $4-$ and $6-\mathrm{H}(J=6.4 \mathrm{~Hz})$ and the ${ }^{19}$ F nucleus ($J=1.6 \mathrm{~Hz}$). Analysis of the COSY and HSQC data supported these assignments.

Figure 51. Expanded region of the $400 \mathrm{MHz}^{1} \mathrm{H} N M R$ spectrum of compound $\mathbf{3 2 1 d}$ in CDCl_{3}.

2.2.1.3. Hydrolysis of methyl phosphonate esters using TMSBr.

The next step involved the preparation of the phosphonic acid derivatives 328a-g and the corresponding sodium phosphonate salts 329a-g for the in vitro enzyme inhibition assays, since the phosphonate esters 321a-g are expected to be hydrolysed in vivo. The cleavage of the phosphonate ethyl ester group was accomplished, as described previously, using TMSBr in acetonitrile under microwave irradiation, ${ }^{175}$ followed by hydrolysis at room temperature (Scheme 43). The phosphonic acids 328a-g were isolated in reasonable yields ($42 \%-67 \%$) and subsequently converted, quantitatively, to their corresponding sodium phosphonate salts 329a-g through treatment with 0.1 M aqueous sodium hydroxide. All the products prepared in these reactions are new and were fully characterised by elemental and spectroscopic analysis.

Scheme 43. Synthesis of phosphonic acid derivatives 328a-g and corresponding monosodium salts 329a-g.
Reagents and conditions: i) TMSBr, $\mathrm{CH}_{3} \mathrm{CN}$, microwave irradiation, $100^{\circ} \mathrm{C}, 10 \mathrm{~min}$ ii) MeOH $\mathrm{H}_{2} \mathrm{O}(95: 5 \mathrm{v} / \mathrm{v}), 30 \mathrm{~min}$, r.t. iii) $1.1 \mathrm{~mol} \mathrm{NaOH}, \mathrm{EtOH}, 30 \mathrm{~min}$, r.t.

Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the phosphonate ester $\mathbf{3 2 1 f}$ and the phosphonic acid $328 f$ (Figure 52) clearly shows the disappearance of the phosphonate ethyl ester signals following hydrolysis. As expected, the corresponding signals are also absent in the ${ }^{13} \mathrm{C}$ spectrum of the phosphonic acid. A selection of the synthesised 3 -substituted aniline phosphonate esters 321a-g, phosphonic acids 328a-g and corresponding monosodium salts 329a-g were subjected to EcDXR-STD NMR binding studies and inhibition assays (Section 2.5).

Figure 52. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of phosphonate ester 321 f (top) and phosphonic acid $328 f$ (bottom) in DMSO- d_{6}, showing the disappearance of phosphonate ethyl ester signals (circled) upon hydrolysis.

2.2.2. Preparation of the ω-chloropropionyl chloride-derived anilides 322-327a-g.

An increase in inhibitory activity has been observed for several fosmidomycin analogues in which the distance between the phosphonate and hydroxamate moieties has been increased. ${ }^{117,131}$ Consequently, attention was given to introducing additional methylene groups between the two essential functional groups by reacting the various 3 -substituted anilines 319a-g with 3-chloropropionyl chloride 330, 4-chlorobutanoyl chloride 330a and 5chloropentanoyl chloride 332, in place of chloroacetyl chloride which was successfully used to prepare compounds 321a-g (scheme 41). The ω-chloroamide derivatives 322a-g, 324a-g and 326a-g were isolated in good yields upon the deprotonation of the appropriate 3substituted aniline substrates 319a-g with sodium hydride, followed by reaction with the ω chloroalkanoyl chlorides 330-330b. The corresponding phosphonate esters 323a-g, 325a-g and 327a-g were obtained in reasonable yields ranging from 48% to 74% using MichaelisArbuzov's reaction. ${ }^{146}$ Microwave-assisted reaction of the phosphonate esters with TMSBr , ${ }^{175}$ followed by hydrolysis, furnished the corresponding phosphonic acid derivatives 331a-g, 333a-g and 335a-g, which were subsequently treated with 0.1 M aqueous sodium hydroxide to furnish the sodium phosphonic acid salts 332a-g, 334a-g and 336a-g (Scheme 44).

Scheme 44. Preparation of extended chain aniline-derived phosphonate esters and acids. Reagents and conditions: i) $\mathrm{NaH}, \mathrm{THF}, 6 \mathrm{~h}, \mathrm{~N}_{2}$ ii) triethyl phosphite, $9 \mathrm{~h}, \mathrm{~N}_{2}$ iii) $\mathrm{TMSBr}, \mathrm{CH}_{3} \mathrm{CN}$, $100^{\circ} \mathrm{C}, 10 \mathrm{~min}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(95: 5 \mathrm{v} / \mathrm{v}), 30 \mathrm{~min}$, r.t., iv) $1.1 \mathrm{~mol} \mathrm{NaOH}, \mathrm{EtOH}, 30 \mathrm{~min}$, r.t.

All of the compounds prepared as outlined in Scheme 44 were fully characterised. Their ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ and DEPT 135 NMR spectra all illustrate the effects of increasing the number of methylene groups. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the ω-chloro- N-alkylanilides 322b, $\mathbf{3 2 4 b}$ and 326b (Figure 53), for example, clearly show the presence of a pair of triplet ($J=6.4$ Hz) signals at 2.78 and 3.85 ppm integrating for two protons each, and thus, corresponding to the 3 - and 2-methylene groups of compound $\mathbf{3 2 2}$ b. The presence of a quintet at 2.17 ppm and a pair of triplets at 2.53 ppm and 3.63 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 324b confirmed the presence of the propylene linking group. The 3-methylene group couples to both the 2- and 4-methylene groups and thus resonates as a quintet ($J=6.8 \mathrm{~Hz}$) signal at 2.17 ppm , while the triplets $(J=6.8$ and 6.4 Hz$)$ at 2.53 ppm and 3.63 ppm correspond to the 2-and 4-methylene groups, respectively. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 326b show a series of methylene signals integrating for eight protons, confirming the butylene linkage group between the phosphonate and amide functional moieties. The 3- and 4-methylene protons correspond to the triplet ($J=3.6 \mathrm{~Hz}$) signal at 1.78 ppm, while the pair of triplets ($J=6.8$ and 6.4 Hz) resonating at 2.29 ppm and 3.49 ppm represent the 2-and 5-methylene groups, respectively.

The singlet at ca. 3.80 ppm in each of the ${ }^{1} \mathrm{H}$ NMR spectra (Figure 53) of the products 322b, 324b and 326b corresponds to the methoxy methyl protons. The signals resonating between 6.60 ppm and 7.28 ppm integrate for four protons and correspond to the aromatic protons and, were assigned as follows; the $4^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$ nuclei resonate at ca .6 .62 ppm and 6.96 ppm as doublets ($J=8.4$ and 8.0 Hz), while at the $5^{\prime}-\mathrm{H}$ nucleus resonates at $c a .7 .16 \mathrm{ppm}$ as a triplet ($J=8.4 \mathrm{~Hz}$) as a result of coupling to the 4^{\prime}-and $6^{\prime}-\mathrm{H}$ nuclei. In the ${ }^{1} \mathrm{H}$ NMR spectra for compound 322b and 324b (Figure 53), the amide proton resonates at ca. 7.50 ppm , whereas the same proton signal is observed at 8.12 ppm for compound $\mathbf{3 2 6 b}$.

Figure 53. Comparative $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of compounds 322b, 324b and 326b in CDCl_{3}, illustrating the increase in the number of methylene groups. *mineral oil impurities.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signal assignments are supported by 2-D NMR data as illustrated for the set of spectra for the phosphonate ester 323b, shown in Figures 54-59. ${ }^{1} \mathrm{H}$ NMR analysis (Figure 54) of the phosphonate ester 323b showed the characteristic triplet and multiplet signals corresponding to the phosphonate ethyl ester moiety resonating at 1.31 and 4.10 ppm . The singlet at 3.78 ppm corresponds to the methoxy methyl protons while the amide proton resonates at 8.87 ppm . The complex splitting patterns seen for the 3 - and 2methylene signals resonating at 2.17 and 2.70 ppm , respectively, is as a result of coupling to each other and to the ${ }^{31} \mathrm{P}$ nucleus. Coupling between the 2 - and 3 -methylene protons and coupling of the phosphonate ethyl ester signals is clearly evident in the COSY spectrum (Figure 55). Comparison of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants and analysis of the COSY spectrum allowed for the assignment of the aromatic proton signals.

The DEPT 135 spectrum (Figure 56) clearly showed the signals of the 2 -and 3 -methylene nuclei resonating at 20.7 and 29.9 ppm and allowed for the identification of the quaternary aromatic carbon signals in the ${ }^{13} \mathrm{C}$ spectrum (Figure 57). The splitting ($J=142.5 \mathrm{~Hz}$) of the signal at 20.7 ppm in the ${ }^{13} \mathrm{C}$ spectrum permitted assignment of this signal to the 3methylene carbon adjacent to the ${ }^{31} \mathrm{P}$ nucleus, while the doublet ($\mathrm{J}=3.3 \mathrm{~Hz}$) at 29.9 ppm corresponds to the 2-methylene carbon. The 1'-methylene and 2'-methyl signals corresponding to the phosphonate ethyl ester group resonate as doublets, due to coupling to the adjacent ${ }^{31} \mathrm{P}$ nucleus, at 62.8 and 16.4 ppm , respectively. Analysis of the HSQC spectrum (Figure 58) confirmed the assignment of the aromatic carbon and protons signals and the methoxy carbon signal at 55.2 ppm . The HMBC spectrum (Figure 59) shows correlation of the C-2 carbon signal to the 3 -methylene protons and, likewise, the C-3 carbon signal to the 2-methylene protons. Analysis of the HMBC spectrum confirmed the assignment of the aromatic proton and carbon signals and allowed assignment of the carbonyl carbon signal due to correlation with the 2-and 3-methylene protons.

Figure 54. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 3} \mathbf{b}$ in CDCl_{3}.

Figure 55. COSY NMR spectrum of compound 323 in CDCl_{3}.

Figure 56. DEPT 135 NMR spectrum of compound $\mathbf{3 2 3}$ b in CDCl_{3}.

Figure $57.100 \mathrm{MHz}^{\mathrm{pm}} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 3}$ b in CDCl_{3}.

Figure 58. HSQC NMR spectrum of compound 323b in CDCl_{3}.

Figure 59. HMBC NMR spectrum of compound $\mathbf{3 2 3}$ b in CDCl_{3}.

Tables 5 and 6 summarise the percentage yields of the desired 3 -substituted aniline-derived phosphonate esters 321a-g, 323a-g, 325a-g and 327a-g, and the corresponding phosphonic acid derivatives 328a-g, 331a-g, 333a-g and 335a-g, respectively. A selection of the prepared aniline-derived phosphonate esters and corresponding phosphonic acids were subjected to STD NMR enzyme binding studies and inhibition assays (Section 2.5), using EcDXR.

Table 5. Yields (\%) of phosphonate esters obtained from Michaelis-Arbuzov's reactions of ω -chloro- N-alkylanilides (Scheme 44).

	R								
a	OH	321a	66	323a	58	325a	65	327a	55
b	OMe	321b	65	323b	62	325b	66	327b	58
c	Br	321c	62	323c	53	325c	63	327c	60
d	F	321d	56	323d	48	325d	54	327d	57
e	CN	321e	48	323 e	61	325e	61	327e	63
f	NO_{2}	321f	72	$323 f$	67	$325 f$	74	327f	66
g	$\mathrm{CH}_{2} \mathrm{OH}$	321g	65	323 g	61	325g	66	327g	55

Table 6. Yields (\%) of phosphonic acids obtained from hydrolysis of phosphonate esters (Scheme 44).

	R								
a	OH	328a	63	331a	61	333a	63	335a	67
b	OMe	328b	62	331b	66	333b	61	335b	60
c	Br	328c	42	331c	58	333c	55	335 c	60
d	F	328d	57	331d	68	333d	57	335d	63
e	CN	328 e	59	331e	60	333 e	61	335e	59
f	NO_{2}	328f	67	331f	71	333 f	66	$335 f$	69
g	$\mathrm{CH}_{2} \mathrm{OH}$	328 g	48	331g	67	333g	60	335g	57

2.3. Synthesis of furan-derived phosphate analogues as conformationally restricted DOXP analogues

Much of the synthetic work towards the design of structural analogues of the natural substrate DOXP 230 as potential inhibitors of DXR has focused on:- i) removal of one of the hydroxyl groups at either the C-3 or C-4 position; ii) alteration of the length of the carbon spacer and; ii) modification of the phosphate moiety. ${ }^{123-126}$ In addition, the construction of analogues of the antibiotic fosmidomycin $\mathbf{2 3 6}$ has involved modification of either the phosphonate or hydroxamate functional group, respectively. ${ }^{117-121,130-133}$ Interestingly, very few studies have reported DOXP $\mathbf{2 3 0}$ or fosmidomycin $\mathbf{2 3 6}$ analogues in which the three carbon spacer has been structurally modified. Van Calenbergh et al. ${ }^{125}$ have reported novel cyclopropyl analogues of fosmidomycin with restricted conformational mobility, by incorporating the $\mathrm{C}-1$ and $\mathrm{C}-2$ carbon atoms of the spacer in a three-membered ring. The inhibitory activity towards ECDXR and in vitro growth inhibitory activity for P. falciparum of one such analogue 259, was reported to be equally as potent as fosmidomycin 236. ${ }^{125}$ Analogues of the natural substrate DOXP $\mathbf{2 3 0}$ in which conformational mobility is restricted are yet to be reported. Consequently, we envisioned the design of the furan derivatives 337b-d which contain phosphate and oxime moieties as confomationally restricted isosteres of the natural substrate DOXP 230 (Figure 60). In an earlier study in our group, ${ }^{176}$ the capacity of the furan derivatives 337b-d to adopt similar stable conformations to DOXP $\mathbf{2 3 0}$ was demonstrated, but synthetic access (Scheme 45) to these compounds could not be completed. The oxygen atom of the furan ring and oxime hydroxyl group of these novel analogues 337 b -d was expected to chelate to the divalent metal cation, thus anchoring the molecules in the active site of DXR.

fosmidomycin 236

DOXP 230

Figure 60. Design of conformationally-restricted fosmidomycin analogue 259 and novel DOXP analogues 337b-d.

Scheme 45. Synthetic route towards conformationally-restricted DOXP analogues 337b-d.

2.3.1. Protection of 3 -furanmethanol via tritylation.

Functionalization of the readily available 3-furanmethanol $\mathbf{3 3 8}$ required initial protection of the hydroxyl group. This was achieved by treatment with triphenyl methyl chloride $\mathbf{3 4 2}$ in the presence of excess triethylamine and a catalytic amount of 4-dimethylaminopyridine (DMAP), ${ }^{176}$ to obtain the trityl-protected furan 339 in 72% yield (Scheme 46). Under the reaction conditions, the hydroxyl proton of 3-furanmethanol 338 is abstracted by the base to yield the deprotonated intermediate. Subsequent nucleophilic attack of the central carbon of the trityl halide $\mathbf{3 4 2}$ by the intermediate furnishes the desired trityl-protected furan 339, while the hydrogen chloride generated is neutralised by unreacted base. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 61) shows a singlet at 4.06 ppm corresponding to the 1'-methylene group, while the singlet at 6.42 ppm correlates to the $2-\mathrm{H}$ nucleus. The multiplets between 7.26 and 7.53 ppm integrate for seventeen protons corresponding to the fifteen trityl group protons and the 4 - and $5-\mathrm{H}$ protons on the furan ring.

Scheme 46. Protection of 3-furanmethanol via tritylation.
Reagents and conditions: i) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{THF}, 80^{\circ} \mathrm{C}, 15 \mathrm{~h}, \mathrm{~N}_{2}$.

Figure 61.400 MHz 1H NMR spectrum of 3-(trityloxymethyl) furan 339 in CDCl_{3}.

2.3.2. Functionalization of the 5 -position of the furan ring.

The next step involved the functionalization of the furan ring by means of electrophilic substitution at C-5. The reactivity of the furan ring has been extensively studied and electrophilic substitution is known to occur exclusively at the α-positions (C-2 and C-5). ${ }^{177-178}$ We planned to introduce the formyl and acetyl groups at C-5 as the known inhibitor fosmidomycin $\mathbf{2 3 6}$ possesses a formyl group, whilst the natural substrate DOXP $\mathbf{2 3 0}$ and the more potent inhibitor FR900098 237 both contain an acetyl functional group. In addition, we hoped to exploit possible hydrophobic cavities beyond the metal-coordination site in the DXR-active site by introducing a tert-butylacetyl group. It is also possible that the carbonyl compounds 341b-d (precursors to the planned oximes 337b-d) might themselves act as DXR inhibitors.

Although the difference in reactivity between the 2-and 5 -positions of the furan ring is expected to be small, we hoped that the presence of the bulky trityl group might provide steric hindrance to reaction at $\mathrm{C}-2$ and thus direct substitution to $\mathrm{C}-5$. Hence, 3-
(trityloxymethyl)furan 339 was lithiated using butylithium at $-30{ }^{\circ} \mathrm{C}$ for four hours; subsequent treatment with electrophile, DMF, and stirring for a further four hours afforded a mixture shown by NMR analysis to contain the isomeric aldehydes 340a and 340b. The isomers were separated successfully using semi-preparative HPLC to obtain compound 340b as the major product, in only 12% yield (Scheme 47). In fact, this was the point at which the earlier synthetic attempt ${ }^{176}$ foundered. Due to the poor yield and lack of selectivity for the desired aldehyde 340b, a different method for the formylation of the 3(trityloxymethyl)furan 339 was explored.

Scheme 47. Formylation of 3-(trityloxymethyl)furan 339 via lithiation. Reagents and conditions: i) butyllithium, THF, $-30^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{~N}_{2}$ ii) DMF, $-30^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{r} . \mathrm{t}, 2^{\mathrm{h}}$.

The Vilsmeier-Haack reaction ${ }^{179-180}$ is widely used for the introduction of the formyl group in aromatic and heteroaromatic ring systems and was, therefore, considered. The Vilsmeier reagent was prepared from the reaction of phosphoryl chloride with DMF, and the protected furan $\mathbf{3 3 9}$ was formylated successfully to furnish the desired aldehyde 340b in 64% yield with the isomeric aldehyde 340a as the minor product (Scheme 48). The mechanism of the reaction is outlined in Scheme 49 and involves the reaction of POCl_{3} and DMF to form the chloromethyleneiminium species 344, which then reacts with the protected furan 339 in an electrophilic substitution process to produce the intermediate 345. Aromatisation to form the iminium intermediate 346 followed by base-catalysed hydrolysis leads to the desired aldehyde 340b.

Scheme 48. Synthesis of aldehydes 340a and 340b via Vilsmeier-Haack formylation. Reagents and Conditions: i) $\mathrm{POCl}_{3}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 65^{\circ} \mathrm{C}$ for $1 \mathrm{~h} \mathrm{ii)} \mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$.

Scheme 49. Vilsmeier-Haack mechanism for the formation of aldehyde 340b.

The structures of the isomeric aldehydes 340a and 340b were confirmed by NMR spectroscopic analysis. Figure 62 shows the comparative ${ }^{1} \mathrm{H}$ NMR spectra of aldehydes 340a and $\mathbf{3 4 0 b}$, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4 0 b}$ (top spectrum), the $5-\mathrm{H}$ signal is clearly seen at 6.74 ppm ; whereas in the ${ }^{1} \mathrm{H}$ NMR spectrum of aldehyde 340a (bottom spectrum), the $5-\mathrm{H}$ signal is not observed confirming successful formylation at this position. The signals resonating at 9.72 ppm (top spectrum) and 9.67 ppm (bottom spectrum) correspond to the aldehyde protons in compounds 340b and 340a, respectively. The 1'-methylene group signal resonates at 4.45 ppm for compound 340b, whereas this signal is seen at 4.14 ppm for aldehyde $\mathbf{3 4 0 a}$. Figure 63 illustrates the comparative ${ }^{13} \mathrm{C}$ NMR spectra of aldehydes 340a and 340b, with the signals assigned as indicated.

Figure 62. Comparative $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of aldehydes $\mathbf{3 4 0 b}$ (top spectrum) and 340a (bottom spectrum) in CDCl_{3}.

Figure 63. Comparative $400 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of aldehydes $\mathbf{3 4 0 b}$ (top spectrum) and 340a (bottom spectrum) in CDCl_{3}.

After the success of the Vilsmeier-Haack formylation, the introduction of the acetyl and tertbutylacetyl groups at C-5 of compound 339 was investigated. Friedel-Crafts acylation and alkylation reactions are well established methods used for electrophilic substitution in aromatic and heteroaromatic ring systems. ${ }^{181-182}$ We exploited the broad scope of the Friedel-Crafts method in our effort to introduce the acetyl and tert-butylacetyl groups at C-5 of the furan ring in compound 339. The reaction is usually carried out with aluminium trichloride $\left(\mathrm{AlCl}_{3}\right)$ as the Lewis acid catalyst, but AlCl_{3} has been reported to induce the polymerisation of furan derivatives ${ }^{183}$ and we decided to conduct the reactions with anhydrous tin tetrachloride $\left(\mathrm{SnCl}_{4}\right)$ and zinc chloride $\left(\mathrm{ZnCl}_{2}\right)$ as catalysts. ${ }^{184-185}$ Other catalysts that have been successfully used, but were not considered, include iodine, ${ }^{186}$ ferrous trichloride,,187 ortho-phosphoric acid ${ }^{188}$ and the metal triflates. ${ }^{189}$ For the acetylation of the furan derivative 339, acetic anhydride was preferred as the acylating agent as opposed to acetyl chloride since a weaker acid is liberated in the course of the reaction and it has been reported to give better reaction yields. ${ }^{190}$ The route to the furanyl ketones 340c and 340d is outlined in Scheme 50. Initially, acetic anhydride or tert-butylacetyl chloride was reacted with a catalytic quantity of SnCl_{4} in DCM and this mixture was treated with the protected furan 339. In another approach, a mixture of either acetic anhydride or tertbutylacetyl chloride and ZnCl_{2} in DCM, was treated with the protected furan 339. Subsequent aqueous work-up with $\mathrm{K}_{2} \mathrm{CO}_{3}$ of the reaction mixtures obtained using the two approaches furnished the desired ketones 340c and 340d. Table 7 summarises the reaction conditions and yields obtained for the ketones 340c and 340d using the different Lewis acid catalysts.

Scheme 50. Synthesis of furanyl ketones 340c and 340d using Friedel-Crafts methodology. Reagents and conditions: i) acetic anhydride or t-butylacetyl chloride, $\mathrm{SnCl}_{4}, 0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 40$ ${ }^{\circ} \mathrm{C}$ for $4 \mathrm{~h}, \mathrm{~N}_{2}$ ii) acetic anhydride or t-butylacetyl chloride, $\mathrm{ZnCl}_{2}, 0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 40^{\circ} \mathrm{C}$ for 8 h , N_{2}.

Table 7. Friedel-Crafts reaction of 3-(trityloxymethyl)furan 339 with acetic anhydride and tert-butylacetyl chloride in the presence of the Lewis acid catalysts, SnCl_{4} and ZnCl_{2}.

Product	Catalyst	Temperature $\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$	Time (h) ${ }^{\text {a }}$	Yield (\%)
340c	SnCl_{4}	$0 ; 40$	$1 ; 4$	64
340d	ZnCl_{2}	$0 ; 40$	$1 ; 8$	37
340c	SnCl_{4}	$0 ; 40$	$1 ; 4$	56
340d	ZnCl_{2}	$0 ; 40$	$1 ; 8$	33

${ }^{\text {a }}$ For two periods.

The furan system is more activated towards electrophilic attack at the $\alpha(2,5)$-positions than the phenyl rings of the trityl group and could be selectively acylated at lower temperatures. The Friedel-Crafts reactions were therefore carried out at $0^{\circ} \mathrm{C}$ and then $40^{\circ} \mathrm{C}$, thus avoiding electrophilic substitution on the phenyl rings. Analysis of NMR spectra of the crude reaction mixtures indicated the formation of the ketones $\mathbf{3 4 0}$ cand 340d as the major products; the unwanted isomers being limited to trace quantities due to the steric effect of the trityl group. The use of anhydrous SnCl_{4} as catalyst produced the furanyl ketones $\mathbf{3 4 0} \mathbf{c}$ and $\mathbf{3 4 0 d}$ in a shorter time and in better yields (Table 7), possibly due to the tin metal coordinating more strongly with the carbonyl oxygen of the acylating reagent. The ketones $\mathbf{3 4 0}$ cand 340d are new compounds and were fully characterised by NMR, IR and combustion analysis. Figure 64 shows the ${ }^{1} \mathrm{H}$ NMR spectrum of the 3 -(trityloxymethyl)furanyl ketone 340c. The singlet at 2.57 ppm corresponds to the acetyl methyl group, while the singlet at 4.42 ppm integrates for two protons and corresponds to the 1'-methylene protons. The overlapping signals between 7.14 and 7.33 ppm integrate for 17 protons and thus represent the fifteen protons of the trityl group and, the $3-\mathrm{H}$ and $5-\mathrm{H}$ nuclei of the furan ring. IR spectroscopic analysis revealed a carbonyl absorption band at $1675 \mathrm{~cm}^{-1}$. Figure 65 illustrates the ${ }^{13} \mathrm{C}$ NMR spectrum of the 3-(trityloxymethyl)furanyl ketone 340d, with the signals assigned as indicated.

Figure $64.400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4 0} \mathbf{c}$ in CDCl_{3}.

Figure 65. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4 0 \mathrm { d }}$ in CDCl_{3}.

2.3.3. De-tritylation and phosphorylation using mild acid hydrolysis.

Following the successful synthesis of compounds 340b-d, the next step involved removal of the trityl protecting group and phosphorylation of the resulting alcohols. Various methods have been reported for the cleavage of the trityl moiety, including the use of boron trifluoride etherate in the presence of methanol, ${ }^{191}$ catalytic hydrogenation ${ }^{192}$ and treatment with diethylaluminium chloride. ${ }^{193}$ Although these reagents ${ }^{191-193}$ afford satisfactory yields, we decided to use mild acid hydrolysis conditions ${ }^{194}$ to remove the trityl group. Thus, compounds 340b-d were treated with formic acid in aqueous methanol for two hours at 50°. Removal of volatiles in vacuo gave the crude primary alcohols $\mathbf{3 4 7 b}$-d, which were used without further purification. The alcohols 347b-d were phosphorylated to the corresponding phosphate esters 348b-d using diethyl chlorophosphate in pyridine (Scheme 51). Compounds 340b-d were also sequentially de-tritylated and phosphorylated using a mixture of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and THF $(1: 1 \mathrm{v} / \mathrm{v}),{ }^{176}$ providing access to the dihydrogen phosphates 341bd in reasonable yields ranging from 58% to 65% (Scheme 51). Compounds 348b-d and 341cd are all new compounds and were fully characterised by NMR, IR and combustion analysis.

Scheme 51. Synthesis of phosphate esters 348b-d and dihydrogen phosphate derivatives 341b-d.
Reagents and conditions: i) $\mathrm{HCOOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}[(1: 1: 0.1 \mathrm{v} / \mathrm{v} / \mathrm{v})], 50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ ii) diethyl chlorophosphate, pyridine, $0^{\circ} \mathrm{C}, 1$ h, r.t., overnight; iii) $\mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{THF}[(1: 1 \mathrm{v} / \mathrm{v})], 2$ days, r.t.

Figures 66 and 67 illustrate the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 348 c , respectively. The success of the phosphorylation reaction is clearly indicated in the ${ }^{1} H$ NMR spectrum
(Figure 66) by the disappearance of the trityl group multiplet at $c a .7 .20 \mathrm{ppm}$ and the presence of the phosphate ethyl esters signals, the latter characterised by the methyl triplet at 1.30 ppm and the methylene signals as a multiplet at 4.06 ppm , due to coupling to the methyl protons and to the ${ }^{31} \mathrm{P}$ nucleus. In addition, coupling of the 1 '-methylene protons to the ${ }^{31} \mathrm{P}$ nucleus is evident in the splitting of the signal at 5.05 ppm into a doublet ($J=1.6 \mathrm{~Hz}$). The signal at 2.54 ppm corresponds to the acetyl methyl group, while the $3-\mathrm{H}$ and $5-\mathrm{H}$ nuclei of the furan ring resonate at 7.10 ppm and 7.12 ppm , respectively. Analysis of the ${ }^{31} \mathrm{P}$ NMR spectrum showed the presence of a ${ }^{31} \mathrm{P}$ signal at 0.8 ppm , while the IR spectrum showed the carbonyl and phosphate ester absorption bands at $1680 \mathrm{~cm}^{-1}$ and $1223 \mathrm{~cm}^{-1}$, respectively.

Figure $66.400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of phosphate ester $\mathbf{3 4 8} \mathbf{c}$ in CDCl_{3}.

In the ${ }^{13} \mathrm{C}$ spectrum (Figure 67) of compound $\mathbf{3 4 8}$ c, the phosphate ethyl ester signals at 16.3 ppm and 61.5 ppm are split ($J=6.0$ and 6.5 Hz), reflecting coupling to the ${ }^{31} \mathrm{P}$ nucleus; the 1^{\prime} methylene carbon also resonates at 61.5 ppm . These assignments are supported by the DEPT135 and HSQC data.

Figure $67.100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum of compound 348 c in CDCl_{3}.

Figures 68 and 69 illustrate the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the dihydrogen phosphate derivatives $\mathbf{3 4 1 b}$, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 68) of compound 341b, the presence of the phosphate group is indicated by the splitting of the 1'-methylene signal at 5.11 ppm by the nearby ${ }^{31} \mathrm{P}$ nucleus. The proton signals for the phosphate hydroxyl groups are not seen due to proton exchange with the $\mathrm{D}_{2} \mathrm{O}$ solvent. Figure 69 illustrates the ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4 1 b}$, with the 1 '-methylene carbon resonating at 61.9 ppm and is split ($J=6.5 \mathrm{~Hz}$) due to ${ }^{31} \mathrm{P}$ nucleus coupling; the remaining signals were assigned as indicated. Analysis of the ${ }^{31} \mathrm{P}$ NMR spectrum showed the presence of the ${ }^{31} \mathrm{P}$ signal at 0.8 ppm, while the IR spectrum showed the carbonyl group and phosphate ester absorption bands at $1675 \mathrm{~cm}^{-1}$ and $1219 \mathrm{~cm}^{-1}$, respectively.

Figure $68.400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 4 1 b}$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure $69.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4 1 b}$ in $\mathrm{D}_{2} \mathrm{O}$.

2.3.4. Preparation of the phosphorylated furanyl oximes

Several methods have been reported for the transformation of carbonyl compounds to their corresponding oximes, including:- using ionic liquids, ${ }^{195}$ grinding with hydroxylamine hydrochloride and sodium hydroxide pellets ${ }^{196}$ and microwave irradiation with hydroxylamine hydrochloride impregnated on wet, basic $\mathrm{Al}_{2} \mathrm{O}_{3} .{ }^{197}$ However, we decided to access the novel DOXP analogues 337 b-d using the classical method, ${ }^{198}$ which involved treating compounds $348 \mathrm{~b}-\mathrm{d}$ and $341 \mathrm{~b}-\mathrm{d}$ with an ethanolic solution of hydroxylamine hydrochloride in the presence of a catalytic quantity of sodium acetate (Scheme 52). The phosphate esters 349b-d were expected to act as pro-drugs of the diethyl dihydrogen derivatives $\mathbf{3 3 7 b}$-d. The diethyl esters 349b-d were expected to exhibit better membrane permeability before being hydrolysed to active DXR inhibitors by esterases in vivo. The novel compounds 349b-d and 337b-d were isolated in good yields ranging from 87% to 96% and were fully characterised by spectroscopic methods (NMR and IR) and combustion analysis. A number of these compounds were subjected to EcDXR-STD NMR binding analysis (Section 2.5).

Scheme 52. Synthesis of phosphorylated oxime derivatives 349b-d and 337b-d. Reagents and conditions: i) $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}, \mathrm{NaOAc}, \mathrm{EtOH}$, reflux for 1 h .

Figure 70 illustrates the ${ }^{13}$ C NMR spectrum of compound 349 c, showing the phosphate ethyl ester signals resonating at 16.2 ppm and 61.6 ppm and, significantly, the signal at 148.4 ppm corresponding to the oxime carbon. The remaining signals were assigned as indicated and analysis of the IR spectrum confirmed the presence of the $C=N$, hydroxyl and phosphate ester absorption bands at 1672,3243 and $1225 \mathrm{~cm}^{-1}$, respectively.

Figure 70. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 4 9} \mathrm{c}$ in CDCl_{3}.

In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 71) of compound $\mathbf{3 3 7 d}$, the signal at 151.3 ppm correlates to the oxime carbon, while the absence of the ethyl ester signals confirmed hydrolysis to the dihydrogen product. The IR spectrum confirmed the presence of the $\mathrm{C}=\mathrm{N}$, hydroxyl and phosphate absorption bands at 1678,3260 and $1235 \mathrm{~cm}^{-1}$, respectively.

Figure 71. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of compound 337 d in $\mathrm{D}_{2} \mathrm{O}$.

2.4. Synthesis of N-benzyl substituted phosphoramidic acid derivatives based on a de novo design strategy.

Studies of several EcDXR crystal structures with the known inhibitor fosmidomycin and natural substrate, DOXP, have identified the significant binding residues within the enzyme active and the essential structural features of the ligands which interact with the protein. ${ }^{103,105}$ In addition to structure-activity relationship data reported in literature, a thorough analysis of the 3-D topology of both the active sites of EcDXR and PfDXR has been conducted in a previous study in our group. ${ }^{129,142}$ This study revealed the presence of three additional pockets (I, II and III in Figure 72) adjacent to the phosphonate-binding region, which could be exploited in the design of novel inhibitors. The identification of these additional binding sites seems to provide an explanation for the increase in inhibitory activity observed for fosmidomycin analogues containing an aryl substituent on the carbon adjacent (α) to the phosphonate moiety - the α-aryl-substituent most likely occupies one of these pockets. ${ }^{129,142}$ Studies by Song et al..122 and Perruchon et al. ${ }^{128}$ have also suggested the presence of a hydrophobic binding pocket near the phosphonate-binding region. Furthermore, analysis of the pocket in the homology model of the PfDXR active site developed by Goble et al., revealed the presence of an additional cysteine- 267 residue (Figure 72), as opposed to the serine-253 residue in EcDXR, and it was suggested that this difference could be exploited in the de novo design of specific PfDXR inhibitors. ${ }^{111,129}$

Considering the information obtained from scrutinising the topology of the EcDXR and PfDXR active-sites and maintaining the essential phosphonate and hydroxamate functional groups present in fosmidomycin 236, the novel ligands 350a-d (Figure 73) were designed as specific inhibitors of PfDXR. ${ }^{129}$ A synthetic strategy was developed and initiated ${ }^{129}$ but, due to limited time, the preparation of compounds 350a-d could not be completed. Consequently, in the present study, attention was given to completing the synthesis of these novel fosmidomycin analogues. An α-benzyl group to occupy the additional binding pocket(s) (compounds 351a-d) or capable of forming thioether or disulfide linkages with the cysteine-197 and -267 residues (compounds 351b-d) was introduced, thus enhancing binding in the PfDXR active site.

Figure 72. Active site of PfDXR, showing the three additional binding pockets (I, II and III) close to the phosphonate-binding site and the position of the cysteine-197 and -267 residues. The surface zone at $8.0 \AA$ from fosmidomycin $\mathbf{2 3 6}$ is shown with 30% transparency, coloured by hydrophobicity [polar (blue), non-polar (white), hydrophobic (orange)] and clipped in front. Protein residues less than $10 \AA$ away from fosmidomycin 236 are shown in wireframe, coloured by atom type, and residues less than $8.0 \AA$ away from fosmidomycin $\mathbf{2 3 6}$ are labelled. Fosmidomycin 236 is shown in ball-and-stick format, coloured by atom type, NADPH as sticks coloured by atom type and the crystal structure water molecules as red spheres. ${ }^{129}$ (Reproduced with permission).

351a-d

Figure 73. Novel α - substituted analogues 350a-d and 351a-d.

The general synthetic strategy is outlined in Scheme 53 with the compounds prepared by Conibear ${ }^{129}$ indicated in red. In the present study, the entire sequence was completed using, as the primary substrate, the diethyl phosphoramidate 352.

Scheme 53. Synthetic strategy towards the novel α-substituted analogues 351a-d.

2.4.1. Synthesis of the diethyl phosphoramidate acetal 353 via silylation and alkylation.

The initial steps towards the construction of the N-benzyl substituted phosphoramidic acid derivatives 351a-d is outlined in Scheme 54. Using a method reported by Zwierzak et al. ${ }^{199}$, diethyl phosphoramidate 352 was treated with hexamethyldisilazane in refluxing benzene to obtain the silylated derivative 358 in essentially quantitative yield (98%). The protected amine 358 was then deprotonated with sodium hydride and treated with bromoacetaldehyde diethylacetal in the presence of a catalytic quantity of tetrabutylammonium bromide (TBAB) to furnish the protected acetal 359. Deprotection was effected by refluxing in ethanol for one hour, to afford the phosphoramidate acetal 353 in 93\% yield.

Scheme 54. Synthesis of phosphoramidate acetal 353. Reagents and conditions: i) hexamethyldisilazane (20% mol excess), benzene, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$ ii) NaH , benzene, r.t., then bromoacetaldehyde diethylacetal, TBAB ($10 \% \mathrm{~mol}$), benzene, $80^{\circ} \mathrm{C}$, 4 hiii EtOH, reflux, 1 h.

Figure 74 shows the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5 3}$, with the triplet resonating at 1.15 ppm corresponding to the methyl groups of the diethyl acetal moiety, while the corresponding methylene protons resonate as a pair of quartets at 3.49 ppm and 3.62 ppm , respectively. The chemical non-equivalence of the geminal protons in both the methylene groups results in the splitting pattern observed. The signals at 1.24 ppm and 4.00 ppm correspond to the methyl and methylene protons of the diethyl phosphoramidate group, respectively. The doublet at 3.28 ppm corresponds to the 1-methylene protons, while the 2 methine proton resonates as a triplet at 4.58 ppm .

Figure 74. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5 3}$ in CDCl_{3}.

2.4.2. Synthesis of the N-substituted benzyl phosphoramidate acetals 354a-d.

The next step in the synthesis involved attachment of the various benzyl groups 360a-d to the phosphoramidate nitrogen in compound 353. Deprotonation of the NH group in compound 353 using sodium hydride, followed by treatment with the appropriate benzyl halides 360a-d yielded the N-substituted benzyl phosphoramidate acetals 354a-d in good yields ranging from 67 to 77% (Scheme 55). The benzyl substrates $\mathbf{3 6 0}$ c-d used for the construction of compounds $\mathbf{3 5 4 c}$-d were prepared as depicted in Scheme 56. The approach involved bromination of 3 -aminobenzyl alcohol $\mathbf{3 6 1}$ using phosphorous tribromide to give the brominated derivative 360c. Diazotization of compound 360c followed by a reaction with sodium disulfide produced the disulfide compound $\mathbf{3 6 2}$, which was reduced in situ with sodium borohydride in anhydrous THF to furnish the thiophenol 360d.

Scheme 55. Synthesis of N-substituted benzyl phosphonate acetals 354a-d.
Reagents and conditions: i) $\mathrm{NaH}, \mathrm{THF}$, r.t., $24 \mathrm{~h}, \mathrm{~N}_{2}$.

Scheme 56. Synthesis of benzyl substrates 360c and 360d.
Reagents and conditions: i) $\mathrm{PBr}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then r.t., 24 h ii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{NaNO}_{2}, \mathrm{Na}_{2} \mathrm{~S}_{2}, 0$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ iii) $\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{O}^{\circ} \mathrm{C}$ to r.t., 1 h .

Spectroscopic analysis (NMR and IR) and combustion analysis confirmed the formation of compounds $\mathbf{3 5 4 a}$-d. Figures 75 and 76 illustrate the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 354a and 354d, respectively. In Figure 75, the aromatic protons of the benzyl group are
clearly seen resonating between 7.28 ppm and 7.37 ppm , while the signal corresponding to the benzylic proton appears at 3.84 ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 354d (Figure 76), the aromatic carbons are all accounted for, resonating between 124.7 ppm and 136.6 ppm , respectively. The benzylic carbon resonates at 68.9 ppm , while the signals corresponding to the phosphoramidate ethyl ester groups appear at 16.4 ppm and 62.7 ppm and are split due to coupling to the ${ }^{31} \mathrm{P}$ nucleus. Analysis of the ${ }^{31} \mathrm{P}$ NMR spectrum showed the presence of the ${ }^{31} \mathrm{P}$ signal at 24.2 ppm , while the IR spectrum revealed the presence of the SH and $\mathrm{P}=\mathrm{O}$ absorption bands at $2571 \mathrm{~cm}^{-1}$ and $1260 \mathrm{~cm}^{-1}$, respectively.

Figure 75. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5 4}$ a in CDCl_{3}.

Figure 76. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 5 4 d}$ in CDCl_{3}.

2.4.3. Synthesis of N-benzyl substituted phosphoramidic acid derivatives 351 a-d.

Since FR900098 237, the acetyl derivative of fosmidomycin 236, is approximately twice as active in vitro, we decided to incorporate the acetyl functionality in our target compounds 351a-d, which were accessed by adapting methodology reported by Schlitzer et al, ${ }^{118-119}$ as outlined in Scheme 57. In addition to providing a point of attachment for the α-benzyl substituents, the presence of the nitrogen atom from the phosphoramidate group in compounds 351a-d facilitated synthesis by avoiding chirality problems arising from the asymmetry of the sp^{3} centre if the α-atom were carbon.

Scheme 57. Synthesis of N -benzyl-substituted phosphoramidic acid derivatives 351a-d. Reagents and conditions: i) $2 \mathrm{M}-\mathrm{HCl}$, r.t., 24 h ii) O -benzylhydroxylamine in $\mathrm{MeOH}, 40^{\circ} \mathrm{C}, 3 \mathrm{~h}$ and then $\mathrm{NaCNBH}_{3}, \mathrm{MeOH}, \mathrm{HCl}$, r.t., 1 h iii) acetyl chloride, $\mathrm{DCM}, \mathrm{Et}_{3} \mathrm{~N}$, r.t., $24 \mathrm{~h}, \mathrm{~N}_{2}$ iv) H_{2}, $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$ v) $\mathrm{TMSBr}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and then $\mathrm{H}_{2} \mathrm{O}$, r.t., overnight.

Thus, acid-catalysed hydrolysis of the acetal moiety afforded the corresponding aldehydes 355a-d in good yields ranging from 88% to 92%. NMR spectroscopic analysis confirmed the formation of the aldehydes 355a-d, as illustrated in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 355b in Figure 77. Successful cleavage of the acetal moiety is clearly evident with the disappearance of the diethyl acetal signals and the emergence of the aldehydic proton signal at 9.81 ppm . The methylene protons adjacent to the aldehyde carbonyl resonate at 3.72 ppm , while the signal at 3.82 ppm corresponds to the methylene protons adjacent to both the nitrogen atom and benzene ring. The phosphonate ethyl ester signals resonate, characteristically, at 1.36 ppm and 4.13 ppm , while the signal at 4.82 ppm corresponds to the methylene protons adjacent to the hydroxyl group. The overlapping signals between 7.58 ppm and 7.67 ppm integrate for the four aromatic protons. The IR spectrum showed the absorption bands for the hydroxyl and carbonyl groups at $3261 \mathrm{~cm}^{-1}$ and $1738 \mathrm{~cm}^{-1}$, respectively.

Figure $77.400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5 5}$ b in CDCl_{3}.

The next step involved reductive amination of the aldehydes 355a-d using O benzylhydroxylamine, followed by sodium cyanoborohydride to furnish, via oxime intermediates, the O-benzyl-protected amines 356a-d in reasonable yields (63% to 68%). Acetylation of compounds $\mathbf{3 5 6}$ a-d was achieved by using acetyl chloride in the presence of triethylamine, to obtain the O-benzyl-protected acetyl derivatives 357a-d. Compounds 356a-d and 357a-d are all new and were fully characterised. Figures 78 and 79 illustrate the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 356a and $\mathbf{3 5 7}$ c, respectively. In Figure 79 , the signals between 7.29 and 7.36 ppm integrate for the ten aromatic protons corresponding to the two benzyl groups and indicate the success of the reductive amination step. The vicinal 1and 2-methylene protons couple with each other and resonate as a complex multiplet at ca. 2.90 ppm , while the two singlets at 3.82 and 4.73 ppm correspond to the 3 - and 4 methylene groups attached to the benzene rings. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 357c (Figure 79), the success of the acetylation step was confirmed by the presence of the acetyl methyl singlet at 2.01 ppm . Significantly, introduction of the acetyl group deshields the 2-methylene protons, resulting in separation of the vicinal 1- and 2-methylene proton multiplets in the acetylated systems. Analysis of the COSY and HSQC spectra permitted
assignment of the aromatic protons signals in the anilino ring. The IR spectrum showed absorption bands for the NH_{2} and carbonyl groups at $3387 \mathrm{~cm}^{-1}$ and $1692 \mathrm{~cm}^{-1}$.

Figure 78. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5 6}$ a in CDCl_{3}.

Figure 79. $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 357 c in CDCl_{3}.

The final two steps in the synthesis (Scheme 57) of the target compounds 351a-d involved the removal of the O-benzyl protecting group and hydrolysis of the diethyl ester groups of the phosphoramidate moiety. The O-benzyl protecting group was removed by catalytic hydrogenolysis using 10 \% Pd/C in methanol to yield the hydroxamate derivatives 363a-d which, following treatment with TMSBr and hydrolysis, furnished the corresponding phosphoramidic acids 351a-d. The diethyl ester intermediates 363a-d could serve as ester prodrugs of the phosphoramidic acids 351a-d, exhibiting better lipophilicity prior to being hydrolysed by non-specific esterases in vivo. The novel products 363a-d and 351a-d were all fully characterised. Figure 80 illustrates comparative ${ }^{13} \mathrm{C}$ NMR spectra of the phosphoramidate ester 363d and the phosphoramidic acid 351d; and clearly reveals the success of the hydrolysis reaction with the disappearance of the ethyl ester signals. Analysis of the IR spectrum for compound 351d showed the absorption band for the hydroxyl group at $3326 \mathrm{~cm}^{-1}$, while the absorption bands for the mercapto and carbonyl groups were observed at $2575 \mathrm{~cm}^{-1}$ and $1687 \mathrm{~cm}^{-1}$, respectively.

Figure 80. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 6 3 d}$ (top, CDCl_{3}) and compound 351d (bottom, $\mathrm{D}_{2} \mathrm{O}$), showing the disappearance of the ethyl ester signals (circled) upon hydrolysis.

2.5. Enzyme-binding and -Inhibition studies.

2.5.1. Synthesis of fosmidomycin and FR900098 as standards for biological studies.

Fosmidomycin 236 and its acetyl derivative, FR900098 237, have been identified as potent inhibitors of DXR and clinical studies have proven that these molecules exhibit strong antimalarial activity in vitro. ${ }^{116,200}$ One of the aims of this project has been to determine the biological activity of a selection of the synthesised novel compounds (Sections 2.1, 2.2, 2.3 and 2.4), against $E c D X R$ and $P f D X R$ in vitro. Consequently, we decided to synthesise fosmidomycin 236 and FR900098 237 for use as standards in the STD NMR binding and the enzyme-inhibition studies. Much interest has been generated in the design of fosmidomycin-like molecules as DXR inhibitors, and various research groups have reported different synthetic routes to fosmidomycin 236 and FR900098 237. ${ }^{118-119,201-202}$ We employed and adapted the method reported by Schlitzer et al., ${ }^{118-119}$ outlined in Scheme 58.

Scheme 58. Synthesis of known DXR inhibitors, fosmidomycin 236 and FR900098 237. ${ }^{118}$ Reagents and conditions: i) $2 \mathrm{M}-\mathrm{HCl}$, r.t., overnight; ii) O -benzylhydroxylamine, $\mathrm{MeOH}, 40^{\circ} \mathrm{C}$, 3 h and then $\mathrm{NaCNBH}_{3}, \mathrm{MeOH}, \mathrm{HCl}$, r.t., 1 h ; iii) formic acid, sodium formate, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}{ }^{203-204}$ or acetyl chloride, $\mathrm{DCM}, \mathrm{Et}_{3} \mathrm{~N}$, r.t., $24 \mathrm{~h}, \mathrm{~N}_{2}$; iv) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} ;$ v) $\mathrm{TMSBr}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and then $\mathrm{H}_{2} \mathrm{O}$, r.t., overnight.

The first step in the synthesis of inhibitors $\mathbf{2 3 6}$ and $\mathbf{2 3 7}$ involved acidic hydrolysis of the commercially available acetal 364 to give the corresponding aldehyde 365 in reasonable yield (68%). The aldehyde 365 was subsequently treated with O-benzylhydroxylamine to give the oxime, which was reduced in situ in the presence of sodium cyanoborohydride and
hydrochloric acid to furnish the O-benzyl-protected hydroxylamine 366. Using a method adapted from Brahmachari et al. ${ }^{203}$ and Majee et al. ${ }^{204}$, compound 366 was successfully N formylated by refluxing with formic acid and a catalytic quantity of sodium formate to obtain the intermediate 367a. Also, compound 366 was acetylated with acetyl chloride in the presence of triethylamine to give the acetylated derivative $\mathbf{3 6 7 b}$.

Figures 81 and 82 illustrate the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of intermediates 367 a and $\mathbf{3 6 7 b}$, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 81) of intermediate 367a, the success of the formylation reaction is indicated by the presence of the aldehyde signal at 8.13 ppm . The multiplets at 1.94 ppm and 1.74 ppm correspond to the 1- and 2-methylene groups, respectively, and are split due to coupling to each other and the adjacent ${ }^{31} \mathrm{P}$ nucleus, while the signal for the 3 -methylene protons resonates as a triplet at 3.72 ppm . The phosphonate ethyl ester signals resonate at 1.32 ppm and 4.08 ppm , while the singlet at 4.83 ppm corresponds to the benzylic methylene protons. The signal at 7.39 ppm integrates for five protons and thus corresponds to the benzene ring protons. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 82) of compound $\mathbf{3 6 7 b}$, the methyl carbon of the acetyl group resonates at 19.7 ppm , while the carbonyl carbon signal appears at 162.9 ppm . The doublet at 23.5 ppm corresponds to the 1-methylene group, with a coupling constant of 141.2 Hz characteristic of coupling to an adjacent ${ }^{31}$ P nucleus. The C-2 and C-3 methylene carbons resonate at 20.7 ppm and 52.3 ppm respectively, and are also split by coupling to ${ }^{31} \mathrm{P}$ nucleus coupling, as are the signals at 16.8 ppm and 61.9 ppm , which correspond to the phosphonate ethyl ester group; the acetyl carbonyl signal is evident at 163.0 ppm.

Figure 81. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of intermediate $\mathbf{3 6 7 a}$ in CDCl_{3}.

Figure 82. $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of intermediate $\mathbf{3 6 7 b}$ in CDCl_{3}.

The next step in the preparation of inhibitors 236 and 237 involved the removal of the benzyl protecting groups of intermediates 367 a and 367 b to yield the phosphonate ester derivatives 368 a and 368 b. Treatment of compounds 368 and 368 b with TMSBr produced the silyl esters, in situ hydrolysis of which finally afforded fosmidomycin 236 and FR900098 237, respectively. While requiring HPLC purification prior to use as bioassay standards, both compounds were fully characterised with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectroscopic data corresponding to the published data. Figures 83 and 84 show the ${ }^{13} \mathrm{C}$ NMR spectra of fosmidomycin 236 and FR900098 237 respectively, both of which reveal coupling of the ${ }^{31} \mathrm{P}$ nucleus with all three methylene groups. The carbonyl carbon of the formyl group resonates at 155.7 ppm in the ${ }^{13} \mathrm{C}$ spectrum of fosmidomycin 236, while the acetyl group in FR900098 237 is evidenced by the methyl signal at 20.0 ppm and the carbonyl signal at 162.8 ppm .

Figure 83. $100{ }^{13} \mathrm{C}$ NMR Spectrum of fosmidomycin 236 in $\mathrm{D}_{2} \mathrm{O}$.

Figure $84.100 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of FR900098 237 in $\mathrm{D}_{2} \mathrm{O}$.

2.5.2. Saturation transfer difference (STD) protein NMR binding studies.

The saturation transfer difference NMR experiment is a screening assay which may be used to determine binding interactions between a set of ligands and a target protein. ${ }^{205-206}$ An STD spectrum is obtained by irradiating the protein at a frequency at which the ligands do not absorb. Intermolecular spin diffusion leads to the transfer of protein saturation to ligands which bind to the protein, and consequently, increase the signal intensities of these ligands; the non-binding ligands remain unaffected. ${ }^{205-206}$ A reference spectrum is also acquired by irradiating the ligand-protein mixture at a frequency at which none of the species resonate (off-resonance irradiation), resulting in equal saturation of all the species. Subtraction of the reference spectrum from the saturated spectrum produces a difference spectrum, showing only the signals of the ligands interacting with the protein. ${ }^{206}$ Sets of ligands can be studied simultaneously in a particular STD experiment, provided the ${ }^{1} \mathrm{H}$ NMR spectra of the individual ligands are sufficiently different.

STD experiments were conducted on a selection of the synthesised ligands (Section 2.1-2.4) to determine their binding to EcDXR. The EcDXR was expressed and purified, for the author, using standard protocols ${ }^{115,142}$ and a fraction, $20 \mu \mathrm{M}$ in $E c D X R$, was used in each experiment. The EcDXR in sodium phosphate buffer (pH 7.0) was freeze-dried and re-suspended in an equal volume of $D_{2} \mathrm{O}$. The ligands were dissolved in the protein solution to give a protein:ligand molar ratio of 1:40. The STD experiments were carried out using parameters which had been optimized in a previous study in our group. ${ }^{129}$ The saturating on-resonance and off-resonance pulses were set at frequencies of 0.73 ppm and 20 ppm , respectively, while cycling between the on- and off-resonance phases was used to reduce the effects of changes in temperature or magnetic field homogeneity.

The EcDXR-STD experiments were carried out on the phosphonic acid derivatives as the corresponding phosphonate esters were expected to act as pro-drugs and require in vivo hydrolysis before binding. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 293a-d, 293f, 328a, 328e-f and 331a-b, and the corresponding STD difference spectra are illustrated as stacked plots in Figures 85 and 86. A spin-lock filter was not used in the experiments, resulting in the presence of the underlying protein spectrum in the difference spectrum. The results of the

ECDXR-STD binding experiments conducted on the selected novel compounds are summarized in Table 8.

Figure 85. Stack-plot showing results from the EcDXR STD experiment conducted in $\mathrm{D}_{2} \mathrm{O}$ with compounds 293a-d and 293f. The correlations between individual ligand signals and signals in the difference spectrum are indicated by the coloured lines.

Figure 86. Stack-plot showing results from the EcDXR STD experiment conducted in $\mathrm{D}_{2} \mathrm{O}$ with compounds 328a, 328e,f and 331a,b. The correlations between individual ligand signals and signals in the difference spectrum are indicated by the coloured lines.

Table 8. Results of EcDXR STD binding experiments to screen selected ligands for binding to EcDXR, with observed binding interactions indicated by a positive (+) sign.
a) Dihydroxy-amido phosphonic acids 293a-g.

b) 3-Substituted aniline-derived phosphonic acids 328b,d-g; 331a-d; 333a,e,f; 335a,c.

	Compound	R	n	STD result
	328b	OMe	1	+
H	328d	F	1	-
	328 e	CN	1	-
	$328 f$	NO_{2}	1	-
	328g	$\mathrm{CH}_{2} \mathrm{OH}$	1	+
	331a	OH	2	+
	331b	OMe	2	+
	331c	Br	2	+
	331d	F	2	-
	333a	OH	3	+
	333e	CN	3	
	333f	NO_{2}	3	-
	335a	OH	4	
	335c	Br	4	
				-

Table 8 Contd.

c) Furan-derived phosphates 337b and 337c.

Compound	R	STD result
337b	H	+
337 c	Me	+

d) N-Benzyl-substituted phosphoramidic acids 351a and 351d.

The STD experimental data (Table 8) for the dihydroxy-amido phosphonic acid derivatives indicate that compounds 293a,b and d bind to EcDXR, whilst compounds 293c and e-g do not. The binding interactions may be attributed to the fact that ligands 293a,b and d are similar in size to the known inhibitors fosmidomycin 236 and FR900098 237, and are thus able to occupy the enzyme's active-site comfortably. Importantly, the presence of the hydroxyl groups at C-2 and C-3 are expected to provide additional hydrogen-bonding interactions with active-site residues. These conclusions are consistent with the molecular modelling results discussed in Section 2.6. Compounds 293c and e-g, on the other hand, contain propyl, butyl, phenyl or benzyl groups attached to the amide nitrogen, and the steric bulk of these groups are presumed to prevent these analogues from fitting into the sterically restricted DXR-active site. It seems that the binding site can accommodate the branched N-isopropyl group in ligand 293d but not the longer N-propyl group in 293c. Access to the metal-binding region, which the amide moiety in compounds 293a-g are expected to occupy, is constrained by the presence of the metal cation, the NADPH cofactor and the channel through which the ligand enters the active-site. ${ }^{105,107}$ MacSweeney et al. ${ }^{105}$ have suggested that inhibitors greater in length than fosmidomycin $\mathbf{2 3 6}$ could displace NADPH or bind to an open conformation of DXR, although a decrease in inhibitory activity
has been reported for inhibitors with an acyl chain extended beyond the hydroxamate group. ${ }^{207}$

STD experiments conducted with the 3-substituted aniline-derived phosphonic acids 328b,d\mathbf{g} indicated binding of ligands $\mathbf{3 2 8}$ b and $\mathbf{3 2 8}$. From these results, it appears that the presence of a fluoro, nitro or cyano substituent on the phenyl ring has a negative effect on the binding affinity of compounds 328d-f, possibly due to unfavourable electrostatic interactions. Interestingly, the in silico docking of compounds $\mathbf{3 2 8 e}$ and $\mathbf{3 2 8 f}$ in the active site of a modelled structure of PfDXR in a collaborative study by Goble et al., ${ }^{208}$ indicated that these compounds do not fully occupy the active site and that they bind in a reverse orientation compared to fosmidomycin 236. Further analysis of the STD results for the 3aniline derived phosphonic acids (Table 8) revealed that:- i) the compounds containing an $\mathrm{OH}, \mathrm{OMe}$ or $\mathrm{CH}_{2} \mathrm{OH}$ substituent all showed positive binding to EcDXR, except for 335a ($\mathrm{R}=$ OH); ii) the extension of the carbon spacer to four methylene groups $(\mathrm{n}=4)$ between the amide group and the phosphonic acid moiety appears to prevent compounds 335a and 335c from binding to EcDXR, whereas analogues with fewer methylene groups (331a,c; 333a) do appear to bind. These observations are consistent with those reported in literature, with the more active DXR inhibitors against DXR containing a hydroxyl group as part of the hydroxamate moiety and a three-carbon spacer between the phosphonate and metal binding groups being optimal. ${ }^{105,122,125,131,134}$

The positive binding data obtained for the furan analogues $\mathbf{3 3 7 b}, \mathbf{c}$ is encouraging and supports the in silico docking observations (Section $2.6, \mathrm{p} .143$) which indicate binding of the phosphonate group and metal-chelating group to their respective sites in the EcDXR activesite. The restricted flexibility provided by the furan ring in compounds $\mathbf{3 3 7 b}, \mathbf{c}$ may well ensure that the inhibitors remain anchored in an ideal conformation within the active site. The N-benzyl substituted phosphoramidic acid analogues 351a and 351d were expected to show reasonable binding to ECDXR, as these novel analogues were designed following a detailed study in our group ${ }^{129}$ of the topology of the EcDXR and PfDXR catalytic sites. The N benzyl α-substituent was expected to occupy one of the reported hydrophobic binding pockets, ${ }^{122,128-129}$ thus increasing the compounds binding affinity to the enzyme. Furthermore, only α-phenyl substituted hydroxamic acid analogues of fosmidomycin 236
have previously been shown to exhibit inhibitory activities as potent as those of fosmidomycin 236 and FR900098 237. ${ }^{\text {124-125,134 }}$

The binding data obtained from the STD experiments have indicated that the technique is useful as an initial screen to identify potential DXR inhibitors, albeit with limitations. Although protein-ligand binding interactions were observed in the STD experiments, the possibility of the ligands binding non-specifically to regions other than the active-site cannot be excluded; ${ }^{209}$ in its standard form, the STD experiment only provides qualitative data. However, it may be possible to optimize the experiment for a particular ligand and conduct the experiment in the presence of the slow, tight- binding inhibitor fosmidomycin in order to accurately determine whether the observed protein-ligand binding is active-site specific or allosteric and to calculate binding affinities. ${ }^{129,209-210}$ Unfortunately, time constraints prevented further investigation.

2.5.3. Enzyme inhibition assays.

The mechanism for the catalytic conversion of DOXP $\mathbf{2 3 0}$ to MEP $\mathbf{2 3 1}$ by DXR involves an intramolecular rearrangement step followed by an NADPH-dependent reduction step. ${ }^{91} \mathrm{~A}$ DXR-inhibition bioassay has been developed based on the spectrophotometric measurement of the conversion of NADPH to NADP, to determine the capacity of novel compounds to inhibit both EcDXR and PfDXR. ${ }^{115,127}$ The compounds discussed in Section 2.2 were tested for EcDXR inhibitory activity for the author ${ }^{211}$ and for PfDXR inhibitory activity in a collaborative study by Goble et al. ${ }^{208}$ The novel compounds synthesized and discussed in Sections 2.1, 2.3 and 2.4 were not subjected to the inhibition bioassay due to time constraints and the limited availability of the EcDXR and PfDXR enzymes precluded bioassay of the other novel ligands prepared in this study. It is expected, however, that these assays will be conducted in due course.

To assess their inhibition potential, the selected ligands were tested at a concentration of $250 \mu \mathrm{M}$, as this represented the initial concentration at which none of the ligands gave complete inhibition of the enzyme. Considering that fosmidomycin 236 is a slow-tight binding inhibitor of DXR, ${ }^{124}$ the synthesized ligands were pre-incubated with the enzyme and NADPH before the reaction was initiated with the addition of the substrate, DOXP 230.

For each ligand, the bioassays were carried out in triplicate and the specific activity of the enzyme was determined by analyzing the linear portion of the graph generated by plotting average absorbance (at 340 nm) against time (over 10 minutes). The specific activity of the enzyme in the experiment lacking a ligand was considered to be 100% (i.e. 0% inhibition), which allowed the inhibitory activities to be expressed as relative percentages. Fosmidomycin 236 was used as a positive control for DXR inhibition and exhibited 99.3\% inhibition at $0.3 \mu \mathrm{M}$.

Table 9. Results for the inhibition ${ }^{\text {a }}$ of recombinant $E c D X R$ at $250 \mu \mathrm{M}$ for selected compounds.

${ }^{\text {a }}$ Activity in the absence of compound set at 100%.
${ }^{\mathrm{b}}$ Negative \% inhibition indicating activation of enzyme.

The inhibition assay data summarised in Table 9 shows that the inhibitory potency of all the compounds tested is much lower than that of fosmidomycin 236 and other inhibitors reported in literature. Nonetheless, several structure-activity relationship patterns were observed. Compounds 328a, 329a, 331a and 332a exhibited inhibitory activity against ECDXR of more than 40% at $250 \mu \mathrm{M}$. Interestingly, all these compounds have the hydroxyl group attached at the meta-position of the benzene ring and the presence of this OH group
may well provide favourable electrostatic or hydrogen-bonding interactions within the enzyme's active site.

All of the phosphonate ester inhibitors, except compounds 323b and 325a, exhibited a lower percentage inhibition compared to their corresponding phosphonic acid derivatives. The catalytic site of ECDXR is relatively polar in nature and is restricted by the phosphonate binding region on one side and the metal- and NADPH-binding site on the other. ${ }^{103,110,127}$ Consequently, it is probable that the phosphonate ester ligands may be too hydrophobic and too bulky to be accommodated effectively in the active-site. Furthermore, Perruchon et al. ${ }^{128}$ have emphasized the importance of a double negative charge on the phosphonate moiety. However, the phosphonate ester inhibitors could exhibit higher inhibition activity than the corresponding phosphonic acids in vivo, as their lipophilic nature could allow them to penetrate the parasite's membrane more readily, thus resulting in higher intra-parasitic drug concentrations. ${ }^{118,119,212}$ The difference in percentage inhibition values between the phosphonic acids and their corresponding mono-sodium salts is relatively small.

It seems, from the data in Table 9, that the presence of two methylene groups between the amide group and the phosphonate moiety is advantageous but increasing the number to three or four decreases the inhibitory activity. This observation was expected, as analyses of the DXR active site have shown that the length of the cavity is restricted by the phosphonate-binding region at one end and the metal-and NADPH-binding site at the other. ${ }^{105,110,127,129}$ Furthermore, fosmidomycin 236 analogues in which the length has been varied have shown a decrease in inhibitory activity and it has been suggested that the 3 carbon spacer between the hydroxamate- and phosphonate-binding groups in fosmidomycin 236 is ideal. ${ }^{149,207}$ Compounds with one or two methylene spacers showed low to moderate inhibitory activity, whilst minimal or zero inhibition was observed for the compounds with three or four methylene spacers. These results are consistent with the docking studies (Section 2.6) from which it was apparent that three or four methylene groups extend beyond the active site and do not bind as efficiently as the ligands with one or two methylene groups.

2.6. Molecular modelling and simulated docking studies

Computer modelling studies were undertaken to explore the EcDXR receptor-binding potential of selected compounds synthesised in this study. The Accelrys Cerius ${ }^{2}$ module ${ }^{213}$ was used to construct the selected compounds in silico as their mono-deprotonated species. Using Gaussian 03, ${ }^{214}$ the structure for each compound was optimised geometrically and energy-minimised at the density functional theory (DFT) B3LYP/6-31G(d) level. Docking studies of the geometry optimised and energy-minimised ligands was carried out using Autodock version $4.0,{ }^{215}$ using the crystallographically-determined enzyme structure, EcDXR $2 \mathrm{EGH},{ }^{103}$ as the protein-receptor model. The X-ray crystal structure EcDXR 2EGH, is complexed with fosmidomycin 236, the divalent metal cation Mg^{2+} and the NADPH cofactor. ${ }^{103}$

To validate the reliability of the docking procedure, fosmidomycin $\mathbf{2 3 6}$ was removed from the receptor cavity, energy-minimised and re-docked into the protein. Simulated docking of the energy minimised ligands involved the removal of fosmidomycin 236 and the solvating water molecules from the active site of the 2EGH crystal structure, whilst the NADPH cofactor was retained. Using Autodock 4.0, Gasteiger charges were added and non-polar hydrogens were merged for the respective ligands and the protein model, while the activesite residues Ser185, Ser221, Asn226, Lys227 and Glu 230 were assigned as flexible. The AutoGrid 4.0 algorithm was employed to represent the active site with a grid box of dimensions $60 \times 60 \times 60$ units (grid-point spacing of $0.375 \AA$ Å) along the x-, y - and $z-$ directions, and atom maps were calculated for all possible active-site residue-ligand interactions. In silico dockings were conducted using the Lamarckian algorithm with a population size of 150 , allowing for a maximum of 27000 generations and 2.5×10^{6} energy evaluations. For each ligand docking experiment, ten possible docked-conformers were generated. The best docked-conformer for each of the ligands was selected upon analysis of:- i) the ligand binding affinity (Kcal.mol ${ }^{-1}$); ii) the ligand efficiency relative to fosmidomycin and; iii) the number of hydrogen-bonding interactions. The binding affinity measures the strength of the non-covalent interactions between the ligand and the protein. ${ }^{216-217}$ The ligand efficiency measures the binding free energy per atom of the ligand and provides an indication of the quality of fit of the ligand within the active site of the enzyme. ${ }^{218-219} \mathrm{~A}$
ligand is classified as having a good binding affinity and good ligand efficiency by the magnitude of the negative values, as illustrated for fosmidomycin 236 (Table 10). The docked conformations were visualised using the Accelrys Discovery Studio Visualizer 2.0 ${ }^{2220}$ software package. The binding affinity and ligand efficiency values computed for the lowest energy docked conformations of fosmidomycin $\mathbf{2 3 6}$ and of selected ligands are summarised in Table 10.

Table 10. Binding affinity and ligand efficiency data of fosmidomycin and selected ligands docked into EcDXR.

Compound ${ }^{\text {a }}$	Binding affinity $\left(\right.$ Kcal.mol $\left.^{-1}\right)$	Ligand efficiency
Fosmidomycin	-15.22	-1.38
293a	-12.77	-0.98
293b	-10.19	-0.57
293c	-7.96	-0.53
293d	-8.30	-0.55
293e	-6.73	-0.42
293f	-7.54	-0.54
293g	-6.27	-0.48
328a	-9.64	-0.64
328c	-9.33	-0.78
328f	-8.65	-0.51
331a	-8.56	-0.54
331e	-9.93	-0.58
331g	-8.46	-0.47
333a	-5.70	-0.34
333b	-4.46	-0.34
333g	-0.23	-0.26
335a	335d	

[^0]Table 10 contd.

Compound $^{\mathrm{a}}$	Binding affinity $\left(\right.$ Kcal.mol $\left.^{-1}\right)$	Ligand efficiency
335e	-5.98	-0.46
337b	-10.84	-0.77
337c	-10.20	-0.68
337d	-5.89	-0.31
351a	-9.39	-0.49
351b	-8.80	-0.42
351c	-9.84	-0.56
351d	-9.36	-0.47

${ }^{\mathrm{a}}$ Modelled as mono-deprotonated species.

The ligand structures used for the docking studies were the mono-deprotonated phosphonic acid derivatives. The importance of the phosphonate moiety being negatively charged and involved in hydrogen-bonding interactions has been highlighted. ${ }^{113,127-128}$ The corresponding phosphonate ester analogues were expected to act as pro-drugs, being hydrolysed in vivo before reaching the active-site. Furthermore, docking of N-heteroarylamino phosphonate ester derivatives in the EcDXR active site, in a cognate study in our group, revealed that the phosphonate ester analogues are too bulky to fit in the active site. ${ }^{129}$

The active site of $E c D X R$ is considered to be restricted in length by the presence of the phosphonate binding-site at one end and the divalent metal cation and NADPH bindingregion at the other. ${ }^{105,107}$ Analysis of the binding affinity and ligand efficiency values, as well as the binding conformations of the dihydroxy-amido phosphonic acids 293e-g and 3substituted aniline-derived phosphonic acids 333a,b,g and 335a,d,e, indicate that these ligands all exhibit some binding interaction with active site residues, but appear to be too large to fit, completely, in the EcDXR active site and thus extend beyond the catalytic cavity. Increasing the number of methylene groups (1 to 4) between the amide group and the phosphonate moiety resulted in decreases in the binding affinity and ligand efficiency values, reflecting the inability of the larger ligands (methylene group >2) to occupy the EcDXR active site appropriately. These results are consistent with the EcDXR STD-NMR binding data (Table 8) and the enzyme-inhibition assay data (Table 9) discussed in previous
sections. Figures 87 and 88 illustrate the docked conformations of ligands $293 f$ and 337 e in the ECDXR active site, respectively. Interestingly, the benzene rings of both ligands 293 f and 335e occupy a region adjacent to the NADPH-binding site towards the top of the active site and project towards the channel region through which the ligand enters the active site. The occupation of the active-site by larger ligands such as $293 f$ and 335 e may result in these ligands binding to the open conformation of DXR, which has been suggested by MacSweeney et al. ${ }^{105}$ Moreover, Henriksson et al. ${ }^{107}$ identified a hydrated cavity lined by the residues Thr175, Ser245 and His248 (in MtDXR) and suggested that compounds larger than fosmidomycin 236 could extend into this cavity. The STD-NMR binding data (Table 8) and enzyme-inhibition data (Table 9), however, suggest that such arrangements prevent efficacious binding.

Figure 87. Docked conformation of the dihydroxy-amido phosphonic acid ligand $293 f$ in the EcDXR active-site (2EGH), illustrating hydrogen-bonding of the ligand with active-site residues and the ligand extending beyond the metal binding site. The crystal structure conformation of fosmidomycin $\mathbf{2 3 6}$ is shown in stick format coloured yellow and highlights the docking alignment of ligand 293f. Protein-active site residues are shown in wire-frame coloured by atom type, NADPH in stick coloured green, Mg^{2+} as a blue sphere and the ligand shown in stick format coloured by atom type. Hydrogen bonds are shown as green dashed lines.

Figure 88. Docked conformation of the 3 -substituted aniline-derived phosphonic acid ligand $335 e$ in the ECDXR active-site (2EGH), illustrating hydrogen-bonding of the ligand with active-site residues and the ligand extending beyond the metal binding site. The crystal structure conformation of fosmidomycin $\mathbf{2 3 6}$ is shown in stick format coloured yellow and highlights the docking alignment of ligand $\mathbf{3 3 5 e}$. Protein active-site residues are shown in wire-frame coloured by atom type, NADPH in stick format coloured green, Mg^{2+} as a blue sphere and the ligand in sticks coloured by atom type. Hydrogen bonds are shown as green dashed lines.

The docking results (Table 10) show that ligands 293a,b and 337b,c exhibit the most favourable binding energy (relative to fosmidomycin), while ligands 293a, 328c and 337b demonstrate ligand efficiency values better than -0.70 . Examination of the docked conformation of ligand 293a (Figure 89), suggests that the good binding affinity and ligand efficiency data observed for this ligand may be attributed to the close alignment with fosmidomycin. In addition, the carbonyl and NH groups of ligand 293a exhibit hydrogenbond with the active-site residues Lys 124 , Glu151 and Asn226, while the phosphonic acid
group occupies the appropriate binding-region and interacts with the active-site residues Ser185 and Ser253. The positive STD-NMR binding data (Table 8) and enzyme-inhibition data (Table 9) obtained for compound 293a, together with the favourable interactions observed in the in silico studies, presents ligand 293a as a feasible, new lead-compound, targeting DXR in the development of novel anti-malarial drugs.

Figure 89. Docked conformation of the dihydroxy-amido phosphonic acid ligand 293a in the ECDXR active-site (2EGH), illustrating the close alignment of ligand 293a with fosmidomycin and hydrogen-bonding of the ligand with active-site residues. The crystal structure conformation of fosmidomycin 236 is shown in stick format coloured yellow. Protein activesite residues are shown in wire-frame coloured by atom type, NADPH shown in stick format coloured green, Mg^{2+} as a blue sphere and the ligand in stick format coloured by atom type. Hydrogen bonds are shown as green dashed lines.

With regard to the conformationally-restricted furan-derived phosphate ligands 337b-d, ligand $\mathbf{3 3 7}$ b exhibits the most favourable docked conformation within the active-site and exhibits hydrogen-bonding interactions with the residues, Lys 124, Glu151, Ser185, Ser221, Lys227 and Glu230 (Figure 90). Importantly, the presence of the furan-ring appears to restrict flexibility in the conformation of the linking group between the phosphonatebinding and metal-binding sites, while permitting hydrogen-bonding interactions between :i) the furan-ring oxygen atom with Lys 124; and ii) the hydroxyl group of the oxime moiety with Lys 124. Analysis of the docked conformation of the analogue 337d reveals that the ligand is too bulky to be accommodated in the active-site as the tert-butyl group extends well beyond the metal-binding site.

Figure 90. Docked conformation of the furan-derived phosphate ligand $\mathbf{3 3 7} \mathbf{b}$ in the EcDXR active-site (2EGH), illustrating hydrogen-bonding of the ligand with active-site residues. The crystal structure conformation of fosmidomycin 236 is shown in stick format coloured yellow and highlights the docking alignment of ligand 337b. Protein active-site residues are shown in wire-frame coloured by atom type, NADPH in stick format coloured green, Mg^{2+} as a blue sphere and the ligand in stick format coloured by atom type. Hydrogen bonds are shown as green dashed lines.

Reasonable binding affinity data is observed for the 3 -substituted aniline phosphonic acid dianionic ligands 328a, 328c, 328f and 331a, 331e, 331g. Interestingly, docking orientations opposite to that of fosmidomycin $\mathbf{2 3 6}$ were exhibited by most of these ligands in the active site, as shown for ligand 328f in Figure 91.

Figure 91. Docked conformation of the 3 -substituted aniline-derived phosphonic acid ligand 328f in the ECDXR active-site (2EGH), illustrating 'reverse' binding of the ligand relative to fosmidomycin 236. The crystal structure conformation of fosmidomycin $\mathbf{2 3 6}$ is shown in stick format coloured by atom type. Protein active-site residues are shown in wire-frame coloured by atom type, NADPH in stick format coloured green, Mg^{2+} as a blue sphere and the ligand shown in stick format coloured by atom type. Hydrogen bonds are shown as green dashed lines.

The 'reverse'-binding mode exhibited by these ligands has, in fact, also been reported for N heterocyclic phosphonic acid analogues evaluated in a cognate study in our group, and is attributed to the favourable electrostatic attraction between the divalent metal cation and the phosphonic acid anion group of the ligand. ${ }^{129,142}$ Furthermore, the authors have highlighted the fact that ligands exhibiting 'reverse' binding arrangements may still serve as DXR inhibitors as the binding interactions between the ligands and the enzyme are chemically feasible. ${ }^{129,141}$ Yajima et al. ${ }^{102}$ and Henriksson et al. ${ }^{107}$ have reported that the DXR enzyme undergoes conformational changes itself upon binding of a ligand and co-factor; changes which may permit several plausible orientations of the ligand in the active site.

As previously discussed (Section 2.4, p. 141), the N-benzyl substituted phosphoramidic acid derivatives 351a-d were designed and synthesised as specific inhibitors of PfDXR. Thus, in silico docking of the ligands 351a-d was explored using both EcDXR (2EGH) and PfDXR (the homology model developed by Goble et al. $)^{208}$ receptor cavities. ${ }^{\ddagger}$ Visual assessment of the dockings for the ligands 351a-d in EcDXR and PfDXR revealed, as expected, that the ligands adopt binding orientations similar to that of fosmidomycin 236, with the benzyl group adjacent to the phosphonate moiety occupying the hydrophobic pocket (pocket I in Figure 72) adjacent to the phosphonate-binding site. On docking in the PfDXR receptor cavity, the phosphonate moiety of each of the ligands 351a-d exhibits hydrogen-bonding interactions with the active-site residues, Ser 199 and Gly 201, while the carbonyl group interacts with residue Ser 235. In addition, the following interactions were observed between ligands 351a-d and amino acid residues in the PfDXR active-site:- i) Ser 161 acting as donor in hydrogen-bonding to the benzylic OH group in ligand 351b; ii) lle 269 and His 270 interacting with the 3-amino substituent in ligand 351c; and iii) Cys 197 hydrogen-bonding with the phosphonate moiety in ligand 351d. Figure 92 illustrates the binding conformation of ligand 351c in the PfDXR active-site with the benzyl ring occupying the pocket adjacent to the phosphonate-binding region.

[^1]

Figure 92. Docked conformation of the N-benzyl substituted phosphoramidic acid ligand 351c in the PfDXR active-site showing the benzyl ring occupying the pocket adjacent to the phosphonate-binding region. The surface zone at $4.1 \AA$ from ligand 351 c is shown with 50% transparency, coloured by atom type and clipped in front. Protein active-site residues are shown in wire-frame coloured by atom type, NADPH in stick format coloured yellow, Mg^{2+} as a blue sphere and the ligand in stick format coloured by atom type. Hydrogen bonds are shown as green dashed lines.

The in silico screening tools used in this study have provided information regarding the ability of the various synthesised ligands to be accommodated in the DXR active-site and a measure of their potential to interact through hydrogen-bonding with active-site residues. From an analysis of the simulated-docking data, we have established that:- i) ligands 293a,b, 331a,g, 337b, c and 351a-d may be considered as feasible lead-compounds in the design and development of novel DXR inhibitors; and ii) the sterically restricted DXR active-site cannot adequately accommodate ligands possessing bulky substituents e.g. 293e-g, nor could it
accommodate ligands containing three or four methylene carbon linkers between the essential phosphonate- and amide-binding groups as in compounds 333a,b,g. In future, scrutiny of the topology and properties of the DXR active site, coupled with structural modifications of the synthesised compounds, may lead to the design of analogues with better binding and inhibition potential.

2.7. Conclusions

The various aims identified at the outset of the study have largely been achieved. Attention has been focused on synthesizing novel compounds that can act as inhibitors of DXR. In the design of these novel compounds, consideration has been given, inter alia, to the replacement of the phosphate group in the natural substrate DXP, by a phosphonate moiety, and the hydroxamate functionality, present in the established inhibitor, fosmidomycin, by an amide moiety.

Four general synthetic approaches (Scheme 24) have been explored in order to access the desired DXR inhibitors. In the first approach, the novel dihydroxy-amido phosphonate esters 292a-g and their corresponding phosphonic acids 293a-g were successfully prepared. EDCmediated coupling of γ-phosphonated crotonic acid 291 with various amines afforded the amido-phosphonate esters 285a-g, which were dihydroxylated using a $\mathrm{RuCl}_{3} / \mathrm{CeCl}_{3} / \mathrm{NaIO}_{4}$ catalyst system to furnish the dihydroxy-amido phosphonate esters 292a-g in good yields (> 62%). Subsequent hydrolysis using TMSBr and aqueous methanol gave the targeted phosphonic acids 293a-g.

In the second approach, several series of 3 -substituted aniline-derived phosphonate esters (321a-g, 323a-g, 325a-g and 327a-g) and their corresponding phosphonic acids (328a-g, 331a-g, 333a-g and 335a-g) and mono-sodium salts (329a-g, 332a-g, 334a-g and 336a-g) have been successfully synthesised as fosmidomycin 236 analogues. The series differed in the number of methylene groups (1-4) separating the phosphonate and amide moieties. These compounds were prepared by deprotonating the 3 -substituted aniline substrates 319a-g with sodium hydride, followed by reaction with chloroacetyl chloride and the ω chloroalkanoyl chlorides 330-330b to give the ω-chloroamide intermediates 320a-g, 322a-g, 324a-g and 326a-g in generally good yields (> 59\%). Subsequent phosphonation using the Michaelis-Arbuzov reaction afforded the diethyl phosphonate esters 321a-g, 323a-g, 325a-g and 327a-g in reasonable yields ($48 \%-74 \%$). Microwave-assisted reaction of the phosphonate esters with TMSBr, followed by hydrolysis furnished the corresponding phosphonic acid derivatives 328a-g, 331a-g, 333a-g and 335a-g, and subsequent neutralisation with 0.1 M aqueous sodium hydroxide furnished the mono-sodium phosphonic acid salts 329a-g, 332a-g, 334a-g and 336a-g.

Attention was then turned to developing the furan-derived phosphate analogues 349b-d and 337b-d as conformationally-restricted DOXP analogues. These novel analogues 337b-d were accessed via trityl-protected 3-furanmethanol 349, which was reacted with the specially prepared Vilsmeier reagent to furnish the desired formylated product 340b in 64% yield. Friedel-Crafts acylation of the protected furan 349, using SnCl_{4} as the Lewis acid catalyst, afforded the furanyl ketones 340c and 340d in 64% and 56% yields, respectively. Deprotection and phosphorylation of compounds 340b-d afforded the phosphate esters 348b-d in 62-68\% yields and, following hydrolysis, the dihydrogen phosphate derivatives 341b-d were obtained in good yields (58% - 65%). Treatment of compounds 348b-d and 341b-d with an ethanolic solution of hydroxylamine hydrochloride in the presence of a catalytic quantity of sodium acetate, furnished the targeted phosphorylated oxime derivatives 349b-d and 337b-d in very good yields (87% - 96%).

Finally, based on a de novo design strategy, the N-benzyl substituted phosphoramidic derivatives 351a-d have been successfully prepared from the primary substrate, diethyl phosphoramidate 352. This approach involved silylation and alkylation of the substrate $\mathbf{3 5 2}$ to afford the phosphoramidate acetal 353, which was reacted with appropriate benzyl substrates 360a-d to give the N-benzyl substituted phosphoramidate acetals 354a-d. Subsequent acid-catalysed hydrolysis of the acetal moiety gave the corresponding aldehydes 355a-d, which were reduced and O-benzylated to afford the O-benzyl-protected amines $\mathbf{3 5 6 a}$-d. Acetylation and subsequent de-protection of the O-benzyl group gave the hydroxamate derivatives 363a-d and, following hydrolysis, the desired phosphoramidic acids 351a-d were obtained in moderate yields (37% - 44\%). In addition to establishing synthetic methodologies for accessing the novel DXR inhibitors discussed in Sections 2.1-2.4, the known DXR inhibitor fosmidomycin 236 and its acetyl derivative, FR900098 237, have also been prepared, for use as bio-assay standards, by adapting methods reported in literature. ${ }^{118-119,253}$ All of the prepared compounds have been fully characterised using 1-and 2-dimensional NMR spectroscopic methods and, where appropriate, elemental (HRMS or combustion) analysis.

Saturation Transfer Difference (STD) NMR experiments, conducted to explore the ability of synthesised ligands to bind to EcDXR, have revealed that certain ligands (293a,b,d, 328a,g, 331a-c, 333a, 337a, cand 351a,d) bind to the enzyme, whilst other ligands (293c,e-g, 328d-f,

331d, 333e,f and 335a, c) do not. The positive STD results have been attributed to several factors, viz :-
i. ligands similar in size to fosmidomycin $\mathbf{2 3 6}$ being able to occupy the EcDXR activesite comfortably;
ii. the presence of the hydroxyl groups at C-2 and C-3 in ligands 293a,b and 293d providing additional hydrogen-bonding interactions with active-site residues;
iii. the presence of a substituent containing an oxygen atom (i.e. $\mathrm{OH}, \mathrm{OMe}$ and $\mathrm{CH}_{2} \mathrm{OH}$) in ligands 328a,g, 331a-c and 333a providing favourable electrostatic interactions with active-site residues;
iv. the restriction in conformational flexibility provided by the furan ring in ligands 337a,c ensuring that the ligands maintain an ideal conformation within the active site; and
v. the N-benzyl α-substituent in ligands 351a,d occupying the hydrophobic binding pocket adjacent to the phosphonate binding site, thus increasing the binding affinity of the ligands to the enzyme.

EcDXR inhibition assays were carried out, for the author, ${ }^{211}$ on selected 3 -substituted aniline-derived analogues to assess their inhibition potential. Some of the ligands (328a, 329a, 331a and 332a) exhibited $>40 \%$ inhibition at a concentration of $250 \mu \mathrm{M}$, whilst a decrease in inhibitory activity was observed when the number of methylene groups between the amide group and the phosphonate moiety, in the aniline-derived phosphonate analogues, was increased beyond two. Furthermore, the phosphonate esters generally exhibited less effective inhibition than their corresponding phosphonic acid derivatives, whereas the phosphonic acids and their corresponding mono-sodium salts exhibited similar inhibition levels - not surprisingly given that the assays were conducted in a buffered medium.

Computer-simulated docking studies have been conducted, using EcDXR (crystal structure 2EGH $)^{103}$ to explore the ability of selected synthesised ligands to fit within the DXR activesite and interact via hydrogen-bonding with active-site residues. Analysis of the docking results revealed that:- i) some of the ligands (293a,b, 328c, 337b,c and 351a-d) exhibited good binding affinity values with a high degree of conformational alignment with bound
fosmidomycin 236; ii) other ligands (293e-g, 333a,b,g, 335a,d,e and 337d) could not be accommodated within the active-site; iii) certain ligands (328a,c,f and 331a,e,g) exhibited docking orientations opposite (i.e. reverse binding) to that of fosmidomycin 236.

From the ECDXR-STD binding, enzyme inhibition and simulated docking data, it seems that compounds 293a, 293b, 331a and 331g could serve as lead compounds for the development of new anti-malarial drugs.

The results of this study have provided a number of opportunities for future research; these include:-
i. optimisation of the STD NMR experiments to include fosmidomycin and FR900098 as highly competitive inhibitors and to access quantitative ligand binding affinity and ligand competition data;
ii. EcDXR and PfDXR inhibition bio-assays of the dihydroxy-amido phosphonic acid derivatives, furan derived-phosphate analogues and N-benzyl substituted phosphoramidic acid derivatives at different ligand concentrations to determine the IC_{50} values and inhibitory activity of the synthesised ligands;
iii. P. falciparum growth inhibition assays of novel compounds, to assess the antimalarial activity and exploration of the toxicity of the inhibitors; and
iv. synthetic elaboration of ligands identified as potential lead compounds.

3. EXPERIMENTAL

3.1. General Procedures

Unless stated otherwise, the reagents were supplied by Sigma Aldrich or Fluka and used without further purification. Solvents were purified by drying and re-distillation, as described by Perrin and Armarego. ${ }^{221}$ Reactions that required an inert atmosphere were conducted under nitrogen or argon gas. Thin layer chromatography was performed on Merck TLC silica gel 60 PF $_{254}$ plates and viewed under UV light (254 nm) or developed with iodine vapour. Preparative layer chromatography was carried out using Merck silica gel 60 PF_{254} as the stationary phase. Flash chromatography was conducted using Merck silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) for normal-phase and Sep-Pak Vac 35cc C18 cartridges for reverse-phase. Normal-phase HPLC was carried out using a Whatman Partisil 10 semipreparative column and reverse-phase HPLC using a Phenomenex C-18 LUNA semipreparative column, with a Waters R401 refractive index detector.

Microwave-assisted reactions were conducted using a CEM-Discover microwave apparatus (model number 908010). NMR spectra were recorded on a Bruker AVANCE 400 MHz or Biospin 600 MHz spectrometers and were calibrated relative to the solvent signals (δ_{H} : 7.25 ppm for $\mathrm{CDCl}_{3}, 4.81$ for $\mathrm{D}_{2} \mathrm{O}$ and 2.50 ppm for DMSO- $\mathrm{d}_{6} ; \delta_{\mathrm{C}}: 77.0 \mathrm{ppm}$ for CDCl_{3} and 39.4 ppm for DMSO- $d_{6} ; \delta_{\mathrm{p}}: 0 \mathrm{ppm}$ for ${ }^{31} \mathrm{P}$ in $\mathrm{H}_{3} \mathrm{PO}_{4}$ as a standard.

Low-resolution mass spectra were acquired on a Finnigan MAT GCQ mass spectrometer at Rhodes University. High-resolution mass spectra were obtained at the University of Stellenbosch Central Analytical Facility using a Waters API Q-TOF Ultima spectrometer. Elemental analysis data were obtained using a Vario Elemental Microtube EL III analyzer. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer, as thin films or solid deposits between CsI discs, or as neat compounds on a diamond window.

Percentage yields of chromatographed products are based on the mass of crude material separated chromatographically. Melting points were measured using a Reichert hot-stage apparatus, and are uncorrected.

3.2. Dihydroxy-amido phosphonate esters and their corresponding phosphonic acids

Ethyl (E)-4-bromocrotonate 283^{222}

A mixture of ethyl crotonate ($6.2 \mathrm{~mL}, 50 \mathrm{mmol}$) and NBS ($8.89 \mathrm{~g}, 50 \mathrm{mmol}$) in carbon tetrachloride (20 mL) was refluxed at $120^{\circ} \mathrm{C}$ for 3 hours, whilst stirring. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the succinimide was filtered off. The organic layer was washed with water (10 mL), separated, and dried with anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation of the solvent afforded the crude product, which was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (49:1)] to obtain ethyl (E)-4bromocrotonate 283 as a yellow oil ($5.39 \mathrm{~g}, 56 \%$); $u_{\max }\left(\right.$ thin film $/ \mathrm{cm}^{-1}$) $1648(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.98\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.18(2 \mathrm{H}, \mathrm{q}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}, 2-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1$ (C-2'), 29.1 (C-4), 60.7 (C-1'), 124.6 (C-2), 141.6 (C-3) and165.5 (C=O).

(E)-4-(Diethoxyphosphoryl)crotonate $284{ }^{223}$

Triethyl phosphite ($1.82 \mathrm{~g}, 10.8 \mathrm{mmol}$) was added slowly to a stirred solution of ethyl 4bromocrotonate $(1.03 \mathrm{~g}, 5.40 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ during a period of 1 hour, whilst the temperature of the mixture was maintained at $120^{\circ} \mathrm{C}$. After the addition, the mixture was stirred at the same temperature of a further 5 hours and then cooled to room temperature. The cooled mixture was then stirred with hexane $(20 \mathrm{~mL})$ for $c a .30$ minutes followed by decantation of the hexane layer to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded (E) -4-(diethyoxyphosphoryl)crotonate 284 as a yellow oil ($1.00 \mathrm{~g}, 75 \%$); $\mathrm{u}_{\max }\left(\right.$ thin film $/ \mathrm{cm}^{-1}$)
$1748(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.70(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 22.8 and $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.12\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{OCH}_{2}\right), 5.93(1 \mathrm{H}, \mathrm{dd}, J=15.6$ and $4.4 \mathrm{~Hz}, 2-\mathrm{H}), 6.85$ $(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.1\left(\mathrm{C}-2^{\prime}\right), 16.3(2 \times \mathrm{C}-2 \mathrm{Z}), 30.1(\mathrm{C}-4), 60.3$ (C-1'), 62.2 ($2 \times \mathrm{C}-1$ '), $125.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.0 \mathrm{~Hz}, \mathrm{C}-2\right.$), 137.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=13.6 \mathrm{~Hz}, \mathrm{C}-3$) and 165.5 (C=O); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.3$ ($\mathrm{P}=\mathrm{O}$).

(E)-4-(Diethoxyphosphoryl)- N -methylbut-2-enamide 285a

To a solution of EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$) and HOBt (0.52 g , 3.4 mmol) in DCM (15 mL) under N_{2}, was added (E)-4-(diethoxyphosphoryl)but-2-enoic acid $291(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and the mixture was stirred for 15 minutes. To the mixture, methylamine hydrochloride ($0.46 \mathrm{~g}, 6.8$ mmol) in DMF (5 mL) and triethylamine ($0.74 \mathrm{~mL}, 3.4 \mathrm{mmol}$) was added and the resulting solution was stirred for 24 hours at room temperature. The solvent was evaporated in vacuo and the residue was dissolved in EtOAc (25 mL). The organic solution was washed sequentially with water ($2 \times 50 \mathrm{~mL}$), 10% aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$. The organic solution was dried with anhydr. MgSO_{4}, the solvent removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (E)-4-(diethoxyphosphoryl)-N-methylbut-2-enamide 285a as a brown solid ($0.36 \mathrm{~g}, 68 \%$), m.p. $104-106{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 46.11 ; \mathrm{H}, 7.67 ; \mathrm{N}, 5.94 \% . \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{P}$ requires C , 45.96; H 7.71; N 5.95%); $\mathrm{v} / \mathrm{cm}^{-1} 1701(\mathrm{C}=\mathrm{O})$ and $1218(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27$ $\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.48\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=22.2\right.$ and $\left.6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 2.71\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{CH}_{3}\right), 4.17$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.2$ and $4.2 \mathrm{~Hz}, 2-\mathrm{H}), 6.84(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $7.62(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=5.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 26.4\left(\mathrm{C}-1{ }^{\prime \prime}\right), 30.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=140.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 61.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 126.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.0 \mathrm{~Hz}, \mathrm{C}-2\right), 137.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=14.7 \mathrm{~Hz}\right.$, $\mathrm{C}-3$) and $163.1(\mathrm{C}=0)$.

(E)-4-(Diethoxyphosphoryl)-N-ethylbut-2-enamide 285b

The procedure described for the synthesis of (E)-4-(diethoxyphosphoryl)- N-methylbut-2enamide 285a was employed, using EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$), HOBt ($0.52 \mathrm{~g}, 3.4 \mathrm{mmol}$) and (E)-4-(diethoxyphosphoryl)but-2-enoic acid 291 ($0.50 \mathrm{~g}, 2.25 \mathrm{mmol}$) in DCM (15 mL) and, ethylamine hydrochloride ($0.56 \mathrm{~g}, 6.8 \mathrm{mmol}$) and triethylamine ($0.74 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in DMF $(5 \mathrm{~mL})$. The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (E)-4-(diethoxyphosphoryl)-N-ethylbut-2-enamide 285b as a yellow solid (0.40 g, 71 \%), m.p. $91-93{ }^{\circ} \mathrm{C}$ (Found: C, 47.91 ; H, 8.87; N, 5.61 \%. $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 47.80 ; \mathrm{H}, 8.83 ; \mathrm{N}, 5.57 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1683(\mathrm{C}=\mathrm{O})$ and 1226 ($\mathrm{P}=\mathrm{O}$); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.14\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{CH}_{3}\right), 1.23\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.50$ $\left(2 \mathrm{H}, \mathrm{dd}, J=22.4\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.31\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.18\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right)$, $5.95(1 \mathrm{H}, \mathrm{dd}, J=15.4$ and $4.1 \mathrm{~Hz}, 2-\mathrm{H}), 6.79(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $8.99(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{C}-2^{\prime \prime}\right), 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 30.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=145.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 36.8\left(\mathrm{C}-1^{\prime \prime}\right)$, $61.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 125.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=13.5 \mathrm{~Hz}, \mathrm{C}-2\right), 136.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.4 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $166.3(\mathrm{C}=\mathrm{O})$.

(E)-4-(Diethoxyphosphoryl)-N-propylbut-2-enamide 285c

To a solution of EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol})$ and $\mathrm{HOBt}(0.52 \mathrm{~g}, 3.4 \mathrm{mmol})$ in DCM (15 mL) under N_{2}, was added (E)-4-(diethoxyphosphoryl)but-2-enoic acid $291(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and the mixture was stirred for 15 minutes. To the mixture, propylamine ($0.57 \mathrm{~mL}, 6.8 \mathrm{mmol}$) was added and the resulting solution was stirred for 24 hours at room temperature. The solvent was evaporated in vacuo and the residue was dissolved in EtOAc (25 mL). The organic extract was washed sequentially with water $(2 \times 50 \mathrm{~mL}), 10 \% a q . \mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and
brine $(2 \times 50 \mathrm{~mL})$. The organic solution was dried with anhydr. MgSO_{4}, the solvent removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (E)-4-(diethoxyphosphoryl)-N-propylbut-2-enamide 285c as a yellow oil ($0.39 \mathrm{~g}, 65 \%$) (Found: $\mathrm{C}, 49.75 ; \mathrm{H}, 9.18 ; \mathrm{N}, 5.31 \% . \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 49.80$; $\mathrm{H}, 9.12 ; \mathrm{N}, 5.28 \%) ; \mathrm{v} / \mathrm{cm}^{-1} 1654(\mathrm{C}=\mathrm{O})$ and $1227(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.51\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 22.6 and $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.58(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 5.76(1 \mathrm{H}, \mathrm{dd}, J=15.2$ and $2.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $6.80(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.7$ (C-3'), 16.4 ($d, J_{p-C}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $23.2\left(\mathrm{C}-2^{\prime \prime}\right), 30.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 42.6\left(\mathrm{C}-1^{\prime \prime}\right)$, $61.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right.$), $123.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.0 \mathrm{~Hz}, \mathrm{C}-2\right), 134.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $166.3(\mathrm{C}=\mathrm{O})$.

(E)-4-(Diethoxyphosphoryl)-N-isopropylbut-2-enamide 285d

The procedure described for the synthesis of (E)-4-(diethoxyphosphoryl)-N-propylbut-2enamide 285c was employed, using EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$), HOBt ($0.52 \mathrm{~g}, 3.4 \mathrm{mmol}$), ($(E)-4-$ (diethoxyphosphoryl)but-2-enoic acid $291(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and isopropylamine (0.58 mL , 6.8 mmol) in DCM (15 mL). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (E)-4-(diethoxyphosphoryl)-N-isopropylbut-2-enamide 285d as a yellow solid ($0.44 \mathrm{~g}, 75 \%$), m.p. $82-84{ }^{\circ} \mathrm{C}$ (Found: C, 49.87; H, 9.20; N, 5.31 \%. $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 49.80 ; \mathrm{H}, 9.12 ; \mathrm{N}, 5.28 \%$; $\mathrm{v} / \mathrm{cm}^{-1} 1662$ ($\mathrm{C}=\mathrm{O}$) and $1229(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.15\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 2^{\prime \prime}-\right.$ and $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right)$, $1.31\left(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.59\left(2 \mathrm{H}, \mathrm{dd}, J=22.8\right.$ and $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.99\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right)$, $4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.22(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.77(1 \mathrm{H}, \mathrm{dd}, J=15.2$ and $4.2 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.04(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $22.8\left(\mathrm{C}-2 "\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 27.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}\right.$ $=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $41.1\left(\mathrm{C}-11^{\prime \prime}\right), 63.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 125.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=14.1 \mathrm{~Hz}, \mathrm{C}-2\right)$, $139.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=14.3 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $165.9(\mathrm{C}=\mathrm{O})$.

(E)-4-(Diethoxyphosphoryl)-N-butylbut-2-enamide 285e

The procedure described for the synthesis of (E)-4-(diethoxyphosphoryl)-N-propylbut-2enamide $\mathbf{2 8 5 c}$ was employed, using EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$), HOBt ($0.52 \mathrm{~g}, 3.4 \mathrm{mmol}$), ($(E)-4-$ (diethoxyphosphoryl)but-2-enoic acid $291(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and butylamine ($0.65 \mathrm{~mL}, 6.8$ mmol) in DCM (15 mL). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (E)-4-(diethoxyphosphoryl)-N-butylbut-2-enamide 285e as a brownish oil (0.39 g , 63 \%) (Found: C, 51.83; H, 9.42; N, 5.07 \%. $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 51.70 ; \mathrm{H}, 9.38$; $\mathrm{N}, 5.01 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1693(\mathrm{C}=\mathrm{O})$ and 1217 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 1.20\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{CH}_{2}\right), 1.30(6 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.71\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=22.8\right.$ and $\left.7.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.20(2 \mathrm{H}, \mathrm{m}$, 1" $-\mathrm{CH}_{2}$), $4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.4$ and $4.2 \mathrm{~Hz}, 2-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.8\left(\mathrm{C}-4{ }^{\prime \prime}\right), 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.3\left(\mathrm{C}-3^{\prime \prime}\right)$, 27.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $29.9\left(\mathrm{C}-2^{\prime \prime}\right), 41.4\left(\mathrm{C}-1{ }^{\prime \prime}\right), 63.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 125.3$ ($d, J_{p-c}=14.1 \mathrm{~Hz}, \mathrm{C}-2$), $134.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=14.3 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $166.1(\mathrm{C}=\mathrm{O})$.

(E)-4-(Diethoxyphosphoryl)-N-phenylbut-2-enamide 285f

The procedure described for the synthesis of (E)-4-(diethoxyphosphoryl)-N-propylbut-2enamide 285c was employed, using EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$), HOBt ($0.52 \mathrm{~g}, 3.4 \mathrm{mmol}$), (E)-4-(diethoxyphosphoryl)but-2-enoic acid 291 ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) and aniline ($0.63 \mathrm{~mL}, 6.8$ mmol) in DCM (15 mL). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc (3:1)] to yield (E)-4-(diethoxyphosphoryl)-N-phenylbut-2-enamide $\mathbf{2 8 5 f}$ as a brown solid ($0.44 \mathrm{~g}, 66 \%$), m.p. $86-88{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{224} 88{ }^{\circ} \mathrm{C}$); $\mathrm{v} / \mathrm{cm}^{-1} 1682(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$,
$2.30\left(2 \mathrm{H}, \mathrm{dd}, J=22.8\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.80(1 \mathrm{H}, \mathrm{dd}, J=15.4$ and 4.4 Hz, 2-H), $6.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.02\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 7.39\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right.$ and $5^{\prime \prime}-$ H), $7.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right)$ and $8.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4(\mathrm{~d}$, $J_{P-C}=5.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $27.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 63.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 121.8$ (C-2" and C-6"), 124.5 (C-4"), 125.0 ($d, J_{\mathrm{P}-\mathrm{C}}=14.1 \mathrm{~Hz}, \mathrm{C}-2$), 129.2 ($\mathrm{C}-3$ " and C-5"), 136.7 (C$1^{\prime \prime}$), 139.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=14.3 \mathrm{~Hz}, \mathrm{C}-3$) and 165.9 ($\mathrm{C}=\mathrm{O}$).

(E)-4-(diethoxyphosphoryl)-N-benzylbut-2-enamide 285g

The procedure described for the synthesis of (E)-4-(diethoxyphosphoryl)-N-propylbut-2enamide 285c was employed, using EDC ($0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$), HOBt ($0.52 \mathrm{~g}, 3.4 \mathrm{mmol}$), (E)-4-(diethoxyphosphoryl)but-2-enoic acid $291(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and benzylamine ($0.75 \mathrm{~mL}, 6.8$ mmol) in DCM (15 mL). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc (3:1)] to yield (E)-4-(diethoxyphosphoryl)-N-benzylbut-2-enamide 285g as a yellow solid ($0.49 \mathrm{~g}, 71 \%$), m.p. $95-97^{\circ} \mathrm{C}$ (Found: C, 57.57 ; H, 7.69; N, 4.49 \%. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 57.50$; $\mathrm{H}, 7.72$; $\mathrm{N}, 4.47 \%$); v/cm ${ }^{-1} 1692$ ($\mathrm{C}=\mathrm{O}$) and $1239(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 2.72(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=22.8$ and 7.6 $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 5.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.2$ and $1.2 \mathrm{~Hz}, 2-\mathrm{H})$, $6.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.31\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right.$ and $\left.7^{\prime \prime}-\mathrm{H}\right)$ and $8.19(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 27.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 43.5\left(1^{\prime \prime}-\mathrm{CH}_{2}\right), 63.6$ ($d, J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}$), 124.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=13.8 \mathrm{~Hz}, \mathrm{C}-2$), $127.5\left(\mathrm{C}-5{ }^{\prime \prime}\right), 127.8\left(\mathrm{C}-3^{\prime \prime}\right.$ and $\left.\mathrm{C}-7^{\prime \prime}\right)$, 128.7 ($\mathrm{C}-4$ " and $\mathrm{C}-6^{\prime \prime}$), 138.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{C}}=13.6 \mathrm{~Hz}, \mathrm{C}-3$), 140.3 ($\mathrm{C}-2^{\prime \prime}$) and 165.8 ($\mathrm{C}=\mathrm{O}$).

Crotonic acid 286

Ethyl (E)-crotonate 282 ($10 \mathrm{~mL}, 81 \mathrm{mmol}$) was added to a 2 M solution of potassium hydroxide in ethanol ($8 \mathrm{~mL}, 0.1 \mathrm{~mol}$) and the mixture was stirred at room temperature for

24 hours. After completion of the reaction, the ethanol was evaporated at reduced pressure and the residue was dissolved in water (100 mL), extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$), and the organic phase discarded. The aqueous phase was acidified (pH 2.5) with 2 M HCl and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water ($2 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$), and dried (anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent in vacuo gave crude product, which was washed with cold hexane to afford crotonic acid 286 as white crystals ($6.69 \mathrm{~g}, 96 \%$), m.p. $72-74{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{225} 71-73{ }^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 2891$ (OH) and $1681(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.94\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6$ $\mathrm{Hz}, 2-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $10.18(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.8\left(\mathrm{CH}_{3}\right), 121.6(\mathrm{C}-2)$, $146.8(\mathrm{C}-3)$ and $169.3(\mathrm{C}=\mathrm{O})$.

Crotonyl chloride 287^{226}

Oxalyl chloride ($3.69 \mathrm{~g}, 29.1 \mathrm{mmol}$) was added dropwise to a pre-cooled $\left(-2{ }^{\circ} \mathrm{C}\right)$, stirred solution of crotonic acid ($5.00 \mathrm{~g}, 58.1 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 1 hour, warmed to room temperature and stirred for an additional 3 hours. The reaction was quenched with water (5 mL) and extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed sequentially with water (100 mL), 10% aq. NaHCO_{3} $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and dried (anhydr. MgSO_{4}). The solvent was removed under reduced pressure to afford the crude product as a yellow liquid, which was purified by distillation to yield crotonyl chloride 287 as a clear liquid ($2.71 \mathrm{~g}, 89 \%$); ${ }^{\ddagger} \mathrm{v} / \mathrm{cm}^{-1} 1757$ (C=O); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2-\mathrm{H})$ and 7.12 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.9\left(\mathrm{CH}_{3}\right), 125.4(\mathrm{C}-2), 150.8(\mathrm{C}-3)$ and $165.7(\mathrm{C}=\mathrm{O})$.

(E)-N-methylbut-2-enamide 288a

[^2]Methylamine hydrochloride ($0.49 \mathrm{~g}, 7.2 \mathrm{mmol}$) and Proton Sponge ${ }^{\circledR}$ ($2.05 \mathrm{~g}, 9.57 \mathrm{mmol}$) were dissolved in a mixture of pyridine (0.6 mL) and DCM (15 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2}. Crotonoyl chloride 287 ($0.50 \mathrm{~g}, 4.8 \mathrm{mmol}$) was then added through a septum and the resulting mixture was stirred for 15 min . the reaction mixture was warmed to room temperature and stirred for 24 hours. The solvent was removed in vacuo and the residue extracted with EtOAc (100 mL). The organic extract was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, water (100 mL) and brine (100 mL). The aqueous washings were extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and the combined organic solutions were dried (anhydr. $\left.\mathrm{MgSO}_{4}\right)$. Subsequent evaporation of the solvent in vacuo gave the crude product, which was recrystallised from EtOH to yield (E) - N-methylbut-2-enamide 288a as white crystals (0.38 g , 81%), m.p. $69-71^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{227-228} 67-69{ }^{\circ} \mathrm{C}\right) ; \mathrm{v} / \mathrm{cm}^{-1} 1682(\mathrm{C}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.89$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 2.73\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{3}\right), 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $\left.8.09(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.1(\mathrm{C}-4), 26.2(\mathrm{C}-1)^{\prime}\right), 124.4(\mathrm{C}-2), 142.8(\mathrm{C}-3)$ and 166.7 ($\mathrm{C}=0$).

(E)- N -ethylbut-2-enamide 288b ${ }^{229}$

The procedure described for the synthesis of (E) $-N$-methylbut-2-enamide 288a was employed, using ethylamine hydrochloride ($0.59 \mathrm{~g}, 7.2 \mathrm{mmol}$), Proton Sponge ${ }^{\circledR}$ ($2.05 \mathrm{~g}, 9.57$ mmol) and crotonoyl chloride $287(0.50 \mathrm{~g}, 4.8 \mathrm{mmol})$ in a mixture of $\mathrm{DCM}(15 \mathrm{~mL})$ and pyridine (0.6 mL). Subsequent evaporation of the solvent in vacuo afforded (E)-N-ethylbut-2enamide 288b as a pale yellow oil ($0.46 \mathrm{~g}, 85 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1673$ ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.12\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{3}\right), 1.89\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 3.29\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $8.24(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\left.\mathrm{CDCl}_{3}\right) 14.6(\mathrm{C}-2)^{\prime}\right), 18.2\left(\mathrm{CH}_{3}\right), 36.3\left(\mathrm{C}-1^{\prime}\right), 124.9(\mathrm{C}-2), 143.2(\mathrm{C}-3)$ and $166.5(\mathrm{C}=\mathrm{O})$.

(E)-N-propylbut-2-enamide 288c

Crotonoyl chloride $287(0.50 \mathrm{~g}, 4.78 \mathrm{mmol})$ was added dropwise to a pre-cooled $\left(-0{ }^{\circ} \mathrm{C}\right)$, stirred solution of propylamine ($0.80 \mathrm{~mL}, 9.6 \mathrm{mmol}$) and triethylamine ($0.79 \mathrm{~mL}, 5.7 \mathrm{mmol}$) in DCM (15 mL) under N_{2}. The resulting mixture was stirred for 30 min , warmed to room temperature and stirred for an additional 24 hours. The solvent was removed in vacuo and the residue extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The organic extract was washed with water (2 x 50 mL) and brine ($2 \times 50 \mathrm{~mL}$). The aqueous washings were extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and the combined organic solutions were dried (anhydr. MgSO_{4}). Subsequent evaporation of the solvent in vacuo gave the crude product, which was recrystallised from MeOH to yield (E)- N -propylbut-2-enamide $\mathbf{2 8 8}$ c as a brown solid ($0.47 \mathrm{~g}, 77 \%$) m.p. $84-86^{\circ} \mathrm{C}$ (Lit. $82-83^{\circ} \mathrm{C}{ }^{227,230}$); $\mathrm{v} / \mathrm{cm}^{-1} 1673(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{3}\right), 1.53\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right) 1.84\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 3.24\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{CH}_{2}\right), 5.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2-\mathrm{H}), 7.05$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) and $8.41(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4$ (C-3'), 18.1 (C-4), 22.9 (C-2'), 42.4 ($\mathrm{C}-11^{\prime}$), 124.1 ($\mathrm{C}-2$), 143.8 ($\mathrm{C}-3$) and 166.3 ($\mathrm{C}=0$).

(E)-N-isopropylbut-2-enamide 288d

The procedure described for the synthesis of (E)-N-propylbut-2-enamide 288c was employed, using isopropylamine ($0.80 \mathrm{~mL}, 9.6 \mathrm{mmol}$), triethylamine ($0.79 \mathrm{~mL}, 5.7 \mathrm{mmol}$) and crotonoyl chloride $287(0.50 \mathrm{~g}, 4.8 \mathrm{mmol})$ in DCM (15 mL). Subsequent evaporation of the solvent in vacuo gave the crude product, which was recrystallised from MeOH to yield (E)- N-propylbut-2-enamide $\mathbf{2 8 8 c}$ as pale yellow crystals ($0.49 \mathrm{~g}, 82 \%$), m.p. $88-90^{\circ} \mathrm{C}$ (Lit. ${ }^{231}$ $89-90^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 1683(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 2^{\prime}-\right.$ and $3^{\prime}-$ $\left.\mathrm{CH}_{3}\right), 1.78\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 3.86\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}, 2-$ $\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $8.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.3(\mathrm{C}-4), 23.1(\mathrm{C}-2 \mathrm{l}$ and $\mathrm{C}-$ $\left.3^{\prime}\right), 41.6$ ($\mathrm{C}-1$ '), 124.2 (C-2), 143.1 (C-3) and 166.9 ($\mathrm{C}=0$).
(E)-N-butylbut-2-enamide $288 e^{232}$

The procedure described for the synthesis of (E) - N-propylbut-2-enamide $\mathbf{2 8 8}$ c was employed, using butyllamine ($0.91 \mathrm{~mL}, 9.6 \mathrm{mmol}$), triethylamine ($0.79 \mathrm{~mL}, 5.8 \mathrm{mmol}$) and crotonoyl chloride 287 ($0.50 \mathrm{~g}, 4.8 \mathrm{mmol}$) in DCM (15 mL). Subsequent evaporation of the solvent in vacuo afforded (E)-N-butylbut-2-enamide 288e as a yellow oil ($0.47 \mathrm{~g}, 69 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1658(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{CH}_{3}\right), 1.32\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 1.55\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right), 1.82\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 5.87$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}, 2-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.9(\mathrm{C}-$ $\left.4^{\prime}\right), 18.0(\mathrm{C}-4), 19.9\left(\mathrm{C}-3^{\prime}\right), 31.8\left(\mathrm{C}-2^{\prime}\right), 40.8\left(\mathrm{C}-1^{\prime}\right), 124.6(\mathrm{C}-2), 144.1(\mathrm{C}-3)$ and $166.5(\mathrm{C}=0)$.

(E)-N-phenylbut-2-enamide 288 f

The procedure described for the synthesis of (E)- N-propylbut-2-enamide 288c was employed, using aniline ($0.89 \mathrm{~mL}, 9.6 \mathrm{mmol}$), triethylamine ($0.79 \mathrm{~mL}, 5.7 \mathrm{mmol}$) and crotonoyl chloride 287 ($0.50 \mathrm{~g}, 4.8 \mathrm{mmol}$) in DCM (15 mL). Subsequent evaporation of the solvent in vacuo gave the crude product, which was recrystallised from MeOH to yield $(E)-N$ -phenylbut-2-enamide $288 f$ as light brown crystals ($0.42 \mathrm{~g}, 65 \%$), m.p. $110-112{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{233-234}$ $110-111^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 1679(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.79\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right)$, $5.85(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 2-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) 7.12\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.29(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right), 7.60\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 18.4 (C-4), 121.8 ($\mathrm{C}-2^{\prime}$ and $\mathrm{C}-6{ }^{\prime}$), 123.9 ($\mathrm{C}-2$), 124.9 ($\mathrm{C}-4$ '), 128.9 ($\mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$), 136.7 (C-1'), 143.9 (C-3) and 166.9 (C=O).

(E)-N-benzylbut-2-enamide 288g

The procedure described for the synthesis of (E) - N-propylbut-2-enamide 288c was employed, using benzylamine ($1.05 \mathrm{~mL}, 9.6 \mathrm{mmol}$), triethylamine ($0.79 \mathrm{~mL}, 5.7 \mathrm{mmol}$) and
crotonoyl chloride $\mathbf{2 8 7}$ ($0.50 \mathrm{~g}, 4.8 \mathrm{mmol}$) in DCM (15 mL). Subsequent evaporation of the solvent in vacuo gave the crude product, which was recrystallised from MeOH to yield (E) -N -benzylbut-2-enamide $\mathbf{2 8 8} \mathrm{g}$ as pale yellow crystals $\left(0.41 \mathrm{~g}, 74 \%\right.$), m.p. $110-112{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{235}$ $112-114{ }^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 1684$ (C=O); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.77\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 4-\mathrm{CH}_{3}\right)$, $5.86(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 2-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.29\left(5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right.$ and $\left.7^{\prime}-\mathrm{H}\right)$ and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.4(\mathrm{C}-4), 43.2\left(1^{\prime}-\mathrm{CH}_{2}\right), 124.0(\mathrm{C}-2), 127.4\left(\mathrm{C}-5^{\prime}\right)$, 128.0 (C-3' and C-7'), 128.8 (C-4' and C-6'), 140.3 (C-2'), 143.2 and 166.7 (C=O).

(E)-4-bromobut-2-enoic acid 290

(E)-Ethyl 4-bromocrotonate 283 ($1.20 \mathrm{~g}, 6.22 \mathrm{mmol}$) was added to a 2 M solution of potassium hydroxide in ethanol ($1.1 \mathrm{~mL}, 19 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the ethanol was evaporated at reduced pressure and the residue was dissolved in water (100 mL), extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$), and the organic phase discarded. The aqueous phase was acidified (pH 2.5) with $2 \mathrm{M}-\mathrm{HCl}$ and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water ($2 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent in vacuo gave crude product, which was washed with cold hexane to afford (E)-4-bromobut-2-enoic acid 290 as white crystals ($1.01 \mathrm{~g}, 98 \%$), m.p. $72-74{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{236} 71-73$ ${ }^{\circ} \mathrm{C}$); $\mathrm{v} / \mathrm{cm}^{-1} 2891(\mathrm{OH})$ and $1681(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 6.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}, 2-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $8.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 35.2\left(\mathrm{CH}_{2} \mathrm{Br}\right), 124.6(\mathrm{C}-2), 143.8(\mathrm{C}-3)$ and $169.7(\mathrm{C}=\mathrm{O})$.

(E)-4-(diethyloxyphosphoryl)but-2-enoic acid $291{ }^{237}$

Method 1

(E)-4-(Diethoxyphosphoryl)crotonate 284 ($2.00 \mathrm{~g}, 7.99 \mathrm{mmol}$) was added to a 2 M solution of potassium hydroxide in ethanol ($1.41 \mathrm{~mL}, 23.9 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the ethanol was evaporated at reduced pressure and the residue was dissolved in water (100 mL), extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$), and the organic phase discarded. The aqueous phase was acidified (pH 2.5) with $2 \mathrm{M}-\mathrm{HCl}$ and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with water ($2 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$), and dried (anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). The crude product was purified by flash chromatography [on silica gel; elution with hexaneEtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded (E)-4-(diethyloxyphosphoryl)but-2-enoic acid 291 as a clear oil ($1.72 \mathrm{~g}, 97 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 2893(\mathrm{OH})$, $1698(\mathrm{C}=\mathrm{O})$ and $1234(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 2.77(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 26.4 and $3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.6$ and 4.4 $\mathrm{Hz}, 2-\mathrm{H}$) and $7.07(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(2 \times \mathrm{C}-2\right.$), $30.3\left(\mathrm{CH}_{2} \mathrm{P}\right), 62.3(2$ $x \mathrm{C}-1$ '), 125.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=11.0 \mathrm{~Hz}, \mathrm{C}-2$), $137.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.6 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $165.8(\mathrm{C}=0)$.

Method 2

Triethyl phosphite ($3.07 \mathrm{~g}, 18.2 \mathrm{mmol}$) was added slowly to a stirred solution of (E)-4-bromobut-2-enoic acid $290(1.50 \mathrm{~g}, 9.09 \mathrm{mmol})$ in toluene (15 mL) during a period of 1 hour, whilst the temperature of the mixture was maintained at $120^{\circ} \mathrm{C}$. After the addition, the mixture was stirred at the same temperature of a further 8 hours and then cooled to room temperature. The cooled mixture was stirred with hexane (20 mL) for ca. 30 minutes followed by decantation of the hexane layer to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded (E)-4-(diethyloxyphosphoryl)but-2-enoic acid 291 as a clear oil ($1.37 \mathrm{~g}, 68 \%$).

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a ${ }^{\text {\# }}$

In a 100 ml round-bottomed flask, a mixture of $\mathrm{NaIO}_{4}(642 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(75$ $\mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.9 \mathrm{~mL})$ was stirred and heated until a bright yellow suspension formed. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{EtOAc}(3 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ and a 0.1 M aq. solution of $\mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ were added successively. After stirring for 10 minutes, a solution of (E)-4-(diethoxyphosphoryl)-N-methylbut-2-enamide 285a (240 mg, 1.0 mmol) in EtOAc (3 mL) was added, and the resulting heterogeneous mixture was stirred until the full consumption (followed by TLC) of the starting material. After completion of the reaction, anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}(1 \mathrm{~g})$ was added followed by $\mathrm{EtOAc}(25 \mathrm{~mL})$. The solid was removed and the organic layer was washed with satd. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL})$ and water (50 mL), dried (anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and the solvents were removed in vacuo. The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield 292a as a yellow oil ($65.9 \mathrm{mg}, 49$ \%) (Found: C, 40.21 ; H, 7.53; N, 5.25 \%. $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{P}$ requires $\left.\mathrm{C}, 40.15 ; \mathrm{H}, 7.49 ; \mathrm{N}, 5.20 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3241(\mathrm{OH}), 1675(\mathrm{C}=\mathrm{O})$ and 1231 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.94$ and $2.12(2 \mathrm{H}, 2 \times \mathrm{m}, 4-$ $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.38(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 2.82\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{CH}_{3}\right), 3.45(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 3-\mathrm{H}), 4.04(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.\mathrm{OCH}_{2}\right), 4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $10.3(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $24.8\left(1^{\prime \prime}-\mathrm{CH}_{3}\right), 29.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 58.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=10.9 \mathrm{~Hz}, \mathrm{C}-3\right)$, $61.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 80.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.2 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $168.6(\mathrm{C}=\mathrm{O})$.

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(ethylamino)-4-oxobutyl]phosphonate 292b ${ }^{\ddagger}$

[^3]The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and $(E)-4$-(diethoxyphosphoryl)- N -ethylbut-2-enamide 285b ($283 \mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(ethylamino)-4-oxobutyl]phosphonate 292b as a clear oil (66.7 mg, 47 \%) (Found: $\mathrm{C}, 42.44 ; \mathrm{H}, 7.89 ; \mathrm{N}, 5.01 \% . \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 42.40 ; \mathrm{H}, 7.83$; N, 4.94%); v/cm $\mathrm{cm}^{-1} 3252(\mathrm{OH}), 1690(\mathrm{C}=\mathrm{O})$ and $1222(\mathrm{P}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{CH}_{3}\right), 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.78$ and $2.10\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right)$, $3.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.68(1 \mathrm{H}$, $\mathrm{q}, J=7.2 \mathrm{~Hz}, 3-\mathrm{H}), 5.08(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $8.72(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.2\left(\mathrm{C}-2^{\prime \prime}\right)$, $16.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 27.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 35.4\left(\mathrm{C}-1^{\prime \prime}\right), 60.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=11.7\right.$ $\mathrm{Hz}, \mathrm{C}-3), 63.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 79.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.2 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $165.9(\mathrm{C}=\mathrm{O})$.

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(propylamino)-4-oxobutyl]phosphonate 292c ${ }^{\ddagger}$

The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and $(E)-4$-(diethoxyphosphoryl)- N -propylbut-2-enamide 285c ($263 \mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1.5:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(propylamino)-4-oxobutyl]phosphonate 292c as a yellow oil (75.8 mg, 51 \%) (Found: C, 44.53; H, 8.20; N, 4.76 \%. $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 44.44 ; \mathrm{H}, 8.14$; $\mathrm{N}, 4.71 \%$); v/cm $\mathrm{cm}^{-1} 3130(\mathrm{OH}), 1692(\mathrm{C}=\mathrm{O})$ and $1239(\mathrm{P}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.54\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}\right), 1.80$ and 2.08 $\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.28\left(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.43(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{q}, 7.6 \mathrm{~Hz}, 3-\mathrm{H}), 7.75(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$;

[^4]$\left.\mathrm{CDCl}_{3}\right) 11.4\left(\mathrm{C}-3^{\prime \prime}\right), 16.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 23.0\left(\mathrm{C}-2^{\prime \prime}\right), 27.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $41.2\left(\mathrm{C}-1^{\prime \prime}\right), 61.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.9 \mathrm{~Hz}, \mathrm{C}-3\right), 63.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 78.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.6\right.$ $\mathrm{Hz}, \mathrm{C}-2$) and $171.6(\mathrm{C}=\mathrm{O})$.

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(isopropylamino)-4-oxobutyl]phosphonate 292d ${ }^{\ddagger}$

The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and $(E)-4$-(diethoxyphosphoryl)- N -isopropylbut-2-enamide 285d (263 $\mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(isopropylamino)-4-oxobutyl]phosphonate 292d as a clear oil ($71.3 \mathrm{mg}, 48 \%$) (Found: $\mathrm{C}, 44.48$; $\mathrm{H}, 8.19 ; \mathrm{N}, 4.75 \% . \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{6}$ P requires C, 44.44; H, 8.14; N, 4.71%); v/cm $\mathrm{cm}^{-1} 3253(\mathrm{OH}), 1691(\mathrm{C}=\mathrm{O})$ and $1235(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 2^{\prime \prime}-\right.$ and $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.79$ and $2.12\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 2.78(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 3.84\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{H}\right), 4.11(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{OCH}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 3-\mathrm{H})$ and $8.71(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $22.9\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-3^{\prime \prime}\right), 27.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 41.1\left(\mathrm{C}-1^{\prime \prime}\right), 61.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.9 \mathrm{~Hz}, \mathrm{C}-3\right), 63.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 78.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=\right.$ $13.6 \mathrm{~Hz}, \mathrm{C}-2$) and 171.7 (C=O).

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(butylamino)-4-oxobutyl]phosphonate 292e ${ }^{\ddagger}$

[^5]The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and $(E)-4$-(diethoxyphosphoryl)- N -butylbut-2-enamide 285 e ($277 \mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1.5:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(butylamino)-4-oxobutyl]phosphonate 292e as a clear oil (73.2 mg, 47 \%) (Found: $\mathrm{C}, 46.48 ; \mathrm{H}, 8.51 ; \mathrm{N}, 4.57 \% . \mathrm{C}_{12} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 46.30 ; \mathrm{H}, 8.42$; $\mathrm{N}, 4.50 \%$); v/cm ${ }^{-1} 3122(\mathrm{OH}), 1704(\mathrm{C}=\mathrm{O})$ and $1226(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{CH}_{3}\right), 1.18\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.52\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{CH}_{2}\right.$ and $\left.3^{\prime \prime}-\mathrm{CH}_{2}\right)$, 1.81 and $2.11\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right)$, $4.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2-\mathrm{H}), 5.01(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 3-\mathrm{H}), 7.67(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $8.49(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{C}-4^{\prime \prime}\right), 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=5.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.0\left(\mathrm{C}-3^{\prime \prime}\right), 29.5\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}\right.$ $\left.=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 31.9\left(\mathrm{C}-2^{\prime \prime}\right), 40.4\left(\mathrm{C}-1^{\prime \prime}\right), 60.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{C}-3\right), 61.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2\right.$ $\left.\times \mathrm{OCH}_{2}\right), 79.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.2 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $169.9(\mathrm{C}=\mathrm{O})$.

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(phenylamino)-4-oxobutyl]phosphonate 292f ${ }^{\ddagger}$

The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and $(E)-4$-(diethoxyphosphoryl)- N -phenylbut-2-enamide $285 f(300 \mathrm{mg}, 1.0 \mathrm{mmol})$. The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(phenylamino)-4-oxobutyl]phosphonate 292f as a brown oil (81.2 mg, 49 \%) (Found: C, 50.78; H, 6.73; N, 4.29 \%. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 50.75 ; \mathrm{H}, 6.69$; $\mathrm{N}, 4.23 \%$); v/cm ${ }^{-1} 3356(\mathrm{OH}), 1657(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32$ $\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.78$ and $2.03\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 4.13\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.48$ $(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 3-\mathrm{H}), 7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.02(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$

[^6]and $8.80(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 29.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=143.0\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $60.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.5 \mathrm{~Hz}, \mathrm{C}-3\right), 62.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 79.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.6 \mathrm{~Hz}\right.$, C-2), 121.3 ($\mathrm{C}-2^{\prime \prime}$ and $\mathrm{C}-6$ "), 124.1 (C-4"), 129.4 (C-3" and C-5"), 137.6 (C-1") and 169.6 ($\mathrm{C}=\mathrm{O}$).

Diethyl [(2S, 3S)-2,3-dihydroxy-4-(benzylamino)-4-oxobutyl]phosphonate 292g ${ }^{\ddagger}$

The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and (E)-4-(diethoxyphosphoryl) -N -benzylbut-2-enamide $\mathbf{2 8 5 g}$ ($345 \mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield diethyl [(2S,3S)-2,3-dihydroxy-4-(benzylamino)-4-oxobutyl]phosphonate 292g as a yellow oil ($91.5 \mathrm{mg}, 53$ \%) (Found: C, 52.27; H, 6.96; N, 4.12 \%. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 52.17 ; \mathrm{H}, 7.01$; $\mathrm{N}, 4.06 \%) ; \mathrm{v} / \mathrm{cm}^{-1} 3180(\mathrm{OH}), 1688(\mathrm{C}=\mathrm{O})$ and $1228(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33$ $\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.01$ and $2.19\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.29$ (1H, d, J = $7.2 \mathrm{~Hz}, 2-\mathrm{H}), 4.48\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.98(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 3-\mathrm{H}), 7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $8.18(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $8.82(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $28.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 44.0\left(1^{\prime \prime}-\mathrm{CH}_{2}\right), 61.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=11.6 \mathrm{~Hz}, \mathrm{C}-3\right), 62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.4\right.$ $\mathrm{Hz}, 2 \times \mathrm{OCH}_{2}$), 80.2 (d, Jp-c = 13.5 Hz, C-2), 127.9 (C-5"), 128.3 (C-3" and C-7"), 129.1 (C-4" and $\mathrm{C}-6^{\prime \prime}$), 140.8 ($\mathrm{C}-2^{\prime \prime}$) and 171.7 ($\mathrm{C}=\mathrm{O}$).

[(2S, 3S)-2,3-Dihydroxy-4-(methylamino)-4-oxobutyl]phosphonic acid 293a ${ }^{\ddagger}$

[^7]Trimethylsilyl bromide ($0.13 \mathrm{~mL}, 0.88 \mathrm{mmol}$) was added to diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a ($0.12 \mathrm{~g}, 0.44 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and the mixture was heated in the microwave apparatus set to deliver 100 W of power, with a reaction temperature of $100{ }^{\circ} \mathrm{C}$ and reaction time of 10 min . After completion, the mixture was cooled to room temperature, treated with a $95: 5 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture (1.5 mL) and stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [reverse-phase chromatography on C_{18} cellulose; elution with MeOH] to yield [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonic acid 293a as a clear oil ($60.9 \mathrm{mg}, 65 \%$) (Found: C, 28.33; H, 5.71; N, 6.62 \%. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 28.18 ; \mathrm{H}, 5.68 ; \mathrm{N}, 6.57 \%$); v/cm cm^{-1} $3184(\mathrm{OH}), 1683(\mathrm{C}=\mathrm{O})$ and $1244(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.91$ and $2.18(2 \mathrm{H}, 2 \times \mathrm{m}, 4-$ $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.81\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{3}\right), 4.38(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $4.71(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}$ (100 MHz; $\mathrm{D}_{2} \mathrm{O}$) $26.5\left(1^{\prime}-\mathrm{CH}_{3}\right)$, $31.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 59.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=11.2 \mathrm{~Hz}, \mathrm{C}-3\right), 79.9$ $\left(\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=12.7 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $171.8(\mathrm{C}=\mathrm{O})$.

$\left[(2 S, 3 S)\right.$-2,3-Dihydroxy-4-(ethylamino)-4-oxobutyl]phosphonic acid 293b ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.12 \mathrm{~mL}, 0.85$ mmol) and diethyl [(2S,3S)-2,3-dihydroxy-4-(ethylamino)-4-oxobutyl]phosphonate 292b ($0.12 \mathrm{~g}, 0.43 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with MeOH] to yield [(2S, 3S)-2,3-dihydroxy-4-(ethylamino)-4-oxobutyl]phosphonic acid 293b as a clear oil ($66.4 \mathrm{mg}, 68 \%$) (Found: C, 31.57; H, 6.18; N, 6.11 \%. $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 31.73 ; \mathrm{H}, 6.21 ; \mathrm{N}, 6.17$ \%); v/cm $\mathrm{cm}^{-1} 3242$ $(\mathrm{OH}), 1667(\mathrm{C}=\mathrm{O})$ and $1244(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{3}\right)$, 1.77 and $2.02\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.23\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $4.65(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 14.7\left(\mathrm{C}-2^{\prime}\right), 27.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $35.4(\mathrm{C}-1 '), 61.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=11.7 \mathrm{~Hz}, \mathrm{C}-3\right), 80.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=13.3 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $171.5(\mathrm{C}=0)$.

[^8]
[(2S, 3S)-2,3-Dihydroxy-4-(propylamino)-4-oxobutyl]phosphonic acid 293c ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.11 \mathrm{~mL}, 0.80$ mmol) and diethyl [(2S,3S)-2,3-dihydroxy-4-(propylamino)-4-oxobutyl]phosphonate 292c ($0.12 \mathrm{~g}, 0.40 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with MeOH] to yield [(2S, 3S)-2,3-dihydroxy-4-(propylamino)-4-oxobutyl]phosphonic acid $\mathbf{2 9 3 c}$ as a yellow oil ($64.6 \mathrm{mg}, 67 \%$) (Found: C, 34.94; $\mathrm{H}, 6.63 ; \mathrm{N}, 5.88 \% . \mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 34.86 ; \mathrm{H}, 6.69 ; \mathrm{N}, 5.81 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3245$ (OH), $1652(\mathrm{C}=\mathrm{O})$ and $1262(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{CH}_{3}\right)$, $1.56\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz} 2^{\prime}-\mathrm{CH}_{2}\right), 1.79$ and $2.10\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 2-\mathrm{H})$ and $4.89(1 \mathrm{H}, \mathrm{q}, 7.2 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 14.7\left(\mathrm{C}-3^{\prime}\right)$, 22.5 (C-2'), 27.8 ($d, J_{p-c}=141.6 \mathrm{~Hz}, C_{2} P$), $41.2\left(\mathrm{C}-1^{\prime \prime}\right), 61.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=11.5 \mathrm{~Hz}, \mathrm{C}-3\right), 80.1(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{C}}=13.8 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $171.5(\mathrm{C}=\mathrm{O})$.

[(2S, 3S)-2,3-Dihydroxy-4-(isopropylamino)-4-oxobutyl]phosphonic acid 293d ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.11 \mathrm{~mL}, 0.80$ $\mathrm{mmol})$ and diethyl $[(2 S, 3 S)$-2,3-dihydroxy-4-(isopropylamino)-4-oxobutyl]phosphonate 292d ($0.12 \mathrm{~g}, 0.40 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with MeOH] to yield [(2S, 3S)-2,3-dihydroxy-4-(isopropylamino)-4-oxobutyl]phosphonic acid 293d as a yellow oil ($61.7 \mathrm{mg}, 64$ \%) (Found: C, 34.90; $\mathrm{H}, 6.72 ; \mathrm{N}, 5.85 \% . \mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}$ requires $\left.\mathrm{C}, 34.86 ; \mathrm{H}, 6.69 ; \mathrm{N}, 5.81 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3090$ (OH), $1687(\mathrm{C}=\mathrm{O})$ and $1240(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.12\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 2^{\prime}-\right.$ and $3^{\prime}-$

[^9]$\left.\mathrm{CH}_{3}\right), 1.89$ and $2.20\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.88\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 4.23(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, $2-\mathrm{H})$ and $4.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 23.7\left(\mathrm{C}-2^{\prime}\right.$ and $\left.\mathrm{C}-3 '\right), 31.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 41.4(\mathrm{C}-1 '), 60.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=10.7 \mathrm{~Hz}, \mathrm{C}-3\right), 81.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=13.9 \mathrm{~Hz}, \mathrm{C}-2\right)$ and $169.4(\mathrm{C}=0)$.

[(2S, 3S)-2,3-Dihydroxy-4-(butylamino)-4-oxobutyl]phosphonic acid 293e ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.11 \mathrm{~mL}, 0.77$ mmol) and diethyl [(2S,3S)-2,3-dihydroxy-4-(butylamino)-4-oxobutyl]phosphonate 292e ($0.12 \mathrm{~g}, 0.38 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(1: 0.5)$] to yield [(2S, 3S)-2,3-dihydroxy-4-(butylamino)-4-oxobutyl]phosphonic acid 293e as a clear oil (60.1 mg, 62 \%) (Found: C, 37.70; H, 7.15; N, 5.54 \%. $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 37.65 ; \mathrm{H}, 7.11 ; \mathrm{N}, 5.49 \%$); v/cm cm^{-1} $3252(\mathrm{OH}), 1632(\mathrm{C}=\mathrm{O})$ and $1260(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 1.50\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.3^{\prime}-\mathrm{CH}_{2}\right), 1.80$ and $2.01\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 3.23(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{CH}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2-\mathrm{H})$ and $4.99(1 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 14.1 (C-4'), $20.3\left(\mathrm{C}-3^{\prime}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=138.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 32.3\left(\mathrm{C}-2^{\prime}\right), 40.6\left(\mathrm{C}-1^{\prime}\right), 60.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=\right.$ $10.9 \mathrm{~Hz}, \mathrm{C}-3), 79.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.6 \mathrm{~Hz}, \mathrm{C}-2\right)$ and 169.6 (C=O).

[(2S, 3S)-2,3-Dihydroxy-4-(phenylamino)-4-oxobutyl]phosphonic acid 293f ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.10 \mathrm{~mL}, 0.72$ $\mathrm{mmol})$ and diethyl $[(2 S, 3 S)$-2,3-dihydroxy-4-(phenylamino)-4-oxobutyl]phosphonate 292f

[^10]($0.12 \mathrm{~g}, 0.36 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with $\left.\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(1: 0.5)\right]$ to yield [(2S, 3S)-2,3-dihydroxy-4-(phenylamino)-4-oxobutyl]phosphonic acid 293 f as a yellow oil ($61.4 \mathrm{mg}, 62$ \%) (Found: C, 43.69; H, 5.15; N, 5.05 \%. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 43.64 ; \mathrm{H}, 5.13 ; \mathrm{N}, 5.09 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3070(\mathrm{OH}), 1685(\mathrm{C}=\mathrm{O})$ and $1264(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.93$ and $2.18(2 \mathrm{H}, 2$ x m, 4-CH2P), $4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 2-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 3-\mathrm{H})$ and $7.27\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 29.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 60.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $11.5 \mathrm{~Hz}, \mathrm{C}-3$), 80.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=13.9 \mathrm{~Hz}, \mathrm{C}-2$), 122.2 (C-2' and C-6'), 124.6 (C-4'), 129.3 (C-3' and C-5'), 138.2 ($\mathrm{C}-1^{\prime}$) and 169.8 ($\mathrm{C}=0$).
[(2S, 3S)-2,3-Dihydroxy-4-(benzylamino)-4-oxobutyl]phosphonic acid 293g ${ }^{\ddagger}$

The procedure described for the synthesis of [(2S, 3S)-2,3-dihydroxy-4-(methylamino)-4oxobutyl]phosphonic acid 293a was employed, using trimethylsilyl bromide ($0.10 \mathrm{~mL}, 0.70$ $\mathrm{mmol})$ and diethyl $[(2 S, 3 S)$-2,3-dihydroxy-4-(benzylamino)-4-oxobutyl]phosphonate 292g ($0.12 \mathrm{~g}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The crude product was chromatographed [reversephase chromatography on C_{18} cellulose; elution with MeOH] to yield [(2S, 3S)-2,3-dihydroxy-4-(benzylamino)-4-oxobutyl]phosphonic acid 293g as a yellow oil ($62.1 \mathrm{mg}, 62$ \%) (Found: C, 45.75; H, 5.63; N, 4.87 \%. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}$ requires $\left.\mathrm{C}, 45.68 ; \mathrm{H}, 5.58 ; \mathrm{N}, 4.84 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3076$ (OH), $1666(\mathrm{C}=\mathrm{O})$ and $1252(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.88$ and $2.10\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right)$, $4.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 2-\mathrm{H}), 4.83\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 3-\mathrm{H})$ and $7.28(5 \mathrm{H}, \mathrm{m}$, $3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$ and $7^{\prime}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 27.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=145.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, 43.5 ($1^{\prime}-$ CH_{2}), $59.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=10.9 \mathrm{~Hz}, \mathrm{C}-3\right.$), $\left.79.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=14.6 \mathrm{~Hz}, \mathrm{C}-2\right), 127.5(\mathrm{C}-5)^{\prime}\right), 127.8(\mathrm{C}-3 \mathrm{l}$ and $\mathrm{C}-$ 7'), 128.7 (C-4' and C-6'), 140.3 (C-2') and 168.9 (C=O).

[^11]
Ethyl (2S, 3S)-4-(diethoxyphosphoryl)-2,3-dihydroxybutanoate 313

The procedure described for the synthesis of diethyl [(2S,3S)-2,3-dihydroxy-4-(methylamino)-4-oxobutyl]phosphonate 292a was employed, using NaIO_{4} ($642 \mathrm{mg}, 3 \mathrm{mmol}$), $\mathrm{CeCl}_{3} . \mathrm{H}_{2} \mathrm{O}(75 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{RuCl}_{3}(50 \mu \mathrm{~L}, 0.01 \mathrm{mmol})$ and (E)-4-(diethoxyphosphoryl)crotonate 284 ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$). The crude product was chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield ethyl (2S, 3S)-4-(diethoxyphosphoryl)-2,3-dihydroxybutanoate 313 as a yellow oil ($0.11 \mathrm{~g}, 53 \%$) (Found: C, 42.29; H, 7.42 \%. $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{P}$ requires $\mathrm{C}, 42.25$; $\mathrm{H}, 7.45 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3378(\mathrm{OH}), 1687$ ($\mathrm{C}=\mathrm{O}$) and $1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.00(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.04$ and $2.20\left(2 \mathrm{H}, 2 \times \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{P}\right), 4.10\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right.$ and $\left.1^{\prime \prime}-\mathrm{CH}_{2}\right), 4.33-4.38(2 \mathrm{H}, \mathrm{m}, 2$ - and $3-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.0\left(\mathrm{C}-2^{\prime \prime}\right), 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=139.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $61.8\left(\mathrm{C}-1^{\prime \prime}\right), 62.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 67.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.6 \mathrm{~Hz}, \mathrm{C}-3\right), 73.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=13.2\right.$ $\mathrm{Hz}, \mathrm{C}-2$) and $172.7(\mathrm{C}=\mathrm{O})$.

[^12]
3.3. 3-Substituted aniline-derived phosphonate esters and their corresponding phosphonic acids

3.3.1. Reaction of 3-substituted anilines with chloroacetyl chloride

2-Chloro-N-(3-hydroxyphenyl)acetamide 320a

To a stirred solution of 3-aminophenol ($3.01 \mathrm{~g}, 27.0 \mathrm{mmol}$) in THF (30 mL) under nitrogen was added NaH (60 \% dispersion in mineral oil; $1.20 \mathrm{~g}, 48.0 \mathrm{mmol}$) in small portions to permit controlled evolution of hydrogen. Chloroacetyl chloride ($2.20 \mathrm{~mL}, 28 \mathrm{mmol}$) was then added through a septum and the resulting solution was stirred for ca. 6 h . The solvent was evaporated in vacuo and the residue extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The organic extract was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$ and brine $(2 \times 100 \mathrm{~mL})$. The aqueous washings were extracted with EtOAc and the combined organic solutions were dried (anhydr. MgSO_{4}). Evaporation of the solvent in vacuo afforded 2-chloro- N-(3-hydroxyphenyl)acetamide 320a as a grey solid (4.78 g, 92 \%), m.p. 132-134 ${ }^{\circ} \mathrm{C}$ (Lit. ${ }^{141} 134.5-136{ }^{\circ} \mathrm{C}$); $v_{\max }\left(\right.$ solid deposit $\left./ \mathrm{cm}^{-1}\right) 3367(\mathrm{OH})$ and $1648(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 4.22\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 6.47\left(1 \mathrm{H}, \mathrm{dd}, J=6.0\right.$ and $\left.2.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 6.94(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and 0.8 $\left.\mathrm{Hz}, 4^{\prime}-\mathrm{H}\right), 7.09\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.16\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 9.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and 10.16 (1H, s, NH); $\delta_{c} /$ ppm (100 MHz; CDCl_{3}) 43.6 (C-2), 106.3 (C-2'), 109.9 (C-6'), 110.9 (C-4'), 129.4 (C-5'), 139.4 (C-1'), 157.6 (C-3') and 164.4 (C=O).

2-Chloro-N-(3-methoxyphenyl)acetamide 320b

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3-methoxyaniline ($0.91 \mathrm{~mL}, 8.1 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.36 \mathrm{~g}, 15 \mathrm{mmol}$) and chloroacetyl chloride ($0.65 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL), to yield 2-chloro- N-(3-methoxyphenyl)acetamide $\mathbf{3 2 0 b}$ as a light brown solid ($1.35 \mathrm{~g}, 84 \%$), m.p $90-92{ }^{\circ} \mathrm{C}$. (Lit. ${ }^{141} 92-94{ }^{\circ} \mathrm{C}$); $v_{\max }\left(\right.$ solid deposit/ cm^{-1}) $1680(\mathrm{C}=0)$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 6.70\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4\right.$ and $\left.1.6 \mathrm{~Hz}, 6{ }^{\prime}-\mathrm{H}\right), 6.83(1 \mathrm{H}$, dd, $J=6.8$ and $\left.0.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$ and 8.20 (1H, s, NH); $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 42.8(\mathrm{C}-2), 55.3\left(\mathrm{CH}_{3}\right), 105.8(\mathrm{C}-2$ '), $110.9(\mathrm{C}-6$ '), 112.1 (C-4'), 129.7 (C-5'), 137.8 (C-1'), 160.1 (C-3') and 163.7 (C=O).

N -(3-Bromophenyl)-2-chloroacetamide 320c

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3-bromoaniline ($0.63 \mathrm{~mL}, 5.8 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and chloroacetyl chloride ($0.41 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield N -(3-bromophenyl)-2-chloroacetamide $\mathbf{3 2 0 c}$ as a brown solid ($1.25 \mathrm{~g}, 87 \%$), m.p $100-102{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{141} 98-100{ }^{\circ} \mathrm{C}$); $u_{\text {max }}$ (solid deposit $/ \mathrm{cm}^{-1}$) $1682(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.11(2 \mathrm{H}$, s, 2-CH2), $7.12\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6^{\prime}-\right.$ H), $7.72\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, and $8.19(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 42.7(\mathrm{C}-2), 118.5$ (C-6'), 122.6 (C-3'), 122.9 (C-2'), 128.2 (C-4'), 130.3 (C-5'), 137.8 (C-1') and 163.8 (C=O).

2-Chloro-N-(3-fluorophenyl)acetamide 320d

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3 -fluoroaniline ($1.04 \mathrm{~mL}, 5.8 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and chloroacetyl chloride ($0.88 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield 2-chloro- N -(3-fluorophenyl)acetamide 320d as a brown solid ($1.52 \mathrm{~g}, 75 \%$), m.p 118-120 ${ }^{\circ} \mathrm{C}$. (Lit. $\left.{ }^{141} 121-123^{\circ} \mathrm{C}\right)$; $\mathrm{v}_{\max }\left(\right.$ solid deposit $\left./ \mathrm{cm}^{-1}\right) 1682(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.27(2 \mathrm{H}$, s, 2-CH2 $), 6.92\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=5.2,2.0\right.$ and $\left.0.8 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.35\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.57(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ $=7.2$ and $2.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$) and $10.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 43.4(\mathrm{C}-2)$, 105.9 (d, $\left.J_{F-C}=26 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 110.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 115.0\left(\mathrm{C}-6^{\prime}\right), 130.4\left(\mathrm{C}-5^{\prime}\right), 140.0\left(\mathrm{C}-1^{\prime}\right), 160.8(\mathrm{~d}$, $\left.J_{\mathrm{F}-\mathrm{C}}=240.2 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right)$ and $164.9(\mathrm{C}=\mathrm{O})$.

2-Chloro-N-(3-cyanophenyl)acetamide 320e

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3 -aminobenzonitrile ($1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.54 \mathrm{~g}, 23 \mathrm{mmol}$) and chloroacetyl chloride ($1.04 \mathrm{~mL}, 10.1 \mathrm{mmol}$) in THF (15 mL), to yield 2-chloro-N-(3-cyanophenyl)acetamide 320e as a brown solid (1.57 g, 80%), m.p 146$148{ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 194.02408 \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}$ requires: $\mathbf{M}^{+}, 194.02432$); $u_{\max }$ (solid deposit/ cm^{-1}) $2230(\mathrm{C}=\mathrm{N})$ and $1697(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.29\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{2}\right), 7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.82\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 8.07\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, and $10.67(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 43.3 (C-2), 111.6 (C-3'), 118.5 (C=N), 121.9 (C-2'), 123.9 (C-5'), 127.3 (C-6'), 130.3 (C-4'), 139.1 ($\mathrm{C}-1^{\prime}$) and 165.2 ($\mathrm{C}=\mathrm{O}$).

2-Chloro-N-(3-nitrophenyl)acetamide 320f

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3-nitroaniline ($1.01 \mathrm{~g}, 7.27 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $0.33 \mathrm{~g}, 12.9 \mathrm{mmol})$ and chloroacetyl chloride ($0.87 \mathrm{~mL}, 7.3 \mathrm{mmol}$) in THF (15 mL), to yield 2-chloro- N -(3-nitrophenyl)acetamide $\mathbf{3 2 0 f}$ as a dark brown solid ($1.37 \mathrm{~g}, 88 \%$), m.p $96-98{ }^{\circ} \mathrm{C}$. (Lit. ${ }^{241} 90-93{ }^{\circ} \mathrm{C}$); $u_{\text {max }}$ (solid deposit $/ \mathrm{cm}^{-1}$) $1683(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.32(2 \mathrm{H}, \mathrm{s}$, 2-CH2), $7.62\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.93\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 8.61\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, and 10.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 43.3$ (C-2), 113.3 (C-2'), 118.2 (C-4'), 125.2 (C-6'), 130.2 (C-5'), 139.5 (C-1'), 147.8 (C-3') and 165.3 ($C=0$).

2-Chloro- N-[3-(hydroxymethyl)phenyl]acetamide 320 g and 3 -[(Chloroacetyl)amino]benzyl chloroacetate 320 h

The procedure described for the synthesis of 2-chloro- N-(3-hydroxyphenyl)acetamide 320a was employed, using 3-aminobenzyl alcohol ($1.02 \mathrm{~g}, 8.12 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.52 \mathrm{~g}, 21 \mathrm{mmol}$) and chloroacetyl chloride ($0.67 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL). The solvent was evaporated in vacuo and flash chromatography gave two fractions.
i) 2-Chloro-N-[3-(hydroxymethyl)phenyl]acetamide $\mathbf{3 2 0 g}$ as a yellow solid ($1.16 \mathrm{~g}, 62$ \%), m.p 91-93 ${ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 201.03941 \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}_{2}$ requires: $\mathbf{M}^{+}, 201.03706$); $\mathrm{v}_{\max }$ (solid deposit/cm ${ }^{-1}$) $3349(\mathrm{OH})$ and $1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.23(2 \mathrm{H}$, s, 2-CH2), $4.47\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime \prime}-\mathrm{CH}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.26$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $10.26(1 \mathrm{H}$, s, NH) ; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 43.5$ (C-2), 62.6 (C-1'), 117.2 (C-2'), 117.5 (C-6'), 121.7 (C-4'), 128.4 (C-5'), 138.2 (C-1'), 143.3 (C-3') and 164.4 (C=O).
ii) 3-[(Chloroacetyl)amino]benzyl chloroacetate 320h as a yellow solid ($0.18 \mathrm{~g}, 11 \%$), m.p. $84-86^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 276.10711 \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires: $\mathbf{M}^{+}, 276.11594$); $\mathbf{v}_{\max }$ (solid depsoit/cm ${ }^{-1}$) $1738(\mathrm{O}-\mathrm{C}=\mathrm{O})$ and $1676(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.20$ $\left(2 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{CH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{CH}_{2}\right), 5.30\left(2 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{2}\right), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H})$, $7.47(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 5-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.14 \mathrm{~Hz}, 4-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 8.30 (1H, s, NH); $\delta_{c} / p p m\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 42.1$ (C-4'), 44.1 (C-2'), 68.7 (C-1'), 121.2 (C-2), 121.5 (C-4), 126.3 (C-6), 130.8 (C-5), 137.4 (C-3), 137.0 (C-1), 163.9 (C-1') and 167.1 (C-3').

3.3.1.1. Synthesis of diethyl methylphosphonates using Michaelis-Arbuzov methodology

Diethyl [N-(3-hydroxyphenyl)carbamoyl]methylphosphonate 321a

Triethyl phosphite ($0.71 \mathrm{~mL}, 4.1 \mathrm{mmol}$) was added through a septum to 2 -chloro- N -(3hydroxyphenyl)acetamide 320a ($0.51 \mathrm{~g}, 2.8 \mathrm{mmol}$) under nitrogen in an oven-dried roundbottomed flask equipped with a reflux condenser, and the resulting mixture was refluxed for ca. 9 h during which time the reaction was monitored by TLC. The cooled mixture was then stirred with hexane $(20 \mathrm{~mL})$ for ca. 30 minutes followed by decantation of the hexane layer to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N(3hydroxyphenyl)carbamoyl)]methylphosphonate 321a as a dark brown solid ($0.52 \mathrm{~g}, 66$ \%), m.p. $116-118{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{141} 115-117{ }^{\circ} \mathrm{C}$); $v_{\max }\left(\right.$ solid deposit/cm ${ }^{-1}$) $3263(\mathrm{OH}), 1667(\mathrm{C}=\mathrm{O}), 1230$ ($\mathrm{P}=\mathrm{O}$) and $1024(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.03(2 \mathrm{H}$, $\left.d, J_{P-H}=21.1 \mathrm{~Hz}, C_{2} P\right), 4.17\left(4 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $1.4 \mathrm{~Hz}, 4-$ H), $6.79(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and $1.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}, 2-$
$\mathrm{H}), 7.99(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.96(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $36.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=130.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 63.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 107.3(\mathrm{C}-2), 111.1(\mathrm{C}-4), 112.1$ (C-6), 129.8 (C-5), $138.5(\mathrm{C}-1), 157.3(\mathrm{C}-3)$ and $162.7\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=4.1 \mathrm{~Hz}, \mathrm{C}=0\right)$; $\delta_{\mathrm{p}} / \mathrm{ppm}(162$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.2(\mathrm{P}=\mathrm{O})$.

Diethyl [N-(3-methoxyphenyl)carbamoyl]methylphosphonate 321b

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 321a was employed, using 2-chloro-N-(3methoxyphenyl)acetamide 320b ($0.55 \mathrm{~g}, 2.8 \mathrm{mmol}$) and triethyl phosphite ($0.95 \mathrm{~mL}, 5.5$ $\mathrm{mmol})$. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N-(3-methoxyphenyl)carbamoyl]methylphosphonate 321b as a yellowish-brown solid (0.35 g, 65 \%), m.p 88-90 ${ }^{\circ} \mathrm{C}$. (Found: $\mathbf{M}^{+}, 301.10976 \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 301.10791$; $\mathrm{u}_{\max }$ (solid deposit/cm ${ }^{-1}$) $1684(\mathrm{C}=\mathrm{O}), 1239(\mathrm{P}=\mathrm{O})$ and $1050(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.34\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.02\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=20.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) 4.17(4 \mathrm{H}$, $\left.\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.63(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and 1.2 $\mathrm{Hz}, 6-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 2-\mathrm{H})$ and $8.84(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 35.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=128.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 55.3\left(\mathrm{OCH}_{3}\right) 63.0$ $\left(\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{P}\right), 105.4(\mathrm{C}-2), 110.4(\mathrm{C}-4), 113.3(\mathrm{C}-6), 129.6(\mathrm{C}-5), 138.9(\mathrm{C}-1)$, $160.0(\mathrm{C}-3)$ and $162.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) ; \delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.8(\mathrm{P}=\mathrm{O})$.

Diethyl [N-(3-bromophenyl)carbamoyl]methylphosphonate 321c

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 321a was employed, using 2-chloro-N-(3bromophenyl)acetamide $320 \mathrm{c}(0.67 \mathrm{~g}, 2.7 \mathrm{mmol}$) and triethyl phosphite ($0.92 \mathrm{~mL}, 5.4$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-bromophenyl)carbamoyl]methylphosphonate 321c as a yellowish-brown solid (0.25 g , 62 \%), m.p $73-75{ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 351.04263 \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 351.00581$); $u_{\max }$ (solid deposit/ cm^{-1}) 1683 ($\mathrm{C}=\mathrm{O}$), 1238 ($\mathrm{P}=\mathrm{O}$) and 1050 ($\mathrm{P}-\mathrm{OEt}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=20.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.11(4 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{OCH}_{2}\right), 7.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H})$, $7.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, 35.6 ($d, J_{p-c}=129.1 \mathrm{~Hz}, \mathrm{CH}_{2} P$), $63.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right.$), $112.4(\mathrm{C}-6), 117.8(\mathrm{C}-3), 122.3$ (C-2), 126.8 (C-4), 129.8 (C-5), 139.2 ($\mathrm{C}-1$) and 162.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.4 \mathrm{~Hz}, \mathrm{C}=0$); $\delta_{\mathrm{P}} / \mathrm{ppm}(162$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.1(\mathrm{P}=\mathrm{O})$.

Diethyl [N-(3-fluorophenyl)carbamoyl]methylphosphonate 321d

The procedure described for the synthesis of diethyl [N -(3hydroxyphenyl)carbamoyl]methylphosphonate 321a was employed, using 2-chloro- N -(3-
fluorophenyl)acetamide $\mathbf{3 2 0 d}(0.50 \mathrm{~g}, 2.6 \mathrm{mmol})$ and triethyl phosphite ($0.92 \mathrm{~mL}, 5.3 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexaneEtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N-(3fluorophenyl)carbamoyl]methylphosphonate 321d as a brown solid (0.26 g, 56 \%), m.p 83-85 ${ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 289.08671 \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FNO}_{4} \mathrm{P}$ requires: \mathbf{M}^{+}, 289.08792); $\mathbf{u}_{\text {max }}$ (solid deposit/ cm^{-1}) $1680(\mathrm{C}=\mathrm{O}), 1228(\mathrm{P}=\mathrm{O})$ and $1049(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{3}\right), 3.04\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=20.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.17\left(4 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.74(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ $=6.0,2.4$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4,6-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2 \times 6.4 \mathrm{~Hz}$ and 1.6 Hz , $5-H) 7.45(1 H, d t, J=6.4$ and $2.0 \mathrm{~Hz}, 2-H)$ and $9.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 35.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=127 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 63.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 107.0(\mathrm{~d}$, $\left.J_{\mathrm{F}-\mathrm{C}}=26.3 \mathrm{~Hz}, \mathrm{C}-2\right), 111.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=18.3 \mathrm{~Hz}, \mathrm{C}-4\right), 114.9(\mathrm{C}-6), 129.8(\mathrm{C}-5), 139.8(\mathrm{C}-1), 162.1$ $\left(\mathrm{d}, J_{\mathrm{F}-\mathrm{C}}=243.2 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $164.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=4.4 \mathrm{~Hz}, \mathrm{C}=0\right) ; \delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.5$ ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-cyanophenyl)carbamoyl]methylphosphonate 321e

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonate 321a was employed, using 2-chloro- N-(3-cyanophenyl)acetamide 320e (0.50 g, $2.5 \mathrm{mmol})$ and triethyl phosphite ($0.87 \mathrm{~mL}, 5.1 \mathrm{mmol})$. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N-(3-cyanophenyl)carbamoyl]methyl phosphonate 321e as a yellowish-brown solid ($0.21 \mathrm{~g}, 48 \%$), m.p $117-119{ }^{\circ} \mathrm{C}$; (Found: \mathbf{M}^{+}, 296.09070. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 296.09259$); $\mathrm{v}_{\max }$ (solid deposit/ cm^{-1}) 2230 ($\mathrm{C} \equiv \mathrm{N}$), $1686(\mathrm{C}=\mathrm{O}), 1217(\mathrm{P}=\mathrm{O})$ and $1050(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{3}\right), 3.01\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=20.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.19\left(4 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 7.44(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-H), 7.56(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $9.88(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3$
$\left(d, J_{p-C}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 36.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=129.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 63.3\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=7.2 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right)$, 112.6 (C-3), 118.4 ($\mathrm{C} \equiv \mathrm{N}$), 122.4 (C-2) 123.2 (C-5), 127.2 (C-6), 129.4 (C-4), 138.8 (C-1) and 162.5 (d, Jp-c $=4.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.2$ ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-nitrophenyl)carbamoyl]methylphosphonate 321f

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonate 321a was employed, using 2-chloro- N-(3-nitrophenyl) acetamide 320 f (0.40 g , 1.9 mmol) and triethyl phosphite ($0.64 \mathrm{~mL}, 3.7 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-nitrophenyl)carbamoyl]methyl phosphonate 321f as a dark brown liquid ($0.42 \mathrm{~g}, 72$ \%) (Found: $\mathbf{M}^{+}, 316.082395$ $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires: $\mathbf{M}^{+}, 316.08242$); $\mathrm{u}_{\text {max }}\left(\right.$ thin film $/ \mathrm{cm}^{-1}$) $1684(\mathrm{C}=\mathrm{O}), 1262(\mathrm{P}=\mathrm{O})$ and 1035 (P-OEt); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 3.06\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=\right.$ $\left.21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.17\left(4 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 6.88$ $(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 8.29(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $8.90(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 35.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=128.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 63.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.8 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 114.1(\mathrm{C}-2), 118.5(\mathrm{C}-4), 124.8(\mathrm{C}-6), 124.9(\mathrm{C}-5)$, 129.5 (C-1), 139.1 ($\mathrm{C}-3$) and 162.6 (d, $\mathrm{J}_{\mathrm{P}-\mathrm{H}}=4.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.6$ ($\mathrm{P}=0$).

Diethyl \{ N-[3-(hydroxymethyl)phenyl]carbamoyl\}methylphosphonate $\mathbf{3 2 1 g}$

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]methylphosphonate 321a was employed, using 2-chloro- N -[3(hydroxymethyl)phenyl]acetamide $\mathbf{3 2 0 g}(0.30 \mathrm{~g}, 1.5 \mathrm{mmol})$ and triethyl phosphite (0.51 mL , 3.0 mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}methylphosphonate 321g as a yellow oil ($0.29 \mathrm{~g}, 65$ \%); (Found: $\mathbf{M}^{+}, 301.108030 . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 301.10791$); $\mathrm{u}_{\max }$ (thin film $/ \mathrm{cm}^{-1}$) $3274(\mathrm{OH}), 1684(\mathrm{C}=\mathrm{O}), 1376(\mathrm{P}=\mathrm{O})$ and $1050(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.35\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.18(4 \mathrm{H}$, q, J = $7.2 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}$), $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 5-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, 8.0 \mathrm{~Hz}, 6-\mathrm{H})$ and $9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right), 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 36.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=128.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 63.0\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=7.2 \mathrm{~Hz}\right.$, $\left.\mathrm{OCH}_{2}\right), 64.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.1(\mathrm{C}-2), 118.7(\mathrm{C}-6), 122.6(\mathrm{C}-4), 128.9$ (C-5), 138.0 (C-1), 141.9 (C3) and $163.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=3.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right) ; \delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.2(\mathrm{P}=\mathrm{O})$.

3.3.1.2. \quad Synthesis of methylphosphonic acids derivatives using TMSBr

[N-(3-Hydroxyphenyl)carbamoyl]methylphosphonic acid 328a

Trimethylsilyl bromide ($0.23 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added to diethyl [N-(3-hydroxyphenyl)carbamoyl]methylphosphonate 321a ($0.25 \mathrm{~g}, 0.87 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and the mixture was heated in the microwave apparatus set to deliver 100 W of power, with a reaction temperature of $60^{\circ} \mathrm{C}$ and reaction time of 10 min . After completion, the mixture was cooled to room temperature, treated with a $95: 5 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture and stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N-(3hydroxyphenyl)carbamoyl]methylphosphonic acid 328a as a yellow viscous liquid ($0.22 \mathrm{~g}, 63$ \%); (Found: $\mathbf{M}^{+}, 231.02110 \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 231.02966 ; \mathrm{v} / \mathrm{cm}^{-1} 3264(\mathrm{OH}), 1674$ $(\mathrm{C}=\mathrm{O})$ and $1241(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.82\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.21$ $(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}) 6.42(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H})$, $7.05(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.06(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{c} /$ ppm (100 MHz; DMSO- d_{6}) $35.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=130.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $108.1(\mathrm{C}-2), 114.7(\mathrm{C}-4), 117.6$ (C-6), 130.9 (C-5), 138.8 (C-1), 146.9 (C-3) and $163.5\left(d, J_{p-c}=3.8 \mathrm{~Hz}, \mathrm{C}=0\right.$); $\delta_{\mathrm{P}} / \mathrm{ppm}(162$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.6(\mathrm{P}=\mathrm{O})$.

[N-(3-Methoxyphenyl)carbamoyl]methylphosphonic acid 328b

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl [N-(3-methoxyphenyl)carbamoyl]methyl phosphonate 321b ($0.25 \mathrm{~g}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.23 mL , 1.7 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N-(3methoxyphenyl)carbamoyl]methylphosphonic acid 328b as a grey viscous liquid (0.21 g, 62 \%); (Found: $\mathbf{M}^{+}, 245.03630 \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 245.04531$; v/cm $\mathrm{cm}^{-1} 3282(\mathrm{OH}), 1672$ $(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.30(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.00\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=20.8\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.95(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{OH}), 6.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$
6.4 and $2.4 \mathrm{~Hz}, 4-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.6$ and $2.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.35$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $8.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 35.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=131.8\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $55.3\left(\mathrm{OCH}_{3}\right), 105.4$ (C-2), 110.4 (C-4), 112.0 (C-6), 129.6 (C-5), 138.9 (C-3), 160.1 ($\mathrm{C}-1$) and $162.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right.$); $\delta_{\mathrm{p}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.0$ ($\mathrm{P}=\mathrm{O}$).

[N-(3-Bromophenyl)carbamoyl]methylphosphonic acid 328c

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl [N-(3-bromophenyl)carbamoyl]methyl phosphonate 321c ($0.11 \mathrm{~g}, 0.40 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.11 mL , $0.80 \mathrm{mmol})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield [N -(3-bromophenyl)carbamoyl]methylphosphonic acid 328c as a yellow viscous liquid (0.067 g , 42 \%); (Found: $\mathbf{M}^{+}, 292.93953 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 292.94526 ; \mathrm{v} / \mathrm{cm}^{-1} 3289(\mathrm{OH}), 1668$ (C=O) and $1218(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}_{-} \mathrm{d}_{6}\right) 2.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.71$ $(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.60(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H})$, $7.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}(100$ MHz; DMSO-d ${ }_{6}$) 36.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=131.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 112.6 (C-6), 118.0 (C-2), 122.5 (C-3), 127.0 (C4), 130.2 ($\mathrm{C}-5$), $139.5(\mathrm{C}-1)$ and 163.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.1$ ($\mathrm{P}=0$).

[N-(3-Fluorophenyl)carbamoyl]methylphosphonic acid 328d

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl [N-(3-fluorophenyl)carbamoyl]methyl phosphonate 321d ($0.20 \mathrm{~g}, 0.69 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.19 mL , 1.4 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-fluorophenyl)carbamoyl]methylphosphonic acid 328d as a yellow oil ($0.13 \mathrm{~g}, 57 \%$); (Found: $\mathbf{M}^{+}, 233.02363 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{FNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 233.02532$; $\mathrm{v} / \mathrm{cm}^{-1} 3248(\mathrm{OH}), 1654$ (C=O) and $1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 3.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right) 3.43(2 \mathrm{H}, \mathrm{s}, 2$ $\mathrm{x} \mathrm{OH}), 6.84(1 \mathrm{H}, \mathrm{dd}, J=6.2$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.25(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $2.0 \mathrm{~Hz}, 2-\mathrm{H}$) and $9.28(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; D M S O-d_{6}\right) 35.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=131.4 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), 107.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2$), 111.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=18.1 \mathrm{~Hz}, \mathrm{C}-4$), $115.1(\mathrm{C}-6), 130.2(\mathrm{C}-5)$, $140.6(\mathrm{C}-1), 162.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=242.8 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $168.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{C}=0\right)$; $\delta_{\mathrm{P}} / \mathrm{ppm}(162$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.8(\mathrm{P}=\mathrm{O})$.

[N-(3-Cyanophenyl)carbamoyl]methylphosphonic acid 328e

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl [N-(3-cyanophenyl)carbamoyl]methyl phosphonate 321e ($0.15 \mathrm{~g}, 0.51 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.13 mL , 1.0 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield [N -(3-cyanophenyl)carbamoyl]methylphosphonic acid 328e as a light yellow viscous liquid (0.10 g, 59 \%). (Found: $\mathbf{M}^{+}, 240.02161 \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 240.02999 ; \mathrm{v} / \mathrm{cm}^{-1} 3284(\mathrm{OH})$, $2234(\mathrm{C} \equiv \mathrm{N}), 1678(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 2.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=\right.$ $\left.21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.31(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.35(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and 2.0 $\mathrm{Hz}, 4-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $8.09(1 \mathrm{H}, \mathrm{s}$,

125.5 (C-6) 126.8 (C-2), 128.2 (C-4), 129.6 (C-5), 138.9 (C-1) and $164.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=4.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right.$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.8(\mathrm{P}=\mathrm{O})$.

[N-(3-Nitrophenyl)carbamoyl]methylphosphonic acid 328f

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl [N-(3-nitrophenyl)carbamoyl]methyl phosphonate $321 \mathrm{f}(0.13 \mathrm{~g}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.11 mL , $0.80 \mathrm{mmol})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-nitrophenyl)carbamoyl]methylphosphonic acid $\mathbf{3 2 8 f}$ as a brown viscous liquid ($0.089 \mathrm{~g}, 67$ \%); (Found: $\mathbf{M}^{+}, 260.01753 \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires: $\mathbf{M}^{+}, 260.01982 ; \mathrm{v} / \mathrm{cm}^{-1} 3275(\mathrm{OH}), 1682$ (C=O) and $1258(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 2.84\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.62$ ($1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}$) $7.02(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.09(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{t}$, $J=8.4,5-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right)$ 35.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=131.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 114.6 (C-2), 118.9 (C-4), 125.2 (C-6), 125.8 (C-5), 129.6 (C-1), 139.1 ($\mathrm{C}-3$) and 162.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.2$ ($\mathrm{P}=\mathrm{O}$).

N-[3-(Hydroxymethyl)phenylcarbamoyl]methylphosphonic acid 328g

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]methyl phosphonic acid 328a was employed, using diethyl \{ N-[3-(hydroxymethyl)phenyl] carbamoyl\}methyl phosphonate $\mathbf{3 2 1 g}(0.12 \mathrm{~g}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide ($0.11 \mathrm{~mL}, 0.80 \mathrm{mmol}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield N-[(3-(Hydroxymethyl)phenylcarbamoyl]methyl phosphonic acid 328g as a yellow viscous liquid ($0.043 \mathrm{~g}, 48 \%$); (Found: $\mathbf{M}^{+}, 245.03614 \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}$ requires: \mathbf{M}^{+}, 245.03531; $\mathrm{v} / \mathrm{cm}^{-1} 3306(\mathrm{OH}), 1667(\mathrm{C}=\mathrm{O})$ and $1236(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right)$ $2.31(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.82\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.95(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$, $7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.44(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $6-\mathrm{H})$ and 9.26 (1H, s, NH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right) 35.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=129.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 64.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.3(\mathrm{C}-2)$, 119.1 (C-6), 122.2 (C-4), 128.6 (C-5), 139.0 (C-1), 142.5 (C-3) and 166.3 (d, Jp-c $=4.4 \mathrm{~Hz}, \mathrm{C}=0$); $\delta_{\mathrm{p}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.9$ ($\mathrm{P}=\mathrm{O}$).

3.3.1.3. Synthesis of sodium hydrogen methylphosphonate derivatives

Sodium hydrogen [N-(3-hydroxyphenyl)carbamoyl]methylphosphonate 329a

[N -(3-Hydroxyphenyl)carbamoyl]methylphosphonic acid 328a ($0.15 \mathrm{~g}, 0.65 \mathrm{mmol}$) was treated with a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.6 \mathrm{~mL})$ and the mixture was stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [reversephase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-hydroxyphenyl)carbamoyl]methylphosphonate 329a as a light brown semi-solid (98 mg, 98%) $\mathrm{v} / \mathrm{cm}^{-1} 3208(\mathrm{OH}), 1677(\mathrm{C}=\mathrm{O}), 1228(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=\right.$ $\left.22.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 6.39(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $2 \mathrm{~Hz}, 4-\mathrm{H}), 7.08$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 36.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$
$\left.139.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 108.3(\mathrm{C}-2), 115.2(\mathrm{C}-4), 118.4(\mathrm{C}-6), 129.9(\mathrm{C}-5), 138.6(\mathrm{C}-1), 146.4(\mathrm{C}-3)$ and $164.1\left(d, J_{P-C}=3.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$.

Sodium hydrogen [N-(3-methoxyphenyl)carbamoyl]methylphosphonate 329b

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3methoxyphenyl)carbamoyl]methylphosphonic acid 328b ($0.15 \mathrm{~g}, 0.61 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.58 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3-methoxyphenyl)carbamoyl]methylphosphonate 329b as a pale yellow semi-solid ($0.11 \mathrm{~g}, 97 \%$); v/cm ${ }^{-1} 1687(\mathrm{C}=\mathrm{O})$, $1221(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ $2.79\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=20.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.19(1 \mathrm{H}, \mathrm{dd}, J=6.2$ and $2.4 \mathrm{~Hz}, 4-\mathrm{H})$, $6.66(1 \mathrm{H}, \mathrm{dd}, J=6.2$ and $2.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}$, 2-H); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 35.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=143.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 55.2\left(\mathrm{OCH}_{3}\right), 105.6(\mathrm{C}-2), 110.4$ (C-4), 112.6 (C-6), 129.5 (C-5), $139.0(\mathrm{C}-3), 159.9(\mathrm{C}-1)$ and $162.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.0 \mathrm{~Hz}, \mathrm{C}=0\right.$).

Sodium hydrogen [N-(3-bromophenyl)carbamoyl]methylphosphonate 329c

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3bromophenyl)carbamoyl]methylphosphonic acid 328c ($0.15 \mathrm{~g}, 0.51 \mathrm{mmol}$) and a solution of
$\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.47 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-bromophenyl)carbamoyl]methylphosphonate 329c as a brown semi-solid ($0.10 \mathrm{~g}, 94 \%$); $\mathrm{v} / \mathrm{cm}^{-1}(\mathrm{OH}), 1681(\mathrm{C}=\mathrm{O}), 1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.80$ $\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 5.99(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}(100 \mathrm{MHz}$; $\mathrm{D}_{2} \mathrm{O}$) 36.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 112.47 (C-6), 118.4 (C-2), 122.6 (C-3), 126.8 (C-4), 129.8 (C-5), $139.3(\mathrm{C}-1)$ and $163.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$.

Sodium hydrogen [N-(3-fluorophenyl)carbamoyl]methylphosphonate 329d

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3fluorophenyl)carbamoyl]methylphosphonic acid 328d ($0.15 \mathrm{~g}, 0.64 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.59 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-fluorophenyl)carbamoyl]methylphosphonate 329d as a pale yellow semi-solid ($96 \mathrm{mg}, 97 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1668$ ($\mathrm{C}=\mathrm{O}$), 1231 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right.$) $2.98\left(2 \mathrm{H}, \mathrm{d}, J_{\text {P-H }}=21.4 \mathrm{~Hz}, C H_{2} \mathrm{P}\right), 6.82(1 \mathrm{H}, \mathrm{dd}, J=6.2$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.27(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H})$ and $7.38(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4$ and $2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 35.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=138.4\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $107.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=25.8 \mathrm{~Hz}, \mathrm{C}-2\right), 112.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=18.5 \mathrm{~Hz}, \mathrm{C}-4\right), 114.8(\mathrm{C}-6), 130.6(\mathrm{C}-5)$, $140.3(\mathrm{C}-1), 162.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=243.2 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $168.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{C}=0\right)$.

Sodium hydrogen [N-(3-cyanophenyl)carbamoyl]methylphosphonate 329e

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3cyanophenyl)carbamoyl]methylphosphonic acid 328 e ($0.15 \mathrm{~g}, 0.64 \mathrm{mmol}$) and a solution of NaOH (1.1 mol) in EtOH (0.59 mL). The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-cyanophenyl)carbamoyl]methylphosphonate 329e as a pale yellow semi-solid ($96 \mathrm{mg}, 97 \%$); v/cm ${ }^{-1} 2228$ ($\mathrm{C} \equiv \mathrm{N}$), 1679 ($\mathrm{C}=\mathrm{O}$), 1241 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.2$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $8.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H})$; $\delta_{c} / p p m\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 36.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=130.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right) 112.7$ (C-3), 116.3 (C=N), 125.7 (C-6), 126.5 (C-2), 128.3 (C-4), 129.9 (C-5), 139.1 (C-1) and 164.5 (d, JP-c $=4.4 \mathrm{~Hz}, \mathrm{C}=0$).

Sodium hydrogen [N-(3-nitrophenyl)carbamoyl]methylphosphonate 329f

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3nitrophenyl)carbamoyl]methylphosphonic acid $328 \mathrm{f}(0.15 \mathrm{~g}, 0.58 \mathrm{mmol})$ and a solution of NaOH (1.1 mol) in EtOH (0.50 mL). The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-nitrophenyl)carbamoyl]methylphosphonate $\mathbf{3 2 9 f}$ as a yellow
semi-solid (91 mg, 93%); v/cm ${ }^{-1} 1679(\mathrm{C}=\mathrm{O}), 1241(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.83(2 \mathrm{H}$, d, $\left.J_{P-H}=21.2 \mathrm{~Hz}, C H_{2} P\right), 6.60(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{dd}, J=7.6$ and 2.0 Hz , $6-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 35.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 114.3 (C-2), 118.5 (C-4), 125.4 (C-6), 126.2 (C-5), 129.6 (C-1), $139.3(\mathrm{C}-3)$ and $163.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$.

Sodium hydrogen $\{N$-[3-(hydroxymethyl)phenyl]carbamoyl\}methylphosphonate $\mathbf{3 2 9 g}$

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]methylphosphonate 329a was employed, using [N-(3(hydroxymethyl)phenylcarbamoyl]methylphosphonic acid $\mathbf{3 2 8 g}(0.15 \mathrm{~g}, 0.61 \mathrm{mmol})$ and 1.1 mol NaOH in EtOH (0.56 mL). The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen $\{\mathrm{N}-[3$-(hydroxymethyl)phenyl]carbamoyl\}methylphosphonate $\mathbf{3 2 9 g}$ as a light yellow solid ($86 \mathrm{mg}, 94 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1687$ ($\mathrm{C}=\mathrm{O}$), 1232 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right.$) $2.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{H}}=21.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 4.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.28(1 \mathrm{H}$, $\mathrm{t}, J=7.8 \mathrm{~Hz}, 5-\mathrm{H}), 7.42(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $7.44(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 34.8$ (d, $J_{\mathrm{P}-\mathrm{C}}=142.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $64.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.7(\mathrm{C}-2), 119.3(\mathrm{C}-6), 122.4(\mathrm{C}-4), 128.7(\mathrm{C}-5)$, 139.2 (C-1), 142.6 (C-3) and 166.5 (d, JP-c $=4.2 \mathrm{~Hz}, \mathrm{C}=0$).

3.3.2. Reaction of 3-substituted anilines with 3-chloropropanoyl chloride

3-Chloro-N-(3-hydroxyphenyl)propanamide 322a

To a stirred solution of 3-aminophenol ($1.50 \mathrm{~g}, 14.0 \mathrm{mmol}$) in THF (30 mL) under nitrogen was added NaH (60 \% dispersion in mineral oil; $0.60 \mathrm{~g}, 24 \mathrm{mmol}$) in small portions to permit controlled evolution of hydrogen. 3-Chloropropionyl chloride ($1.31 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was then added through a septum and the resulting solution was stirred for ca. 6 h . The solvent was evaporated in vacuo and the residue dissolved in EtOAc ($2 \times 50 \mathrm{~mL}$). The organic solution was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$ and brine $(2 \times 100 \mathrm{~mL})$. The aqueous washings were extracted with EtOAc and the combined organic solutions were dried (anhydr. MgSO_{4}). Evaporation of the solvent in vacuo afforded 3-chloro- N-(3-hydroxyphenyl)propanamide as a brown solid ($2.25 \mathrm{~g}, 80 \%$) m.p. $119-121{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{238}$); $v_{\max }\left(\right.$ solid deposit $\left./ \mathrm{cm}^{-1}\right) 3362(\mathrm{OH})$ and $1658(\mathrm{C}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.74$ $\left(2 \mathrm{H}, \mathrm{t}, J 6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.82\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 5.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 5-\mathrm{H}), 5.99(1 \mathrm{H}$, dd, $J=9.2$ and $1.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and $1.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}, 2-\mathrm{H})$, $7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.69(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 42.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.1\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$, 106.3 (C-2'), 109.9 (C-4'), 110.9 (C-6'), 129.4 (C-5'), 139.4 ($\left.C-1^{\prime}\right), 157.6$ (C-3') and 164.4 (C=O).

3-Chloro-N-(3-methoxyphenyl)propanamide 322b

The procedure described for the synthesis of 3 -chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3-methoxyaniline ($0.91 \mathrm{~mL}, 8.1 \mathrm{mmol}$), NaH (60% dispersion in
mineral oil; $0.36 \mathrm{~g}, 15 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.76 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL), to yield 3-chloro- N -(3-methoxyphenyl) propanamide 322b as a yellow solid ($1.49 \mathrm{~g}, 86$ \%), m.p 92-94 ${ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .{ }^{239} 90-92{ }^{\circ} \mathrm{C}\right.$); $u_{\max }\left(\right.$ solid deposit/ $/ \mathrm{cm}^{-1}$) 1681 ($\mathrm{C}=0$); $\delta_{H} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.79\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.66$ $\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.19\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.28(1 \mathrm{H}, \mathrm{s}$, 2'-H) and $7.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 36.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.3\left(\mathrm{OCH}_{3}\right)$, 105.5 (C-2'), 110.3 (C-6'), 111.9 (C-4'), 129.7 (C-5'), 135.3 (C-1'), 160.2 (C-3') and 171.1 (C=O).

N-(3-Bromophenyl) 3-chloropropanamide 322c

The procedure described for the synthesis of 3 -chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3-bromoaniline ($0.63 \mathrm{~mL}, 5.8 \mathrm{mmol}$), NaH (60 \% dispersion in mineral oil; $0.26 \mathrm{~g}, 10.8 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.54 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$, to yield N-(3-bromophenyl)3-chloropropanamide 322c as a dark brown solid (1.23 g, 81%), m.p $106-108{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{240}\right)$; $u_{\max }\left(\right.$ solid deposit $/ \mathrm{cm}^{-1}$) 1658 (C=O); $\delta_{H} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.80\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.86\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.17\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5^{\prime}-\right.$ H), $7.24\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.41\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.45\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$, and $7.77(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 36.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 118.7\left(\mathrm{C}-6\right.$ '), $122.5\left(\mathrm{C}-3{ }^{\prime}\right), 123.1$ (C-2'), 128.0 (C-4'), 130.3 (C-5'), 137.9 (C-1') and 164.2 (C=O).

3-Chloro- N -(3-fluorophenyl)propanamide 322d

The procedure described for the synthesis of 3 -chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3-fluoroaniline ($1.05 \mathrm{~mL}, 5.80 \mathrm{mmol}$), NaH (60% dispersion in
mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.54 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield 3 -chloro- N -(3-fluorophenyl) propanamide 322c as a light yellow solid ($1.04 \mathrm{~g}, 89$ \%), m.p $87-89{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{241}\right)$; $u_{\max }\left(\right.$ solid deposit/cm $\left.{ }^{-1}\right) 1681(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.56\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.80(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.0,2.0$ and 0.8 $\left.\mathrm{Hz}, 4^{\prime}-\mathrm{H}\right), 7.12\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.24\left(1 \mathrm{H}, \mathrm{dt}, J=7.2\right.$ and $\left.1.6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.47(1 \mathrm{H}, \mathrm{td}, J=$ 6.4, 2.4 and $0.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$) and $7.49(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.1\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.3$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 107.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.4 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 111.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.4 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 114.9\left(\mathrm{C}-6^{\prime}\right), 130.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}\right.$ $\left.=9.3 \mathrm{~Hz}, \mathrm{C}-5^{\prime}\right), 139.1$ ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=11.0 \mathrm{~Hz}, \mathrm{C}-1^{\prime}$), 163.0 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=243.5 \mathrm{~Hz}, \mathrm{C}-3^{\prime}$) and 170.1 (C=O).

3-Chloro-N-(3-cyanophenyl)propanamide 322e

The procedure described for the synthesis of 3 -chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3-aminobenzonitrile ($1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.54 \mathrm{~g}, 23 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.94 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF (15 mL), to yield 3 -chloro- N-(3-cyanophenyl) propanamide $\mathbf{3 2 2 e}$ as a yellow solid ($1.04 \mathrm{~g}, 89 \%$), m.p $108-110{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $^{242} 97-98{ }^{\circ} \mathrm{C}$); $u_{\text {max }}$ (solid deposit/ $/ \mathrm{cm}^{-1}$) $2232(\mathrm{C} \equiv \mathrm{N}), 1658(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.84\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.87\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.42(2 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.75\left(1 \mathrm{H}, \mathrm{dt}, J=7.6\right.$ and $\left.2.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.95(1 \mathrm{H}, \mathrm{t}, J=2.0$ $\left.\left.\mathrm{Hz}, 2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 113.2(\mathrm{C}-3)^{\prime}\right), 118.9(\mathrm{C}=\mathrm{N})$, 122.7 (C-2'), 124.3 (C-5'), 129.6 (C-6'), 131.2 (C-4'), 138.8 (C-1') and 168.7 (C=O).

3-Chloro-N-(3-nitrophenyl)propanamide 322f

The procedure described for the synthesis of 3 -chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3-nitroaniline ($1.01 \mathrm{~g}, 7.27 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.33 \mathrm{~g}, 13 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.49 \mathrm{~mL}, 7.3 \mathrm{mmol}$) in THF (15 mL), to yield 3-chloro- N -(3-nitrophenyl) propanamide $\mathbf{3 2 2 f}$ as a dark yellow solid ($1.56 \mathrm{~g}, 94$ \%), m.p 94-96 ${ }^{\circ} \mathrm{C}$ (Lit. $.^{239} 95-97{ }^{\circ} \mathrm{C}$); $\mathrm{u}_{\max }\left(\right.$ solid deposit $/ \mathrm{cm}^{-1}$) 1687 ($\mathrm{C}=\mathrm{O}$); $\delta_{H} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.88\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.89\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.48\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5^{\prime}-\right.$ H), $7.94\left(2 \mathrm{H}, \mathrm{dd}, J=7.6\right.$ and $1.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 8.06(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $8.40(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}$, 2'-H); $\left.\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 39.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 114.7(\mathrm{C}-2 '), 119.2(\mathrm{C}-4)^{\prime}\right), 125.7$ (C-6'), 129.9 (C-5'), 138.5 (C-1'), 148.5 (C-3') and 168.3 (C=O).

3-Chloro-N-[3-(hydroxymethyl)phenyl]propanamide 322g

The procedure described for the synthesis of 3-chloro- N-(3-hydroxyphenyl)propanamide 322a was employed, using 3 -aminobenzyl alcohol ($1.02 \mathrm{~g}, 8.12 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.52 \mathrm{~g}, 21 \mathrm{mmol}$) and 3-chloropropionyl chloride ($0.55 \mathrm{~mL}, 8.1$ mmol) in THF (15 mL), to yield 3-chloro- N -[3-(hydroxymethyl)phenyl]propanamide 322g as a grey solid ($1.53 \mathrm{~g}, 88 \%$), m.p $101-103^{\circ} \mathrm{C}$ (Lit. ${ }^{239} 97-99{ }^{\circ} \mathrm{C}$); $\mathrm{v}_{\text {max }}$ (solid deposit/ cm^{-1}) 1674 (C=O); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.85\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 4.63\left(2 \mathrm{H}, \mathrm{s}, 7^{\prime}-\mathrm{CH}_{2}\right), 5.11(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.09\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 4^{\prime}-\mathrm{H}\right), 7.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.62\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.72(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 38.9\left(\mathrm{CH}_{2} \mathrm{CO}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 119.3\left(\mathrm{C}-2^{\prime}\right), 119.9\left(\mathrm{C}-6^{\prime}\right), 124.3\left(\mathrm{C}-4 \mathrm{C}^{\prime}\right)$, 129.3 (C-5'), 137.7 (C-1'), 142.0 (C-3') and 167.9 ($\mathrm{C}=\mathrm{O}$).

3.3.2.1. Synthesis of diethyl ethylphosphonates using Michaelis-Arbuzov methodology

Diethyl [N-(3-hydroxyphenyl)carbamoyl]ethylphosphonate 323a

Triethyl phosphite ($0.86 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added through a septum to 3 -chloro- N -(3hydroxyphenyl)propanamide 322a ($0.50 \mathrm{~g}, 2.5 \mathrm{mmol}$) under nitrogen in an oven-dried round-bottomed flask equipped with a reflux condenser, and the resulting mixture was refluxed for ca. 9 h during which time the reaction was monitored by TLC. The cooled mixture was then stirred with hexane (20 mL) for $c a .30$ minutes followed by decantation of the hexane layer to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexaneEtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N (3hydroxyphenyl)carbamoyl)]ethylphosphonate 323a as a dark brown oil ($0.29 \mathrm{~g}, 58 \%$); (Found: $\mathbf{M}^{+}, 301.11247 \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 301.10791$); $\mathrm{v} / \mathrm{cm}^{-1} 3261(\mathrm{OH}), 1671(\mathrm{C}=\mathrm{O})$, 1232 ($\mathrm{P}=\mathrm{O}$) and $1024(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.06\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 4-\mathrm{H})$, $6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.5\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $27.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 107.2(\mathrm{C}-2), 111.1$ (C-4), 111.7 (C-6), 129.4 (C-5), 139.1 (C-1), 157.4 (C-3) and 169.5 (d, Jp-c $=15.6 \mathrm{~Hz}, \mathrm{C}=0$); $\delta_{\mathrm{p}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.1$ ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-methoxyphenyl)carbamoyl]ethylphosphonate 323b

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 323a was employed, using 3 -chloro- N -(3methoxyphenyl)propanamide 322b ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) and triethyl phosphite ($0.81 \mathrm{~mL}, 4.7$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-methoxyphenyl)carbamoyl]ethylphosphonate 323b as a yellow oil ($0.32 \mathrm{~g}, 62$ \%); (Found: $\mathbf{M}^{+}, 315.12861 \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 315.12356$); $\mathrm{v} / \mathrm{cm}^{-1} 1679$ ($\mathrm{C}=\mathrm{O}$), 1231 ($\mathrm{P}=\mathrm{O}$) and $1049(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0$ $\mathrm{Hz}, 2-\mathrm{H}$) and $8.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}\right.$ $\left.=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 55.2\left(\mathrm{OCH}_{3}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right)$, 105.2 (C-2), 109.7 (C-4), 111.7 (C-6), 129.4 (C-5), 139.8 (C-1), 160.0 (C-3) and 169.4 (d, JP-C $=$ $15.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.8(\mathrm{P}=\mathrm{O})$.

Diethyl [N-(3-bromophenyl)carbamoyl]ethylphosphonate 323c

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 323a was employed, using N -(3-bromophenyl)3-chloropropanamide 322c ($0.50 \mathrm{~g}, 1.9 \mathrm{mmol}$) and triethyl phosphite (0.65 $\mathrm{mL}, 3.8 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-bromophenyl)carbamoyl]ethylphosphonate 323c as a yellowish-brown oil ($0.27 \mathrm{~g}, 53$ \%); (Found: $\mathbf{M}^{+}, 363.02473 \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 363.02351$); v/cm ${ }^{-1}$ $1680(\mathrm{C}=\mathrm{O}), 1240(\mathrm{P}=\mathrm{O})$ and $1037(\mathrm{P}-\mathrm{OEt})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.2 \times \mathrm{CH}_{3}\right), 2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 5-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 9.30 $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$,
$29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 115.3(\mathrm{C}-6), 117.9(\mathrm{C}-3), 122.3$ (C-2), 126.6 (C-4), 130.1 (C-5), 140.0 ($\mathrm{C}-1$) and 169.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=15.1 \mathrm{~Hz}, \mathrm{C}=0$); $\delta_{\mathrm{P}} / \mathrm{ppm}$ (162 $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 24.1 ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-fluorophenyl)carbamoyl]ethylphosphonate 323d

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 323a was employed, using 3-chloro-N-(3fluorophenyl)propanamide 322d ($0.50 \mathrm{~g}, 2.5 \mathrm{mmol}$) and triethyl phosphite ($0.85 \mathrm{~mL}, 4.9$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-fluorophenyl)carbamoyl]ethylphosphonate 323d as a light yellow oil ($0.24 \mathrm{~g}, 48$ \%); (Found: $\mathbf{M}^{+}, 303.10843 \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 303.10357$); $\mathrm{v} / \mathrm{cm}^{-1} 1675$ ($\mathrm{C}=\mathrm{O}$), 1234 $(\mathrm{P}=\mathrm{O})$ and $1037(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.17(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.81(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.0,2.0$ and $1.6 \mathrm{~Hz}, 4-$ $\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{td}, J=6.4$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H}) 7.49(1 \mathrm{H}, \mathrm{dt}, J=$ 6.4, 2.0 and $1.6 \mathrm{~Hz}, 2-\mathrm{H}$) and $7.76(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.2 \mathrm{~Hz}, 2 \times\right.$ CH_{3}), $20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=142.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 30.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.6 \mathrm{~Hz}, 2 \times\right.$ OCH_{2}), 107.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2$), $111.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4\right), 115.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=2.9 \mathrm{~Hz}, \mathrm{C}-6\right)$, $130.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=9.3 \mathrm{~Hz}, \mathrm{C}-5\right), 139.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.9 \mathrm{~Hz}, \mathrm{C}-1\right), 162.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=243.3 \mathrm{~Hz}, \mathrm{C}-3\right)$ and 167.9 ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{p}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 23.4 ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-cyanophenyl)carbamoyl]ethylphosphonate 323e

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonate 323a was employed, using 3-chloro- N-(3-cyanophenyl)propanamide 322e $(0.50 \mathrm{~g}, 2.4 \mathrm{mmol})$ and triethyl phosphite ($0.82 \mathrm{~mL}, 4.8 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3cyanophenyl)carbamoyl]ethylphosphonate 323e as a yellow oil ($0.30 \mathrm{~g}, 61$ \%); (Found: \mathbf{M}^{+}, $311.11061 \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires: M^{+}, 311.11160); $\mathrm{v} / \mathrm{cm}^{-1} 2232$ ($\mathrm{C} \equiv \mathrm{N}$), 1657 ($\mathrm{C}=\mathrm{O}$), 1230 ($\mathrm{P}=\mathrm{O}$) and $1042(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.17(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.13\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.34(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.96(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4(\mathrm{~d}$, $J_{\mathrm{P}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $20.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=142.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-}\right.$ $\mathrm{c}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}$), $112.7(\mathrm{C}-3), 118.7(\mathrm{C} \equiv \mathrm{N}), 122.6(\mathrm{C}-2) 123.6(\mathrm{C}-5), 127.1(\mathrm{C}-6), 129.7$ (C4), 139.5 (C-1) and 169.9 ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{p}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.0$ ($\mathrm{P}=\mathrm{O}$).

Diethyl [N-(3-nitrophenyl)carbamoyl]ethylphosphonate 323f

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonate 323a was employed, using 3-chloro- N-(3-nitrophenyl) propanamide 322 f (0.50 $\mathrm{g}, 2.2 \mathrm{mmol}$) and triethyl phosphite ($0.76 \mathrm{~mL}, 4.4 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl[N -(3-nitrophenyl)carbamoyl]ethyl phosphonate $323 f$ as a dark brown oil ($0.33 \mathrm{~g}, 67$ \%); (Found: $\mathbf{M}^{+}, 330.10042 \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires: $\mathbf{M}^{+}, 330.09807$); $\mathrm{v} / \mathrm{cm}^{-1} 1679(\mathrm{C}=\mathrm{O}), 1219(\mathrm{P}=\mathrm{O})$ and 1034 ($\mathrm{P}-\mathrm{OEt}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.15$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.90(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.13(1 \mathrm{H}$, dd, $J=8.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 8.40(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}\right.$,
$\left.\mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 114.1(\mathrm{C}-2), 118.1(\mathrm{C}-4), 125.1(\mathrm{C}-6), 129.7(\mathrm{C}-5)$, 140.1 ($\mathrm{C}-1$), 148.3 ($\mathrm{C}-3$) and 169.9 ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 24.4 ($\mathrm{P}=\mathrm{O}$).

Diethyl \{ N-[3-(hydroxymethyl)phenyl]carbamoyl\}ethylphosphonate 323g

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 323a was employed, using 3-chloro- N-[3(hydroxymethyl)phenyl]propanamide $\mathbf{3 2 2 g}(0.50 \mathrm{~g}, 2.3 \mathrm{mmol})$ and triethyl phosphite (0.80 $\mathrm{mL}, 4.7 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl \{ N -[3-(hydroxymethyl)phenyl]carbamoyl\}ethylphosphonate $\mathbf{3 2 3 \mathrm { g }}$ as a yellow oil ($0.30 \mathrm{~g}, 61$ \%); (Found: $\mathbf{M}^{+}, 315.12725 \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 315.12356$); $\mathrm{v} / \mathrm{cm}^{-1} 3268$ (OH), 1667 ($\mathrm{C}=\mathrm{O}$), $1232(\mathrm{P}=\mathrm{O})$ and $1041(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.46(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.02(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $63.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.2$ (C-2), 119.1 (C-6), 122.4 (C-4), 129.4 (C-5), 139.1 (C-1), 139.6 (C-3) and 169.6 ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{P}} / \mathrm{ppm}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.0$ ($\mathrm{P}=\mathrm{O}$).

3.3.2.2. Synthesis of ethylphosphonic acid derivatives using TMSBr

[N-(3-Hydroxyphenyl)carbamoyl]ethylphosphonic acid 331a

Trimethylsilyl bromide ($0.22 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added to diethyl [N -(3-hydroxyphenyl)carbamoyl]ethylphosphonate $323 \mathrm{a}(0.25 \mathrm{~g}, 0.83 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and the mixture was
heated in the microwave apparatus set to deliver 100 W of power, with a reaction temperature of $60^{\circ} \mathrm{C}$ and reaction time of 10 min . After completion, the mixture was cooled to room temperature, treated with a $95: 5 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture and stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3hydroxyphenyl)carbamoyl]ethylphosphonic acid 331a as a brown viscous liquid ($0.12 \mathrm{~g}, 61$ \%); (Found: C, 44.27; H, 4.98; N, 5.73 \%. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 44.09$; H, 4.93; N, 5.71 \%); $\mathrm{v} / \mathrm{cm}^{-1} 3212(\mathrm{OH}), 1682(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.12(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.71(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.52(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.82(1 \mathrm{H}, \mathrm{s}$, NH); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right.$) $20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $27.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=3.7 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 107.1 (C-2), 111.0 (C-4), 111.8 (C-6), 129.8 (C-5), 139.5 (C-1), 158.1 (C-3) and 169.3 ($d, J_{\mathrm{P}-\mathrm{C}}=15.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$).

[N-(3-Methoxyphenyl)carbamoyl]ethylphosphonic acid 331b

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl [N-(3-methoxyphenyl)carbamoyl]ethyl phosphonate 323b ($0.25 \mathrm{~g}, 0.79 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.21 mL , 1.6 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3methoxyphenyl)carbamoyI]ethylphosphonic acid 331b as a yellow viscous liquid ($0.14 \mathrm{~g}, 66$ \%); (Found: C, 46.39; H, 5.49; N, 5.48 \%. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 46.34 ; \mathrm{H}, 5.44 ; \mathrm{N}, 5.40 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3210(\mathrm{OH}), 1670(\mathrm{C}=\mathrm{O})$ and $1228(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}\right.$; DMSO- d_{6}) 2.14 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.93(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 6-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2-$ H) and $8.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.8(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 55.3\left(\mathrm{OCH}_{3}\right), 105.4(\mathrm{C}-2), 109.7(\mathrm{C}-4), 111.8(\mathrm{C}-6), 129.7(\mathrm{C}-5), 139.5(\mathrm{C}-$ 1), 159.8 ($C-3$) and 169.2 ($d, J_{p-c}=15.6 \mathrm{~Hz}, \mathrm{C}=0$).

[N-(3-Bromophenyl)carbamoyl]ethylphosphonic acid 331c

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl [N-(3-bromophenyl)carbamoyl]ethyl phosphonate 323c ($0.25 \mathrm{~g}, 0.69 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.19 mL , 1.4 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-bromophenyl)carbamoyl]ethylphosphonic acid 331c as a brown gum ($0.18 \mathrm{~g}, 58 \%$); (Found: C, 35.15; H, 3.71; N, 4.51 \%. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrNO}_{4} \mathrm{P}$ requires C, 35.09; H, 3.60; N, 4.55 \%); $\mathrm{v} / \mathrm{cm}^{-1} 3189(\mathrm{OH}), 1672(\mathrm{C}=\mathrm{O})$ and $1219(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right.$) $2.21(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.21(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.82(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100$ MHz ; DMSO- d_{6}) 20.8 (d, $\mathrm{J}_{\mathrm{P}-\mathrm{C}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $29.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right.$), 115.1 (C-6), 117.9 (C-3), 122.5 (C-2), 126.8 (C-4), 129.8 (C-5), 140.2 (C-1) and $169.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}\right.$, $\mathrm{C}=0$).

[N-(3-Fluorophenyl)carbamoyl]ethylphosphonic acid 331d

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl [N-(3-fluorophenyl)carbamoyl]ethyl phosphonate 323d ($0.25 \mathrm{~g}, 0.82 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.22 mL , 1.6 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-fluorophenyl)carbamoyl]ethylphosphonic acid 331d as a yellow viscous liquid ($0.17 \mathrm{~g}, 68$ \%); (Found: C, 43.82; H, 4.56; N, 5.73 \%. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FNO}_{4} \mathrm{P}$ requires $\mathrm{C}, 43.74 ; \mathrm{H}, 4.49 ; \mathrm{N}, 5.67$ \%); $\mathrm{v} / \mathrm{cm}^{-1} 3228(\mathrm{OH}), 1689(\mathrm{C}=\mathrm{O})$ and $1236(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 2.13(2 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.95(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.79(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.0,2.0$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H})$, $7.17(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{ddd}, J=6.4,6.0$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H}) 7.46(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $1.6 \mathrm{~Hz}, 2-\mathrm{H}$) and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 20.7\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=142.5 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), $29.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 107.7\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 111.3\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-\right.$ 4), $115.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=2.8 \mathrm{~Hz}, \mathrm{C}-6\right), 130.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=9.2 \mathrm{~Hz}, \mathrm{C}-5\right), 139.3\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=11 \mathrm{~Hz}, \mathrm{C}-1\right), 163.4$ $\left(\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=243.1 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $168.1(\mathrm{C}=\mathrm{O})$.

[N-(3-Cyanophenyl)carbamoyl]ethylphosphonic acid 331e

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl [N-(3-cyanophenyl)carbamoyl]ethyl phosphonate $323 \mathrm{e}(0.25 \mathrm{~g}, 0.81 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.22 mL , 1.6 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-cyanophenyl)carbamoyl]ethylphosphonic acid 331e as a light yellow viscous liquid (0.12 g , 60 \%); (Found: C, 47.19; H, 4.32; N, 11.12 \%. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 47.25 ; \mathrm{H}, 4.36 ; \mathrm{N}, 11.02$ \%); (0.10 g, 59%); v/cm $\mathrm{cm}^{-1} 3284(\mathrm{OH}), 2238(\mathrm{C} \equiv \mathrm{N}), 1678(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 1.56(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.33(2 \mathrm{H}, \mathrm{m}, 4-$ H and $6-H), 7.83(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.96(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2-\mathrm{H})$, and $9.03(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{c} /$ ppm (100 MHz; DMSO- d_{6}) 20.7 (d, $J_{\mathrm{p}-\mathrm{C}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 30.3 (d, Jp-c $=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 113.0 (C-3), 118.9 (C=N), 122.9 (C-2) 124.1 (C-5), 127.3 (C-6), 129.8 (C-4), 139.8 (C-1) and $170.0(\mathrm{C}=\mathrm{O})$.

[N-(3-Nitrophenyl)carbamoyl]ethylphosphonic acid 331f

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl [N-(3-nitrophenyl)carbamoyl]ethyl phosphonate $323 f(0.25 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.14 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield [N -(3-nitrophenyl)carbamoyl]ethylphosphonic acid 331f as a dark yellow gum ($0.19 \mathrm{~g}, 71 \%$); (Found: C, 39.52; H, 4.10; N, 10.29%. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 39.43 ; \mathrm{H}, 4.04 ; \mathrm{N}, 10.22 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3229(\mathrm{OH}), 1664(\mathrm{C}=\mathrm{O})$ and $1239(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) 2.12(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.45(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 8.0 and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 8.30(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 20.8\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=142.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 30.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=\right.$ $3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 114.5 (C-2), 118.3 (C-4), 125.4 (C-6), 129.8 (C-5), 140.2 (C-1), 148.6 (C-3) and $170.2(\mathrm{C}=\mathrm{O})$.

N-[3-(Hydroxymethyl)phenylcarbamoyl]ethylphosphonic acid 331g

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]ethyl phosphonic acid 331a was employed, using diethyl \{N-[3-(hydroxymethyl) phenyl]carbamoyl\}ethylphosphonate $323 \mathrm{~g}(0.25 \mathrm{~g}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide ($0.21 \mathrm{~mL}, 1.6 \mathrm{mmol}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc$\mathrm{MeOH}(1: 1: 1)$] to yield N-[3-(hydroxymethyl)phenylcarbamoyl]ethyl phosphonic acid $\mathbf{3 3 1 \mathrm { g }}$ as a yellow viscous oil ($0.14 \mathrm{~g}, 67 \%$); (Found: $\mathrm{C}, 46.41 ; \mathrm{H}, 5.51 ; \mathrm{N}, 5.38 \% . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{P}$ requires C, 46.34; H, 5.44; N, 5.40%); v/cm $\mathrm{cm}^{-1} 3267(\mathrm{OH}), 1687(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.51(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.14(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.51(1 \mathrm{H}, \mathrm{d}, 8.0 \mathrm{~Hz}, 6-\mathrm{H})$, $7.62(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.80(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $8.06(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 20.8$
(d, $\left.J_{P-C}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.6(\mathrm{C}-2), 119.4(\mathrm{C}-$ $6), 122.5$ (C-4), 129.8 (C-5), 139.0 (C-1), 139.8 (C-3) and 170.1 ($\mathrm{C}=\mathrm{O}$).

3.3.2.3. Synthesis of sodium hydrogen ethylphosphonate derivatives

Sodium hydrogen [N-(3-hydroxyphenyl)carbamoyl]ethylphosphonate 332a

[N-(3-Hydroxyphenyl)carbamoyl]ethylphosphonic acid 331a ($0.15 \mathrm{~g}, 0.61 \mathrm{mmol}$) was treated with a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.58 \mathrm{~mL})$ and the mixture was stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a as a grey semi-solid ($0.12 \mathrm{~g}, 89 \%$); v/cm ${ }^{-1}$ $3267(\mathrm{OH}), 1671(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.73$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2$ $\mathrm{Hz}, 5-\mathrm{H})$ and $7.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 28.0(\mathrm{~d}$, $J_{\mathrm{P}-\mathrm{C}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $107.2(\mathrm{C}-2), 110.8(\mathrm{C}-4), 111.7(\mathrm{C}-6), 129.5(\mathrm{C}-5), 139.8(\mathrm{C}-1), 158.2(\mathrm{C}-$ $3)$ and $169.5\left(d, J_{P-C}=15.2 \mathrm{~Hz}, \mathrm{C}=0\right)$.

Sodium hydrogen [N-(3-methoxyphenyl)carbamoyl]ethylphosphonate 332b

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3methoxyphenyl)carbamoyl]ethylphosphonic acid 331b ($0.15 \mathrm{~g}, 0.58 \mathrm{mmol}$) and a solution of NaOH (1.1 mol) in $\mathrm{EtOH}(0.55 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3-methoxyphenyl)carbamoyl]ethylphosphonate 332b as a pale yellow semi-solid ($0.12 \mathrm{~g}, 91 \%$); v/cm $\mathrm{cm}^{-1} 3184(\mathrm{OH}), 1677(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400$

MHz ; $\left.\mathrm{D}_{2} \mathrm{O}\right) 2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.32(1 \mathrm{H}, \mathrm{t}, J=$ 2.0 H, 2-H); $\delta_{c} / p p m\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=3.2 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), $55.1\left(\mathrm{OCH}_{3}\right), 105.7$ (C-2), 110.1 (C-4), 111.6 (C-6), 129.8 (C-5), 139.4 (C-1), 159.6 (C$3)$ and $169.5\left(d, J_{p-C}=15.6 \mathrm{~Hz}, \mathrm{C}=0\right)$.

Sodium hydrogen [N-(3-bromophenyl)carbamoyl]ethylphosphonate 332c

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3bromophenyl)carbamoyl]ethylphosphonic acid 331c ($0.15 \mathrm{~g}, 0.49 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.46 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-bromophenyl)carbamoyl]ethylphosphonate 332c as a brown semi-solid ($0.11 \mathrm{~g}, 87 \%$); v/cm ${ }^{-1} 3079(\mathrm{OH}), 1692(\mathrm{C}=\mathrm{O})$ and $1215(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 2.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, 4-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $7.81(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.8(\mathrm{~d}$, $J_{\mathrm{P}-\mathrm{C}}=142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $29.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right.$), $115.2(\mathrm{C}-6), 117.5(\mathrm{C}-3), 123.2(\mathrm{C}-2)$, 126.5 (C-4), 130.2 (C-5), 139.8 (C-1) and 170.0 ($d, J_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}=0$).

Sodium hydrogen [N-(3-fluorophenyl)carbamoyl]ethylphosphonate 332d

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3fluorophenyl)carbamoyl]ethylphosphonic acid 331 d ($0.15 \mathrm{~g}, 0.61 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.58 \mathrm{~mL})$. The solvent was removed in vacuo and the residue
chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-fluorophenyl)carbamoyl]ethylphosphonate 332d as a pale yellow semi-solid ($0.14 \mathrm{~g}, 94 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3150(\mathrm{OH}), 1682(\mathrm{C}=\mathrm{O})$ and $1233(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ MHz ; $\left.\mathrm{D}_{2} \mathrm{O}\right) 2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.80(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.0,2.0$ and $1.6 \mathrm{~Hz}, 4-$ $\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{ddd}, J=6.4,2.0$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H})$ and 7.42 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4$ and $2.0 \mathrm{~Hz}, 2-\mathrm{H}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 30.0$ ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $107.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 111.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4\right), 115.1(\mathrm{~d}$, $\left.J_{F-C}=2.6 \mathrm{~Hz}, \mathrm{C}-6\right), 130.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=9.2 \mathrm{~Hz}, \mathrm{C}-5\right), 139.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.8 \mathrm{~Hz}, \mathrm{C}-1\right), 163.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=\right.$ $242.8 \mathrm{~Hz}, \mathrm{C}-3$) and 167.7 (C=O).

Sodium hydrogen [N-(3-cyanophenyl)carbamoyl]ethylphosphonate 332e

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3cyanophenyl)carbamoyl]ethylphosphonic acid 331e ($0.15 \mathrm{~g}, 0.59 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.56 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N-(3-cyanophenyl)carbamoyl]ethylphosphonate 332e as a pale yellow semi-solid ($0.13 \mathrm{~g}, 96 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 2236(\mathrm{C} \equiv \mathrm{N})$, 1655 ($\mathrm{C}=\mathrm{O}$) and 1214 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $2.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.27(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.79$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $142.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 29.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 112.6 (C-3), 118.2 ($\mathrm{C} \equiv \mathrm{N}$), 122.4 (C-2) 124.3 (C5), 127.8 (C-6), 129.8 (C-4), 139.6 (C-1) and 169.9 (C=O).

Sodium hydrogen [N-(3-nitrophenyl)carbamoyl]ethylphosphonate 332f

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3nitrophenyl)carbamoyl]ethylphosphonic acid $331 \mathrm{f}(0.15 \mathrm{~g}, 0.55 \mathrm{mmol})$ and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.52 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-nitrophenyl)carbamoyl]ethylphosphonate 332 f as a yellow semi-solid ($0.12 \mathrm{~g}, 91 \%$); v/cm ${ }^{-1} 3143(\mathrm{OH}), 1670(\mathrm{C}=\mathrm{O})$ and $1218(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 2.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 8.2 and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.12(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $8.40(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$; $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 30.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 114.2$ (C-2), 117.8 (C-4), 125.5 (C-6), 129.9 (C-5), 140.1 (C-1), 148.0 (C-3) and 170.2 (C=O).

Sodium hydrogen \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}ethylphosphonate 332g

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]ethylphosphonate 332a was employed, using [N-(3(hydroxymethyl)phenylcarbamoyllethylphosphonic acid 331 g ($0.15 \mathrm{~g}, 0.58 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.55 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen \{ N -[3-(hydroxymethyl)phenyl]carbamoyl\}ethylphosphonate 332 g as a light yellow semi-solid ($0.12 \mathrm{~g}, 89 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3198(\mathrm{OH}), 1653(\mathrm{C}=\mathrm{O})$ and 1230 (P=O); $\delta_{H} /$ ppm ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d}, 8.0 \mathrm{~Hz}, 6-\mathrm{H})$ and 7.58 (1H, s, 2-H); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 29.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 63.5 ($\mathrm{CH}_{2} \mathrm{OH}$), 118.2 (C-2), 119.7 (C-6), 123.4 (C-4), 130.4 (C-5), 139.6 (C-1), 139.5 ($\mathrm{C}-3$) and 169.5 ($\mathrm{C}=\mathrm{O}$).

3.3.3. Reaction of 3 -substituted anilines with 4-chlorobutanoyl chloride
 4-Chloro-N-(3-hydroxyphenyl)butanamide 324a

To a stirred solution of 3 -aminophenol ($1.50 \mathrm{~g}, 14.0 \mathrm{mmol}$) in THF (30 mL) under nitrogen was added $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $0.60 \mathrm{~g}, 24 \mathrm{mmol})$ in small portions to permit controlled evolution of hydrogen. 4-Chlorobutanoyl chloride ($1.18 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was then added through a septum and the resulting solution was stirred for $c a .6 \mathrm{~h}$. The solvent was evaporated in vacuo and the residue dissolved in EtOAc ($2 \times 50 \mathrm{~mL}$). The organic solution was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$ and brine $(2 \times 100 \mathrm{~mL})$. The aqueous washings were extracted with EtOAc and the combined organic solutions were dried (anhydr. MgSO_{4}). Evaporation of the solvent in vacuo afforded 4-chloro-N-(3-hydroxyphenyl)butanamide 324a as a brown solid ($2.15 \mathrm{~g}, 71 \%$) m.p. $88-90^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 213.05711 \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}_{2}$ requires: $\mathbf{M}^{+}, 213.05566$); $\mathrm{v} / \mathrm{cm}^{-1} 3176(\mathrm{OH})$ and 1662 (C=O); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.59$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and 2.4 $\mathrm{Hz}, 6-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}, 2-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and 7.69 (1H, s, NH); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.8(\mathrm{C}-3), 33.1\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 106.4(\mathrm{C}-2)$, 109.4 (C-4), 111.2 (C-6), 129.7 (C-5), 139.8 (C-1), 158.2 (C-3) and 166.7 (C=O).

4-Chloro-N-(3-methoxyphenyl)butanamide 324b

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3-methoxyaniline (0.91 mL , 8.1 mmol), NaH (60% dispersion in mineral oil; $0.36 \mathrm{~g}, 15 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.68 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL), to yield 4-chloro- N -(3-methoxyphenyl)butanamide 324b as a yellow solid ($1.38 \mathrm{~g}, 75 \%$) m.p $56-58^{\circ} \mathrm{C}\left(\right.$ Lit. $^{243} 50-54{ }^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 1687$ (C=O); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$
$\left.\mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.65$ $(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.29$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $7.32(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.7(\mathrm{C}-3 \mathrm{l}), 36.7$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.2\left(\mathrm{OCH}_{3}\right), 105.2(\mathrm{C}-2), 110.7(\mathrm{C}-6), 111.8(\mathrm{C}-4), 129.8(\mathrm{C}-5), 135.2$ $(C-1), 160.2(C-3)$ and $171.2(C=0)$.

N-(3-Bromophenyl) 4-chlorobutanamide 324c

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3-bromoaniline ($0.63 \mathrm{~mL}, 5.8 \mathrm{mmol}$), NaH (60 \% dispersion in mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.48 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield N -(3-bromophenyl)4-chlorobutanamide 324c as a brown solid (1.15 g, 72 \%), m.p 85-87 ${ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 275.00328 \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrClNO}$ requires: $\mathbf{M}^{+}, 274.97125$); v/cm $\mathrm{cm}^{-1} 1691$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.18\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.64$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.16(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $7.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.8(\mathrm{C}-3 \mathrm{l})$, $33.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.6\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 118.5(\mathrm{C}-6), 122.2(\mathrm{C}-3), 123.6(\mathrm{C}-2), 127.8(\mathrm{C}-4), 129.9(\mathrm{C}-5)$, $137.8(\mathrm{C}-1)$ and $164.1(\mathrm{C}=\mathrm{O})$.

4-Chloro-N-(3-fluorophenyl)butanamide 324d

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3-fluoroaniline ($1.05 \mathrm{~mL}, 5.8 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.48 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield 4-chloro- N-(3-fluorophenyl)butanamide 324d as a yellow solid ($0.84 \mathrm{~g}, 68 \%$), m.p $62.64{ }^{\circ} \mathrm{C}\left(\mathrm{Lit.}^{244} 55-56{ }^{\circ} \mathrm{C}\right) ; \mathrm{v} / \mathrm{cm}^{-1} 1681(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.18\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.78(1 \mathrm{H}, \mathrm{ddd}, J=6.4,2.4$ and $1.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{dt}, J=6.8$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H})$,
$7.48(1 \mathrm{H}, \mathrm{td}, J=6.4,2.0$ and $1.2 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.8$ $(\mathrm{C}-3 '), 33.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 107.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 111.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4\right)$, 114.8 (C-6), $130.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=9.5 \mathrm{~Hz}, \mathrm{C}-5\right), 139.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.8 \mathrm{~Hz}, \mathrm{C}-1\right), 162.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=242.8 \mathrm{~Hz}\right.$, $\mathrm{C}-3$) and 169.9 ($\mathrm{C=O}$).

4-Chloro-N-(3-cyanophenyl)butanamide 324e

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3-aminobenzonitrile ($1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.54 \mathrm{~g}, 23 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.84 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF (15 mL), to yield 4-chloro- N -(3-cyanophenyl)butanamide $\mathbf{3 2 4 e}$ as a yellow solid ($2.00 \mathrm{~g}, 89 \%$), m.p $84-86{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $^{244} 87-88{ }^{\circ} \mathrm{C}$); v/cm ${ }^{-1} 2230(\mathrm{C} \equiv \mathrm{N}), 1663(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.18\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.39(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.70(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.94(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$; $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 27.6\left(\mathrm{C}-3\right.$) , $34.0\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 112.9(\mathrm{C}-3), 118.5(\mathrm{C}=\mathrm{N})$, 122.6 (C-2), 123.8 (C-5), 127.7 (C-6), 129.9 (C-4), 138.6 (C-1) and 170.4 (C=O).

4-Chloro-N-(3-nitrophenyl)butanamide 324f

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3 -nitroaniline ($1.01 \mathrm{~g}, 7.27 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.33 \mathrm{~g}, 13 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.61 \mathrm{~mL}, 7.3 \mathrm{mmol}$) in THF (15 mL), to yield 4-chloro- N -(3-nitrophenyl)butanamide $\mathbf{3 2 4 f}$ as a dark yellow solid ($1.55 \mathrm{~g}, 88$ \%), m.p $78-80{ }^{\circ} \mathrm{C}$ (Lit. ${ }^{245} 82{ }^{\circ} \mathrm{C}$); (Found: $\mathbf{M}^{+}, 242.04819 \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires: \mathbf{M}^{+}, 242.04582); $\mathrm{v} / \mathrm{cm}^{-1} 1675(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.21\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.66(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.92\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 6.8 and $1.2 \mathrm{~Hz}, 4-\mathrm{H}), 8.20(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and $1.2 \mathrm{~Hz}, 6-\mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and
$\left.8.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 17.8(\mathrm{C}-3)^{\prime}\right), 32.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 48.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 113.7(\mathrm{C}-$ 2), 118.8 (C-4), 125.4 (C-6), 129.6 (C-5), 140.4 (C-1), 148.5 (C-3) and 174.6 (C=O).

4-Chloro- N-[3-(hydroxymethyl)phenyl]butanamide $\mathbf{3 2 4 g}$

The procedure described for the synthesis of 4-chloro- N-(3-hydroxyphenyl)butanamide 324a was employed, using 3-aminobenzylalcohol ($1.02 \mathrm{~g}, 8.12 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.52 \mathrm{~g}, 21 \mathrm{mmol}$) and 4-chlorobutanoyl chloride ($0.68 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL), to yield 4 -chloro-N-[3-(hydroxymethyl)phenyl]butanamide $\mathbf{3 2 4 g}$ as a light yellow solid ($1.35 \mathrm{~g}, 73 \%$), m.p $80-82{ }^{\circ} \mathrm{C}$; (Found: $\mathbf{M}^{+}, 227.07341 \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}$ requires: \mathbf{M}^{+}, 227.07131); $\mathrm{v} / \mathrm{cm}^{-1} 1678(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.52(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.62\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-$ H), $7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.56(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $10.3(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.8(\mathrm{C}-3 \mathrm{~B})$, $33.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 43.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 62.7$ ($\mathrm{CH}_{2} \mathrm{OH}$), 117.3 (C-2), 117.6 (C-6), 121.7 (C-4), 128.4 (C-5), 138.3 (C-1), 143.3 (C-3) and 164.5 ($\mathrm{C}=0$).

3.3.3.1. Synthesis of diethyl propylphosphonates using Michaelis-Arbuzov methodology

Diethyl [N-(3-hydroxyphenyl)carbamoyl]propylphosphonate 325a

Triethyl phosphite ($0.81 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added through a septum to 4 -chloro- N -(3hydroxyphenyl)butanamide 324 a ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) under nitrogen in an oven-dried roundbottomed flask equipped with a reflux condenser, and the resulting mixture was refluxed for $c a .9 \mathrm{~h}$ during which time the reaction was monitored by TLC. The cooled mixture was then stirred with hexane (20 mL) for ca .30 minutes followed by decantation of the hexane layer
to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N (3hydroxyphenyl)carbamoyl)]propylphosphonate 325a as yellow oil ($0.31 \mathrm{~g}, 65$ \%); (Found: \mathbf{M}^{+}, $315.12483 \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathrm{M}^{+}, 315.12356$); $\mathrm{v} / \mathrm{cm}^{-1} 3308(\mathrm{OH}), 1678(\mathrm{C}=\mathrm{O}), 1224$ ($\mathrm{P}=\mathrm{O}$) and 1012 (P-OEt); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.16\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ CH_{2} and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 4-\mathrm{H})$, $6.91(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 8.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.92(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 18.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=15.2\right.$ $\left.\mathrm{Hz}, \mathrm{C}-3{ }^{\prime}\right), 26.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=136.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $36.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2\right.$ $\times \mathrm{OCH}_{2}$), $107.5(\mathrm{C}-2), 111.3(\mathrm{C}-4), 112.3(\mathrm{C}-6), 129.1(\mathrm{C}-5), 138.9(\mathrm{C}-1), 157.7(\mathrm{C}-3)$ and 166.3 ($\mathrm{C}=\mathrm{O}$).

Diethyl [N-(3-methoxyphenyl)carbamoyl]propylphosphonate 325b

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 325a was employed, using 4-chloro-N-(3methoxyphenyl)butanamide 324b ($0.50 \mathrm{~g}, 2.2 \mathrm{mmol}$) and triethyl phosphite ($0.76 \mathrm{~mL}, 4.3$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N-(3-methoxyphenyl)carbamoyl]propylphosphonate 325b as a clear oil ($0.32 \mathrm{~g}, 66$ \%); (Found: $\mathbf{M}^{+}, 329.14251 \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}$ P requires: $\mathbf{M}^{+}, 329.13921$). $\mathrm{v} / \mathrm{cm}^{-1} 1678$ ($\mathrm{C}=\mathrm{O}$), 1251 ($\mathrm{P}=\mathrm{O}$) and $1039(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.17(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right)$, $2.70\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 3.08\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10(4 \mathrm{H}, \mathrm{m}, 2$ $\left.\times \mathrm{OCH}_{2}\right), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H})$, $7.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $9.00(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, 18.1 ($d, J_{p-c}=15.6 \mathrm{~Hz}, \mathrm{C}-3$ '), $26.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=142.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $36.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 55.3$ $\left(\mathrm{OCH}_{3}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 105.3(\mathrm{C}-2), 109.5(\mathrm{C}-4), 112.1(\mathrm{C}-6), 129.8(\mathrm{C}-5)$, 139.8 (C-1), 159.7 (C-3) and 169.4 ($\mathrm{C}=\mathrm{O}$).

Diethyl [N-(3-bromophenyl)carbamoyl]propylphosphonate 325c

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 325a was employed, using 4-chloro-N-(3bromophenyl)butanamide $\mathbf{3 2 4 c}(0.50 \mathrm{~g}, 1.8 \mathrm{mmol})$ and triethyl phosphite ($0.62 \mathrm{~mL}, 3.6$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-bromophenyl)carbamoyl]propylphosphonate 325c as a brown oil (0.30 g, 63 \%); (Found: $\mathbf{M}^{+}, 377.04215 \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrNO}_{4} \mathrm{P}$ requires: \mathbf{M}^{+}, 377.03916. $\mathrm{v} / \mathrm{cm}^{-1} 1681$ ($\mathrm{C}=\mathrm{O}$), 1232 ($\mathrm{P}=\mathrm{O}$) and $1019(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.80(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{3}-\mathrm{CH}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.79$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.23(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{H})$ and $8.88(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 18.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.1\right.$ $\left.\mathrm{Hz}, \mathrm{C}-3{ }^{\prime}\right), 27.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 36.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2\right.$ $\times \mathrm{OCH}_{2}$), $118.1(\mathrm{C}-6), 122.6(\mathrm{C}-3), 123.1(\mathrm{C}-2), 126.7(\mathrm{C}-4), 130.0(\mathrm{C}-5), 139.8(\mathrm{C}-1)$ and 168.8 ($\mathrm{C}=\mathrm{O}$).

Diethyl [N-(3-fluorophenyl)carbamoyl]propylphosphonate 325d

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 325a was employed, using 4-chloro-N-(3fluorophenyl)butanamide 324d ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$) and triethyl phosphite ($0.80 \mathrm{~mL}, 4.6$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-fluorophenyl)carbamoyl]propylphosphonate 325d as a clear oil ($0.25 \mathrm{~g}, 54$ \%); (Found: $\mathbf{M}^{+}, 317.12162 \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{FNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 317.11922$); $\mathrm{v} / \mathrm{cm}^{-1} 1684(\mathrm{C}=\mathrm{O}), 1233(\mathrm{P}=\mathrm{O})$ and

1021 ($\mathrm{P}-\mathrm{OEt}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right)$, $2.18\left(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{l}-\mathrm{CH}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $6.4,2.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{td}, J=6.4,2.8$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H}) 7.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4$ and $1.6 \mathrm{~Hz}, 2-\mathrm{H})$ and $8.21(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $16.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 17.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{~B}^{\prime}\right), 26.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $36.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 107.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right)$, 111.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4$), $115.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=2.8 \mathrm{~Hz}, \mathrm{C}-6\right.$), $130.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=9.0 \mathrm{~Hz}, \mathrm{C}-5\right), 138.9$ (d, $J_{F-C}=10.8 \mathrm{~Hz}, \mathrm{C}-1$), 162.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=242.7 \mathrm{~Hz}, \mathrm{C}-3$) and $164.5(\mathrm{C}=\mathrm{O})$.

Diethyl [N-(3-cyanophenyl)carbamoyl]propylphosphonate 325e

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl] propyl phosphonate 325a was employed, using 4-chloro- N-(3-cyanophenyl)butanamide 324e (0.50 $\mathrm{g}, 2.3 \mathrm{mmol}$) and triethyl phosphite ($0.77 \mathrm{~mL}, 4.5 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-cyanophenyl) carbamoyl]propylphosphonate 325e as a clear oil ($0.28 \mathrm{~g}, 61 \%$). (Found: $\mathbf{M}^{+}, 324.12408$ $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires: $\mathrm{M}^{+}, 324.12389$); $\mathrm{v} / \mathrm{cm}^{-1} 2218(\mathrm{C}=\mathrm{N}), 1652(\mathrm{C}=\mathrm{O}), 1219(\mathrm{P}=\mathrm{O})$ and 1046 (P-OEt); $\delta_{H} / p p m\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.18$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.35(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2-\mathrm{H})$, and $9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $\left.18.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-3\right)^{\prime}\right), 26.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=144.0\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 36.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 112.8(\mathrm{C}-3), 118.6$ (C $=\mathrm{N}$), 122.5 (C-2) 124.1 (C-5), 127.3 (C-6), 129.8 (C-4), 139.4 (C-1) and 172.2 (C=O).

Diethyl [N-(3-nitrophenyl)carbamoyl]propylphosphonate 325f

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl] propyl phosphonate 325a was employed, using 4-chloro-N-(3-nitrophenyl)butanamide $\mathbf{3 2 4 f}$ (0.50 g , 2.1 mmol) and triethyl phosphite ($0.72 \mathrm{~mL}, 4.1 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl[N-(3-nitrophenyl)carbamoyl]propyl phosphonate $325 f$ as a yellow oil ($0.35 \mathrm{~g}, 74$ \%); (Found: $\mathbf{M}^{+}, 344.11837 \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires: $\mathbf{M}^{+}, 344.11372$); $\mathrm{v} / \mathrm{cm}^{-1} 1683(\mathrm{C}=\mathrm{O}), 1218(\mathrm{P}=\mathrm{O})$ and 1028 ($\mathrm{P}-\mathrm{OEt}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.34\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.19\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.75$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=8.0$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.15(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 8.39(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.24(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.9 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 18.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-\right.$ $\left.3^{\prime}\right)$, $33.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=131.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right)$, $48.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=2.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.0\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times\right.$ OCH_{2}), 114.2 (C-2), 119.2 (C-4), 125.8 (C-6), 130.1 (C-5), 140.9 (C-1), 148.9 (C-3) and 175.1 ($\mathrm{C}=0$).

Diethyl \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}propylphosphonate 325g

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 325a was employed, using 4-chloro-N-[3(hydroxymethyl)phenyl]butanamide $\mathbf{3 2 4 g}(0.50 \mathrm{~g}, 2.2 \mathrm{mmol})$ and triethyl phosphite (0.75 $\mathrm{mL}, 4.4 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl \{ N -[3-(hydroxymethyl)phenyl]carbamoyl\}propylphosphonate $\mathbf{3 2 5} \mathbf{g}$ as a clear oil ($0.31 \mathrm{~g}, 66 \%$); (Found: $\mathbf{M}^{+}, 329.14287 \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 329.13921$); $\mathrm{v} / \mathrm{cm}^{-1} 3173$ (OH), 1676 ($\mathrm{C}=\mathrm{O}$), 1236 ($\mathrm{P}=\mathrm{O}$) and $1048(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{~B}^{\prime}-\mathrm{CH}_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.27$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.53(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}$
($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $18.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.2 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 26.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=\right.$ $138.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 36.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 62.2 (d, $\mathrm{J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $63.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 118.1 (C-2), 118.9 (C-6), 122.8 (C-4), 129.4 (C-5), 138.9 (C-1), 139.8 (C-3) and 172.3 (C=O).

3.3.3.2. Synthesis of propylphosphonic acids derivatives using TMSBr

[N-(3-Hydroxyphenyl)carbamoyl]propylphosphonic acid 333a

Trimethylsilyl bromide ($0.21 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added to diethyl [N-(3-hydroxyphenyl)carbamoyl]propylphosphonate 325a ($0.25 \mathrm{~g}, 0.79 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and the mixture was heated in the microwave apparatus set to deliver 100 W of power, with a reaction temperature of $60^{\circ} \mathrm{C}$ and reaction time of 10 min . After completion, the mixture was cooled to room temperature, treated with a $95: 5 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture and stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1.5:1)] to yield [N-(3hydroxyphenyl)carbamoyl]propylphosphonic acid 333a as a yellow oil (0.10 g , 63 \%); (Found: $\mathrm{C}, 46.47$; $\mathrm{H}, 5.60$; N, 5.47 \%. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 46.34 ; \mathrm{H}, 5.44 ; \mathrm{N}, 5.40 \%$; $\mathrm{v} / \mathrm{cm}^{-1} 3073$ (OH), $1681(\mathrm{C}=\mathrm{O})$ and $1228(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.17\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.27(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6$ $\mathrm{Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}(100$ MHz ; DMSO- d_{6}) 18.0 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-3$ '), 27.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=141.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $36.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.3\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 108.2 (C-2), 111.8 (C-4), 112.5 (C-6), 130.2 (C-5), 139.8 (C-1), 158.4 (C-3) and 165.7 ($\mathrm{C}=0$).

[N-(3-Methoxyphenyl)carbamoyl]propylphosphonic acid 333b

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl [N-(3-methoxyphenyl)carbamoyl] propyl phosphonate 325b ($0.25 \mathrm{~g}, 0.76 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.20 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3methoxyphenyl)carbamoyl]propylphosphonic acid 333b as a yellow oil ($0.11 \mathrm{~g}, 61 \%$); (Found: $\mathrm{C}, 48.51 ; \mathrm{H}, 6.01 ; \mathrm{N}, 5.20 \% \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 48.36 ; \mathrm{H}, 5.90 ; \mathrm{N}, 5.13 \%$); v/cm ${ }^{-}$ ${ }^{1}, 1678(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.17(2 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 2.81\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.71(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 8.72 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 18.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-3\right.$ '), 29.2 (d, $\mathrm{J}_{\mathrm{p}-\mathrm{c}}=$ $142.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 36.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $55.1\left(\mathrm{OCH}_{3}\right), 104.8(\mathrm{C}-2), 110.2(\mathrm{C}-4), 112.4$ (C6), 129.5 (C-5), 139.7 (C-1), 159.2 (C-3) and 172.3 (C=O).

[N-(3-Bromophenyl)carbamoyl]propylphosphonic acid 333c

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl [N-(3-bromophenyl)carbamoyl]propyl phosphonate $\mathbf{3 2 5 c}(0.25 \mathrm{~g}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.18 mL , 1.3 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-bromophenyl)carbamoyl]propylphosphonic acid 333c as a light brown oil ($0.098 \mathrm{~g}, 55 \%$); (Found: C, 37.35; H, 4.13; N, 4.30 \%. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}_{4} \mathrm{P}$ requires $\mathrm{C}, 37.29 ; \mathrm{H}, 4.07$; N, 4.35 \%); $\mathrm{v} / \mathrm{cm}^{-1} 3127(\mathrm{OH}), 1685(\mathrm{C}=\mathrm{O})$ and $1224(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 1.78(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.99(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.71(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and 9.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 17.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.4 \mathrm{~Hz}, \mathrm{C}-3\right.$), 26.7 (d, Jp-c $=$ $144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right.$), 115.8 (C-6), 118.4 (C-3), 122.2 (C-2), 127.6 (C4), 129.8 ($\mathrm{C}-5$), 137.8 ($\mathrm{C}-1$) and 167.9 ($\mathrm{C}=\mathrm{O}$).

[N-(3-Fluorophenyl)carbamoyl]propylphosphonic acid 333d

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl [N-(3-fluorophenyl)carbamoyl]propyl phosphonate 325d ($0.25 \mathrm{~g}, 0.79 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.21 mL , 1.6 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-fluorophenyl)carbamoyl]propylphosphonic acid 333d as a clear oil ($0.10 \mathrm{~g}, 57$ \%); (Found: $\mathrm{C}, 46.19 ; \mathrm{H}, 5.09 ; \mathrm{N}, 5.41 \% . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{4} \mathrm{P}$ requires $\left.\mathrm{C}, 45.99 ; \mathrm{H}, 5.02 ; \mathrm{N}, 5.36 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1}, 1656$ $(\mathrm{C}=\mathrm{O})$ and $1215(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.82(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.77(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,2.0$ and 1.6 $\mathrm{Hz}, 4-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $2.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{td}, J=6.4,2.8$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H}) 7.50$ ($1 \mathrm{H}, \mathrm{dt}, J=6.8,2.4$ and $1.6 \mathrm{~Hz}, 2-\mathrm{H}$) and $8.87(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ;\right.$ DMSO- $\left.\mathrm{d}_{6}\right) 18.3$ ($\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}-3$ '), 27.0 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=144.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 36.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 107.6 (d , $\left.J_{F-C}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 112.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4\right), 115.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=2.7 \mathrm{~Hz}, \mathrm{C}-6\right), 129.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=\right.$ $9.1 \mathrm{~Hz}, \mathrm{C}-5), 139.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=11.0 \mathrm{~Hz}, \mathrm{C}-1\right), 164.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=243.2 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $164.8(\mathrm{C}=\mathrm{O})$.

[N-(3-Cyanophenyl)carbamoyl]propylphosphonic acid 333e

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl [N-(3-cyanophenyl)carbamoyl]propyl phosphonate $\mathbf{3 2 5 e}(0.25 \mathrm{~g}, 0.77 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.21 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-cyanophenyl)carbamoyl]propylphosphonic acid 333e as a clear oil ($0.11 \mathrm{~g}, 61 \%$); (Found: C, 49.37; H, 4.93; N, 10.39 \%. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires C, 49.26; H, 4.86; N, 10.44 \%); (0.10 g, 59
\%); $\mathrm{v} / \mathrm{cm}^{-1} 3310(\mathrm{OH}), 2227(\mathrm{C} \equiv \mathrm{N}), 1667(\mathrm{C}=\mathrm{O})$ and $1226(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right)$ $1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.15\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.87(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$, $7.33(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2-\mathrm{H})$, and 8.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 17.8$ ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-3$ '), $27.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=142.7\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $36.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 112.5(\mathrm{C}-3), 118.5(\mathrm{C} \equiv \mathrm{N}), 123.2(\mathrm{C}-2) 124.6$ (C-5), 127.8 (C-6), 129.5 (C-4), 139.1 (C-1) and 173.5 (C=O).

[N-(3-Nitrophenyl)carbamoyl]propylphosphonic acid 333f

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl [N-(3-nitrophenyl)carbamoyl]propyl phosphonate $325 \mathrm{f}(0.25 \mathrm{~g}, 0.73 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.13 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield [N -(3-nitrophenyl)carbamoyl]propylphosphonic acid 333 f as a yellow oil ($0.12 \mathrm{~g}, 66$ \%); (Found: $\mathrm{C}, 41.55 ; \mathrm{H}, 4.63 ; \mathrm{N}, 9.64 \% . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 41.68 ; \mathrm{H}, 4.55 ; \mathrm{N}, 9.72 \%$) $\mathrm{v} / \mathrm{cm}^{-1} 3229$ (OH), $1664(\mathrm{C}=\mathrm{O})$ and $1239(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.18$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.78\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.76(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-$ $\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 8.41(1 \mathrm{H}, \mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 2-\mathrm{H}$) and $9.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 18.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=15.4 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right)$, 33.8 (d, Jp-c $=135.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 48.3 (d, $\mathrm{J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 114.8 (C-2), $118.7(\mathrm{C}-4), 126.3$ (C-6), 129.7 (C-5), 141.2 (C-1), 148.3 (C-3) and 173.5 (C=O).

N-[3-(Hydroxymethyl)phenylcarbamoyl]propylphosphonic acid 333g

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]propyl phosphonic acid 333a was employed, using diethyl $\{N$-[3-(hydroxymethyl) phenyl]carbamoyl\}propylphosphonate 325 g ($0.25 \mathrm{~g}, 0.79 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide ($0.21 \mathrm{~mL}, 1.6 \mathrm{mmol}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAcMeOH (1:1:1.5)] to yield N -[3-(hydroxymethyl)phenylcarbamoyl]propylphosphonic acid 333g as a clear oil ($0.11 \mathrm{~g}, 60 \%$); (Found: $\mathrm{C}, 46.52 ; \mathrm{H}, 5.61 ; \mathrm{N}, 5.27 \% . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$ requires C , 46.34; H, 5.44; N, 5.40%); $\mathrm{v} / \mathrm{cm}^{-1} 3267(\mathrm{OH}), 1687(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; DMSO- d_{6}) $1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.68(2 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{OH}), 4.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.77(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(400$ MHz; DMSO- d_{6}) 19.9 (d, Jp-c $=15.6 \mathrm{~Hz}, \mathrm{C}-3$ '), $25.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.3\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 67.7 ($\mathrm{CH}_{2} \mathrm{OH}$), 118.2 (C-2), 120.6 (C-6), 122.3 (C-4), 129.1 (C-5), 138.5 (C-1), 141.2 (C-3) and 171.2 ($\mathrm{C}=0$).

3.3.3.3. Synthesis of sodium hydrogen propylphosphonate derivatives

Sodium hydrogen [N-(3-hydroxyphenyl)carbamoyl]propylphosphonate 334a

[N -(3-Hydroxyphenyl)carbamoyl]propylphosphonic acid 333 a ($0.15 \mathrm{~g}, 0.58 \mathrm{mmol}$) was treated with a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.55 \mathrm{~mL})$ and the mixture was stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [reversephase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-hydroxyphenyl)carbamoyl]propylphosphonate 334a as a pale yellow semi-solid (0.098 g , 94%); $\mathrm{v} / \mathrm{cm}^{-1} 3317(\mathrm{OH}), 1682(\mathrm{C}=\mathrm{O})$ and $1215(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.90(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 4-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.33(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 17.7$ ($d, J_{p-c}=15.4 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}$), $27.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=143.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $37.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 108.5(\mathrm{C}-$ 2), 112.1 (C-4), 112.4 (C-6), 129.8 (C-5), 138.2 (C-1), 158.1 (C-3) and 166.3 ($\mathrm{C}=0$).

Sodium hydrogen [N-(3-methoxyphenyl)carbamoyl]propylphosphonate 334b

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3methoxyphenyl)carbamoyl]propylphosphonic acid 333b ($0.15 \mathrm{~g}, 0.55 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.52 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3-methoxyphenyl)carbamoyl]propylphosphonate 334b as a light brown semi-solid ($0.096 \mathrm{~g}, 92 \%$); v/cm $\mathrm{cm}^{-1} 3148(\mathrm{OH}), 1680(\mathrm{C}=\mathrm{O})$ and $1219(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}$ (400 MHz; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.78\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.78$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.60(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}$, $5-\mathrm{H})$ and $7.29(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 18.0\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{l}\right), 30.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $142.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=2.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 55.4\left(\mathrm{OCH}_{3}\right), 105.2(\mathrm{C}-2), 109.7(\mathrm{C}-4), 112.7(\mathrm{C}-$ 6), 129.8 ($\mathrm{C}-5$), $140.0(\mathrm{C}-1), 159.1(\mathrm{C}-3)$ and 172.6 ($\mathrm{C}=0$).

Sodium hydrogen [N-(3-bromophenyl)carbamoyl]propylphosphonate 334c

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3bromophenyl)carbamoyl]propylphosphonic acid 333c ($0.15 \mathrm{~g}, 0.47 \mathrm{mmol}$) and a solution of NaOH (1.1 mol) in $\mathrm{EtOH}(0.44 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3-bromophenyl)carbamoyl]propylphosphonate 334c as a redbrown semi-solid ($0.097 \mathrm{~g}, 89$ \%); v/cm $\mathrm{cm}^{-1} 3209(\mathrm{OH}), 1648(\mathrm{C}=\mathrm{O})$ and $1221(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}$ (400 MHz; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.79$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and $2.0 \mathrm{~Hz}, 6-\mathrm{H})$ and $7.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 17.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{l}\right), 26.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}\right.$

$$
\begin{aligned}
& \left.=143.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 37.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 115.5(\mathrm{C}-6), 118.6(\mathrm{C}-3), 122.8(\mathrm{C}-2), 127.6 \\
& (\mathrm{C}-4), 129.7(\mathrm{C}-5), 138.2(\mathrm{C}-1) \text { and } 165.7(\mathrm{C}=\mathrm{O}) .
\end{aligned}
$$

Sodium hydrogen [N-(3-fluorophenyl)carbamoyl]propylphosphonate 334d

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3fluorophenyl)carbamoyl]propylphosphonic acid 333d ($0.15 \mathrm{~g}, 0.57 \mathrm{mmol}$) and a solution of NaOH (1.1 mol) in $\mathrm{EtOH}(0.55 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3-fluorophenyl)carbamoyl]propylphosphonate 334d as a cream semi-solid ($0.11 \mathrm{~g}, 96 \%$); v/cm $\mathrm{cm}^{-1} 1684(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.80$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.15\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.78(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,2.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{td}, J=6.4,2.8$ and $1.6 \mathrm{~Hz}, 5-$ H) and $7.50(1 \mathrm{H}, \mathrm{dt}, J=6.8,2.4$ and $1.6 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 17.8\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=15.6\right.$ $\left.\mathrm{Hz}, \mathrm{C}-3^{\prime}\right), 26.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 36.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 107.7\left(\mathrm{~d}, J_{\mathrm{F}-\mathrm{C}}=26.3 \mathrm{~Hz}\right.$, $\mathrm{C}-2), 112.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4\right), 116.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=2.7 \mathrm{~Hz}, \mathrm{C}-6\right), 129.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=8.8 \mathrm{~Hz}, \mathrm{C}-5\right)$, $139.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{C}-1\right), 164.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=243.1 \mathrm{~Hz}, \mathrm{C}-3\right)$ and 168.7 (C=O).

Sodium hydrogen [N-(3-cyanophenyl)carbamoyl]propylphosphonate 334e

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3cyanophenyl)carbamoyl]propylphosphonic acid $333 \mathrm{e}(0.15 \mathrm{~g}, 0.56 \mathrm{mmol})$ and a solution of NaOH (1.1 mol) in $\mathrm{EtOH}(0.53 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N-(3-cyanophenyl)carbamoyl]propylphosphonate 334e as a pale
yellow semi-solid ($0.12 \mathrm{~g}, 96$ \%); $\mathrm{v} / \mathrm{cm}^{-1} 2231(\mathrm{C} \equiv \mathrm{N})$, 1678 ($\mathrm{C}=\mathrm{O}$) and $1219(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.17\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.35$ $(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.79(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $8.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}$ ($100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) 18.1 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=15.3 \mathrm{~Hz}, \mathrm{C}-3$ '), 26.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=143.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $36.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.3\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 112.4 (C-3), 118.2 (C引N), 122.8 (C-2) 124.5 (C-5), 127.8 (C-6), 129.8 (C-4), 138.7 ($\mathrm{C}-1$) and 173.7 ($\mathrm{C}=0$).

Sodium hydrogen [N-(3-nitrophenyl)carbamoyl]propylphosphonate 334f

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3nitrophenyl)carbamoyl]propylphosphonic acid $333 \mathrm{f}(0.15 \mathrm{~g}, 0.52 \mathrm{mmol})$ and a solution of NaOH (1.1 mol) in EtOH (0.49 mL). The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-nitrophenyl)carbamoyl]propylphosphonate 334 f as a yellow semi-solid ($0.12 \mathrm{~g}, 96 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3150(\mathrm{OH}), 1684(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.16\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 8.20(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and $1.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $\left.8.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 18.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-3\right)^{\prime}\right), 32.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}\right.$ $=140.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 46.7 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 114.5 (C-2), 119.2 (C-4), 126.8 (C-6), 129.7 (C-5), 140.8 (C-1), 148.5 (C-3) and 170.1 (C=O).

Sodium hydrogen \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}propylphosphonate 334 g

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]propylphosphonate 334a was employed, using [N-(3(hydroxymethyl)phenylcarbamoyl]propylphosphonic acid 333 g ($0.15 \mathrm{~g}, 0.55 \mathrm{mmol}$) and a
solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.52 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}propylphosphonate 334g as a pale yellow semi-solid ($0.092 \mathrm{~g}, 85 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1675(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.18\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.77\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.47$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$), $7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, 6-\mathrm{H}$) and $7.56(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 18.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.5 \mathrm{~Hz}, \mathrm{C}-3\right.$), 26.7 (d, $\left.J_{\mathrm{P}-\mathrm{C}}=143.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 36.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 64.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.2(\mathrm{C}-2), 118.8(\mathrm{C}-6)$, 122.6 (C-4), 129.8 (C-5), 138.2 (C-1), 139.8 (C-3) and 166.5 (C=O).

3.3.4. Reaction of 3 -substituted anilines with 5-chloropentanoyl chloride

5-Chloro-N-(3-hydroxyphenyl)pentanamide 326a

To a stirred solution of 3 -aminophenol ($1.50 \mathrm{~g}, 14.0 \mathrm{mmol}$) in THF (30 mL) under nitrogen was added NaH (60% dispersion in mineral oil; $0.60 \mathrm{~g}, 24 \mathrm{mmol}$) in small portions to permit controlled evolution of hydrogen. 5-Chloropentanoyl chloride ($1.67 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was then added through a septum and the resulting solution was stirred for $c a .6 \mathrm{~h}$. The solvent was evaporated in vacuo and the residue dissolved in EtOAc ($2 \times 50 \mathrm{~mL}$). The organic solution was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, water ($2 \times 100 \mathrm{~mL}$) and brine $(2 \times 100 \mathrm{~mL})$. The aqueous washings were extracted with EtOAc and the combined organic solutions were dried (anhydr. MgSO_{4}). Evaporation of the solvent in vacuo afforded 5-chloro-N-(3-hydroxyphenyl)pentanamide 326a as a brown gum (2.42 g, 76 \%); (Found: \mathbf{M}^{+}, $227.07866 \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}$ requires: $\mathbf{M}^{+}, 227.07131$); $u_{\max }\left(\right.$ solid deposit $/ \mathrm{cm}^{-1}$) 1672 ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.88\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right.$ and $\left.4-\mathrm{CH}_{2}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.57$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.80\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.25(1 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.42\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right)$ and $7.46(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 22.2(\mathrm{C}-4), 31.8(\mathrm{C}-3), 33.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 113.3(\mathrm{C}-2$ '), $116.9(\mathrm{C}-4$) , 117.1 (C6'), 129.5 (C-5'), 139.0 (C-1'), 151.0 (C-3') and 171.7 (C=O).

5-Chloro-N-(3-methoxyphenyl)pentanamide 326b ${ }^{246}$

The procedure described for the synthesis of 5 -chloro- N-(3-hydroxyphenyl)pentanamide 326a was employed, using 3-methoxyaniline (0.91 mL , 8.1 mmol), NaH (60 \% dispersion in mineral oil; $0.36 \mathrm{~g}, 15 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($0.97 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF (15 mL), to yield 5 -chloro- N -(3-methoxyphenyl) pentanamide 326b as a yellow gum ($1.41 \mathrm{~g}, 72$ $\%$); $v_{\text {max }}$ (solid deposit $/ \mathrm{cm}^{-1}$) $1682(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.78\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right.$ and 4$\left.\mathrm{CH}_{2}\right), 2.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.50\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.60$ ($1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $1.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$), $6.95\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6^{\prime}-\mathrm{H}\right), 7.14\left(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $7.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$ and $8.12(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.8(\mathrm{C}-4), 31.8$ $(\mathrm{C}-3), 36.7\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 55.3\left(\mathrm{OCH}_{3}\right), 105.6\left(\mathrm{C}-2^{\prime}\right), 110.2\left(\mathrm{C}-6{ }^{\prime}\right), 111.8\left(\mathrm{C}-4^{\prime}\right), 129.7$ (C-5'), 130.0 (C-1'), 160.2 ($\left.\mathrm{C}-3^{\prime}\right)$ and 170.5 ($\mathrm{C}=0$).

N-(3-Bromophenyl) 5-chloropentanamide $326 \mathrm{c}^{247}$

The procedure described for the synthesis of 4-chloro- N -(3-hydroxyphenyl)pentanamide 326a was employed, using 3-bromoaniline ($0.63 \mathrm{~mL}, 5.80 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.26 \mathrm{~g}, 10.8 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($0.69 \mathrm{~mL}, 5.80 \mathrm{mmol}$) in THF (15 mL), to yield N-(3-bromophenyl) 5-chloropentanamide 326c as a brown gum (1.10 g, 65 $\%$); $u_{\text {max }}$ (solid deposit/ cm^{-1}) $1676(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.80\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right.$ and 4$\left.\mathrm{CH}_{2}\right), 2.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.51\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-$ H), $7.17(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.18(1 \mathrm{H}, \mathrm{s}$, NH); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.2\left(\mathrm{C}-4^{\prime}\right), 31.8\left(\mathrm{C}-3^{\prime}\right), 33.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 113.8(\mathrm{C}-$ 6), 117.4 (C-3), 117.7 (C-2), 128.3 (C-4), 130.4 (C-5), 139.4 (C-1) and 172.2 ($\mathrm{C}=\mathrm{O}$).

5-Chloro- N -(3-fluorophenyl)pentanamide 326d ${ }^{247}$

The procedure described for the synthesis of 5-chloro- N -(3-hydroxyphenyl) pentanamide 326a was employed, using 3-fluoroaniline ($1.05 \mathrm{~mL}, 5.80 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.26 \mathrm{~g}, 11 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($0.69 \mathrm{~mL}, 5.8 \mathrm{mmol}$) in THF (15 mL), to yield 5 -chloro-N-(3-fluorophenyl) pentanamide 326d as a light brown gum ($0.96 \mathrm{~g}, 72$ \%); $v_{\text {max }}$ (solid deposit/ $/ \mathrm{cm}^{-1}$) $1669(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.93\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.4^{\prime}-\mathrm{CH}_{2}\right), 2.55\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.93(1 \mathrm{H}, \mathrm{ddd}, J=6.4$, 2.4 and $0.8 \mathrm{~Hz}, 4-\mathrm{H}), 6.99(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{dd}, J=6.8$ and $0.8 \mathrm{~Hz}, 6-$ $\mathrm{H}), 7.31\left(1 \mathrm{H}, \mathrm{td}, J=6.4,2.0\right.$ and $1.2 \mathrm{~Hz}, 2-\mathrm{H}$) and $8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $22.8\left(\mathrm{C}-4^{\prime}\right), 32.5\left(\mathrm{C}-3^{\prime}\right), 36.2\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 107.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 111.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}\right.$ $=21.4 \mathrm{~Hz}, \mathrm{C}-4), 114.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{C}-6\right), 129.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.2 \mathrm{~Hz}, \mathrm{C}-5\right), 139.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=11.3\right.$ $\mathrm{Hz}, \mathrm{C}-1), 163.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=241.8 \mathrm{~Hz}, \mathrm{C}-3\right)$ and $173.2(\mathrm{C}=\mathrm{O})$.

5-Chloro-N-(3-cyanophenyl)pentanamide 326e

The procedure described for the synthesis of 5 -chloro- N-(3-hydroxyphenyl)pentanamide 326a was employed, using 3-aminobenzonitrile ($1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$), NaH (60% dispersion in mineral oil; $0.54 \mathrm{~g}, 23 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($1.20 \mathrm{~mL}, 10.1 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$, to yield 5 -chloro-N-(3-cyanophenyl)pentanamide 326e as a yellow viscous oil (2.00 g, 84%); (Found: $\mathbf{M}^{+}, 236.07431 \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$ requires: $\mathbf{M}^{+}, 236.07164$); $u_{\max }\left(\right.$ thin film $/ \mathrm{cm}^{-1}$) $2223(\mathrm{C} \equiv \mathrm{N}), 1689(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.88\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and 4'-CH2$), 2.43(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.57\left(2 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.39(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 7.54(1 \mathrm{H}, \mathrm{s}$, NH), $7.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.93(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.6$ (C-4'), 31.8 ($\mathrm{C}-3^{\prime}$), $36.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 112.9(\mathrm{C}-3), 118.5(\mathrm{C}=\mathrm{N}), 122.8(\mathrm{C}-2), 123.8(\mathrm{C}-5)$, 127.6 (C-6), 129.9 (C-4), 138.7 (C-1) and 171.0 ($\mathrm{C}=0$).

5-Chloro-N-(3-nitrophenyl)pentanamide 326f

The procedure described for the synthesis of 5-chloro- N-(3-hydroxyphenyl)pentanamide 326a was employed, using 3-nitroaniline (1.01 g, 7.27 mmol), NaH (60% dispersion in mineral oil; $0.33 \mathrm{~g}, 13 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($0.87 \mathrm{~mL}, 7.3 \mathrm{mmol}$) in THF (15 mL), to yield 5-chloro-N-(3-nitrophenyl)pentanamide 326 f as a dark yellow viscous oil (1.60 g, 86%); (Found: $\mathbf{M}^{+}, 256.06328 \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires: $\mathbf{M}^{+}, 256.06147$); $\mathrm{u}_{\max }$ (solid deposit/cm ${ }^{-1}$) $1685(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.4^{\prime}-\mathrm{CH}_{2}\right), 2.46$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.53\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 7.43(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.90(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H}), 8.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $8.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $22.5(\mathrm{C}-4 '), 31.6(\mathrm{C}-3 '), 36.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 113.3(\mathrm{C}-2), 118.7(\mathrm{C}-4), 125.7(\mathrm{C}-6), 129.9$ (C-5), 139.8 (C-1), 148.6 (C-3) and 173.3 ($\mathrm{C}=0$).

5-Chloro-N-[3-(hydroxymethyl)phenyl]pentanamide 326g

The procedure described for the synthesis of 5-chloro- N -(3-hydroxyphenyl)pentanamide 326a was employed, using 3-aminobenzylalcohol ($1.02 \mathrm{~g}, 8.12 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $0.52 \mathrm{~g}, 21 \mathrm{mmol}$) and 5-chloropentanoyl chloride ($0.97 \mathrm{~mL}, 8.1 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$, to yield 5 -chloro- N -[3-(hydroxymethyl)phenyl]pentanamide $\mathbf{3 2 6 \mathrm { g }}$ as a brown gum ($1.51 \mathrm{~g}, 77$ \%); (Found: $\mathbf{M}^{+}, 241.09015 \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{2}$ requires: $\mathbf{M}^{+}, 241.08696$); $\mathrm{u}_{\max }$ (solid deposit $/ \mathrm{cm}^{-1}$) $1684(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.12\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $4^{\prime}-\mathrm{CH}_{2}$), 2.49 $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.58\left(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{2}\right), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.76$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.7$ (C-4'), $32.1\left(\mathrm{C}-3^{\prime}\right), 36.8$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 44.6\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 63.1\left(\mathrm{CH}_{2} \mathrm{OH}\right), 117.1(\mathrm{C}-2), 117.8(\mathrm{C}-6), 122.3(\mathrm{C}-4), 128.6(\mathrm{C}-5), 138.6$ (C-1), 142.9 ($\mathrm{C}-3$) and 168.9 ($\mathrm{C}=\mathrm{O}$).

3.3.4.1. Synthesis of diethyl butylphosphonates via Michaelis-Arbuzov methodology

Diethyl [N-(3-hydroxyphenyl)carbamoyl]butylphosphonate 327a

Triethyl phosphite ($0.76 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added through a septum to 5 -chloro- N -(3hydroxyphenyl)pentanamide 326a ($0.50 \mathrm{~g}, 2.2 \mathrm{mmol}$) under nitrogen in an oven-dried round-bottomed flask equipped with a reflux condenser, and the resulting mixture was refluxed for ca. 9 h during which time the reaction was monitored by TLC. The cooled mixture was then stirred with hexane (20 mL) for $c a .30$ minutes followed by decantation of the hexane layer to remove the excess triethyl phosphite; this was repeated three times. The crude product was purified by flash chromatography [on silica gel; elution with hexaneEtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N (3hydroxyphenyl)carbamoyl)]butylphosphonate 327a as clear oil ($0.22 \mathrm{~g}, 55$ \%); (Found: \mathbf{M}^{+}, $329.14287 \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 329.13921$); $\mathrm{v} / \mathrm{cm}^{-1} 3128(\mathrm{OH}), 1672(\mathrm{C}=\mathrm{O}), 1219$ ($\mathrm{P}=\mathrm{O}$) and 1018 (P-OEt); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.30(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.98\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{OCH}_{2}\right), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H})$, $7.40(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.46(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0\right.$ $\mathrm{Hz}, 2 \times \mathrm{CH}_{3}$), 21.9 ($\left.\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $26.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=4.8 \mathrm{~Hz}\right.$, $\mathrm{C}-3 '), 36.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 107.7(\mathrm{C}-2), 111.8(\mathrm{C}-4)$, 112.6 (C-6), 129.1 (C-5), 138.7 (C-1), 158.2 (C-3) and 164.8 (C=O).

Diethyl [N-(3-methoxyphenyl)carbamoyl]butylphosphonate 327b

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]butylphosphonate 327a was employed, using 5 -chloro- N-(3-methoxyphenyl)pentanamide

326b ($0.50 \mathrm{~g}, 2.1 \mathrm{mmol}$) and triethyl phosphite ($0.72 \mathrm{~mL}, 4.1 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [$\mathrm{N}-(3-$ methoxyphenyl)carbamoyl]butylphosphonate 327b as a brown oil ($0.32 \mathrm{~g}, 66$ \%); (Found: $\mathbf{M}^{+}, 343.15836 \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 343.15486$); $\mathrm{v} / \mathrm{cm}^{-1} 1681$ ($\mathrm{C}=\mathrm{O}$), 1237 ($\mathrm{P}=\mathrm{O}$) and 1038 (P-OEt); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $2.06\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.80\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.13(4 \mathrm{H}, \mathrm{m}, 2$ $\left.\times \mathrm{OCH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, 4-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.20(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $22.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.2 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 23.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=4.7 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 36.5$ (d, $\left.J_{\mathrm{P}-\mathrm{C}}=4.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 55.2\left(\mathrm{OCH}_{3}\right), 62.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 105.5(\mathrm{C}-2), 109.5(\mathrm{C}-$ 4), 112.4 (C-6), 129.9 (C-5), 139.5 (C-1), 160.2 (C-3) and 167.3 (C=O).

Diethyl [N-(3-bromophenyl)carbamoylbutylphosphonate 327c

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl] butylphosphonate 327a was employed, using 5-chloro- N-(3-bromophenyl)pentanamide 326c ($0.50 \mathrm{~g}, 1.7 \mathrm{mmol}$) and triethyl phosphite ($0.58 \mathrm{~mL}, 3.4 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N-(3bromophenyl)carbamoyl]butylphosphonate 327c as a brown oil ($0.30 \mathrm{~g}, 63$ \%); (Found: \mathbf{M}^{+}, $391.05517 \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BrNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 391.05481$; $\mathrm{v} / \mathrm{cm}^{-1} 1685(\mathrm{C}=\mathrm{O}), 1221(\mathrm{P}=\mathrm{O})$ and 1029 (P-OEt); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17\left(2 \mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 1.27\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.79$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.99\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.37\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right)$, $6.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.48$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 22.1(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 23.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 36.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 115.6(\mathrm{C}-6), 118.3(\mathrm{C}-3), 122.6(\mathrm{C}-2), 126.4$ (C-4), 129.7 (C-5), 139.7 (C-1) and 168.1 (C=O).

Diethyl [N-(3-fluorophenyl)carbamoyl]butylphosphonate 327d

The procedure described for the synthesis of diethyl [N-(3hydroxyphenyl)carbamoyl]butylphosphonate 327a was employed, using 5 -chloro- N -(3fluorophenyl) pentanamide 326d ($0.50 \mathrm{~g}, 2.2 \mathrm{mmol}$) and triethyl phosphite ($0.75 \mathrm{~mL}, 4.4$ mmol). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-fluorophenyl)carbamoyl]butylphosphonate 327d as a clear oil ($0.25 \mathrm{~g}, 54$ \%); (Found: $\mathbf{M}^{+}, 331.13529 \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{FNO}_{4} \mathrm{P}$ requires: $\mathbf{M}^{+}, 331.13487$); $\mathrm{v} / \mathrm{cm}^{-1} 1653(\mathrm{C}=\mathrm{O}), 1231(\mathrm{P}=\mathrm{O})$ and 1023 ($\mathrm{P}-\mathrm{OEt}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$, $1.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.10\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.12(4 \mathrm{H}, \mathrm{m}, 2 \times$ $\left.\mathrm{OCH}_{2}\right), 6.81(1 \mathrm{H}, \mathrm{ddd}, J=6.4,2.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 6-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ $=6.8,2.8$ and $1.2 \mathrm{~Hz}, 5-\mathrm{H}) 7.43(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $2.4 \mathrm{~Hz}, 2-\mathrm{H})$ and $7.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $22.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4\right.$ '), $23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=140.8\right.$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}$), $26.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.5 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=4.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 63.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.7 \mathrm{~Hz}, 2 \times\right.$ OCH_{2}), $108.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=25.7 \mathrm{~Hz}, \mathrm{C}-2\right), 111.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=20.8 \mathrm{~Hz}, \mathrm{C}-4\right), 115.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=3.1 \mathrm{~Hz}, \mathrm{C}-6\right)$, $129.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=8.7 \mathrm{~Hz}, \mathrm{C}-5\right), 138.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=11.3 \mathrm{~Hz}, \mathrm{C}-1\right), 163.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=241.2 \mathrm{~Hz}, \mathrm{C}-3\right)$ and 168.3 (C=O).

Diethyl [N-(3-cyanophenyl)carbamoyl]butylphosphonate 327e

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]butylphosphonate 327a was employed, using 5-chloro-N-(3-cyanophenyl)pentanamide 326e $(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$ and triethyl phosphite ($0.72 \mathrm{~mL}, 4.2 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-
cyanophenyl)carbamoyl]butylphosphonate 327e as a clear oil ($0.28 \mathrm{~g}, 61 \%$); (Found: \mathbf{M}^{+}, $338.14137 \mathrm{C}_{156} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires: $\mathrm{M}^{+}, 338.13954$); $\mathrm{v} / \mathrm{cm}^{-1} 2238$ ($\mathrm{C} \equiv \mathrm{N}$), 1667 ($\mathrm{C}=\mathrm{O}$), 1218 ($\mathrm{P}=\mathrm{O}$) and $1046(\mathrm{P}-\mathrm{OEt})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.34(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{3}\right), 1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.92\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.14$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.38(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.64(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, 4-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}, 6-\mathrm{H}) 7.93(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times\right.$ CH_{3}), 22.4 ($\left.\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right), 23.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right)$, $37.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=6.7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 112.6(\mathrm{C}-3), 118.8(\mathrm{C} \equiv \mathrm{N}), 122.6$ (C-2), 124.6 (C-5), 127.2 (C-6), 129.8 (C-4), 139.8 (C-1) and 173.5 (C=O).

Diethyl [N-(3-nitrophenyl)carbamoyl]butylphosphonate 327f

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonate 326a was employed, using 5 -chloro- N-(3-nitrophenyl) pentanamide 326f (0.50 $\mathrm{g}, 2.0 \mathrm{mmol})$ and triethyl phosphite $(0.68 \mathrm{~mL}, 3.9 \mathrm{mmol})$. The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl [N -(3-nitrophenyl)carbamoyl]butyl phosphonate 327 f as a yellow oil ($0.35 \mathrm{~g}, 74 \%$); (Found: $\mathbf{M}^{+}, 358.13018 \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires: $\mathbf{M}^{+}, 358.12937$); $\mathrm{v} / \mathrm{cm}^{-1} 1683(\mathrm{C}=\mathrm{O}), 1218(\mathrm{P}=\mathrm{O})$ and $1028(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.79\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.46\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.07\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right), 7.47(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.96(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H})$ and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{\delta}_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}\right.$ $=6.4 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}$), $22.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 23.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.4.8 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 113.8(\mathrm{C}-2), 119.1$ (C-4), 124.9 (C-6), 129.8 (C-5), 140.7 (C-1), 149.1 (C-3) and 173.4 (C=O).

Diethyl \{N-[3-(hydroxymethyl)phenyl]carbamoyl\}butylphosphonate 327g

The procedure described for the synthesis of diethyl [N-(3-hydroxyphenyl)carbamoyl]butylphosphonate 327a was employed, using 5-chloro- N-[3-(hydroxymethyl)phenyl]pentanamide $\mathbf{3 2 6 g}(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$ and triethyl phosphite ($0.72 \mathrm{~mL}, 4.1 \mathrm{mmol}$). The crude product was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)], and subsequent evaporation of the solvent in vacuo afforded diethyl $\{\mathrm{N}-[3-$ (hydroxymethyl)phenyl]carbamoyl\}butylphosphonate 327g as a clear oil ($0.31 \mathrm{~g}, 66 \%$); (Found: $\mathbf{M}^{+}, 343.15504 \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{P}$ requires: $\mathbf{M}^{+}, 343.15486$); $\mathbf{v} / \mathrm{cm}^{-1} 3173(\mathrm{OH}), 1676$ (C=O), $1236(\mathrm{P}=\mathrm{O})$ and $1048(\mathrm{P}-\mathrm{OEt}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.31(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.85\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.11(4 \mathrm{H}, \mathrm{m}, 2$ $\left.\times \mathrm{OCH}_{2}\right), 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 5-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right.$), $21.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.3 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 23.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=143.8 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{P}$), $26.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times\right.$ OCH_{2}), $64.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.2$ (C-2), 118.7 (C-6), 123.2 (C-4), 129.8 (C-5), 138.7 (C-1), 140.7 (C$3)$ and $173.5(\mathrm{C}=0)$.

3.3.4.2. Synthesis of butylphosphonic acids derivatives using TMSBr

[N-(3-Hydroxyphenyl)carbamoyl]butylphosphonic acid 335a

Trimethylsilyl bromide ($0.20 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added to diethyl [N-(3-hydroxyphenyl) carbamoyl]butylphosphonate 327 ($0.25 \mathrm{~g}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and the mixture was heated in the microwave apparatus set to deliver 100 W of power, with a reaction temperature of $60^{\circ} \mathrm{C}$ and reaction time of 10 min . After completion, the mixture was cooled
to room temperature, treated with a $95: 5 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture and stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3hydroxyphenyl)carbamoyl]butylphosphonic acid 335a as a yellow oil ($0.11 \mathrm{~g}, 67$ \%); (Found: $\mathrm{C}, 48.51 ; \mathrm{H}, 5.82 ; \mathrm{N}, 5.08 \% . \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 48.36 ; \mathrm{H}, 5.90 ; \mathrm{N}, 5.13 \%$); v/cm ${ }^{-1} 3376$ (OH), 1687 (C=O) and $1235(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 2.06(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.05(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H})$, $6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.28(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.2 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=\right.$ $143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3$ '), 36.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{C}}=3.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $107.9(\mathrm{C}-2), 112.3$ (C-4), 112.8 (C-6), 128.7 (C-5), 138.7 (C-1), 158.3 (C-3) and 164.1 (C=O).

[N-(3-Methoxyphenyl)carbamoylbutylphosphonic acid 335b

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl [N-(3-methoxyphenyl)carbamoyl]butyl phosphonate 327b ($0.25 \mathrm{~g}, 0.73 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.19 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-methoxyphenyl)carbamoyl]butylphosphonic acid 335b as a yellow oil ($0.097 \mathrm{~g}, 60 \%$); (Found: C, 50.27; H, 6.38; N, 4.82 \%. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 50.18 ; \mathrm{H}, 6.32 ; \mathrm{N}, 4.88 \%$); v/cm ${ }^{1} 3152(\mathrm{OH}), 1679(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{4}^{\prime}-\mathrm{CH}_{2}\right), 2.03$ $\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.79\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.89(2 \mathrm{H}, \mathrm{s}, 2 \times$ $\mathrm{OH}), 6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 4-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 5-\mathrm{H}$) and $7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 23.6$
 $\left(\mathrm{OCH}_{3}\right), 106.2$ (C-2), 109.4 (C-4), 112.7 (C-6), 129.8 (C-5), 139.8 (C-1), 159.9 (C-3) and 169.2 ($\mathrm{C}=\mathrm{O}$).

[N-(3-Bromophenyl)carbamoyl]butylphosphonic acid 335c

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl [N-(3-bromophenyl)carbamoyl]butyl phosphonate $325 \mathrm{c}(0.25 \mathrm{~g}, 0.63 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.17 mL , 1.3 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-bromophenyl)carbamoyl]butylphosphonic acid 335c as a brown oil (0.099 g, 60 \%); (Found: C, 39.54; H, 4.59; N, 4.25 \%. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNO}_{4} \mathrm{P}$ requires $\mathrm{C}, 39.31 ; \mathrm{H}, 4.50 ; \mathrm{N}, 4.17 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3163(\mathrm{OH}), 1680(\mathrm{C}=\mathrm{O})$ and $1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.00\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.77(2 \mathrm{H}, \mathrm{x}, 2 \times$ $\mathrm{OH}), 6.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.2$ and $2.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 2-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $0.8 \mathrm{~Hz}, 6-\mathrm{H}), 7.23(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 21.7 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4^{\prime}$), $23.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=144.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $26.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.2 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 36.1$ ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $115.8(\mathrm{C}-6), 118.2(\mathrm{C}-3), 122.5(\mathrm{C}-2), 126.8(\mathrm{C}-4), 129.8(\mathrm{C}-5), 138.9$ ($\mathrm{C}-1$) and 170.4 ($\mathrm{C}=\mathrm{O}$).

[N-(3-Fluorophenyl)carbamoyl]butylphosphonic acid 335d

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl [N-(3-fluorophenyl)carbamoyl]butyl phosphonate 327d ($0.25 \mathrm{~g}, 0.73 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.20 mL , $1.5 \mathrm{mmol})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-fluorophenyl)carbamoyl]butylphosphonic acid 335d as a yellow oil ($0.10 \mathrm{~g}, 63$ \%); (Found: $\mathrm{C}, 48.12 ; \mathrm{H}, 5.60 ; \mathrm{N}, 6.87 \% . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FNO}_{4} \mathrm{P}$ requires $\mathrm{C}, 48.01 ; \mathrm{H}, 5.49 ; \mathrm{N}, 6.90 \%$; $\mathrm{v} / \mathrm{cm}^{-1} 3019$
$(\mathrm{OH}), 1664(\mathrm{C}=\mathrm{O})$ and $1216(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.90(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.03\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.65(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 6.83(1 \mathrm{H}$, ddd, $J=6.4,2.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=6.4$ and $0.8 \mathrm{~Hz}, 6-\mathrm{H}), 6.92(1 \mathrm{H}, \mathrm{td}, J=6.8$, 2.4 and $1.2 \mathrm{~Hz}, 5-\mathrm{H}) 7.54(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $2.4 \mathrm{~Hz}, 2-\mathrm{H})$ and $9.01(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.7 ($\left.\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 22.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=4.4 \mathrm{~Hz}\right.$, $\mathrm{C}-3^{\prime}$), 36.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 108.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=26.3 \mathrm{~Hz}, \mathrm{C}-2$), 111.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=21.2 \mathrm{~Hz}, \mathrm{C}-4$), $115.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=3.3 \mathrm{~Hz}, \mathrm{C}-6\right), 129.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=8.8 \mathrm{~Hz}, \mathrm{C}-5\right), 138.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.8 \mathrm{~Hz}, \mathrm{C}-1\right), 164.3(\mathrm{~d}$, $J_{\mathrm{F}-\mathrm{C}}=243.2 \mathrm{~Hz}, \mathrm{C}-3$) and $167.6(\mathrm{C}=\mathrm{O})$.

[N-(3-Cyanophenyl)carbamoyl]butylphosphonic acid 335e

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl [N-(3-cyanophenyl)carbamoyl]butyl phosphonate $327 \mathrm{e}(0.25 \mathrm{~g}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.20 mL , 1.5 mmol). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-cyanophenyl)carbamoyl]butylphosphonic acid 335e as a clear oil ($0.096 \mathrm{~g}, 59$ \%); (Found: C, 51.21; $\mathrm{H}, 5.45 ; \mathrm{N}, 9.98 \% . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 51.07 ; \mathrm{H}, 5.36 ; \mathrm{N}, 9.93 \%$); ($0.10 \mathrm{~g}, 59$ \%); $\mathrm{v} / \mathrm{cm}^{-1} 3235(\mathrm{OH}), 2234(\mathrm{C} \equiv \mathrm{N}), 1684(\mathrm{C}=\mathrm{O})$ and $1232(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.24\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.89\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $7.18(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.35(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 5-\mathrm{H}), 7.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $9.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=\right.$ $15.6 \mathrm{~Hz}, \mathrm{C}-4$ '), 23.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3$ '), 36.6 (d, JP-C=$=3.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}$), 112.5 ($\mathrm{C}-3$), 118.4 ($\mathrm{C} \equiv \mathrm{N}$), 122.6 (C-2), 124.2 (C-5), 127.4 (C-6), 129.7 (C-4), 139.2 (C1) and 169.4 ($\mathrm{C}=\mathrm{O}$).

[N-(3-Nitrophenyl)carbamoyl]butylphosphonic acid 335f

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl [N-(3-nitrophenyl)carbamoyl]butyl phosphonate $327 \mathrm{f}(0.25 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide (0.18 mL , $1.4 \mathrm{mmol})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [N -(3-nitrophenyl)carbamoyl]butylphosphonic acid 335 f as a yellow oil ($0.12 \mathrm{~g}, 69$ \%); (Found: C, 43.79; H, 5.09; N, 9.35 \%. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires C, 43.72; H, 5.00; N, 9.27 \%); v/cm 3267 $(\mathrm{OH}), 1659(\mathrm{C}=\mathrm{O})$ and $1235(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.81(4 \mathrm{H}$, $\mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.44\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.89(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 7.48(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $7.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 5-\mathrm{H}), 7.95(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H})$ and $8.89(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=15.8 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 24.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=4.2 \mathrm{~Hz}\right.$, C-3'), 36.9 ($d, J_{P-C}=4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $114.2(\mathrm{C}-2), 118.8(\mathrm{C}-4), 124.5(\mathrm{C}-6), 129.6(\mathrm{C}-5), 139.8$ (C-1), 148.4 ($C-3$) and 169.7 ($C=0$).

4-\{[3-(Hydroxymethyl)phenyl]carbamoyl\}butylphosphonic acid 335g

The procedure described for the synthesis of [N-(3-hydroxyphenyl)carbamoyl]butyl phosphonic acid 335a was employed, using diethyl \{N-[3-(hydroxymethyl) phenyl]carbamoyl\}butylphosphonate $327 \mathrm{~g}(0.25 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ and trimethylsilyl bromide ($0.20 \mathrm{~mL}, 1.5 \mathrm{mmol}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc$\mathrm{MeOH}(1: 1: 1.5)]$ to yield $\{\mathrm{N}-[3-(h y d r o x y m e t h y l) p h e n y l] c a r b a m o y l\} b u t y l p h o s p h o n i c ~ a c i d ~ 335 g ~$ as a yellow oil ($0.094 \mathrm{~g}, 57 \%$); (Found: C, $50.24 ; \mathrm{H}, 6.39 ; \mathrm{N}, 4.95 \% \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$ requires C , 50.18; H, 6.32; N, 4.88%); v/cm $\mathrm{cm}^{-1} 3276(\mathrm{OH}), 1682(\mathrm{C}=\mathrm{O})$ and $1234(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$;
$\left.\mathrm{CDCl}_{3}\right) 1.24\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.87\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.22(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.23$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{c} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4{ }^{\prime}\right), 23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), 26.7 (d , $\left.J_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 35.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 118.1(\mathrm{C}-2), 118.8(\mathrm{C}-6), 123.6$ (C-4), 129.8 (C-5), 138.9 (C-1), 141.3 (C-3) and 169.8 ($\mathrm{C}=0$).

3.3.4.3. Synthesis of sodium hydrogen butylphosphonate derivatives

Sodium hydrogen [N-(3-hydroxyphenyl)carbamoyl]butylphosphonate 336a

[N-(3-Hydroxyphenyl)carbamoyl]butylphosphonic acid 335a ($0.15 \mathrm{~g}, 0.55 \mathrm{mmol}$) was treated with a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.52 \mathrm{~mL})$ and the mixture was stirred for 30 min . The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]butylphosphonate 336a as a grey semi-solid ($0.094 \mathrm{~g}, 91 \%$); (Found: C, 44.85; H, 5.23; N, 4.79 \%. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NNaO}_{5} \mathrm{P}$ requires $\mathrm{C}, 44.75 ; \mathrm{H}, 5.12 ; \mathrm{N}, 4.74 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3265(\mathrm{OH}), 1653(\mathrm{C}=\mathrm{O})$ and $1219(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.21\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right)$, $1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.03\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}, 4-\mathrm{H}), 6.95(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.40(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$; $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}\right), 23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=143.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 26.7$ (d, $\left.J_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime}\right), 35.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 108.0(\mathrm{C}-2), 112.1(\mathrm{C}-4), 112.8(\mathrm{C}-6), 128.2$ (C-5), 138.3 ($\mathrm{C}-1$), 158.5 ($\mathrm{C}-3$) and 168.1 ($\mathrm{C}=\mathrm{O}$).

Sodium hydrogen [N-(3-methoxyphenyl)carbamoyl]butylphosphonate 336b

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using [N-(3methoxyphenyl)carbamoyl]butylphosphonic acid 335b ($0.15 \mathrm{~g}, 0.52 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.49 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [$\mathrm{N}-(3-$-methoxyphenyl)carbamoyl]butylphosphonate 336b as a yellow semi-solid ($0.098 \mathrm{~g}, 94 \%$); (Found: C, 46.73 ; $\mathrm{H}, 5.62 ; \mathrm{N}, 4.57 \% \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NNaO}_{5} \mathrm{P}$ requires C , 46.61; H, 5.54; N, 4.53 \%); v/cm ${ }^{-1} 3317(\mathrm{OH}), 1678$ ($\mathrm{C}=\mathrm{O}$) and 1232 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.25\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.98\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.44\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.78$ $\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 6-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $\left.7.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.6 \mathrm{~Hz}, \mathrm{C}-4\right)^{\prime}\right), 24.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}\right.$ $=141.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.7 (d, $\mathrm{J}_{\mathrm{p}-\mathrm{C}}=4.4 \mathrm{~Hz}, \mathrm{C}-3$ '), 36.3 (d, $\mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), $54.7\left(\mathrm{OCH}_{3}\right)$, 106.5 (C-2), 110.2 (C-4), 112.5 (C-6), 129.9 (C-5), 140.0 (C-1), 159.7 (C-3) and 167.3 (C=O).

Sodium hydrogen [N-(3-bromophenyl)carbamoyl]butylphosphonate 336c

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using [N-(3bromophenyl)carbamoyl]butylphosphonic acid 335 c ($0.15 \mathrm{~g}, 0.44 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.41 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-bromophenyl)carbamoyl]butylphosphonate 336c as a pale yellow semi-solid ($0.098 \mathrm{~g}, 94 \%$); (Found: C, 37.01; H, 4.17; N, $3.88 \% \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNNaO}_{4} \mathrm{P}$ requires $\mathrm{C}, 36.89 ; \mathrm{H}, 3.94 ; \mathrm{N}, 3.91 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3271(\mathrm{OH}), 1666(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.27\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.98\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.41$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 6.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.29(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 6-\mathrm{H}$) and $7.43(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=15.4 \mathrm{~Hz}, \mathrm{C}-4^{\prime}\right)$, 24.2 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=144.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=5.6 \mathrm{~Hz}, \mathrm{C}-3$ '), 36.6 (d, Jp-c $=4.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 115.5 (C-6), 118.3 (C-3), 123.4 (C-2), 126.5 (C-4), 129.7 (C-5), 138.8 (C-1) and 167.4 (C=O).

Sodium hydrogen [N-(3-fluorophenyl)carbamoyl]butylphosphonate 336d

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using [N -(3fluorophenyl)carbamoyl]butylphosphonic acid 335 d ($0.15 \mathrm{~g}, 0.54 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.52 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-fluorophenyl)carbamoyl]butylphosphonate 336d as a grey semi-solid ($0.010 \mathrm{~g}, 96$ \%); (Found: C, 44.53; H, 4.70; $\mathrm{N}, 4.80 \% . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNNaO}_{4} \mathrm{P}$ requires C , 44.45 ; $\mathrm{H}, 4.75$; N, 4.71%); $\mathrm{v} / \mathrm{cm}^{-1} 3416(\mathrm{OH}), 1683(\mathrm{C}=\mathrm{O})$ and $1239(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.28\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.99\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right), 2.36(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 6.80(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=6.8,2.4$ and $1.6 \mathrm{~Hz}, 4-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2$ and $0.8 \mathrm{~Hz}, 6-\mathrm{H})$, $7.26(1 \mathrm{H}, \mathrm{td}, J=6.8,2.4$ and $1.6 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.40(1 \mathrm{H}, \mathrm{dt}, J=6.4$ and $2.4 \mathrm{~Hz}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}$ ($100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) 22.2 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}$), 23.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=142.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $26.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.8\right.$ $\left.\mathrm{Hz}, \mathrm{C}-3^{\prime}\right), 36.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 108.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=26.2 \mathrm{~Hz}, \mathrm{C}-2\right), 111.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=20.8 \mathrm{~Hz}\right.$, $\mathrm{C}-4), 115.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{C}-6\right), 129.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=10.2 \mathrm{~Hz}, \mathrm{C}-5\right), 138.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=11.2 \mathrm{~Hz}, \mathrm{C}-1\right)$, 163.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{F}-\mathrm{C}}=241.7 \mathrm{~Hz}, \mathrm{C}-3$) and 172.1 ($\mathrm{C}=\mathrm{O}$).

Sodium hydrogen [N-(3-cyanophenyl)carbamoyl]butylphosphonate 336e

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using [N-(3cyanophenyl)carbamoyl]butylphosphonic acid 335 e ($0.15 \mathrm{~g}, 0.53 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.50 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N-(3-cyanophenyl)carbamoyl]butylphosphonate 336e as a yellow
semi-solid ($0.10 \mathrm{~g}, 94 \%$); (Found: C, 47.27; H, 4.73; N, $9.25 \% \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{P}$ requires C , 47.38; H, 4.64; N, 9.21 \%); ($0.10 \mathrm{~g}, 59 \%$); v/cm $\mathrm{cm}^{-1} 3849$ (OH), 2225 ($\mathrm{C} \equiv \mathrm{N}$), 1678 ($\mathrm{C}=\mathrm{O}$) and 1219 ($\mathrm{P}=\mathrm{O}$) ; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.23\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 1.90(2 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{CH}_{2}\right), 2.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 5-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 4-$ H), $7.69(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H})$ and $7.87(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.3\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=\right.$ $15.8 \mathrm{~Hz}, \mathrm{C}-4$ '), 22.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=143.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-3$ '), $36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=3.7 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 112.6 (C-3), 118.2 ($\mathrm{C} \equiv \mathrm{N}$), 122.6 (C-2), 124.8 (C-5), 127.5 (C-6), 129.6 (C-4), 138.8 (C1) and 173.5 ($\mathrm{C}=\mathrm{O}$).

Sodium hydrogen [N-(3-nitrophenyl)carbamoyl]butylphosphonate 336 f

The procedure described for the synthesis of sodium hydrogen [N -(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using [N -(3nitrophenyl)carbamoyl]butylphosphonic acid $335 \mathrm{f}(0.15 \mathrm{~g}, 0.49 \mathrm{mmol})$ and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.46 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(1: 1)$] to yield sodium hydrogen [N -(3-nitrophenyl)carbamoyl]butylphosphonate 336 f as a yellow semi-solid ($0.099 \mathrm{~g}, 92$ \%); (Found: C, 40.89 ; $\mathrm{H}, 4.47$; $\mathrm{N}, 8.57 \% . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{P}$ requires C , 40.75; H, 4.35; N, 8.64%); v/cm ${ }^{-1} 3423(\mathrm{OH}), 1678$ ($\mathrm{C}=\mathrm{O}$) and 1227 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 1.21\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.80\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.32\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 7.43$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5-\mathrm{H})$ and $7.86(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $6-\mathrm{H})$; $\delta_{\mathrm{c}} / \mathrm{ppm}(100 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 23.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=15.6 \mathrm{~Hz}, \mathrm{C}-4 \mathrm{C}^{\prime}\right), 24.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=142.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 25.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.2 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right)$, 36.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=3.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}$), 114.7 (C-2), 118.3 (C-4), 123.7 (C-6), 128.6 (C-5), 139.7 (C-1), 149.3 (C-3) and 168.6 (C=O).

Sodium hydrogen $\{N$-[3-(hydroxymethyl)phenyl]carbamoyl\}butylphosphonate 336g

The procedure described for the synthesis of sodium hydrogen [N-(3hydroxyphenyl)carbamoyl]butylphosphonate 336a was employed, using \{N-[(3(hydroxymethyl)phenyl]carbamoyl\}butylphosphonic acid 335 g ($0.15 \mathrm{~g}, 0.52 \mathrm{mmol}$) and a solution of $\mathrm{NaOH}(1.1 \mathrm{~mol})$ in $\mathrm{EtOH}(0.49 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [reverse-phase column chromatography; elution with $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ (1:1)] to yield sodium hydrogen \{ N -[3-(hydroxymethyl)phenyl]carbamoyl\}butylphosphonate 336g as a white semi-solid ($0.011 \mathrm{~g}, 96$ \%); (Found: C, 46.71; H, 5.58; N, 4.50 \%. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NNaO}_{5} \mathrm{P}$ requires $\mathrm{C}, 46.61 ; \mathrm{H}, 5.54 ; \mathrm{N}, 4.53 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3384(\mathrm{OH}), 1682(\mathrm{C}=\mathrm{O})$ and 1234 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.27\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{CH}_{2}\right), 1.84\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{CH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{P}\right), 2.35(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 4-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, $5-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 6-\mathrm{H})$ and $7.42(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ 15.6 Hz, C-4'), 23.7 ($d, J_{p-c}=143.7 \mathrm{~Hz}, C H_{2} P$), $26.3\left(\mathrm{~d}, J_{p-c}=4.5 \mathrm{~Hz}, \mathrm{C}-3\right.$ '), $36.1\left(\mathrm{~d}, J_{p-c}=3.6 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), 63.7 ($\mathrm{CH}_{2} \mathrm{OH}$), 118.0 (C-2), 118.8 (C-6), 124.3 (C-4), 129.9 (C-5), 139.4 (C-1), 140.9 ($\mathrm{C}-3$) and 167.8 ($\mathrm{C}=\mathrm{O}$).

3.4. Furan-containing phosphoric acid derivatives

3-[(Trityloxy)methyl]furan $339{ }^{176}$

A solution of triphenylmethyl chloride 342 ($6.00 \mathrm{~g}, 20.5 \mathrm{mmol}$), 3-furanmethanol 338 (2.00 $\mathrm{g}, 20.4 \mathrm{mmol}$), triethylamine ($4.46 \mathrm{~mL}, 20.4 \mathrm{mmol}$) and DMAP ($0.61 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF (30 mL) was stirred under N_{2} at $80^{\circ} \mathrm{C}$ for 15 hours. The solvent was evaporated in vacuo and the residue dissolved in EtOAc (100 mL). The organic phase was washed sequentially with water
($2 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$). The aqueous washings were extracted with EtOAc and the organic layers were combined and dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo to afford 3-[(trityloxy)methyl]furan 339 as a yellow gum ($4.98 \mathrm{~g}, 72 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}$ (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.43(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.27-7.54(17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and trityl group); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 58.4\left(\mathrm{OCH}_{2}\right)$, 86.9 (C-2'), 109.9 (C-4), 123.1 (C-3), 127.0 (C$\left.6^{\prime}\right), 127.8$ (C-4' and C-8'), 128.6 (C-5' and C-7'), 139.7 (C-3'), 143.0 (C-2) and 144.0 (C-5).

3-[(Trityloxy)methyl]furan-2-carbaldehyde 340a and 4-[(trityloxy)methyl]furan-2-carbaldehyde 340b ${ }^{176}$

Method 1

To a stirred solution of 3 -[(trityloxy)methyl]furan 339 ($2.00 \mathrm{~g}, 5.88 \mathrm{mmol}$) in THF (20 mL) under N_{2} at ca. $-30^{\circ} \mathrm{C}$, butyllithium ($6.0 \mathrm{~mL}, 12 \mathrm{mml}$) was slowly added dropwise via a septum, ensuring that the temperature did not exceed $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred for 4 hours; DMF (1.38 mL) was then added and the mixture stirred for a further 2 hours. The reaction mixture was allowed to warm to room temperature and stirred for an additional 2 hours before being quenched with water (15 mL) and extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$). The organic extracts were washed sequentially with $10 \% \mathrm{aq} . \mathrm{NaHCO}_{3}(2 \times$ 50 mL), brine ($2 \times 50 \mathrm{~mL}$) and dried (anhydr. MgSO_{4}). The solvent was removed in vacuo to obtain the crude product as a yellow solid. The crude product was purified [normal-phase HPLC; elution with hexane-EtOAc (4:1)] to yield two products.
i. 3-[(Trityloxy)methyl]furan-2-carbaldehyde 340a as a white solid (4 mg, 6%); $\delta_{H} / \mathrm{ppm}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.31-7.69(17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and trityl group) and 9.68 (1H, s, CHO); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 58.1\left(\mathrm{OCH}_{2}\right), 87.6(\mathrm{C}-2 \mathrm{l}), 113.1(\mathrm{C}-4), 127.3$ (C-6'), 128.0 (C-4' and C-8'), 128.6 (C-5' and C-7'), 135.4 (C-3), 143.5 (C-3'), 147.2 (C-5), 147.8 (C-2) and 178.5 ($\mathrm{C}=\mathrm{O}$).
ii. 4-[(Trityloxy)methyl]furan-2-carbaldehyde 340b as a pale yellow solid ($12 \mathrm{mg}, 12 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.75(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.26-7.49(15 \mathrm{H}, \mathrm{m}$, trityl group), $7.61(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $9.73(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 57.8$ $\left(\mathrm{OCH}_{2}\right), 87.3\left(\mathrm{C}-2^{\prime}\right), 120.5(\mathrm{C}-3), 126.4(\mathrm{C}-4), 127.2\left(\mathrm{C}-6^{\prime}\right) 128$ (C-4' and C-8'), 128.5 (C5^{\prime} and $C-7^{\prime}$), 143.6 ($C-3^{\prime}$), 145.2 ($C-5$), 153.1 ($C-2$) and 178.0 ($C=0$).

Method 2

The Vilsmeier reagent was prepared by adding phosphorus oxychloride ($1.86 \mathrm{~mL}, 26.0$ mmol) dropwise to DMF (20 mL) under nitrogen over a period of 30 min , maintaining the temperature below $5{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , after which 3[(trityloxy)methyl]furan 339 ($2.00 \mathrm{~g}, 5.88 \mathrm{mmol}$) in DMF (5 mL) was added. The reaction mixture was stirred for 3 hours at room temperature and then heated at $80^{\circ} \mathrm{C}$ for 1 hour. After cooling, the mixture was poured into ice-water (200 mL) and the pH adjusted to pH 10 with 0.1 M aq. NaOH . The solution was extracted with diethyl ether ($4 \times 50 \mathrm{~mL}$), and the organic extracts were combined, washed with water and brine and the dried (anhydr. $\left.\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to afford the crude product, which was recrystallised from MeOH to yield 4-[(trityloxy)methyl]furan-2-carbaldehyde 340b as a pale yellow crystals ($1.39 \mathrm{~g}, 64 \%$).

2-Acetyl-4-[(trityloxy)methyl]furan 340c and 2-acetyl-3-[(trityloxy)methyl]furan 369

369

Method 1

Acetic anhydride ($0.27 \mathrm{~mL}, 2.9 \mathrm{mmol}$) was added dropwise to a solution of $\mathrm{SnCl}_{4}(0.12 \mathrm{~mL}$, 0.49 mmol) in DCM (10 mL) under N_{2} at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . 3[(Trityloxy)methyl]furan $339(1.00 \mathrm{~g}, 2.94 \mathrm{mmol})$ in DCM (10 mL) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was then warmed to 40
${ }^{\circ} \mathrm{C}$ and stirred for 4 hours. After completion, the mixture was treated with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$). The organic extracts were combined, dried (anhydr. MgSO_{4}) and filtered. The solvent was removed under reduced pressure and the residue was purified [normal-phase HPLC; elution with hexane-EtOAc (3:1)] to yield two products.
i. 2-Acetyl-4-[(trityloxy)methyl]furan 340c as a yellow oil ($47 \mathrm{mg}, 64 \%$); (Found: C, 81.58; $\mathrm{H}, 5.76$ \%. $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.65 ; \mathrm{H}, 5.80 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1675$ ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}$ (400 MHz; CDCl ${ }_{3}$) $2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ and 7.14 - $7.34(17 \mathrm{H}, \mathrm{m}, 3-$ $\mathrm{H}, 5-\mathrm{H}$ and trityl group); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.2\left(\mathrm{CH}_{3}\right), 57.3\left(\mathrm{OCH}_{2}\right), 87.6$ (C$\left.2^{\prime}\right), 120.4$ (C-3), 126.4 (C-4), 127.4 (C-6') 127.9 (C-4' and C-8'), 128.4 (C-5' and C-7'), 143.5 (C-3'), 145.3 (C-5), 153.5 (C-2) and 181.3 (C=O).
ii. 2-Acetyl-3-[(trityloxy)methyl]furan $\mathbf{3 6 9}$ as a yellow oil ($2 \mathrm{mg}, 2.4$ \%); (Found: C, 81.60; $\mathrm{H}, 5.82 \% \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 81.65 ; \mathrm{H}, 5.80 \%$); v/cm ${ }^{-1} 1682$ ($\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right)$ and $7.12-7.28$ ($17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and trityl group); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.8\left(\mathrm{CH}_{3}\right), 56.8\left(\mathrm{OCH}_{2}\right), 87.3\left(\mathrm{C}-2^{\prime}\right), 112.8$ (C-4), 126.7 (C-6'), 128.1 (C-4' and C-8'), 128.8 (C-5' and C-7'), 134.6 (C-3), 143.6 (C3'), 147.3 (C-2), 148.2 (C-5) and 181.8 (C=O).

Method 2

Acetic anhydride ($0.14 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added dropwise to a solution of 3 [(trityloxy)methyl]furan 339 ($0.50 \mathrm{~g}, 1.5 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(0.10 \mathrm{~g}, 0.75 \mathrm{mmol})$ in DCM (10 mL) under N_{2} at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour. The reaction mixture was then warmed to $40^{\circ} \mathrm{C}$ and stirred for 8 hours. After completion, the mixture was treated with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with diethyl ether ($2 \times 25 \mathrm{~mL}$). The organic extracts were combined, dried (anhydr. MgSO_{4}) and filtered. The solvent was removed under reduced pressure and the residue was purified [normal-phase HPLC; elution with hexane-EtOAc (3:1)] to yield 2-acetyl-4-[(trityloxy)methyl]furan 340c as a yellow oil (28 mg, 37%) and 2-acetyl-3-[(trityloxy)methyl]furan 369 as a yellow oil ($0.88 \mathrm{mg}, 1.1 \%$).

2-(3,3-Dimethylbutanoyl)-4-[(trityloxy)methyl]furan 340d and 2-(3,3-dimethylbutanoyl)-3[(trityloxy)methyl]furan 370

The procedure described for the synthesis of 2-acetyl-4-[(trityloxy)methyl]furan 340c was employed, using 3-[(trityloxy)methyl]furan 339 (1.01 g, 2.94 mmol$)$, tert-butylacetyl chloride $(0.42 \mathrm{~mL}, 2.9 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(0.12 \mathrm{~mL}, 0.49 \mathrm{mmol})$. The solvent was removed under reduced pressure and the residue was purified [normal-phase HPLC; elution with hexaneEtOAc (4:1)] to yield two products.
i. 2-(3,3-Dimethylbutanoyl)-4-[(trityloxy)methyl]furan 340d as a yellow oil (32 mg, 56 \%); (Found: C, 82.30; H, 6.78 \%. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.16 ; \mathrm{H}, 6.89 \%$); v/cm ${ }^{-1} 1685$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 2.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.47(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2}\right)$ and $7.19-7.31\left(17 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 5-\mathrm{H}\right.$ and trityl group); $\delta_{\mathrm{c}} / \mathrm{ppm}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 29.1\left(3 \times \mathrm{CH}_{3}\right), 30.2\left(\mathrm{C}-3^{\prime \prime}\right), 47.4\left(\mathrm{C}-2^{\prime \prime}\right), 57.9\left(\mathrm{OCH}_{2}\right), 87.4\left(\mathrm{C}-2{ }^{\prime}\right), 120.6(\mathrm{C}-3)$, 126.4 (C-4), 127.3 (C-6') 128.0 (C-4' and $C-8$ '), 128.6 ($\mathrm{C}-5^{\prime}$ and $\mathrm{C}-\mathrm{7}^{\prime}$), 143.7 (C-3'), 145.3 (C-5), 153.2 (C-2) and $187.0(C=0)$.
ii. 2-(3,3-Dimethylbutanoyl)-3-[(trityloxy)methyl]furan 370 as a yellow oil ($1.6 \mathrm{mg}, 2.9$ \%); (Found: C, 82.35; H, $6.83 \% . \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.16 ; \mathrm{H}, 6.89 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1691$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 2.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.52(2 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{2}$) and $7.14-7.21\left(17 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}\right.$ and trityl group); $\delta_{\mathrm{c}} / \mathrm{ppm}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 29.5\left(3 \times \mathrm{CH}_{3}\right), 31.3\left(\mathrm{C}-3^{\prime \prime}\right), 46.8\left(\mathrm{C}-2^{\prime \prime}\right), 58.2\left(\mathrm{OCH}_{2}\right), 87.3(\mathrm{C}-2 '), 113.2(\mathrm{C}-4)$, 126.6 (C-6'), 127.8 (C-4' and C-8'), 128.9 (C-5' and C-7'), 132.8 (C-3), 143.8 (C-3'), 145.7 (C-5), 146.4 ($\mathrm{C}-2$) and 186.4 ($\mathrm{C}=0$) .

4-(Hydroxymethyl)furan-2-carbaldehyde 347b ${ }^{248}$

A suspension of 4-[(trityloxy)methyl]furan-2-carbaldehyde 340b ($0.25 \mathrm{~g}, 0.70 \mathrm{mmol}$) in $\mathrm{HCOOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(1: 1: 0.1 ; 5 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 2 hours. The solvent was removed in vacuo, [co-evaporated with hexane ($2 \times 10 \mathrm{~mL}$)] to yield 4-(hydroxymethyl)furan-2carbaldehyde 347b as a clear oil ($0.20 \mathrm{~g}, 82 \%$), ($\mathrm{Lit} .^{248}$); $\mathrm{v} / \mathrm{cm}^{-1} 3347(\mathrm{OH})$ and 1672 (C=O); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.00(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.42(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}$) and $9.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 58.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 119.7(\mathrm{C}-3), 126.2(\mathrm{C}-4)$, 145.5 (C-5), 152.8 (C-2) and 182.5 ($\mathrm{C}=\mathrm{O}$).

2-Acetyl-1-[4-(Hydroxymethyl)furan 347c ${ }^{249}$

The procedure described for the synthesis of 4-(hydroxymethyl)furan-2-carbaldehyde 347b was employed, using 2-acetyl-4-[(trityloxy)methyl]furan $\mathbf{3 4 0 c}(0.25 \mathrm{~g}, 0.65 \mathrm{mmol})$ in $\mathrm{HCOOH}-$ THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1:0.1; 5 mL). The solvent was removed in vacuo, co-evaporated with hexane (2 x 10 mL) to yield 2-acetyl-1-[4-(Hydroxymethyl)furan 347 c as a colourless oil ($0.21 \mathrm{~g}, 84 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3284(\mathrm{OH})$ and $1687(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.20(1 \mathrm{H}, \mathrm{s}$, OH), $4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.43(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.36(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.6$ $\left(\mathrm{CH}_{3}\right), 57.7\left(\mathrm{OCH}_{2}\right), 120.3(\mathrm{C}-3), 125.8(\mathrm{C}-4), 145.3(\mathrm{C}-5), 153.4(\mathrm{C}-2)$ and $178.9(\mathrm{C}=\mathrm{O})$.

2-(3,3-Dimethylbutanoyl)-1-[4-(hydroxymethyl)]furan 347d

The procedure described for the synthesis of 4-(hydroxymethyl)furan-2-carbaldehyde 347b was employed, using 2-(3,3-dimethylbutanoyl)-4-[(trityloxy)methyl]furan 340d ($0.25 \mathrm{~g}, 0.60$ mmol) in $\mathrm{HCOOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1:0.1; 5 mL). The solvent was removed in vacuo, [co-
evaporated] with hexane ($2 \times 10 \mathrm{~mL}$) to yield 2-(3,3-dimethylbutanoyl)-1-[4-(hydroxylmethyl)]furan 347d as a colourless oil ($0.20 \mathrm{~g}, 81 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19(9 \mathrm{H}, \mathrm{s}, 3$ $\left.\mathrm{x} \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.41(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and 7.39 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 28.6\left(3 \times \mathrm{CH}_{3}\right), 32.6(\mathrm{C}-3 '), 36.7\left(\mathrm{C}-2{ }^{\prime}\right)$, $58.6\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 120.2 (C-3), 123.8 (C-4), 145.3 (C-5), 153.2 (C-2) and 184.7 (C=O).

Diethyl (2-formylfuran-4-yl)methyl phosphate 348b

Diethyl chlorophosphate ($0.52 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added slowly to a stirred solution of 4-(hydroxymethyl)furan-2-carbaldehyde 347b ($0.20 \mathrm{~g}, 1.5 \mathrm{mmol}$) in pyridine (10 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature and the stirred for 24 hours. The solvent was removed in vacuo and the residue was dissolved in DCM (25 mL). The organic phase was washed with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, water ($2 \times 50 \mathrm{~mL}$) and brine (2 $\times 50 \mathrm{~mL}$), and dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield diethyl (2-formylfuran-4-yl)methyl phosphate 348b as a clear oil (0.14 g , 71%); (Found: $\mathrm{C}, 45.90 ; \mathrm{H}, 5.84 \% . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 45.81 ; \mathrm{H}, 5.77 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1677$ ($\mathrm{C}=\mathrm{O}$) and 1227 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.87(2 \mathrm{H}, \mathrm{d}$, $\left.J=2.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.45(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $10.12(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 60.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}\right.$, $2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), 120.3 (C-3), 125.6 (C-4), 145.3 (C-5), 153.2 (C-2) and 181.7 (C=O).

(2-Acetylfuran-4-yl)methyl diethyl phosphate 348c

The procedure described for the synthesis of (2-formylfuran-4-yl)methyl diethyl phosphate 348b was employed, using 2-acetyl-1-[4-(Hydroxymethyl)furan 347c ($0.20 \mathrm{~g}, 1.4 \mathrm{mmol}$) and
diethyl chlorophosphate ($0.47 \mathrm{~g}, 2.8 \mathrm{mmol}$) in pyridine (10 mL). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield (2-acetylfuran-4-yl)methyl diethyl phosphate 348c as a yellow oil ($0.15 \mathrm{~g}, 74 \%$); (Found: C, 48.01; H, $6.15 \% . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{6}$ P requires $\mathrm{C}, 47.83 ; \mathrm{H}, 6.20 \%$); v/cm cm^{-1} $1680(\mathrm{C}=\mathrm{O})$ and $1223(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.07\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.11(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.13(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $61.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 120.8(\mathrm{C}-3), 122.9(\mathrm{C}-4), 145.7(\mathrm{C}-5), 150.1(\mathrm{C}-2)$ and $182.6(\mathrm{C}=\mathrm{O})$.

Diethyl [2-(3,3-dimethylbutanoyl)furan-4-yl]methyl phosphate 348d

The procedure described for the synthesis of diethyl (2-formylfuran-4-yl)methyl phosphate 348b was employed, using 2-(3,3-dimethylbutanoyl)-1-[4-(hydroxymethyl)]furan 347d (0.20 $\mathrm{g}, 1.0 \mathrm{mmol}$) and diethyl chlorophosphate ($0.39 \mathrm{~g}, 2.0 \mathrm{mmol}$) in pyridine (10 mL). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield diethyl [2-(3,3-dimethylbutanoyl)furan-4-yl]methyl phosphate 348d as a yellow oil ($0.14 \mathrm{~g}, 71$ \%); (Found: C, 54.30; $\mathrm{H}, 7.60$ \%. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 54.21 ; \mathrm{H}, 7.58 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1681(\mathrm{C}=\mathrm{O})$ and 1232 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.56(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.09\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.47(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and 7.12 $(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.1 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.2\left(3 \times \mathrm{CH}_{3}\right), 32.3$ (C-3'), $36.8(\mathrm{C}-2 '), 62.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$ and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), 120.5 (C-3), 124.2 (C-4), 145.7 (C-5), 153.4 ($\mathrm{C}-2$) and 185.3 ($\mathrm{C}=0$).

(2-Formylfuran-4-yl)methyl dihydrogen phosphate 341b

A solution of 4-[(trityloxy)methyl]furan-2-carbaldehyde 340 b ($0.30 \mathrm{~g}, 0.84 \mathrm{mmol}$) and $\mathrm{H}_{3} \mathrm{PO}_{4}:$ THF (1:1 v/v; 2.0 mL) was stirred at room temperature for ca. 2 days. The solvent was removed under reduced pressure and the residue dissolved in EtOAc (25 mL). The organic phase was washed with 10% aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, and the aqueous layers were collected and acidified (pH 2.0) with $0.1 \mathrm{M}-\mathrm{HCl}$. The aqueous phase was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$) and the combined organic solutions were dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield (2-formylfuran-4yl)methyl dihydrogen phosphate 341b as a yellow oil ($0.12 \mathrm{~g}, 65$ \%); (Found: C, 35.01; H, 3.49 \%. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 34.97$; $\mathrm{H}, 3.42$ \%); v/cm $\mathrm{cm}^{-1} 1673(\mathrm{C}=\mathrm{O})$ and $1234(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 5.11\left(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $9.74(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CHO}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 61.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right.$), $120.9(\mathrm{C}-3), 123.0(\mathrm{C}-4)$, $145.8(C-5), 150.2(C-2)$ and $180.0(C=0)$.

(2-Acetylfuran-4-yl)methyl dihydrogen phosphate 341 c

The procedure described for the synthesis of (2-Formylfuran-4-yl)methyl dihydrogen phosphate 341b was employed, using 2-acetyl-4-[(trityloxy)methyl]furan 340c (0.2 g, 0.52 $\mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}:$ THF ($1: 1 \mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL}$). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc$\mathrm{MeOH}(1: 1: 1)]$ to yield (2-acetylfuran-4-yl)methyl dihydrogen phosphate 341c as a colourless oil ($0.12 \mathrm{~g}, 61 \%$); (Found: C, 38.27; H, $4.09 \% . \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 38.20 ; \mathrm{H}, 4.12 \%$); v/cm cm^{-1} $1687(\mathrm{C}=\mathrm{O})$ and $1241(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.3$
$\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right)$, $7.12(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.35(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 24.3\left(\mathrm{CH}_{3}\right), 62.3(\mathrm{~d}$, $J_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $120.7(\mathrm{C}-3), 122.9(\mathrm{C}-4), 145.5(\mathrm{C}-5), 153.2(\mathrm{C}-2)$ and $182.3(\mathrm{C}=\mathrm{O})$.

[2-(3,3-Dimethylbutanoyl)furan-4-yl]methyl dihydrogen phosphate 341d

The procedure described for the synthesis of (2-Formylfuran-4-yl)methyl dihydrogen phosphate 341b was employed, using 2-(3,3-dimethylbutanoyl)-4-[(trityloxy)methyl]furan 340d ($0.20 \mathrm{~g}, 0.46 \mathrm{mmol}$) and $\mathrm{H}_{3} \mathrm{PO}_{4}$:THF ($1: 1 \mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL}$). The solvent was evaporated in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield [2-(3,3-dimethylbutanoyl)furan-4-yl]methyl dihydrogen phosphate 341d as a colourless oil (0.10 g , 58 \%); (Found: C, 47.91; H, 6.11 \%. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 47.83 ; \mathrm{H}, 6.20 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3307(\mathrm{OH}), 1687(\mathrm{C}=\mathrm{O})$ and $1231(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.21\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 2.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 5.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 7.15(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.39(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta \mathrm{d} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 29.3\left(3 \times \mathrm{CH}_{3}\right), 32.2(\mathrm{C}-$ $\left.3^{\prime}\right)$, 36.8 (C-2'), $62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $120.4(\mathrm{C}-3), 123.7(\mathrm{C}-4), 145.5(\mathrm{C}-5), 152.8(\mathrm{C}-2)$ and 185.6 ($\mathrm{C}=\mathrm{O}$).

Diethyl \{2-[(hydroxyimino)methyl]furan-4-yl\}methyl phosphate 349b

Diethyl (2-formylfuran-4-yl)methyl phosphate 348b ($0.11 \mathrm{~g}, 0.46 \mathrm{mmol}$), hydroxylamine hydrochloride ($0.10 \mathrm{~g}, 1.5 \mathrm{mmol}$) and sodium acetate $(0.020 \mathrm{~g}, 0.24 \mathrm{mmol})$ were dissolved in EtOH (8 mL) and the mixture was refluxed at $80{ }^{\circ} \mathrm{C}$ for 1 hour. After completion of the reaction, the solvent was removed under reduced pressure and the residue was dissolved in diethyl ether (20 mL). The organic layer was washed sequentially with water (20 mL) and brine (20 mL), and dried (anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc
(4:1)] to yield diethyl \{2-[(hydroxyimino)methyl]furan-4-yl\}methyl phosphate 349b as a colourless oil ($97 \mathrm{mg}, 87 \%$); (Found: $\mathrm{C}, 43.47$; $\mathrm{H}, 5.69$; $\mathrm{N}, 5.11 \% . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{6} \mathrm{P}$ requires C , 43.33; H, 5.82; N, 5.05%); $\mathrm{v} / \mathrm{cm}^{-1} 3271(\mathrm{OH}), 1651(\mathrm{C}=\mathrm{N})$ and $1218(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.28\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 4.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 6.44$ $(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.41(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.89\left(1 \mathrm{H}, \mathrm{s}\right.$, aldehydic proton); $\delta_{\mathrm{c}} / \mathrm{ppm}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 59.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 61.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=\right.$ $6.5 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), 110.7 (C-3), 125.7 (C-4), 145.1 (C-5), 149. 6 (C=N) and $153.7(\mathrm{C}-2)$.

Diethyl \{2-[1-(hydroxyimino)ethyl]furan-4-yl\}methyl phosphate 349c

The procedure described for the synthesis of diethyl \{2-[(hydroxyimino)methyl]furan-4yl\}methyl phosphate 349b was employed, using (2-acetylfuran-4-yl)methyl diethyl phosphate $348 \mathrm{c}(0.10 \mathrm{~g}, 0.40 \mathrm{mmol})$, hydroxylamine hydrochloride ($0.10 \mathrm{~g}, 1.5 \mathrm{mmol}$) and sodium acetate ($0.020,0.24 \mathrm{mmol}$) in $\mathrm{EtOH}(8 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexaneEtOAc (4:1)] to yield diethyl \{2-[1-(hydroxyimino)ethyl]furan-4-yl\}methyl phosphate 349c as a colourless oil (91 mg , 91 \%); (Found: C, 45.27; H, 6.14; N, $4.88 \% \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{P}$ requires C, 45.36; H, 6.23; N, 4.81%); v/cm ${ }^{-1} 3243(\mathrm{OH}), 1672(\mathrm{C}=\mathrm{N})$ and $1225(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 4.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.02$ $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.48(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.11(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 61.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$ and 2 x $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $109.8(\mathrm{C}-3), 127.2(\mathrm{C}-4), 143.7(\mathrm{C}-5), 148.5(\mathrm{C}=\mathrm{N})$ and $151.3(\mathrm{C}-2)$.

Diethyl \{2-[1-(hydroxyimino)-3,3-dimethylbutyl]furan-4-yl\}methyl phosphate 349d

The procedure described for the synthesis of diethyl \{2-[(hydroxyimino)methyl]furan-4yl\}methyl phosphate 349b was employed, using diethyl [2-(3,3-dimethylbutanoyl)furan-4yl]methyl phosphate 348d ($0.10 \mathrm{~g}, 0.75 \mathrm{mmol}$), hydroxylamine hydrochloride ($0.10 \mathrm{~g}, 1.5$ $\mathrm{mmol})$ and sodium acetate $(0.020,0.24 \mathrm{mmol})$ in $\mathrm{EtOH}(8 \mathrm{~mL})$. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc (4:1)] to yield diethyl \{2-[1-(hydroxyimino)-3,3-dimethylbutyl]furan-4yl\}methyl phosphate 349d as a colourless oil ($92 \mathrm{mg}, 92$ \%); (Found: C, 51.79; H, 7.49; N, 3.97 \%. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 51.87 ; \mathrm{H}, 7.54 ; \mathrm{N}, 4.03 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3281(\mathrm{OH}) 1663(\mathrm{C}=\mathrm{N})$ and 1218 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.15\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right), 1.26\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.55\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 4.03\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.98\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $6.50(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $7.12(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \mathrm{x}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $28.6\left(3 \mathrm{x} \mathrm{CH}_{3}\right), 32.4(\mathrm{C}-3 '), 36.6(\mathrm{C}-2 '), 62.0\left(\mathrm{OCH}_{2}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.7 \mathrm{~Hz}, 2 \mathrm{x}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $110.3(\mathrm{C}-3), 127.6(\mathrm{C}-4), 143.3(\mathrm{C}-5), 149.8(\mathrm{C}=\mathrm{N})$ and $153.4(\mathrm{C}-2)$.

\{2-[(Hydroxyimino)methyl]furan-4-yl\}methyl dihydrogen phosphate 337b

(2-Formylfuran-4-yl)methyl dihydrogen phosphate 341b ($0.10 \mathrm{~g}, 0.48 \mathrm{mmol}$), hydroxylamine hydrochloride ($0.10 \mathrm{~g}, 1.5 \mathrm{mmol}$) and sodium acetate ($0.020 \mathrm{~g}, 0.24 \mathrm{mmol}$) were dissolved in EtOH (8 mL) and the mixture was refluxed at $80{ }^{\circ} \mathrm{C}$ for 1 hour. After completion of the reaction, the solvent was removed under reduced pressure and the residue was dissolved in diethyl ether (20 mL). The organic solution was washed sequentially with water (20 mL) and brine (20 mL), and dried (anhydr. $\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc$\mathrm{MeOH}(1: 1: 1)]$ to yield \{2-[(hydroxyimino)methyl]furan-4-yl\}methyl dihydrogen phosphate 337b as a colourless oil ($88 \mathrm{mg}, 88 \%$); (Found: C, 32.71; H, 3.72; N, $6.30 \% \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 32.59 ; \mathrm{H}, 3.65 ; \mathrm{N}, 6.33 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3245(\mathrm{OH}), 1657(\mathrm{CH}=\mathrm{N})$ and $1232(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 3.57(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 5.11\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.89(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{N}), 7.10(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH}) ; \delta_{\mathrm{C}} / \mathrm{ppm}(100 \mathrm{MHz}$; DMSO-
$\left.d_{6}\right) 62.2\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 110.1(\mathrm{C}-3), 127.0(\mathrm{C}-4), 143.2(\mathrm{C}-5), 150.7(\mathrm{C}=\mathrm{NOH})$ and 151.8 (C-2).

\{2-[1-(Hydroxyimino)ethyl]furan-4-yl\}methyl dihydrogen phosphate 337c

The procedure described for the synthesis of \{2-[(hydroxyimino)methyl]furan-4-yl\}methyl dihydrogen phosphate 337b was employed, using (2-acetylfuran-4-yl)methyl dihydrogen phosphate 341c ($0.10 \mathrm{~g}, 0.44 \mathrm{mmol})$, hydroxylamine hydrochloride ($0.10 \mathrm{~g}, 1.5 \mathrm{mmol}$) and sodium acetate ($0.020,0.24 \mathrm{mmol}$) in EtOH (8 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield \{2-[1-(Hydroxyimino)ethyl]furan-4-yl\}methyl dihydrogen phosphate 337c as a colourless oil (91 mg, 91 \%); (Found: C, 35.84; H, 4.31; N, 5.32 \%. $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{6} \mathrm{P}$ requires $\left.\mathrm{C}, 35.76 ; \mathrm{H}, 4.29 ; \mathrm{N}, 5.29 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3253(\mathrm{OH}), 1648(\mathrm{HC}=\mathrm{N})$ and 1228 (P=O); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right) 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.90(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 5.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2}\right), 7.12(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $8.93(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100 \mathrm{MHz}$; DMSO- d_{6}) $13.2\left(\mathrm{CH}_{3}\right), 62.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.3 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 110.2(\mathrm{C}-3), 127.1(\mathrm{C}-4), 143.7(\mathrm{C}-5), 150.8$ ($\mathrm{C}=\mathrm{NOH}$) and $153.3(\mathrm{C}-2)$.

\{2-[1-(Hydroxyimino)-3,3-dimethylbutyl]furan-4-yl\}methyl dihydrogen phosphate 337d

The procedure described for the synthesis of 2-[(hydroxyimino)methyl]furan-4-yl\}methyl dihydrogen phosphate 337b was employed, using [2-(3,3-dimethylbutanoyl)furan-4yl]methyl dihydrogen phosphate 341d ($0.10 \mathrm{~g}, 0.36 \mathrm{mmol}$), hydroxylamine hydrochloride $(0.10 \mathrm{~g}, 1.5 \mathrm{mmol})$ and sodium acetate ($0.020,0.24 \mathrm{mmol}$) in EtOH (8 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield \{2-[1-(hydroxyimino)-3,3-
dimethylbutyllfuran-4-ylfmethyl dihydrogen phosphate 337d as a colourless oil $(87 \mathrm{mg}, 87$ \%); (Found: C, 45.29; H, 6.31; N, 4.79 \%. $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 45.36 ; \mathrm{H}, 6.23 ; \mathrm{N}, 4.81 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3260(\mathrm{OH}), 1678(\mathrm{HC=N})$ and $1229(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-\mathrm{d}_{6}\right) 1.12(9 \mathrm{H}, \mathrm{s}, 3$ $\left.x \mathrm{CH}_{3}\right), 1.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right)$, $2.31(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 5.09\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{s}, 5-$ H), $7.32(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$ and $10.41(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ;\right.$ DMSO-d ${ }_{6}$) $29.0\left(3 \times \mathrm{CH}_{3}\right)$, 32.6 (C-3'), 36.3 (C-2'), 62.3 (d, Jp-c = $6.6 \mathrm{~Hz}, \mathrm{OCH}_{2}$), 110.8 (C-3), 127.5 (C-4), 142.7 (C-5), 150.3 ($\mathrm{C}=\mathrm{NOH}$) and 152.2 (C-2).

3.5. $\quad N$-Benzyl substituted phosphoramidic acid derivatives

Diethyl N-(2,2-diethoxyethyl)phosphoramidate $353{ }^{199}$

A solution of diethyl N-(trimethylsilyl)phosphoramidate 358 ($5.00 \mathrm{~g}, 22.0 \mathrm{mmol}$) in dry benzene (30 mL) was added slowly over a period of 30 min to a stirred suspension of sodium hydride (60% dispersion in mineral oil; $1.07 \mathrm{~g}, 26.8 \mathrm{mmol}$) in dry benzene (10 mL) under N_{2}. Bromoacetaldehyde diethyl acetal ($3.3 \mathrm{~mL}, 22 \mathrm{mmol}$) and tetrabutylammonium bromide ($0.71 \mathrm{~g}, 2.2 \mathrm{mmol}$) were then added and the resulting mixture was refluxed at $80^{\circ} \mathrm{C}$ for 4 hours. EtOH (18 mL) was then added dropwise and the mixture was refluxed at $80^{\circ} \mathrm{C}$ for a further 1 hour. After cooling, EtOAc (100 mL) was added and the mixture was washed with water ($3 \times 20 \mathrm{~mL}$). The aqueous layers were combined and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried (anhydr. MgSO_{4}), filtered and the solvent was evaporated in vacuo at $30-40{ }^{\circ} \mathrm{C}$ to afford diethyl N -(2,2-diethoxyethyl)phosphoramidate 353 as a yellow oil ($4.69 \mathrm{~g}, 87 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{~L}-$ $\left.\mathrm{CH}_{3}\right), 1.25\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 3.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.29\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.51$ and $3.62\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 4.00\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{\prime \prime}-\mathrm{OCH}_{2}\right)$ and $4.59(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2-\mathrm{CH})$; $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.3\left(2 \times 2 \mathrm{2}^{\prime}-\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times 2\right.$ "-CH $\left.\mathrm{C}_{3}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $61.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 62.0\left(2 \times 1\right.$ - OCH_{2}) and $101.1(\mathrm{C}-2)$.

Diethyl N-benzyl-N-(2,2-diethoxyethyl)phosphoramidate 354a

To a stirred solution of diethyl N-(2,2-diethoxyethyl)phosphoramidate 353 (1.00 g, 3.71 mmol) in dry THF (20 mL) under N_{2} was added NaH (60% dispersion in mineral oil; 0.20 g , $7.4 \mathrm{mmol})$ in small portions to permit controlled evolution of hydrogen. Benzyl bromide $(0.44 \mathrm{~mL}, 3.7 \mathrm{mmol})$ in dry THF (5 mL) was then added and the resulting solution was stirred for at room temperature for ca. 24 hours. The solvent was evaporated in vacuo and the residue extracted with EtOAc ($2 \times 25 \mathrm{~mL}$). The organic phase was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, water $(2 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$. The aqueous washings were extracted with EtOAc ($2 \times 25 \mathrm{~mL}$) and the combined organic layers were dried (anhydr. MgSO_{4}). The solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N -benzyl- N -(2,2-diethoxyethyl)phosphoramidate 354a as a yellow oil ($0.60 \mathrm{~g}, 71 \%$); (Found: C, 56.93 ; H, 8.49; $\mathrm{N}, 3.84$ \%. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 56.81 ; \mathrm{H}, 8.41 ; \mathrm{N}, 3.90 \%$); v/cm ${ }^{-1} 1232$ ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{CH} 3), 1.27\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 3.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.51$ and $3.64\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 3.85\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right)$, $4.03\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 4.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2-\mathrm{CH})$ and $7.29-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.1\left(2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=7.2 \mathrm{~Hz}, 2 \times 2{ }^{\prime \prime}-\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $52.7\left(3-\mathrm{CH}_{2}\right), 62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.5 \mathrm{~Hz}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 62.7\left(2 \times 1 \mathrm{I}^{\prime}-\mathrm{OCH}_{2}\right), 101.4(\mathrm{C}-2), 127.3\left(\mathrm{C}-4{ }^{\prime \prime}\right)$), 128.3 (C-2"' and C-6"'), 128.6 (C-3'" and C-5'"') and 137.4 (C-1'").

Diethyl N-(2,2-diethoxyethyl)-N-[4-(hydroxymethyl)benzyl]phosphoramidate 354b

The procedure described for the synthesis of diethyl N-benzyl- N-(2,2-diethoxyethyl)phosphoramidate 354a was employed, using NaH (60% dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl N-(2,2-diethoxyethyl)phosphoramidate 353 (1.00 g, 3.7 mmol) in dry THF (20 mL) and 4-(chloromethyl)benzyl alcohol ($0.58 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry THF (5 mL). After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N-(2,2-diethoxyethyl)-N-[4-(hydroxymethyl)benzyl]phosphoramidate 354b as a colourless oil ($0.63 \mathrm{~g}, 77$ \%); (Found: C, 55.60; H, 8.24; N, 3.63 \%. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 55.52 ; \mathrm{H}, 8.28 ; \mathrm{N}, 3.60 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3360(\mathrm{OH})$ and 1232 ($\mathrm{P}=\mathrm{O}$); $\delta_{H} /$ ppm ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.16\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{CH}_{3}\right), 1.28\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.13(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.27\left(2 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.48$ and $3.61\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 3.82$ $\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 4.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2-\mathrm{CH}), 4.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $7.02-7.10(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.2\left(2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=7.2\right.$ $\left.\mathrm{Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 33.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.5\left(3-\mathrm{CH}_{2}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.6 \mathrm{~Hz}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 62.5\left(2 \times 1^{\prime}-\right.$ OCH_{2}), $64.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 101.5(\mathrm{C}-2), 127.4$ (C-2"' and C-6"'), 128.7 (C-3"' and C-5'"), 136.1 (C1'') and 139.7 (C-4'"').

Diethyl \mathbf{N}-(3-aminobenzyl)-N-(2,2-diethoxyethyl)phosphoramidate 354c

The procedure described for the synthesis of diethyl N-benzyl- N-(2,2-diethoxyethyl) phosphoramidate 354a was employed, using NaH (60% dispersion in mineral oil; $0.20 \mathrm{~g}, 7.4$ mmol), diethyl N-(2,2-diethyoxyethyl)phosphoramidate 353 ($1.00 \mathrm{~g}, 3.71 \mathrm{mmol}$) in dry THF $(20 \mathrm{~mL})$ and 3-aminobenzyl bromide ($0.69 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry THF (5 mL). After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N -(3-aminobenzyl)-N-(2,2-diethoxyethyl)(phosphoramidate 354c as a colourless oil (0.58 g, 67 \%); (Found: C, 54.67; H, 8.45; N, 7.44 \%. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\left.\mathrm{C}, 54.53 ; \mathrm{H}, 8.35 ; \mathrm{N}, 7.48 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3348\left(\mathrm{NH}_{2}\right)$ and 1241 ($\mathrm{P}=\mathrm{O}$); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{CH}_{3}\right), 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.87\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.47$ and $3.62\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right)$,
$3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.07\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{1}^{\prime \prime}-\mathrm{OCH}_{2}\right), 4.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2-\mathrm{CH})$ and $6.31-6.87(4 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.9\left(2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 15.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=7.0 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 31.6$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.3\left(3-\mathrm{CH}_{2}\right), 62.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.4 \mathrm{~Hz}, 2 \times 1\right.$ " $\left.-\mathrm{OCH}_{2}\right), 62.2\left(2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 101.2(\mathrm{C}-2), 114.1$ (C-4'"), 114.8 (C-2'"), 118.6 (C-6"'), 129.5 (C-5'"'), 138.2 (C-1"') and 147.3 (C-3"').

Diethyl N-(2,2-diethoxyethyl)-N-(3-mercaptobenzyl)phosphoramidate 354d

The procedure described for the synthesis of diethyl N-benzyl- N-(2,2-diethoxyethyl) phosphoramidate 354a was employed, using NaH (60% dispersion in mineral oil; $0.20 \mathrm{~g}, 7.4$ $\mathrm{mmol})$, diethyl N -(2,2-diethoxyethyl)phosphoramidate 353 ($1.00 \mathrm{~g}, 3.71 \mathrm{mmol}$) in dry THF (20 mL) and 3-sulfanylbenzyl bromide ($0.75 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry THF (5 mL). After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N -(2,2-diethoxyethyl)-N-(3-mercaptobenzyl)phosphoramidate 354d as a colourless oil (0.61 g, 69 \%); (Found: C, 52.23; H, 7.67; N, 3.53 \%. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{PS}$ requires C , 52.16; $\mathrm{H}, 7.72$; $\mathrm{N}, 3.58$ \%); $\mathrm{v} / \mathrm{cm}^{-1} 2547$ (SH) and 1224 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\right.$ $\left.\mathrm{CH}_{3}\right), 2.96(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 3.34\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.53$ and $3.66\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 3.84$ $\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.05\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 4.63(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2-\mathrm{CH})$ and $6.89-7.01(4 \mathrm{H}, \mathrm{m}$, Ar-H); $\delta_{C} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.5\left(2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 16.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=7.1 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 32.2$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 62.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=7.0 \mathrm{~Hz}, 2 \times 1{ }^{\prime \prime}-\mathrm{OCH}_{2}\right), 62.8\left(2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 69.0\left(3-\mathrm{CH}_{2}\right), 101.8(\mathrm{C}-2)$, 124.8 (C-6"'), 126.0 (C-2'"'), 127.4 (C-4'"), 129.0 (C-5'"), 130.8 (C-3'") and 136.7 (C-1'").

Diethyl N-benzyl-N-(2-oxoethyl)phosphoramidate 355a

Diethyl N-benzyl- N-(2,2-diethoxyethyl)phosphoramidate 354a ($0.50 \mathrm{~g}, 1.4 \mathrm{mmol}$) and 2 M $\mathrm{HCl}(4 \mathrm{~mL})$ was stirred at room temperature for $c a .24$ hours. After completion, the reaction mixture was added to $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and the organic phase was washed with water (3×20 $\mathrm{mL})$. The aqueous washings were combined and extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The organic extract was washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and brine $(3 \times 20 \mathrm{~mL})$ and then dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N -benzyl- N -(2-oxoethyl)phosphoramidate 355a as a yellow oil ($0.44 \mathrm{~g}, 88$ \%); (Found: C, 54.79; H, 7.01; $\mathrm{N}, 4.88 \% . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 54.73 ; \mathrm{H}, 7.07$; $\mathrm{N}, 4.91 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1698$ ($\mathrm{C}=\mathrm{O}$) and 1228 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 3.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 7.31-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and 9.82 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.9 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 51.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.0 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{CO}$), $62.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1\right.$ ' $-\mathrm{OCH}_{2}$), $67.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 127.6\left(\mathrm{C}-4{ }^{\prime}\right), 128.0\left(\mathrm{C}-2^{\prime \prime}\right.$ and $\left.\mathrm{C}-6^{\prime \prime}\right)$, 128.1 (C-3" and C-5"), 137.7 ($\mathrm{C}-1$ ") and 175.2 ($\mathrm{C}=\mathrm{O}$).

Diethyl \mathbf{N}-[4-(hydroxymethyl)benzyl]-N-(2-oxoethyl)phosphoramidate 355b

The procedure described for the synthesis of diethyl N-benzyl- N-(2oxoethyl)phosphoramidate 355a was employed, using diethyl N-(2,2-diethoxyethyl) $-N$-[4(hydroxymethyl)benzyl]phosphoramidate 354b ($0.50 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2M-HCl (4 mL). After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N -[4-(hydroxymethyl)benzyl]-N-(2oxoethyl)phosphoramidate 355b as a yellow oil ($0.44 \mathrm{~g}, 88$ \%); (Found: C, 53.51; H, 7.12; N, 4.40%. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 53.33 ; \mathrm{H}, 7.03 ; \mathrm{N}, 4.44 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3261(\mathrm{OH}), 1738(\mathrm{C}=\mathrm{O})$ and $1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 2.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.72\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.18\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{I}^{\prime}-\mathrm{OCH}_{2}\right), 4.82(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{OH}$), 7.09 - 7.17 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$) and $9.81(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3$ (d,
$\left.J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 48.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 63.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.3 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right)$, $64.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 67.2\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 127.1$ (C-2" and C-6"), 128.2 (C-3" and C-5"), $135.8\left(\mathrm{C}-1^{\prime \prime}\right), 139.8$ (C-4") and 172.8 (C=O).

Diethyl N-(3-aminobenzyl)-N-(2-oxoethyl)phosphoramidate 355c

The procedure described for the synthesis of diethyl N-benzyl- N -(2oxoethyl)phosphoramidate 355a was employed, using diethyl N-(3-aminobenzyl)- N-(2,2diethoxyethyl)phosphoramidate 354c ($0.50 \mathrm{~g}, 1.3 \mathrm{mmol}$) and 2M-HCl (4 mL). After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N-(3-aminobenzyl)-N-(2-oxoethyl)phosphoramidate 355c as a yellow oil ($0.46 \mathrm{~g}, 92$ \%); (Found: C, $52.11 ; \mathrm{H}, 7.10$; $\mathrm{N}, 9.29 \% . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires C, 52.00; H, 7.05; N, 9.33%); v/cm ${ }^{-1} 3371\left(\mathrm{NH}_{2}\right), 1715(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.35\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right), 3.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 3.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CO}$), $3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1\right.$ ' $-\mathrm{OCH}_{2}$), $7.00-7.47(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and 9.81 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 52.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=4.9 \mathrm{~Hz}\right.$,
 6"), 129.8 (C-5"), 137.7 (C-1"), 147.8 (C-3") and 174.8 (C=O).

Diethyl N-(3-mercaptobenzyl)-N-(2-oxoethyl)phosphoramidate 355d

The procedure described for the synthesis of diethyl N-benzyl- N-(2-oxoethyl)phosphoramidate 355a was employed, using diethyl N-(3-mercaptobenzyl)- N-(2oxoethyl)phosphoramidate $354 \mathrm{~d}(0.50 \mathrm{~g}, 1.3 \mathrm{mmol})$ and $2 \mathrm{M}-\mathrm{HCl}(4 \mathrm{~mL})$. After work-up, the solvent was removed in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl N-(3-mercaptobenzyl)-N-(2-oxoethyl)phosphoramidate 355d as a yellow oil (0.45 g , 90 \%); Found: C, 49.28; H, 6.43; N, $4.47 \% . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{PS}$ requires C, 49.20; H, 6.35; N, 4.41%); v/cm 2567 (SH), 1692 ($\mathrm{C}=\mathrm{O}$) and 1215 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 2.77(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 3.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 6.86-7.40(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and 9.87 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 52.7\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=4.7 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 61.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.4 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 68.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 124.6\left(\mathrm{C}-6^{\prime \prime}\right), 126.2\left(\mathrm{C}-2^{\prime \prime}\right), 127.8(\mathrm{C}-$ 4'), 128.3 (C-5'), 130.4 (C-3'), 137.7 (C-1') and 173.8 (C=O).

Diethyl N-benzyl- N-[2-(benzyloxyamino)ethyl]phosphoramidate 356a

To a stirred solution of diethyl N-benzyl- N-(2-oxoethyl)phosphoramidate 355a (0.40 g, 1.4 mmol) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added a solution of O-benzylhydroxylamine ($0.21 \mathrm{~g}, 1.8 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$. The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 3 hours, cooled to room temperature and diluted with $\mathrm{MeOH}(50 \mathrm{~mL})$. After the addition of sodium cyanoborohydride ($0.27 \mathrm{~g}, 4.1 \mathrm{mmol}$), conc. $\mathrm{HCl}(1.6 \mathrm{~mL})$ was added dropwise over a period of 30 min and the mixture was stirred for 1 hour. Sodium cyanoborohydride ($0.10 \mathrm{~g}, 1.4$ mmol) was again added and the mixture was stirred for 1 hour. The solvent was removed under reduced pressure, the residue dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and then treated with icewater (50 mL). The pH of the resulting mixture was adjusted to pH 10 with an aq. KOH solution and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $10 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL) and then dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residual oil was purified by flash chromatography [on silica
gel; elution with hexane-EtOAc (3:1)] to yield diethyl N -benzyl-N-[2-(benzyloxyamino)ethyl]phosphoramidate 356a as a yellow oil ($0.26 \mathrm{~g}, 65$ \%); (Found: C, 61.30; H, 7.49; N, 7.21 \%. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 61.21 ; \mathrm{H}, 7.45 ; \mathrm{N}, 7.14 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3267$ (NH) and 1242 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{CH}_{3}\right), 2.89\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right)$, $3.82\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.10\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{l}-\mathrm{OCH}_{2}\right), 4.74\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 5.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and 7.29 - 7.37 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right.$), 36.7 ($d, J_{p-c}=4.5 \mathrm{~Hz}, 1-\mathrm{CH}_{2}$), $52.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.4 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 67.3$ ($4-\mathrm{CH}_{2} \mathrm{Ph}$), 68.3 ($3-\mathrm{CH}_{2} \mathrm{Ph}$), 127.6 ($\left.\mathrm{C}-4 \mathrm{C}\right), 127.9$ (C-8), 128.3 (C-2" and C-6"), 128.4 (C-6 and C10), 128.5 (C-3" and C-5"), 128.7 (C-7 and C-9), 137.8 (C-1') and 138.3 (C-5).

Diethyl N-[2-(benzyloxyamino)ethyl]-N-[4-(hydroxymethyl)benzyl]phosphoramidate 356b

The procedure described for the synthesis of diethyl N-benzyl- N-[2-(benzyloxyamino)ethyl]phosphoramidate 356a was employed, using diethyl N-[4-(hydroxymethyl) benzyl]-N-(2oxoethyl)phosphoramidate 355b ($0.42 \mathrm{~g}, 1.3 \mathrm{mmol}$), O-benzylhydroxylamine ($0.20 \mathrm{~g}, 1.6$ mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$, sodium cyanoborohydride ($0.24 \mathrm{~g}, 3.8 \mathrm{mmol}$), conc. $\mathrm{HCl}(1.6 \mathrm{~mL})$ and further sodium cyanoborohydride ($0.080 \mathrm{~g}, 1.2 \mathrm{mmol}$). After work-up, the solvent was evaporated in vacuo and the remaining oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl N -[2-(benzyloxyamino)ethyl]-N-[4(hydroxymethyl)benzyl]phosphoramidate 356b as a yellow oil ($0.26 \mathrm{~g}, 63$ \%); (Found: C, 59.86; H, 7.47; N, 6.69 \%. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 59.70 ; \mathrm{H}, 7.40 ; \mathrm{N}, 6.63 \%$); v/cm ${ }^{-1} 3326$ (OH), $3248(\mathrm{NH})$ and $1223(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right)$, $2.87\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 3.80\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.07\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{l}-\mathrm{OCH}_{2}\right), 4.77(2 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.33-7.42(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $8.11(1 \mathrm{H}, \mathrm{s}$, NH); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2{ }^{\prime}-\mathrm{CH}_{3}\right), 36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right)$, $52.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=16.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times 1\right.$ - $\left.\mathrm{OCH}_{2}\right), 64.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 67.2(4-$
$\mathrm{CH}_{2} \mathrm{Ph}$), 69.2 ($3-\mathrm{CH}_{2} \mathrm{Ph}$), 127.7 (C-2" and C-6"), 127.8 (C-6 and C-10), 128.2 (C-8), 128.3 (C-3" and C-5"), 128.3 (C-7 and C-9), 137.4 (C-1"), 137.8 (C-5) and 138.3 (C-4").

Diethyl N-(3-aminobenzyl)- N-[2-(benzyloxyamino)ethyl]phosphoramidate 356c

The procedure described for the synthesis of diethyl N-benzyl- N-[2-(benzyloxyamino)ethyl]phosphoramidate 356a was employed, using diethyl N -(3-aminobenzyl)- N -(2oxoethyl)phosphoramidate $\mathbf{3 5 5 c}(0.44 \mathrm{~g}, 1.5 \mathrm{mmol}$), O-benzylhydroxylamine ($0.22 \mathrm{~g}, 1.8$ mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$, sodium cyanoborohydride ($0.28 \mathrm{~g}, 4.4 \mathrm{mmol}$), conc. $\mathrm{HCl}(1.6 \mathrm{~mL})$ and further sodium cyanoborohydride ($0.090 \mathrm{~g}, 1.3 \mathrm{mmol}$). After work-up, the solvent was evaporated in vacuo and the remaining oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl N -(3-aminobenzyl)- $\mathrm{N}-[2$ (benzyloxyamino)ethyl]phosphoramidate 356c as a yellow oil ($0.30 \mathrm{~g}, 68$ \%); (Found: C, 59.08; $\mathrm{H}, 7.37 ; \mathrm{N}, 10.33$ \%. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}$ requires $\mathrm{C}, 58.96 ; \mathrm{H}, 7.42 ; \mathrm{N}, 10.31 \%$; $\mathrm{v} / \mathrm{cm}^{-1} 3329$ $\left(\mathrm{NH}_{2}\right), 3260(\mathrm{NH})$ and $1232(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \times \mathrm{Z}^{\prime}-\right.$ CH_{3}), $2.95\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.03\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{C}-\mathrm{OCH}_{2}\right), 4.62$ ($2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}$), 5.55 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), $6.59-6.87(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.28-7.37$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$) and $8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 36.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=4.8\right.$ $\left.\mathrm{Hz}, 1-\mathrm{CH}_{2}\right), 52.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 67.4\left(4-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 69.9 (3-CH2Ph), 113.9 (C-4"), 114.9 (C-2'), 118.3 (C-6"), 126.9 (C-6 and C-10), 127.8 (C-8), 128.3 (C-7 and C-9), 129.3 (C-5'), 136.7 (C-1"), 137.7 (C-5) and 148.3 (C-3").

Diethyl N-[2-(benzyloxyamino)ethyl]-N-(3-mercaptobenzyl)phosphoramidate 356d

The procedure described for the synthesis of diethyl N-benzyl- N-[2-(benzyloxyamino)ethyl]phosphoramidate 356a was employed, using diethyl N-(3-mercaptobenzyl)- N-(2oxoethyl)phosphoramidate $355 \mathrm{~d}(0.44 \mathrm{~g}, 1.4 \mathrm{mmol})$, O-benzylhydroxylamine ($0.14 \mathrm{~g}, 1.1$ mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$, sodium cyanoborohydride ($0.27 \mathrm{~g}, 4.3 \mathrm{mmol}$), conc. $\mathrm{HCl}(1.6 \mathrm{~mL})$ and further sodium cyanoborohydride ($0.090 \mathrm{~g}, 1.3 \mathrm{mmol}$). After work-up, the solvent was evaporated in vacuo and the remaining oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl N -[2-(benzyloxyamino)ethyl]-N-(3mercaptobenzyl)phosphoramidate 356d as a yellow oil ($0.29 \mathrm{~g}, 66$ \%); Found: C, 56.71; H, $6.95 ; \mathrm{N}, 6.65 \% \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ PS requires $\mathrm{C}, 56.59 ; \mathrm{H}, 6.89 ; \mathrm{N}, 6.60 \%$); v/cm ${ }^{-1} 3271$ (NH), 2567 (SH) and $1219(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 2.61(4 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{CH}_{2}$ and $\left.2-\mathrm{CH}_{2}\right), 3.38(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 3.61\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{C}-\mathrm{OCH}_{2}\right), 4.81$ ($2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}$), 6.75-7.18(4H, m, Ar-H), $7.31-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.18(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{c} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 36.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 52.1$ (d, $\left.J_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 66.7\left(4-\mathrm{CH}_{2} \mathrm{Ph}\right), 71.2\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 124.6 (C-6"), 125.9 (C-2'), 127.6 (C-4"), 127.9 (C-6 and C-10), 128.0 (C-8), 128.3 (C-5"), 128.4 (C-7 and C-9), 130.6 (C-3") and 137.8 (C-1") and 138.0 (C-5).

Diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 357a

Acetyl chloride ($0.12 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added dropwise to a stirred solution of diethyl N -benzyl- N-[2-(benzyloxyamino)ethyl]-phosphoramidate 356 a ($0.25 \mathrm{~g}, 0.64 \mathrm{mmol}$) and triethylamine ($0.13 \mathrm{~mL}, 0.96 \mathrm{mmol}$) in $\mathrm{DCM}(10 \mathrm{~mL})$ under N_{2} at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour, allowed to warm to room temperature and then stirred for ca. 24 hours. The solvent was removed under reduced pressure and the residual oil dissolved in diethyl ether (20 mL). The ethereal solution was washed sequentially with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, $0.5 \mathrm{M}-\mathrm{HCl}$ and water. The organic solution was dried over anhydr. MgSO_{4}, the solvent removed in vacuo and the residue purified by flash chromatography [on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 357a as a yellow oil ($0.23 \mathrm{~g}, 83$ \%); (Found: C, 60.88; H, 7.23; N, 6.52 \%. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 60.82 ; \mathrm{H}, 7.19 ; \mathrm{N}, 6.45 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 1683(\mathrm{C}=\mathrm{O})$ and 1246 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.71(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right)$, $4.77\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.27-7.39(10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=\right.$ $\left.5.9 \mathrm{~Hz}, 2 \times 2{ }^{\prime}-\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3} \mathrm{CO}\right), 35.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.4 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 52.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.8 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right)$, $62.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=6.7 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 66.8\left(4-\mathrm{CH}_{2} \mathrm{Ph}\right), 68.7\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right), 124.8\left(\mathrm{C}-4{ }^{\prime \prime}\right), 124.9(\mathrm{C}-8)$, 127.5 (C-2" and C-6"), 127.8 (C-6 and C-10), 128.5 (C-3" and C-5"), 128.7 (C-7 and C-9), 138.3 $\left(\mathrm{C}-1{ }^{\prime}\right), 138.4(\mathrm{C}-5)$ and $171.6(\mathrm{C}=0)$.

Diethyl 2-[(N-benzyloxy)acetamido]-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidate 357b

The procedure described for the synthesis of diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 357a was employed, using diethyl N-[2-(benzyloxyamino)ethyl]- N-[4(hydroxymethyl)benzyl]phosphoramidate 356 b ($0.25 \mathrm{~g}, 0.59 \mathrm{mmol}$), acetyl chloride (0.12 $\mathrm{mL}, 1.3 \mathrm{mmol})$ and triethylamine ($0.12 \mathrm{~mL}, 0.89 \mathrm{mmol}$) in DCM (10 mL). The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl 2-[(N-benzyloxy)acetamido]-N-[4-
(hydroxymethyl)benzyl]ethylphosphoramidate 357b as a yellow oil (0.23 g , 85 \%); (Found: C, 59.57; H, 7.23; N, 6.10 \%. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 59.47 ; \mathrm{H}, 7.16 ; \mathrm{N}, 6.03 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3243$ (OH), $1687(\mathrm{C}=\mathrm{O})$ and $1223(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{~L}-$ $\left.\mathrm{CH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.32\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 2.76\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.71(2 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1\right.$ " $-\mathrm{OCH}_{2}$), $4.79\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.22-7.43$ $(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.22(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.9 \mathrm{~Hz}, 2 \times 2 \mathrm{~L}-\right.$ CH_{3}), $23.0\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.1 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 52.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=16.6 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 62.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=\right.$ $\left.6.6 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 65.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 66.6\left(4-\mathrm{CH}_{2} \mathrm{Ph}\right), 68.7\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right), 126.3\left(\mathrm{C}-2{ }^{\prime \prime}\right.$ and $\left.\mathrm{C}-6{ }^{\prime \prime}\right)$, 126.4 (C-6 and C-10), 126.8 (C-8), 127.0 (C-3" and C-5"), 127.7 (C-7 and C-9), 137.2 (C-1"), 137.4 (C-5), 140.2 (C-4") and 171.1 (C=O).

Diethyl N-(3-aminobenzyl)-2-[(N-benzyloxy)acetamido]ethylphosphoramidate 357c

The procedure described for the synthesis of diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 357a was employed, using diethyl N-[2-(benzyloxyamino)ethyl]- N-(3mercaptobenzyl) phosphoramidate $\mathbf{3 5 6 c}(0.28 \mathrm{~g}, 0.68 \mathrm{mmol})$, acetyl chloride ($0.13 \mathrm{~mL}, 1.4$ $\mathrm{mmol})$ and triethylamine ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in DCM (10 mL). The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl N-(3-aminobenzyl)-2-[(N-benzyloxy)acetamido]ethylphosphoramidate 357c as a yellow oil ($0.22 \mathrm{~g}, 80$ \%); (Found: C, 58.86; H, 7.29; N, 9.41 \%. $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 58.79 ; \mathrm{H}, 7.18 ; \mathrm{N}, 9.35 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3387\left(\mathrm{NH}_{2}\right), 1692$ ($\mathrm{C}=\mathrm{O}$) and 1220 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{l}-\mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.81\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.23\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.08(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.1^{\prime}-\mathrm{OCH}_{2}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.81\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 6.63-6.78(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.16-7.19$ ($5 \mathrm{H}, \mathrm{m} \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.6 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.7$ ($d, J_{p-c}=4.7 \mathrm{~Hz}, 1-\mathrm{CH}_{2}$), $52.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 68.4$
($4-\mathrm{CH}_{2} \mathrm{Ph}$), 69.8 ($3-\mathrm{CH}_{2} \mathrm{Ph}$), 114.1 (C-4"), 114.8 (C-2"), 118.6 (C-6"), 126.5 (C-6 and C-10), 127.8 (C-8), 128.3 (C-7 and C-9), 129.8 (C-5"), 137.3 (C-1"), 137.7 (C-5), 147.9 (C-3") and 170.8 (C=O).

Diethyl 2-[(N-benzyloxy)acetamido]-N-(3-mercaptobenzyl)ethylphosphoramidate 357d

The procedure described for the synthesis of diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 357a was employed, using diethyl N-[2-(benzyloxyamino)ethyl]- N-(3mercaptobenzyl)phosphoramidate 356d ($0.27 \mathrm{~g}, 0.64 \mathrm{mmol}$), acetyl chloride ($0.12 \mathrm{~mL}, 1.3$ $\mathrm{mmol})$ and triethylamine ($0.12 \mathrm{~mL}, 0.88 \mathrm{mmol}$) in DCM (10 mL). The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl 2-[(N-benzyloxy)acetamido]-N-(3-mercaptobenzyl)ethylphosphoramidate 357d as a yellow oil ($0.23 \mathrm{~g}, 81$ \%); Found: C, 56.77; H, 6.79; N, 5.92 \%. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$ requires $\mathrm{C}, 56.64 ; \mathrm{H}, 6.70 ; \mathrm{N}, 6.00 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 2554$ (SH), 1698 (C=O) and 1217 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.79\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.25\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, 4-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.19(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.1^{\prime}-\mathrm{OCH}_{2}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 6.21(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 6.63-7.29(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.42-7.50(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.9 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.7(\mathrm{~d}$, $\left.J_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 52.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=16.8 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 68.1(4-$ $\mathrm{CH}_{2} \mathrm{Ph}$), 70.8 ($3-\mathrm{CH}_{2} \mathrm{Ph}$), 124.7 (C-6"), 126.0 (C-2'), 126.2 (C-4"), 126.8 (C-6 and C-10), 128.7 (C-8), 129.1 (C-5"), 129.4 (C-7 and C-9), 130.3 (C-3'), 138.5 (C-1"), 138.8 (C-5) and 167.3 ($\mathrm{C}=0$).

Diethyl N-(trimethylsilyl)phosphoramidate $358{ }^{199}$

Hexamethyldisilazane ($2.46 \mathrm{~mL}, 12 \mathrm{mmol}$) was added to a stirred solution of diethyl phosphoramidate $352(3.00 \mathrm{~g}, 19.8 \mathrm{mmol})$ in dry benzene (10 mL) under N_{2} and the mixture was refluxed at $80{ }^{\circ} \mathrm{C}$ for 3 hours. The solvent and excess hexamethyldisilazane were removed in vacuo at $60^{\circ} \mathrm{C}$ for 1 hour to afford diethyl N -(trimethylsily))phosphoramidate as a brown oil, which crystallised on cooling to afford hygroscopic off-white crystals ($4.69 \mathrm{~g}, 87$ \%); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.19\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3} \mathrm{Si}\right), 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH})$ and $4.04\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2}\right) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=2.4 \mathrm{~Hz}, 3 \times \mathrm{CH}_{3} \mathrm{Si}\right)$, $16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=7.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right)$ and $61.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.3 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right)$.

3-Aminobenzyl bromide 360c ${ }^{251}$

Phosphorous tribromide ($0.62 \mathrm{~mL}, 6.5 \mathrm{mmol}$) was added dropwise to a stirred solution of 3aminobenzyl alcohol ($0.80 \mathrm{~g}, 6.5 \mathrm{mmol}$) in DCM (10 mL) under N_{2} at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 hour. The mixture was allowed to warm to room temperature and stirred further for ca. 24 hours. After the addition of satd. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, the organic layer was separated and the aqueous layer was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The organic layers were combined, dried over anhydrous MgSO_{4} and filtered. The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)] to yield 3-aminobenzyl bromide 360c as a clear oil (0.92 g , $76 \%) ; \delta_{H} /$ ppm ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 7.43-7.67(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 36.6\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, 115.5 (C-2), 116.4 (C-4), 119.9 (C-6), 129.0 (C-5), 138.0 (C-1) and 147.5 (C-3).

3-Mercaptobenzyl bromide 360d

A solution of sodium nitrite ($0.32 \mathrm{~g}, 4.6 \mathrm{mmol}$) in water (2 mL) was slowly added to a mixture of 3 -aminobenzyl bromide $\mathbf{3 6 0 c}(0.50 \mathrm{~g}, 2.7 \mathrm{mmol}$) in water (4 mL) and conc. HCl (1
mL) at $-5^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$. The mixture was stirred for 1 hour, ensuring that the temperature did not exceed $0{ }^{\circ} \mathrm{C}$. A solution of sodium sulphide ($1.20 \mathrm{~g}, 4.97 \mathrm{mmol}$) and sulphur ($0.16 \mathrm{~g}, 5.0$ mmol) in water (15 mL) was then added dropwise during 1 hour to the cold solution of the diazonium salt and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour. The mixture was allowed to warm to room temperature and then stirred further for 1 hour. After completion, the mixture was acidified (pH 2.5) with $2 \mathrm{M}-\mathrm{HCl}$ and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic extracts were washed sequentially with 20% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{~mL})$, water $(2 \times 20$ mL) and brine ($2 \times 20 \mathrm{~mL}$), and then dried (anhydr. MgSO_{4}). The solvent was removed in vacuo to give the disulphide 362, which was used in the next step without further purification. In another flask, sodium borohydride ($0.12 \mathrm{~g}, 3.2 \mathrm{mmol}$) in THF (3 mL) was added to a solution of disulphide $362(0.25 \mathrm{~g}, 0.80 \mathrm{mmol})$ in THF (3 mL) under N_{2} at $0^{\circ} \mathrm{C}$. After the addition, the mixture was allowed to warm to room temperature and stirred further for 1 hour. The reaction was quenched with water (6 mL), acidified (pH 2.5) with 2 M HCl and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed sequentially with 20% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \times 10 \mathrm{~mL})$ and brine $(3 \times 10 \mathrm{~mL})$, and then dried (anhydr. MgSO_{4}). The solvent was removed in vacuo and the residue purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)] to yield 3-mercaptobenzyl bromide 360d as a clear oil ($0.92 \mathrm{~g}, 76 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.35(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 4.65$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$, and $7.44-7.66(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 36.4\left(\mathrm{CH}_{2} \mathrm{Br}\right), 125.8$ (C-2), 126.4 C-6), 128.3 (C-5), $130.0(\mathrm{C}-4), 130.2$ (C-3) and 137.6 (C-1).

Diethyl N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidate 363a

A solution of diethyl N-benzyl-2-[N-benzyloxy) acetamido]-ethylphosphoramidate 357a (0.20 $\mathrm{g}, 0.46 \mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was added to a solution of $\mathrm{Pd} / \mathrm{C}(10 \%, 0.35 \mathrm{~g})$ in dry $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$) under an H_{2}-atmosphere and the mixture was stirred at room temperature for 18 hours. The reaction mixture was then filtered through a celite pad, the filtrate was
evaporated in vacuo and the residue purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidate 363a as a clear oil ($0.13 \mathrm{~g}, 83$ \%); (Found: C, 52.40; H, 7.38; N, 8.19 \%. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 52.32 ; \mathrm{H}, 7.32 ; \mathrm{N}, 8.14 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3221(\mathrm{OH}), 1688(\mathrm{C}=\mathrm{O})$ and 1238 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 1.83(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH}), 2.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.89\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.21\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1\right.$ " $-\mathrm{OCH}_{2}$) and $7.32-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.1$ (d, Jp$\left.c=7.2 \mathrm{~Hz}, 2 \times 2{ }^{\prime}-\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3} \mathrm{CO}\right), 35.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.0 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 53.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=16.5 \mathrm{~Hz}, 2-\right.$ CH_{2}), 62.3 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=5.6 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}$), $67.5\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right), 127.3(\mathrm{C}-4 \mathrm{4}), 128.3$ (C-2" and C-6"), 128.6 (C-3" and C-5"), 137.4 (C-1') and 167.5 (C=O).

Diethyl 2-(N-hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidate 363b

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidate 363a was employed, using diethyl 2-[(N-benzyloxy)acetamido]- N-[4(hydroxymethyl)benzyl]ethylphosphoramidate 357b ($0.20 \mathrm{~g}, 0.43 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 0.33 \mathrm{~g})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl 2-(N-hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidate 363b as a yellow oil ($0.14 \mathrm{~g}, 84$ \%); (Found: C, 51.39; H, 7.22 ; $\mathrm{N}, 7.53 \% . \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires C, 51.33; H, 7.27; N, 7.48 \%); v/cm ${ }^{-1} 3313(\mathrm{OH}), 1695(\mathrm{C}=\mathrm{O})$ and 1218 ($\mathrm{P}=\mathrm{O}$); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 1.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH}), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.80$ $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.38\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.85\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{1 "-}\right.$ OCH_{2}), $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right.$), $7.25-7.30(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.02(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{OH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.1 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3} \mathrm{CO}\right), 37.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=5.2 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 52.5$ (d, $\left.J_{\mathrm{P}-\mathrm{C}}=16.5 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 63.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=5.8 \mathrm{~Hz}, 2 \times 1{ }^{\prime}-\mathrm{OCH}_{2}\right), 66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.8\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 123.4 (C-2" and C-6'), 123.7 (C-3" and C-5'), 136.6 (C-1"), 138.3 (C-4") and 170.1 (C=O).

Diethyl N-(3-aminobenzyl)-2-(N-hydroxyacetamido]ethylphosphoramidate 363c

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidate 363a was employed, using diethyl N-(3-aminobenzyl)-2-[(N-benzyloxy)acetamido]-ethylphosphoramidate 357c ($0.20 \mathrm{~g}, 0.44 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 0.33 \mathrm{~g})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl N -(3-aminobenzyl)-2-(N-hydroxyacetamido]ethylphosphoramidate 363c as a yellow oil (0.12 g, 79 \%); (Found: C, 50.22; H, 7.35; N, 11.67 \%. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 50.13$; H, 7.29; N, 11.69 \%); v/cm ${ }^{-1} 3387(\mathrm{OH}), 3327\left(\mathrm{NH}_{2}\right), 1705(\mathrm{C}=\mathrm{O})$ and $1224(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.69\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right)$, $3.26\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.81\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{I}^{\prime}-\mathrm{OCH}_{2}\right), 4.78(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 5.68(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and 6.59-7.16 $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $\left.6.2 \mathrm{~Hz}, 2 \times 2{ }^{\prime}-\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.4\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{C}}=4.7 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 53.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=16.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right)$, 62.2 (d, Jp-c $\left.=6.5 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right), 68.3\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right), 114.0\left(\mathrm{C}-4{ }^{\prime \prime}\right), 114.7\left(\mathrm{C}-2^{\prime \prime}\right), 118.6\left(\mathrm{C}-6^{\prime \prime}\right)$, 129.6 (C-5'), 136.7 (C-1'), 148.2 (C-3") and 166.6 (C=O).

Diethyl 2-(N-hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidate 363d

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidate 363a was employed, using diethyl 2-[(N-benzyloxy)acetamido]- N-(3-mercaptobenzyl)-ethylphosphoramidate 357d ($0.20 \mathrm{~g}, 0.43 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL})$ and Pd / C
$(10 \%, 0.33 \mathrm{~g})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl 2-(N-hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidate 363d as a yellow oil ($0.14 \mathrm{~g}, 88$ \%); Found: $\mathrm{C}, 47.93 ; \mathrm{H}, 6.73 ; \mathrm{N}, 7.46 \% . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$ requires $\mathrm{C}, 47.86$; $\mathrm{H}, 6.69 ; \mathrm{N}, 7.44 \%$); v/cm ${ }^{-1} 3219(\mathrm{OH}), 2534(\mathrm{SH}), 1693(\mathrm{C}=\mathrm{O})$ and $1225(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{Z}^{\prime}-\mathrm{CH}_{3}\right), 1.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.71(2 \mathrm{H}$, $\left.\mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.08(1 \mathrm{H}, \mathrm{s}, \mathrm{SH}), 3.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.09(4 \mathrm{H}$, $\mathrm{m}, 2 \times 1$ '- OCH_{2}) and 6.61-7.18 (4H, m, Ar-H); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}\right.$, 2×2 '- CH_{3}), $22.4\left(\mathrm{CH}_{3} \mathrm{CO}\right), 36.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2}\right), 48.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=16.5 \mathrm{~Hz}, 2-\mathrm{CH}_{2}\right), 61.5(\mathrm{~d}$, $J_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}$), $66.6\left(3-\mathrm{CH}_{2} \mathrm{Ph}\right), 124.2\left(\mathrm{C}-6^{\prime \prime}\right), 125.0\left(\mathrm{C}-2^{\prime \prime}\right), 127.8(\mathrm{C}-4 \mathrm{4}), 128.3$ (C$5^{\prime \prime}$), 129.6 ($\mathrm{C}-3^{\prime \prime}$), 137.2 ($\mathrm{C}-1^{\prime \prime}$) and 163.0 ($\mathrm{C}=\mathrm{O}$).

N-Benzyl-2-(N-hydroxyacetamido)ethylphosphoramidic acid 351a

Trimethylsilyl bromide ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was added dropwise to diethyl N -benzyl-2-(N hydroxyacetamido)ethylphosphoramidate 363a ($0.12 \mathrm{~g}, 0.34 \mathrm{mmol}$) in DCM (5 mL) under N_{2} at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour. The mixture was allowed to warm to room temperature, water was added (1 mL) and the resulting mixture was stirred overnight. After completion, the solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield N -benzyl-2-(N-hydroxyacetamido)ethylphosphoramidic acid 351a as a colourless oil ($85 \mathrm{mg}, 87$ \%); (Found: C, 45.76; H, 6.01; N, 9.79 \%. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 45.84 ; \mathrm{H}, 5.94 ; \mathrm{N}, 9.72$ \%); $\mathrm{v} / \mathrm{cm}^{-1} 3245(\mathrm{OH}), 1653(\mathrm{C}=\mathrm{O})$ and $1228(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz}\right.$; DMSO- d_{6}) $2.09(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.79\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.25(1 \mathrm{H}, \mathrm{s}$, NOH), 7.29-7.37 (5H, m, Ar-H) and $8.15(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 20.7$ $\left(\mathrm{CH}_{3}\right), 42.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=4.7 \mathrm{~Hz}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 52.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=16.9 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 67.2\left(3-\mathrm{CH}_{2}\right), 126.4(\mathrm{C}-$ 4^{\prime}), 128.6 (C-2' and C-6'), 129.4 (C-3' and C-5'), 139.4 (C-1') and 171.5 (C=O).

2-(N-Hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidic acid 351b

The procedure described for the synthesis of N-benzyl-2-(N-hydroxyacetamido) ethylphosphoramidic acid 351a was employed, using diethyl 2-(N-hydroxyacetamido)- N-[4(hydroxymethyl)benzyl]ethylphosphoramidate 363b ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}$) and $\mathrm{TMSBr}(0.12$ $\mathrm{mL}, 0.93 \mathrm{mmol}$) in DCM (5 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:0.5)] to yield 2-(N-Hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidic acid 351b as a colourless oil ($87 \mathrm{mg}, 89$ \%); (Found: C, 45.35; H, 6.09; N, $8.73 \% . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ requires $\mathrm{C}, 45.29 ; \mathrm{H}, 6.02 ; \mathrm{N}, 8.80 \%$); $\mathrm{v} / \mathrm{cm}^{-1} 3329(\mathrm{OH}), 1667(\mathrm{C}=\mathrm{O})$ and $1220(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}_{6}\right) 1.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right)$, $3.27\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.82\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH})$, $7.09-7.24(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $8.92(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 20.3\left(\mathrm{CH}_{3}\right)$, $37.5\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=5.1 \mathrm{~Hz}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 51.8\left(\mathrm{~d}, J_{\mathrm{p}-\mathrm{c}}=16.6 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 65.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.4\left(3-\mathrm{CH}_{2}\right)$, 126.2 (C-3' and C-5'), 128.3 (C-2' and C-6'), 136.5 (C-1'), 139.2 ($\mathrm{C}-4^{\prime}$) and 166.3 ($\mathrm{C}=\mathrm{O}$).

N-(3-Aminobenzyl)-2-(N-hydroxyacetamido)ethylphosphoramidic acid 351c

The procedure described for the synthesis of diethyl N-benzyl-2-(N hydroxyacetamido)ethylphosphoramidate 351a was employed, using diethyl N-(3-aminobenzyl)-2-(N-hydroxyacetamido)ethylphosphoramidate $363 \mathrm{c}(0.10 \mathrm{~g}, 0.27 \mathrm{mmol}$) and $\operatorname{TMSBr}(0.10 \mathrm{~mL}, 0.81 \mathrm{mmol})$ in DCM (5 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAcMeOH (1:1:0.5)] to yield N -(3-aminobenzyl)-2-(N-hydroxyacetamido)ethylphosphoramidic
acid 351c as a colourless oil (71 mg, 87 \%); (Found: C, 43.70; H, 5.91; N, 13.82 \%. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\left.\mathrm{C}, 43.57 ; \mathrm{H}, 5.98 ; \mathrm{N}, 13.86 \%\right) ; \mathrm{v} / \mathrm{cm}^{-1} 3361(\mathrm{OH}), 3298\left(\mathrm{NH}_{2}\right), 1684$ $(\mathrm{C}=\mathrm{O})$ and $1230(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.81(2 \mathrm{H}, \mathrm{m}, 1-$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.28\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.60\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 4.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NOH}), 5.48(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 7.00(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH})$ and $7.10-7.29(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 19.8$ $\left(\mathrm{CH}_{3}\right), 36.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.9 \mathrm{~Hz}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 53.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.5 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 68.1\left(3-\mathrm{CH}_{2}\right), 113.9(\mathrm{C}-$ $\left.4^{\prime}\right), 114.7$ (C-2'), 117.8 (C-6'), 128.4 (C-5'), 138.3 (C-1'), 146.5 (C-3') and 166.8 (C=0).

2-(N-Hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidic acid 351d

The procedure described for the synthesis of diethyl N-benzyl-2-(N hydroxyacetamido)ethylphosphoramidate 351a was employed, using diethyl 2-(N-hydroxyacetamido)- N -(3-mercaptobenzyl)ethylphosphoramidate 363d ($0.12 \mathrm{~g}, 0.31 \mathrm{mmol}$) and $\operatorname{TMSBr}(0.13 \mathrm{~mL}, 92 \mathrm{mmol})$ in DCM (5 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc$\mathrm{MeOH}(1: 1: 1)]$ to yield 2-(N-hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidic acid 351d as a colourless oil ($83 \mathrm{mg}, 84 \%$); (Found: C, 41.34; H, 5.41; N, 8.68 \%. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}$ PS requires C, 41.25; H, 5.35; N, 8.75%); v/cm $\mathrm{cm}^{-1} 3326(\mathrm{OH}), 2575(\mathrm{SH}), 1687(\mathrm{C}=\mathrm{O})$ and $1228(\mathrm{P}=\mathrm{O}) ; \delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 2.80(1 \mathrm{H}$, $\mathrm{s}, \mathrm{SH}), 3.33\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2-\mathrm{CH}_{2} \mathrm{~N}\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right)$ and $6.85-7.37(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 22.4\left(\mathrm{CH}_{3}\right), 40.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{c}}=4.8 \mathrm{~Hz}, 1-\mathrm{CH}_{2} \mathrm{~N}\right), 52.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=16.5 \mathrm{~Hz}, 2-\right.$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 68.2\left(3-\mathrm{CH}_{2}\right), 119.2\left(\mathrm{C}-6^{\prime}\right), 123.1\left(\mathrm{C}-2^{\prime}\right), 126.6\left(\mathrm{C}-4{ }^{\prime}\right), 129.4\left(\mathrm{C}-5^{\prime}\right), 130.2\left(\mathrm{C}-3^{\prime}\right), 138.5$ ($\mathrm{C}-1$ ') and 162.1 ($\mathrm{C}=0$).

3.6. Synthesis of fosmidomycin and FR900098

Diethyl (3-oxopropyl)phosphonate $365{ }^{\text {118,119 }}$

A solution of diethyl (3,3-diethoxypropyl)phosphonate 364 ($2.00 \mathrm{~g}, 7.45 \mathrm{mmol}$) in $2 \mathrm{M}-\mathrm{HCl}$ solution (8 mL) was stirred at room temperature for ca. 24 hours. The reaction mixture was then extracted with $\mathrm{CHCl}_{3}(3 \times 25 \mathrm{~mL})$ and the organic layers were combined, and washed with water ($2 \times 25 \mathrm{~mL}$). The aqueous washings were combined and extracted with $\mathrm{CHCl}_{3}(2 \times$ $50 \mathrm{~mL})$. The combined organic extracts were washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{x}$ 50 mL) and brine ($2 \times 50 \mathrm{~mL}$), and then dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl (3-oxopropyl)phosphonate 365 as a yellow oil (1.08 g, 75%); $\delta_{H} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}\right), 1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}\right), 2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.03$ $\left(4 \mathrm{H}, \mathrm{q}, J=4.4 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right)$ and $9.72(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=\right.$ $6.3 \mathrm{~Hz}, 2 \times 2^{\prime}-\mathrm{CH}_{3}$), $20.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 27.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 62.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.6.7 \mathrm{~Hz}, 2 \times 1^{\prime}-\mathrm{OCH}_{2}\right)$ and $174.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=18.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}\right)$.

Diethyl \{3-[(benzyloxy)amino]propyl\}phosphonate $366{ }^{118,119}$

To a stirred solution of diethyl (3-oxopropyl)phosphonate 365 ($0.80 \mathrm{~g}, 4.1 \mathrm{mmol}$) in MeOH (5 mL) was added a solution of O-benzylhydroxylamine ($0.68 \mathrm{~g}, 4.9 \mathrm{mmol}$) in $\mathrm{MeOH}(15 \mathrm{~mL})$. The reaction mixture was heated at $40^{\circ} \mathrm{C}$ for 3 hours, cooled to room temperature and diluted with $\mathrm{MeOH}(80 \mathrm{~mL})$. After the addition of sodium cyanoborohydride ($0.80 \mathrm{~g}, 12.4$ $\mathrm{mmol})$, conc. $\mathrm{HCl}(4.5 \mathrm{~mL})$ was added dropwise over a period of 30 min and the mixture was stirred for 1 hour. Sodium cyanoborohydride ($0.27 \mathrm{~g}, 4.1 \mathrm{mmol}$) was again added and the mixture was stirred for another 1 hour. The solvent was removed under reduced pressure,
the residue dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and then treated with ice-water (50 mL). The resulting mixture was adjusted to pH 10 with aq. KOH -solution and extracted with DCM (2 x $100 \mathrm{~mL})$. The combined organic layers were washed with $10 \% \mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, and then dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the remaining oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl \{3-[(benzyloxy)amino]propyl\}phosphonate 366 as a yellow oil (0.52 g , 65%); $\delta_{H} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \times 2\right.$ " $-\mathrm{CH}_{3}$), $1.82\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and 2$\left.\mathrm{CH}_{2}\right), 2.93\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1\right.$ " $\left.-\mathrm{OCH}_{2}\right), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.58(1 \mathrm{H}, \mathrm{s}$, NH) and 7.31 - $7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{~L}-\right.$ C_{3}), $20.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=4.9 \mathrm{~Hz}, \mathrm{C}-2\right.$), $23.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{C}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right.$), $52.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $61.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{c}}=6.5 \mathrm{~Hz}, 2 \times 1\right.$ "-OCH 2$), 76.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 127.8\left(\mathrm{C}-5^{\prime}\right), 128.2\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-7^{\prime}\right), 128.3(\mathrm{C}-$ 4 ' and C-6') and 137.7 (C-2').

Diethyl [3-(N-benzyloxy- N-formylamino)propyl]phosphonate 367a ${ }^{118,119}$

Formic acid ($0.12 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added to a mixture of diethyl \{3[(benzyloxy)amino]propyl\} phosphonate $366(0.25 \mathrm{~g}, 0.85 \mathrm{mmol})$ and sodium formate (0.02 $\mathrm{g}, 0.33 \mathrm{mmol}$) in THF (10 mL) under N_{2} and the resulting mixture was refluxed at $80^{\circ} \mathrm{C}$ for 2 hours. The solvent was removed in vacuo and the residue dissolved in EtOAc (25 mL). The organic phase was washed with water ($2 \times 25 \mathrm{~mL}$). The aqueous washings were combined and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed sequentially with satd. aq. $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine ($2 \times 50 \mathrm{~mL}$), and then dried (anhydr. MgSO_{4}). The solvent was evaporated in vacuo and the residue chromatographed [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl [3-(N-benzyloxy- N formylamino) propyl]phosphonate 367a as a yellow oil ($0.16 \mathrm{~g}, 66 \%$); $\delta_{H} / \mathrm{ppm}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.32\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right), 1.77\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 3.72(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $4.09\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 4.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.40(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$ and $8.13(1 \mathrm{H}, \mathrm{s}$, CHO); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right.$), 20.6 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=4.9 \mathrm{~Hz}, \mathrm{C}-2$),
23.5 ($\left.d, J_{p-c}=141.2 \mathrm{~Hz}, C H_{2} P\right), 51.7\left(d, J_{p-c}=16.8 \mathrm{~Hz}, C H_{2} N\right), 61.3\left(d, J_{p-c}=6.5 \mathrm{~Hz}, 2 \times 1^{\prime \prime}-\right.$ OCH_{2}), $76.7\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 127.7\left(\mathrm{C}-5^{\prime}\right), 128.0\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-7^{\prime}\right), 128.3\left(\mathrm{C}-4{ }^{\prime}\right.$ and $\left.\mathrm{C}-6^{\prime}\right), 137.8\left(\mathrm{C}-2^{\prime}\right)$ and 165.8 ($\mathrm{C}=\mathrm{O}$).

Diethyl [3-(N-acetyl-N-benzyloxylamino)propyl]phosphonate 367b ${ }^{118,119}$

Acetyl chloride ($0.08 \mathrm{~mL}, 0.96 \mathrm{mmol}$) was added dropwise to a stirred solution of diethyl \{3[(benzyloxy)amino]propyl\} phosphonate $366(0.25 \mathrm{~g}, 0.83 \mathrm{mmol})$ and triethylamine (0.13 $\mathrm{mL}, 0.99 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, allowed to warm to room temperature and then stirred further for $c a .24$ hours. The solvent was removed under reduced pressure and the residual oil dissolved in diethyl ether (20 mL). The solution was washed sequentially with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution, $0.5 \mathrm{M}-\mathrm{HCl}$ and water, and then dried over anhydrous MgSO_{4}. The solvent was removed in vacuo and the residue purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl [3-(N-acetyl- N-benzyloxylamino) propyl]phosphonate $\mathbf{3 6 7 b}$ as a yellow oil ($0.18 \mathrm{~g}, 73$ \%); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}\right), 1.82\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and 2$\left.\mathrm{CH}_{2}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.11\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{\prime \prime}-\mathrm{OCH}_{2}\right), 4.85(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$) and $7.37(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=6.0 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=4.9 \mathrm{~Hz}, \mathrm{C}-2\right), 23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 52.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=16.4 \mathrm{~Hz}\right.$, $\mathrm{CH}_{2} \mathrm{~N}$), $62.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1^{\prime \prime}-\mathrm{OCH}_{2}\right), 76.4\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 128.4\left(\mathrm{C}-5^{\prime}\right), 128.3\left(\mathrm{C}-3^{\prime}\right.$ and $\left.\mathrm{C}-\mathrm{7}^{\prime}\right)$, 128.9 ($\mathrm{C}-4^{\prime}$ and $\mathrm{C}-6^{\prime}$), 138.0 ($\mathrm{C}-2^{\prime}$) and 163.0 ($\mathrm{C}=0$).

Diethyl [3-(N-hydroxyformamido)propyl]phosphonate 368a ${ }^{251,252}$

A solution of diethyl \{3-[(benzyloxy)(formyl)amino]propyl\}phosphonate 367 ($0.15 \mathrm{~g}, 0.46$ mmol) in dry $\mathrm{MeOH}(5 \mathrm{~mL})$ was added to a solution of $\mathrm{Pd} / \mathrm{C}(10 \%, 0.35 \mathrm{~g})$ in dry MeOH (10
mL) under H_{2} and the mixture was stirred at room temperature for 18 hours. The reaction mixture was then filtered through a celite pad, the filtrate was evaporated in vacuo and the residue purified by flash chromatography [on silica gel; elution with hexane-EtOAc (4:1)] to yield diethyl [3-(N-hydroxyformamido)propyl]phosphonate 368a as a clear oil ($0.11 \mathrm{~g}, 77 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2\right.$ " $\left.-\mathrm{CH}_{3}\right), 1.80\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right)$, $3.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.13\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1 \mathrm{l}-\mathrm{OCH}_{2}\right), 5.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.71(1 \mathrm{H}, \mathrm{s}$, CHO); $\delta_{\mathrm{C}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.3$ ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}$), 20.8 ($\mathrm{d}, \mathrm{J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, \mathrm{C}-2$),
 $\left.\mathrm{OCH}_{2}\right)$ and $158.2(\mathrm{C}=\mathrm{O})$.

Diethyl [3-(N-hydroxyacetamido)propyl]phosphonate 368b ${ }^{\mathbf{2 5 1 , 2 5 2}}$

The procedure described for the synthesis of diethyl [3-(N-hydroxyformamido)propyl]phosphonate 368a was employed, using diethyl [3-(N-acetyl- N-benzyloxylamino)propyl]phosphonate 367b ($0.15 \mathrm{~g}, 0.44 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 0.34 \mathrm{~g})$ in $\mathrm{MeOH}(10$ mL). The solvent was evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield diethyl [3-(N hydroxyacetamido) propyl]phosphonate 368b as a yellow oil (0.12 g , 81%); $\delta_{\mathrm{H}} / \mathrm{ppm}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times 2 \mathrm{C}-\mathrm{CH}_{3}\right), 1.80\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.12\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1{ }^{\prime \prime}-\mathrm{OCH}_{2}\right)$ and $5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}} / \mathrm{ppm}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 16.4 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=6.0 \mathrm{~Hz}, 2 \times 2^{\prime \prime}-\mathrm{CH}_{3}$), $20.2\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.8 \mathrm{~Hz}, \mathrm{C}-2\right.$), 23.5 ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=143.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), $52.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $62.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=6.5 \mathrm{~Hz}, 2 \times 1\right.$ 1"OCH_{2}) and $163.7(\mathrm{C}=\mathrm{O})$.
[3-(N-Hydroxyformamido)propyl]phosphonic acid 236 (Fosmidomycin) ${ }^{251,252}$

Trimethylsilyl bromide ($0.17 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added dropwise to diethyl \{3[formyl(hydroxyl)amino]propyl\}phosphonate 368a ($0.10 \mathrm{~g}, 0.42 \mathrm{mmol}$) in DCM (3 mL) under N_{2} at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 hour. The mixture was allowed to warm to room temperature, water was added (1 mL) and the resulting mixture was stirred overnight. The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [3-(Nhydroxyformamido)propyl]phosphonic acid 236 as a colourless oil ($66 \mathrm{mg}, 67 \%$); $\delta_{\mathrm{H}} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $1.83\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$ and $9.68(1 \mathrm{H}, \mathrm{s}$, CHO); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 21.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, \mathrm{C}-2\right.$), $23.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=141.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 51.5$ ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{C}}=16.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$) and 155.7 ($\mathrm{C}=\mathrm{O}$).

[3-(N-Hydroxyacetamido)propyl]phosphonic acid $237^{\text {201,252 }}$

The procedure described for the synthesis of [3-(N-hydroxyformamido)propyl]phosphonic acid 236 was employed, using diethyl [3-(N-hydroxyacetamido)propyl]phosphonate 368b $(0.10 \mathrm{~g}, 0.39 \mathrm{mmol})$ and trimethylsilyl bromide ($0.16 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in DCM (3 mL). The solvent was removed in vacuo and the residue chromatographed [preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield [3-(NHydroxyacetamido)propyl]phosphonic acid 237 as a colourless oil ($61 \mathrm{mg}, 64 \%$); $\delta_{H} / \mathrm{ppm}$ ($400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}$) $1.82\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right.$ and $\left.2-\mathrm{CH}_{2}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$ and $3.69(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{~N}$); $\delta_{\mathrm{c}} / \mathrm{ppm}\left(100 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 20.0\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=4.8 \mathrm{~Hz}, \mathrm{C}-2\right), 23.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p}-\mathrm{c}}=143.9\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 52.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=16.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$ and $162.8(\mathrm{C}=\mathrm{O})$.

3.7. Saturation Transfer Difference (STD) NMR binding studies

The EcDXR enzyme was expressed and purified, for the author, using standard protocols ${ }^{115,142}$ by Miss Taryn Bodill in the Rhodes Centre for Chemico- and Biomedicinal Research. ${ }^{211}$ An STD experiment was run on the different sets of ligands as follows: EcDXR, stored in sodium phosphate buffer (pH 7.0), was freeze-dried and re-suspended in $\mathrm{D}_{2} \mathrm{O}$ to make a final concentration of $20 \mu \mathrm{M}$. Each set of ligands was dissolved in the protein solution to give a final ligand concentration of $800 \mu \mathrm{M}$ and thus a protein: ligand molar ratio of 1:40. The STD experiment was carried out using parameters optimized in a previous study in our group. ${ }^{129}$ The saturating on-resonance and off-resonance pulses were set at frequencies of 0.73 ppm and 20 ppm , respectively, while cycling between the on- and offresonance phases was used to reduce the effects of changes in temperature or magnetic field homogeneity. A 3-9-19 water suppression pulse was applied at 4.7 ppm and 6000 scans were acquired. The on- and off-resonance spectra were subtracted from each other and processed using Bruker Topspin software.

3.8. NADPH-dependent DXR inhibition assay

The bio-assay was carried out, for the author, using a reaction mixture containing 100 mM Tris-HCl (pH 7.5), $1 \mathrm{mM} \mathrm{MnCl} 2,0.3 \mathrm{mM}$ DOXP and 0.3 mM NADPH, made up to a final volume of $100 \mu \mathrm{l}$ with assay buffer. Equal volumes of $E c D X R$ and ligand were incubated at 37 ${ }^{\circ} \mathrm{C}$ for 5 min and the reaction was initiated by adding $100 \mu \mathrm{~L}$ of the enzyme-ligand mixture to the rest of the assay components to make a total of $200 \mu \mathrm{~L}$, with a final EcDXR concentration of $5 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$. The decrease in absorbance at 340 nm as a result of the reduction of NADPH ($\varepsilon_{\text {NADPH }}=6.3 \times 103 \mathrm{L.mol}^{-1} . \mathrm{cm}^{-1}$) was monitored at $37{ }^{\circ} \mathrm{C}$ for 10 min , using a PowerWave ${ }^{\text {TM }}$ microtitre plate reader. The specific activity of the enzyme in the absence of a ligand was considered to be 100% (i.e. 0% inhibition) and the $\%$ relative inhibition of each ligand was determined in triplicate.

3.9. Modelling and simulated docking studies

The Accelrys Cerius ${ }^{2}$ module ${ }^{213}$ was used to construct the selected compounds in silico as their mono-deprotonated species. Using Gaussian $03,{ }^{214}$ the structure for each compound was energy-minimised at the density functional theory (DFT) B3LYP level with the 6-31G(d) base set, using (IEFPCM) solvent correction (water). Docking studies of the energyminimised ligands were carried out using Autodock version $4.0,{ }^{215}$ using the crystallographically-determined enzyme structure, EcDXR $2 \mathrm{EGH},{ }^{103}$ which was downloaded from the Protein Data Bank (PDB; E.C. 1.1.1.267). Using Autodock 4.0, Gasteiger charges were added and the non-polar hydrogens were merged for the respective ligands and the protein model. The active-site residues Ser185, Ser221, Asn226, Lys227 and Glu230 were assigned as flexible. The AutoGrid 4.0 algorithm was employed to represent the active site with a grid box of dimensions $60 \times 60 \times 60$ units (grid-point spacing of $0.375 \AA$) along the x-, y - and z -directions, and atom maps were calculated for all possible active-site residue-ligand interactions. In silico dockings were conducted using the Lamarckian algorithm with a population size of 150 , allowing for a maximum of 27000 generations and 2.5×10^{6} energy evaluations. For each ligand docking experiment, ten possible docked-conformers were generated. The lowest docked-conformer for each of the ligands was selected and visualised using the Accelrys Discovery Studio Visualizer 2.0^{220} software package.

4. REFERENCES

1. Sherman I. W., A Brief History of Malaria and Discovery of the Parasite's Life Cycle. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 3-10.
2. Webb J. L. A., An introduction to Malaria in Human History. In Humanity's Burden, A Global History of Malaria, Cambridge University Press, New York, 2009, pp. 1-17.
3. Webb J. L. A., Toward Global Public Health. In Humanity's Burden, A Global History of Malaria, Cambridge University Press, New York, 2009, pp. 127-139.
4. The Malaria site. History of Malaria. http://www.malariasite.com/malaria/history _science. htm (accessed October 12, 2010).
5. Moody A. Clin. Microbiol. Rev., 2002, 15, 66-78.
6. Holt R. A., Subramanian G. M., Halpern A., Sutton G.G., Charlab R., Nusskern D.R., Wincker P., Clark A. G., Ribeiro J. M. C., Wides R., Salzber S. L., Loftus B., Yandell M., Majoros W. H., Rusch D. B., Lai Z., Kraft C. L. and Abril J. F., Anthouard V., Arensburger P., Atkinson P.W., Baden H., de Berardinis V., Baldwin D., Benes V., Biedler J., Blass C., Bolanos R., Boscus D., Barnstead M., Cai S., Center A., Chatuverdi K., Christophides G. K., Chrystal M. A., Clamp M., Cravchik A., Curwen V., Dana A., Delcher A., Dew I., Evans C. A., Flanigan M., Grundschober-Freimoser A., Friedli L., Gu Z., Guan P., Guigo R., Hillenmeyer M. E., Hladun S. L., Hogan J. R., Hong Y. S., Hoover J., Jaillon O., Ke Z., Kodira C., Kokoza E., Koutsos A., Letunic I., Levitsky A., Liang Y., Lin J., Lobo N. F., Lopez J. R., Malek J. A., McIntosh T. C., Meister S., Miller J., Mobarry C., Mongin E., Murphy S. D., O'Brochta D. A., Pfannkoch C., Qi R., Regier M. A., Remington K., Shao H., Sharakhova M. V., Sitter C. D., Shetty J., Smith T. J., Strong R., Sun J., Thomasova D., Ton L. Q., Topalis P., Tu Z., Unger M. F., Walenz B., Wang A., Wang J., Wang M., Wang X., Woodford K. J., Wortman J. R., Wu M., Yao A., Zdobnov E. M., Zhang H., Zhao Q., Zhao S., Zhu S. C., Zhimulev I., Coluzzi M., della Torre A., Roth C. W., Louis C., Kalush F., Mural R. J., Myers E. W., Adams M. D., Smith H. O., Broder S., Gardner M. J., Fraser C. M., Birney E., Bork P., Brey P. T., Venter J., Weissenbach J., Kafatos F. C., Collins F. H. and Hoffman S. L., Science, 2002, 298, 129149.
7. Gardner M. J., Hall N., Fung E., White O., Berriman M., Hyman R. W., Carlton J. M., Pain A., Nelson K. E., Bowman S., Paulsen I. T., James K., Eisen J. A., Rutherford K., Salzberg S. L., Craig A., Kyes S., Chan M. S., Nene V., Shallom S. J., Suh B., Peterson J., Angiuoli S. and Pertea M., Allen J., Selengut J., Haft D., Mather M. W., Vaidya A. B., Martin D. A., Fairlamb A. H., Fraunholz M. J., Roos D. S., Ralph S. A., McFadden G. I., Cummings L. M., Subramanian G. M., Mungall C., Venter J. C., Carucci D. J., Hoffman S. L., Newbold C., Davis R. W., Fraser C. M. and Barrell B., Nature, 2002, 419, 498-511.
8. Singh B., Sung L. K., Matusop A., Redhakrishnan A., Shamsul S. S. G., Singh J. C., Thomas A. and Conway D. J., The Lancet, 2004, 363, 1017-1024.
9. Greenwood B. M., Bojang K., Whitty C. J. M. and Targett G. A. T., The Lancet., 2005, 365, 1487-1498.
10. Rosenthal P. J., Overview of Parasitic Infections. In Comprehensive Medicinal Chemistry II, vol. 7, Elsevier, 2008, New York, pp. 749-755.
11. Ayala D., Constantini C., Ose K., Kamdem G. C., Antonio-Nkondjio C., Agbor J. P., AwonoAmbene P., Fontenille D. and Simard F., Malaria Journal, 2009, 8, 307.
12. Coetzee M. and Fontenille D., Insect Biochemistry and Molecular Biology, 2004, 34, 599605.
13. World Health Organisation, WHO Global Malaria Programme, World Malaria Report 2010, WHO Press, Geneva, 2010, pp. 1-60.
14. Areqawi, M.; Cibulskis, R.; Otten, M.; Williams, R.; Dye, C. World Health Organisation, World Malaria Report 2008, WHO Press, Geneva, 2008, pp. 1-215.
15. Hay S. I. and Snow R. W., PLoS Medicine, 2006, 3, 12, e473.
16. Trig P. I. and Kondrachine A. V., The Current Global Malaria Situation. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 11-21.
17. Ashley E., McGready R., Proux S. and Nosten F., Travel Medicine and Infectious Disease, 2006, 4, 159-173.
18. Muller O., Ye M., Louis R. V. and Sie A., The Lancet, 2009, 373, 122.
19. Ramos J. M., Reyes F. and Tesfamariam A., J. Travel. Med., 2005, 12, 155-156.
20. Hemingway J. and Ranson H., Annu. Rev. Entomol., 2000, 45, 371-391.
21. French N., Nakiyingi J., Lugada E., Watera C., Whitworth J. A. G. and Gilks C. F., AIDS, 2001, 15, 7, 899-906.
22. Whitworth J., Morgan D., Quigley M., Mayanja B., Eotu H., Omoding N., Okongo M., Malamba S. and Ojwiya A., The Lancet., 2000, 356, 1051-1056.
23. Van Geertruyden J. P. and D’Alessandro U., Trends in Parasitology, 2007, 23, 10, 465467.
24. United Nations Millennium Development Goals. http://www.un.org/millenniumgoals/ reports.shtml. (Accessed on November 2, 2010).
25. The Abuja Decleration. http://www.rollbackmalaria.org/docs/abuja_declaration.pdf. (Accessed on November 2, 2010).
26. Malaria Vaccine Initiative. http://www.malariavaccine.org/. (Accessed on November 4, 2010).
27. Multilateral Initiative on Malaria. http://www.mimalaria.org/eng/aboutmim.asp. (Accessed on November 5, 2010).
28. The Global Fund to fight HIV/AIDS, Tuberculosis and Malaria. http://www.theglobalfund. org/en/about/. (Accessed November 5, 2010).
29. World Health Organisation, WHO Global Malaria Control and Elimination; report of a technical review, WHO Press, Geneva, 2008.
30. Brooke B. D., Kloke G., Hunt R. H., Koekemoer L. L., Temu E. A., Taylor M. E., Small G., Hemingway J. and Coetzee M., Bulletin of Entomological Research, 2001, 91, 265-272.
31. Kanzok S. M. and Jacobs-Lorena M., Trends. Parasitol., 2006, 22, 2, 49-51.
32. Christophides G. K., Cell. Microbiol., 2005, 7, 3, 325-333.
33. Carter R., Vaccine, 2001, 19, 2309-2314.
34. Greenwood B. M., Fidock D. A., Kyle D. E., Kappe S. H. I., Alonso P. L., Collins F. H. and Duffy P. E., The J. Clin. Inverst., 2008, 118, 1266-1276.
35. Frevert U. and Crisanti A., Invasion of Vertebrate Cells: Hepatocytes. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 73-92.
36. Barnwell J. W. and Galinski M. R., Invasion of Vertebrate Cells: Erythrocytes. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 93-107.
37. Beier J. C. and Vanderberg J. P., Sporogonic Development in the Mosquito. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 49-59.
38. White N. J., Malaria Pathophysiology. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 371-383.
39. Milhous W. K. and Kyle D. E., Introduction to the Modes of Action of and Mechanisms of Resistance to Antimalarials. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 303-311.
40. McMurry J., Organic Chemistry, $3^{\text {rd }}$ ed., Brooks/Cole, California, 1992, pp. 1115-1116.
41. Clayden J., Greeves N., Warren S. and Wothers P., Organic Chemistry, Oxford, London, 2000, pp. 1174.
42. Dewick P., Medicinal Natural Products: A Biosynthetic Approach, John Wiley and Sons, New York, 1998, pp. 334-339.
43. Meshnick S. R., From Quinine to Qinghaosu: Historical Perspectives. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 341-349.
44. Mital A., Curr. Med. Chem., 2007, 14, 759-773.
45. Muraleedharan K. M. and Avery M. A., Advances in the Discovery of New Antimalarials. In Comprehensive Medicinal Chemistry II, vol. 7, Elsevier, New York, 2007, pp. 765-813.
46. O'Neill P. M., Bray P. G., Hawley S. R., Ward S. A. and Park B. K., Pharmacol. Ther., 1998, 77, 29-58.
47. Krogstad D. J. and De D., Chloroquine: Modes of Action and the Activity of Chloroquine Analogs. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 331-337.
48. Macreadie I., Ginsburg H., Sirawaraporn W. and Tilley L., Parasitol. Today, 2000, 16, 10, 438-444.
49. Nosten F. and White N. J., Am. J. Trop. Med. Hyg., 2007, 77, 181-192.
50. Cowman A. F., The Molecular Basis of Resistance to the Sulfones, Sulfonamides, and Dihydrofolate Reductase Inhibitors. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 317-325.
51. Vaidya A. B., Mitochondrial Physiology as a Target for Atovaquone and Other Antimalarials. In Malaria, Parasite Biology, Pathogenesis, and Protection; Sherman, I. W., Ed.; American Society for Microbiology, Washington, DC, 1998, pp. 355-365.
52. Woodward R. B. and Doering W. E., J. Am. Chem. Soc., 1945, 67, 860-874.
53. Stock G., Niu D., Fujimoto A., Koft E. R., Balkovec J. M., Tata J. R. and Dake G. R., J. Am. Chem. Soc., 2001, 123, 3239-3242.
54. Raheem I. T., Goodman S. N. and Jacobsen E. N., J. Am. Chem. Soc., 2004, 126, 706-707.
55. Igarashi J., Katsukawa M., Wang Y. G., Acharya H. P. and Kobayashi Y., Tetrahedron Lett., 2004, 45, 3783-3786.
56. Surrey A. R. and Hammer H. F., J. Am. Chem. Soc., 1946, 68, 113-116.
57. Johnson W. S. and Buell B. G., J. Am. Chem. Soc., 1952, 74, 4513-4516.
58. Margolis B. J., Long K. A., Laird D. L. T., Ruble J. C. and Pulley S. R., J. Org. Chem., 2007, 72, 2232-2235.
59. Ohnmacht C. J., Patel A. R. and Lutz R. E., J. Med. Chem., 1971, 14(10), 926-928.
60. Elderfield R. C., Mertel H. E., Mitch R. T., Wempen I. M. and Werble E., J. Am. Chem. Soc., 1955, 77, 4816-4819.
61. Kumar V., Mahajan A. and Chibale K., Bioorg. Med. Chem., 2009, 17, 2236-2275.
62. Schmid G. and Hofheinz W., J. Am. Chem. Soc., 1983, 105, 624-625.
63. Ravindranathan T., Kumar M. A., Menon R. B. and Hiremath S.V., Tetrahedron Lett., 1990, 31, 5, 755-758.
64. Avery M. A., Chong W. K. M. and Jennings-White C., J. Am. Chem. Soc., 1992, 114, 974979.
65. Yadav J. S., Babu R. S. and Sabitha G., Tetrahedron Lett., 2003, 44, 387-389.
66. Brossi A., Venugopalan B., Gerpe L. D., Yeh H. J. C., Flippen-Anderson J. L., Buchs P., Luo X. D., Milhous W. and Peters W., J. Med. Chem., 1998, 31, 645-650.
67. Rosenthal P. J., J. Exp. Biol., 2003, 206, 3735-3744.
68. Mandal S., Moudgil M. and Mandal S. K., Eur. J. Pharamacol., 2009, 625, 90-100.
69. Kaschula C., Egan T. J., Hunter R., Basilico N., Parapini S., Taramelli D., Pasini E. and Monti D., J. Med. Chem., 2002, 45, 3531-3539.
70. Solomon V. R., Haq W., Srivastava K., Puri S. K. and Katti S. B., J. Med. Chem., 2007, 50, 394-398.
71. Ekoue-Kovi K., Yearick K., Iwaniuk D. P., Natarajan J. K., Alumasa J., de Dios A. C., Roepe P. D. and Wolf C., Bioorg. Med. Chem., 2009, 17, 270-283.
72. Musonda C. C., Taylor D., Lehman J., Gut J., Rosenthal P. J. and Chibale K., Bioorg. Med. Chem. Lett., 2004, 14, 3901-3905.
73. Musonda C. C., Taylor D., Lehman J., Gut J., Rosenthal P. J., Yardley V., de Souza R. C. C. and Chibale K., Bioorg. Med. Chem. Lett., 2006, 14, 5605-5615.
74. Anderson M. O., Sherill J., Madrid P. B., Liou A. P., Weisman J. L., DeRisi J. L. and Guy R. K., Bioorg. Med. Chem., 2006, 14, 334-343.
75. Gomes P., Araujo M. J., Rodrigues M., Vale N., Azevedo Z., Iley J., Chambel P., Morais J. and Moreira R., Tetrahedron, 2004, 60, 5551-5562.
76. Biot C., Glorian G., Maciejewski L. A. and Brocard J. S., J. Med. Chem., 1997, 40, 37153718.
77. Chibale K., Moss J. R., Blackie M., van Schalkwyk D. and Smith P. J., Tetrahedron Lett., 2000, 41, 6231-6235.
78. Blackie M. A. L., Beagley P., Croft S. L., Kendrick H., Moss J. R. and Chibale K., Bioorg. Med. Chem., 2007, 15, 6510-6516.
79. Biot C., Pradines B., Sergeant M., Gut J., Rosenthal P. J. and Chibale K., Bioorg. Med. Chem. Lett., 2007, 17, 6434-6438.
80. Hindley S., Ward S. A., Storr R. C., Searle N. L., Bray P. G., Park B. K., Davies J. and O’Neill P. M., J. Med. Chem., 2002, 45, 1052-1063.
81. Nga T. T., Menage C., Begue J. P., Bonnet-Delpon D. and Gantier J. C., J. Med. Chem., 1998, 41, 4101-4108.
82. O'Neill P. M., Searle N. L., Kan K. W., Storr R. C., Maggs J. L., Ward S. A., Raynes K. and Park B. K., J. Med. Chem., 1999, 42, 5487-5493.
83. Ekthawatchai S., Kamchonwongpaisan S., Kongsaeree P., Tarnchompoo B., Thebataranonth Y. and Yuthavong Y., J. Med. Chem., 2001, 44, 4688-4695.
84. Kouznetsov V. and Gomez-Barrio A., Eur. J. Med. Chem., 2009, 44, 3091-3113.
85. Lombard M. C., N’Da D. D., Breytenbach J. C., Smith P. J. and Lategan C. A., Bioorg. Med. Chem. Lett., 2010, 20, 6975-6977.
86. Kaur K., Jain M., Kau T. and Jain R., Bioorg. Med. Chem., 2009, 17, 3229-3256.
87. Takeuchi Y., Azuma K., Takakura K., Abe H. and Harayama T., Chem. Commun., 2000, 1643-1644.
88. Bringmann G., Gampe C. M., Reichert Y., Bruhn T., Faber J. H., Mikyna M., Reichert M., Leippe M., Brun R. and Gelhaus C., J. Med. Chem., 2007, 50, 6104-6115.
89. Jana S. and Paliwal J., Int. J. Antimicrob. Agents., 2007, 30, 4-10.
90. Rohdich F., Bacher A. and Eisenreich W., Biochem. Soc. Trans., 2005, 33, 785-791.
91. Singh N., Cheve G., Avery M. A. and McCurdy C. R., Curr. Pharm. Des., 2007, 13, 11611177.
92. Nelson D. L. and Cox M. M., Lehninger Principles of Biochemistry, $4^{\text {th }}$ ed., Freeman, New York, 2004, Chapter 21, pp. 787-832.
93. Wiesner J. and Jomaa H., Curr. Drug Targets, 2007, 8, 3-13.
94. Cassera M. B., Gozzo F. C., D’Alexandri F. L., Merino E. F., del Portillo H. A., Peres V. J., Almeida I. C., Eberlin M. N., Wunderlich G., Wiesner J., Jomaa H., Kimura E. A. and Katzin A. M., J. Biol. Chem., 2004, 279, 51749-51759.
95. Wiesner J., Borrmann S. and Jomaa H., Parasitol. Res., 2003, 90, S71-S76.
96. Hoeffler J. F., Tritsch D., Grosdemange-Billiard C. and Rohmer M., Eur. J. Biochem., 2002, 269, 4446-4457.
97. Argyrou A. and Blanchard J. S., Biochemistry, 2004, 43, 4375-4384.
98. Dumas R., Biou V., Halgand F., Douce R. and Duggleby R. G., Acc. Chem. Res., 2001, 34, 399-408.
99. Proteau P. J., Woo Y. H., Williamson R. T. and Phaosiri C., Org. Lett., 1999, 1, 921.
100. Radykewicz T., Rohdich F., Wungsintaweekul J., Herz S., Kis K., Eisenreich W., Bacher A., Zenk M. H. and Arigoni D., FEBS Lett., 2000, 465, 157-160.
101. Reuter K., Sanderbrand S., Jomaa H., Wiesner J., Steinbrecher I., Beck E., Hintz M., Klebe G. and Stubbs M. T., J. Biol. Chem., 2002, 277, 5378-5384.
102. Yajima S., Nonaka T., Kuzuyama T., Seto H. and Ohsawa K., J. Biochem., 2002, 131, 313317.
103. Yajima S., Hara K., Lino D., Sasaki Y., Kuzuyama T., Ohsawa K. and Seto H., Acta. Crystallogr. Sect. F: Struct. Biol. Cryst. Comm., 2007, 63, 466-470.
104. Steinbacher S., Kaiser, J., Eisenreich W., Huber R., Bacher A. and Rohdich F., J. Biol. Chem., 2003, 278, 18401-18407.
105. Mac Sweeney A., Lange R., Fernandes R. P. M., Schulz, H., Dale G. E., Douangamath A., Proteau P. J. and Oefner C., J. Mol. Biol., 2005, 345, 115-127.
106. Ricagno S., Grolle S., Bringer-Meyer S., Sahm H., Lindqvist Y. and Schneider G., Biochim. Biophys. Act., 2004, 37-44.
107. Henriksson L. M., Unge T., Carlsson J., Aqvist J., Mowbray S. L. and Jones T. A., J. Biol. Chem., 2007, 282, 19905-19916.
108. Osipiuk J., Mulligan R., Stam J., Anderson W.F. and Joachimiak A., 2002, http://www.rcsb.org/pdb/results/results.do?outformat=\&qrid=43631711\&tabtoshow $=$ Current. (Accessed on January 5, 2011).
109. Takenoya M., Ohtaki A., Noguchi K., Endo K., Sasaki Y., Ohsawa K., Yajima S. and Yohda M., J. Struct. Biol., 2010, 170, 532-539.
110. Singh N., Cheve G., Avery M. A. and McCurdy C. R., J. Chem. Inf. Model., 2006, 46, 1360-1370.
111. Goble J. L., Adendorff M. R., de Beer T. A. P., Stephens L. L. and Blatch G. L., Protein Pept. Lett., 2010, 17, 109-120.
112. Kuzuyama T., Takahashi S., Takagi M. and Seto H. J., Biol. Chem., 2000, 275, 1992819932.
113. Silber K., Heidler P., Kurz T. and Klebe G., J. Med. Chem., 2005, 48, 3547-3563.
114. Proteau P., J. Bioorg. Chem., 2004, 32, 483-493.
115. Kuzuyama T., Shimizu T., Takahashi S. and Seto H., Tetrahedron Lett., 1998, 39, 79137916.
116. Jomaa H., Wiesner J., Sanderbrand S., Altincicek B., Weidemeyer C., Hintz M., Turbachova I., Eberl M., Zeidler J., Lichtenthaler H. K., Soldati D. and Beck E., Science, 1999, 285, 1573-1576.
117. Reichenberg A., Wiesner J., Weidemeyer C., Dreiseidler E., Sanderbrand S., Altincicek B., Beck E., Schlitzer M. and Jomaa H., Bioorg. Med. Chem. Lett., 2001, 11, 833-835.
118. Ortmann R., Wiesner J., Reichenberg A., Henschker D., Beck E., Jomaa H. and Schlitzer M., Bioorg. Med. Chem. Lett., 2003, 13, 2163-2166.
119. Ortmann R., Wiesner J., Reichenberg A., Henschker D., Beck E., Jomaa H. and Schlitzer M., Arch. Pharm. Chem. Life Sci., 2005, 338, 305-314.
120. Yajima S., Hara K., Sanders J. M., Yin F., Ohsawa K., Wiesner J., Jomaa H. and Oldfield E., J. Am. Chem. Soc., 2004, 126, 35, 10824-10825.
121. Woo Y. H., Fernandes R. P. and Proteau P. J., Bioorg. Med. Chem., 2006, 14, 2375-85.
122. Deng, L., Sundriyal S., Rubio V., Shi Z. and Song Y., J. Med. Chem., 2009, 52, 6539-6542.
123. Devreux V., Wiesner, J., Van Der Eycken J., Jomaa H. and Van Calenbergh S., Bioorg. Med. Chem. Lett., 2007, 17, 4920-4923.
124. Devreux V., Wiesner J., Jomaa H., Rozenski J., Van Der Eycken J. and Van Calenbergh S., J. Org. Chem., 2007, 72, 3783-3789.
125. Devreux V., Wiesner J., Goeman J. L., Van Der Eycken J., Jomaa H. and Van Calenbergh S., J. Med. Chem., 2006, 49, 2656-2660.
126. Verbrugghen T., Cos P., Maes L. and Van Calenbergh S., J. Med. Chem., 2010, 53, 53425346.
127. Giessmann D., Heidler P., Haemers T., Van Calenbergh S., Reichenberg A., Jomaa H., Weidemeyer C., Sanderbrand S., Wiesner J. and Link A., Chem. Biodiversity, 2008, 5, 643-656.
128. Perruchon J., Ortmann R., Altenkamper M., Silber K., Wiesner J., Jomaa H., Klebe G. and Schlitzer M., ChemMedChem, 2008, 3, 1232-1241.
129. Conibear A. C., Synthesis and Evaluation of Novel Inhibitors of 1-Deoxy-D-xylulose-5phosphate Reductoisomerase as Potential Antimalarials, MSc. Thesis, Rhodes University, Grahamstown, 2010.
130. Merckle L., de Andres-Gomez A., Dick B., Cox R. J., Godfrey C. R., ChemBiochem, 2005, 6, 1866-74.
131. Kuntz L., Tritsch D., Grosdemange-Billiard C., Hemmerlin A., Willem A., Bach T. J. and Rohmer M., Biochem. J., 2005, 386, 127-135.
132. Kurz T., Geffken D. and Wackendorff C., Z. Naturforsch., 2003, 58, 457-461.
133. Kurz, T., Geffken D. and Wackendorff C., Z. Naturforsch., 2003, 58, 106-110.
134. Behrendt C.T., Kunfermann A., Illarionova V., Matheeussen A., Grawert T., Groll M., Rohdich F., Bacher A., Eisenreich W., Fischer M., Maes L. and Kurz T., ChemMedChem, 2010, 5, 1673-1676.
135. Hoeffler J.F., Tritsch D., Grosdemange-Billiard C. and Rohmer M., Eur. J. Biochem., 2002, 269, 4446-4457.
136. Walker J.R. and Poulter C.D., J. Org. Chem., 2005, 70, 9955-9959.
137. Fox D.T. and Poulter C.D., J. Org. Chem., 2005, 70, 1978-1985.
138. Herforth C., Wiesner J., Heidler P., Sanderbrand S., Van Calenbergh S., Jomaa H. and Link A., Bioorg. Med. Chem., 2004, 12, 755-762.
139. Salisu S. T., ATP Mimics as Glutamine Synthetase Inhibitors - an Exploratory Synthetic Study., PhD Thesis, Rhodes University, Grahamstown, 2008.
140. Gxoyiya B. S. B., Synthetic, Spectrometric and Computer Modelling Studies of Novel ATP Analogues., PhD Thesis, Rhodes University, Grahamstown, 2007.
141. Mutorwa M., Salisu S., Blatch G. L., Kenyon C., Kaye P. T., Synth. Commun., 2009, 39, 2723-2736.
142. Bodill T., Conibear A. C., Blatch G. L., Lobb K. A., Kaye P. K., Bioorg. Med. Chem., 2011, 19, 1321-1327.
143. Furniss B., Hannaford A., Smith P. and Tatchell A., Vogel's Textbook of Practical Organic Chemistry, Longman, London, 1989, pp. 926-927.
144. Smith M.B. and March J., March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Wiley \& Sons, New York, 2001, pp. 934-998.
145. Djerassi C., Chem. Rev., 1948, 43, 271-314.
146. Arbuzov B. A., Pure Appl. Chem., 1964, 9, 307-353.
147. Bhattacharya A. K. and Thyagarajan G., Chem. Rev., 1981, 81, 415-430.
148. Landuer S. R. and Rydon H. N., J. Chem. Soc., 1953, 2224.
149. Behrendt C.T., Kunfermann A., Illarionova V., Matheeussen A., Grawert T., Groll M., Rohdich F., Bacher A., Eisenreich W., Fischer M., Maes L. and Kurz T., ChemMedChem, 2010, 5, 1673-1676.
150. Haces A., Breitman T. and Driscoll J.S., J. Med. Chem., 1987, 30, 405-409.
151. Solladie-Cavallo A. and Bencheqroun M., J. Org. Chem., 1992, 57, 5831-5834.
152. Zradni F.Z., Hamelin J. and Derdour A., Synth. Commun., 2002, 32, 3525-3531.
153. Marsh J., Advanced Organic Chemistry, $3^{\text {rd }}$, J. Wiley and Sons, New York, 1985, pp. 385.
154. Bruckner R., Advanced Organic Chemistry: Reaction mechanisms, Elsevier, New York, 2002, pp. 224-244.
155. Basha A., Lipton M. and Weinreb M., Tetrahedron Lett., 1977, 48, 4171-4174.
156. Wang W. B. and Roskamp E. J., J. Org. Chem., 1992, 57, 6101-6103.
157. Jang D. O., Park D. J. and Kim J., Tetrahedron Lett., 1999, 40, 5323-5326.
158. Villeneuve G. B. and Chan T. H., Tetrahedron Lett., 1997, 38, 6489-6492.
159. Antell M. F. In The Chemistry of Acyl Halides., Patai S., Ed., InterScience, London, 1972, pp. 35-68.
160. Bruckner R., Organic Mechanisms: Reactions, Stereochemistry and Synthesis, Springer, Berlin, 2007, pp. 274-282.
161. Alder R. W., Bowman P. S., Steele W. R. and Winterman D. R., J. Chem. Soc., Chem. Commun., 1968, 724.
162. Rose N. R., Synthesis of Novel Coumarin Derivatives as Potential Inhibitors of HIV-1 Protease., MSc. Thesis, Rhodes University, Grahamstown, 2006.
163. Izdebski J., Pachulska M. and Orowska A., Int. J. Peptide Protein Res., 1994, 44, 414.
164. Moroder L., Gemeiner M., Goehring W., Jaeger E., Thamm P. and Wunsch E., Biopolymers, 1981, 20, 17.
165. Woodman E. K., Chaffey J. G., Hopes P. A., Hose D. R. and Gilday J. P., Organic process Research and Development, 2009, 13, 106-113.
166. Nakajima N. and Ikada Y., Bioconjugate Chem., 1995, 6, 123-130.
167. Fatiadi A. J., Synthesis, 1987, 85.
168. Kolb H. C., Van Nieuwenhze M. S. and Sharpless K. B., Chem. Rev., 1994, 94, 24832547.
169. Wilson C. V., Org. React., 1950, 9, 350. b) Woodward R. B. and Brutcher F. V., J. Am. Chem. Soc., 1958, 80, 209.
170. Plietker B., Niggemann M. and Pollrich A., Org. Biomol. Chem., 2004, 2, 1116.
171. Plietker B. and Niggemann M., J. Org. Chem., 2005, 7, 2402.
172. Plietker B., Organic Lett., 2004, 6, 289-291.
173. Krise J. P. and Stella V. J., Adv. Drug Deliv. Rev., 1996, 19, 287-310.
174. Salomon C. J. and Breuer E., Tetrahedron Lett., 1995, 36, 6759-6760.
175. Kumar G. D., Saenz D., Lokesh G. L. and Natarajan A., Tetrahedron Lett., 2006, 47, 6281-6284.
176. Tanner D. C., Over-expression, Purification and Biochemical Characterization of DOXP Reductoisomerase and The Rational Design of Novel Anti-malarial drugs., MSc. Thesis, Rhodes University, Grahamstown, 2003.
177. Belen'kii L. I., Kim T. G., Suslov I. A. and Chuvylkin N. D., Arkivoc, 2003, 15, 59-67.
178. Kutney J. P., Hanssen H. W. and Nair G. V., Tetrahedron, 1971, 27, 3323-3330.
179. Pechkin A. A., Elchaninov M. M., Lukyanov B. S. and Alekseenko Y. S., Chemistry of Heterocyclic Compounds, 2004, 40, 599-602.
180. Thomas A. D., Asokan J. and Asokan C. V., Tetrahedron, 2004, 60, 5069-5076.
181. Rai L. M. K., Musad E. A., Jagadish R. L. and Shivakumar K. N., Synth. Commun., 2011, 41, 953-955.
182. Sarvari H. M. and Sharghi H., Helv. Chim. Acta., 2005, 88, 2282-2287.
183. Linda P. and Marino G., Tetrahedron, 1967, 23, 1739-1743.
184. Ciranni G., Tetrahedron Lett., 1971, 41, 3833-3836.
185. Hartough H. D. and Kosak A. I., J. Am. Chem. Soc., 1947, 69, 1012.
186. Hartough H. D. and Kosak A. I., J. Am. Chem. Soc., 1946, 68, 2639.
187. Pearson D. E. and Buehler C. A., Synthesis, 1972, 533-542.
188. Farrar M. W. and Levine R., J. Am. Chem. Soc., 1950, 72, 4433-4436.
189. He F., Wu H., Chen J. and Su W., Synth. Commun., 2008, 38, 255-264.
190. Clementi S., Linda P. and Vergoni M., Tetrahedron, 1971, 27, 4667-4672.
191. Stumpp M. C. and Schmidt R. R., Tetrahedron, 1986, 42, 5941-5948.
192. Pragnacharyulu P. V. and Abushanab E., Tetrahedron Lett., 1995, 36, 5507-5510.
193. Nguyen C., Kasinathan G., Leal-Cortijo I., Musso-Buendia A., Kaiser M., Brun R., RuizPe'rez L. M., Johansson N. G., Gonza'lez-Pacanowska D. and Gilbert I. H., J. Med. Chem., 2005, 48, 5942-5954.
194. Srinivas O., Radhika S., Bandaru N. M., Nadimpalli S. K. and Jayaraman N., Org. Biolmol. Chem., 2005, 3, 4252-4257.
195. Ren R. X. and Ou W., Tetrahedron Lett., 2001, 42, 8445-8446.
196. Damljanovic I., Vukicevic M. and Vukicevic R. D., Monatsh. Fur. Chem., 2006, 137, 301305.
197. Kad G.L., Bhandari M., Kaur J., Rathee R., Singh J., Green Chem., 2001, 3, 275.
198. a) Barton D. H. R., Fernandez I., Richard C. S. and Zard S., Tetrahedron, 1987, 43, 551 b) Albanese D., Landini D. and Penso M., Synthesis, 1990, 333 c) Kizil M. and Murphy J. A., Tetrahedron, 1997, 53, 16847.
199. Zwierzak A., Synthesis, 1982, 11, 920-922.
200. Kuzuyama T., Shimizu T., Takahashi S. and Seto H., Tetrahedron Lett., 1998, 39, 79137916.
201. Hemmi K., Takeno H., Hashimoto M. and Kayima T., Chemical and Pharmaceutical Bulletin., 1981, 29, 646-650.
202. Fokin A. A., Yurchenko A. G., Rodionov V. N., Gunchenko P. A., Yurchenko R. I., Reichenberg A., Wiesner J., Hintz M., Jomaa H. and Schreiner P. R., Org. Lett., 2007, 9, 4379-4382.
203. Brahmachari G. and Laskar S., Tetrahedron Lett., 2010, 51, 2319-2322.
204. Rahman M., Kundu D., Hajra A. and Majee A., Tetrahedron, 2010, 51, 2896-2899.
205. Mayer M. and Meyer B., Angew. Chem. Int. Ed., 1999, 38, 1784-1788.
206. Marchioro C., Davalli S., Provera S., Heller M., Ross A. and Senn H., Experiments in NMR Based Screening. In BioNMR in Drug Research, Zerbe O., Ed.; Wiley-VCH: Weinheim, 2003, Vol. 16, pp. 321-339.
207. Ortmann R., Wiesner J., Silber K., Klebe G., Jomaa H. and Schlitzer M., Arch. Pharm., 2007, 340, 483-490.
208. Goble J. L., The Druggable Anti-malarial target 1-deoxy-D-xylulose-5-phosphate Reductoisomerase: Purification, Kinetic Characterisation and Inhibition Studies, PhD. Thesis, Rhodes University, Grahamstown, 2011. b) Umeda T., Tanaka N., Kusakabe Y., Nakanishi M., Kitade Y. and Nakamura K. T., Scientific Reports, 2011, 1(9), 1-9.
209. Ji, Z., Yao Z. and Liu M., Anal. Biochem., 2009, 385, 380-382.
210. Mayer M. and James T. L., J. Am. Chem. Soc., 2002, 124, 13376-13377.
211. Bodill T., Bioassay Technician, Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 2010.
212. Wiesner J., Ortmann R., Jomaa H. and Schlitzer M., Arch. Pharm., 2007, 340, 667-669.
213. Cerius ${ }^{2}$, Version 4.10 L revision 05.0708; Accelrys Inc., Taipei Hsien, 1997.
214. Gaussian 03, Revision E.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr. J. A., Vreven T., Kudin K. N., Burant J.C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P.Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian Inc.: Wallingford, CT, 2004.
215. Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K. and Olson A. J., J. Comput. Chem., 1998, 19, 1639-1662.
216. Tao P. and Lai L., J. Comput.-Aided Mol. Des., 2001, 15, 429-446.
217. Kim R. and Skolnick J., Journal of Computational Chemistry, 2008, 29, 1316-1331.
218. Reynolds C. H., Tounge B. A. and Bembenek S. D., J. Med. Chem., 2008, 51, 2432-2438.
219. Reynolds C. H., Tounge B. A. and Bembenek S. D., Drug Discovery Today, 2009, 14, 278283.
220. Discovery Studio Visualizer, Release 2.0, Accelrys Software Inc., San Diego, 2007.
221. Perrin D. D. and Armarego W. L. F., Purification of Laboratory Chemicals, Pergamon Press, Oxford, $3^{\text {rd }}$ ed., 1988.
222. Todd D., J. Am. Chem. Soc., 1953, 75, 1895-1900.
223. Lee S. H., Heterocycl. Commun., 2005, 11, 407-410.
224. Piffl M., Weston J. and Anders E., Eur. J. Org. Chem., 2000, 2851-2859.
225. Wotiz J. H., J. Am. Chem. Soc., 1953, 75, 6342-6343.
226. Snyder H. R., J. Am. Chem. Soc., 1954, 76, 33-35.
227. Nitsche F., Aumann R. and Frohlich R., J. Organomet. Chem., 2007, 692, 2971-2989.
228. Caramella P., Reami D., Falzoni M. and Quadrelli P., Tetrahedron, 1999, 55, 7027-7044.
229. Ulrich J. and Vay P. M., Chimie Analytique., 1966, 48, 549-554.
230. Bocelli G., Chiusoli G. P., Costa M. and Michelotti M., J. Chem. Soc., Perkin Trans. I., 1994, 1347-1357.
231. De Kimpe N., D'Hondt L. and Moens L., Tetrahedron, 1992, 48, 3183-3208.
232. Kubota T., Miyashita S., Kitazume T. and Ishikawa N., J. Org. Chem., 1980, 45, 50525057.
233. Sakuma S. and Miyaura N., J. Org. Chem., 2001, 66, 8944-8946.
234. Terao Y., Kametani Y., Wakui H., Satoh T., Miura M. and Nomura M., Tetrahedron, 2001, 57, 5967-5974.
235. Eriksson J., Aberg O. and Langstrom B., Eur. J. Org. Chem., 2007, 455-461.
236. Matovic N. J., Hayes P. Y., Penman K., Lehmann R. P. and De Voss J. J., J. Org. Chem., 2011, 76, 4467-4481.
237. Piffl M., Weston J. and Anders E., Eur. J. Org. Chem., 2000, 2851-2859.
238. Murugesan S., Ganguly S. and Maga G., J. Chem. Sci., 2010, 122, 169-176.
239. Perrone R., Berardi F., Colabufo N. A., Leopoldo M. and Tortorella V., J. Med. Chem., 2000, 43, 270-277.
240. Shelke S. M., Bhosale S. H. and Mahadik K. R., Pharma Chemica, 2010, 2, 169-177.
241. Bang-Andersen B., Sams A. G. and Larsen K., PCT Int., Appl., WO 2009106534 (A1), 2009.
242. Gaind K. N., J. Ind. Chem. Soc., 1946, 23, 9-12.
243. Meth-Cohn O., Rhouati S., Tarnowski B. and Robinson A., J. Chem. Soc. Perkin Trans. I., 1981, 1537-1543.
244. Jart A. and Lundt I., Acta. Chem. Scand., 1966, 19, 2404-2408.
245. Lombardo C. M., Martinez I. S., Haider S., Gabelica V., De Pauw E., Moses J. E. and Neidle S., Chem. Commun., 2010, 46, 9116-9118.
246. Cziaky Z. and Sebok P., J. Heterocycl. Chem., 1994, 31, 701-705.
247. Mabire D., Coupa S., Adelinet C., Poncelet A., Simonnet Y., Venet M., Wouters R., Lesage A. S. J., Van Beijsterveldt L. and Bischoff F., J. Med. Chem., 2005, 48, 2134-2153.
248. Bures E., Nieman J. A., Yu S., Spinazze P. G., Bontront J. P. J., Hunt I. R., Rauk A. and Keay B. A., J. Org. Chem., 1997, 62, 8750-8759.
249. Li Z. and Ganesan A., Synlett, 1998, 4, 405-406.
250. Takimiya K., Aso Y., Otsubo T. and Ogura F., Chem. Express., 1992, 7, 865-868.
251. Kayima T., Hemmi K., Takeno H. and Hashimoto M., Tetrahedron Lett., 1980, 21, 95-98.
252. Kayima T., Hemmi K., Takeno H. and Hashimoto M., US patent., US 4206156 A 1980 0603, 1980.

[^0]: ${ }^{\text {a }}$ Modelled as mono-deprotonated species.

[^1]: ${ }^{\ddagger}$ Upon completion of this study, the PfDXR crystal structure has been published by Tanaka et al. ${ }^{208 b}$

[^2]: ${ }^{\ddagger}$ Product was stored under N_{2} at $\mathrm{O}-2^{\circ} \mathrm{C}$.

[^3]: ${ }^{\ddagger}$ Product isolated as a racemic mixture.

[^4]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^5]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^6]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^7]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^8]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^9]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^10]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^11]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

[^12]: ${ }^{\ddagger}$ Product isolated as racemic mixture.

