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ABSTRACT 

Diabetes mellitus (DM) is a life changing disease which affects a large portion of the 

population and the economy through high medical costs and loss of productivity. 

Marrubiin (MAR), a diterpenoid isolated from Leonotis leonurus, a plant indigenous 

to Southern Africa, is used by traditional healers to alleviate DM symptoms. This 

study aims to screen the inhibitory potential of MAR and MAR derivatives on PTP1β 

and glucose uptake properties of Chang liver, C2C12 and 3T3-L1 cells. 

Marrubiin and 19 of its derivatives were tested to determine the inhibition constants 

for PTP1β. A Ki of 21 μM and 0.047 μM was detected for oleanolic acid in silico and 

in vitro, respectively. All other diterpene derivatives did not display substantial levels 

of inhibition of PTP1β. 

Treatment of Chang liver cells with the various MAR derivatives (10 μM) did not 

significantly increase glucose uptake beyond metformin, a known antidiabetic drug. 

The various treatments showed a protective/proliferative effect on the C2C12 muscle 

cells with two MAR treatments (DC16 and DC18) significantly increasing glucose 

uptake as compared to metformin in C2C12 muscle cells. It was noted that DC17, 

DC18 and MAR significantly increased glucose uptake in 3T3-L1 adipocytes, relative 

to the control. Contrary to cytotoxicity studies with Chang liver and C2C12 muscle 

cells, adipocytes displayed no cytotoxicity to treatments while a significant increase 

in cell viability was seen for DC9 and DC15. To unravel the mechanism of action, 

Western blotting analysis was completed and an increased expression of PTP1β 

was observed for treatments with DC17 and DC6 was seen in adipocytes, while 

DC18 and metformin decreased expression significantly. This correlated with a 

significant decrease of Ser 612 phosphorylation of insulin receptor substrate (IRS1) 

for DC17. Real time qPCR of IRS1 and GLUT4 highlighted that DC17 and MAR were 

able to significantly increase expression of IRS1 and GLUT4, respectively. 

The results show that MAR and the selected derivatives (DC6, DC17, DC18) have 

been found to increase glucose uptake in peripheral tissue types with IRS1, GLUT4 

and PTP1β being associated with the mechanism of action. However, a complete 

understanding of the mechanisms is yet to be established.  

Keywords: Marrubiin, L. leonurus, PTP1β, 3T3-L1, Autodock, diabetes mellitus 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1. GLOBAL DISTRIBUTION OF DIABETES MELLITUS 

Noncommunicable diseases (NCD) such as Diabetes mellitus (DM) pose a 

phenomenal threat to the world’s population. DM is a condition whereby glucose 

is not efficiently absorbed into relevant tissues such as fat, muscle and liver. DM 

directly translated means sweet urine, due to high amounts of the blood glucose 

being excreted in the urine (Sowattanangoon et al., 2009). It is associated 

predominantly with the hormone insulin, secreted by the pancreas, to control 

glucose homeostasis in the body. There are two main types of DM, type 1 DM 

(T1DM) and type 2 DM (T2DM) (http://www.idf.org/types-diabetes). T1DM, or 

insulin dependent DM (IDDM), is found chiefly in younger individuals and is 

caused by insufficient amounts of insulin being secreted by the pancreas. T2DM, 

or non-insulin dependent DM (NIDDM), is found mainly in older individuals and 

has been linked to obesity (Boura-Halfon and Zick, 2009). T2DM is characterized 

by the inefficiency of target tissues in the body to recognize the insulin signal 

which is present after a meal (i.e. a high blood glucose concentration) (Boura-

Halfon and Zick, 2009). 

 

Figure 1.1: A global atlas illustrating the prevalence of DM for 2011. The intensity of green 

coloration illustrates the approximate population of DM sufferers in a specific country 

(http://www.idf.org/atlasmap/atlasmap). 
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The 5th edition of the International Diabetes Federation’s (IDF) diabetes atlas was 

released in 2011 with figures which suggest that immediate action is imperative 

as the incidence rate of DM is on the increase globally (figure 1.1). The article 

states that the population of DM sufferers will increase from 366 million in 2011 

to 552 million in 2030 and that currently 183 million people are not even aware 

that they are living with DM (IDF, 2011). Although 78 000 children are diagnosed 

with DM annually, the age group between 40 and 59 years of age hold the 

highest percentage of diagnosed diabetics (IDF, 2011). Unfortunately the leaders 

of many countries still underestimate the prevalence of DM as well as the 

importance of DM research, treatment and detection. This essentially leads to an 

ever increasing prevalence, and this is most relevant in developing countries 

which place most of their attention on the issue of infectious diseases (e.g. 

HIV/AIDS and malaria). However diabetes is expected to increase by 90% in the 

next 18 years (IDF, 2011). Currently there are an estimated 78% of people in 

Africa which have not been diagnosed (IDF, 2011). The IDF has declared the 

17th November as ‘international diabetes day’ and have addressed many heads 

of state about the ongoing concern of DM. Through this act, the IDF has brought 

to light the severity of the disease allowing for world leaders to recognize the 

impact of DM on the world (IDF, 2011). 

Prevalence of DM and associated diseases like cardiovascular diseases, 

thrombosis, tuberculosis, immunodeficiency and several others affects the 

economy negatively (Amin et al., 2012; Bitzur, 2011). The cost of DM treatment, 

indirect medical treatment and work loss due to illness and/or disability results in 

the inability of diagnosed workers to care for themselves financially in the form of 

medical treatment while loss in working days also dramatically affects the 

economy. Developing countries, including South Africa, are expected to be 

affected more by the expected increase in DM due to the rapid lifestyle change of 

rural individuals (www.diabetessa.co.za). Global costs were estimated to be 

approximately $1 274 per person and $499 billion in total in 2011 

(http://www.idf.org/diabetesatlas/5e/healthcare-expenditures). In 2010 South 

http://www.idf.org/diabetesatlas/5e/healthcare-expenditures
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Africa had spent $674.06 per diabetic patient and $1.5 million for direct DM care 

which represents 7% of the annual heath care expenditure (Zhang et al., 2010). 

Over and above the high cost of conventional therapy, the marketed treatment 

has harsh side-effects and potential mortality. The global statistics for DM 

portrays a disturbing picture and presents a need to educate global citizens 

regardless of geographic or economic status. On-going research into potential 

treatments should be encouraged to determine why certain areas are more 

affected than others and allow for strategies to be implemented, counteracting 

the onset of DM.  

 

1.2. DM METABOLIC CHARACTERISTICS 

The relevant tissues associated with DM include those directly affected by insulin 

as well as those indirectly affected due to the increase in blood glucose. Tissues 

which play a part in T2DM are those known to store glucose as fat or glycogen or 

use the glucose rapidly (thereby regulating blood glucose homeostasis). Tissues 

having a high demand for energy include adipocytes, myocytes and hepatocytes 

(Novack, 2010). Pancreatic tissue contains α- and β-cells situated in the islets of 

Langerhans from which the hormones glucagon and insulin are secreted, 

respectively. In T1DM, the pancreatic β-cells malfunction, causing decreased 

insulin secretion (Rorsman et al., 2000). In T2DM, insulin secretion is also 

impaired as a result of decreased β-cell mass; however the target peripheral 

tissues fail to recognise the insulin secreted and therefore do not elicit a 

response to the high extracellular glucose (Ahren, 2005).  

Some tissues and systems in the body are indirectly and adversely affected by 

DM such as blood coagulation and the immune system. Thrombocytes are 

involved in blood coagulation in response to injury. Individuals with DM are 

known to be in a “hypercoagulable state”. These individuals lack the ability to 

breakdown the clots which are formed, and thus suffer from thrombosis (Carr, 

2001). As a result of thrombosis, blood circulation may be affected resulting in 
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many DM patients often requiring amputation of certain body parts (Meltzer et al., 

2002). People suffering from DM have a weakened immune system and thus 

offers little resistance to bacterial infection as well as defective gingival epithelial 

cells which together increases the risk and progression of periodontal disease 

(Silva et al., 2008). Due to the suppressive effect of DM on the immune system, 

tuberculosis was shown to be related to DM acquisition as there is a proportional 

increase in the risk of acquiring tuberculosis with DM progress (Baker et al., 

2012). 

Understanding the insulin signalling cascades, which differ in the pancreatic, 

adipocyte, myocyte and hepatocyte cell types, allows investigators to identify 

possible causes of DM and targets for DM therapy. These are discussed in the 

section 1.3. 

 

1.3. INSULIN SIGNALLING CASCADES 

1.3.1. PANCREATIC β-CELLS 

Insulin secretory cells or β-cells are found in the Islets of Langerhans in the 

pancreas and function based on an electrochemical potential which exists 

between the extracellular and intracellular environment (Saltiel and Kahn, 2001). 

Human basal glucose concentration ranges from 4 to 7 mM and after a meal can 

reach 10 mM which triggers insulin secretion. Glucose levels are governed by the 

tight regulation between intestinal glucose uptake and secretion by liver cells and 

metabolism in other tissues like fat and muscle (Kulkarni et al., 1999; Saltiel and 

Kahn, 2001). Hyperglycaemia triggers the β-cells to undergo depolarisation from 

its normal resting electrical potential which is -70 mV (Rorsman et al., 2000). Ion 

channels are responsible for the creation of an electrical potential via two ion 

channels, namely the voltage-gated L-type calcium (Ca2+) ion channel and the 

ATP-regulated potassium ion channel (KATP) (Rorsman et al., 2000). 
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Initially the presence of glucose in the extracellular environment is increased and 

is then transported into the β-cells by the glucose transporter membrane proteins 

2 (GLUT2) (figure 1.2). Influx of glucose causes an increase in glucose 

metabolism resulting in an increase in the ATP/ADP ratio which directly closes 

the KATP channels resulting in depolarisation of the cell (Henquin, 2000). At basal 

levels of glucose concentration, the KATP channels are open and cause the 

continuous outflow of K+, resulting in the negatively charged intracellular 

environment. As depolarisation is accomplished, the Ca2+ ion channels are 

activated and opened, allowing an influx of Ca2+ in an oscillatory manner 

continually changing the concentration of Ca2+ in the β-cells (Henquin, 2000). The 

means to which Ca2+ causes insulin release is still vague though Ca2+ is known 

to be the key regulator if insulin secretion (Gustavsson et al., 2010). 

 

Figure 1.2: A schematic diagram illustrating the mechanism of insulin release from β-cells 

due to glucose metabolism (Henquin, 2000). (ATP=adenosine triphosphate, 

ADP=adenosine diphosphate) 

Insulin secretion follows a biphasic pattern, where the first phase of secretion is 

disrupted in T2DM while the second phase is functional. This is an early and 

detectable sign of T2DM onset. β-cell insulin receptor (IR) knockout mice 

illustrate phenotypic changes similar to that of an individual who has an early 
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onset of T2DM as there is a loss in first phase insulin secretion due to glucose 

and sustained insulin secretion in the presence of arginine (Kulkarni et al., 1999). 

These mice also exhibit a delayed onset to T2DM as with people suffering from 

the early onset of T2DM. This suggests a direct link between β-cell insulin 

signalling and the onset of T2DM (Kulkarni et al., 1999). 

Within the β-cells, vesicles containing insulin are found in two pools, the readily 

releasable pool which is ready to be excreted from the cell and granules which 

are yet to be modified and mobilised to the readily releasable pool. 

Approximately 13 000 of these granules are found in each cell but only 5% are 

readily available for excretion at the initiation of insulin secretion. Straub and 

Sharp (2002) refers to the two stages of insulin secretion as the KATP-channel 

dependent and independent pathways. Pancreatic malfunction in T2DM is 

characterised by the fact that glucose is not metabolised fully and ends at the 

first enzymatic conversion of glucose to glucose-6-phosphate which is ATP 

dependant causing a decrease in the ATP/ADP ratio. KATP channels remain open 

due to the lowering in ATP concentration and depolarisation does not continue as 

it should. Treatment is available in the form of sulfonylurea, for example, which is 

able to keep the ion channel closed even in the absence of glucose (Renstrom et 

al., 2002; Rorsman et al., 2000). 

 

1.3.2. ADIPOCYTES AND MYOCYTES 

Myocytes are the major glucose assimilating tissues in the human body and 

display IR’s on their cell surface for extracellular insulin recognition. Seventy five 

percent of glucose is utilized by muscle cells under the influence of insulin (Saltiel 

and Kahn, 2001). Insulin signals myocytes to enhance glucose uptake from the 

blood either for immediate use or to be converted to glycogen which is stored for 

later use when glucose levels are low. Cross talk between myocytes and 

adipocytes has been found to be of importance in the development of T2DM in 

the obese state. Free fatty acids (saturated fatty acids, i.e. palmate) and 
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adipokine (hormones secreted by adipose tissue) levels are increased in the 

obese state which affects muscle cells by interference with insulin signalling and 

glucose uptake (Taube et al., 2012). In T2DM the cascade shown in figure 1.3 

does not function optimally and may be as a result of several enzymes in the 

signalling cascade.  

 

 

 

 

 

 

 

 

 

Figure 1.3: A schematic diagram showing the insulin signalling cascade in myocytes 

which results in the GLUT4 trafficking to the cell membrane. Three nodes are highlighted: 

A) PI3K-AKT/PKB, B) Cbl/CAP and C) MAPK (Dipl-Pharm and Zierath, 2005). (TC10=Ras 

related GTP binding protein, C3G=Guanine nucleotide-releasing factor 2, Crk=CT10 

regulator of kinase, Cbl=Casitas B-lineage Lymphoma, CAP=Cbl-associated protein, 

Shc=Src homology and collagen protein, Grb2=Growth factor receptor-bound protein 2, 

SOS=Son of sevenless protein, Ras=Rat sarcoma protein, SHP2=Protein tyrosine 

phosphatase nonreceptor-type 11, Gab-1=Grb2-associated-binding protein1). 

There are several essential intermediaries of insulin signalling in the cascade 

which are represented by three criteria: 

1] A group of proteins which are related in structure by gene isoforms and have 

similar biological activity but with unique roles.  

2] Proteins are highly regulated. 

B 

A 

C 
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3] The junction should be an area which acts as a central point for several other 

signalling systems and thus does not cause only one phenotypic response but 

several (Taniguchi et al., 2006a). 

By analysis of the insulin signalling cascade (figure 1.3), it can be seen that there 

are three principle pathways in which the insulin signal is transmitted, the 

Phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway (figure 

1.3A), the Cbl associated protein (Cbl/CAP) (wortmannin insensitive) pathway 

(figure 1.3B), and the MAPK (mitogen-activated protein kinase) pathway (figure 

1.3C). The PI3K-AKT/PKB pathway is mainly responsible for the glucose uptake, 

cell differentiation and growth (thus metabolic actions of insulin signalling), while 

the MAPK pathway is involved with the regulation of gene expression (Taniguchi 

et al., 2006a). The Cbl/CAP pathway is involved in glucose transport through the 

activation of TC10, a GTP-binding protein, and recruitment of the CIP4/Gappex-5 

complex to the cell membrane (Bouran-Halfon and Zick, 2009). When looking at 

the first stages of the insulin signalling pathway with regards to the IR and 

insulin-growth factor 1 receptor (IGF1R) (not show in figure 1.3), these interact 

with about six known substrate proteins (Taniguchi et al., 2006a). These 

substrates can also interact with approximately eight other proteins, which results 

in over 1000 combinations further downstream of the receptors. Of these 

combinations of interactions only three are well defined junctions which have 

been identified namely, the insulin receptor substrate (IRS), PI3K and AKT/PKB. 

Analysis of the insulin signalling cascade allows for the identification of protein 

targets in the cascade which can be considered since several of these proteins 

have already been implicated as the cause of insulin resistance, as they become 

impaired in the obese state associated with diabetes. 
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1.3.2.1. IR 

Insulin signalling begins at the IR which is composed of two extracellular α 

subunits and two intracellular β subunits which are inhibited by the α subunits 

(Saltiel and Kahn, 2001). Subunits form a heterotetrameric complex (α2β2). 

Insulin binds α subunits which causes conformational changes called 

intramolecular transphosphorylation in the intracellular β subunits. β subunits are 

altered predominantly on the activation loop (A-loop) which ranges from residues 

1149-1170 such that Tyr 1162, Tyr 1163 and Tyr 1158 become 

autophosphorylated allowing a 30Ǻ displacement of Tyr 1158 (Hubbard, 1997). 

The end result allows for ATP binding, tyrosine kinase activation of the 

substrates: IRS, Gab-1, p60, Cbl (Casitas B-lineage Lymphoma),  adaptor 

proteins containing PH and SH2 domains (APS) and other proteins which are 

isoforms of Shc have full access to the active site (Pessin and Saltiel, 2000; Dipl-

Pharm and Zierath, 2005; Saltiel and Kahn, 2001). Phosphorylated versions of 

these substrates are known to be activators of proteins which contain the Scr-

homology-2 (SH2) domains.  

In some cases it has been found that it is the IR itself which is impaired due to: 1) 

low expression levels, 2) loss of kinase activity, and 3) the inability to be 

phosphorylated. In some cases of T2DM it was found that there tends to be a 

decrease in IR expression as it is degraded at the protein level or internalised by 

ligand interaction (Taniguchi et al., 2006a). This elicits severe insulin resistance 

as the entire cascade is immobilized. Insulin receptor alleles (INSR) can be 

flawed resulting in familial insulin resistance (Pessin and Saltiel, 2000). There is 

also evidence that IRs may be impaired in people with a T2DM phenotype 

caused by obesity although not in all cases. A small molecule, L-783,281, was 

isolated from the fungus Pseudomassaria spp. which acts as insulin and thereby 

activating impaired IR in a mouse model (Zhang et al., 1999). This finding 

highlighted the potential use of insulin mimetics in diabetic therapy. Recently, a 

review by Patel et al., (2012) had listed a collection of 65 plants which were 
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tested for antidiabetic activity through their insulin mimetic properties. 

Compounds have been isolated from some of these plants which and are now 

used as bioactive drugs. 

 

1.3.2.2. IRS 

There are four known IRS isozymes: IRS1, IRS2, IRS3 and IRS4. In rats the 

IRS3 and IRS4 are more active whereas in humans the IRS1 and IRS2 isozymes 

function and have been mostly studied. In humans IRS3 and IRS4 have been 

found to be predominantly expressed in the adipocytes, brain, and embryonic 

tissues, respectively. IRS proteins have three domains of interest: 1) the 

pleckstrin-homology (PH) domain which is critical for interaction between the IR 

and IRS enabled by plasma membrane lipids, the cytoskeleton and several 

protein elements (Boura-Halfon and Zick, 2009), 2) the phosphotyrosine-binding 

(PTB) domain which allows for adequate binding to IR while also harbouring 

approximately 20 tyrosine residues on the COOH-tail which are able to be 

phosphorylated by IR (Taniguchi et al., 2006a), and 3) the kinase regulatory loop 

binding which is only found on IRS-2 which is necessary for binding to the IR 

(Boura-Halfon and Zick, 2009). IRS is activated by the IR via tyrosine kinase 

phosphorylation which in turn activates PI3K (Dipl-Pharm and Zierath, 2005) 

which occurs on approximately 70 sites of the IRS proteins. Serine 

phosphorylation causes IRS not to interact successfully with PI3K and IR, as well 

as causing an increased rate in IRS degradation (Draznin, 2006). Defects in 

these proteins have been found in skeletal muscle and fat cells in patients with 

T2DM. As expected, repetition of the genes in humans should compensate for 

one of the IRS proteins being inactive (Pessin and Saltiel, 2000; Dipl-Pharm and 

Zierath, 2005). This has only been seen to be true for adipocytes. Thus IRS 

proteins can be targeted for antidiabetic treatment in cells when defective or 

highly down-regulated. 
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1.3.2.3. PI3K 

PI3K has p110 (Phosphatidylinositol 3-kinase 110 kDa catalytic subunit) and p85 

(Phosphatidylinositol 3-kinase 85 kDa regulatory subunit) subunits which are the 

catalytic and regulatory subunits, respectively. There are three types of catalytic 

subunits denoted by p110α, p110β and p110δ which are almost always bound to 

the regulatory subunits as they are easily degraded when free. Unlike the IRS 

proteins, PI3K proteins are all essential for a cell to function and develop properly 

and thus deletion of one of the genes will be detrimental to the cell (Taniguchi et 

al., 2006b). Activation of PI3K is accomplished by activated IRS binding to the 

p85 subunit which up regulates the activity of the p110 catalytic subunit allowing 

PI3K to catalyse the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) 

to phosphatidylinositol 3,4,5-triphosphate (PIP3). Studies have shown that when 

expression of p85 regulatory subunits is increased, the inhibition of p110 occurs 

at a higher rate thus silencing insulin signalling (Dipl-Pharm and Zierath, 2005). 

In rat models where the expression of p85 is silenced, a hypoglycaemic 

phenotype is observed even though PI3K activity is decreased. Considering 

these results it has been proposed that, discovery of a novel p85 expression or 

activity inhibitor will allow for people with T2DM to be more sensitive to insulin 

signalling (Dipl-Pharm and Zierath, 2005). 

 

1.3.2.4. PDK-1, AKT/PKB AND DOWNSTREAM EFFECTORS 

PIP3 lipids are able to recruit proteins which have PH-domains like serine-

threonine kinases. PDK-1(3-phosphoinositide-dependent proteins kinase 1) and 

AKT are two such examples (Dipl-Pharm and Zierath, 2005). Recruitment of 

these proteins causes activation. The most important of these proteins is PDK-1 

which enables activation of AKT/PKB and αPKC’s (Taniguchi et al., 2006b). 

Negative regulation of the insulin signal can be seen at the PIP3 level as proteins 

such as Phosphatase and tensin homolog (PTEN) and Protein tyrosine 

phosphatase, nonreceptor-type II (SHP2) dephosphorylate PIP3 on the 3’ 
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position and the 5’ position, respectively. PTEN, being a negative regulator of the 

insulin cascade, has been found to be regulated by the p85 regulatory subunit of 

PI3K which is also a negative regulator of the insulin cascade (Taniguchi et al., 

2006b). PTEN and SHP2 have been investigated as potential targets for anti-

diabetic research and have shown that when the expression of these 

phosphatases is silenced by siRNA, it causes increased insulin sensitivity in 3T3-

L1 adipocytes (Tang et al., 2005; Taniguchi et al., 2006b).  

PDK-1 and TORC2 (Transducer of CREB protein 2) are able to activate the 

AKT/PKB by Thr 308 and Ser 473 phosphorylation, respectively (Bayascas and 

Alessl, 2005). Substrates of AKT are the glycogen synthase kinase-3 (GSK3) as 

well as AS160 (Akt substrate of 160 kDa) which contains a GTP-activating 

protein (GAP). In AS160 knockout rats, the GLUT4 protein is unable to be 

mobilized to the cell membrane in adipocytes and phosphorylation of AS160 in 

muscle cells allows for an increased response to insulin thus showing a direct 

link through all the proteins mentioned in the cascade (Dipl-Pharm and Zierath, 

2005). GLUT4 trafficking to the cell membrane is dependent on cytoskeletal 

rearrangement which relies on activation of Rab small GTPases by the AS160 

(Taniguchi et al., 2006a). However there are 70 known Rab GTPases. Rab10 

has been discovered to be involved in GLUT4 trafficking as seen in results 

published by Sano et al., (2007). They have illustrated that by upregulating the 

expression of Rab10 in 3T3-L1 cells, GLUT4 trafficking increased on the surface. 

Conversely, they have shown that when Rab10 is silenced in cells, that there is a 

two-fold decrease in GLUT4 trafficking. Other Rabs have also been identified as 

substrates of AS160 and were found to be associated with the GLUT4-containing 

vesicles. These are, Rab2A, Rab8A and Rab14 (Miinea et al., 2005). The FOX 

(forkhead box protein) family of proteins are regulated by AKT/PKB. These are a 

family of over 100 transcription factors which include FOXO1 (Forkhead box 

protein O1), known to increase the expression of gluconeogenic genes in 

hepatocytes while inhibiting adipogenesis. Thus when the insulin signal is 

transmitted, FOXO1 is inhibited by AKT/PKB by phosphorylation of Ser 256 
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(Taniguchi et al., 2006a). Regulation of AKT/PKB is by the action of direct 

dephosphorylation of several enzymes like protein phosphatase-2A and PH-

domain leucine-rich repeat protein phosphatase (Bayascas and Alessl, 2005; 

Taniguchi et al., 2006a). Other proteins like the tribbles-3 binds to the inactive 

form of AKT/PKB and ensure that the protein remains inactive. Tribbles-3 has 

also been identified as a means to improve insulin sensitivity by induction of its 

down regulation (Du et al., 2003). 

 

1.3.2.5. PROTEIN TYROSINE PHOSPHATASE 1 BETA (PTP1β) 

PTP1β is a 435 amino acid base protein (figure 1.4) with a 35 residue C-terminal 

solely devoted to the translocation of the phosphatase to the endoplasmic 

reticulum (ER). Residues 214 to 221 are known as the P-loop (phosphotyrosine 

binding loop/active site). The Tryptophan-Proline-Aspartate (WPD) loop (177 to 

185) consisting of Trp, Pro and Asp and R loop (113 to 118) converges with the 

substrate, allowing for the position of Cys 215 as a nucleophile (Combs, 2010; 

Kumar et al., 2010). Asp 181 acts as an acid catalyst in the mechanism while His 

214 and Asp 221 are also involved (Kumar et al., 2010; Tonks, 2003).  

IR and IRS activities are tightly regulated by protein tyrosine phosphatases 

(PTP’s) and serine phosphorylation (Pederson et al., 2001; Taniguchi et al., 

2006a). Important proteins which are found at this point are the PTP1β and the 

suppressor of cytokine signalling (SOCS) proteins. PTP1β has become the focus 

of antidiabetic research as it was found that when silenced in diabetic rats, a 

noticeable increase in insulin sensitivity results (Klaman et al., 2000). SOCS1 

has been found to be of interest as well, as it has been concluded that this 

protein is up regulated in states such as obesity and lipopolysaccharide-induced 

endotoxemia which are known to be associated with T2DM (Rieusset et al., 

2004). SOCS1 and SOCS3 are now known to cause a decrease in tyrosine 

phosphorylation of IRS proteins as well as initiating IRS degradation via the 

ubiquitin-proteosome pathway (Gual et al., 2005; Ueki et al., 2004). 
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Figure 1.4: The 3-dimentional structure of PTP1β. Several domains are highlighted and 

labelled including the active site (light blue), the WPD loop (dark blue), S- (purple) and R-

loop (green) (Kramerlin et al., 2006). 

Protein tyrosine phosphatases as well as other kinases play an important role in 

regulating cell signalling cascades and there are several different types. These 

can either be activators or inhibitors of certain cellular processes thus highlighting 

their importance in diabetes research as regulators of the insulin signalling 

pathway. Knowledge of phosphatases involved in the insulin signalling pathway 

allows for their manipulation and consequently manipulation and control of the 

specific cell signalling cascades involved. PTP’s are enzymes which catalyse the 

dephosphorylation of proteins and there are more than a 100 PTP isoforms 

active in human cells (Zhang and Zhang, 2007).  

It was found that PTP1β-/- mice became much more sensitive to insulin (Klaman 

et al., 2000; Gum et al., 2003). It was illustrated that increasing PTP1β 

expression levels decreased insulin activity in cell lines while inhibition of PTP1β 

increased activity of insulin signalling (Zhang and Zhang, 2007). PTP1β acts as a 

negative regulator of insulin signalling and therefore PTP1β inhibition allows for 

the signal to remain active for longer periods in targeted cells (figure 1.5). 
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Figure 1.5: Activity of PTP1β showing the phosphatase action on JAK2, IRS and IR (Zhang 

and Zhang, 2007). (IR=Insulin receptor, IRS=Insulin receptor substrate, P=Phosphate, 

PI3K=Phosphatidylinositol 3-kinase, PTP1β=Protein tyrosine phosphatase 1 beta, 

STAT3=Signal transducer and activator of transcription, JAK2=Janus kinase 2). 

PTP1β is expressed ubiquitously in humans and is found on the cytoplasmic side 

of the ER membrane (Zhang and Zhang, 2007). Muscle cells have been 

implicated in T2DM since these absorb 80% of glucose in response to insulin 

signalling. PTP1β was silenced in C2C12 myoblasts and was found to be 

resistant to T2DM induced by the introduction of palmate (Bakhtiyari et al., 2010). 

It was expected that PTP1β inhibition should result in weight gain as glucose 

would be absorbed into adipocytes at a higher rate. However this is not the case 

as these phosphatases are involved with leptin signalling (figure 1.5) (Koren and 

Fantus, 2007). Experiments have shown that PTP1β-/- mice illustrate their 

inability to gain weight and increased insulin sensitivity (Koren and Fantus, 2007; 

Zhang and Zhang, 2007). When active, PTP1β is able to dephosphorylate Janus 

kinase (JAK2) thus inactivating it. When PTP1β is inhibited, JAK2 can activate 

STAT3 which acts as a transcription factor (figure 1.5).  Leptin signalling 

becomes more sensitized as a result, causing increased metabolism of glucose 

and thus is released as energy promoting cell growth and differentiation (Koren 

and Fantus, 2007). This double function of PTP1β is extremely valuable in the 

treatment of diabetes as there is a correlation between obesity and T2DM 

(Montalibet and Kennedy, 2005). 
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Inhibition studies with small molecule inhibitors and PTP1β have been completed 

extensively over the last decade. Downfalls in attempts to create adequate 

PTP1β inhibitors have been hindered by inadequate pharmacokinetic properties. 

PTP’s are subdivided into two categories; the receptor-like PTP’s and 

intracellular PTP’s. PTP1β belongs to the intracellular group and is moved to the 

ER where it conducts its phosphatase activity. Within this group there are many 

subfamilies with similar biological activity but very different biological functions. 

TC-PTP (T-cell protein tyrosine phosphatase) has 74% total sequence similarity 

to PTP1β and 94% similarity with the PTP1β active site; however they have very 

different biological functions (Iversen et al., 2002; Montalibet and Kennedy, 

2005). This was demonstrated in TC-PTP-/- mice which do not live longer than 3-

5 weeks (Iversen et al., 2002), while TC-PTP-/- and PTP1β-/- mice die at day 10 of 

embryonic development (Heinonen et al., 2009). In muscle cells it was found that 

TC-PTP deficiency does not affect glucose homeostasis or insulin signalling 

highlighting a non-redundant role in development, macrophage development and 

insulin signalling (Loh et al., 2012) As a consequence, inhibition of PTP1β has to 

be highly specific (Kramerlin et al., 2006). Essentially, inhibition studies should 

not be confined to active site interactions only, as the active site of this family of 

enzymes tends to be highly conserved. Attention needs to be placed on domains 

like the WPD, R or S-loops which are known to change conformation in 

accordance with p-tyr (phosphotyrosine) binding. 

Many PTP1β inhibitors which exhibit potent inhibition as low as nanomolar (nM) 

range have been discovered. This is partially attributed to the charge difference 

between positively charged PTP1β active sites and the negatively charged small 

molecule inhibitors (Zhang and Zhang, 2007). This creates an issue through their 

bioavailability at PTP1β within cells as these molecules are repelled by the 

hydrophobic cell surface. Advancements were made in the form of pro-drug 

development and generating more lipophilic drugs but have only been partially 

successful (Montalibet and Kennedy, 2005). 
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There has been extensive research completed on PTP1β since the X-ray 

structure was determined in 1994 (Combs, 2010). Analysis of this included 

inhibition assays and in silico docking of potential inhibitory compounds. 

Compounds included biflavonoids, thiophene derivatives, formylchromone 

derivatives, thiazolidinedione derivatives, and many more. (Kim et al., 2007; Lee 

et al., 2008; Bhattarai et al., 2009; Ye et al., 2010). Inhibition of this protein target 

has been documented in several investigations with inhibition constant values as 

low as micromolar and nanomolar range (Combs, 2010). Results are not as 

favourable when effects of the compounds are completed on cell lines as they 

may be cytotoxic and have no in vivo effect based on their pharmacokinetic 

properties. 

 

1.3.3. GLUT4 TRAFFICKING 

The link between GLUT4 and insulin signalling has been under intense 

investigation and has been found to be an intricate network of reactions within 

the cell ultimately organizing subcellular compartments to facilitate GLUT4 

trafficking to the cell surface (Watson and Pessin, 2006). GLUT4 is stored within 

intracellular tubulovesicular structures, vesicles in the cytoplasm and clathrin-

coated pits near the plasma membrane. However most GLUT4 is found within a 

set of biologically distinct vesicles closely related to recycling endosomes and are 

referred to as GLUT4 storage vesicles (GSV) (Leney and Tavare, 2009). GSV’s 

are recycled between the cell surface and the trans-Golgi apparatus but under 

insulin-free conditions, 90% of GLUT4 is found in the trans-Golgi network in 3T3-

L1 cells (Leney and Tavare, 2009).  Besides the PI3K pathway described above, 

there is another pathway called the wortmannin-insensitive pathway which is 

stimulated by insulin signalling (figure 1.3 and 1.6). Mouse Casitas B-lineage 

Lymphoma (c-Cbl) is recruited by APS and CAP to activated IRs’ and 

phosphorylated on tyrosine residues (Leney and Tavare, 2009). Activated c-Cbl 

recruits Crk-like protein (CrkI) and guanine nucleotide-releasing protein (C3G) 
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where C3G activates the GTP binding protein, TC10, which has several 

downstream targets. IR activation via both the wortmannin-insensitive and PI3K 

pathways results in actin rearrangements and PIP3 formation at the plasma 

membrane (Lopez et al., 2009). There has been resounding evidence that the 

Cbl pathway plays a minimal role in GLUT4 translocation which was found by 

siRNA silencing of CAP and Cbl as well as APS knockout mice (Leney and 

Tavare, 2009). This allows for the conclusion that the main player in GLUT4 

translocation should be the PI3K pathway. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: GLUT4 fusion to the plasma membrane is facilitated by several proteins which 

occur in two stages, A) docking and B) fusion (Leney and Tavare, 2009). (AS160=Akt 

substrate of 160 kDa, Rip11=Rab11 interacting protein, RalA=Ras-related protein A, 

P=Phosphate, TC10=Ras related GTP binding protein, SAP97=Synapse-associated protein 

97, C3G=Guanine nucleotide-releasing factor 2, VAMP2=Vesicle associated membrane 

protein 2, Doc2β=Double C2-like domain containing protein beta, Munc18c=Mammalian 

uncoordinated-18, SNAP23=Synaptosomal-Associated protein 23,). 
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AS160 is phosphorylated by PKB which allows for its dissociation from GSV’s 

allowing activation of Rab-GDP and release of Rab11 interacting protein (Rip11). 

Rip11 is then able to bind to acidic phospholipids in the plasma membrane while 

remaining bound to the GSV (Leney and Tavare, 2009). Shown in green in figure 

1.6 is the exocyst complex which assembles in a manner which is not fully 

understood although it is believed that assembly is regulated by TC10 and RalA 

via the wortmannin-insensitive pathway. After docking with the plasma 

membrane, fusion takes place with a specific set of proteins called SNARE 

proteins (VAMP2, SNAP23 and syntaxin4) and Rab-GTPases. As GSVs dock 

with the plasma membrane, VAMP2 associates with syntaxin4 and SNAP23 in a 

coiled structure which allows for the GSV’s and plasma membrane to fuse. 

SNARE proteins have been found to be regulated by insulin signalling via kinase 

activity. In the absence of insulin signalling, Munc18c and Doc2β have been 

found to interact with SNARE proteins inhibiting their function. Phosphorylation of 

these SNARE binding proteins causes their dissociation with their target proteins. 

 

1.3.4. HEPATOCYTES  

With high glucose concentrations, insulin is released and liver cells respond by 

absorbing glucose from the surrounding blood in order to lower the blood glucose 

concentration. This occurs more rapidly in hepatocytes than adipocytes and 

myocytes since hepatocytes house GLUT2 instead of GLUT4 glucose 

transporters (Vaulont et al., 2000). GLUT2 is not recruited to the plasma 

membrane under the influence of insulin as is seen with GLUT4. Instead GLUT2 

expression is upregulated as a result of sterol regulatory element-binding protein 

(SREBP) transcription factor activation during high glucose conditions (Im et al., 

2005). This ensures that a rapid equilibrium is achieved between the blood 

glucose levels and hepatocyte cytoplasmic glucose concentrations (Vaulont et 

al., 2000). Assimilated glucose is stored in the liver cells as glycogen and lipids 

for use when the glucose concentration decreases below the required limit (4 
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mM). Along with glycogen (figure 1.7A) and lipid production, the liver reduces 

glucose release and production through the suppression of gluconeogenesis 

(figure 1.7B). In order for this to be accomplished, the insulin signal is required to 

affect hepatocyte proteins involved in the processes by either activation or 

repression of expression levels (Dipl-Pharm and Zierath, 2005).  

 

 

 

 

 

 

 

 

 

Figure 1.7: A diagram illustrating the signal transduction through a hepatocyte due to the 

activation of the IR by insulin. Enzymes activated by insulin are circled in blue (glycolytic 

and lipid synthesis) while those repressed are circled in red (B) (gluconeogenic) (Dipl-

Pharm and Zierath, 2005). Glycogen synthesis and the nucleus are represented by A and 

C, respectively. (GLUT2=Glucose transporter 2, GK=Glucokinase, G-6-Pase=Glucose-6-

phosphatase, F-1,6-Pase=Fructose-1,6-bisphosphatase, PEPCK=Phosphoenolpyruvate 

carboxykinase, PFK=Phosphofructokinase, PK=Pyruvate kinase, SREBP= Sterol 

regulatory element-binding protein, HNF/FoxA= Hepatocyte nuclear factor/Forkhead box 

protein A, PGC1= Peroxisome proliferator-activated receptor-γ coactivator, ACC=Acetyl-

CoA carboxylase, FAS=Fatty acid synthase, CoA=Coenzyme A). 

Hepatocyte signalling of insulin functions occurs via a phenotypic shift by 

regulation of several processes such as activation of glycogen synthesis and lipid 

synthesis while suppressing gluconeogenesis and glycogenolysis (Michael et al., 

2000). Figure 1.7C shows how the insulin signal reaches proteins in the nucleus 

A 

B 

C 
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(transcription factors: SREBP-1, FOX, PGC1 and HNF), activating them to elicit 

these responses.  

 

1.4. PREADIPOCYE CELL DIFFERENTIATION  

Adipocytes were initially regarded as a mass of tissue with little function in the 

human body (Greenberg and Obin, 2006). This has changed since the discovery 

of leptin more than a decade ago. It is now known as an important tissue which 

should be studied as it is involved in nutrient homeostasis and contributes to the 

development of T2DM (Rosen and MacDougald, 2006). Obese individuals are 

more susceptible to cardiovascular diseases and T2DM as concluded by several 

researchers (Grontved, 2011; Malik et al., 2010). Resistin, tumour necrosis 

factor-α (TNFα), interleukin-6 (IL-6) and peroxisome proliferator-activated 

receptor gamma (PPARγ) have all been implicated as linking adipose tissue to 

the development of T2DM (Dandona et al., 2004; Greenberg and Obin, 2006; 

Spiegelman, 1998; Steppan et al., 2001). 

In figure 1.8 it can be seen that several factors play a part in adipocyte 

differentiation. Insulin triggers the adipogenesis signal transduction via the MAPK 

(A), mTOR (B) and PI3K (C) pathways. Research involving the MAPK pathway 

has been contradictory as it includes extracellular-signal-regulated kinase (ERK) 

which has been found to act as an inducer and repressor of adipogenesis. Early 

experiments involving ERK have shown that it allowed differentiation of 

preadipocytes to adipocytes. Later this was challenged as it was found that ERK 

also phosphorylates the essential transcription factor PPARγ and thus inhibits 

differentiation (Burns and Vanden Huevel, 2007). In later years a better 

understanding of this molecule indicated that the ERK activity in cells was 

regulated through differentiation, which was confirmed as ERK is required in the 

proliferative step (mitotic clonal expansion or MCE) during which time PPARγ 

expression is low. When the differentiating cell has reached the final stages, ERK 

expression is decreased to prevent phosphorylation of PPARγ (Bost et al., 2005). 
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Interestingly it has been shown that as inhibition of ERK1 increases, insulin 

sensitivity is increased.  

ERK1 is known to act as an inhibitor of IRS1 which is essential in transduction of 

the insulin signal. This is accomplished by the serine phosphorylation of IRS1 

and is now known to contribute to insulin resistance in obesity (Bost et al., 2005). 

As shown in figure 1.8 insulin plays a vital role, however, it does so through IGF1 

and not through IR. The final transcription factor which is activated and is 

essential for adipogenesis is PPARγ (Rosen and MacDougald, 2006). 

Figure 1.8: Adipogenesis signal transduction pathway illustrating the external factors 

which allow for the expression of adipocyte genes to be activated. (IGF1=Insulin growth 

factor receptor, IRS=Insulin receptor substrate, PI3K= Phosphatidylinositol 3-kinase, 

AKT/PKB=Protein kinase B, CREB= cAMP response element binding protein, 

mTOR=Mammalian target of rapamycin, cAMP=Cyclic adenosine monophosphate, 

FOXO1/A2= Forkhead box protein O1/A2, GATA2/3= GATA binging protein 2/3, C/EBPα= 

CCAAT-enhancer binding protein, PPARγ= Peroxisome proliferator-activated receptor 

gamma). 

Inhibition of p38 has been shown to decrease the rate of adipogenesis as a result 

of decreased CCAAT-enhancer binding protein (C/EBPα) phosphorylation and a 

lack of its post-translational modification. However, once again the function of 

p38 has been contradictory with several authors describing p38 as an inhibitor of 

adipogenesis as it acts as an activator of adipogenesis inhibitors. In T2DM p38 
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inhibits trafficking of GLUT4 to the cell membrane and thus has been implicated 

as a target of insulin resistance in adipocytes. More investigation is required to 

elucidate the process by which p38 reduces glucose uptake (Bost et al., 2005). 

PPARγ is the end point of all signalling which takes place in preadipocyte 

differentiation (Rosen et al., 1999). When induced this transcription factor can 

cause the differentiation of preadipocytes to adipocytes (Rosen and 

MacDougald, 2006). All external factors which contribute to the differentiation of 

preadipocytes allow for the tight regulation of PPARγ as seen in figure 1.8. 

Insulin signalling is no exception to this as it is known that at three points in the 

signalling route, regulation of insulin signalling occurs. AKT/PKB is the activator 

of PPARγ and does so through activation of cAMP response element binding 

protein (CREB), yet AKT/PKB is also a deactivator of FOXO1/A2, necdin and 

GATA binging protein 2/3 (GATA2/3) as seen in figure 1.8. These are known to 

inhibit the activation of PPARγ thus showing how essential insulin recognition is 

in adipogenesis (Rosen and MacDougald, 2006). 

 

1.5. CURRENT AVAILABLE TREATMENTS FOR DM 

1.5.1. COMMERCIALLY AVAILABLE TREATMENTS 

In order for a patient to counteract the metabolic symptoms of DM, a complete 

change of lifestyle is essential. This includes correcting nutrition and exercise to 

manage weight gain. Numerous medical/pharmaceutical treatments are currently 

prescribed to better control blood glucose levels and the associated metabolic 

symptoms of DM. These can be administered as a single drug or as a cocktail of 

two or more drugs. Unfortunately most of these drugs have harsh side-effects 

and are expensive. In Sub-Saharan Africa DM is severely underestimated, not 

only in terms of morbidity, but also with the medical costs involved (Hall et al., 

2011). A survey was completed indicating the cost per diabetic patient would 
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reach 7% (4 993 394 international dollars) of the national budget annually for 

healthcare in Africa (Hall et al., 2011; Zhang et al., 2010). 

 

1.5.1.1. SULFONYLUREA (SU) 

For insulin to be secreted from β-cells, the KATP channels are closed causing 

depolarisation of the plasma membrane of the β-cells (Henquin, 2000). SU 

influences this process by binding to a protein called sulfonylurea receptor (SUR) 

which is the regulatory subunit of the KATP channel (Gribble et al., 1998). This 

ensures the closure of the KATP channel and thus depolarisation and consequent 

insulin release (Bryan et al., 2005). Another mechanism through which SU acts 

on β-cells occur via interaction with exchange Protein directly affected by cAMP 2 

(Epac2) which is a guanine nucleotide exchange factor for the G protein Rap 

(Gloerich and Bos, 2010; Zhang et al., 2009). This was elucidated through 

fluorescence Resonance Energy Transfer (FRET) and the evidence that SU has 

a diminished effect on insulin secretion in mice lacking Epac2 (Zhang et al., 

2009). Independent of the mechanism, it is known that SU acts as an insulin 

secretagogue with hypoglycaemia often being a side-effect of SU use (Hassan 

Murad et al., 2009). Other side-effects include weight gain which is a result of 

hyperinsulinemia as this condition can increase appetite (LeRoith et al., 2004). 

The binding properties of SU have been investigated and were found to interact 

with KATP channels of other tissues including the brain and cardiac muscle 

(Garratt et al., 1999; Riveline et al., 2003). However clinical studies do not 

correlate any negative effects of SU with cardiovascular dysfunction (LeRoith et 

al., 2004). Other insulin secretagogues have been developed which have a lower 

affinity for heart and skeletal muscle KATP channels (LeRoith et al., 2004). 

Meglitinides such as nateglinide and repaglinide are structurally different from 

SU, but act in the same way as SUR1 and thereby facilitate insulin secretion. 

Meglitinides are generally used for patients with a more erratic lifestyle as these 

provide better control of blood glucose (Hamilton, 2012). This is due to their short 
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half-life and thus allows a shorter time of physiological action decreasing the 

possibility of hypoglycaemia (Scheen, 2007). Nateglinide has been found to have 

a lesser affinity for cardiac muscle KATP channels which is an improvement from 

older insulin secretagogues (Richard and Raskin, 2011). 

 

1.5.1.2. THIAZOLIDINEDIONE (TZD) 

TZDs act by initiating differentiation of preadipocytes to mature adipocytes. 

Adipocytes take up glucose which accumulates as lipids in lipid vacuoles and 

results in a lowering of blood glucose (Rosen and Spiegelman, 2006). TZDs like 

rosiglitazone and pioglitazone act as PPARγ agonists which initiate preadipocyte 

differentiation into adipocytes, thereby enhancing insulin action and sensitization 

(Kahn et al., 2000; Zhang et al., 2007). TZDs are very efficient in reducing blood 

glucose levels but are accompanied by side-effects. Investigations have shown 

the potential of rosiglitazone to decrease bone density (Schwarts, 2008). Studies 

show post-menopausal women using this treatment are considered to be at a 

higher risk of osteoporosis than younger women and men (Fitzpatrick et al., 

2011). Hussein et al., (2004) illustrated that the use of rosiglitazone and 

pioglitazone significantly increase cholesterol levels in patients. On 23rd 

September 2010, the U.S. Food and Drug Administration (FDA) began restricting 

the use and availability of rosiglitazone as a treatment for DM as investigations 

and clinical trials had proven rosiglitazone to be a dangerous oral hypoglycaemic 

drug (http://www.fda.gov/Drugs/DrugSafety). In a study done by Lipscombe et al. 

(2007) which investigated the effects of TZDs on an elder community of 

diabetics, it was concluded that TZDs significantly increased the patient’s risk of 

congestive heart failure and acute myocardial infarction. 

 

 

 

http://www.fda.gov/Drugs/DrugSafety
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1.5.1.3. METFORMIN (MET) 

MET is an insulin sensitizing agent which increases glucose uptake in peripheral 

tissues, especially hepatocytes (Zhang et al., 2009). MET acts by stimulating 

AMPK activation and decreasing glucose-6-phosphatase expression and thereby 

decreasing glucose output from the liver (Ota et al., 2009; Ouyang et al., 2011). 

Unlike TZDs and SU, MET does not cause an increase in body weight when 

administered to patients and acts as an appetite suppressant (Kirplchnikov et al., 

2002).  

The side-effects associated with MET include abdominal pain, flatulence and 

diarrhoea. Due to its effects in the intestine, MET also inhibits vitamin B12 

absorption (Kirplichnikov et al., 2002). The most serious side-effect induced is 

lactic acidosis which is potentially life threatening, but is not a common 

occurrence (Kirplichnikov et al., 2002). 

 

1.5.1.4. INSULIN TREATMENT 

The administration of insulin is used routinely as a treatment for DM alongside 

the use of other anti-hyperglycaemic drugs (Holman et al., 2009). Provision of 

insulin in poorer countries is limited as the national health budgets of these 

countries make substantial provision for infectious diseases such as human 

immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) 

and malaria (Gill et al., 2011). Access to insulin within the rural areas of poorer 

countries is a known issue while the cost of insulin as treatment is an expensive 

means of DM treatment for the general population of third world countries (Gill et 

al., 2011). 
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1.5.2. USE OF LEONOTIS LEONURUS AS A THERAPEUTIC AGENT 

As far back as 1939, MAR and its structure had been investigated (Holis et al., 

1939). MAR has been found in plants belonging to the family Lamiaceae to which 

the shrub L. leonurus belongs (Kenechukwu, 2004). L. leonurus is found 

indigenously in South Africa and has been used for centuries as a medicinal herb 

by the Zulus, Khoi-Khoi, Sothos and Xhosas. It is also known as “wild dagga”, 

“umunyane” and “umfincafincane” to the local South African population 

(Kenechukwu, 2004). It had been documented to be used medicinally for many 

ailments including: influenza, cramps, hypertension, sores, stings and bites. 

(Kenechukwu, 2004). In a survey done by Oyedemi et al., (2009) on the 

traditional South African methods of treatment, 15 plant species were named by 

traditional healers and herbalists. The most common of the species named in the 

survey were Strychnos henningsii and L. leonurus. A second survey completed in 

the Eastern Cape, South Africa, found plants from the family Asteraceae 

comprised 50% of the medicinal plants used for DM treatment (Erasto et al., 

2005). Traditional healers are often consulted in Southern Africa as there is a 

lack of medical resources in the rural areas, as well as the fact that treatment for 

DM is too expensive for the rural population (Oyedemi et al., 2009). Traditional 

healers identify DM by several symptoms including loss of body weight, 

excessive urination, fatigue and sweet urine (Awah et al., 2009). Treatment is 

medium term and ranges between 6 months to one year. Reported results are 

often positive with a decrease in urination and patients becoming more 

energized. There were even reports of complete recovery after the treatment 

without other harmful side-effects (Oyedemi et al., 2009). This evidence alone 

should justify investigations into the active compounds in medicinal plants as a 

potential treatment for DM (Oyedemi et al., 2009). 
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1.5.3. MARRUBIIN  AND MARRUBIIN DERIVATIVES AS POTENTIAL 

ANTIDIABETIC TREATMENTS 

MAR is a labdane diterpene and is isolated from Marrubium vulgare which 

belongs to the family Lamiaceae (figure 1.9) (Knoss et al., 1997). Currently, the 

purified form of MAR is predominantly in research phase. The potential 

applications for MAR and compounds derived from MAR include the medicinal 

use as an analgesic, insecticide, antiedematogenic, antidiabetic and for 

cardiovascular problems including hypertension (Novaes et al., 2001; Stulzer et 

al., 2006; Mnonopi et al., 2011; Mnonopi et al., 2012). 

 

 

 

 

 

Figure 1.9: Chemical structures of MAR and premarrubiin (Knoss et al., 1997). 

Diterpenoids are naturally produced by plants from many genera. Investigations 

into the in vitro cytochemical effects of these compounds have been extensive, 

since natural plant compounds would benefit patients as they may elicit less 

unwanted side-effects when used as treatments. Completed experiments include 

cytotoxic testing, PTP1β inhibition studies (in vitro) and their antimicrobial 

potential to name a few (Kuzma et al., 2007; Na et al., 2006; Roengsumran et al., 

2001). 

Diterpenoids of interest would be those which have been implicated as 

antidiabetic agents such as regulators of PTP1β activity. An investigation was 

completed on the inhibitory effect of diterpenoids isolated from Acanthopanax 

koreanum, traditionally used in Korea as a diabetic treatment (Na et al., 2006). 

Isolation and screening of these compounds from the plant led to the discovery of 
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diterpenoids which were able to inhibit PTP1β (a target for antidiabetic therapy in 

T2DM). Initially CH2-Cl2 soluble root extracts were screened and contained 

PTP1β inhibitors (72% inhibition at 30 µg/mL), later identification of 3 diterpenoid 

compounds in the root extract was associated with the inhibition of PTP1β (Na et 

al., 2006). One of these compounds had an IC50 value of 7.1 ± 0.9 µM and 

displayed non-competitive inhibition (Na et al., 2006). Although Acanthopanax 

koreanum does not belong to the same botanical family as L. leonurus, the 

structural similarity between the diterpenoids is comparable (Na et al., 2006). 

Oyedemi et al., (2011) illustrated the antidiabetic effects of an aqueous leaf 

extract of L. leonurus in a streptozotocin (STZ)-induced diabetic rat model. Rats 

were treated with STZ after which they displayed elevated blood glucose, water 

intake and cholesterol levels associated with DM. However during the 15 day 

time study with administration of the L. leonurus aqueous extract, the rats began 

displaying lower blood glucose, HDL and reduced intake of water (Oyedemi et 

al., 2011). Organic extracts of L. leonurus and MAR were tested for their 

antidiabetic properties on rats with high fat diet-induced DM (Mnonopi et al., 

2012). The obese control had illustrated high cholesterol levels which were 

indicative of a patient with cardiac risk whereas obese rats treated with MAR had 

illustrated decreased LDL levels with an increase in HDL. Rats treated with L. 

Leonurus organic extract had shown decreased cholesterol profile compared to 

the obese control. However MAR-treated rats displayed a significant decrease in 

cholesterol levels (Mnonopi et al., 2012). In correlation with decreased 

cholesterol levels, treatments had also increased insulin secretion compared to 

the obese control. The obese control insulin level was 1.24 ± 0.02 ng/mL while 

the MAR obese and obese L. leonurus-treated rats displayed 4.75 ± 0.01 ng/mL 

and 2.75 ± 0.03 ng/mL, respectively (Mnonopi et al., 2012). These results clearly 

show the abilities of L. leonurus extracts and MAR to act as insulin 

secretagogues, and thus improve the DM state through changes in cholesterol, 

insulin and blood glucose levels. 
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This study aims to investigate the effects of MAR and MAR derivatives on PTP1β 

inhibition, glucose uptake in hepatocytes, myocytes and adipocytes and the 

molecular basis associated with the improved glucose uptake.  
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CHAPTER 2: AIMS AND OBJECTIVES 

This investigation aims to elucidate the anti-diabetic potential of MAR and MAR 

derivatives. It is to be accomplished through analysis of the interactions between 

PTP1β and the respective treatments by in silico and in vitro inhibition studies 

(Chapter 3, 4 and 5). This will be followed by in vitro screening of the treatments 

for cytotoxicity and glucose uptake analysis in Chang, C2C12 and 3T3-L1 cell 

lines. Screening of the treatments will provide an indication of the cell lines most 

suitable for further investigation at the molecular level. Molecular analysis will be 

completed using western blotting and RT-PCR. The study will include the 

following objectives using MAR and MAR derivatives. 

1. In silico inhibition screening of MAR and MAR derivatives (20 compounds) on 

PTP1β using AutoDockTools 4.2 (ADT). 

2. Conduct in vitro enzyme inhibition studies using PTP1β and alkaline 

phosphatase (ALP). 

3. Perform in vitro analysis C2C12, 3T3-L1 and Chang cell lines with regards to 

cytotoxicity and glucose uptake studies. 

4. Using the compounds eliciting the highest glucose uptake effect the following 

molecular studies will be conducted: 

4.1. Determine IRS1, phospho-IRS1, PI3K, phospho-PI3K and PTP1β levels, 

with β-actin as a reference protein, using Western blotting. 

4.2. Determine GLUT4 and IRS-1 expression levels using RT-PCR. 

 

 

 



33 
 

PART II: IN SILICO COMPUTATIONAL 
MODELLING AND IN VITRO ENZYME 

INHIBITION STUDIES OF PTP1β 
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CHAPTER 3: METHODS AND MATERIALS 

3.1. IN SILICO COMPUTATIONAL MODELLING 

3.1.1. 3D CONSTRUCTS OF MAR AND MAR DERIVATIVES 

Chemical structures of MAR and MAR derivatives were constructed in 

ACD/Chemsketch 11.01 (figure 3.1). Using the software provided, two dimensional 

(2D) drawings were converted to three dimensional (3D) simulations (refer to 

ACD/Chemsketch reference manual). Chemsketch utilises a 3D optimisation function 

which takes into account bond stretching, van der Waals forces, bond angles and 

internal rotation. This 3D optimisation function is based on CHARMM 

parameterisation but is modified in order to increase the stability and speed of the 

computation (figure 3.1). 
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Figure 3.1: Two-dimensional (2D) drawings and three-dimensional (3D) constructs of MAR and 

MAR derivatives drawn in ACD/Chemsketch 11.01 and DSV, respectively. Molecular weights 

(Mw) and symbols are added for each compound which elicited a significant glucose uptake 

(see section 6.2) for Chang (     ), C2C12 (     ) and 3T3-L1 adipocytes (      ). The colours denote 

specific atoms, i.e. red=oxygen, white=hydrogen, yellow=sulphur and green=carbon. Molecule 

structures were provided by Prof. Mike Davis-Coleman from the Department of Chemistry, 

Rhodes University. 
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3.1.2. PTP1β DOCKING STUDIES WITH MAR AND MAR DERIVATIVES. 

The constructs in figure 3.1 were converted to *.mol files, compatible for analysis in 

Accelrys Discovery Studio Visualizer 2.5 (DSV), and subsequently were converted to 

*.pdb files. From the PDB databank, a digital crystalline 3D structure of PTP1β was 

uploaded (PDB ID: 3EB1). The structure was formatted as a *.pdb file in DSV by 

removing the ligand (4-[3-(dibenzylamino)phenyl]-2,4-dioxobutanoic acid) as well as 

any water molecules surrounding the protein which could affect the docking result 

(Lui et al., 2008). 

 

 

 

 

 

Figure 3.2: A representation of the removal of water molecules and the inhibitor which was 

imbedded in the active site of PTP1β. This was conducted using DSV. A) Raw structure 

downloaded from the PDB website. B) Waters (blue) have been removed. C) Ligand (red) has 

been removed to provide the PTP1β structure ready for docking procedures. 

Once the digital PTP1β was successfully formatted and all MAR derivatives were in 

the 3D and *.pdb format, computational molecular docking was completed using 

ADT. ADT enables the conversion of *.pdb files to *.pdbqt files which allows for the 

inclusion of charge and torsion of a ligand or protein. A standard protocol for 

molecular screening was completed based on the methodology devised by Rao et 

al., (2006) as explained below. A grid was placed at the active site of PTP1β with a 

spacing of 0.375 Å and 40 grid points per x, y and z axis. An initial population of 50 

randomly placed individuals, a maximum of 2 x 106 energy evaluations, a mutation 

rate of 0.02, a crossover rate of 0.8 and an elitism value of 1 was set up for the 

docking protocol. Three flexible residues, Cys 215, His 214, and Arg 221, were 

selected based on their importance in phosphatase activity in the active site. 

Oleanolic acid (DC6) (figure 3.1) is known to be a potent inhibitor of PTP1β and was 

used as a positive control in this investigation (Zhang et al., 2008). 

A B C 
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3.2. IN VITRO INHIBITION STUDIES WITH MAR AND MAR DERIVATIVES 

3.2.1. ALKALINE PHOSPHATASE (ALP) 

ALP is a zinc metalloenzyme and is found in several tissue types in humans as well 

as other organisms. There are many isozymes of ALP which all fall under the class 

of hydrolases. As the name suggests, it has an alkaline pH optimum known to be at 

pH 9.5 and catalyses the hydrolysis of phosphomonoesters. The physiological 

importance of ALP was discovered when a high level of ALP was found in bone 

more than 80 years ago. It is now known that ALP functions in the mineralization of 

bone (Golub and Boesze-Battaglia, 2007). MAR, MET and MAR derivatives will be 

tested for their potential to inhibit the action of PTP1β and ALP. In this experiment 

ALP is regarded as a potential candidate for cross reactivity in vivo which is 

undesired as the treatments should be specific to PTP1β. 

Intestinal calf ALP (Roche) standard curve assays were conducted in clear, non-

sterile, 96-well plates (Lasec). This was done in order to establish the concentration 

of ALP required for following experiments. ALP assay buffer was formulated by 

mixing 0.1 mM Na2CO3 and 0.1 mM NaHCO3, pH 9.5. On the day of the experiment 

ALP and para-nitrophenylphosphate (pNPP) was diluted in ALP assay buffer to 20 

mU and 20 mM, respectively. A standard curve was constructed as seen in table 3.1 

and plotted in appendix 1, figure A.1. 

Table 3.1: Volumes and concentrations of the added components in the generation of the ALP 

standard curve. 

Components 20 mU 10 mU 5 mU 2.5 mU 1.25 mU BLANK 

ALP (μL), [ALP] (20 mU) 20 10 5 2.5 1.25 0 

ALP assay buffer 0 10 15 17.5 18.75 20 

pNPP (μL) stock [pNPP] (20 mM)  
in assay buffer 180 180 180 180 180 180 

Total (μL) 200 200 200 200 200 200 

Pre-heat the Biotek Powerwave plate reader to 250C 

Plate shake, 5 seconds 

Read at 405 nm, 1 minutes intervals for 7 minutes 

 

For the generation of double Dixon (DD) plots and determination of Ki, pNPP was 

added at various concentrations for each concentration of compound (table 3.2). The 
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reaction was initiated by addition of 10 mU ALP. DD plots are given in appendix 1, E 

figures. 

Table 3.2: Volumes and concentrations of the added components in the investigation of ALP 

inhibition due to DC1 compound. The same procedure was followed for all other compounds 

Final [DC1] (μM) 10 5 2.5 BLANK 

DC1 (μL) 2 2 2 2 2 2 2 2 2 

2 μL 
0.01% 
DMSO 

2 μL 
0.01% 
DMSO 

2 μL 
0.01% 
DMSO 

 

pNPP (μL) 178 178 178 178 178 178 178 178 178 178 178 178 

pNPP (μM) 20 10 5 20 10 5 20 10 5 20 10 5 

 

ALP assay buffer 10 10 10 10 10 10 10 10 10 10 10 10 

ALP [10 mU] (μL) 10 10 10 10 10 10 10 10 10 10 10 10 

Total 200 200 200 200 200 200 200 200 200 200 200 200 

Pre-heat the Biotek Powerwave plate reader to 250C 

Plate shake, 5 seconds 

Read at 405 nm, 1 minutes intervals for 7 minutes 

 

3.2.2. PTP1β 

Assays were performed in clear, non-sterile, 96-well plates (Lasec). PTP1β (Sigma) 

was reconstituted and frozen in aliquots (4 U/mL) at -80oC. Assay and storage 

buffers were made according to manufacturer’s specifications. An enzyme activity 

standard curve was constructed as shown in table 2 and the results plotted in 

appendix1, figure A.2. 

Table 3.3: Volumes and concentrations of the added components in the generation of the 

PTP1β standard curve. 

Components 320 mU 240 mU 160 mU 80 mU 40 mU BLANK 

PTP1β (μL), [PTP1β] (20 mU) 80 60 40 20 10 0 

PTP1β assay buffer 0 20 40 60 70 80 

pNPP (μL) stock [pNPP] (50 mM)  
in assay buffer 120 120 120 120 120 120 

Total (μL) 200 200 200 200 200 200 

Pre-heat the Biotek Powerwave plate reader to 300C 

Plate shake, 5 seconds 

Read at 405 nm, 5 minutes intervals for 60 minutes 
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DD plots were to be used to determine the Ki values of the potential inhibitors. The 

conditions for the determination of compound inhibition potential on PTP1β are 

shown in table 3.4.  Oleanolic acid (DC6) was used as a positive control for PTP1β 

inhibition, using a concentration range of 25, 50 and 100 nM of DC6.  

Table 3.4: Volumes and concentrations of the added components in the investigation of PTP1β 

inhibition due to DC1 compound. The same procedure was followed for all other compounds 

except DC6. 

Final [DC1] (μM) 10 5 2.5 BLANK 

DC1 (μL) 2 2 2 2 2 2 2 2 2 

2 μL 
0.01% 
DMSO 

2 μL 
0.01% 
DMSO 

2 μL 
0.01% 
DMSO 

 

pNPP (μL) 118 118 118 118 118 118 118 118 118 118 118 118 

pNPP (μM) 75 50 25 75 50 25 75 50 25 75 50 25 

 

PTP1β assay buffer 10 10 10 10 10 10 10 10 10 10 10 10 

PTP1β [320 mU] (μL) 80 80 80 80 80 80 80 80 80 80 80 80 

Total 200 200 200 200 200 200 200 200 200 200 200 200 

Pre-heat the Biotek Powerwave plate reader to 250C 

Plate shake, 5 seconds 

Read at 405 nm, 1 minutes intervals for 7 minutes 

 

Progress curves were used to plot DD plots from which Ki values were extrapolated, 

while Lineweaver-Burk (LB) plots were used to extrapolate the Vmax and Km under 

saturating substrate concentrations. Examples of the progress curves (appendix 1; B 

figures), DD plots (appendix 1; C figures) and LB plots (appendix 1; D figures) are 

shown. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1. COMPUTATIONAL MODELLING OF PTP1β AND MAR DERIVATIVES. 

PTP1β negatively regulates glucose uptake in cells which are sensitive to insulin 

signalling. Its action is portrayed in its ability to deactivate phosphorylated proteins 

which are essential to insulin cell signalling, i.e. IRS-1 and insulin receptors (Galic et 

al., 2005). Thus inhibition of PTP1β in targeted cell lines like adipose tissue would be 

of great importance to allow for increased insulin sensitivity. All 20 MAR derivatives, 

MAR and MET were docked with PTP1β. Examples of docked ligands are illustrated 

in figure 4.1. 

Among all the ligands which have been screened, DC6 and DC7 performed the best. 

DC6 can be seen bound tightly to PTP1β in figure 4.1. The amino acids which 

interact with DC6 through hydrogen bonds are Asp 48, Lys 116 and Lys 120 (figure 

4.1). The orientation of DC4 can be compared to that of DC6 with hydrogen bonds 

as hydrogen bonding between PTP1β and DC4 is found on Lys 116 and Asp 48.  

Lys 116 is found to be part of the R-loop which has been shown to be of significance 

for PTP1β activity as the R-loop is known to move in conjunction with the WPD-loop 

which creates a better p-Tyr binding pocket once closed (Kamerlin, et al., 2006). This 

suggests that the ligand bound to PTP1β does not bind directly to the active site, but 

binds to adjacent residues necessary for phosphatase activity and thus could 

potentially result in non-competitive inhibition. Figure 4.1 illustrates that the 

interaction between DC7 and PTP1β is found anchored directly to the active site 

residues Ala 217, Ile 219 and Gly 220 by hydrogen bonds. The active site is known 

to span from His 214 to Arg 221 residues of PTP1β (Kamerlin, et al., 2006). Thus 

direct binding to this region suggests potential competitive inhibition could be 

displayed by DC7. A similar interaction is portrayed with DC17 as the ligand bound 

directly to the amino acids Cys 215 and Ala 217 via hydrogen bonds. With the active 

site occupied by the small molecule inhibitors like DC7 and DC17 the enzyme will 

not be able to accomplish its phosphatase activity on any surrounding p-Tyr 

residues. MET was also docked to establish any interaction with PTP1β and results 

indicate that metformin could interact with Asp 48 through hydrogen bonding (figure 

4.1) 
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DC4  

DC6  

DC7 

DC17  
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Figure 4.1: An illustration of the ligands DC4, DC6, DC7, DC17 and MET docked with PTP1β 

(white 3D protein structure). In the right pane, the ligands are shown docked to the complete 

protein; while in the left pane the ligand interaction is magnified to illustrate individual 

hydrogen bonding (black dotted lines) to the amino acids of PTP1β which have been 

annotated. Molecules have been colour coded as follows: hydrogen = white, oxygen = red, 

nitrogen = purple, Sulphur = yellow, ligand carbon = green, amino acid carbon = light blue.  

Table 4.1 is a summary of the docking results for the 20 MAR derivative compounds 

tested.  The best ranked result is shown for each compound with rankings based on 

binding energy and the calculated inhibition constant. Binding energies are 

calculated as the sum of intermolecular energy and torsional free-energy penalty 

(Huey and Morris, 2008). For efficient binding, the calculated binding energy should 

be as low as possible (comparable to the positive control) and thus the prerequisite 

for such a binding condition would be for the intermolecular energy and torsional 

free-energy penalty to both be low. Theoretical inhibition constants are shown and 

calculated by ADT using the following equation: 

Ki = exp(ΔG x 1000) / (Rcal x TK) 

ΔG = is the sum of intermolecular energy and the ligands internal energy 

Rcal = 1.98719 cal.K-1.mol-1 

TK (temperature in Kelvin) = 298.15 K. 

MET 
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Cluster analysis is a factor which plays a vital role in the rank of small molecule 

inhibitors. A cluster is generated by the selection of a single molecule conformation 

of good binding capacity and is referred to as the ‘seed’ (Huey and Morris, 2008). 

Once the seed has been chosen, it is compared to other docked conformations by 

root-mean squared deviation (RMSD). The RMSD value determines the similarity 

between the two conformations of the same ligand. If the RMSD is lower than 0.5, 

the two conformations will be placed together in a cluster (Huey and Morris, 2008). 

Molecule conformations in a cluster are ranked from lowest binding energy to the 

highest. An example is shown in figure 4.2 with ligand DC6 having 8 molecule 

conformations i.e. Rank: 1_1 to 1_8. 

Figure 4.2: A window of the ADT program illustrating the result obtained for DC6. The windows 

shown summarize the results obtained for the docking of DC6 to PTP1β while also allowing for 

the visualization of the docked conformation selected (centre). Conformations are chosen 

from the docked conformations listed in the “DC6 conformation chooser” window (left). A 

complete summary is shown for any of the docked conformations chosen. The “3D: rms = 2.0 

clustering” (right) pane plots the ligand conformations into clusters. It can be seen that 8 

conformations of DC6 are similar with the lowest binding energy at -6.36. 

Of the 2 000 000 that were completed for each compound, the best 50 

conformations were chosen for each. Clusters were formed from the 50 best 

conformations which were selected. Even though DC7 was evaluated with the 

second best binding energy at -5.33 MeV, there was only one conformation in the 

cluster which is unfavourable. DC6 on the other hand, which showed the best 

binding energy at -6.36 also showed favourable cluster formation with 8 

conformations in the cluster showing best binding energies ranging from -6.36 to -
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3.74 MeV. DC17 which showed the third best binding energy at -4.16 MeV has 5 

conformations in the cluster and ranges with binding energies of -4.16 MeV to -1.78 

MeV. 

Table 4.1: A summary of the results obtained from the 20 MAR derivatives in silico docking 

experiments conducted showing the intermolecular, torsional and binding energies achieved. 

The theoretical inhibition constants were calculated and are represented in mM. 

Conformation 
number 

 

Intermolecular 
energy 

 

Torsional 
energy 

Binding 
energy 

 

Ki (mM) 

 

Rank# 

DC 1_1 -5.61 1.79 -3.82 1.6 7 

DC 2_1 -5.22 1.49 -3.73 1.85 11 

DC 3_1 -5.42 2.68 -2.73 9.89 18 

DC 4_1 -5.52 1.19 -4.32 0.6785 3 

DC 5_1 -5.4 1.19 -4.21 0.81983 4 

DC 6_1 -7.25 0.89 -6.36 0.02193 1 

DC 7_1 -6.52 1.19 -5.33 0.12378 2 

DC 8_1 -4.36 1.49 -2.87 7.83 17 

DC 9_1 -4.71 1.19 -3.52 2.62 14 

DC 10_1 -4.67 0.89 -3.78 1.71 8 

DC 11_1 -4.23 3.28 -0.95 200.18 21 

DC 12_1 -5.56 1.79 -3.77 1.71 9 

DC 13_1 -4.19 1.49 -2.7 10.5 19 

DC 14_1 -4.84 1.19 -3.64 2.14 12 

DC 15_1 

(MAR) 

 

-4.94 

 

1.19 -3.74 1.81 

 

10 

DC 16_1 -3.95 2.39 -1.56 71.98 20 

DC 17_1 -5.06 0.89 -4.16 0.88799 5 

DC 18_1 -5.1 2.09 -3.01 6.19 16 

DC 19_1 -4.51 0.89 -3.61 2.25 13 

DC 20_1 -4.38 0.89 -3.48 2.79 15 

MET -3.88 0.0 -3.88 1.44 6 

# Rank is based on binding energy values.  
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The development of accurate computational molecular docking software has become 

a focus of drug discovery in the past decade. As a result, numerous docking 

software tools have been developed and are consistently being upgraded (Cross et 

al., 2009). Investigations which compare and rank the developed software and 

methods used have become a necessity in order for researchers to make informed 

and educated decisions about the choice of software and method used when 

screening a library of ligands. Software such as GOLD, DOCK, GLIDE, FlexX, 

Autodock and Surflex are among the most popular software used (Onodera et al., 

2007; Agostino et al., 2009). Software rankings have been investigated which were 

based on RMSD values of the ligands tested (Onodera et al., 2007; Agostino et al., 

2009). Although the programs which have been tested outweigh each other in 

different facets, GLIDE has consistently been found to be the overall preferred 

choice of docking software available for procedures. GOLD and Autodock are rated 

lower than the above mentioned competitors, these are consistently being reviewed 

and upgraded (Onodera et al., 2007; Cross et al., 2009; Agostino et al., 2009). ADT 

was chosen as the software package for our purposes as it rapidly allowed for the 

screening and was readily available for use. 

The crystal structure of PTP1β used in this investigation was uploaded into the PDB 

by Lui et al. (2008). In their investigation, the use of p-Tyr mimetics was examined as 

these inhibitors have low bioavailability as a result of their overall negative charge. 

They had crystalized the structure of PTP1β with their inhibitor bound to the active 

site while PTP1β remained in the inactive conformation i.e. the WPD loop remained 

open and this conformation of PTP1β had been added to the PDB (accession 

number 3eb1). The 3eb1 conformation of PTP1β was therefore chosen to determine 

the potential of MAR and MAR derivatives to interact with inactive PTP1β at the 

active site with the WPD loop open (Lui et al., 2008). 

Researchers have revealed that the inclusion of specific water molecules in a protein 

lattice can be advantageous to small molecule docking in a protein active site 

(Huang and Shoichet, 2008). Water molecules have been shown to increase binding 

efficiency and stability of the bound ligand by acting as hydrogen bond bridges 

between specific amino acids and the ligand (Huang and Shoichet, 2008; de Beer et 

al., 2010). It was previously thought that the addition of water molecules would 

negatively influence the docking result. It was later found that omission of specific 
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water molecules is of great importance to the docking of the ligand in some cases 

(Thilagavathi and Mancera, 2010). Unfortunately, ADT does not allow for the 

inclusion of water molecules and thus nullify all solvent effects. 

 

4.2. IN VITRO INHIBITION STUDIES OF PTP1β AND ALP 

Table 4.2 illustrates the varying degrees of cross reactivity between the two 

phosphatases (ALP and PTP1β) induced via in vitro exposure to the various MAR 

derivatives, MAR and MET. This is seen for treatments DC9 and DC16. Although 

inhibition of PTP1β was noted to be more potent than ALP, it suggests that these 

compounds would have a degree of cross reactivity on certain enzymes which are 

more similar to PTP1β, eg. TCPTP (T-cell Protein Tyrosine Phosphatase). 

DC5 has an inhibitory effect on PTP1β with an inhibition constant of 33 µM, which is 

high compared to other compounds eliciting inhibition of PTP1β, with no cross 

reactivity associated with ALP. DC1, DC2, DC15 and DC17 on the other hand seem 

to display no inhibition of ALP nor PTP1β for the concentration ranges tested.  

As a comparison, inhibition constants for the in silico computational modelling is 

displayed in table 4.2. Inhibition of PTP1β does not seem to correlate between most 

results obtained in vitro and in silico, except DC6 which showed to be the best 

candidate for PTP1β inhibition in the computational modelling and correlates with the 

results achieved for the in vitro inhibition study. This discrepancy may be due to the 

fact that ADT also considers interactions between non-specific amino acid residues 

and not necessarily the amino acid residues which are involved in catalysis or 

facilitation of enzyme function by mobility as in the case of the WPD loop, S-loop and 

R-loop of PTP1β.  

Results achieved from the experiments conducted have shown that the positive 

control, DC6, had the best binding efficiency to the inactive form of PTP1β. This was 

demonstrated both in vitro and in silico as seen in table 4.2. DC18 had shown 

inhibition of PTP1β in vitro which had Ki values in the micromolar range and was 

specific to PTP1β with its inhibition activity. DC3, DC9, DC16 and MET illustrate 

good inhibition of PTP1β at a micromolar range, unfortunately illustrating non-
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specific activity through inhibition of ALP. MAR (DC15) had illustrated no in vitro 

inhibition of either PTP1β or ALP. 

Table 4.2: A summary of the inhibition constants achieved for the in vitro and in silico 

inhibition studies with alkaline phosphatase and PTP1β. In vitro inhibition constants were 

achieved by double Dixon plots. 

Ki (µM) 

Rank* Compound ALP PTP1β Docking 

1 DC6 No inhibition 0.047c 21 

2 DC3 No inhibition 2.3m 9890 

3 MET No inhibition 4.1c 1440 

4 DC18 No inhibition 15.5c 6190 

5 DC5 No inhibition 33c 819 

6 DC9 17 2.1m 2620 

7 DC16 14 6c 71980 

8 DC17 No inhibition No inhibition 887 

9 DC1 No inhibition No inhibition   1600 

10 DC15 (MAR) No inhibition No inhibition 1810 

11 DC2 No inhibition No inhibition 1850 

c = Competitive mode of enzyme inhibition; m = mixed mode of enzyme inhibition.  

*Rank based on Ki values of in vitro PTP1β inhibition studies and the cross reactivity of the compounds with ALP.  

”No inhibition” indicates that the highest concentration, i.e. 10 μM tested for this study did not inhibit the enzymes. 

 

Development of suitable PTP1β inhibitors has been problematic as the PTP1β active 

site is predominantly positively charged in nature, thus the development of pTyr 

mimetics have shown good inhibitory potential in vitro. Unfortunately, the overall 

negative charge of pTyr-like drugs has low in vivo bioavailability at the site of action. 

DC6 has no net charge which makes it a good candidate for in vivo studies as an 

anti-diabetic drug. Its activity on the PTP1β cannot be overlooked, but a single 

problem had arisen in that its activity was not specific to PTP1β as it also inhibits T-

cell protein tyrosine phosphatase (TCPTP) (Zhang et al., 2008). The effect of DC6 

was investigated on animal models by de Melo et al. (2010) illustrated that normal 

mice treated with DC6 have a good tolerance to a high glucose diet and that mice 

treated with a high fat diet had shown to be resistant to obesity. The mice appeared 
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to show a healthy phenotype after 15 weeks of treatment. However the question 

involving the inhibitory potential of DC6 on TCPTP which is known to conduct 

important functions in the body remains. DC9 also holds no net charge and would 

thus be a good candidate for in vivo studies as its bioavailability would not be 

hindered through charge omission at the plasma membrane. Unfortunately its 

inhibitory activity against PTP1β is negligible compared to DC6 which is 44.7 times 

more efficient at inhibiting PTP1β. This is noted for all the MAR derivatives compared 

to DC6 tested in vitro (table 4.2). Thus, according to the in silico, MAR and its 

derivatives are not suitable candidates for PTP1β inhibition. 

The testing of MAR and its derivatives for the treatment of T2DM was based on the 

traditional uses of L. leonurus as an antidiabetic medication in Southern Africa 

(Oyedemi et al., 2009). M. vulgare, a botanical family member of L. leonurus, is used 

in Mexico as a traditional medication for diabetes-like symptoms (Vergara-Galicia, et 

al., 2012). An investigation completed by Mnonopi et al., (2012) demonstrated the 

antidiabetic effects of MAR on INS-1 cells through its ability to act by stimulating 

GLUT2 and insulin expression in the β-cells. It was therefore concluded that MAR 

acts as a potential antidiabetic agent in T1DM. In determining the effectiveness of 

MAR and its derivatives as a potential antidiabetic agent for T2DM, it was essential 

to determine their potential effects on the enzyme PTP1β. It can now be concluded 

that MAR does not have a significant inhibitory effect on PTP1β. PTP1β, however is 

not the only factor affecting insulin signalling, and it can therefore be hypothesized 

that MAR has its effect elsewhere in the insulin signalling pathway in peripheral 

tissues. In addition MAR may act as an inducer of protein expression which allows 

the signal to be transferred more efficiently for an additional period of time. 

Although MAR and its derivatives were not efficient PTP1β inhibitors, further studies 

were completed to determine their effect on glucose uptake in peripheral tissues 

(part III), since reduced blood glucose levels were found in the in vivo study 

conducted by Mnonopi et al., (2012). 
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PART III: CELL CULTURE AND 
MOLECULAR ANALYSIS OF CELLS 
TREATED WITH MARRUBIIN AND 

MARRUBIIN DERIVATIVES 
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CHAPTER 5: METHODS AND MATERIALS 

All materials and reagent preparation methods used in this section are listed in 

annexure A and B, respectively. All materials are of an analytical grade, unless 

otherwise stated.  

5.1. CELL MAINTENANCE 

Chang liver and C2C12 cells were grown and maintained in RPMI 1640 (Roswell 

Park Memorial Institute medium) (Gibco) supplemented with 10% FCS in a 

humidified incubator at 37oC and 5% CO2. 3T3-L1 preadipocytes were grown under 

the same conditions and maintained in DMEM (Dulbecco’s Modified Eagle Medium) 

(Sigma) supplemented with 10% FCS. Growth of cells was conducted until 80% 

confluency was achieved and were consequently split or seeded for experiments to 

follow. 

Rosiglitazone (BIOCOM biotech) is a known antidiabetic drug that forms part of the 

TZD class of drugs which has been used to initiate adipogenesis (Pisani et al., 

2011). Rosiglitazone acts as a PPARγ agonist and thereby initiating lipogenesis and 

fat cell formation (Madsen et al., 2003). Differentiation of 3T3-L1 preadipocytes was 

conducted by allowing cells to grow to 100% confluency. DMEM medium 

supplemented with 10% FCS and 1 µM rosiglitazone was added to the cells two 

days after post-confluence. Differentiating cells were then incubated for seven days 

with a medium change every 2-3 days. 

All consequent experiments (n=3) were conducted in 96-well (Chang and C2C12) or 

48-well plates (3T3-L1 adipocytes). MAR derivative and MET treatments were 

reconstituted in 10% DMSO (dimethyl sulfoxide) and exposed to cells at 10 µM and 1 

μM, respectively; thus achieving a 0.1% DMSO exposure to the cells. A 0.1% vehicle 

control (CON) was thus used as an untreated control. The MAR derivatives used for 

in vitro cytotoxicity and glucose uptake studies were DC1, DC2, DC3, DC5, DC6, 

DC9, DC15 (MAR), DC16, DC17, DC18 and MET as the positive control. Selection 

for the treatments listed was based on availability of the purified compounds. 
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5.2. MTT CELL VIABILITY STUDIES 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) can be converted 

to a colour forming insoluble formazan compound by viable cells. This is 

accomplished by viable cells passing electrons to succinate dehydrogenase in the 

mitochondrial electron transport chain resulting in purple formazan proportional to 

the amount of viable cells (Freshney, 2000). Addition of DMSO solubilises the 

formazan allowing the purple colour intensity to be measured at an absorbance of 

540 nm. In this study the MTT assay was used to determine the cytotoxic effects of 

MAR and its derivatives on the cells lines mentioned. 

Chang liver and C2C12 cells were seeded at 30 000 cells/mL in 96 well plates 

(Costar) while 3T3-L1 cells were seeded at 40 000 cells/mL in 48 well plates 

(Costar). Blank wells contained no cells but were treated the same as the 

experimental wells throughout the experimental procedure. Cell density was 

determined by haemocytometer and the trypan blue cell exclusion method. 3T3-L1 

cells were grown to 100% confluency and 2 days post-confluency cells were induced 

to differentiate (section 5.1). Cells were exposed to treatment concentrations ranging 

from 0.1 µM to 100 µM and 0.1% DMSO. This was accomplished by making a 1:100 

dilution of a 10% DMSO solution containing treatment in the growth medium. In 

practice, 2 µL of a stock treatment was added to 200 µL growth medium in the 96-

well plate or 5 µL of a stock treatment to 500 µL growth medium in 48-well plates 

achieving the desired concentration of treatment vehicle control (CON i.e. 0.1% 

DMSO). Cells were incubated for 48 hours, medium was removed and replaced with 

200 µL (96-well plate) or 500 µL (48-well plate) of MTT (0.5 mg/mL) and incubated 

for 4 hours. The medium was removed and 200 µL or 500 µL 100% DMSO was 

added and incubated for 15 minutes to allow the purple formazan crystals to 

dissolve. The plate was shaken for 10 seconds and read at an absorbance of 540 

nm using a Biotek Powerwave XS microtitre plate reader. 

MTT assays were completed to determine cell viability which was used for 

normalisation of cell number during glucose uptake studies (section 5.3). MTT 

standard curves were created in triplicate for all cell lines used. Adipocytes 

(appendix 1; figure F.3) were differentiated (section 5.1) in 10 cm culture dishes prior 

to seeding at the specific concentrations required from 0 - 500 000 cells/mL, while 
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C2C12 (appendix 1; figures F.2) Chang liver (appendix 1; figure F.3) cells were 

seeded at a density range of 0 - 100 000 cells/mL. 

 

5.3. GLUCOSE UPTAKE STUDIES 

A glucose reagent was prepared for the detection of glucose in the experiment 

samples. The glucose reagent was comprised of phenol, 4-aminoantipyrine, 

horseradish peroxidase, EDTA, glucose oxidase and peroxidase (annexure B: 

reagent 1). The assay’s principle is based on the conversion of glucose to gluconic 

acid and hydrogen peroxide by glucose oxidase followed by the interaction which 

occurs between hydrogen peroxide and 4-aminoantipyrine. This reaction is catalysed 

by peroxidase and causes a red oxidized dye and water which can be measured 

spectrophotometrically at an absorbance maximum of 492nm. Glucose uptake 

studies were completed on the cell lines mentioned in section 5.1. 

Cells were counted by haemocytometer using the trypan blue exclusion method. 

Cells were seeded and differentiated as described in section 5.2 and treated with 10 

µM MAR derivative treatments and 1 µM MET (positive control). Untreated cells 

were exposed to 0.1% DMSO and used as the CON. Blank wells contained no cells 

and were treated as experimental wells throughout the experimental procedure. 

Cells were exposed to the various treatments for 48 hours. Thereafter, the medium 

was replaced with glucose-free DMEM (for 3T3-L1 adipocytes) or glucose-free RPMI 

1640 (for Chang liver and C2C12 cells) for 1 hour. The glucose-free media was 

aspirated and replaced with medium containing 6 mM glucose and 60 µU/mL insulin 

for 3 hours. From each well, 50 µL of the medium was aspirated and added to a 

nonsterile 96 well plate (Lasec) and diluted with 150 µL water. 50 µL of the dilution 

was added to 200 µL of glucose reagent, incubated at 37oC for 30 minutes and read 

at an absorbance of 492nm using a Biotek Powerwave XS microtitre plate reader. 

The cell number was determined using the MTT assay described in section 5.2 and 

used to normalise cell number  to 100 000 cells.  

A standard curve using a glucose concentration range of 0 – 8 mM was used to 

determine the glucose utilised (figure 5.1). 
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Figure 5.1: A glucose standard curve with a concentration range of 0–8 mM (R
2
=0.9998; n=3). 

 

5.4. TREATMENT OF 3T3-L1 ADIPOCYTES AND MOLECULAR ANALYSIS. 

RNA was isolated using a NucleoSpin® RNA kit (Macherey-Nagel) according to the 

manufacturers instruction. 3T3-L1 preadipocytes were grown in 10 cm culture plates 

and differentiated to mature adipocytes once they were 2 days post-confluence using 

1 µM rosiglitazone. Adipocytes were treated with 10 µM of 4 test compounds (DC6, 

DC15, DC17 and DC18) which elicited the best performance in the glucose uptake 

assays, 1 µM MET (positive control) and an untreated plate of cells as the CON. 

After 48 hours incubation at 37oC, cells were treated with 60 µU/mL insulin for 3 

hours. Medium was removed and cells washed briefly with 10 mL PBSA (phosphate 

buffered saline containing EDTA). The PBSA was discarded and replaced with 2 mL 

PBSA. Cells were lifted through cell scraping and gentle pipetting of the PBSA. The 

cell suspension was transferred to a 2 mL eppendorf tube and centrifuged for 2 min 

at 11 000 x g using an eppendorf minispin AG microfuge. The supernatant was 

discarded. 350 µL RP1 buffer and 3.5 µL β-mercaptoethanol was added to the pellet 

to facilitate cell lysis and was vortexed vigorously. Following lysis, the viscous cell 

lysate was added to a NucleoSpin® Filter and centrifuged for 2 minutes at 11 000 x g 

to remove any cell debris and the filter discarded. 350 µL 70% ethanol was added to 

the lysate and mixed by slow pipetting. The lysate was added to a NucleoSpin® 

RNA/Protein column and placed in a collection tube. The lysate was centrifuged at 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10

A
b

so
rb

an
ce

 @
 4

9
2

 n
m

 

[Glucose] (mM) 



54 
 

11 000 x g for 30s and the column placed in a new collection tube. At this point the 

total cell RNA and DNA was bound to the column membrane while the total protein 

was in the collection tube flow-through (www.mn-net.com). 

 

5.4.1. RNA PURIFICATION 

The column membrane was desalted by addition of 350 µL membrane desalting 

buffer to the column in a new collection tube and centrifuged for 1 min at 11 000 x g 

to remove any salts to prevent inhibition of the action of the rDNase. The flow-

through was discarded and 95 µL rDNase reaction mixture was added to the centre 

of the silica membrane and incubated for 15 minutes at room temperature to 

degrade any DNA present. 200 µL of buffer RA2 was added to the column and 

centrifuged for 30 seconds at 11 000 x g to remove DNA and deactivate the rDNase. 

After centrifugation the column was placed in a new collection tube and 600 µL of 

buffer RA3 was added to the column, centrifuged for 30 seconds at 11 000 x g, and 

the flow-through was discarded. A further 250 µL RA3 buffer was added to the 

column and centrifuged for 2 minutes at 11 000 x g to dry out the column. Finally the 

column was placed in a 1.5 mL RNase-free collection tube and the RNA was eluted 

out of the column with 60 µL RNase-free water by centrifugation for 2 minutes at 

11 000 x g (www.mn-net.com). RNA was stored at -80oC for further studies. 

 

5.4.1.1. RNA QUANTIFICATION 

Eluted RNA was quantified using an Agilent® 2100 bioanalyzer. This is an accurate 

and efficient means of determining RNA concentration and requiring only 1 µL of 

RNA containing material. The kit uses a specific set of reagents and chips which 

house interconnected channels. The Agilent® RNA kit quantifies and tests RNA 

based on RNA fragment size by electrophoresis within the chip. The Agilent® RNA 

kit was used to quantify RNA according to the manufacturer’s specifications using 

Agilent® RNA 6000 Nano reagents. RNA is quantified electrophoretically within the 

RNA nano chip. A sample added into a well move through micro channels which 

separate the RNA based on size (figure 5.2). Separated bands are detected by 

fluorescence and reported as electropherograms. For eukaryotic RNA, two peaks 
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are characteristic: 18S RNA and 28S RNA. Sizes of the bands are compared to an 

RNA ladder which is analysed alongside the test wells (http://www.gene-

quantification.de/rna-integrity.html). 

 

Figure 5.2: The Agilent® RNA quantification chip has 16 loading wells. Gel-dye is added to the 

wells marked G, RNA ladder is added to thewell marked with a ladder which leaves 12 wells for 

isolated RNA samples (Trietsch et al., 2011). 

 

5.4.1.2. cDNA SYNTHESIS 

Conversion of RNA to cDNA was completed using a QuantiTect® Reverse 

Transcription kit (QIAGEN). The three requirements for RT-PCR are to ensure firstly, 

the integrity of the RNA should be at an acceptable level (relative integrity number 

greater than 8) and this is influenced by the RNA isolation protocol used. Secondly, 

genomic DNA (gDNA) should be removed from the RNA sample as gDNA may 

influence the RT-PCR result by acting as a template for the specific primers added 

into the real time RT-PCR reaction. Thirdly, the random oligo-DT primers added to 

the reverse transcriptase reaction in which cDNA is synthesized should allow for 

maximal conversion of RNA to cDNA (www.qiagen.com). The method for the use of 

the kit comprises of two main steps, 1) removal of all genomic DNA and 2) 

transcription of cDNA from RNA using the enzyme reverse transcriptase. Table 5.1 

shows the composition of the gDNA wipeout mix. 

http://www.sciencedirect.com/science/article/pii/S0169743911000554
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Table 5.1: A representation of the components added to the isolated RNA to remove all gDNA. 

The final concentration of RNA is 71.42 ng/µL (www.qiagen.com). 

Component Volume (µL) 

gDNA wipeout buffer 7x 4 

Template RNA  2µg 

RNase-free water Variable 

Final volume 28 

 

The gDNA wipeout mix was incubated for 2 minutes at 42oC and returned to ice 

directly after. A reverse transcriptase (RT) mastermix was made according the 

manufacturer’s instructions as follows and 12 µL was added to the RNA mix to 

achieve a final volume of 40 µL. 

Table 5.2: A representation of the components added to the RT mastermix which converts the 

RNA to cDNA with a final concentration of cDNA at 50 ng/µL (www.qiagen.com). 

Mastermix Volume (µL) 

Quantiscript RT 2 

Quantiscript RT Buffer 8 

RT primer mix 2 

Template RNA 28 

Final volume 40 

 

The solution was mixed by gentle pipetting and incubated at 42oC for 15 minutes for 

cDNA synthesis to commence. Deactivation of the RT (reverse transcriptase) was at 

95oC for 3 minutes using a heating block. cDNA was cooled on ice and stored at -

20oC for later analysis using RT-PCR. 

 

5.4.1.3. cDNA QUANTIFICATION 

cDNA was quantified using a Thermo scientific NanoDrop® 2000c 

spectrophotometer. 2 µL of each cDNA sample was used to quantify the DNA 

content of the sample. Concentration and purity of the cDNA was measured using 

260nm/280nm and 260nm/230nm absorbance ratios. 
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5.4.1.4. RT-PCR  

Gene expression analysis was accomplished by RT-PCR. Selected genes GLUT4, 

IRS1 and tyrosine-3-monooxygenase/tryptophan-5-monooxygenase-activation 

protein, and zeta polypeptide (Ywhaz) expression were analysed. Analysis involved 

the use of an intercalating dye which binds double stranded DNA (SYBR Green I). 

This fluorescent dye has an excitation and emission spectrum of 494 nm and 521 

nm, respectively (Dragan et al., 2012). Addition of this dye into the PCR mixture 

allows for increases in amplified DNA to be detected during the elongation phase of 

PCR. Both gene expression analysis and DNA melting temperature analysis was 

evaluated in real-time which allowed for the detection of undesired PCR products. 

Before the real time RT-PCR could be completed, annealing temperature and primer 

concentration needed to be established. Optimized annealing temperatures and 

primer concentrations are listed in table 5.3. 

 

Table 5.3: Target genes for RT-PCR analysis with primer concentrations, optimized annealing 

temperatures and primer sequences. 

Target 

gene 

Annealing 

temperature 

(C
o
) 

[Primer] 

(nM) 

Forward primer ( 5’- 3’ ) Reverse Primer ( 5’ – 3’ ) 

GLUT4 

 

58 300 CCAGCCTACGCCACCATAG TTCCAGCAGCAGCAGAGC 

IRS1 

 

56 300 GCCCGTGTCATAGCTC AAGCGCCTGGTGGCTC 

Ywhaz 

 

58 300 GAGTGTAGTCTGTGTGGGTAC GCTGTGGTCAAGGGTGTG 

 

REST 2009 (QIAGEN) software was used to analyse the results obtained from RT-

PCR analysis. It uses the expression of reference genes to normalise any variation 

in expression levels of genes of interest due to loading differences. It also takes into 

account multiple reference genes and their efficiencies in order to make results more 

dependable. Standard curves of all genes were constructed with varying cDNA 

concentrations. Reaction efficiency was then calculated by the REST 2009 software 

which was used to determine expression of the target genes. 
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Figure 5.3: A typical standard curve for RT-PCR analysis. The standard curve is representative 

of the threshold cycle at which a specific concentration of template will begin amplifying. E, is 

the efficiency of the reaction which was found to be 100.5%. 

Results were plotted as bar graphs. Significant statistical changes between controls 

and treated samples are represented by P-values. 

 

5.4.2. TREATMENT OF 3T3-L1 ADIPOCYTES AND PROTEIN ISOLATION 

3T3-L1 adipocytes were exposed to the various treatments DC6, DC15, DC17, 

DC18 and MET, respectively and insulin as per section 5.4. After the treatment 

period, the medium was removed; cells were washed with 10 mL PBSA to facilitate 

gentle lifting of the cell monolayer. The PBSA was removed and 2 mL of PBSA was 

added followed by gentle agitation and cell scraping to facilitate lifting. The cell 

suspension was transferred to a 2 mL eppendorf tube and centrifuged for 10 minutes 

at 2 000 x g in a benchtop microfuge. The supernatant was removed and replaced 

with 0.5 mL protein lysis buffer (annexure B: reagent 2.1) followed by vigorous 

vortexing for 3 minutes. The lysate was left on ice of 30 minutes and vortexed for an 

additional minute and centrifugation at 12 000 x g for 10 minutes. The supernatant 

was stored as 30 µL aliquots at -80oC, for further analysis.  

 

 



59 
 

5.4.2.1. BCA ASSAY 

The bicinchoninic acid (BCA) assay is a protein determination assay which uses the 

conversion of Cu2+ to Cu+ to react with peptide bonds under alkaline conditions. Two 

molecules of BCA chelates with one molecule of Cu+ creating an intense purple 

colour which is detected spectrophotometrically at 562 nm (Smith et al., 1985). One 

of the advantages of using the BCA assay include its tolerance to detergents, it can 

be completed in a single step therefore is not as labour intensive as the Lowry 

method. Furthermore, the Bradford assay is known to act on specific amino acids in 

proteins, thus if these amino acids are in low concentrations it can be expected that 

the protein concentration will be underestimated (Olson and Markwell, 2007). 

Protein concentrations of cell lysates were determined using a BCA assay kit 

(Thermo Scientific). Diluted cell lysate or 25 µL cell lysate was added to 200 µL BCA 

reagent (annexure B: reagent A and reagent B at 50:1 ratio) and incubated at 37oC 

for 30 minutes. A standard curve was completed using bovine serum albumin (BSA) 

ranging from 0 - 20 mg/mL (figure 5.4). 

 

Figure 5.4: A typical BCA protein standard curve ranging from 20 µg/mL – 2 mg/mL (R
2
=0.9973; 

n=3). 

 

5.4.2.2. SDS-PAGE, ELECTRO TRANSFER AND WESTERN BLOTTING. 

Protein lysate (20 μg) was separated on 10% SDS-PAGE (Sodium dodecyl sulphate 

polyacrylamide gel electrophesis) gels (annexure B: reagent 2.7) and 

electrophoresed at 100V for 90 minutes. SDS-PAGE allows for proteins to be 
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separated based on their mass alone. Once electrophoresed proteins were 

transferred to polyvinylidene difluoride (PVDF) membranes via electrotransfer from 

unstained SDS gels, duplicate gels and membranes were stained with Acqua Stain 

(VACUTEC). 

Proteins in a duplicate gel were transferred to PVDF membranes through 

electrotransfer. PVDF membranes are suitable for western blotting as proteins are 

retained on these membranes even under harsh conditions. Electrotransfer was as 

follows: 

 Membranes were washed in 100% methanol for 1-2 minutes and rinsed in 

ddH2O for 5 minutes. 

 Equilibration in cold transfer buffer (annexure B: reagent 3.1) was conducted 

for 30 minutes.  

o Fibre pads and filter paper were cut slightly larger than the gel itself 

and saturated in transfer buffer at 4oC. 

o SDS-PAGE gels were soaked in transfer buffer for 30 minutes to 

remove salts and detergents associated with the SDS-PAGE 

separation procedure. 

 The cassette holder was stacked from bottom to top as follows: Fibre pad, 

filter paper, gel, PVDF membrane, filter paper and lastly fibre pad. 

 All air bubbles were carefully removed from the stack using a rolling pin. 

 Protein transfer was done with a constant potential difference of 25 V for 2 

hours using a Bio-Rad power pac 200 (www.bio-rad.com). 

Membranes were washed in Tris buffered saline, 0.1% Tween 20 (TBS-Tween) 

(annexure B: reagent 3.2) for 5 minutes and repeated three more times. Membranes 

were soaked in membrane blocking agent (annexure B: reagent 3.3) overnight in 

order to block any non-specific binding of proteins or antibodies to the membrane. 

Membranes were briefly rinsed with TBS-Tween after the overnight block and 

incubated for 90 minutes at 4oC with primary antibody in antibody dilution buffer 

(annexure B: reagent 3.4) diluted in ratios represented by table 5.4. Membranes 

were washed thrice in TBS-Tween and incubated with secondary antibody at the 

appropriate dilution ratio (see table 5.4) for 60 minutes at 4oC and washed again in 

quadruplicate in TBS-Tween. 
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Table 5.4: Primary and secondary antibodies used in the western blot procedure along with 

dilutions used for detection. 

Antibody Dilution of 

primary 

antibody 

Secondary antibody Dilution of 

secondary 

antibody 

Supplier 

IRS-1 (L3D12) Mouse 

mAb 

1:1000 Anti-mouse IgG, AP-

linked antibody 

1:3000 Cell signalling 

technology 

Phopho-IRS-1 (Ser 612) 

(L7B8) mouse mAb 

1:2000 Anti-mouse IgG, AP-

linked antibody 

1:3000 Cell signalling 

technology 

PI3 kinase p85 (19H8) 

Rabbit mAb 

1:1500 Anti-rabbit IgG, AP-

linked antibody 

1:3000 Cell signalling 

technology 

Phospho-PI3 kinase p85 

(Tyr 458)/p55 (Tyr 199) 

antibody 

1:1000 Anti-rabbit IgG, AP-

linked antibody 

1:3000 Cell signalling 

technology 

β-Actin (13E5) Rabbit 

mAb 

1:10000 Anti-rabbit IgG, AP-

linked antibody 

1:3000 Cell signalling 

technology 

PTP1β (N-19): SC-1718 1:500 Anti-rabbit IgG, AP-

linked antibody 

1:3000 Santa Cruz 

Biotechnology 

Detection of secondary antibodies was completed by incubation of the membranes 

for 15 minutes in 5 mL 5-bromo-4-chloro-3-indolyl phosphate/ nitroblue tetrazolium 

(BCIP/NBT) (SIGMAFAST™)  (annexure B: reagent 3.5). Images of detected bands 

were taken using an Alpha Imager 3400 while analysis was conducted using ImageJ 

1.45s software. ImageJ is an image processing/analysis program which calculates 

area and pixel values from a defined area on an image. ImageJ creates density 

histograms which allow the user to define a set range to calculate the area of a 

designated peak on the histogram as illustrated in figure 5.5. 

 

 

 

 

 

Figure 5.5: A histogram generated using ImageJ 1.45s. A peak can be identified for phospho 

IRS-1 with minimal background noise. 
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CHAPTER 6: RESULTS 

6.1. MTT CELL VIABILITY STUDIES 

Cell viability assays (MTT) were completed in Chang liver, C2C12 and 3T3-L1 cells. 

An initial screening of 10 µM to 100 µM of each compound was completed in each 

cell line (results not shown). Figure 6.1 illustrates the results at 10 µM for all 

compounds in the Chang liver cells. The highest toxicity was found for DC6 

(oleanolic acid). 

 

Figure 6.1: A graphical representation of the MTT assay on Chang liver cells (n=3). DC1, DC2, 

DC3, DC5, DC6, DC9, DC16, DC17 and MAR elicit a significant decrease cell proliferation at 10 

µM in Chang liver cells and MET at 1 µM (* P<0.05 and 
# 
P<0.01 relative to the CON). 

The C2C12 cells exhibited a similar trend with DC6 showing toxicity at 

concentrations exceeding 10 µM (results not shown). The results shown in figure 6.2 

illustrates that the treatments DC1, DC6, DC9 and DC18 elicit a proliferative effect 

on C2C12 muscle cells as cell viability is increased compared to the CON. 
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Figure 6.2: A graphical representation of the MTT assay on C2C12 muscle cells (n=3). DC1, 

DC6, DC9 and DC18 elicit a significant increase cell proliferation at 10 µM in C2C12 muscle 

cells (* P<0.05 and 
# 
P<0.01 relative to the CON). 

3T3-L1 adipocytes displayed a higher tolerance to the respective treatments above 

10 µM. Very little difference between the CON and treated cells was noted at 10 µM 

treatment (figure 6.3). The only exceptions were the effects of DC9 and DC15 which 

had shown an increase in cell viability (figure 6.3).  

As a result of the above MTT viability results, a constant concentration of 10µM was 

chosen for each of the treatments to be utilised in subsequent glucose uptake 

experiments. MET, a known antidiabetic agent, was to be used as the positive 

control at a concentration of 1µM. 
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Figure 6.3: A graphical representation of the MTT assay on 3T3-L1 adipocytes. (n=3). DC9 and 

DC15 elicit a significant increase in cell proliferation at 10 µM in adipocytes (* P<0.05 and 
# 

P<0.01 relative to the CON). 

 

6.2. GLUCOSE UPTAKE 

Chang liver cells are slow growing compared to the rapid growth of C2C12 muscle 

cells and 3T3 preadipocytes and with a very distinct function which is to maintain 

glucose homeostasis in a body and many other functions which involve metabolism 

of foreign compounds in the body. They are also considerably different in their 

glucose metabolism as liver cells use GLUT2 instead of GLUT4 which is found in 

muscle and adipocyte cells. GLUT2 activity is unresponsive to insulin treatment and 

thus does not aid to increase the rate of glucose uptake. Figure 6.4 shows the 

results obtained for the glucose uptake experiments completed in Chang liver cells. It 

is evident that MET increased glucose uptake significantly in Chang liver cells as 

compared to the CON (2.5-fold increase) which was expected. A significant increase 

in glucose uptake was seen for DC9, DC15, DC16, DC17, DC18 and MAR however 

their effect was not as prominent as that of MET. 
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Figure 6.4: A graphical representation of glucose uptake performed on Chang liver cells. 

Glucose uptake is represented by the percentage glucose taken up compared to the CON 

(n=3). DC9, DC15, DC16, DC17, DC18, MAR and MET elicit a significant increase in glucose 

uptake at 10 µM in Chang liver cells (* P<0.05 and 
# 
P<0.01 relative to the CON). 

MET acts predominantly by shifting glucose metabolism in the liver in presence of 

insulin to favour glucose uptake and glycogen production while also suppressing the 

effects of glucagon and glycogenolysis (Wiernsperger and Bailey, 1999; Kirpichnikov 

et al., 2002). It has been reported that MET increases glucose uptake at least 2-fold 

in T2DM patients (Hundal et al., 2000). This can be seen in figure 6.4 as MET 

induces a 2.5-fold increase in glucose uptake. 

Glucose uptake results for the C2C12 muscle cells increased the glucose uptake 

significantly compared to the CON (figure 6.5). All treatments had a significant 

increase relative to the CON. DC16 and DC18 show a significant increase of glucose 

uptake from that of MET. DC16 and DC18 elicit a 4-fold and 3.5-fold increase of 

glucose uptake compared to the CON, respectively; while MET increases glucose 

uptake 3-fold. DC6 and DC9 show a similar glucose uptake profile compared to 

MET. MAR significantly increases glucose uptake, however to a lesser degree than 

all other treatments (1.5 fold increase). 
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Figure 6.5: A graphical representation of glucose uptake performed on C2C12 muscles cells. 

Glucose uptake is represented by the percentage of glucose taken up compared to the CON 

(n=3). DC16 and DC18 elicits a significant increase in glucose uptake at 10 µM in adipocytes 

compared to MET (* P<0.05 and 
# 
P<0.01 relative to the MET positive control). 

Figure 6.6 illustrates the glucose uptake profile of the treatments and their effects in 

3T3-L1 adipocytes. DC1 and DC2 elicited a significant decrease in glucose uptake in 

adipocytes. As expected, MET significantly induced glucose uptake in the adipocytes 

in the presence of insulin compared to the CON. DC3, DC17, DC18 and MAR had 

also illustrated a significant increase in glucose uptake with DC17 comparing very 

well to the effects of MET in adipocytes. Based on all the findings DC17, DC18 and 

MAR were selected for further molecular studies (Western blotting and RT-PCR). 
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Figure 6.6: A graphical representation of glucose uptake performed on 3T3-L1 adipocytes. 

Glucose uptake is represented by the percentage of glucose taken up compared to the CON. 

(n=3). DC1 and DC2 elicits a significant decrease in glucose uptake at 10 µM in adipocytes and 

DC17, DC18, MAR and MET elicits a significant increase in glucose uptake at 10 µM in 

adipocytes (* P<0.05 and 
# 
P<0.01 relative to the CON). 

Oleanolic acid (DC6) was also included as it is known to increase glucose uptake in 

adipocytes and to inhibit PTP1β activity in vivo and in vitro (de Melo et al., 2010; Lin 

et al., 2008; Pollier and Goossens, 2012; Zhang et al., 2008). Adipocytes are known 

to play a vital role in diabetes control with drugs like TZD specifically targeting the 

adipocytes. Adipocytes were used as the model for molecular based studies during 

western blotting and RT-PCR as this cell type was responsive to DC17, DC18, MAR 

and MET treatments as well as portraying stability in viability studies after treatment. 

 

6.3. SDS-PAGE AND WESTERN BLOTTING 

3T3-L1 preadipocytes were successfully grown to confluence in 10 cm petri dishes, 

differentiated for 7 days to mature adipocytes, and then exposed to the respective 

treatments (DC6, DC17, DC18, MAR and MET) in triplicate for 48 hours. The 

adipocytes were lysed using the lysis buffer (annexure B; reagent 2.1). The protein 

concentration of samples (appendix 2) was quantified using the BCA assay (section 
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5.4.2.1). Figure 6.7 shows an example of one of the gels stained with Acqua stain. 

As can be seen there was an equivalent concentration of protein loaded in each well. 

 

 

 

 

 

 

 

Figure 6.7: A typical SDS-PAGE (10%) polyacrylamide gel stained with Acqua stain.  The Mw 

ladder in lane 1 is the peqGOLD IV prestained markers, lanes 2-6 and 8 are the protein lysates 

obtained for the various treatments. 

To confirm even loading, western blotting was completed using β-actin as a 

reference protein (figure 6.8). There was no significant difference between detected 

β-actin levels from the specific treatments, as can be seen in figure 6.8 after 

densitometry analysis. 

 

 

 

 

 

 

 

Figure 6.8: Densitometry analysis of β-actin using integrated density values (IDV) relative to 

the CON of the Western blot analysed (n=3). 
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Figure 6.9 illustrates the results obtained for densitometry analysis of 

phosphorylated-IRS1 (p-IRS). MET treatment had illustrated a significant increase in 

the level of p-IRS1. DC17 however had shown a significant decrease in IRS 

phosphorylation. DC6 had illustrated a decreased level of IRS1 phosphorylation 

however this was not significant. 

 

 

 

 

 

 

Figure 6.9: Densitometry analysis of p-IRS1 Western blot membrane using IDV relative to the 

CON of the Western blot analysed (n=3). (* P<0.05 and 
# 
P<0.01 relative to the CON). 

For the antibodies listed in table 5.4, non-specific binding was only observed with the 

PTP1β which was a polyclonal primary rabbit antibody. The PTP1β band could be 

identified based on molecular mass and thus results could be achieved. PTP1β 

expression was the highest for DC17 and DC6 as seen in figure 6.10. DC18 and 

MET had shown a significant decrease in PTP1β expression. 

 

 

 

 

 

 

Figure 6.10: Densitometry analyses of PTP1β using IDV relative to the CON of the Western blot 

analysed (n=3). (* P<0.05 and 
# 
P<0.01 relative to the CON). 
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6.4. RNA QUANTIFICATION 

RNA quantification was completed using the Agilent Bioanalyzer which required only 

1 µL of sample to determine an accurate concentration and integrity determination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Electropherograms of a [A] RNA ladder standard curve and [B] a sample of the 

CON RNA. On the right of each image is a digital image of the electrophoresis corresponding 

to the respective peaks in the electropherograms. As the RNA in B was extracted from 

eukaryotic mouse cells (3T3-L1 adipocytes), the two detected peaks can be seen as 18S rRNA 

and 28S rRNA. 
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Results obtained from RNA quantification are tabulated in table 6.1. The integrity of 

RNA is represented by RIN which is a value associated to the level of RNA integrity. 

The Agilent 2100 Bioanalyzer has been shown to be a reliable means of measuring 

parameters of RNA (Schroeder et al., 2006). RIN values range from 10, intact RNA, 

to 1, total degraded RNA. Results show that the RNA extracted had satisfactory 

integrity and concentration levels to proceed to cDNA synthesis. 

 

Table 6.1: A summary of the RNA quantification and relative integrity results achieved. The 

experiment was completed in triplicate and therefore symbols (‘-‘, ‘*’ and ‘o’) have been 

assigned to the groups which correspond to the protein and cDNA groups. 

Replicates Sample ID RIN (Relative integrity number) [RNA] (ng/µL) 

 

- 
 
 
 

Untreated 
control 9.8 591 

DC18 10 537 

DC17 9.5 781 

DC6 9.9 1438 

MAR 10 1361 

MET 8.7 110 

 

* 
 
 
 

Untreated 
control 10 340 

DC18 9.6 1275 

DC17 10 977 

DC6 8.5 1742 

MAR 8 2058 

MET N/A 2041 

 

O 
 
 
 

Untreated 
control 9.9 495 

DC18 10 654 

DC17 10 728 

DC6 10 562 

MAR 9.7 364 

MET 10 3590 
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6.5. cDNA QUANTIFICATION 

cDNA concentrations were quantified using a NanoDrop 2000c. For each sample, a 

spectral scan was obtained as illustrated in figure 6.12 which is representative of a 

typical absorption spectrum for the presence of nucleic acid. RNA and DNA absorb 

UV light maximally at 260 nm (Wilson and Walker, 2005).  

 

Figure 6.12: An absorption spectrum of cDNA synthesized from RNA isolated from the CON 

treatment of adipocytes. 

Nucleic acids are measured at 260 nm as the nucleotides of DNA and RNA, 

adenine, guanine, cytosine, uracil and thymine all absorb light at 260nm with 

adenine and uracil absorbing light most efficiently (www.nanodrop.com). In order to 

establish the quality of the cDNA, the A260/A280 and A260/A230 ratio of the samples was 

measured. At 280 nm some protein amino acids can absorb light thus giving an 

indication of protein contamination in a sample using a 260/280 ratio (Wilson and 

Walker, 2005). A sample of nucleic acid is generally considered as pure once the 

ratio is higher than 1.8 and any value which is considerably lower should not be 

considered as pure. At 230 nm several chemicals and compounds have the potential 

to absorb light such as carbohydrates, phenolic compounds (TRIzol) and EDTA 

(www.nanodrop.com). Some phenolic compounds and EDTA are often used as 

detergents or stabilizing chemicals in the isolation of DNA or RNA and can thus be 

carried over in the sample which is to be quantified. Establishing an A260/A230 ratio 
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can thus give an indication of this type of contamination and an acceptable level 

should be between 2 and 2.2. If the ratio which was calculated is considerably lower, 

the sample cannot be considered as pure. 

Table 6.2: A summary of the cDNA concentration and purity achieved by NanoDrop analysis. 

Purity is shown here by 260/280 and 260/230 ratios. The experiment was done in triplicate and 

therefore symbols (‘-‘, ‘*’ and ‘o’) have been given to the groups which correspond to the 

protein (table A.1) and RNA (table 6.1) groups analyzed. 

Replicates Sample ID [cDNA] (ng/µL) 260/280 260/230 

 
 

- 

Untreated 
control 1349.8 1.78 2.14 

DC18 1332.2 1.78 2.19 

DC17 1267.3 1.77 2.18 

DC6 1213.5 1.76 2.06 

MAR 1244.4 1.78 2.12 

MET 1437.1 1.76 2.16 

 
 

* 

Untreated 
control 2009.1 1.82 1.94 

DC18 1119.3 1.81 2.59 

DC17 1079.7 1.77 2.12 

DC6 2310.7 1.82 2.1 

MAR 1097.6 1.79 2.13 

MET 1510.9 1.83 2.06 

 
 

 
O 

Untreated 
control 1249.2 1.77 2.14 

DC17 1279.6 1.78 2.02 

DC18 1126.3 1.77 2.14 

DC6 1212.7 1.78 2.09 

MAR 1030.5 1.78 1.86 

MET 1135.4 1.78 2.23 

 

As can be seen in table 6.2 the cDNA was determined to be adequate for RT-PCR 

analysis. The results showed that there is a low level of protein contamination in all 

samples as the 260/280 ratios are all near to or over 1.8. The 260/230 ratio also 

illustrate that samples were pure with only one sample being as low as 1.86 while all 

others were close to or over 2.  
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6.6. REAL TIME RT-PCR OF IRS1 AND GLUT4 GENES 

Gene expression analysis was carried out with REST 2009 software. The program 

allows for the expression of target genes in experimental samples to be compared to 

the control sample using gene efficiencies for each gene analysed. Gene expression 

was analysed using YWHAZ as the housekeeping reference gene. A summary of the 

relative expression is displayed in figure 6.13. 

 

Treatment Gene Expression Std. error 95% C.I. P(H1) Result 

DC6  GLUT4 0.809 0.385-1.917 0.299-2.479 0.679 - 

 
IRS1 0.781 0.216-2.190 0.096-3.220 0.927 - 

DC17  
 
GLUT4 4.014 3.014-5.414 2.364-6.854 0 UP 

 
IRS1 4.854 3.316-7.884 2.438-10.635 0.07 - 

DC18 
 
GLUT4 2.594 1.232-4.502 0.948-5.590 0.11 - 

 
IRS1 1.955 1.024-4.157 0.723-4.843 0.22 - 

MAR 
 
GLUT4 0.853 0.544-0.1264 0.418-1.654 0.66 - 

 
IRS1 1.876 1.336-2.687 1.103-3.117 0.032 UP 

MET 
 
GLUT4 1.632 1.363-1.960 1.313-2.031 0.169 - 

 

IRS1 1.413 1.123-1.795 1.030-1.943 0.169 - 

Figure 6.13: A graphical and tabular representation of the relative expression of target genes 

for the treatments listed. Significant increase in relative expression is denoted by *. 
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From the results obtained, DC17 (figure 6.13) elicits a significant increase in GLUT4 

expression by a mean factor of 4.014 (P<0.01). DC17 was also shown to increase 

IRS1 expression by a mean factor of 4.854; however this is not a significant increase 

in expression. MAR (figure 6.13) was found to up-regulate IRS-1 expression 

significantly by a mean factor of 1.876 (P<0.05).  

DC6, DC18 and MET had shown no significant difference in expression from the 

CON. DC18 and MET increased the expression of both IRS1 and GLUT4, however  

the was not found to be significant (figure 6.13). 
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CHAPTER 7: DISCUSSION 

DM is a complex and intricate disease which involves many tissue types. Numerous 

tissue types including the pancreas and peripheral tissues such as the muscle, liver 

and fat are all known to malfunction in DM (Novack, 2010). Treatments to target 

these cell types are already in use however these can be too expensive and may 

have adverse side effects. An example of this saw rosiglitazone being withdrawn 

from the market in 2010. This is found mostly in the case of biguanides and TDZ’s 

which can create the onset of lactic acidosis and cardiac disease, respectively, 

among others. Therefore there is a need for treatments which are more available 

and less harmful. Many countries in Africa are in need of affordable treatments, DM 

education, as well as quicker, easier and more affordable methods of detecting DM. 

In Africa and other third world countries which have rich heritage and the tradition of 

medicinal plant use, it may be possible to discover a means of treatment which could 

potentially provide a solution to the issues currently found with conventional DM 

treatments. 

MAR is an example of a compound which was isolated from an indigenous Southern 

African plant (L. leonurus) where research has validated the traditional use of the 

plant as an antidiabetic treatment (Mnonopi et al., 2012). This was discovered in M. 

vulgare, a Mexican plant used for the treatments of DM like symptoms. Both L. 

leonurus and M. Vulgare extracts were investigated for their potential as DM 

treatment and it was concluded that both organic and aqueous extracts had 

antidiabetic effects (Herrera-Arellano et al., 2004; Mnonopi et al., 2012; Oyedemi et 

al., 2011; Vergara-Galicia et al., 2012). MAR was then isolated from the extracts of 

these medicinal plants and found to possess a range of medicinal uses which 

include antioxidant, cardio-protective, hypertension, antiedematogenic and analgesic 

effects (Matkowski et al., 2008; Meyre-Silva et al., 2005; Mnonopi et al., 2012; 

Stulzer et al., 2006). The most relevant of course would be its action in alleviating 

DM through insulin secretion from pancreatic β-cells (Mnonopi et al., 2012). MAR 

has thus clearly shown potential to be used for several medical treatments however 

little is known about its effect on glucose uptake in peripheral cells. Most research 

completed has been on terpinoids other than MAR. Most of the articles published on 

L. leonurus and M. vulgare have been based on alcohol and aqueous extracts. This 
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study was aimed to discover the effect of MAR and the effects of several MAR 

derivatives on glucose uptake on peripheral cells. 

Cell viability studies were successfully completed in the determination of the 

cytotoxic potential of the treatments on the cell lines. Initial screening of the 

treatments was started at 10 μM to 100 μM. Increased cytotoxicity was observed for 

oleanolic acid which decreased Chang liver cell viability in a dose dependant 

response manner (data not shown). Oleanolic acid was found to elicit a protective 

effect on the liver in low doses as an anti-inflammatory and antioxidant however at 

higher doses it is known to induce apoptosis (Lui, 2005). Due to its apoptotic 

potential, oleanolic acid was screened as a potential treatment against tumours. At 

10 μM oleanolic acid had shown to have a decreased level of cytotoxicity and thus all 

treatments were decreased to 10 μM for consequent experiments. C2C12 myocytes 

tolerated the treatments showing no significant cytotoxicity compared to the CON. 

Treatments DC1, DC6, DC9 and DC18 elicited significant protective/proliferative 

effect on the C2C12 myocytes. Chang liver cells had illustrated increased cytotoxicity 

with increasing treatment concentration and at 10 μM treatment concentration, the 

Chang liver cells showed less than 100 % viability after 2 days of exposure. DC5, 

DC6, DC16 and DC17 all elicited a significant decrease in Chang liver cell viability 

compared to the CON. 3T3-L1 adipocytes were generally tolerant to the treatments 

at a 10 μM concentration as all treatments, except DC9 and DC15, had not affected 

cell viability significantly negatively or positively compared to the CON. Cell 

proliferation by DC9 and DC15 is hypothesized to be due to a protective effect from 

general environmental effects on the cells as mature adipocytes are unable to 

accomplish mitosis (Navarrete and Real, 2012). 

At 10 μM, glucose uptake studies were completed. Although liver cells are known to 

be the primary target for MET it is also known to aid the effect of insulin induced 

glucose uptake in muscle and fat. MET is known to act on liver cells by decreasing 

glucose output through inhibition of gluconeogenesis while allowing for increased 

glucose uptake in skeletal muscle cells. This is known to be due to MET’s action on 

AMPK which is an enzyme activated by AMP, signalling AMPK that there is a 

shortage of ATP or energy in the cell (Cheng and Fantus, 2005; Zhang et al., 2012). 

MET treatment at 1 μM concentration was thus used as a control in this 

investigation. 
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Generally glucose uptake was increased in Chang liver cells for all treatments. MET 

had increased glucose uptake 2.5-fold compared to CON. Specifically DC15 

increased glucose uptake 1.5-fold. All treatments had shown a significant increase in 

glucose uptake as compared to the CON for C2C12 myocytes. Two treatments had 

elicited a significant increase of glucose uptake above that of MET, i.e. DC16 and 

DC18, increased glucose uptake 4 and 3-fold, respectively. MET caused a 3-fold 

increase compared to the CON, while DC6 increased glucose uptake a level 

equivalent equal to that of MET. DC17, DC18, MAR and MET treatments increased 

glucose uptake significantly in 3T3-L1 adipocytes (P<0.01). DC6 had also shown an 

increase in glucose uptake which can be seen on figure 6.6., however this was not a 

significant increase. 

DC16, DC17 DC18 and MAR are the most promising candidates to improve glucose 

uptake. Structurally these compounds differ substantially with DC17 and MAR having 

an intact furan ring however DC17 is conjugated with an acetoxy group (figure 3.1). 

DC18 and DC16 do not have a furan ring present and a single hydroxyl group is 

replaced with a methoxycarbonyl group. In the C2C12 muscle cells, DC18 (3T3-L1 

and C2C12) and DC16 (C2C12) best induced glucose uptake. Based on the 

structural differences of the different MAR derivatives, i.e. the presence or absence 

of the furan ring, this plays a role in the peripheral tissue type affected. In the 3T3-L1 

adipocytes, all these do have a significant effect on glucose uptake however DC17 

and MAR elicits a greater response than DC16 which suggests that the furan ring’s 

hydrophobicity contributes to the absorption of the treatment. The chemistry of DC16 

is an overall positive charge which adds to the idea that it would not be suitable for 

bioactivity in the hydrophobic cytoplasmic environment of adipocytes. 

DC6, DC17, DC18 and MAR treatments were selected for further investigation as a 

treatment for glucose uptake in 3T3-L1 adipocytes as these elicited glucose uptake 

in vitro. MET was again used as a positive control. DC6 was included as it has been 

previously documented to increase glucose uptake through a PTP1β inhibition based 

mechanism in 3T3-L1 adipocytes DC6 can therefore be useful to compare any 

treatments which may act in a similar manner (Lin el al, 2008; Zhang et al., 2008; de 

Melo et al., 2010). 
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Western blotting experiments of several target proteins included IRS1, PTP1β and β-

actin (loading control). Blotting of these proteins gave an indication of the activation 

of insulin signalling pathway under insulin treatment. Figure 6.8 illustrates the 

expression levels of β-actin in response to the treatments and can be seen that the 

β-actin expression was consistent during the experimental treatments. 

IRS1 is a protein involved in insulin signalling with several tyrosine and serine 

phosphorylation sites. Serine phosphorylation is known to be involved in insulin 

resistance as serine phosphorylation deactivates IRS1 proteins thus slowing insulin 

signalling. Thus detection of IRS1 Ser 612 phosphorylation would indicate the level 

of inactive IRS1 (Sykiotis and Papavassiliou, 2001). Figure 6.9 illustrates the level of 

Ser 612 phosphorylation in the 3T3-L1 adipocytes for the various treatments. DC17 

generate a significant decrease in phospho-Ser 612 while DC6 displayed a similar 

trend, although not statistically significant. MET illustrates a significant increase in 

phospho-Ser 612 while MAR and DC18 were both comparable to the CON. 

Detection of PTP1β expression had allowed for insight into the level of activation of 

the insulin signalling pathway through IR and IRS1 tyrosine phosphorylation. The 

results illustrate a significant increase in PTP1β expression for DC17 and DC6 while 

MET and DC18 shows a significant decrease in PTP1β expression. DC6 is a known 

inhibitor of PTP1β and in silico studies have shown that DC17 also acts as an 

inhibitor of PTP1β (table 4.1). As treatments do not decrease PTP1β expression it 

may be that their action as PTP1β inhibitors would cause a cell to express more 

PTP1β in order to achieve glucose homeostasis similar to that of the CON. DC18 

and MET on the other hand appear to act in the decrease of PTP1β expression. As 

explained previously, MET acts by activating AMPK which signals the cell that there 

is a decrease in ATP and thus induces the cell to express a “starved” phenotype and 

this promotes glucose uptake.  It may be that DC18 acts in a similar manner by 

activating certain cellular signals thereby inducing a starved phenotype, however 

further investigation would be required to conclude on this statement. DC18 presents 

as a good candidate for future studies involving insulin resistant cells as it was found 

that PTP1β was up-regulated in T2DM patients (Zabolotny et al., 2008). PTP1β is 

up-regulated as a result of inflammatory cytokines which are present in higher 

concentrations when in the obese state thus leading to insulin resistance through a 

direct increase in PTP1β expression (Vazquez et al., 2008). DC18 has shown 
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potential to decrease PTP1β, this effect should therefore be investigated on insulin 

resistant cells or an insulin resistant animal model. From the phospho-Ser 612 of 

IRS1 results it can be explained that DC17 and DC6 show a decreased level in 

inactive IRS1 due to the presence of less active PTP1β as compounds like DC6 

inhibit PTP1β. The IR therefore remains active and available for longer allowing IRS1 

docking and further activation of the insulin signalling pathway resulting in glucose 

uptake. MAR shows no deviation from the CON with regards to both PTP1β and 

IRS1 deactivation. It may be that MAR’s mechanism of action for glucose uptake is 

based on an alternative signal transduction pathway such as the Cbl/CAP or MAPK 

pathway. 

Expression analysis of GLUT4 and IRS1 was completed and normalised using the 

YWHAZ housekeeping gene in Rest software. MAR is seen to have expression 

mean factors at 1.876 (YWHAZ) for IRS. Therefore it can be concluded that MAR 

increases expression of IRS1. DC17 is seen to have an expression mean factor of 

4.014 (YWHAZ) for GLUT4. DC17 can be concluded to have increased GLUT4 

expression. 

  



81 
 

CHAPTER 8: CONCLUSION AND FUTURE RESEARCH 

The in silico inhibition and in vitro studies did not correlate, therefore a new model 

needs to be completed in software which allows for solvent effects (i.e. water 

molecules) to be taken into account (eg. GLIDE) as this may yield more accurate 

results. Refining the in silico model would reduce the research cost of screening 

numerous potential compounds. 

Mnonopi et al., (2012) and Oyedemi et al., (2011) have both revealed that L. 

leonurus extracts have antidiabetic properties through insulin secretion and glucose 

uptake in rat models, respectively. In addition, Vergara-Galicia et al., (2012) 

illustrated that M. vulgare extracts has hypoglycaemic effects in rat models. MAR, a 

compound found in both of these plants, and MAR derivatives were tested in this 

investigation. MAR, DC6, DC17, DC18 stimulated glucose uptake in adipocytes 

while DC16 and DC18 both induced glucose uptake in myocytes to a level higher 

than metformin. This investigation proves that MAR acts as an insulin sensitizer of 

myocytes and adipocytes in vitro and can be concluded to be the active compound in 

L. leonurus. 

The mechanism underlying the action of the selected MAR and MAR derivatives in 

increasing glucose uptake is still vague. However from the investigations conducted 

the following can be concluded:  

1. DC6 was shown to act as an inhibitor of PTP1β in vitro, therefore acting as 

sensitizer of the insulin signal in adipocytes and myocytes. 

2. DC17 was found to elicit a decrease in Ser 612 phosphorylation of IRS1, 

increase IRS1 expression (not significant) and an increase in GLUT4 

expression (significantly).  

3. DC18 elicited a significant decrease in PTP1β expression in vitro. A decrease 

in PTP1β expression facilitated an increase in the insulin signal. 

4. MAR was found to increase IRS-1 expression which led to a better transfer of 

the signal through the insulin signalling pathway. 

Further investigation would include construction of a MAR derivative with maximal 

glucose uptake associated bioactivity in adipocytes, myocytes and hepatocytes. A 

compound of this nature would need to have the correct pharmacokinetics, such as 
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the ability to be absorbed into target cells, have bioavailability and not be cytotoxic. 

In this investigation, DC1 and DC3 did not perform effectively which may have been 

as a result of their net charge and thus lack of bioavailability. DC5 elicited glucose 

uptake in myocytes alone and can be attributed to its hydrophobic nature which 

would potentially not allow for interaction with hydrophilic/charged active sites (figure 

3.1). DC16 (myocytes) and DC18 (myocytes and adipocytes) both lack the furan ring 

however both increase glucose uptake. This can be credited to the added 

methoxycarbonyl group on DC16 and the added hydroxyl group on DC18 (figure 

3.1). DC17 and MAR both have an intact furan ring however and were found to 

increase glucose uptake in all cell types tested (figure 3.1). The proposed MAR 

derivative would be composed of the diterpene and furan ring scaffold of MAR yet 

not be charged. A functional group similar to that of DC16 (methoxycarbonyl group), 

DC17 (acetoxy group) and DC18 (hydroxyl) would also be required, therefore adding 

to the polarity of the molecule. 

This investigation focused on the ability of the various MAR derivative treatments to 

act on the target PTP1β. Although this study has shown that the MAR derivatives are 

not very suitable for inhibition of PTP1β, an investigation could be focused on the 

ability for these compounds to elicit an inhibitory effect in other targets. The 

Wortmannin insensitive and MAPK pathways were not investigated and could hold 

evidence to the mechanism of action of several of the treatments. In addition, there 

are many negative regulators of the insulin signalling pathways which could be 

affected (i.e. SOCS proteins) which have a similar function to PTP1β. PPARγ 

provides another target as compounds which act as PPARγ agonists are known to 

alleviate DM symptoms. As this investigation focussed on the glucose uptake 

potential in normoglycaemic cells, a future investigation may be considered to 

discover the effect the MAR derivatives would have on glucose uptake in insulin 

resistance. This will provide additional insight on the potential of these compounds. 
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ANNEXURE A: LIST OF REAGENTS AND KITS (PRODUCT, CATALOGUE 

NUMBER AND SUPPLIER) 

 

1. KITS 

Product 

Agilent RNA 6000 Nano Assay kit 

Catalogue number 

5067-1551 

Supplier 

Agilent Technologies 

Nucleospin RNA/Protein 740933.50 Separations 

Pierce BCA assay kit 23227 Thermo Scientific 

QuantiTect Reverse Transcriptase kit 205313 Qiagen 

 

2. ANTIBODIES 

Product 

Anti-mouse IgG, AP-linked 

Catalogue number 

7054 

Supplier 

Cell Signalling Tech. 

Anti-rabbit IgG, AP-linked 7056 Cell Signalling Tech. 

IRS-1 (L3D12) Mouse mAb 3194 Cell Signalling Tech. 

Phospho-IRS-1 (Ser 612) (L7B8) Mouse mAb 3193 Cell Signalling Tech. 

PI3 Kinase p85 (19H8) Rabbit mAb 4257 Cell Signalling Tech. 

Phospho-PI3 Kinase p85 (Tyr 485)/p55 (Tyr 199) 

Antibody 

4228 Cell Signalling Tech. 

PTP1β (N-19) Sc-1718 Santa Cruz Biotech. 

 

3. REAGENTS 

Product 

4-aminoantipyrine 

Catalogue number 

06800 

Supplier 

Fluka 
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10 x Protease inhibitor cocktail P2714-1BT2 Sigma 

40% Acrylamide/Bis solution 161-0148 Bio-Rad 

Alkaline phosphatase P0114-10kU Sigma 

Ammonium persulfate 1123760 Merck 

β-mercaptoethanol 21985 Gibco 

SigmaFast BCIP/NBT tablets B5655-5TAB Sigma 

Bromophenol blue 011002 Hopkin and Williams Ltd. 

Dimethylsulfoxide SAAR1865000KF Merck 

Dulbecco’s modified eagles medium D5648-10L Sigma 

Dithiothreitol 43819-5G Fluka 

Ethylenediaminetetra acetic acid BB100935V Anal AR 

Elite fat free powdered milk   

Foetal calf serum 50613 Biochrom AG 

Glucose oxidase from A. niger G0543-10kU Sigma 

Glutathione reduced 1323393 Boehringer Mannheim 

Glycerol 2676500LC Merck 

Glycine 1.04169.100 Merck 

Horseradish peroxidase P8375-5kU Sigma 

Hydrochloric acid 37% UN1789 Merck 

HEPES H4034-100G Sigma 

Insulin, Human 11376497001 Merck 

Potassium chloride 5042020EM Merck 

1,1-Dimethylbiguanide Hydrochloride 04635-500MG Fluka 

Methanol SAAR4164060LP Merck 

Tetrazolium blue (MTT) M1415.0005 Duchefa Biochemies 
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pNPP 71768-25G Sigma 

Phenol P3653 Sigma 

PTP1β SRP0215 Sigma 

Rosiglitazone 71740 Biocom Biotech 

RPMI 1640 SH30255.01 Gibco 

NaN3 S2480 Minema 

Sodium Chloride 779400 SMM instruments 

Sodium dihydrogen phosphate anhydrous S9820 Minema 

di-Sodium hydrogen orthophosphate 5822860EM Merck 

SDS 161-0302 Bio-Rad 

TEMED 161-0800 Bio-Rad 

Triton X-100 93443 Fluka 

Tris 1.08382.0500 Merck 

Tween-20 P1379-100ML Sigma 
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ANNEXURE B: REAGENT PREPARATION 

1. Glucose assay reagent preparation 

 

Phosphate buffer preparation: 

1. Solution A: 7 g NaH2PO4 in 100 mL water 

2. Solution B: 9.2 g Na2HPO4 in 200 mL water 

3. Add 10 mL of solution A to 40 mL of solution B and dilute with water to 

achieve a final volume of 1.3 L. 

 

Add the following to 100 mL phosphate buffer: 

 

0.028 g  Phenol 

0.008 g 4-aminoantipyrine 

0.074 g EDTA 

0.01 g  Horseradish peroxidase 

65 μL   Glucose oxidase 

 

 

2. SDS-PAGE 

2.1. Cell lysis buffer for protein isolation 

50 mM  Tris-HCl at pH 8.0 

150 mM  NaCl 

0.02%  NaN3 

1%   Triton X-100 

1%  Protease inhibitor 

 

2.2. Solution A 

40%  Acrylamide/Bis solution 

 

2.3. Solution B 

1.5 M   Tris-HCl, pH 8.8 
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2.4.  Solution C 

0.5 M  Tris-HCl, pH 6.8 

 

2.5. Solution D 

10% (w/v) SDS 

 

2.6. Stacking gel 

3.213 mL dH2O 

1.25 mL Solution C 

50 µL  Solution D 

0.488  Solution A 

5 µL  TEMED  

25 µL  10% Ammonium persulfate 

 

2.7.  10% polyacrylamide gel 

4.849 mL dH2O 

2.5 mL Solution B 

100 µL Solution D 

2.5 mL  Solution A 

5 µL  TEMED 

50 µL  10% Ammonium persulfate 

 

2.8. 5 x Electrode buffer 

5 g  Tris 

43.2 g  Glycine 

3g  SDS 

600 mL dH2O 

 

2.9. Double strength sample buffer 

2 mL  Solution C 

1.6 mL glycerol 

3.2 mL Solution D 
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0.4 mL 0.2% Bromophenol blue 

0.8 mL  β-mercaptoethanol 

 

3. Western Blotting 

3.1. Transfer Buffer 

25 mM  Tris 

192 mM  Glycine 

20%   Methanol 

 

3.2. TBS-Tween 20 (pH 7.4) 

50 mM  Tris-HCl 

0.9%   NaCl 

0.1%  Tween-20 

 

3.3. Blocking agent 

2%  Fat free powdered milk 

0.02%  NaN3 

1 L  TBS tween-20 

 

3.4. Antibody dilution buffer 

1 L  TBS 

0.2%  Fat free powdered milk 

 

3.5. BCIP/NBT detection reagent 

2  BCIP/NBT tablets 

50 L  dH2O 

 

4. PTP1β assay 

4.1.  PTP1β reconstitution buffer 

45 mM  Tris-HCl, pH 8.0 

124 mM  NaCl 

2.4 mM  KCl 

3 mM   DTT 
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18 mM  Glutathione 

10%   Glycerol 

 

4.2. PTP1β assay buffer 

50 mM  HEPES, pH 7.4 

2 mM   EDTA 

3 mM   DTT 

100 mM  NaCl 

Adjustable pNPP 

 

5.1. BCA assay reagent A (1L) 

10 g   BCA 

20 g   Sodium carbonate 

1.6 g  Sodium tartrate 

9.5 g  Sodium bicarbonate 

pH   11.25 

 

5.2. BCA assay reagent B 

4%   CuSO4 
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APPENDIX 1: FIGURES NOT SHOWN IN TEXT 

A Figures: Determination of optimal enzyme (PTP1β and ALP) concentrations for 

inhibition studies. 

 

 

 

 

 

 

 

 

 

Figure A.1: A standard curve illustrating the increase in absorbance as a function of ALP 

concentration. A concentration of 10 mU was chosen for the completion of ALP inhibition 

studies 

 

 

 

 

 

 

 

 

 

Figure A.2: A standard curve illustrating the increase in absorbance as a function of PTP1β 

concentration. A concentration of 320 mU was chosen for the completion of PTP1β inhibition 

studies. 
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B Figures: Examples of progress curves plotted for PTP1β. 

 

Figure B.1: Progress curves for PTP1β with DC9 as the inhibitor at 75 mM pNPP concentration. 

DC9 concentrations are shown in the key. 

 

 

Figure B.2: Progress curves for PTP1β with DC9 as the inhibitor at 25 mM pNPP concentration. 

DC9 concentrations are shown in the key. 
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C Figures: Double Dixon plots were used in the determination of Ki values. Double 

Dixon plots are shown here for every inhibitor tested against PTP1β. 

 

Figure C.1: A double Dixon plot for compound DC1 on PTP1β. 

 

Figure C.2: A double Dixon plot for compound DC2 on PTP1β. 
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Figure C.3: A double Dixon plot for compound DC3 illustrating an inhibitory action on PTP1β 

(Ki = 2.3 µM). 

 

 

Figure C.4: A double Dixon plot for compound DC5 illustrating an inhibitory action on PTP1β 

(Ki = 33 µM). 
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Figure C.5: A double Dixon plot for compound DC6 illustrating an inhibitory action on PTP1β 

(Ki = 0.047 µM). 

 

 

Figure C.6: A double Dixon plot for compound DC9 illustrating an inhibitory action on PTP1β 

(Ki = 2.1 µM). 
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Figure C.7: A double Dixon plot for compound DC15 (MAR) on PTP1β. 

 

 

Figure C.8: A double Dixon plot for compound DC6 illustrating an inhibitory action on PTP1β 

(Ki = 6 µM). 
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Figure C.9: A double Dixon plot for compound DC17 on PTP1β. 

 

 

Figure C.10: A double Dixon plot for compound DC18 illustrating an inhibitory action on PTP1β 

(Ki = 15.5 µM). 
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Figure C.11: A double Dixon plot for MET illustrating an inhibitory action on PTP1β (Ki = 4.1 

µM). 

 

D Figures: LB plots were used to investigate the mode of enzyme inhibition 

displayed. LB plots are shown for all those which exhibit an inhibition against PTP1β. 

 

Figure D.1: An LB plot illustrating the mixed mode of inhibition on PTP1β by compound DC3. 
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Figure D.2: An LB plot illustrating the competitive mode of inhibition on PTP1β by compound 

DC5. 

 

 

 

Figure D.3: An LB plot illustrating the competitive mode of inhibition on PTP1β by compound 

DC6. 
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Figure D.4: An LB plot illustrating the mixed mode of inhibition on PTP1β by compound DC9. 

 

 

Figure D.5: An LB plot illustrating the competitive mode of inhibition on PTP1β by compound 

DC16. 
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Figure D.6: An LB plot illustrating the competitive mode of inhibition on PTP1β by compound 

DC18. 

 

Figure D.7: An LB plot illustrating the competitive mode of inhibition on PTP1β by MET. 
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E Figures: Double Dixon plots were used in the determination of Ki values. Double 

Dixon plots are shown here for every inhibitor tested against ALP. 

 

Figure E.1: A double Dixon plot for compound DC1 on ALP. 

 

 

Figure E.2: A double Dixon plot for compound DC2 on ALP. 
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Figure E.3: A double Dixon plot for compound DC3 and on ALP. 

 

 

Figure E.4: A double Dixon plot for compound DC5 and on ALP. 
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Figure E.5: A double Dixon plot for compound DC6 and its on ALP. 

 

 

Figure E.6: A double Dixon plot for compound DC9 illustrating its inhibitory effect on ALP (Ki = 

17 µM). 
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Figure E.7: A double Dixon plot for compound DC15 (MAR) on ALP. 

 

 

Figure E.8: A double Dixon plot for compound DC16 illustrating an inhibitory effect on ALP (Ki 

= 14 µM). 
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Figure E.9: A double Dixon plot for compound DC17 on ALP. 

 

 

Figure E.10: A double Dixon plot for compound DC18 on ALP. 
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Figure E.11: A double Dixon plot for compound MET on ALP. 

 

 

F Figures: MTT standard curves. 

 

Figure F.1: MTT standard curve constructed using 3T3-L1 adipocytes (R2 = 0.9871; n = 3). 
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Figure F.2: MTT standard curve constructed using C2C12 myocytes (R2 = 0.9963; n = 3). 

 

 

Figure F.3: MTT standard curve constructed using Chang liver cells (R2 = 0.9997; n = 3). 

Cell no. 
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APPENDIX 2: TABLES NOT SHOWN IN TEXT 

Table A.1: A summary of the protein quantification achieved showing the process of 

converting data from absorbance values to the volume loaded per well. The experiment was 

done in triplicate and therefore symbols (‘-‘, ‘*’ and ‘o’) have been given to the groups which 

correspond to the RNA and cDNA groups. 

Replicates Treatment Average 
Absorbance 

(562 nm) 

[Protein] 
(μg/μL) 

Loaded to gel 
(μL) 

 

 

- 

Untreated 
control 1.131 2.282 10.95 

DC18 0.710 1.432 17.45 

DC17 1.269 2.561 9.76 

DC6 1.096 2.211 11.30 

Marrubiin 1.162 2.343 10.67 

Metformin 0.870 1.755 14.24 

 

 

 

* 

Untreated 
control 1.047 2.112 11.83 

DC18 0.666 1.345 18.59 

DC17 1.148 2.316 10.79 

DC6 1.164 2.348 10.64 

Marrubiin 1.095 2.208 11.32 

Metformin 1.058 2.135 11.71 

 

 

 

O 

Untreated 
control 0.905 1.825 13.69 

DC18 0.781 1.576 15.86 

DC17 1.167 2.355 10.61 

DC6 1.088 2.195 11.39 

Marrubiin 1.132 2.284 10.95 

Metformin 0.847 1.709 14.62 
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