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Abstract

This thesis is concerned with the qualitative and quantitative properties of so-

lutions of certain classes of ordinary differential equations (ODEs); in particular

linear boundary value problems of second order ODE’s and non-linear ODEs of

order at most four. The Lyapunov’s second method of special functions called Lya-

punov functions are employed extensively in this thesis. We construct suitable com-

plete Lyapunov functions to discuss the qualitative properties of solutions to certain

classes of non-linear ordinary differential equations considered. Though there is no

unique way of constructing Lyapunov functions, We adopt Cartwright’s method to

construct complete Lyapunov functions that are required in this thesis. Sufficient

conditions were established to discuss the qualitative properties such as bounded-

ness, convergence, periodicity and stability of the classes of equations of our focus.

Another aspect of this thesis is on the quantitative properties of solutions.

New scheme based on interpolation and collocation is derived for solving initial

value problem of ODEs. This scheme is derived from the general method of deriving

the spline functions. Also by exploiting the Trigonometric identity property of the

Chebyshev polynomials, We develop a new scheme for approximating the solutions

of two-point boundary value problems.

These schemes are user-friendly, easy to develop algorithm (computer program) and

execute. They compare favorably with known standard methods used in solving the

classes of problems they were derived for.
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Preface

Differential equations are essential tools in scientific modeling of physical problems

which find relevance in almost every sphere of human endeavor from Agricultural

sciences, Engineering, Medical science, Physical sciences to Social sciences. Two

broad streams are distinguished in the development of the subject of differential

equations. These are: an endeavor to obtain a definite or one of the definite types,

either in closed form, which are rarely possible or else by some process of approxi-

mation. This is referred to as the Quantitative Theory; and an endeavor to abandon

all attempts to reach an exact or approximate solution but strives to obtain infor-

mation about the whole class of solution. This is called the Qualitative Theory.

This thesis is concerned with the qualitative and quantitative properties of solu-

tions of certain classes of ordinary differential equations (ODEs); in particular linear

boundary value problems of second order ODE’s and non-linear ODEs of order at

most four.

The Lyapunov’s second method of special functions called Lyapunov functions is

employed extensively in this thesis. We construct suitable complete Lyapunov func-

tions to discuss the qualitative properties of solutions of certain classes of non-linear

ordinary differential equations considered. Though there is no unique way of con-

structing Lyapunov functions, we adopt Cartwright’s method to construct complete

Lyapunov functions that are required in this thesis. Sufficient conditions were es-

tablished to discuss the qualitative properties such as boundedness, convergence,

periodicity and stability of the classes of equations of our focus.

Another important aspect of this thesis is on the quantitative properties of solu-

tions.

viii



ix

New scheme based on interpolation and collocation is derived for solving initial

value problem of ODEs. This scheme is derived from the general method of deriving

the spline functions. Also, by exploiting the Trigonometric identity property of the

Chebyshev polynomial, we developed a new scheme for approximating solutions of

two-point boundary value problems of linear differential equations.

These schemes are user-friendly, easy to develop an algorithm and execute. They

compete favorably with known standard methods used in solving the classes of prob-

lems they were derived for.

In Chapter 1 we give background information as it relates to the qualitative and

quantitative properties of solutions of ODE’s. Also our research objectives, litera-

ture review as well as the outline of research findings feature in this chapter.

Chapter 2 gives some basic definition on the qualitative properties of solution of

ODEs followed by the definition and properties of Lyapunov function (the tool em-

ployed for the qualitative properties of solution). Basic Theorems involving the use

of Lyapunov functions, as well as the procedure of constructing suitable complete

Lyapunov function for the differential equations of orders at most four, also featured

in this Chapter. In the second section, we give an overview of the interpolation and

approximations in quantitative properties of solutions as well as the characteristics

of interpolation methods. The spline method and their properties as well as the

interpolation spectral methods.

Chapter 3 gives criteria for global asymptotic stability, boundedness and exis-

tence of periodic solutions to certain non-linear non-autonomous differential equa-

tion of the second order with less restriction on the non-linear terms.

The global asymptotic stability, boundedness as well as the ultimate boundedness

of solutions of a general third order non-linear differential equation are investigated

with the use of complete Lyapunov function in Chapter 4.



x

Chapter 5 gives sufficient conditions for the existence of a stable (globally asymp-

totically stable), bounded and uniform ultimate bounded solution to a certain fourth

order non-linear differential equation using a single complete Lyapunov function

without the use of a signum function or any stringent condition on the non-linear

terms is given.

The convergence of solutions is a very important and desirable quality in the

qualitative studies. In chapter 6 of this thesis, sufficient criteria for the existence

of convergence of solutions for a certain class of fourth order non-linear differential

equations using the Lyapunov’s second method are given.

Our results on the quantitative studies of solutions of ODEs were presented in

chapter 7. In the first part of this chapter, New scheme for solving initial value prob-

lems of ordinary differential equations is derived. Starting from the general method

of deriving the spline function, the scheme is developed based on interpolation and

collocation. On the second part, an accurate ’Spectral’ method referred to as the

pseudo-pseudo-spectral method to approximate the solutions of two-point boundary

value problems of linear ordinary differential equations was presented. Exploiting

the Trigonometric identity property of the Chebyshev polynomial, we were able to

obtain approximate solution which competes favorably with solutions obtained with

standard and well known Spectral methods.

The conclusion and suggestions for further studies on the subject of this thesis is

presented in the last chapter.

A special word of appreciation goes to M. L Cartwright and A.U. Afuwape whose

earlier works are of great benefit to this work. Also many thanks to Dr. S. L. Ngcibi

and Prof. V. Murali for their painstaking in proof reading the final draft of this

thesis.
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Chapter 1

INTRODUCTION

1.1 Background

Calculus was the greatest achievement of the seventeenth century and out of it

stemmed major branches of mathematics: Differential Equations, Infinite Series,

Differential Geometry, the Calculus of Variations, Complex Analysis and many oth-

ers ([75]).

The history of Ordinary Differential Equations (ODEs) goes all the way back to the

XVII century when two great scientists Isaac Newton and Gottfried Leibniz intro-

duced calculus which came to place from the concept of functions ([75]).

Differential equations are essential tools in scientific modeling of physical prob-

lems which found their relevance in almost every sphere of human endeavor from

Agricultural Sciences, Engineering, Medical Science, Physical Sciences to Social Sci-

ences. Among the earlier work on differential equations, the works of Euler and

Lagrange stand out. They first worked on the theory of small oscillations and con-

sequently also, the theory of linear system of ordinary differential equations.

In the development of the subject of differential equations, one may distinguish

two broad distinct streams namely:

• An endeavor to obtain a definite or one of the definite types, either in closed

1



1.1. Background 2

form, which are rarely possible or else by some process of approximation. This

we shall refer to as the Quantitative Theory.

• An endeavor to abandon all attempts to reach an exact or approximate solu-

tion, one strives to obtain information about the whole class of solution. This

we shall call the Qualitative Theory.

There are lots of aspects to learn about the solutions to any given differential

equation without solving it. For example, consider the equation ẋ = f(x); we can

find the equilibrium points by finding the zeros x̃ of f . The stability can often be

determined by examining the eigenvalues of the derivatives; when this fails, we can

still determine the stability by looking at the effects of the non-linear terms. Some

of the qualitative questions that can be asked about the solutions are:

1. are there any periodic solution?

2. are the solutions stable?

and

3. how does the system respond to parameter changes?

The first person to carry out a major investigation in the line of the quali-

tative theory and hence the development of the “qualitative theory of differential

equations” was Henry Poincaré (see [22]). This qualitative theory is now the most

actively developing area of the theory of differential equations, with most important

applications in diverse areas such as Engineering, Economics, Physical and Biologi-

cal sciences.

It is well known that mathematical formulations of many physical problems often

result in differential equations that are non-linear. In many cases, it is possible to

replace a non-linear differential equation with a related linear differential equation

that approximates the actual non-linear equation close enough to give useful results.

Often, such linearization is not possible or feasible; when it is not, the original non-

linear equation must be tackled. Much has been done on the theory and method

of dealing with the linear differential equations in Mathematics but just little of
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general nature is known about non-linear differential equations.

By non-linear differential equations, we are referring to equations where the un-

known functions and their derivatives occur strongly coupled with at least one of the

terms of the expressions. In general, the study of non-linear differential equations is

restricted to a variety of special cases and the method of solution usually involves

one or more of a limited number of different methods. There are several important

differences between linear differential equations and non-linear differential equations

for instance, for the linear ordinary differential equations, it is possible to derive a

closed-form expressions for the solutions of the equations whereas this is not pos-

sible in general for the non-linear differential equations. As a consequence, it is

desirable to be able to make predictions about the behavior (qualitative analysis)

of non-linear ordinary differential equations even in the absence of the closed-form

expressions for the solution of the equations.

The analysis of non-linear ordinary differential equations makes use of a wide

variety of approaches and mathematical tools than does the analysis of linear dif-

ferential equations. The main reason for this variety is that no tool or methodology

in non-linear differential equations analysis is universally applicable to handle them

in a fruitful manner.

Close to half a century now, great efforts have been devoted to the study of qualita-

tive theory of non-linear differential equations, to be precise higher orders non-linear

differential equations. During these periods, new methods and outstanding results

have appeared. These were extensively summarized in the monograph of [113]. The

major directions which must be emphasized in this context, consist in the investiga-

tion of solution of non-linear differential equations involving boundedness, stability,

periodicity and convergence of solutions.

Some of the techniques used in the investigation of these qualitative properties

of solutions include the Lyapunov’s Second Method which involves the construction

of a suitable positive definite function whose derivative is negative definite. The
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frequency domain method is another method employed in the investigation. This

method involves the study of location of the characteristic polynomial roots in the

complex plane. We can also mention the topological degree method which demand

the verification of continuity properties of a certain operator and the proof of exis-

tence of a particular a-priori bound. Each of these methods has its limitations, for

instance, the limitation of the Lyapunov’s Second Method is on the non-unique way

of constructing suitable Lyapunov function; the frequency domain method though

overcomes the problem of constructing Lyapunov’s functions, it is narrower in scope

than the Lyapunov’s Second Method (see e.g. ([116]). The Topological Degree

Methods on the other hand are mainly used in proving existence of periodic solu-

tions.

This thesis, in one way, is concerned with the following qualitative properties of

solutions:

• boundedness,

• convergence,

• periodicity,

• stability;

for differential equations of the second, third and fourth order with different

combinations of non-linear terms.

The following classes of equations are considered;

ẍ(t) + a(t)g(ẋ) + b(t)h(x) = p(t;x, ẋ) (1.1.1)

...
x +ϕ(x, ẋ)ẍ+ f(x, ẋ) = p(t;x, ẋ, ẍ), (1.1.2)

x(iv) + a
...
x +bẍ+ g(ẋ) + h(x) = p(t), (1.1.3)

x(iv) + a
...
x +f(x, ẋ)ẍ+ g(ẋ) + h(x) = p(t), (1.1.4)

where the functions f, g, h and p are all continuous in their respective arguments.

Equations of the form (1.1.1)-(1.1.4) are not only of theoretical importance but
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also of practical importance. For example, Equations (1.1.1) and (1.1.2) play an

important role in the phase locked loop model realized by T.V. Systems. See for

instance [8] and [9]; Equations (1.1.3) and (1.1.4) with various combinations of the

non-linear and forcing terms can be applied in the modeling for automatic control

in Television systems realized by means of R-C filters, see for instance [7]. These

and their fifth order counterparts also have applications in some three-loop-electric-

circuit problems and control theory (see [114])

Definition 1.1.1

Let

ẋ = f(t, x(t)) (1.1.5)

The solution of Equation (1.1.5) is said to converge if given any two solutions x1(t)

and x2(t) of the Equation (1.1.5) x2(t)− x1(t)→ 0 as t→∞.

Definition 1.1.2

The solution x(t) of Equation (1.1.5) is said to be periodic if x(t) = x(t + T ) for

T > 0,−∞ < t <∞ for all t. T is called the period of x.

Definition 1.1.3

The solution x(t) of the Equation (1.1.5) with f(t, 0) = 0 is said to be stable if

for each ε > 0 and t0 = 0, there exists δ > 0 such that ‖x0‖ < δ and t ≥ t0 imply

‖x(t, t0, x0)‖ < ε.

Definition 1.1.4

The solution x(t) of Equation (1.1.5) is said to be bounded if there exists a β > 0

and there exists a constant M(M > 0) such that ‖x(t, t0, x0)‖ < M whenever

‖x0‖ < β, t ≥ t0.

For further expositions on the above definitions, see for instance [24], [30], [56], [57]

and [135].

Stability is one of the central properties in System and Control Theory Engi-

neering. From a practical point of view, one of the most important properties that
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a system must satisfy is that it has to be stable, otherwise the system is useless and

potentially chaotic. The theory of stability has got rich result and could be widely

used in concrete problems of the real world. In some cases, a system may be stable

or asymptotically stable in theory but it is actually unstable in practice because

the stable domain or the domain of attraction is not large enough to allow desired

deviation to cancel out. On the other hand, the desired state of a system sometimes

may be mathematically unstable and yet the system may oscillate sufficiently near

this desired state that its performance is acceptable; that is, it is stable in practice

([77] and [78]). Extreme stability, that is when the difference of each pair of solu-

tions tends to zero as time increases infinitely (convergence of solutions) is also of

practical importance.

The convergence property of systems that are stable is important both theoretically

and in applications, since small perturbations from the equilibrium point imply that

the trajectory will return to it when time goes to infinity.

Our method of approach to study the qualitative properties of this thesis will

be the Lyapunov’s Second Method. Over the years vast outflow of research and

publications has resulted from the use of the Lyapunov’s Second Method (or direct

method) of stability analysis.

This work stems from the appearance of the original work of Lyapunov (or Liapunov

as it appears in some literature) in 1892, more than a century ago, but only in the

half century has this concept been appreciated to the point where workers in the

area of stability of dynamical systems and automatic control are aware of its appli-

cation.

The application of the Lyapunov method lies in constructing a scalar function (say

V ) and its derivatives such that they possess certain properties. When these prop-

erties of V and V̇ are shown to be satisfied, the stability behavior of the system is

known (see [54]).

Because of the difficulties surrounding the construction of suitable Lyapunov func-

tions to study non-linear systems, numerous techniques have been proposed in the

literature. These methods are summarized by [113]. To be specific, the construc-
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tion of suitable Lyapunov function shall rest and depend solely on the approach of

Cartwright (see [28]). See for example other papers where this approach was used:

[2-5], [28], [33]-[35], [41]-[45] and [123]-[127].

However, solution of differential equations is of great importance to the Engi-

neers who will want to know what the solution is before concerning themselves with

the behavior of the solution. Unfortunately, not all differential equations can be

solved analytically. To overcome this problem a search for an approximate solution

is sought. This gives rise to numerical methods for solving ODEs.

The pioneering and most famous of the methods are the Euler Forward and Back-

ward methods named after Leonhard Euler ([75]). Most significant contributions

were given by Adams and Bashfort (1883) who developed linear multi step meth-

ods (LMMs), Runge (1895), Kutta (1901) and Heun (1900) came up with the most

celebrated method which is called the Runge-Kutta (RK) method. These methods

fall within the class of step-by-step initiatives.

The use of special functions to approximate solution of ODEs also came into

the picture but these found their ways much in the Partial Differential Equations,

methods like the Weighted Residual method and the Spectral methods. There are

many other numerical methods for solving ODEs that have been developed. Some

overviews of these can be found in [13], [21], [27], [39], [58], [69], [70], [71], [72],

[79]-[80], [81], [82], [92], [108] and [109].

Suffice to note that there is no single numerical method to solve all forms of ODEs.

Each of the methods developed so far are restrictive to the classes of equations they

were developed for. Also, their method of derivation, implementation and accuracy

remains the subject of continuous improvements.

The solution or the behavior of solution of these ODEs when it exists is of great

importance. Efforts are made by researchers to come up with accurate methods for

solving them or provide reliable information on the behavior of such solutions, more

so since all physical problems that are modeled into ODEs may not be the same
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though they may seem to look alike, yet, the behavior of their solution may not be

the same.

1.2 Research Aims and Objectives

The following are the proposed objectives of this thesis:

• To establish sufficient criteria for the qualitative properties of solution of the

following classes of differential equations;

ẍ+ f(t;x, ẋ) + g(t;x) = p(t;x, ẋ) (1.2.1)

...
x +f(x, ẋ)ẍ+ g(x, ẋ) + h(x) = p(t;x, ẋ, ẍ), (1.2.2)

x(iv) + f(x, ẋ, ẍ,
...
x) + g(x, ẋ, ẍ) + h(x, ẋ) + l(x) = p(t;x, ẋ, ẍ,

...
x), (1.2.3)

Where the functions f, g, h, l and p are all continuous in their respective argu-

ments.

• To find suitable numerical technique(s)/scheme(s) to solve initial value prob-

lems (IVPs) of ODEs in general.

• To find accurate approximation technique for the solution of two-point bound-

ary value problems (BVPs) of ODEs in general.

1.3 Literature Review

The study of qualitative behavior of solutions of differential equations started in the

latter part of the nineteenth century and became a subject of intense research since

1940. Most investigations in this direction are of local character. The behavior of

solution is studied in a sufficiently small neighborhood of a given solution, e.g in a

neighborhood of stationary point or of a periodic solution. The solution becomes

different if the investigation is made in the large. In this case, the examined system

and a certain domain are given and one has to study all the solutions which are

situated in this domain or to find all solutions of a given family which are situated
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in the same domain.

The first direct reference as far as we know toward this approach is the work of

Poincaré ((1879) see [21]). Ever since this work appeared, there has been an intensi-

fied interest among researchers to explore its richness. There is a substantial amount

of literature dealing with numerous qualitative behavior of solutions of differential

equations. These have been summarized in the monographs of [37], [56-57], [59],

[76], [113], [115] and [116].

Lyapunov (1892) proposed a fundamental method for studying the problem of

stability by constructing functions known as Lyapunov functions in the modern par-

lance. This function is often represented as V (t, x) defined in some region or the

whole state phase that contains the unperturbed solution x = 0 for all t > 0 and

which together with its derivative V̇ (t, x) satisfy some sign definiteness. The follow-

ing definitions of stability were given by Lyapunov.

Definition 1.3.1 [Lyapunov (1892)]

Consider the system

Ẋ = f(t;X) (1.3.1)

where X denotes an n-dimensional vector and f(t;X)(f : I ×<n → <n, I = [0,∞))

is continuous. Let X(t;X0, t0) be a solution of the Equation (1.3.1) through (X0, t0),

then the trivial solution X(X0, t0) = 0 of the system (1.3.1) is said to be stable at

t = t0, provided that for arbitrary positive ε > 0, there is a δ = δ(ε, t0) such that

whenever ‖X0‖ < δ, the inequality ‖X(t;X0, t0)‖ < ε is satisfied for all t ≥ t0.

Definition 1.3.2[Lyapunov (1892)]

The trivial solution X(t;X0, t0) of the system (1.3.1) is said to be asymptotically

stable if it is stable, and for each t0 ≥ 0, there is an η > 0 such that ‖X0‖ < η

implies ‖X(t;X0, t0)‖ → 0 as t→∞. If in addition all solutions tend to zero, then

the trivial solution is asymptotically stable in the large.

Lyapunov further gave a result on stability as follows:
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Lyapunov’s Theorem on Stability [Lyapunov (1892)]

Suppose there is a function V which is positive definite along every trajectory of

(1.3.1), and is such that the total derivative V̇ is semi definite of opposite sign (or

identically zero) along the trajectory of (1.3.1). Then the perturbed motion is sta-

ble. If a function V exists with these properties and admits an infinitely small upper

bound, and if V̇ is definite (with sign opposite of V ), it can be shown further that ev-

ery perturbed trajectory which is sufficiently close to the unperturbed motion X = 0

approaches the latter asymptotically.

As a direct consequence of this result, the Lyapunov’s theorem on instability is

thus deduced from the unchanging sign of V and its derivative. (i.e. if V and its

derivative are of the same sign we have what is known as Lyapunov’s theorem on

instability.)

The existence of a Lyapunov function V that satisfies condition of the Lyapunov’s

theorem on stability and asymptotic stability has been studied by a number of re-

searchers. Massera [90-91] proved that if f(t,X) in the system (1.3.1) of perturbed

motion is periodic in t and continuously differentiable, then there exists a contin-

uously differentiable Lyapunov function in a neighborhood of the asymptotically

stable unperturbed motion X(t; t0, X0) = 0 while for the case in which f(t,X) is

continuously differentiable, Malkin (see [76] pg.18) gave necessary and sufficient con-

ditions for existence of a continuously differentiable Lyapunov function V (t,X) in

some neighborhood of an asymptotically stable unperturbed trajectory.

Barbashin and Krasovskii (see [113]) gave conditions that ensure the existence

of a Lyapunov function V (t,X) throughout phase space −∞ < t < ∞ for global

stability.

LaSalle [84] introduced an invariance principle and discussed the asymptotic be-

havior of solutions of an autonomous ordinary differential equation by a Lyapunov

function for which its derivative is non positive definite. The invariance principle of

LaSalle was extended by [60] to autonomous functional differential equations with
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finite delay.

Many research results on higher order non-linear differential equations have been

obtained using the Lyapunov theorem and its generalizations. Among the earlier

work in this category are those of [86], [29] and [141] on convergence of solutions for

some second order non-linear differential equations. They made use of a Lyapunov

function V constructed to measure the distance between solutions and showed that

this distance must approach zero for large enough t. Specifically, they considered

the general equation of the form

ẍ+ f(x)ẋ+ g(x) = p(t). (1.3.2)

[86] considered the case g(x) = x. Cartwright and Littlewood [29] showed that if

g is twice differentiable and satisfies g(0) = 0 and if, further, both f and g are

strictly positive, then all ultimately bounded solutions of Equation (1.3.2) converge

provided that |g′′(x)| is sufficiently small. Swick [120] introduced a new dimension

in his paper where he made use of the invariance principle due to LaSalle’s [83] to

study convergence of solutions of non-linear differential equations. LaSalle’s theo-

rem enables one to conclude asymptotic stability of an equilibrium point even when

-V̇ (t, x) is not locally positive definite. However, it applies only to autonomous or

periodic systems. In continuation of his earlier investigation, in [118], Swick removed

the requirement of boundedness of solutions and thereby improved known results

on convergence for second order non-linear differential equations.

Further developments on convergence of solutions in this direction were on the

third and fourth order non-linear differential equations. Tejumola [127], Swick [122]

and Ezeilo [41] considered some third and fourth order equations and found on them

conditions that made solutions of such equations to converge. Of particular interest

is the work of Ezeilo [41], where he considered the equation

...
x +aẍ+ bẋ+ h(x) = p(t, x, ẋ, ẍ) (1.3.3)

for special values of incrementary ratio y−1(h(x + y)− h(x)). Results on this work

have been generalized in [5] to fourth order non-linear differential equations.
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A new technique (the intrinsic method) was proposed in [31]-[32] where the author

constructed new Lyapunov functions for fourth order non-linear differential equa-

tions so that they are less restrictive than those presented earlier in the literature.

Indeed the intrinsic method is novel in constructing Lyapunov functions for non-

linear differential equations.

Let us remark here that in most of these results on third and fourth order, only in

few cases were complete Lyapunov function employed. Also only few of the works

were able to construct Lyapunov functions of their own. The reason for this is be-

cause of difficulty encountered in constructing suitable complete Lyapunov functions

in higher orders.

Boundedness and stability properties of solutions of the form of Equations (1.1.2),

(1.1.3) and (1.1.4) have received a considerable attention (see [113]). One of the pi-

oneer study on the third order equation was the work of Barbashin [18], where a

general third order was considered and conditions for global stability of solutions

were established. The result of Barbashin could not handle some of the special cases

of the equation as displayed in [42]-[43], [102] and [112]. Qian [112] re-visited the

problem of Barbashin and established new results for global stability of solutions

of third order equations. Other works on boundedness of third and fourth order

equations include the following [10], [23], [28], [34]-[36], [42-45], [62-63], [100], [102],

[119], [128]-[129], [130]-[133] and [134].

All these considered various equations with various combination of non-linear terms

and all gave results that either generalize or improve the existing ones.

On the quantitative point of view, consider the general nth order Ordinary Dif-

ferential Equation

x(n) = f(t;x, ẋ, . . . , x(n−1)) (1.3.4)

Equation (1.3.4) can be reduced to a system of n coupled-first order equations given

as

Ẋ = f(t;X) (1.3.5)

Where X ∈ <n, ẋ =
dx

dt
, x(n) =

dnx

dtn
.
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The numerical solution of Equation (1.3.4) has received lots of attention and it

is still receiving such an attention due to the fact that many physical (Engineering,

Medical, Financial, Population Dynamics and Biological Sciences) problems formu-

lated into mathematical equation result in the above type.

The solution is generated in a step-by-step fashion by a formula which is regarded

as discrete replacement of Equation (1.3.4) (see [13], [69], [70], [71], [79]-[80]).

In the class of methods available in solving the problem numerically, the most cel-

ebrated methods are the single-step and the multi-steps methods. In a single step,

an information at just one point is enough to advance the solution to the next point

while for the multi steps (as the name suggests), information at more than one of

the previous points is required to advance the solution to the next point.

The Euler’s method (the pioneering method), which is the oldest method, and the

Runge-Kutta methods fall into the class of the single-step methods while the Adams

methods are in the class of the multi step method.([13], [69], [70], [71], [79]-[80]).

The Adams method is divided into two, namely the Adams-Bashforth (explicit)

and Adams-Moulton (implicit). These two methods combined can be used as a

predictor-corrector method. This class of methods has been proved to be one of the

most efficient methods to solve certain class of IVP (non-stiff).

In the literature, the derivation of the Adams method has been extensively dealt

with using the interpolatory polynomial for the discretized problem. For the deriva-

tion of linear multi steps method through interpolation and collocation (see [13],

[69], [79]-[80]). In [103] the authors used the collocation method to derive a new

class of the Adams-Bashforth schemes for ODE while in [104] the authors also used

the collocation method for deriving a continuous multi steps method. Lie & Norsett

[88] discussed the super convergence properties of the collocation methods.

The fundamental problem of approximation of a function by interpolation on an

interval paved the way for the spectral methods which are found to be successful

for the numerical solution of ordinary and partial differential equations. Spectral

representations of analytic studies of differential equations have been in use since the

days of Fourier (1822 see [75]). Their applications to Numerical solution of ordinary
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differential equations refer, at least to the time of Lanczos [81]. Summary of survey

of some applications is given in [52].

Some present spectral methods can also be traced back to the ”method of weighted

residuals” of Finlayson and Scriven [48]. Spectral methods can be viewed as an

extreme development of the class of discretization scheme for differential equations

known as the method of weighted residuals (MWR) (see [48]). In MWR, the use

of approximating functions (called trial functions) is central. These functions are

used as basis functions for a truncated series expansion of the solution. Another

function called the test function (also known as the weight functions) is used to

ensure that the differential equation is satisfied as close as possible by the truncated

series expansion. Among the spectral schemes, the three most commonly used are

the Tau, Galerkin and collocation (also called pseudo-spectral) methods.

What distinguishes between these methods is the choice of the test functions em-

ployed. Galerkin and Tau method are implemented in terms of the expansion coeffi-

cients (see [39]), whereas collocation methods are implemented in terms of physical

space values of unknown function. Over the past two decades, spectral methods with

their current forms appeared as attractive methods in most applications. Some more

details on spectral methods could be seen in [53], [72], [105]-[107].

The basic idea of spectral methods to solve differential equations is to expand the

solution function as a finite series of very smooth basis functions ak, as given below

y(x) =
N∑
k=0

akφk(x); a ≤ x ≤ b (1.3.6)

where φ represents Chebyshev or Legendre polynomials (see [38] for more on Cheby-

shev polynomials). If y ∈ C∞[a, b], the error produced by the approximation ap-

proaches zero with exponential rate (see [27]) as N becomes too large (tends to

infinity). This phenomenon is referred to as ’spectral accuracy’ (see [52]). The

accuracy of the derivative obtained by direct term-by-term differentiation of such

truncated expansion naturally deteriorates (see [27]), but for low-order derivatives

and sufficiently high-order truncations this deterioration is negligible, compared to

the restrictions in accuracy introduced by typical difference approximations.

Babolian and Hosseini [15] and Babolian, Bromilow, England & Savari [14] focused
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on differential equations in which one of the coefficient functions or solution func-

tions is not analytic on the interval of definition. Weak aspect of spectral methods

in solving this kind of problems were studied in [14] and [15] and they came up

with modifications to the spectral method which proved to be more efficient when

compared with existing ones.

1.4 Outline of the Thesis

In the following chapter, the first section starts with some basic definition on the

qualitative properties of solution of ODEs followed by the definition and properties

of Lyapunov function the major tool employed for such qualitative properties of

solution. Basic theorems involving the use of the Lyapunov functions, as well as the

procedure of constructing suitable complete Lyapunov functions for the differential

equations of orders two, three and four which are different from the ones found in

the literature (see Section 1.3), also featured in this chapter.

In the second section of the same chapter, we give an overview of the interpolation

and approximations in quantitative properties of solution. This is followed by the

characteristics of interpolation methods. The spline method and their properties as

well as the interpolation spectral methods.

Chapters Three through Six are published chapters and they appear in that format

containing their Abstracts, Introductions and References.

In chapter Three, criteria for global asymptotic stability, boundedness and exis-

tence of periodic solutions to certain non-linear non-autonomous differential equa-

tion of the second order with less restriction on the non-linear terms, are established.

The global asymptotic stability, boundedness as well as the ultimate boundedness

of solutions of a general third order non-linear differential equation is investigated

with the use of complete Lyapunov function in Chapter Four.
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In chapter Five, sufficient conditions for the existence of a stable (globally asymp-

totically stable), bounded and uniform ultimate bounded solution to a certain fourth

order non-linear differential equation using a single complete Lyapunov function

without the use of a signum function or any stringent condition on the non-linear

terms is given.

The convergence of solutions is a very important and desirable quality in the

qualitative studies. In chapter Six of this thesis, sufficient criteria for the existence

of convergence of solutions for a certain class of fourth order non-linear differential

equations using the Lyapunov’s second method are given.

Our results on the quantitative studies of solutions of ODEs were presented in

chapter Seven. The derivation of a new Scheme for solving initial value problem of

ordinary differential equation from the general method of deriving the spline func-

tion featured in the first part of this chapter, the scheme is developed based on

interpolation and collocation. The second part of the chapter presents an accurate

‘Spectral’ method referred to as the pseudo-pseudo-spectral method to approximate

the solutions of two-point boundary value problems linear ordinary differential equa-

tions. Exploiting the Trigonometric identity property of the Chebyshev polynomial,

we were able to obtain approximate solution which competes favorably with solu-

tions obtained with standard and well known Spectral methods.

The last chapter of this thesis contains the conclusion and suggestions for further

studies.

Numbering:

Equations, Theorems and Lemmas are numbered according to the Chapter, section

and subsection. e.g Equation (a.b.c.d), Theorem a.b.c.d, Lemma a.b.c.d and Defi-

nition a.b.c.d. where a refers to the Chapter, b to the Section, c to the Subsection

and d the Number (counter).

Notations:
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The following shall be our notations in this thesis;

• ẋ, ẍ and
...
x shall mean the first, second and third derivative of the variable x

with respect to an independent variable (in this thesis our independent variable

is t) respectively.

• x(iv) denotes the fourth derivative of the variable x with respect to t.

• V̇ (t,X)|(a.b.c) shall mean the time derivative of the function V (t,X) with re-

spect to the system (a.b.c).



Chapter 2

Ordinary Differential Equations

In this Chapter, we give an overview of the tools used in the discussion of the qual-

itative and quantitative properties of solutions considered in this thesis. First, we

give some definitions related to the qualitative studies, the Lyapunovs’ function and

its properties, basic theorems on the use of Lyapunov function for qualitative stud-

ies as well as details on construction of suitable Lyapunov function for differential

equations of the second, third and fourth orders.

Secondly, we give an overview of Interpolation and approximations, the spline func-

tion and its properties as well the spectral methods.

2.1 Qualitative Properties

2.1.1 Basic Definitions

Consider a system of differential equations

Ẋ = f(t,X) (2.1.1.1)

where X is an n-vector and f(t,X) is an n-vector function which is defined on a

region Ω ⊂ I ×<n (where I is an interval, a subset of <) and continuous in (t0, X0)

so that for each (t0, X0) there is a solution X(t; t0, X0) satisfying

X(t0; t0, X0) = X0 (2.1.1.2)

18
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and

X(t; t0, X0) = X (2.1.1.3)

Let f be smooth enough to guarantee the existence of a solution i.e. f is Lipschitz

and continuous. Smoothness of f guarantees the existence of a unique solution for

Equation (2.1.1.1). Let this be Equation (2.1.1.3).

Suppose that C is a class of solutions of Equation (2.1.1.1) and X0(t) is an element

of C, then by setting X = Y + X0(t) together with the continuity of Ẋ = f(t,X),

Equation (2.1.1.1) becomes

Ẏ = f(t, Y +X0(t))− f(t,X0(t)). (2.1.1.4)

Let G(t, Y ) = f(t, Y + X0(t)) − f(t,X0(t)) then G(t, 0) = 0. The zero solution

Y (t) ≡ 0 of Equation (2.1.1.4) corresponds to X0(t).

We shall stress at this juncture that discussing the stability, boundedness and pe-

riodicity of zero solution of the Equation (2.1.1.4) is equivalent to discussing the

stability, boundedness and periodicity of X0(t) of the Equation (2.1.1.1). For this

reason, we can assume that f(t, 0) ≡ 0 and the following definitions will hold for

solutions X0(t) ≡ 0 of the Equation (2.1.1.1).

Definition 2.1.1.1

The zero solution of Equation (2.1.1.1) is STABLE (S), if given ε > 0 and t0 ∈ I,

there exists a δ(t0, ε) > 0, such that whenever

|X0| < δ(t0, ε), |X(t; t0, X0)| < ε for all t ≥ t0.

Definition 2.1.1.2

The zero solution of Equation (2.1.1.1) is UNIFORMLY STABLE (US), if it is sta-

ble and the δ in the definition (2.1.1.1) above is independent of t0.

Definition 2.1.1.3

The zero solution of Equation (2.1.1.1) is ASYMPTOCALLY STABLE (AS), if it

is stable and in addition, there exists an α ∈ [t1, t2], t0 ≤ t1 ≤ t2 ≤ t such that if

X0 < δ(t0, α), we have

|X(t; t0, X0)| → 0 as t→∞.
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Definition 2.1.1.4

The zero solution of Equation (2.1.1.1) is UNIFORMLY ASYMPTOCALLY STA-

BLE (UAS), if it is uniformly stable and if there is a δ > 0 and T (ε), such that

whenever |X0| < δ, we have

|X(t; t0, X0)| < ε for all t ≥ t0 + T (ε).

Remark 2.1.1.5

It can be seen from the definitions that for any solution to be uniformly stable,

asymptotically stable or uniformly asymptotically stable, it has to be stable.

Definition 2.1.1.6

A solution X(t; t0, X0) of Equation (2.1.1.1) is BOUNDED if there exists a β > 0,

such that |X(t, t0, X0)| < β for all t ≥ t0, where β may depend on each solution.

Definition 2.1.1.7

The solution of Equation (2.1.1.1) is EQUI-BOUNDED (EB) if, for any α >

0 and t0 ∈ I, there exists a β(t0, α) > 0 such that if X0 ∈ Sα, where Sα =

{x ∈ <n : ‖x‖ < α}, then |X(t, t0, X0)| < β(t0, α) for all t ≥ t0, where α is the

length of interval.

Definition 2.1.1.8

The solution of Equation (2.1.1.1) is UNIFORMLY BOUNDED if, for any α > 0

and t0 ∈ I, there exists a β(α) > 0 such that if X0 ∈ Sα, then |X(t; t0, X0)| < β(α)

for all t ≥ t0, where α is as defined in Definition 2.1.1.7

Definition 2.1.1.9

The solution of Equation (2.1.1.1) is ULTIMATELY-BOUNDED (UB) for bound

M , if there exists an M > 0 and for every solution X(t, t0, X0) of (2.1.1.1), there
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exists a T = T (α,X), such that

|X(t, t0, X0)| < M

for all t ≥ t0 + T .

Definition 2.1.1.10

The solution of Equation (2.1.1.1) is UNIFORMLY ULTIMATELY BOUNDED

(UUB) for bound M , if there exists M > 0 and if for any α > 0 and t0 ∈ I there

exists a T (α) > 0 such that X0 ∈ Sα implies that

|X(t; t0, X0)| < M

for all t ≥ t0 + T (α).

Remark 2.1.1.11

If M in Definition 2.1.1.9 depends on t0 and α i.e M(t0, α) for all t, then the solution

of Equation (2.1.1.1) is EQUI-ULTIMATELY BOUNDED.

Definition 2.1.1.12

A solution X(t) of Equation (2.1.1.1) is PERIODIC if for some ω > 0,

X(t+ ω) = X(t),

ω is called the period of X.

2.1.2 Lyapunov Function and Properties

Lyapunov (1892) dealt with stability by two distinct methods; these are the first and

second methods. The first method pre-supposes an explicit solution known and this

is applicable to some restricted but important cases. As against this, the second

method, which is also called the Direct method, is of great generality and power

and, above all, does not require the knowledge of the solutions themselves.

The application of the Lyapunov method lies in constructing a scalar function (say

V ) and its derivatives such that they possess certain properties. When these prop-

erties of V and V̇ are shown, the stability behavior of the system is known.
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The direct method is via a special function called the Lyapunov function which we

define now.

Definition 2.1.2.1

A Lyapunov function V defined as V : I × <n → <, is a real function of real vari-

ables X(X ∈ <n), t with the conditions that t ≥ T and |xi| < H. T and H are real

constants of which T can be supposed to be as large as we wish and H as small as

we wish but not zero having the following properties:

(i) Continuity: V(t,X) is continuous and single valued under the condition t ≥ T

and |xi| < H and V (t, 0) ≡ 0;

(ii) V (t,X) is positive definite;

and

(iii) V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + . . .+
∂V

∂xn
ẋn +

∂V

∂t
, representing the total derivative with

respect to t is negative definite.

Definition 2.1.2.2: (A Complete Lyapunov function)

A Lyapunov function V defined as V : I ×<n → < is said to be COMPLETE if for

X ∈ <n,

(i) V (t,X) ≥ 0,

(ii) V (t,X) = 0, if and only if X = 0 and

(iii) V̇ |(2.1.1)(t,X) ≤ −c |X| where c is any positive constant and |X| given by

|X| =

(
n∑
i=1

(x2
i )

) 1
2

→∞

It is INCOMPLETE if (iii) is not satisfied.

When the above properties of V and V̇ are shown, the qualitative behavior of the

system can be discussed. The difficulty, however, arises when the necessary condi-

tions cannot be exhibited; for then no conclusion can be drawn especially about the

stability. Each problem is a new challenge, for the functions must be shaped anew

for each given systems or class of systems.

The proper choice of V depends to an extent upon the experience, ingenuity, and

often, good fortune of the analyst.
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2.1.3 Some Basic Theorems

In this section, we shall give without proof some standard theorems on stability

and boundedness of Lyapunov second method. The proofs of these theorems can be

found in the books by Lyapunov [89] (translated and edited by A. T. Fuller) and

Yoshizawa [140].

Let

Ẋ = f(t,X) (2.1.3.1)

where f : I ×<n → <n is a continuous n-vector function.

The Right Hand Side (RHS) of the Equation (2.1.3.1) can be written in the following

ways:

f(t,X) = A(t)X (2.1.3.2)

and

f(t,X) = A(t)X + P (t) (2.1.3.3)

where A(t) is an n × n matrix of unknown coefficients, P : < → <n is a continu-

ous function. The Equation (2.1.3.2) is the homogeneous equation while Equation

(2.1.3.3) is its non-homogeneous counterpart.

Suppose that f(t, 0) ≡ 0 for all t, then the following theorem is true.

Theorem 2.1.3.1: (Lyapunov theorem (Lyapunov (1892)))

If the differential equations of undisturbed motion (the steady state of a system before

pertubations are introduced) are such that it is possible to find a definite function V ,

of which the derivative V̇ is a function of fixed sign, which is opposite to that of V

or reduces identically to zero, the undisturbed motion is STABLE.

The following theorems are the various simplification of the Theorem 2.1.3.1

Theorem 2.1.3.2

Assume that there exists a function V (t,X) defined for t ≥ 0, |X| < δ0 (δ0 is a

positive constant) continuous with the following properties:

(i) V (t, 0) ≡ 0,

(ii) V (t,X) ≥ a(|X|),
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where a(r) is continuous monotonically increasing and a(0) = 0,

(iii) V̇ (t,X)|(2.1.3.1) ≤ 0,

then the solution X(t) ≡ 0 (zero solution) of Equation (2.1.3.1) is STABLE.

Theorem 2.1.3.3

Suppose conditions (i) and (iii) of Theorem 2.1.3.2 hold, and if we replace condition

(ii) with

(iv)a(|X|) ≤ V (t,X) ≤ b(|X|),

a(r) and b(r) being continuous monotone increasing functions and a(0) = b(0) = 0,

then the zero solution of Equation (2.1.3.1) is UNIFORMLY STABLE (US).

Theorem 2.1.3.4

Under the assumptions of the Theorem 2.1.3.2, if

(v) V̇ (t,X) ≤ −c(|X|),

where c(r) is continuous on [0, δ0] and positive definite, and if f(t,X) is bounded,

then the zero solution of Equation (2.1.3.1) is ASYMPTOTICALLY STABLE (AS).

Theorem 2.1.3.5

Under the same assumptions of Theorem 2.1.3.3 with condition (v) of Theorem

2.1.3.4, then the zero solution of Equation (2.1.3.1) is UNIFORMLY ASYMPTOT-

ICALLY STABLE (UAS).

Theorem 2.1.3.6

If V̇ (t,X) ≤ −cV (t,X), where c > 0 is a constant under the same assumptions as in

Theorem 2.1.3.3, then the zero solution of Equation (2.1.3.1) is also UNIFORMLY

ASYMPTOTICALLY STABLE (UAS).

Theorems 2.1.3.1 - 2.1.3.6 are Theorems on stability of solutions in the sense of

Lyapunov with the use of Lyapunov functions.

The following theorems are on the boundedness of solution in the sense of Lyapunov

with the Lyapunov function.
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Theorem 2.1.3.7

Suppose there exists a Lyapunov function V (t,X) defined on I ×<n which satisfies

the following conditions:

(i) a(|X|) ≤ V (t,X), where a(r) is continuous, monotone increasing function and

a(0) = 0,

(ii) V̇ (t,X) ≤ 0,

then the solutions of Equation (2.1.3.1) are BOUNDED

Theorem 2.1.3.8

Suppose that there exists a Lyapunov function V (t,X) defined on 0 ≤ t ≤ R, |X| ≥ R

(where R may be large) which satisfies

(i) a(|X|) ≤ V (t,X) ≤ b(|X|),

where a(r) and b(r) are continuous monotone increasing functions, and

(ii) V̇ (t,X) ≤ 0,

then the solutions of Equation (2.1.3.1) are UNIFORMLY BOUNDED (UB).

Theorem 2.1.3.9

Under the assumptions of Theorem 2.1.3.8, if V̇ (t,X) ≤ −c(|X|), where c(r) is

positive and continuous, then the solutions of Equation (2.1.3.1) are UNIFORM

ULTIMATELY BOUNDED (UUB).

2.1.4 Construction of Lyapunov Functions

The major difficulty in applying the second method on Lyapunov to the analysis

of qualitative properties of solutions of nonlinear systems is the lack of a straight-

forward procedure for finding appropriate Lyapunov functions. The construction of

Lyapunov function is an art, but like any other art, there are guidelines to follow.

For a stable system, there may exist a large or even infinite number of suitable

Lyapunov functions. There are generally many methods that have been proposed in

the literature for constructing Lyapunov functions. We shall mention the following

methods for their novelty.
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1. Krasovskii’s Method [76]

The method of Krasovskii gives sufficient condition for asymptotic stability

of nonlinear systems. Krasovskii’s approach assumes the Lyapunov function

to be a Hermitian form or quadratic form. We would like to point out here

that such assumption of Hermitian form or quadratic form is unnecessarily

restrictive simply because a Hermitian form or a quadratic form may not exist

for a given system (see [98]).

2. Schultz-Gibson’s Variable Method [51]

In order to meet the stability criteria set forth by Lyapunov, a scalar function

V and its time derivative must be found. Since the state variables are implicit

functions of time, then:

dV

dt
=
∂V

∂x1

ẋ1 + .......+
∂V

∂xn
ẋn

dV

dt
= ∇V Ẋ

where ∇ is the Gradient Operator.

V can also be found from the gradient of V by a path integration through

state space.

This path integration will be independent of the path if :

∂∇Vi
∂xj

=
∂∇Vj
∂xi

which for the three dimensional case reduces to the vector identity:

∇× [∇V ] = 0

The gradient of V has the form:

∇[V ] = αX

(where α is an n× n matrix of unknown coefficients)

The Schultz-Gibson’s variable method uses a systematic approach based on
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the fact that if a particular Lyapunov function exists which is capable of prov-

ing asymptotic stability of a given non-linear system, then a gradient of this

Lyapunov function also exists. In fact, for Euclidean spaces, this method is

just another way of looking at the related Lyapunov theory of autonomous sys-

tem. However, the classical Lyapunov function theory must be modified for

systems in Banach space since the most important examples of such systems

do not have all their trajectories differentiable, but only dense subset of their

trajectories have these properties (see [97] Chapter 15). While the method is

straightforward, the process is long and arduous.

3. Intrinsic Method [31-32]

The intrinsic method is used to derive suitable Lyapunov functions for a gen-

eral class of non-linear systems expressed in state variables as n first order

non-linear equations. This method, which applies the integration by parts

procedure, derives a Lyapunov function directly from the differential equation

under study. For this, the integration is along trajectories and the limits for

the integral with respect to time are from zero to t. The derivatives of the

Lyapunov function V and its derivative V̇ are based on the equation

V +

∫ t

0

−V̇ dτ = 0 (2.1.4.1)

and do not require the gradient of the scalar function V to be obtained.

In constructing our Lyapunov functions, the properties of the Lyapunov functions

were taken strictly into consideration and we follow the ideas of LaSalle and Lefschez

[85] where a quadratic form was assumed to initiate the construction.

We shall sketch the construction of the Lyapunov functions used in discussing the

qualitative properties of the equations considered in this research namely the second,

third and fourth order non-linear equation.

For the second order equation, we consider the general linear equation of the form

ẍ+ aẋ+ bx = p(t;x, ẋ) (2.1.4.2)
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with corresponding system

ẋ = y

ẏ = −ay − bx+ p(t;x, y)
(2.1.4.3)

where a and b are positive constants.

To construct suitable complete Lyapunov function for the above system, we assume

a quadratic form of the form

2V = Ax2 +By2 + 2Cxy (2.1.4.4)

where A,B, and C are positive constants to be determined.

Differentiating Equation (2.1.4.4) with respect to t using the equivalent system

(2.1.4.3) we have

V̇ |(2.1.4.3) = Axẋ+Byẏ + C(xẏ + ẋy)

= Axy+By(−ay−bx+p(t;x, y))+Cy2+Cx(−ay−bx+p(t;x, y))+(Cx+By)p(t;x, y)

= −Cbx2 − (Ba− C)y2 − (Bb+ Ca− A)xy + (Cx+By)p(t;x, y)

to make the V̇ negative definite, we adapt the method of Cartwright [28] by equating

the coefficients of mixed variables to zero and the co-efficients of x2 and y2 to any

positive constant (say δ),i.e

Bb+ Ca− A = 0, (i)

Ba− C = δ, (ii)

and

Cb = δ. (iii)

Solving these equations for A,B and C, we have that

A =
δ

ab

{
a2 + b(b+ 1)

}
, B =

δ

ab
(b+ 1) and C =

δ

b

The required Lyapunov function is obtained by substituting for the constants A,B

and C in (2.1.4.4) which gives

2V =
δ

ab

{
a2 + b2(b+ 1)

}
x2 +

δ

ab
(b+ 1) y2 + 2

δ

b
xy (2.1.4.5)
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re-arranging the above gives

2V =
δ

ab
(y + ax)2 +

δ

a
(b+ 1)x2 +

δ

a
y2 (2.1.4.6)

Clearly, the above function is positive definite and its derivative negative definite.

For the non-linear counterpart of Equation (2.1.4.2) given as

ẍ(t) + g(ẋ) + h(x) = p(t;x, ẋ) (2.1.4.7)

The procedure of construction of suitable Lyapunov function is as explained above

except that here we need to find conditions on the non-linear terms to complete the

construction.

For a third order equation say

...
x +aẍ+ bẋ+ cx = p(t;x, ẋ, ẍ) (2.1.4.8)

with a corresponding system given as

ẋ = y

ẏ = z

ż = −az − by − cx+ p(t;x, ẋ, ẍ)

(2.1.4.9)

where a, b and c are all positive constants.

The required quadratic form in this case is given as

2V = Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz (2.1.4.10)

where the A,B,C,D,E and F are constants to be determined.

Differentiating Equation (2.1.4.10) with respect to the system (2.1.4.9) we have

V̇ = Axy +Byz + Cz(−az − by − cx+ p(t;x, ẋ, ẍ))

+Dy2 +Dxz + Eyz + Ex(−az − by − cx+ p(t;x, ẋ, ẍ))

+Fz2 + Fz(−az − by − cx+ p(t;x, ẋ, ẍ))

(2.1.4.11)

re-arranging Equation (2.1.4.11) we have

V̇ = −Ecx2 − (Fb−D)y2 − (Ca− F )z2 − (Eb+ Fb− A)xy

−(Cc+ Ea−D)xz − (Cb+ Fa−B)yz + (Ex+ Fy + Cz)p(t;x, ẋ, ẍ)

(2.1.4.12)
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To solve for the constants, we equate the coefficients of the mixed variables to zero

and the coefficients of x2, y2 and z2 to any positive constant (say δ), this leads to

the following system of equation to solve

Ex = δ (i)

Fb−D = δ (ii)

Ca− F = δ (iii)

Eb+ Fc− A = 0 (iv)

Cc+ Ea−D = 0 (v)

and

Cb+ Fa−B = 0 (vi)

Solving the system we have

A =
δ

(ab− c)c
{

(ab− c) + (a2 + c2 + c)
}

B =
δ

(ab− c)c
{
b(a+ bc+ c) + a(a2 + c2 + c)

}
C =

δ

(ab− c)c
(a+ bc+ c)

D =
δ

(ab− c)c
{(a+ bc+ c) + a(ab− c)}

E =
δ

c

F =
δ

(ab− c)c
(
a2 + c2 + c

)
these values of the constants guarantee the positive definiteness of V and negative

definiteness of its derivative.

For the non-linear equation equation,

...
x +ϕ(x, ẋ)ẍ+ f(x, ẋ) = p(t;x, ẋ, ẍ), (2.1.4.13)

the procedure of construction of suitable Lyapunov function is as explained above

except that here we need to find conditions on the non-linear terms to complete the

construction.

For the fourth order equation

x(iv) + a
...
x +bẍ+ cẋ+ dx = p(t;x, ẋ, ẍ,

...
x) (2.1.4.14)
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with an equivalent system

ẋ = y

ẏ = z

ż = w

ẇ = −aw − bz − cy − dx+ p(t;x, ẋ, ẍ,
...
x)

(2.1.4.15)

with a, b, c and d are positive constants.

A quadratic form defined as

2V = Ax2 +By2 + Cz2 +Dw2 + 2Exy + 2Fxz + 2Gxw

+2Hyz + 2Iyw + 2Jzw
(2.1.4.16)

will be employed for the construction with A,B,C,D,E, F,H, I and J been the

constants to be determined.

Differentiating Equation (2.1.4.16) with respect to the system (2.1.4.15) we have

V̇ = Axy +Byz + Czw +Dwẇ + E[ẋy + xẏ] + F [ẋz + xż]

+G[ẋw + xẇ] +H[ẏz + yż] + I[ẏw + yẇ] + J [żw + zẇ]
(2.1.4.17)

Re-arranging, we have

V̇ = −Gdx2 − [Ic− E]y2 − [Jb−H]z2 − [Da− J ]w2 − [Gc+ Id− A]xy

−[Gb+ Jd− E]xz − [Dd+Ga− F ]xw − [Ib+ Jc− F −B]yz

−[Dc+ Ia−G−H]yw − [Db+ Ja− I − C]zw

+[Gx+ Iy + Jz +Dw]p(t;x, ẋ, ẍ,
...
x)

(2.1.4.18)

Equating the coefficients of x2, y2, z2 and w2 to a positive constant (say δ > 0):

Gd = δ, (i)

Ic− E = δ, (ii)

Jb−H = δ, (iii)

Da− J = δ, (iv)

and the coefficients of mixed variables are set to zero. i.e

Gc+ Id− A = 0, (v)
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Gb+ Jd− E = 0, (vi)

Dd+Ga− F = 0, (vii)

Ib+ Jc− F −B − 0, (viii)

Ia+Dc−G−H = 0, (ix)

and

Ja+Da− I − C = 0. (x)

Solving these equations we have

A =
δ

cd∆

{
∆(c2 + d2) + d

[
∆

bd
(b2 + d2) + d[a2d(b+ d) + c2d(b+ 1) + ab(ab− c)]

]}
B =

δ

abc∆

{
∆[a(a2 + b2 − c)] +

b∆

d
(a− c)(a2 + b2)

d [a2d(b+ d) + c2d(b+ 1) + ab(ab− c)]
(
ab2 + abc2

d
− bc

)}
C =

δ

abc∆

{
c(a2 + b2 + b) + ab

[
b2cd[a2d(b+ d) + c2d(b+ 1) + ab(ab− c)]a2d(b2 + d2)

− (ab− c)c− 1]}

D =
δ

a∆

{
a2d(b+ d) + c2d(b+ 1) + ab(ab− c) + ∆b+ ∆

}
E =

δ

∆

{
∆

bd
(b2 + d2) + d

[
a2d(b+ d) + c2d(b+ 1) + ab(ab− c)

]}
(2.1.4.19a)

F =
δ

a∆

{
∆

d
(a2 + b2) + d

[
a2d(b+ d) + c2d(b+ 1) + ab(ab− c) +

∆

b

]}
G =

δ

d

H =
bδ

∆

[
a2d(b+ d) + c2d(b+ 1) + ab(ab− c)

]
I =

δ

c∆

{
∆

bd
(b2 + d2) + d[a2d(b+ d) + c2d(b+ 1) + ab(ab− c)] + ∆

}
J =

δ

∆

{
a2d(b+ d) + c2d(b+ 1) + ab(ab− c) +

∆

b

}
(2.1.4.19b)

where ∆ = [(ab− c)c− a2d]bd.

The value of the constants defined above guaranteed the positive definiteness of V

and negative definiteness of its derivative.

For the non-linear equations

x(iv) + a
...
x +bẍ+ g(ẋ) + h(x) = p(t), (2.1.4.20)
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and

x(iv) + a
...
x +f(x, ẋ)ẍ+ g(ẋ) + h(x) = p(t), (2.1.4.21)

suitable conditions can be established for the non-linear terms to construct suitable

Lyapunov function to discuss their qualitative properties.

Remark 2.1.4.1: We should remark at this point that from the various Lyapunov

functions constructed, the Routh-Hurwitz criteria for the stability of solutions of

the equations are clearly seen. i.e. For the second order a > 0 and b > 0, for the

third order c > 0 and ab > c and for the fourth order a > 0, b > 0, c > 0, d > 0

and ∆ > 0. The Lyapunov functions constructed above were adapted for the results

reported in this research.

2.2 Quantitative Properties

2.2.1 Interpolation and Approximation

In approximation theory, the challenge faced is how to replace a complicated function

(say f) from a large space F by a simple and yet close-by (or “good” in some sense)

function p from a small subset P ⊂ F . The literature about approximation is very

rich (see [40] and [93]). Usually F is a Banach space, so the distance between p and

f is by means of norm. Functions from P are called approximation functions.

The approximation functions depend on a set of parameters {ci}ni=0.

For example, for p being finite dimensional, p ∈ P can be represented as

p(x) =
n∑
i=0

{cipi(x)} (2.2.1.1)

where {pi}ni=0 form basis functions in P .

There are many ways of choosing the space P, these include the use of ordinary poly-

nomials, trigonometric polynomials, exponential functions and rational functions. It

should however be stated here that the latter two are non-linear and so they are not

of special interest in this thesis.

The type of approximation depends on the way how the parameters are obtained.

One of the most important is interpolation. In the general case for a function



2.2. Quantitative Properties 34

f : <N → <M , we can define a set of pairs

Ω := {(xk, fk)|xk ∈ S ⊂ <N , fk := f(xk) ∈ <M , k = 0, 1, . . . , N}, (2.2.1.2)

and the following condition

p(xk) = fk, (2.2.1.3)

We then say that p interpolates f at x0, . . . , xN , i.e. Equations (2.2.1.2)-(2.2.1.3)

represent the interpolation problem. Here S is the set {xk}Nk=0 of interpolation

nodes, i.e. the points where the functional values are known, Γ is the interpolation

domain, and Γ̂ the range (or the co-domain) of f . We can formulate the interpo-

lation problem in this way by providing an answer to the question: How to find a

“good” representative of a function that is not known explicitly, but only at some

points of the domain of interest.

The interpolation domain Γ and the set of interpolation nodes S play an essential

role in the interpolation problem settings. We distinguish between interpolation

on regularly spaced data, where the distribution of points satisfy some particular

condition(s), and the interpolation on scattered (irregularly) spaced data where S

is any subset of Γ.

Interpolation can be local or global depending on the support of the interpolation

function. If all nodes are used for determining all the parameters we have a global

approach, which means that any parameter or data perturbation will affect the so-

lution throughout the whole interpolation domain. On the other hand, if the same

perturbation does not influence the interpolation functional values outside some sub

domain of Γ, the method is considered to be local. Related to this, it is useful to

mention that there is also an interesting class of the interpolation functions where

the basis functions have local support only (equal to zero outside the sub domain).

In general, these methods are global, but few of them are local.

Spline Interpolation functions are typical representatives of such functions.

For interpolation by splines, also called the piece-wise functions, one typically

needs to discretized the domain, i.e. to generate a grid which covers Γ. The grid is

defined by the set S and the choice of the basic elements, say Γm ∈ Γ,m = 1, . . . , Nm.
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The spectral methods are classified into two main classes, the interpolating methods

and the non interpolating methods. The Collocation method or the Pseudo spec-

tral method is interpolating in nature while the Galerkin and the Tau method are

non-interpolating.

Interpolation methods are well developed to date. The practical applications are

numerous and the supporting theory has been essential for developing whole classes

of different methods in numerical analysis. Examples can be found in numerical

integration and differentiation, numerical methods for solving ODEs and PDEs, etc.

In this thesis on the quantitative properties of solution of ODEs our main goal is to

employ the spline interpolation as well as the collocation or pseudo spectral method

to approximate solutions of ODEs.

2.2.2 Characteristic of Interpolation Methods

Evaluating and comparing characteristics of different interpolation methods are

somewhat subjective. However, some attempts were made for obtaining the list

of the most important characteristics of interpolation methods. In Franke [50] the

special case of the two-dimensional (scattered) data interpolation is considered by

performing a test over 32 different methods. The results are evaluated by a set of

characteristics, given by the following list:

• Accuracy : Accuracy is expressed by the interpolation error, say r which is a

measure of difference between the interpolation function and the exact values

of the interpolating function f . It can be defined point-wise via the error

function

r(x) := ‖|f(x)− p(x)|‖ (2.2.2.1)

or as a scalar

r := ‖|f − p|‖ (2.2.2.2)

where ||.|| is some suitable norm. Usually the error depends on the space P

and the location of the interpolation points. If the interpolation points are
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the vertices of a grid of simplices, then the order of accuracy is related to the

maximum diameter of these simplices.

• Visual Aspect : Appearance of the interpolation function on Γ is of importance

only in low dimensional spaces (N=1,2,3). Visual aspects are often in a close

relationship with accuracy, especially at moderate accuracies.

• Sensitivity to Parameters : It is desirable that a method is stable with respect

to perturbations of parameters and that the solution value is not highly depen-

dent on the sampled function. In principle, as mentioned, local interpolation

methods have an advantage, but it does not mean that all global methods will

behave badly in general.

• Computational Costs : Computational efforts depends on a chosen method.

Some methods can be extremely expensive in some applications and has to be

avoided, even if all other characteristics are good.

2.2.3 Polynomial Interpolation

One of the foundations of the approximation theory is the Theorem of Weierstrass

and its modification, (see [69] and [109]).

Theorem 2.2.3.1:

Let f ∈ C[a, b]. For every ε > 0, there exists a polynomial p(x) such that

|f(x)− p(x)| < ε,∀x ∈ [a, b] (2.2.3.1)

From Equation (2.2.3.1) it follows that one can always find a polynomial that is

arbitrary close to a given function on some finite interval. This means that the

approximation error is bounded and can be reduced by the choice of adequate poly-

nomial.
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The above Theorem is often used in conjunction with the following uniqueness the-

orem.

Theorem 2.2.3.2:

Let {xk}nk=0 be a set of distinct points, and let {yk}nk=0 be an arbitrary set of points in

<. Then, there exists a unique polynomial of degree n which takes the given values

at n+ 1 points.

The proof of this Theorem are numerous and often constructive. One of the most

famous ones is related to the well-known Lagrange interpolation method. For this

method, we have the following error bound (see [69], [70] and [93]).

Theorem 2.2.3.3:

Suppose f ∈ Cn+1[a, b]. Let the interpolation nodes satisfy a ≤ x0 < x1 . . . < xn ≤ b.

The polynomial p ∈ Pn interpolates f at {xk}nk=0 and w(x) := Πn
k=0(x − xk).Then

there exists ζ ∈ [a, b] such that the error function r(x) satisfies

r(x) := f(x)− p(x) =
f (n+1)(ζ)

(n+ 1)!
w(x) (2.2.3.2)

Taking Γ = [a, b] and using the Lp-norm in (2.2.3.2), one trivially obtained

r := |f − p|Lp(Γ) ≤
1

(n+ 1)!

∣∣f (n+1)
∣∣
Lp(Γ)

|w|Lp(Γ) . (2.2.3.3)

An interesting special case is that of equidistant points where xk+1 = xk + ∆x for

all k. Then we have

|f − p|L∞(Γ) ≤
∆xn+1

(4(n+ 1))!

∣∣f (n+1)
∣∣
L∞

(Γ). (2.2.3.4).

2.2.4 Piece-wise Interpolation

The main disadvantage of global interpolation is that the interpolation error is re-

lated to higher derivatives of the interpolated function f . For example, the condition

f ∈ Cn+1[a, b] met in the Theorem 2.2.3.3 can be too strict. This is one of the most
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important reasons why often another approach is used. Discretizing the interpola-

tion domain and interpolating locally, i.e. on small subsets of {xk}nk=0, the overall

accuracy may be significantly improved even if the applied (local) interpolation

method is of low order. Interpolation functions obtained on this principle are piece-

wise interpolation functions or splines. We will mention some of the most important

(most frequently used) piece-wise interpolation methods.

1. Nearest-neighbor method: By far the easiest way to interpolate interpolation

pairs {(xk, fk)}nk=0, by piece-wise constants. The method is of O(∆x).

2. Piece-wise linear interpolation: An improvement of the previous method made

by constructing a linear function between two consecutive nodes. The accuracy

of this method is O(∆x2).

3. Piece-wise cubic interpolation: By increasing the order of piece-wise polyno-

mial, one can obtain further improvements in the characteristics of the inter-

polating method. If the polynomial is of the third order, we have piece-wise

cubic interpolation with an accuracy of O(∆x4).

4. cubic spline interpolation: This is probably the most popular choice of obtain-

ing piece-wise interpolation function, which is necessarily differentiable at the

interpolation nodes. This provides the interpolation function to be smooth on

the entire domain Γ = [a, b]. This method is also of O(∆x4).

2.2.5 Interpolating Spectral Method

Spectral methods are quantitative (numerical) methods for solving differential equa-

tions in which the dependent variables are expanded as series of orthogonal basis

functions. They are divided into two main classes, viz: The Interpolating methods

and the Non-interpolating methods.

By interpolating methods, we mean the methods that associate grid of points with

each basis set. They are also referred to as the collocation or pseudo spectral method.

The pseudo spectral method demands that the differential equation to be approx-
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imated be exactly satisfied at a set of points known as collocation method. The

Tau method and the Galerkin method are also spectral methods which have been

proved to be effective in approximating solution of PDEs but they are both non

interpolating spectral methods.
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BOUNDEDNESS, PERIODICITY

AND STABILITY OF

SOLUTIONS TO

ẍ(t) + a(t)g(ẋ) + b(t)h(x) = p(t;x, ẋ)

1

Abstract:

In this paper, we give criteria for global asymptotic stability, boundedness and exis-

tence of periodic solutions to the nonlinear non-autonomous differential equation of

the second order with less restriction on the nonlinear terms. This result improves

on the existing ones in the literature.

Key words and Phrases: boundedness, Lyapunov function, nonlinear non-autonomous

second order non-linear differential equations, periodic solution, stability, asymptotic

stability.
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3.1 Introduction

In this paper, we consider the second order nonlinear non-autonomous differential

equation

ẍ+ a(t)g(ẋ) + b(t)h(x) = p(t;x, ẋ), (3.1.1)

where a, b, g, h and p are continuous in the respective argument displayed explicitly.

In addition, g and h are such that existence, uniqueness and continuous dependence

on the initial condition are guaranteed.

The equation of the above class have received attention of researchers (see [3,

8-9, 11, 20-24 ]) in fact a lot was done on these class of equations especially the

autonomous case (i.e. when a = b = 1 or constant independent of t cf [1, 2, 7, 12,

18] and references contained in them).

In some of these works, the use of the second method of Lyapunov played a promi-

nent role in discussing the stability and boundedness. Almost in all these works

(for the non-autonomous case) the condition that g and h are differentiable with the

function a being decreasing (i.e. ȧ(t) ≤ 0) is quite noticeable.

The motivation for this work are the works of [24] , [16] and [5]. Even though

quite old the authors [24] discussed interestingly these properties alongside with the

oscillatory nature of the solutions via the Lyapunov second method as well as the

oscillatory property of the function a.

In [16], the author also discussed the global asymptotic stability of the trivial so-

lutions of non-autonomous system with an application to a second order equation

also via the Lyapunov second method.

In [5], the authors developed a theory whereby all these properties (boundedness,

stability and periodicity) been investigated differently could be discussed in a unified

way by just one major theorem still on the Lyapunov second method.

We shall in this study adapt [5] to discuss the qualitative properties of solutions

of Equation (3.1.1) and give sufficient conditions on the nonlinear terms g and h as

well as on the functions a and b that will guarantee the existence of a unique solution

which is bounded together with its’ derivative on the real line, globally stable and

periodic.
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Let

Ẋ = f(t;X) (3.1.2)

where X ∈ <n, be a system of n coupled-first order equations.

We shall give the following definition for the sake of completeness.

Definition 3.1.1:

A Lyapunov function V defined as V : I ×<n → < is said to be COMPLETE if for

X ∈ <n

(i) V (t,X) ≥ 0

(ii) V (t,X) = 0, if and only if X = 0

and

(iii) V̇ |(3.1.2) (t,X) ≤ −c |X|where c is any positive constant and |X| given by

|X| = (
n∑
i=1

(x2
i ))

1
2 such that

|X| → ∞ as X →∞

Definition 3.1.2:

A Lyapunov function V defined as V : I × <n → < is said to be INCOMPLETE if

for X ∈ <n (i) and (ii) of the above definition is satisfied and in addition

(iii) V̇ (t,X) |(3.1.2) ≤ −c |X|(∗) where c is any positive constant and |X|(∗) given by

|X|(∗) = (
<n∑
i=1

(x2
i ))

1
2 such that

|X|(∗) →∞ as X →∞.

Equation (3.1.1) can be put in a system form as

ẋ = y

ẏ = −a(t)g(y)− b(t)h(x) + p(t;x, y)
(3.1.3)

For expository reasons we will like to give as part of our definition the result of the

following:

Generalized Theorems: (Burton et al) In an attempt to discuss the unified

theory of periodicity of dissipative ordinary differential equations, Burton et al [5]
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considered the general differential equation

Ẋ = f(t,X). (3.1.4)

When Equation (3.1.4) is linear, it is written as

Ẋ = A(t) + P (t), (3.1.5)

with the homogeneous systems

Ẋ = A(t)X, (3.1.6)

where A(t) is an n× n matrix of unknown coefficients, P : < → <n is a continuous

function.

The use of Lyapunov functions which led to the formulation of the following scheme

was employed:

i) if f(t, 0) = 0, and if there is a function V : [0,∞)×<n → < such that

W1(|X|) ≤ V (t,X) ≤ W2(|X|)

and

V̇ (t,X)|(3.1.2) ≤ −W3(|X|),

where Wi(i = 1, 2, 3) are strictly increasing continuous function defined as Wi :

[0,∞) → [0,∞) with W (s) > 0 and W (0) = 0 as wedges. Then the solutions of

Equation (3.1.4) is uniformly asymptotically stable (UAS).

ii) if there is a function V : [0,∞)×<3 → < such that

W1(|X|) ≤ V (t,X) ≤ W2(|X|)

and

V̇ (t,X)|(3.1.2) ≤ −W3(|X|) +M(M > 0),

then the solutions of Equation (3.1.4) are ultimately bounded (UB) and uniformly

ultimately bounded (UBB).

iii) if the solution of Equation (3.1.4) and Equation (3.1.5) are unique, UB and UUB,

then Equation (3.1.4) has a periodic solution.

iv) if the zero solutions of Equation (3.1.6) is uniformly asymptotically stable (UAS),



3.2. Formulation of Results 44

then Equation (3.1.5) has a globally stable periodic solution.

We shall now state without proof, Theorems of Burton et. al [5]

Theorem A [5]:If f is Lipschitz in X and periodic in t with period T and if

the solutions are uniformly bounded and uniformly ultimately bounded for any given

bound (say) B, then Equation (3.1.5) has a T− periodic solution.

Theorem B [5]: Let the following conditions hold

a) f(t+ T,X) = f(t,X) for all t and some T > 0,

b) all solutions of Equation (3.1.4) are bounded,

c) each solution of Equation (3.1.4) is equi-asymptotically stable,

d) the zero solution of the homogeneous system corresponding to Equation (3.1.4) is

uniformly asymptotically stable (UAS).

Then Equation (3.1.4) has a globally stable T-periodic solution.

3.2 Formulation of Results

The main result of this paper is given below as

Theorem 3.2.1:Let g, and h be continuous and also periodic with period ω to-

gether with the following conditions:

(i) H0 = h(x)−h(0)
x

≤ α ∈ I0, x 6= 0 and h(0) = 0,

(ii) G0 = g(y)−g(0)
y

≤ β, y 6= 0 and g(0) = 0,

(ii) a(t), b(t) continuous with 0 < a0 < a ≤ a(t) ≤ a1, 0 < b0 < b ≤ b(t) ≤ b1

and

(iv) |p(t;x, y)| ≤M (M constant).

Then Equation (3.1.1) has a globally stable ω-periodic solution.

Notations: Throughout this paper K,K0, K1, . . . K12 will denote finite positive

constants. K ′is are not necessarily the same for each time they occur, but each

Ki, i = 1, 2... retains its identity throughout.
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3.3 The Function V(t;x,y)

We shall use besides Equation (3.1.1) the function V (t;x, y) defined below to prove

the main theorem of this paper.

Let

2V (t;x, y) =
δ

aαβ
H(t)

{
(αab+ β2)x2 +

1

a
y2 + 2βxy

}
(3.3.1)

where H(t) = exp

(
−
∫ t

0

a(s)ds

)
where a, b, α, β, δ > 0, and for all x, y.

Lemma 3.3.1 Subject to the assumptions of Theorem 3.2.1 there exist positive

constants Ki = Ki(a, b, α, β, δ), i = 1, 2 such that

K1(x2 + y2) ≤ V (t;x, y) ≤ K2(x2 + y2). (3.3.2)

Proof: From the function V above it is clear that V (t; 0, 0) ≡ 0.

By rearranging Equation (3.3.1) we have

2V (t;x, y) =
δ

aαβ
H(t)

{
αabx2 + β2(x+

1

β
y)2 +

1− aβ2

a
y2

}
(3.3.3)

2V (t;x, y) ≥ δ

aαβ
H(t)

{
αabx2 +

1− aβ2

a
y2

}
(3.3.4)

≥ K1(x2 + y2) (3.3.5)

where

K1 =
δ

aαβ
·min

{
αab,

1− aβ2

a

}
Therefore,

2V (t;x, y) ≥ K1(x2 + y2).

Also from Equation (3.3.1), by using the inequality xy ≤ 1

2
(x2 + y2) we have

2V (t;x, y) ≤ δ

aαβ
H(t)

{
(αab+ β2)x2 +

1

a
y2 + β(x2 + y2)

}
(3.3.6)

Hence,

2V ≤ K2(x2 + y2). (3.3.7)

where

K2 =
δ

aαβ
·max

{
(αab+ β(β + 1)), (

1 + aβ

a
)

}
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From inequalities (3.3.5) and (3.3.7), we have

K1(x2 + y2) ≤ V (t;x, y) ≤ K2(x2 + y2). (3.3.8)

This proves Lemma 3.3.1.

Lemma 3.3.2: Subject to the assumptions of Theorem 3.2.1 there exist positive

constants Kj = Kj(a, b, α, β, δ)(j = 3, 4) such that for any solution (x, y) of system

(3.1.3),

V̇ |(3.1.3) ≡
d

dt
V |(3.1.3) (t;x, y) ≤ −K3(x2 + y2) +K4(|x|+ |y|) |p(t;x, y)| . (3.3.9)

Proof: From Equation (3.1.1) and Equation (3.1.3) we have,

V̇ |(3.1.3) =
∂V

∂t
+
∂V

∂x
ẋ+

∂V

∂y
ẏ.

= −H(t)R(x, y) +H(t)

(
∂V

∂x
y +

∂V

∂y
(−ag(y)− bh(x) + p(t))

)
where R(x, y) =

{
(αab+ β2)x2 + 1

a
y2 + 2βxy

}
V̇ (t;x, y) ≤ − δ

aαβ
H(t)

{
R(x, y) +K2(x2 + y2)−K∗(|x|+ |y|)p(t;x, y)

}
, (3.3.10)

where K∗ = max(bα, aβ) and K2 is as defined in the Equation (3.3.8)

By the definition of H(t) we have that inequality (3.3.10) reduces to

V̇ (t;x, y) ≤ −K3(x2 + y2) +K∗(|x|+ |y|)p(t;x, y), (3.3.11)

with K3 = 2k2

Inequality (3.3.11) can also be simplified and given as

V̇ (t;x, y) ≤ −K3(x2 + y2) +K4(x2 + y2)
1
2p(t;x, y), (3.3.12)

with K4 =
√

2k∗

This completes the proof of Lemma 3.3.2.

3.4 Proof of the main results

We shall now give the proof of the main theorem stated in Section 2 of this paper.

Proof of Theorem 3.2.1: From Lemmas 3.3.1 and 3.3.2 it had been established
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that the function V (t;x, y) is a Lyapunov function for the system (3.1.3). Hence,

the trivial solution of system (3.1.3) is asymptotically stable.

From the inequality (3.3.12),

V̇ (t;x, y) ≤ −K3(x2 + y2) +K4(x2 + y2)
1
2p(t;x, y),

also from inequality (3.3.5), we have

(x2 + y2)
1
2 ≤

(
2V

K1

) 1
2

.

Thus inequality (3.3.12) becomes

dV

dt
≤ −K6V +K7V

1
2 |p(t)| (3.4.1)

It should be noted that K3(x2 + y2) = K3 · VK1
and

dV

dt
≤ −K6V +K7V

1
2 |p(t)| (3.4.2)

where K6 = K3

K2
and K7 = K5

K
1
2
2

.

This implies that

V̇ ≤ −K6V +K7V
1
2 |p(t)|

and this can also expressed as

V̇ ≤ −2K8V +K7V
1
2 |p(t)| (3.4.3)

with K8 = 1
2
K6.

Therefore

V̇ +K8V ≤ −K8V +K7V
1
2 |p(t)| (3.4.4)

≤ K7V
1
2

{
|p(t)| −K9V

1
2

}
, (3.4.5)

where K9 = K8

K7
.

Thus inequality (3.4.5) becomes

≤ K7V
1
2V ∗ (3.4.6)

where

V ∗ = |p(t)| −K9V
1
2 (3.4.7)
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≤ V
1
2 |p(t)|

≤ |p(t)| . (3.4.8)

When |p(t)| ≤ K9V
1
2 ,

V ∗ ≤ 0 (3.4.9)

and when |p(t)| ≥ K9V
1
2 ,

V ∗ ≤ |p(t)| · 1

K9

. (3.4.10)

Substituting inequality (3.4.9) into (3.4.5), we have,

V̇ +K8V ≤ K10V
1
2 |p(t)|

where

K10 =
K7

K9

.

This implies that

V −
1
2 V̇ +K8V

1
2 ≤ K10 |p(t)| . (3.4.11)

Multiplying both sides of (3.4.11) by e
1
2
K8t we have,

e
1
2
K8t
{
V −

1
2 V̇ +K8V

1
2

}
≤ e

1
2
K8tK10 |p(t)| (3.4.12)

i.e

2
d

dt

{
V

1
2 e

1
2
K8t
}
≤ e

1
2
K8tK10 |p(t)| . (3.4.13)

Integrating both sides of inequality (3.4.13) from t0 to t, gives{
V

1
2 e

1
2
K8γ
}t
t0
≤
∫ t

t0

1

2
e

1
2
K8τK10 |p(τ)dτ | (3.4.14)

which implies that{
V

1
2 (t)
}
e

1
2
K8t ≤ V

1
2 (t0)e

1
2
K8t0 +

1

2
K10

∫ t

t0

|p(τ)| e
1
2
K8τdτ ,

or

V
1
2 (t) ≤ e−

1
2
K8t

{
V

1
2 (t0)e

1
2
K8t0 +

1

2
K10

∫ t

t0

|p(τ)| e
1
2
K8τdτ

}
.

Using inequalities (3.3.5) and (3.3.7) we have

K1(x2(t) + ẋ2(t)) ≤ e−
1
2
K8t

{
K2(x2(t0) + ẋ2(t0))e

1
2
K8t0 +

1

2
K10

∫ t

t0

|p(τ)| e
1
2
K8τdτ

}2

(3.4.15)
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for all t ≥ t0 Thus,

x2(t)+ẋ2(t) ≤ 1

K1

{
e−

1
2
K8t

{
K2(x2(t0) + ẋ2(t0))e

1
2
K8t0 +

1

2
K10

∫ t

t0

|p(τ)| e
1
2
K8τdτ

}2
}

≤

{
e−

1
2
K8t

{
A1 + A2

∫ t

t0

|P (τ)| e
1
2
K8τdτ

}2
}
. (3.4.16)

By substituting K8 = µ in the inequality (3.4.16), we have

x2(t) + ẋ2(t) ≤ e−
1
2
µt

{
A1 + A2

∫ t

t0

|p(τ)| e
1
2
µτdτ

}2

. (3.4.17)

Hence, the completion of the proof.

Remark: From the proof of the theorem the following can be pointed out as the

direct consequence of the theorem.

Corollary 3.4.1: If p(t;x, y) = 0, inequality (3.4.17) reduces to

x2(t) + ẋ2(t) ≤ e−
1
2
µtA1,

and as t −→ ∞, x2(t) + ẋ2(t) −→ 0 which implies that the trivial solution of the

system (3.1.3) or better say Equation (3.1.1) is globally asymptotically stable.

Corollary 3.4.2 : If p(t;x, y) ≤ (|x| + |y|)φ(t) where φ(t) is a non-negative

and continuous function of t and satisfies

∫ t

0

φ(s)ds ≤ M < ∞ and M , a positive

constant.

Then, there exists a constant K0 which depends on M,K1, K2 and t0 such that every

solution x(t) of Equation (3.1.1) satisfies

|x(t)| ≤ K0, |ẋ(t)| ≤ K0

for sufficiently large t.

Below is the sketch of the proof of the corollary 3.4.2

From the inequality (3.3.12) we have that

V̇ ≤ K4(|x|+ |y|)2φ(t) (3.4.18)
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By using the inequality |x| |y| ≤ 1

2
(x2 + y2) on inequality (3.4.18), we have

V̇ ≤ K11(x2 + y2)φ(t) (3.4.19)

where K11 = 2K4

From the inequalities (3.3.5) and (3.4.19) we have,

V̇ ≤ K11V φ(t). (3.4.20)

Integrating equation (3.4.20) from 0 to t, we obtain

V (t)− V (0) ≤ K12

∫ t

0

V (s)φ(s)ds. (3.4.21)

where K12 = K11

K1
= 3K4

K1

The inequality (3.4.21) now becomes,

V (t) ≤ V (0) +K12

∫ t

0

V (s)φ(s)ds (3.4.22)

By Grownwall-Bellman inequality (3.4.22) yields

V (t) ≤ V (0)e(K12

∫ t
0 φ(s)ds). (3.4.23)

This proves the corollary.
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4.1 Introduction

The concept of stability as well as the boundedness of solution is a very important

one in the theory and applications of differential equations. It is also established so

far that the most effective method to study these concepts (especially stability) for

non-linear differential equations is the Lyapunov second method.

Consider the equation

...
x +ϕ(x, ẋ)ẍ+ f(x, ẋ) = p(t;x, ẋ, ẍ), (4.1.1)

where ϕ, f and p are continuous and depend on the arguments displayed explicitly.

In addition, they are such that existence, uniqueness and continuous dependence on

initial condition are guaranteed.

Boundedness and stability properties of solutions for various form of the equation

(4.1.1) had received a considerable amount of attention. Many of these are sum-

marized in [9]. In [6-7], 2 variants or classes of Equation (4.1.1) were considered.

Also in [8], the author re-visited the problem of Barbashin [2] where the equation

above was considered. Barbashin [2], came up with interesting result on the equa-

tion since the equation considered was a general third order nonlinear differential

equation. His results could not handle some of the special cases ( or variants) of the

equation as we have in [4-8]. In an attempt to have result that could handle and

accommodate almost all the classes (and variants) of the equation (4.1.1), Qian [8],

came up with results which simplified the theory of Barbashin and thereby making

the result applicable to wide class or form of the equation (4.1.1).

Our aim in this paper is to further give simplification to the theorem of Barbashin

[2] and Quian [8] by extending results in [6] and [7] to discuss the boundedness and

ultimately boundedness of the solution of Equation (4.1.1) on a real line.

As in [6] and [7] Equation (4.1.1) is better handled as a system of three-coupled first

order equations by letting;

ẋ = y

ẏ = z

ż = −ϕ(x, y)z − f(x, y) + p(t;x, ẋ, ẍ)

(4.1.2)
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In this study, we shall use a single complete Lyapunov function to achieve our result.

We shall for expository reasons give the following definitions:

Definition 4.1.1: Let

Ẋ = f(t,X) (4.1.3)

be a system of n-first order differential equations, a Lyapunov function V defined as

V : I ×<n → < is said to be COMPLETE if for X ∈ <n

(i) V (t,X) ≥ 0

(ii) V (t,X) = 0, if and only if X = 0 and

(iii) V̇ |4.1.2(t,X) ≤ −c |X|where c is any positive constant and |X| given by

|X| =

(
n∑
i=1

(x2
i )

) 1
2

such that |X| → ∞ as X →∞

Definition 4.1.2: A Lyapunov function V defined as V : I × <n → < is said

to be INCOMPLETE if for X ∈ <n (i) and (ii) of the above definition is satisfied

and in addition

(iii) V̇ (t,X)|4.1.2 ≤ −c |X|∗ where c is any positive constant and |X|∗ given by

|X|∗ =

(
j∑
i=1

(x2
i )

) 1
2

, where by j (i ≤ j < n) we mean that not all the variables

(otherwise called the trajectories) are necessarily involved such that |X|∗ → ∞ as

X →∞.

The particular case according to this work is when n = 3.

4.2 Formulation of Results

We will consider Equation (4.1.1) in two major ways and have the following theo-

rems to prove.

Case 1: When p(t, x, ẋ, ẍ) ≡ 0 This may be considered as the homogeneous case.

Theorem 4.2.1: Let f, and ϕ be continuous and let I0 = [δ, J ] where J =

βκε(1− ε), δ, β, κ and ε are positive constants. In addition, let the following condi-

tions hold:

(i) fx = f(x,y)−f(0,y)
x

∈ I0 = α, x 6= 0,
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(ii) fy = f(x,y)−f(x,0)
y

∈ I0 = β, y 6= 0,

(iii) f(0, y) = f(x, 0) = 0 and

(iv)|ϕ(x, y)| ≤ κ.

Then the trivial solution of Equation (4.1.1) is globally asymptotically stable.

Case 2: When p 6= 0 The non-homogeneous case

Theorem 4.2.2: Suppose the conditions of the Theorem 4.2.1 are satisfied, and

in addition |p(t;x, ẋ, ẍ)| ≤ A, (A is a positive constant) then there exists a constant

µ (0 < µ <∞), depending only on β, δ and κ such that every solution of Equation

(4.1.1) satisfies

x2(t) + ẋ2(t) + ẍ2(t) ≤ e−
1
2
µt

{
A1 + A2

∫ t

t0

|P (τ)| e
1
2
µτdτ

}2

for all t ≥ t0, where the constant A1 > 0, depends on β, δ, κ as well as on t0, x(t0), ẋ(t0) and ẍ(t0);

and the constant A2 > 0 depends on β, δ and κ only.

Theorem 4.2.3: Following the assumptions of Theorem 4.2.2 and taking |p(t;x, ẋ, ẍ)| =

(|x| + |y| + |z|)φ(t), where φ(t) is a non-negative and continuous function of t and

satisfies

∫ t

0

φ(s)ds ≤M <∞ and M , a positive constant.

Then, there exists a constant K0 which depends on M,K1, K2 and t0 such that every

solution x(t) of Equation (4.1.1) satisfies

|x(t)| ≤ K0, | ˙x(t)| ≤ K0, | ¨x(t)| ≤ K0

for sufficiently large t.

Notations: Throughout this paper K,K0, . . . K11 will denote finite positive con-

stants whose magnitudes depend only on the functions φ, f and P as well as con-

stants a, κ, β,∆ and δ but are independent of solutions of Equation (4.1.1). K ′is are

not necessarily the same for each time they occur, but each Ki, i = 1, 2... retains its

identity throughout.



4.3. The Function V (x, y, z) 57

4.3 The Function V (x, y, z)

The main tool in the proof of the theorems is the function V = V (x, y, z) which we

obtained below after some lengthy algebraic computations

2V = aδ
∆
{[β2(1− ε)2]x2 + {(1− ε)[κ2 − β(1− ε)] + β} y2 + z2

+2κβ(1− ε)2xy + 2(1− ε)2βxz + 2κ(1− ε)yz}
(4.3.1)

where a, β, ε,∆, κ and δ are all positive for all x, y, z. with δ > 1 and ∆ =

αβ(δ − 1)(1− ε)2.

The following lemma are to prove that V (x, y, z) is indeed a Lyapunov function.

Lemma 4.3.1 Subject to the assumptions of Theorem 4.2.1 there exist positive

constants Ki = Ki(a, β, ε,∆, κ, δ), i = 1, 2 such that

K1(x2 + y2 + z2) ≤ V (x, y, z) ≤ K2(x2 + y2 + z2). (4.3.2)

Proof: Clearly, V (0, 0, 0) = 0.

By rearranging Equation (4.3.1) we have

2V = aδ
∆
{[β(1− ε)x+ κ(1− ε)y + z]2 + β2(1− ε)2x2 + ε[(1− ε)κ+ βε]y2

−εβ(1− ε)xz} ,
(4.3.3)

2V = aδ
∆

{
[β(1− ε)x+ κ(1− ε)y + z]2 + β2ε(1− ε)2x2 − βε(1− ε)(x+ 1

2
z)2

+ε[κ(1− ε) + βε]y2 + β ε
2(1−ε)

4
z2
}
,

(4.3.4)

and from Equation (4.3.4) we obtain

2V ≥ aδ
∆

{
β2ε(1− ε)2x2 + ε[κ(1− ε) + βε]y2 + β ε

2(1−ε)
4

z2
}

(4.3.5)

≥ K1(x2 + y2 + z2), (4.3.6)

where

K1 =
aδ

2∆
·min

{
β2ε(1− ε)2, ε[κ(1− ε) + βε], β

ε2(1− ε)
4

}
.

Using the inequality,

xy ≤ 1

2
(x2 + y2),

Equation (4.3.1) becomes,

2V ≤ aδ
∆
{[β2(1− ε)2]x2 + {(1− ε)[κ2 − β(1− ε)] + β} y2 + z2

+κβ(1− ε)2(x2 + y2) + (1− ε)2β(x2 + z2) + κ(1− ε)(y2 + z2)} .
(4.3.7)
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2V ≤ aδ
∆
{β2ε2(1 + β + κ)x2 + (1− ε) {κ(κ+ 1) + β(1− ε)(κ− 1)} y2

+ {1 + (1− ε)[κ+ β(1− ε)]} z2} ,
(4.3.8)

which reduces to

V ≤ K2(x2 + y2 + z2), (4.3.9)

with

K2 = δ
2∆
·max {β2ε2(1 + β + κ), (1− ε) {κ(κ+ 1) + β(1− ε)(κ− 1)}

{1 + (1− ε)[κ+ β(1− ε)]}} .

Combining the inequalities (4.3.6) and (4.3.9) we have

K1(x2 + y2 + z2) ≤ V (x, y, z) ≤ K2(x2 + y2 + z2). (4.3.10)

which proves the Lemma 4.3.1.

Lemma 4.3.2: Suppose that the conditions of Theorem 2.1 hold, then there are

positive constants K3 = K3(a,∆, δ) such that for any solution (x, y, z) of system

(4.1.2),

V̇ |(4.1.2) ≡ d
dt
V |(4.1.2)(x, y, z) ≤ −K3(x2 + y2 + z2). (4.3.11)

Proof: From Equations (4.1.1) and the system (4.1.2) we have,

V̇ |(4.1.2) =
∂V

∂x
ẋ+

∂V

∂y
ẏ +

∂V

∂z
ż.

= ∂V
∂x
y + ∂V

∂y
z + ∂V

∂z
(−ϕ(x, y)z − f(x, y)),

which gives

V̇ = aδ
∆
{[β2(1− ε)2]xy + {(1− ε)[κ2 − β(1− ε)] + β} yz + z − ϕ(x, y)z − f(x, y))

+κβ(1− ε)2[y2 + xz] + (1− ε)2β[yz + x(ϕ(x, y)z − f(x, y)))]+

κ(1− ε)[z2 + y(ϕ(x, y)z − f(x, y)))]} .
(4.3.12)

Then by the conditions on f(x, y), i.e f(x,y)−f(0,y)
x

= fx, and f(x,y)−f(x,0)
y

= fy,

and after much simplification we have

V̇ = −aδ
∆

{
x2 + y2 + z2

}
. (4.3.13)
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Let K3 ≤ aδ
∆

Then

V̇ ≤ −K3(x2 + y2 + z2).

This completes the proof of the Lemma 4.3.2.

Lemma 4.3.3: Suppose that the conditions of Theorem 4.2.2 hold, then there are

positive constants Kj = Kj(a, β, ε, κ,∆, δ)(j = 4, 5) such that for any solution

(x, y, z) of system (4.1.2),

V̇ |(4.1.2) ≡ d
dt
V |(4.1.2)(x, y, z) ≤ −K4(x2 + y2 + z2) +K5(|x|+ |y|+ |z|) |p(t;x, ẋ, ẍ)| .

(4.3.14)

Proof: Following the same arguments as in Lemma 4.3.2 but this time with p 6= 0

set p(t;x, y, z) = P (t) we have that

V̇ = aδ
∆
{[β2(1− ε)2]xy + {(1− ε)[κ2 − β(1− ε)] + β} yz + z − ϕ(x, y)z − f(x, y)

+P (t) + κβ(1− ε)2[y2 + xz] + (1− ε)2β[yz + x(ϕ(x, y)z − f(x, y) + P (t))]

+κ(1− ε)[z2 + y(ϕ(x, y)z − f(x, y) + P (t))]} .
(4.3.15)

Also by the conditions on f(x, y) and ϕ(x, y)

V̇ = −aδ
∆

{
x2 + y2 + z2 − (1− ε2β)x+ κ(1− ε)y + z)P (t)

}
. (4.3.16)

≤ −aδ
∆

{
x2 + y2 + z2 −K4(|x|+ |y|+ |z|)P (t)

}
, (4.3.17)

where K4 = max((1− ε)2β, κ(1− ε), 1)

≤ −K3(x2 + y2 + z2) +K5(|x|+ |y|+ |z|) |P (t)| , (4.3.18)

where K5 = K4aδ
∆
.

Since

(|x|+ |y|+ |z|) ≤
√

3(x2 + y2 + z2)
1
2 ,

the inequality (4.3.19) becomes

dV

dt
≤ −K4(x2 + y2 + z2) +K6(x2 + y2 + z2)

1
2 |P (t)| , (4.3.20)

where K6 =
√

3K5 and K4 = K3.

This completes the proof of the Lemma 4.3.3.
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From the proofs of the lemmas it is established that the function V (x, y, z) is a

Lyapunov function.

4.4 Proof of the main results

We shall give the proofs of the Theorems stated in Section 2 of this paper.

Proof of Theorem 4.2.1: From the proof of the Lemma 4.3.1 and Lemma 4.3.2 it

is established that the trivial solution of Equation (4.1.1) is globally asymptotically

stable. i.e every solution (x(t), ẋ(t), ẍ(t)) of the system (4.1.2) satisfies x2(t)+ẋ2(t)+

ẍ2(t) −→ 0 as t −→∞

Proof of Theorem 4.2.2: Indeed from the inequality (4.3.20),

dV

dt
≤ −K3(x2 + y2 + z2) +K6(x2 + y2 + z2)

1
2 |P (t)| ,

and also from the inequality (4.3.6), we have

(x2 + y2 + z2)
1
2 ≤

(
2V

K1

) 1
2

.

Thus the inequality (4.3.20) becomes

dV

dt
≤ −K7V +K8V

1
2 |P (t)| . (4.4.1)

We note that

K4(x2 + y2 + z2) = K4 · VK1

and
dV

dt
≤ −K7V +K8V

1
2 |P (t)| (4.4.2)

where K7 = K4

K2
and K8 = K6

K
1
2
2

.

These imply that

V̇ ≤ −K7V +K8V
1
2 |P (t)|

and this can be written as

V̇ ≤ −2K9V +K8V
1
2 |P (t)| , (4.4.3)

where K9 = 1
2
K7.

Therefore

V̇ +K9V ≤ −K9V +K8V
1
2 |P (t)| (4.4.4)
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≤ K8V
1
2

{
|P (t)| −K10V

1
2

}
, (4.4.5)

where K10 = K9

K8
.

Thus the inequality (4.4.5) becomes

V̇ +K9V ≤ K8V
1
2V ∗ (4.4.6)

where

V ∗ = |P (t)| −K10V
1
2 (4.4.7)

≤ V
1
2 |P (t)|

≤ |P (t)| . (4.4.8)

When |P (t)| ≤ K10V
1
2 ,

V ∗ ≤ 0 (4.4.9)

and when |P (t)| ≥ K10V
1
2 ,

V ∗ ≤ |P (t)| · 1

K10

. (4.4.10)

On substituting the inequality (4.4.9) into the inequality (4.4.5), we have,

V̇ +K9V ≤ K11V
1
2 |P (t)|

where

K11 =
K8

K10

.

This implies that

V −
1
2 V̇ +K9V

1
2 ≤ K11 |P (t)| . (4.4.11)

Multiplying both sides of the inequality (4.4.11) by e
1
2
K9t we have,

e
1
2
K9t
{
V −

1
2 V̇ +K9V

1
2

}
≤ e

1
2
K9tK11 |P (t)| (4.4.12)

i.e

2
d

dt

{
V

1
2 e

1
2
K9t
}
≤ e

1
2
K9tK11 |P (t)| . (4.4.13)

Integrating both sides of inequality (4.4.13) from t0 to t, gives{
V

1
2 e

1
2
K9γ
}t
t0
≤
∫ t

t0

1

2
e

1
2
K9τK11 |P (τ)dτ | (4.4.14)
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which implies that{
V

1
2 (t)
}
e

1
2
K9t ≤ V

1
2 (t0)e

1
2
K9t0 +

1

2
K11

∫ t

t0

|P (τ)| e
1
2
K9τdτ ,

or

V
1
2 (t) ≤ e−

1
2
K9t

{
V

1
2 (t0)e

1
2
K9t0 +

1

2
K11

∫ t

t0

|P (τ)| e
1
2
K9τdτ

}
.

Using inequalities (4.3.9) and (4.3.10) we have

K1(x2(t)+ẋ2(t)+ẍ2(t)) ≤ e−
1
2
K9t

{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0))e

1
2
K9t0 +

1
2
K11

∫ t

t0
|P (τ)| e

1
2
K9τdτ

}2

(4.4.15)

for all t ≥ t0.

Thus,

x2(t) + ẋ2(t) + ẍ2(t) ≤ 1
K1

{
e−

1
2
K9t
{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0))e

1
2
K9t0

+ 1
2K11

∫ t
t0 |P (τ)| e

1
2
K9τdτ

}2
}

≤

{
e−

1
2
K9t

{
A1 +A2

∫ t

t0
|P (τ)| e

1
2
K9τdτ

}2
}

(4.4.16)

where A1 and A2 are constants depending on {K1,K2, (x2(t0) + ẋ2(t0) + ẍ2(t0))} and

{K1,K11} respectively.

By substituting K9 = µ in the inequality (4.4.16), we have

x2(t) + ẋ2(t) + ẍ2(t) ≤

{
e−

1
2
µt

{
A1 +A2

∫ t

t0
|P (τ)| e

1
2
µτdτ

}2
}
,

which completes the proof.

Proof of Theorem 4.2.3: From the function V defined above and the conditions of

Theorem 4.2.3, the conclusion of Lemma 4.3.1 can be obtained, as

V ≥ K1

(
x2 + y2 + z2

)
, (4.4.17)

and since P 6= 0 we can revise the conclusion of Lemma 4.3.2, i.e,

V̇ ≤ −K4(x2 + y2 + z2) +K5(|x|+ |y|+ |z|) |P (t)| ,

and we obtain

V̇ ≤ K5(|x|+ |y|+ |z|)2r(t). (4.4.18)
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By using the inequality |x| |y| ≤ 1
2(x2 + y2), on inequality (4.4.18), we have

V̇ ≤ K11(x2 + y2 + z2)r(t), (4.4.19)

where K11 = 3K5.

From inequalities (4.4.17) and (4.4.19) we have,

V̇ ≤ K11V r(t). (4.4.20)

Integrating inequality (4.4.20) from 0 to t, we obtain

V (t)− V (0) ≤ K12

∫ t

0
V (s)r(s)ds. (4.4.21)

where K12 = K11
K1

= 3K5
K1

Using the condition on p(t;x, y, z) as stated in the Theorem 4.2.3 we have

V (t) ≤ V (0) +K11

∫ t

0
V (s)r(s)ds. (4.4.22)

By Grownwall-Bellman inequality, the inequality (4.4.22) yields,

V (t) ≤ V (0)e(K12

∫ t
0 r(s)ds). (4.4.23)

This completes the proof of Theorem 4.2.3.
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Chapter 5

BOUNDEDNESS AND

STABILITY PROPERTIES OF

SOLUTION TO CERTAIN

FOURTH ORDER NON-LINEAR

DIFFERENTIAL EQUATION

1

Abstract:

We give sufficient conditions for the existence of a stable (globally asymptotically stable),

bounded and uniform ultimate bounded solution to a certain fourth order non-linear dif-

ferential equation using a single complete Lyapunov function without the use of a signum

function or any stringent condition on the nonlinear terms.The results include and improve

some existing results in literature.

Keywords: Boundedness, complete Lyapunov function, fourth order non-linear differ-

ential equations, uniform ultimate boundedness, stability.
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5.1 Introduction

In this paper, we study the fourth order nonlinear differential equation

x(iv) + a
...
x +bẍ+ g(ẋ) + h(x) = p(t), (5.1.1)

where a and b are positive constants, the functions g, h and p are continuous in the

respective argument displayed explicitly. Also dot means the derivative of the variable

with respect to t.

Studies on the qualitative properties (boundedness, stability and periodicity) of solutions

for higher order nonlinear differential equations have received considerable attention from

several scholars who have obtained interesting results. Some of these results have been

summarized in [11].

In [1], the authors employed the frequency domain method to investigate the bound-

edness of this class of equation.

In [9], the Cauchy formula for the particular solution of non-homogeneous linear differen-

tial equation was employed to achieve the results on boundedness of solution.

Other articles in this connection include Ezeilo [5-6], Harrow [7-8], Tiryaki and Tunc [13-

14], Tunc [15-18], Tunc and Tiryaki [19] where the second method of Lyapunov was used.

All these results in one way or the other generalize some results on third order nonlinear

equations (see [2, 4, 10 and 12]).

In [18], the author gave criteria for the asymptotic stability and boundedness of solutions

of certain class of the equation above by the use of an incomplete Lyapunov function

(Yoshizawa [20]) and a stringent condition was placed on the nonlinear terms g and h

which is necessary for these functions not only to be continuous but also be differentiable.

In continuation with the study in [9], we will consider Equation (5.1.1) with an equiv-

alent system of equations

ẋ = y,

ẏ = z,

ż = w,

ẇ = −aw − bz − g(y)− h(x) + p(t),

(5.1.2)

this time with the focus on the boundedness and stability properties of the solutions.

Since it has been established that the Lyapunov second method still remains one the

most effective method to study these properties of solutions we shall in this paper give
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criteria for the existence of a unique solution to Equation (5.1.1) which is stable (globally

asymptotically stable) and bounded (uniformly ultimately bounded) on the real line. This

we shall achieve by the use of a single complete Lyapunov function without the use of

any signum function and less restriction on the nonlinear terms g and h other than being

continuous.

Even though there is no unique way of constructing a Lyapunov function, we shall adapt

Cartwright’s approach [3] for the construction of the Lyapunov function used in this work.

In order to reach our main results, we shall first give some important basic definitions for

the general non-autonomous differential equation. We consider the system

ẋ = f(t, x) (5.1.3)

where f ∈ C[I × Sρ], I = [0,∞), t ≥ 0, and Sρ = {x ∈ <n : ‖x‖ < ρ}. Assume that f is

smooth enough to ensure the existence and uniqueness of solutions of Equation (5.1.3)

through every point (t0, x0) ∈ J × Sρ. Also, let f(t, 0) = 0 so that the system (5.1.3)

admits the zero solution x ≡ 0.

Definition 5.1.1 [20]: The solution x(t) ≡ 0 of Equation (5.1.1) is stable if for any ε > 0

and any t0 ∈ I there exists a δ(t0, ε) < 0 such that if x0 ∈ Sδ(t0,ε) then x(t; t0, x0) ∈ Sε for

all t ≥ t0.

Definition 5.1.2 [20]: The solution x(t) ≡ 0 of Equation (5.1.1) is asymptotically stable

in the whole (globally asymptotically stable) if it is stable and every solution of the Equa-

tion (5.1.1) tends to zero as t −→∞.

Definition 5.1.3 [20]: The solution x(t) ≡ 0 of Equation (5.1.1) is uniformly asymp-

totically stable if it is stable and there exists a δ(t0) > 0 such that ‖x(t; t0, x0)‖ −→ 0 as

t −→∞ for all x0 ∈ Sδ0.

We shall also give the following definitions in our context:

Definition 5.1.4: A Lyapunov function V defined as V : I × <n → < is said to be com-

plete if for X ∈ <n,

(i) V (t,X) ≥ 0

(ii) V (t,X) = 0, if and only if X = 0

and

(iii) V̇ |5.1.3(t,X) ≤ −c |X| where c is any positive constant and |X| given by
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|X| =

(
n∑
i=1

(x2
i )

) 1
2

such that |X| → ∞ as X →∞.

Definition 5.1.5: A Lyapunov function V defined as V : I × <n → < is said to be

incomplete if for X ∈ <n, conditions (i) and (ii) of Definition 5.1.4 is satisfied, and in

addition

(iii) V̇ (t,X)|5.1.3 ≤ −c |X|∗ where c is any positive constant and |X|∗ is given as

|X|∗ =

(
<n∑
i=1

x2

) 1
2

such that |X|∗ →∞ as X →∞.

5.2 Main Results

The following are the main results in this paper.

Case 1. p ≡ 0.

Theorem 5.2.1: Let the functions g and h be continuous. Furthermore let the following

conditions hold:

(i) H0 = h(x)−h(0)
x ≤ d ∈ I0 , x 6= 0 with I0 = [δ,∆], d, δ,∆ > 0, and I0 is the Routh

Hurwitz interval.

(ii) G0 = g(y)−g(0)
y ≤ c ∈ I0 , y 6= 0, c > 0,

(iii) h(0) = g(0) = 0.

Then the trivial solution of Equation (5.1.1) is globally asymptotically stable.

Case 2. p 6= 0

Theorem 5.2.2: Let p be continuous and suppose the following conditions are satis-

fied:

(i) Conditions(i)-(iii) of Theorem 5.2.1 hold; and

(ii)|p(t)| ≤M (constant)for all t ≥ 0,

then there exists a constant µ,(0 < µ < ∞) depending only on a, b, c, d,and δ such that

every solution of Equation (5.1.1) satisfies

x2(t) + ẋ2(t) + ẍ2(t)+
...
x

2 (t) ≤ e−
1
2
µt

{
A1 +A2

∫ t

t0

|p(τ)| e
1
2
µτdτ

}2

for all t ≥ t0, where the constant A1 > 0, depends on a, b, c, d, δ as well as on t0, x(t0), ẋ(t0), ẍ(t0),
...
x

(t0); and the constant A2 > 0 depends on a, b, c, d and δ.
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We now consider the case when p(t) in Equation (5.1.1) is replaced with p(t, x, ẋ, ẍ,
...
x).

Theorem 5.2.3: Following the assumptions of Theorem 5.2.2 and condition (ii) replaced

with
∣∣p(t, x, ẋ, ẍ, ...x)

∣∣ = (|x|+ |y|+ |z|+ |w|) r(t), where r(t) is a non negative and contin-

uous function of t, and satisfies
∫ t

0
r(s)ds ≤ M < ∞ and M, a positive constant. Then

there exists a constant K0 which depends on M,K1,K2 and t0 such that every solution

x(t) of Equation (5.1.1) satisfies

|x(t)| ≤ K0, |ẋ| ≤ K0, |ẍ| ≤ K0,
∣∣...x (t)

∣∣ ≤ K0

for all sufficiently large t.

Remark: We wish to remark here that while the Theorem 5.2.1 is on the global asymp-

totic stability of the trivial solution, the Theorems 5.2.2 and 5.2.3 are dealing with the

boundedness and ultimate boundedness of the solutions respectively.

The trivial solution of the corresponding linear equation to Equation (5.1.1) given as

x(iv) + a
...
x +bẍ+ cẋ+ dx = p(t)

is asymptotically stable if the Routh-hurwitz condition (ab − c) > 0, (ab − c)c − a2d > 0

hold.

Notations: For the rest of the article K,K0,K1, . . .K14 stand for finite positive con-

stants whose magnitudes depend only on the functions g, h and p as well as constants

a, b, c, d and δ but are independent of solutions of Equation (5.1.1). K ′is are not necessar-

ily the same for each time they occur, but eachKi, i = 1, 2... retains its identity throughout.

5.3 Preliminary Results

We shall use as a tool to prove our main results besides Equation (5.1.1), a function

V (x, y, z, w) defined by

2V (x, y, z, w) = Ax2 +By2 +Cz2 +Dw2 + 2Exy+ 2Fxz+ 2Gxw+ 2Hyz+ 2Iyw+ 2Jzw,

(5.3.1)
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where

A = aδ
∆

{
(b+ d)(c2 + d2)[d(1− ad)− c] + d3[a(b2 + d2) + L]

}
,

B = δ
∆

{
dL(abd+ c) + a(b2 + d2)[b(d− c) + cd] + [d(1− ad)− c][ad(b2 + c2)

−cd2(b+ 1) + a2bc]
}
,

C = δ
∆

{
a(b2 + d2)[d(1− ad+ a2c+ d)− c] + d[c(a2 + b2)− ab][d(1− ad)− c] + dL(a2c+ d)

}
,

D = cdδ
∆

{
L+ ab2 + (d− c) + ab[(1− ad)− c]

}
,

(5.3.2a)

E = acδ
∆

{
d2L+ (b2 + d2)(d− c)

}
,

F = cdδ
bd∆

{
d2L+ ad2(b2 + d2) + [b(a2 + d2) + d2][ab2d2[d(1− ad)− c]]

}
,

G = abc[d(1−ad−c)]δ
∆ ,

H = abcdδ
∆

{
a(b2 + d2) + L

}
,

I = aδ
∆

{
d2L+ bd[d(1− ad)− c] + (b2 + d2)(d− c)

}
,

J = acdδ
∆

{
ab2 + d− c+ L

}
,

∆ = abcd[d(1− ad)− c],

L = b[ad+ c[c(b+ 1)− c]],

(5.3.2b)

with a, b, c, d positive and [d(1− ad)− c] > 0.

Lemma 5.3.1 Subject to the assumptions of Theorem 5.2.1 there exist positive constants

Ki = Ki(a, b, c, d, δ), i = 1, 2 such that

K1(x2 + y2 + z2 + w2) ≤ V (x, y, z, w) ≤ K2(x2 + y2 + z2 + w2). (5.3.3)

Proof: Clearly V (0, 0, 0, 0) ≡ 0.

By rearranging Equation (5.3.1) we have

2V (x, y, z, w) =
(
δ
∆

) {
a[d(1− ad)]{b(cx+ dy + w)2 + d2(y + b3d2x)2 + b2d(y + a2bdx)2

+acd(z + b2d3

a x)2
}

+ dL
{

(z + acx)2 + ac2(z + 1
aw)2 + c(y + ad

c w)2 + ad2(x+ c
dy)2

+abd(y + c
dz)

2
}

+ ad(b2 + d2)
{
ad2(x+ c(d−c)

ad3 y)2 + a2c(z + d
ax)2 + c

a(b2+d2)
(w + az)2

+b(d− c)(y + w
b )2 + c(y + abz)2

}
+
{

[d(1− ad)− c](ad(c2 + d2) + abd2)

− cd3

a (b2 + d2)− b4cd3 − a5b4d3 − ab6d4 − a2c2d2L
}
x2

+
{

[d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1) + a2bc− abd2]− ac2dL− c2(d−c)2

d3

}
y2

+
{
ad2(b2 + d2) + d(b2c− ab)[d(1− ad)− c]− a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]

}
z2

+
{
L− ab[d(1− ad)− c]− a

b (b2 + d2)(d− c)− a2d3

c − cdL
}
w2 } ,

(5.3.4)
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from which we obtain,

2V (x, y, z, w) ≥
(
δ
∆

)
{{[d(1− ad)− c](ad(c2 + d2) + abd2)− cd3

a (b2 + d2)− b4cd3 − a5b4d3

−ab6d4 − a2c2d2L}x2 + {[d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1)

+a2bc− abd2]− ac2dL− c2(d−c)2

d3 }y2 + {ad2(b2 + d2) + d(b2c− ab)[d(1− ad)− c]

−a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]}z2 + {L− ab[d(1− ad)− c]

−a
b (b2 + d2)(d− c)− a2d3

c − cdL}w
2}

(5.3.5)

≥ K1(x2 + y2 + z2 + w2),

where

K1 = δ
∆ ·min { |[d(1− ad)− c](ad(c2 + d2) + abd2)− cd3

a (b2 + d2)− b4cd3 − a5b4d3

−ab6d4 − a2c2d2L|,

|[d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1) + a2bc− abd2]− ac2dL− c2(d−c)2

d3 |,

|ad2(b2 + d2) + d(b2c− ab)[d(1− ad)− c]− a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]|,

|L− ab[d(1− ad)− c]− a
b (b2 + d2)(d− c)− a2d3

c − cdL|}

Therefore,

2V (x, y, z, w) ≥ K1(x2 + y2 + z2 + w2). (5.3.6)

By using the inequality xy ≤ 1
2(x2 + y2), on Equation (5.3.1), we have

2V (x, y, z, w) ≤
(
δ

∆

)
{[A+E+F+G]x2+[B+E+H+I]y2+[C+F+H+J ]z2+[D+G+I+J ]w2}

≤ K2(x2 + y2 + z2 + w2), (5.3.7)

where

K2 =
(
δ

∆

)
max {[A+ E + F +G], [B + E +H + I], [C + F +H + J ], [D +G+ I + J ]} > 0.

From inequalities (5.3.6) and (5.3.7), we have

K1(x2 + y2 + z2 + w2) ≤ V (x, y, z, w) ≤ K2(x2 + y2 + z2 + w2). (5.3.8)

This proves the Lemma 5.3.1.

Lemma 5.3.2: Subject to the assumptions of Theorem 5.2.1 and in addition let the

condition (ii) of the Theorem 5.2.2 be also satisfied. Then there are positive constants

Kj = Kj(a, b, c, d, δ)(j = 3, 4) such that for any solution (x, y, z, w) of system (5.1.3),

V̇ |(5.1.3) ≡ d
dtV |(5.1.3)(x, y, z, w) ≤ −K3(x2 + y2 + z2 + w2) +K4(|x|+ |y|+ |z|+ |w|) |p(t)| .

(5.3.9)
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Proof: From Equations (5.1.1) and (5.1.3), we have

V̇ |(5.1.3) =
∂V

∂x
ẋ+

∂V

∂y
ẏ +

∂V

∂z
ż +

∂V

∂w
ẇ

= ∂V
∂x y + ∂V

∂y z + ∂V
∂z w + ∂V

∂z (−aw − bz − g(y)− h(x) + p(t)). (5.3.10)

After some simplifications we have,

V̇ =
(
δ
∆

) {
−Gh(x)x− Ig(y)y − [Jb−H]z2 − [Da− J ]w2

−Gg(y)x− Ih(x)y − [Gb− E]xz − Jh(x)z − [Ga− F ]xw −Dh(x)w − [Ib− F −B]yz

−Jg(y)z − [Ia−G−H]yw −Dg(y)w − [Db+ Ja− I − C]zw

+Ey2 +Axy + p(t)[Gx+ Iy + Jz +Dw]
}
.

(5.3.11)

Using the conditions on h(x) and g(y), the inequality (5.3.11) becomes

V̇ ≤
(
δ
∆

) {
−Gdx2 − [Ic− E]y2 − [Jb−H]z2 − [Da− J ]w2 − [Gc+ Id−A]xy − [Gb+ Jd− E]xz−

−[Ga+Dd− F ]xw − [Ib+ Jc− F −B]yz −−[Ia+Dc−G−H]yw

−[Db+ Ja− I − C]zw[h(0) + g(0) + p(t)][Gx+ Iy + Jz +Dw]}
(5.3.12)

and this is equivalent to

V̇ ≤
(
δ
∆

) {
−K3(x2 + y2 + z2 + w2) + [h(0) + g(0) + p(t)][Gx+ Iy + Jz +Dw]

}
(5.3.13)

where K3 = max{Gd, [Ic− E], [Jb−H], [Da− J ]}.

Inequality (5.3.13) further reduces to

V̇ ≤
(
δ
∆

) {
−K3(x2 + y2 + z2 + w2) +K4(|x|+ |y|+ |z|+ |w|)p(t)

}
(5.3.14)

with K4 = max{D,G, I, J}.

Therefore

V̇ ≤ −K5(x2 + y2 + z2 + w2) +K6(|x|+ |y|+ |z|+ |w|)p(t) (5.3.15)

where K5 =
(
δ
∆

)
K3 and K6 =

(
δ
∆

)
K4.

Since

(|x|+ |y|+ |z|+ |w|) ≤ 2(x2 + y2 + z2 + w2)
1
2 ,

the inequality (5.3.15) becomes

dV

dt
≤ −K5(x2 + y2 + z2 + w2) +K7(x2 + y2 + z2 + w2)

1
2 |p(t)| , (5.3.16)

where K7 = 2K6.

This completes the proof of Lemma 5.3.2.
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5.4 Proof of the main results

We shall now give the proof of the main results.

Proof of Theorem 5.2.1

From the proof of the Lemmas 5.3.1 and 5.3.2 it is established that the trivial solution of

Equation (5.1.1) is globally asymptotically stable. i.e every solution (x(t), ẋ(t), ẍ(t),
...
x (t))

of the system (5.1.2) satisfies x2(t) + ẋ2(t) + ẍ2(t)+
...
x (t) −→ 0 as t −→∞.

Proof of Theorem 5.2.2: Indeed from the inequality (5.3.16),

dV

dt
≤ −K5(x2 + y2 + z2 + w2) +K7(x2 + y2 + z2 + w2)

1
2 |p(t)| ,

and also from the inequality (5.3.6), we have

(x2 + y2 + z2 + w2)
1
2 ≤

(
2V
K1

) 1
2

.

Thus the inequality (5.3.16) becomes

dV

dt
≤ −K8V +K9V

1
2 |p(t)| . (5.4.1)

We note that

K5(x2 + y2 + z2 + w2) = K5 · VK1

and
dV

dt
≤ −K8V +K9V

1
2 |p(t)| (5.4.2)

where K8 = K6
K2

and K9 = K7

K
1
2
2

.

These imply that

V̇ ≤ −K8V +K9V
1
2 |p(t)|

and this can be written as

V̇ ≤ −2K10V +K9V
1
2 |p(t)| , (5.4.3)

where K10 = 1
2K8.

Therefore

V̇ +K10V ≤ −K10V +K9V
1
2 |p(t)| (5.4.4)

≤ K9V
1
2

{
|p(t)| −K11V

1
2

}
, (5.4.5)

where K11 = K10
K9

.

Thus the inequality (5.4.5) becomes

V̇ +K10V ≤ K9V
1
2V ∗ (5.4.6)
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where

V ∗ = |p(t)| −K11V
1
2 (5.4.7)

≤ V
1
2 |p(t)|

≤ |p(t)| . (5.4.8)

When |p(t)| ≤ K11V
1
2 ,

V ∗ ≤ 0, (5.4.9)

and when |p(t)| ≥ K11V
1
2 ,

V ∗ ≤ |p(t)| · 1
K11

. (5.4.10)

On substituting the inequality (5.4.9) into the inequality (5.4.5), we have,

V̇ +K10V ≤ K12V
1
2 |p(t)|

where

K12 =
K9

K11
.

This implies that

V −
1
2 V̇ +K10V

1
2 ≤ K12 |p(t)| . (5.4.11)

Multiplying both sides of the inequality (5.4.11) by e
1
2
K10t we have,

e
1
2
K10t

{
V −

1
2 V̇ +K10V

1
2

}
≤ e

1
2
K10tK12 |p(t)| (5.4.12)

i.e

2
d

dt

{
V

1
2 e

1
2
K10t

}
≤ e

1
2
K10tK12 |p(t)| . (5.4.13)

Integrating both sides of (5.4.13) from t0 to t, gives{
V

1
2 e

1
2
K10γ

}t
t0
≤
∫ t

t0

1
2
e

1
2
K9τK12 |p(τ)dτ | (5.4.14)

which implies that{
V

1
2 (t)

}
e

1
2
K10t ≤ V

1
2 (t0)e

1
2
K10t0 +

1
2
K12

∫ t

t0
|2(τ)| e

1
2
K10τdτ,

or

V
1
2 (t) ≤ e−

1
2
K10t

{
V

1
2 (t0)e

1
2
K10t0 +

1
2
K12

∫ t

t0
|p(τ)| e

1
2
K10τdτ

}
.

Using inequalities (5.3.6) and (5.3.7) we have

K1(x2(t) + ẋ2(t) + ẍ2(t)+
...
x (t)) ≤ e−

1
2
K10t

{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0)+

...
x (t0))e

1
2
K10t0

+1
2K12

∫ t
t0 |p(τ)| e

1
2
K10τdτ

}2

(5.4.15)
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for all t ≥ t0.

Thus,

x2(t) + ẋ2(t) + ẍ2(t)+
...
x (t) ≤ 1

K1

{
e−

1
2
K10t

{
K2(x2(t0) + ẋ2(t0) + ẍ2(t0)+

...
x (t0))e

1
2
K10t0

+1
2K12

∫ t
t0 |p(τ)| e

1
2
K10τdτ

}2
}

≤

{
e−

1
2
K10t

{
A1 +A2

∫ t

t0
|p(τ)| e

1
2
K10τdτ

}2
}
, (5.4.16)

where A1 and A2 are constants depending on {K1,K2, . . .K12 and (x2(t0) + ẋ2(t0) +

ẍ2(t0))+
...
x (t0)}.

By substituting K10 = µ in the inequality (5.4.16), we have

x2(t) + ẋ2(t) + ẍ2(t)+
...
x (t) ≤

{
e−

1
2
µt

{
A1 +A2

∫ t

t0
|p(τ)| e

1
2
µτdτ

}2
}
,

which completes the proof.

Proof of Theorem 5.2.3: From the function V defined above and the conditions of

Theorem 5.2.3, the conclusion of Lemma 5.3.1 can be obtained, as

V ≥ K1

(
x2 + y2 + z2 + w2

)
, (5.4.17)

and since p 6= 0 we can revise the conclusion of Lemma 5.3.2, i.e,

V̇ ≤ −K5(x2 + y2 + z2 + w2) +K6(|x|+ |y|+ |z|+ |w|) |p(t)| ,

and we obtain by using the condition on p(t;x, y, z, w) as stated in the Theorem 5.2.3 that

V̇ ≤ K6(|x|+ |y|+ |z|+ |w|)2r(t). (5.4.18)

By using the inequality |x| |y| ≤ 1
2(x2 + y2), on inequality (5.4.18), we have

V̇ ≤ K13(x2 + y2 + z2 + w2)r(t), (5.4.19)

where K13 = 4K6.

From inequalities (5.4.17) and (5.4.19) we have,

V̇ ≤ K13V r(t). (5.4.20)

Integrating inequality (5.4.20) from 0 to t, we obtain

V (t)− V (0) ≤ K14

∫ t

0
V (s)r(s)ds. (5.4.21)
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where K14 = K13
K1

= 4K6
K1

.

Thus,

V (t) ≤ V (0) +K14

∫ t

0
V (s)r(s)ds. (5.4.22)

By applying the Grownwall-Reid-Bellman theorem on the inequality, (5.4.22) yields,

V (t) ≤ V (0)e(K14

∫ t
0 r(s)ds). (5.4.23)

This completes the proof of Theorem 5.2.3.

5.5 REFERENCES

1. A.U. Afuwape and O.A. Adesina: Frequency-Domain Approach to Stability and Peri-

odic Solutions of Certain Fourth-Order Nonlinear Differential Equations. Nonlinear

Studies Vol. 12 No.3(2005) 259-269.

2. J. Andres: Boundedness result of solutions to the equation x
′′′

+ax
′′

+g(x
′
)+h(x) =

p(t) without the hypothesis h(x)sgnx ≥ 0 for |x| > R. Atti Accad. Naz. Lincie,

VIII. Ser., Cl. Sci. Fis. Mat. Nat. 80, No 7-12(1986), 532-539.

3. M. L. Cartwright: On the Stability of Solution of Certain Differential Equations of

the Fourth Order. Quart. J. Mech.Appl. Math. vol. 9 (1956), 185-194.

4. E. N. Chukwu: On the Boundedness of Solutions of Third Order Differential Equa-

tions. Ann. Mat.Pura Appl (4), vol 155 (1975), 123-149.

5. J. O. C. Ezeilo: On the Boundedness and the Stability of Solution of some Fourth

Order Equations. J.Math.Anal.Appl. 5. (1962), 136-146.

6. J. O. C. Ezeilo: A Stability result for Solutions of a Certain Fourth Order Differ-

ential Equations. J.London Math. Soc. 37 (1962), 28-32.

7. M. Harrow: A Stability result for Solutions of a Certain Fourth Order Homogeneous

Differential Equations. J.London Math. Soc. 42 (1967), 51-56.

8. M. Harrow: On the Boundedness and the Stability of Solutions of some Differential

Equations of the Fourth Order. SIAM, J. Math. Anal. 1 (1970), 27-32.



5.5. REFERENCES 77

9. B. S. Ogundare: Boundedness of Solutions to Fourth Order Differential Equations

with Oscillatory Restoring and Forcing Terms. Electronic Journal of Differential

Equations, Vol. 2006(2006), No. 06, 1-6.

10. B. S. Ogundare and A.U. Afuwape: Unified Qualitative Properties of Solution of

Certain Third Order Non-linear Differential Equations. Int. J. Pure Appl. Math.,

Vol.26, No.2,(2006), 176-188.

11. R. Reissig, G. Sansone and R. Conti : Non Linear Differential Equations of Higher

Order, Nourdhoff International Publishing, Lyden (1974).

12. K.E. Swick: Boundedness and Stability for Nonlinear Third Order Differential Equa-

tion. Atti Accad. Naz. Lincie, VIII. Ser., Cl. Sci. Fis. Mat. Nat. 80, 56(1974),

859-865.

13. A. Tiryaki and C. Tunc: Construction Lyapunov functions for certain fourth-order

autonomous Differential Equations. Indian J. Pure Appl. Math. 26 (1995), no. 3,

225-292.

14. A.Tiryaki and C. Tunc: Boundedness and the Stability Properties of Solutions of

Certain Fourth Order Differential Equations via the Intrinsic Method. Analysis,

16(1996), 325-334.

15. C. Tunc: A Note on the Stability and Boundedness Results of Certain Fourth Order

Differential Equations. Applied Mathematics and Computation, 155(3) (2004), 837-

843.

16. C. Tunc: Some Stability and Boundedness Results for the Solutions of Certain

Fourth Order Differential Equations. Acta Univ. Palacki Olomouc. Fac. Rerum

Natur. Math. 44 (2005), 161-171.

17. C. Tunc: An ultimate Boundedness Result for a Certain System of Fourth Order

Nonlinear Differential Equations. Differential Equations and Applications, Vol. 5

(2005), 163-174.

18. C. Tunc: Stability and boundedness of Solutions to Certain Fourth-Order Differential

Equations. Electronic Journal of Differential Equations, Vol. 2006(2006), No. 35,

1-10.



5.5. REFERENCES 78

19. C. Tunc and A.Tiryaki: On the Boundedness and the Stability Results for the So-

lutions of Certain Fourth Order Differential Equations via the Intrinsic Method.

Applied Mathematics and Mechanics, 17, No.11 (1996) 1039-1049.

20. T. Yoshizawa: Stability Theory by Liapunov’s Second Method. The Mathematical

Society of Japan (1966).



Chapter 6

CONVERGENCE OF

SOLUTIONS OF CERTAIN

FOURTH ORDER NON-LINEAR

DIFFERENTIAL EQUATIONS

1

Abstract

We give sufficient criteria for the existence of convergence of solutions for a certain class

of fourth order nonlinear differential equation using the Lyapunov’s second method. A

complete Lyapunov function is employed in this work which makes the results to include

and improve some existing results in literature.

Key words and Phrases: Complete Lyapunov function, convergence of solution, fourth

order nonlinear differential equations.

1Publication details: International Journal of Mathematics and Mathematical Sciences, Inter-

national Journal of Mathematics and Mathematical Sciences Volume 2007, Article ID

12536, 13 pages doi:10.1155/2007/1256

79



6.1. Introduction 80

6.1 Introduction

In this paper we shall consider the fourth order differential equation

x(iv) + a
...
x +f(x, ẋ)ẍ+ g(ẋ) + h(x) = p(t), (6.1.1)

where a > 0, the functions f, g, h, p are continuous in the respective arguments displayed

explicitly, ẋ =
dx

dt
, ẍ =

d2x

dt2
,

...
x=

d3x

dt3
and x(iv) =

d4x

dt4
. The conditions on f, g, h

and p are such that the existence of solutions of Equation (6.1.1) corresponding to any

preassigned initial solutions are guaranteed.

Solutions of the Equation of the form of Equation (6.1.1) have been investigated by

several researchers on the account of boundedness, stability and global asymptotic stabil-

ity (see for instance [5-6], [7], [9], [13-16] and [17]). Some results on these can be found in

[10]. Out of the numerous works on this class of equation only a few were devoted to the

convergence of the solutions. (see e.g [1] and [3]).

By convergence of solutions we mean, given any two solutions x1(t) and x2(t) of Equation

(6.1.1), x2(t)− x1(t)→ 0, ẋ2(t)− ẋ1(t)→ 0, ẍ2(t)− ẍ1(t)→ 0 and
...
x2 (t)− ...

x1 (t) −→

0 as t→∞.

In [2], [8], [11-12], certain classes of third order nonlinear differential equations were in-

vestigated and their solutions were proved to converge under certain conditions. In [11],

the author considered the equation

...
x +aẍ+ bẋ+ h(x) = p(t, x, ẋ, ẍ),

and established that the boundedness of both p(t) and
∫

p(τ)dτ together with the differ-

entiability of the function h guaranteed the convergence of the solutions of the considered

equation. This result was improved upon in [12] when the stringent conditions placed on

the function h in [11] was dispensed with.

Similarly in [8], the author established that the solutions of the considered equation

converged without much restrictions on the nonlinear terms that were involved.

In [1], the author considered Equation (6.1.1) with g(ẋ) = cẋ (c > 0), and further with the

assumption that h was not necessarily differentiable but satisfied an incrementary ratio

η−1 (h(x+ ξ)− h(ξ)) η 6= 0, which lies in a closed sub interval I0 of the Routh-Hurwitz

interval (0, (ab−c)c
a2 ), where I0 ≡ [∆0,

k(ab−c)c
a2 ] [1 & 3].

The author in [3] considered the equation (6.1.1) with f(x, ẋ) = b and criteria for the

existence of convergent solutions were established whereas in [1] he considered Equation
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(6.1.1) with f(x, ẋ) = b and g(ẋ) = c. The work in [3] extends [1] from equation with one

nonlinearity to the one having two nonlinearities which makes it an extension of [1] as well

as an extension of [11] to an analogous fourth order equations.

In all these studies Lyapunov’s second method has been the main tool of investiga-

tion. In the literature, the incomplete Lyapunov functions are frequent and used by a

quite appreciable number of researchers due to the nature of construction and simplicity.

The works with the complete Lyapunov functions are not as frequent as the ones with

incomplete Lyapunov function.

In this present work, we shall extend the work in [8] to Equation (6.1.1). With a suitable

complete Lyapunov function and less stringent assumptions on the nonlinear terms f, g, h

and p, we shall show that the solutions of Equation (6.1.1) converge.

This work is organized in this order, the main result is presented in Section Two as for-

mulation of results. Section Three deals with the tools needed to proof the main result.

The proof of the main theorem is presented is Section Four.

6.2 Formulation of Results

The following is the main result.

Theorem 6.2.1. Suppose x1(t) and x2(t) are two solutions of Equation (6.1.1), suppose

further that for arbitrary ξ, η(η 6= 0)

(i) h(ξ+η)−h(ξ)
η ∈ I0, η 6= 0;

(ii) g(ξ+η)−g(ξ)
η 6= 0;

(iii) h(0) = g(0) = 0;

(iv) |f(x, y)| ≤ b;

(v) |p(t)| ≤ Λ, (Λ constant)

then there exists a positive constant K5 such that

(v) S(t2) ≤ S(t1)e−K5(t2−t1) for t2 ≥ t1,

where

S(t) =
{

[x2(t)− x1(t)]2 + [ẋ2(t)− ẋ1(t)]2 + [ẍ2(t)− ẍ1(t)]2 + [
...
x2 (t)− ...

x1 (t)]2
}
.

Furthermore all solutions of Equation (6.1.1) converge.

We have the following corollaries as the consequences of the Theorem 6.2.1 when x1(t) = 0

and t1 = 0.
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Corollary 6.2.2: Suppose p = 0 in Equation (6.1.1) and suppose further that the con-

ditions of the Theorem hold, then the trivial solution of Equation (6.1.1) is exponentially

stable in the large.

Corollary 6.2.3: Suppose also that the conditions of the corollary 6.2.2 hold for arbi-

trary η(η 6= 0) and ξ = 0, then there exists a constant K0 such that every solution x(t)

of Equation (6.1.1) satisfies

|x(t)| ≤ K0, |ẋ(t)| ≤ K0, |ẍ(t)| ≤ K0, | ...x2 (t)| ≤ K0

Remark: The corresponding linear equation to (6.1.1) given as

x(iv) + a
...
x +bẍ+ cẋ+ dx = p(t), (∗)

d > 0 and constants b, c (with h(x) = dx, f(x, ẋ) = b, g(ẋ) = cẋ) and p(t) = 0 in Equation

(6.1.1)) is known to have convergent solutions if the Routh Hurwitz conditions/criteria

ab− c > 0, (ab− c)c− a2d > 0 hold [1 & 3].

Notations: Throughout this paper K3,K4 and K5 will denote finite positive constants

whose magnitudes depend only on the constants a, b, c, d, δ and ∆ but are independent of

solutions of Equation (6.1.1). K ′is are not necessarily the same for each time they occur,

but each Ki, i = 1, 2, . . . 5 retains its identity throughout.

6.3 Preliminary Results

On setting ẋ = y, ẏ = z, ż = w, Equation (6.1.1) can be replaced by an equivalent system

ẋ = y;

ẏ = z;

ż = w;

ẇ = −aw − f(x, y)z − g(y)− h(x) + p(t).

(6.3.1)

Following Cartwright [4] and Reissig et al [10] a possible Lyapunov function is a quadratic

function in the variables for which the co-efficients are suitably chosen. In this regard, we

shall assume a Lyapunov function of the form

2V (x, y, z, w) = Ax2 +By2 +Cz2 +Dw2 + 2Exy+ 2Fxz+ 2Ixw+ 2Jyz+ 2Myw+ 2Nzw,

(6.3.2)
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Our investigation rest mainly on the properties of the function

W (t) ≡ V (x2(t)− x1(t), y2(t)− y1(t), z2(t)− z1(t), w2(t)− w1(t))

with V (x(t), y(t), z(t), w(t)) written as V (x, y, z, w) where

A = aδ
∆

{
(b+ d)(c2 + d2)[d(1− ad)− c] + d3[a(b2 + d2) + L]

}
;

B = δ
∆

{
dL(abd+ c) + a(b2 + d2)[b(d− c) + cd] + [d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1) + a2bc]

}
;

C = δ
∆

{
a(b2 + d2)[d(1− ad+ a2c+ d)− c] + d[c(a2 + b2)− ab][d(1− ad)− c] + dL(a2c+ d)

}
;

D = cdδ
∆

{
L+ ab2 + (d− c) + ab[(1− ad)− c]

}
;

E = acδ
∆

{
d2L+ (b2 + d2)(d− c)

}
;

F = cdδ
bd∆

{
d2L+ ad2(b2 + d2) + [b(a2 + d2) + d2][ab2d2[d(1− ad)− c]]

}
;

I = abc[d(1−ad−c)]δ
∆ ;

J = abcdδ
∆

{
a(b2 + d2) + L

}
;

M = aδ
∆

{
d2L+ bd[d(1− ad)− c] + (b2 + d2)(d− c)

}
;

N = acdδ
∆

{
ab2 + d− c+ L

}
;

∆ = abcd[d(1− ad)− c];

L = b[ad+ c[c(b+ 1)− c]],

with a, b, c, d positive and [d(1 − ad) − c] > 0 were obtained after solving the equations

that arose when constructing the Lyapunov function ( see section 2.1.4 of this thesis).

Thus, W is equivalent to V (x, y, z, w) with x, y, z, w replaced with x2−x1, y2− y1, z2− z1

and w2 − w1 respectively.

Now define W as

2W (x2 − x1, y2 − y1, z2 − z1, w2 − w1) = A(x2 − x1)2 +B(y2 − y1)2 + C(z2 − z1)2 +D(w2 − w1)2

+2E(x2 − x1)(y2 − y1) + 2F (x2 − x1)(z2 − z1)

+2I(x2 − x1)(w2 − w1) + 2J(y2 − y1)(z2 − z1)

+2M(y2 − y1)(w2 − w1) + 2N(z2 − z1)(w2 − w1)
(6.3.3)

We shall prove the following.
Lemma 6.3.1 Suppose W is defined as in Equation (6.3.3) and W (0, 0, 0, 0) = 0, then
there exist constants K1 and K2 such that the inequalities

K1((x1−x2)2 +(y1−y2)2 +(z1−z2)2 +(w1−w2)2) ≤W ≤ K2 ((x1 −x2 )2 +(y1 −y2 )2 +(z1 − z2 )2 +(w1 −w2 )2 )

hold.

Proof of Lemma 6.3.1: Clearly W (0, 0, 0, 0) ≡ 0
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By rearranging Equation (6.3.3) we have

2W (x2 − x1, y2 − y1, z2 − z1, w2 − w1) =
(
δ
∆

){
a[d(1− ad)]{b[c(x2 − x1) + d(y2 − y1) + (w2 − w1)]2

+d2[(y2 − y1) + b3d2(x2 − x1)]2 + b2d[(y2 − y1) + a2bd(x2 − x1)]2

+acd[(z2 − z1) + b2d3

a
(x2 − x1)]2

}
+ dL

{
[(z2 − z1) + ac(x2 − x1)]2

+ac2[(z2 − z1) + 1
a

(w2 − w1)]2 + c[(y2 − y1) + ad
c

(w2 − w1)]2

+ad2[(x2 − x1) + c
d

(y2 − y1)]2 + abd[(y2 − y1) + c
d

(z2 − z1)]2
}

+ad(b2 + d2)
{
ad2[(x2 − x1) +

c(d−c)
ad3

(y2 − y1)]2 + a2c[(z2 − z1)

+ d
a

(x2 − x1)]2 + c
a(b2+d2)

[(w2 − w1) + a(z2 − z1)]2 + b(d− c)[(y2 − y1) +
(w2−w1)

b
]2

+c[(y2 − y1) + ab(z2 − z1)]2
}

+
{

[d(1− ad)− c](ad(c2 + d2) + abd2)− cd3

a
(b2 + d2)

−b4cd3 − a5b4d3 − ab6d4 − a2c2d2L
}

(x2 − x1)2 +
{

[d(1− ad)− c][ad(b2 + c2)

−cd2(b+ 1) + a2bc− abd2]− ac2dL− c2(d−c)2
d3

}
(y2 − y1)2 +

{
ad2(b2 + d2)

+d(b2c− ab)[d(1− ad)− c]− a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]
}

(z2 − z1)2

+
{
L− ab[d(1− ad)− c]− a

b
(b2 + d2)(d− c)− a2d3

c
− cdL

}
(w2 − w1)2 } ,

(6.3.4)

from which we obtain,

2W (x2 − x1, y2 − y1, z2 − z1, w2 − w1) ≥
(
δ
∆

)
{{[d(1− ad)− c](ad(c2 + d2) + abd2)− cd3

a
(b2 + d2)− b4cd3

−a5b4d3 − ab6d4 − a2c2d2L}(x2 − x1)2

+{[d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1) + a2bc− abd2]− ac2dL

− c
2(d−c)2
d3

}(y2 − y1)2 + {ad2(b2 + d2) + d(b2c− ab)[d(1− ad)− c]

−a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]}(z2 − z1)2

+{L− ab[d(1− ad)− c]

−a
b

(b2 + d2)(d− c)− a2d3

c
− cdL}(w2 − w1)2}

(6.3.5)

≥ K1((x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2),

where

K1 = δ
∆ ·min { |[d(1− ad)− c](ad(c2 + d2) + abd2)− cd3

a (b2 + d2)− b4cd3

−a5b4d3 − ab6d4 − a2c2d2L|,

|[d(1− ad)− c][ad(b2 + c2)− cd2(b+ 1) + a2bc− abd2]− ac2dL− c2(d−c)2

d3 |,

|ad2(b2 + d2) + d(b2c− ab)[d(1− ad)− c]− a3b2cd(b2 + d2)− abc2L− a2cd[ab2 + (d− c)]|,

|L− ab[d(1− ad)− c]− a
b (b2 + d2)(d− c)− a2d3

c − cdL|}.

Therefore,

2W (x2−x1, y2−y1, z2−z1, w2−w1) ≥ K1((x2−x1)2 +(y2−y1)2 +(z2−z1)2 +(w2−w1)2).

(6.3.6)

By using the inequality xy ≤ 1
2(x2 + y2), on Equation (6.3.2), we have

2W (x2 − x1, y2 − y1, z2 − z1, w2 − w1) ≤
(
δ
∆

)
{[A+ E + F + I](x2 − x1)2

+[B + E + J +M ](y2 − y1)2

+[C + F + J +N ](z2 − z1)2 + [D + I +M +N ](w2 − w1)2}
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≤ K2((x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2), (6.3.7)

where

K2 =
(
δ

∆

)
max {[A+ E + F + I], [B + E + J +M ], [C + F + J +N ], [D + I +M +N ]} > 0.

From inequalities (6.3.6) and (6.3.7), we have

K1((x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2) ≤W ≤ K2((x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2).

(6.3.8)

This proves the Lemma 6.3.1.

Lemma 6.3.2 Suppose (x1(t), y1(t), z1(t), w1(t)) and (x2(t), y2(t), z2(t), w2(t)) are any 2 distinct solutions of

the system (6.3.1) such that

H(x1, x2) =
h(x1(t))− h(x2(t))

x1(t)− x2(t)
∈ I0 and G(y1 , y2 ) =

g(y1 (t))− g(y2 (t))

y1 (t)− y2 (t)
6= 0

for all t > 0, (0 < t <∞), where I0 carries its usual meaning as I0 = [δ,∆] then the function

W = V (x1 − x2, y1 − y2, z1 − z2, w1 − w2)

satisfies

Ẇ ≤ −K3W

for some K3 > 0

Proof of Lemma 6.3.2: Differentiating W with respect to t using the system (6.3.1) we obtain after some

simplifications

Ẇ =
(
δ
∆

) {
−Ih(x1(t)− x2(t))(x1 − x2)−Mg(y1(t)− y2(t))(y1 − y2)− [Nb− J ](z1 − z2)2

−[Da−N ](w1 − w2)2 − Ig(y1(t)− y2(t))(x1 − x2)

−Mh(x1(t)− x2(t))(y1 − y2)− [Ib− E](x1 − x2)(z1 − z2)

−Nh(x1(t)− x2(t))(z1 − z2)− [Ia− F ](x1 − x2)(w1 − w2)−Dh(x1(t)− x2(t))(w1 − w2)

−[Mb− F −B](y1 − y2)(z1 − z2)−Ng(y1(t)− y2(t))(z1 − z2)− [Ma− I − J ](y1 − y2)(w1 − w2)

−Dg(y1(t)− y2(t))(w1 − w2)− [Db+Na−M − C](z1 − z2)(w1 − w2) + E(y1 − y2)2

+A(x1 − x2)(y1 − y2) + p(t)[I(x1 − x2) +M(y1 − y2) +N(z1 − z2) +D(w1 − w2)]} .
(6.3.9)

Using the conditions on h(x1 − x2) and g(y1 − y2), Equation (6.3.9) becomes

Ẇ ≤
(
δ
∆

) {
−IH(x1, x2)(x1 − x2)2 −MG(y1, y2)(y1 − y2)2 − [Nb− J ](z1 − z2)2 − [Da−N ](w1 − w2)2

−IG(y1, y2)(x1 − x2)(y1 − y2)−MH(x1, x2)(x1 − x2)(y1 − y2)− [Ib− E](x1 − x2)(z1 − z2)

−NH(x1, x2)(x1 − x2)(z1 − z2)−NG(y1, y2)(y1 − y2)(z1 − z2)− [Mb− F −B](y1 − y2)(z1 − z2)

−[Ia− F ](x1 − x2)(w1 − w2)−DH(x1, x2)(x1 − x2)(w1 − w2)− [Ma− I − J ](y1 − y2)(w1 − w2)

−DG(y1, y2)(y1 − y2)(w1 − w2)− [Db+Na−M − C](z1 − z2)(w1 − w2) + E(y1 − y2)2

+A(x1 − x2)(y1 − y2) + p(t)[I(x1 − x2) +M(y1 − y2) +N(z1 − z2) +D(w1 − w2)]}
(6.3.10)
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This can be written as

Ẇ ≤ − δ

∆
W, (6.3.11)

where

W = {W1 +W2 +W3 +W4 +W5 +W6 +W7 +W8 +W9 +W10 +W11 +W12 −W13} ,

with

W1 = α1H(x1, x2)(x1 − x2)2 + β1MG(y1, y2)(y1 − y2)2 + γ1(z1 − z2)2 + η1(w1 − w2)2;

W2 = α2H(x1, x2)(x1 − x2)2 + IG(y1, y2)(x1 − x2)(y1 − y2) + β2MG(y1, y2)(y1 − y2)2;

W3 = α3H(x1, x2)(x1 − x2)2 +MH(x1, x2)(x1 − x2)(y1 − y2) + β3MG(y1, y2)(y1 − y2)2;

W4 = α4H(x1, x2)(x1 − x2)2 + [Ib− E](x1 − x2)(z1 − z2) + γ2(z1 − z2)2;

W5 = α5H(x1, x2)(x1 − x2)2 +NH(x1, x2)(x1 − x2)(z1 − z2) + γ3(z1 − z2)2;

W6 = α6H(x1, x2)(x1 − x2)2 + [Ia− F ](x1 − x2)(w1 − w2) + η2(w1 − w2)2;

W7 = α7H(x1, x2)(x1 − x2)2 +DH(x1, x2)(x1 − x2)(w1 − w2) + η3(w1 − w2)2;

W8 = β4MG(y1, y2)(y1 − y2)2 + [Mb− F −B](y1 − y2)(z1 − z2) + γ4(z1 − z2)2;

W9 = β5MG(y1, y2)(y1 − y2)2 +NG(y1, y2)(y1 − y2)(z1 − z2) + γ5MG(y1, y2)(y1 − y2)2;

W10 = β6MG(y1, y2)(y1 − y2)2 + [Ma− I − J ](y1 − y2)(w1 − w2) + η4(w1 − w2)2;

W11 = β7MG(y1, y2)(y1 − y2)2 +DG(y1, y2)(y1 − y2)(w1 − w2) + η5(w1 − w2)2;

W12 = γ6(z1 − z2)2 + [Db+Na−M − C](z1 − z2)(w1 − w2) + η6(w1 − w2)2;

W13 = [I(x1 − x2) +M(y1 − y2) +N(z1 − z2) +D(w1 − w2)]p(t),

and
7∑
i=1

αi = 1,
7∑
i=1

βi = 1,
6∑
i=1

γi = 1 and
6∑

i=1

ηi = 1

W2, W3, . . . ,W12 are quadratic forms in the variables involved. Since for any quadratic form

AX2 +BX + C to be positive, B2 ≤ 4AC. With this property, Wi’s i = 2, 3 . . . 12 are positive if

max
{

(Ib− E)2

α4γ2
,

(Ia− F )2

4α6η2

}
≤ H ≤ min

{
4α5γ3

N2
,

4α7η3

D2

}
(a)

and

max
{

(Mb− F −B)2

Mβ4γ4
,

(Ma− I − J)2

4Mβ6γ4

}
≤ G ≤ min

{
4Mβ5γ5

N2
,

4Mβ7η5

D2

}
(b)

Moreover, with suitable choice of δ, (small enough), we can always have

W13 ≥ δ
{

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2
} 1

2

With these conditions we have that

W ≥W1

and

W1 ≤ K3

{
((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (w1 − w2)2)

}
, (6.3.12)
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with K3 = max{α1H(x1, x2), β1MG(y1, y2), γ1, η1}

Then from inequality (6.3.11), we could have a K4 such that

Ẇ ≤
(
δ
∆

) {
−K4((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (w1 − w2)2)

}
. (6.3.13)

or

Ẇ ≤ −K5W, (6.3.14)

with K5 = δ
∆K4.

This completes the proof of the Lemma 6.3.2.

Since x1(t) and x2(t) are solutions to be considered, we want to establish that the two solutions

converge. Next is to establish that the solutions x1(t) and x2(t) converge.

6.4 Proof of the main result

We shall now give the proof of the main results.

Proof of Theorem 6.2.1

Indeed from the inequality (6.3.14),
dW

dt
≤ −K5W

On integration from t1 to t2, we have that

ln
(
W (t2)
W (t1)

)
≤ −K5(t2 − t1)

and
W (t2)
W (t1)

≤ e−K5(t2−t1).

Therefore

W (t2) ≤W (t1)e−K5(t2−t1). (6.4.1)

From the inequality (6.3.12), it follows that

W1 ≤ K3S,

where S is as defined in the Theorem 6.2.1. From the Lemma 6.3.1 we have that

W (t1) ≤ K2((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (w1 − w2)2) = K2S(t1)

W (t2) ≤ K2((x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (w1 − w2)2) = K2S(t2)

using this in the inequality (6.4.1), we have

S(t2) ≤ S(t1)e−K5(t2−t1) (6.4.2)

for t2 ≥ t1.

As t −→∞,we have from the inequality (6.4.1) that

Ẇ ≤ 0.
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Also from the inequality (6.4.2),

S(t2) −→ 0 as t2 −→∞.

This implies that

x2(t)−x1(t) −→ 0, ẋ2(t)− ẋ1(t) −→ 0, ẍ2(t)− ẍ1(t) −→ 0 and
...
x1 (t)− ...

x2 (t) −→ 0.

Hence the completion of the proof of the Theorem 6.2.1.
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Chapter 7

NUMERICAL SOLUTIONS OF

INITIAL VALUE PROBLEMS

(IVPs) AND LINEAR INITIAL

BOUNDARY VALUE

PROBLEMS (LIBVPs)

7.1 Introduction

In this Chapter, we present numerical schemes derived to approximate solution of first order IVPs

(which may be generalized to system of first orders ODEs) and solution of LIBVPs. In Sections

7.2 and 7.3, we give the description and derivation of the Pseudo-Spline scheme for approximating

solution of IVPs. In Section 7.4, the description and derivation of the numerical scheme for approx-

imating the LIBVPs which we referred to as the pseudo-pseudo spectral scheme is also presented.

All numerical experiments of this chapter were carried out using MATLAB 7.6 software 2008a

edition and the results presented as appendix.
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7.2 Pseudo-Spline Schemes

Consider the initial value problem (IVP)

y′(t) = f(t, y(t))

y(t0) = y0

(7.2.1)

where a ≤ t ≤ b; a = t0 < t1 < t2 < . . . < tN−1 = b, N =
(b− a)
h

, N = 0, 1, . . . , N − 1 and

h = tn+1 − tn is called the step length. The conditions on the function f(t, y(t)) are such that

existence and uniqueness of solution is guaranteed, i.e. f is Lipschitz and continuous. The solution

is generated in a step-by-step fashion by a formula which is regarded as discrete replacement of

the equation (7.2.1).

In the class of methods available in solving the problem numerically, the most celebrated methods

are the single-step and the multi-steps methods. In a single-step method an information at just one

point is enough to advance the solution to the next point while for the multi-steps (as the name

suggests), information at more than one previous points will be required to advance the solution

to the next point.

7.2.1 Piecewise-Interpolation

One of the methods of deriving the multi steps method is by polynomial interpolation for a set

of discrete point; however, polynomial interpolation for a set of (N+1)points {tk, yk} is frequently

unsatisfactory because the interpolation error is related to higher derivatives of the interpolated

function. To circumvent this, we discretized the interpolation domain and interpolate locally. The

overall accuracy may be significantly improved even if the interpolation polynomial is of low order.

Interpolation functions obtained on this principle are piece-wise interpolation functions or splines.

We define a spline function as follows:

Definition: A function S(t) is called a spline of degree k if

(i). the domain of S is the interval [a, b]

(ii). S, S′, S′′, . . . , S(k−1) are all continuous on [a, b].

(iii). there are points ti (called knots) such that a = t1 < t2 < . . . < tn = b and such that S is a

polynomial of degree k on each sub-interval [ti, ti+1], i = 1, . . . , n− 1. subject to the interpolating

conditions.

(iv). S(ti) = y(ti) ∀t ∈ [ti, ti+1] i = 1, . . . n− 1.

(v). S
(j)
r (ti) = S

(j)
r+1(ti); j = 1, . . . , k − 1, r = 1, . . . , n− 1, i = 2, . . . , n− 1.

Condition (iv) is the collocation while (v) is the continuity condition, only on interior knots.

We shall now use the piece-wise linear and cubic interpolation spline functions to derive our meth-

ods. Adams methods are recoverable from our methods.
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7.3 Derivation of the scheme

7.3.1 Pseudo Quadratic spline function

Let S(t) be the desired function, the linear Lagrange interpolation formula gives the following

representation for S′(t) at the given points tn−1 and tn, for all t ∈ [tn−1, tn], as

S′(t)− S′(tn−1)
(t− tn−1)

=
S′(tn)− S′(t)

(tn − t)
(7.3.1.1)

Simplifying (7.3.1.1) we have

S′(t) =
1

(tn − tn−1)
{(t− tn−1)S′(tn) + (tn − t)S′(tn−1)} (7.3.1.2)

Integrating (7.3.1.2),

S(t) =
1

2(tn − tn−1)

{
1
2

(t− tn−1)2S′(tn)− 1
2

(tn − t)2S′(tn−1) +A

}
(7.3.1.3)

where A is the constant of integration to be determined. Since S(t) interpolates the function f at

t = tn, it implies that S(tn) = f(tn, y(tn)).

Thus for t = tn−1;

A = S(tn−1) +
1

2(tn − tn−1)
(tn − tn−1)2S′(tn−1) (7.3.1.4)

Substitute (7.3.1.4) into (7.3.1.3) we have,

S(t) = S(tn−1) +
1

2(tn − tn−1)
(tn − tn−1)2S′(tn−1)+

1
2(tn − tn−1)

{
1
2

(t− tn−1)2S′(tn)− 1
2

(tn − t)2S′(tn−1)
} (7.3.1.5)

which on simplification yields

S(t) = S(tn−1) +
S′(tn−1)

2(tn − tn−1)
{

(tn − tn−1)2 − (tn − t)2
}

+
S′(tn)

2(tn − tn−1)
(t− tn−1)2 (7.3.1.6)

If in (7.3.1.3) we evaluate S(t) at t = tn,

A = S(tn)− 1
2(tn − tn−1)

(tn − tn−1)2S′(tn) (7.3.1.4)′

if (7.3.1.4)’ is substituted into (7.3.1.3) we have

S(t) = S(tn)− S′(tn)
2(tn − tn−1)

{
(tn − tn−1)2 − (t− tn−1)2

}
− S′(tn−1)

2(tn − tn−1)
(tn − t)2 (7.3.1.7)

Collocating (7.3.1.6) and (7.3.1.7) at t = tn+1 and using the property that S(t) ≈ y(t) and that

h = tn − tn−1 we have the

yn+1 = yn−1 + 2hfn (7.3.1.8)

and

yn+1 = yn +
h

2
{3fn − fn−1} (7.3.1.9)
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If we also collocate (7.3.1.6) at t = tn and simplify we have

yn = yn−1 +
h

2
{fn + fn−1} (7.3.1.10)

Equations (7.3.1.8) and (7.3.1.9) correspond to the mid-point rule and the Adams-Bashforth of

second order while (7.3.1.10) is an implicit method (the Implicit Trapezoidal Method).

Various multi steps of the Adams forms can be derived from the equations (7.3.1.6) and (7.3.1.7)

at different collocation points (say t = tn+2, tn+3, . . .).

7.3.2 The Local Truncation Error

Assume that y ∈ C3[a, b] for all x in a ≤ x ≤ b. Due to a standard approach by Lambert [68] we

have been able to show that the local truncation errors associated with these numerical algorithms

can be expressed respectively as

e7.3.1.8 =
1
3
h2y′′′(ζ), ζ ∈ (xn−1, xn+1)

e7.3.1.9 =
5
12
h2y′′′(ζ), ζ ∈ (xn−1, xn+1)

e7.3.1.10 = − 1
12
h2y′′′(ζ), ζ ∈ (xn−1, xn)

Using well known analysis in Herinci [69] and Lambert [81], it can be shown that these methods are

all consistent and zero stable. Consistency and zero stability are necessary and sufficient conditions

for the convergence of methods of this kind, hence the three numerical schemes are convergent with

errors of order O(h2).

7.3.3 Pseudo Cubic spline function

Since we are considering a piecewise cubic spline, its second derivative is piecewise linear on

[tn−1, tn], then the linear Lagrange interpolation formula gives the representation for S′′(t) at

the given points tn−1 and tn as,

S′′(t)− S′′(tn−1)
(t− tn−1)

=
S′′(tn)− S′′(t)

(tn − t)
(7.3.3.1).

Simplifying (7.3.3.1) gives

S′′(t) =
1

(tn − tn−1)
{(t− tn−1)S′′(tn) + (tn − t)S′′(tn−1)} (7.3.3.2)

Integrating equation (7.3.3.2) twice we have,

S(t) =
1

(tn − tn−1)

{
S′′(tn

6
(t− tn−1)3 +

S′′(tn−1

6
(tn − t)3

}
+A(tn − t) +B(t− tn−1) (7.3.3.3)
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where A and B are constants. To determine these constants, (7.3.3.3) is collocated at two points

say t = tn−1 and t = tn, this yield

S(tn−1) =
S′′(tn−1)

6
(tn − tn−1)2 +A(tn − tn−1) (7.3.3.4)

and

S(tn) =
S′′(tn)

6
(tn − tn−1)2 +B(tn − tn−1) (7.3.3.5).

From (7.3.3.4) and (7.3.3.5) we have that

A =
1

(tn − tn−1)

{
S(tn−1)− S′′(tn−1)

6
(tn − tn−1)2

}
and

B =
1

(tn − tn−1)

{
S(tn)− S′′(tn)

6
(tn − tn−1)2

}
Substitute for A and B in (7.3.3.3), we have

S(t) =
1

(tn − tn−1)

{
S′′(tn)

6
(t− tn−1)3 +

S′′(tn−1

6
(tn − t)3

}
+

1
(tn − tn−1)

{
S(tn−1)− S′′(tn−1)

6
(tn − tn−1)2

}
(tn − t)

+
1

(tn − tn−1)

{
S(tn)− S′′(tn)

6
(tn − tn−1)2

}
(t− tn−1)

(7.3.3.6)

Collocating (7.3.3.6) at t = tn+1 yields

S(tn+1) = 2S(tn)− S(tn−1) + h2S′′(tn) (7.3.3.7)

By collocation property, we have

yn+1 = 2yn − yn−1 + h2y′′n (7.3.3.8)

and using (7.2.1),we have that the coefficient of h2 in the equation (7.3.3.8) can be replaced by

y′′ = ft(tn, y(tn)) + fyft(tn, y(tn)) (7.3.3.9)

where here ft and fyare the first partial derivatives of f(t, y(t)) with respect to t and y respectively.

Using the approximation relations, ft ≈
fn+1 − fn−1

2h
and fy ≈

fn+1 − fn−1

2h
we simplify (7.3.3.7)

to give

yn+1 = 2yn − yn−1 +
h

2
{(1 + fn)(fn+1 − fn−1)}

yn+1 = 2yn − yn−1 +
h

2
{(fn+1 − fn−1) + fnfn+1 − fnfn−1} (7.3.3.10)

Neglecting the nonlinear part in (7.3.3.10), equation (7.3.3.10) becomes

yn+1 = 2yn − yn−1 +
h

2
{fn+1 − fn−1} (7.3.3.11)

which is an implicit 2-step method.

The local truncation error associated with (7.3.3.11)as outlined for the schemes (7.3.3.8)-(7.3.3.10)

can be shown to be − 1
12
h3. The scheme was observed to be consistent but to our surprise the

method is not zero stable according to [69] and [81] yet it gives a convergent solution of maximum

error of order O(h3).
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7.3.4 Results

In summary, the schemes derived are given below:

yn+1 = yn−1 + 2hfn, (7.3.4.1)

yn+1 = yn +
h

2
{3fn − fn−1} , (7.3.4.2)

yn = yn−1 +
h

2
{fn + fn−1} , (7.3.4.3)

and

yn+1 = 2yn − yn−1 +
h

2
{fn+1 − fn−1} (7.3.4.4)

7.3.5 Numerical Examples

We shall consider the following problems;

1. y′ = − y

2(t+ 1)
, y(0) = 1, t ∈ [0, 1]

The exact solution is given as

y(t) =
1√

1 + t

2. y′ = y − t2 + 1, y(0) = 0.5 t ∈ [0, 1]

The exact solution is given as

y(t) = (1 + t)2 − 0.5e(t)

The methods described by equations (7.3.4.1) and (7.3.4.2) are respectively represented as Method

A and Method B, while Methods C, D, E and F are the combinations of equations (7.3.4.1) with

(7.3.4.3), (7.3.4.2) with (7.3.4.3), (7.3.4.1) with (7.3.4.4) and (7.3.4.2) with (7.3.4.4) as predictor-

corrector methods respectively.

Table B1 and B2 gives the maximum error of the Methods A and B for the examples with h = 0.1

as presented in the Appendix B.

As a means of comparison, the numerical solution generated by these methods are compared with

the third order method of Omolehin et al [103] and this is given in Table B3.

From the tables of results displayed it could be seen that one of our methods which is of order 2

performs better than the third order method of Omolehin et al [103].

When the explicit methods of this work are combined to form a predictor-corrector method, the

results as seen in the Tables B4 and B5 reveal that these methods give a better accuracy.
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7.4 Pseudo-pseudo-spectral Method

In this section we introduce the pseudo-pseudo-spectral method.

Consider the following differential equation

Ly =
m∑
i=0

fm−i(x)Diy = f(x), x ∈ [a, b], (7.4.1)

Ty = K, (7.4.2)

where fi, i = 0, 1, . . .m, f , are known functions of x, Di is the order of differentiation with

respect to the independent variable x, T is a linear functional of rank N and K ∈ <m.

Here (7.4.2) can either be initial, boundary or mixed conditions. To solve the above class of

equations using the spectral method is to expand the solution function y, in (7.4.1) and (7.4.2) as

a finite series of very smooth functions in the form below

yN (x) =
N∑
k=0

akTk(x) (7.4.3)

where, {Tk(x)}∞0 is the sequence of Chebyshev polynomials of the first kind. Replacing y by yN

in (7.4.2) the residual is defined as

rN (x) = LyN − f (7.4.4)

The main target and objective in spectral method is to minimize rN (x) as much as possible with

regard to (7.4.2). The implementation of the spectral methods lead to a system of linear equations

with N + 1 equations in N + 1 unknowns a0, a1, . . . , aN .

In this section, we present a variation (pseudo) of one of the three spectral methods called col-

location (also known as pseudo-spectral) method. We call this method a pseudo-pseudo-spectral

method. Also, we use both the Tau and the pseudo-spectral methods for numerical solution of sec-

ond order linear differential equations to compare the result with pseudo-pseudo-spectral method.

We need to state here that this discussion can be extended to the general problem of the form

(7.4.1) and (7.4.2).

Consider the following differential equation;

P (x)y′′(x) +Q(x)y′(x) +R(x)y(x) = S(x), x ∈ [−1, 1]

y(−1) = α, y(1) = β
(7.4.5)

With the pseudo-pseudo-spectral method, we suppose that the approximate solution of the equation

(7.4.5) is given by

yN (x) =
N∑
k=0

′akTk(x) (7.4.3a)

instead of (7.4.3) for an arbitrary natural number N, where a = (a0, a1, . . . , aN )T ∈ <N+1 is the

constant coefficients vector and {Tk(x)}∞0 is the sequence of Chebyshev polynomials of the first

kind. The prime denotes that the first term in the expansion is halved.
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In this method, as against the use of a function V (x) as in the standard Tau method and the

Pseudo-spectral method (see [14],[15],[49]), we instead of using the Chebyshev polynomial as a

polynomial we exploit the trigonometric property of Chebyshev function.

Let

y =
N∑
k=0

′akTk(x) (7.4.6)

be the approximate solution for the equation (7.4.5), as a solution it must satisfy the equation.

Recall the definition of a Chebyshev polynomial,

Tk(x) = cos (k arccosx)

let

θ = arccosx, ⇒ x = cos θ

then

Tk(x) ≡ Tk(θ) = cos kθ

Using the identity defined above, (7.4.6) becomes

y =
N∑
k=0

′ak cos kθ (7.4.7)

The first and second derivatives of (7.4.7) are respectively given as

y′ =
N∑
k=0

′ak

(
k sin kθ

sin θ

)
(7.4.8)

y′′ =
N∑
k=0

′ak

(
k sin kθ cos θ − k2 cos kθ sin θ

sin3 θ

)
(7.4.9)

Substituting (7.4.7)-(7.4.9) into the equation (7.4.5) with the functions P, Q, R and S expressed

in terms of θ we have

P (θ)
N∑
k=0

′ak

(
k sin kθ cos θ − k2 cos kθ sin θ

sin3 θ

)
+Q(θ)

N∑
k=0

′ak

(
k sin kθ

sin θ

)
+R(θ)

N∑
k=0

′ak cos kθ = S(θ)

θ ∈ [−π, π], y(−π) = α, y(π) = β

(7.4.10)

Simplifying equation (7.4.10), we have

N∑
k=0

′akφk(θ) = S(θ) (7.4.11)

with

φk(θ) = P (θ)
(
k sin kθ cos θ − k2 cos kθ sin θ

sin3 θ

)
+Q(θ)

(
k sin kθ

sin θ

)
+R(θ) cos kθ (7.4.12)

If we impose the associated conditions on (7.4.11), we have

y(−1) = α⇒
N∑
k=0

′akTk(−1) =
N∑
k=0

′ak(−1)k = α
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y(−1) = α⇒
N∑
k=0

′akTk(1) =
N∑
k=0

′ak = β

So

 1
2 − 1 1 . . . (−1)N

1
2 1 1 . . . 1





a0

a1

.

.

.

aN


=

 α

β

 (7.4.13)

Relation (7.4.13) form a system with two equations and N + 1 unknowns, to construct the remain-

ing N − 1 equations we Collocate (7.4.11) at the zeros of TN−1(x), which are the interior points

between −1 and 1 and are given as θk = (2k−1)π
N−1 , k = 1, . . . , N − 1, which is in great variance to

the Tau Method, the Galerkin method and the Pseudo-spectral method.

The system obtained here solves for the coefficients.

7.4.1 Numerical Experiments

In this section, we consider some ordinary differential equations with Tau Method, Pseudo-spectral

method and the Pseudo-pseudo-spectral method and discuss the results.

As notations, we represent the approximations with the Tau method, Pseudo-spectral method and

the Pseudo-pseudo-spectral method as yt, yps and ypps respectively. The tables of results for this

experiments are given in Appendix C

The following problems were considered:

Problem 7.4.1.1: Consider the differential equation

y′′(x) + xy′(x) + y = xcos(x), y(−1) = sin (−1), y(1) = sin (1)

with the exact solution y(x) = sin (x). The problem is taken from [14]. The problem was solved

with Runge-Kutta of different orders a maximum error of 3.0 × 10−1 were recorded. It was also

solved with Tau method and the method described in this paper with N = 5, 8, 16. The maximum

error produced for these two methods for the various N is given in the table C.1. This table shows

the power of spectral methods over Runge-Kutta.

Problem 7.4.1.2: Consider

y′′(x) +
1
x
y′(x) =

(
8

8− x2

)2

, x ∈ (0, 1), y(1) = 0, y′(0) = 0

with the exact solution 2 ln
(

7
8−x2

)
.

This problem was taken from [11]. It was solved by extrapolation method with maximum error

of 10−8. It was solved in [14] by Tau method for different values of N . Here we solved it by
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the pseudo-pseudo-spectral method for different values of N as in the Tau method of [14], the

maximum error for the two methods is given in table C.2.

Problem 7.4.1.3: Consider

y′′(x) + |x|y′(x) + 3
√(

x2 − 1
4

)2
y(x) =

(
1 + |x|+ 3

√(
x2 − 1

4

)2) exp (x), x ∈ [−1, 1],

y(−1) = exp (−1), y(1) = exp (1)

with the exact solution y(x) = exp (x).

This problem was chosen from [15]. It was solved with the method described in this article and

the error produced for various N is given in the table C.3 with the maximum error produced when

the problem was solved by the Tau method and Pseudo-spectral method of [14].

Problem 7.4.1.4: Consider

y′′(x) + |x|y′(x) + y(x) = |6x|+ |x3|+ 3x3, x ∈ [−1, 1], y(−1) = y(1) = 1

with the exact solution y(x) = |x3|. The problem was taken from [14].

The problem has a non analytic solution function which makes accompany error indispensable.

We apply our method to the problem, the error produced by the method as well as the error

produced when it was solved with the Tau method and Pseudo-spectral method of [14] is presented

in table C.4.

Problem 7.4.1.5: Consider

y′′(x) + exp (
1
x

)y′(x) = y(x) = 6x+ x3 + 3x2 exp (
1
x

), x ∈ [−1, 1], y(−1) = −1, y(1) = 1

with the exact solution y(x) = x3. This problem was chosen from [14].

When the problem is solved using the Tau method and the pseudo-spectral method in [14], the

methods failed and a modified pseudo-spectral(mps) method which was the subject of the article

was used to solve the problem and the maximum error produced in [14] for the problem is given in

the table C.5 with the error produced by the method of this article. This method performs better

than the modified method of [14].

Problem 7.4.1.6: Consider the differential equation;

y′′(x)− 1
x
y′(x) +

1
x
y(x) = |x|, y(−1) = −1, y(1) = 1

with the exact solution y(x) = x|x|. This problem was also from [14].

We tested our method on this problem with different values of N , the results are given in table

C.6.

Problem 7.4.1.7: Consider

y′′(x) +
1
x
y′(x) + y(x) =

1
x

+ |x|, y(−1) = y(1) = 1

with the exact solution y(x) = |x|. The problem was chosen from [14].

The results for various values of N are given in table C.7.



Chapter 8

CONCLUSION

In this thesis, as set out in the objectives of the research, we investigated the qualitative and quanti-

tative properties of solutions of certain classes of ordinary differential equations. In the qualitative

properties, the Lyapunov second method was used to investigate the qualitative behavior of classes

of second order, third order and fourth order nonlinear differential equations.

Variants of the tool employed in these studies had been employed extensively by researchers to

study the qualitative properties of solutions of these classes of differential equations.

In most of the studies except for the second order differential equation where it is more convenient

to construct a complete Lyapunov function (though not unique), researchers have been (for higher

orders) constructing incomplete Lyapunov functions and often make them complete by the use of

signum functions.

In this thesis, all the Lyapunov functions used are complete Lyapunov functions which help us to

come up with sufficient conditions for the discussion of the qualitative behavior of the classes of

equations considered.

We also used the Lyapunov function to discuss the behavior of solutions of non-autonomous equa-

tions.

The second method of Lyapunov (the use of Lyapunov functions) remains one of the most effective

method to discuss the concepts of stability and boundedness. We have in this thesis used this

method to discuss in a unified way the stability, boundedness and periodicity of solutions as well

as the convergence of such solutions.

Though,there is a lot of difficulty in constructing complete Lyapunov functions, in this thesis, we

had constructed Lyapunov functions different from the ones that are already constructed by any

other researcher in the field. At this point it should be stressed that there is no unique way of con-

structing Lyapunov functions and hence is the reason why there are quite a number of Lyapunov

functions in the literature used in discussing the same class of equation and each come up with

criteria for discussing the properties.
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On the quantitative properties of solution, a new scheme, the pseudo spline method for approximat-

ing solution of ordinary differential equations of the first order were derived based on interpolation

and collocation through the general method for deriving the spline functions. The scheme derived

was compared with methods derived via some standard well known techniques of the same order

and were found to be better. The scheme is easier to derive and more user friendly.

This method can handle initial value problems of differential equations. On the use of interpolating

spectral method, the pseudo-pseudo-spectral method as we call it is seen to be efficient and com-

petes favorably with other well-known standard methods like the Tau method, Galerkin Method

and the Pseudo-spectral (collocation) methods.

One major advantage with this method is that it does not require a tedious means of evaluating

the unknown coefficients of the approximating function as in other spectral methods. The method

is easy to program and require moderately less of computer time to evaluate.

It is also seen to be suitable for any class of linear differential equations with or without analytical

solutions. It is applicable to solve mainly the Initial Boundary Value Problems of ODEs which

results from complex systems or PDEs.

Open Problems: The following are the open problems for further research:

• Better and easier ways to construct a complete Lyapunov function to handle nonlinear

differential equations of orders higher than 5.

• Due to high growth in the use of machine to solve complex problems, need to develop schemes

based on the one derived in this thesis to develop softwares for the people in engineering

where accuracy, speed as well as cost matter to most.

• If possible a Lyapunov-like numerical scheme to handle solution of differential equations

irrespective of order, type and class.

The identified problems are subjects to be considered in the near future.
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Appendix A

Bellman-Reid- Grownwall Lemma

Let I denote an interval of the real line of the form [0,∞, [a, b] or [a, b) with a < b.

Let α, β and u be real valued functions defined on I. Assume that the β and u are continuous and

that the negative part of α is integrable on every closed and bounded subinterval of I.

• If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +
∫ t

a

β(s)u(s)ds, ∀t ∈ I (A.1)

then

u(t) ≤ α(t) +
∫ t

a

α(s)β(s) exp
(∫ t

s

β(r)dr
)
ds, t ∈ I (A.2)

• If in addition the function α is constant then

u(t) ≤ α exp
(∫ t

a

β(s)
)
ds, t ∈ I (A.3)

Proof: Let

v(s) = exp
(
−
∫ s

a

β(r)dr
)∫ s

a

β(r)u(r)dr s ∈ I (A.4)

Differentiating (A.4), we have

v′(s) =
(
u(s)−

∫ s

a

β(r)u(r)dr
)
β(s) exp

(
−
∫ s

a

β(r)dr
)
, s ∈ I (A.5)

from (A.1) we have that (
u(s)−

∫ s

a

β(r)u(r)dr
)
≤ α(s) (A.6)

using (A.6) in (A.5), we have

v′(s) ≤ α(a)β(s) exp
(
−
∫ s

a

β(r)dr
)

(A.7)

Integrating (A.7) from a to t

v(t)− v(a) ≤
∫ t

a

α(a)β(s) exp
(
−
∫ s

a

β(r)dr
)
ds (A.8)
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from (A.4), v(a) = 0 this reduces (A.8) to

v(t) ≤
∫ t

a

α(a)β(s) exp
(
−
∫ s

a

β(r)dr
)
ds (A.9)

Also from (A.4), we have ∫ t

a

β(s)u(s)ds = exp
(∫ s

a

β(r)dr
)
v(t)

≤
∫ t

a

α(s)β(s) exp
(∫ t

a

β(r)dr −
∫ s

a

β(r)dr
)
ds (A.10)

but ∫ t

a

β(r)dr −
∫ s

a

β(r)dr =
∫ t

s

β(r)dr

using (A.10) in (A.1) we have the result (A.2).

If the function α is constant then

u(t) ≤ α+
(
−α exp(

∫ t

s

β(r)dr)
)∣∣∣∣s=t

s=a

= α exp
(∫ t

s

β(r)dr
)
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Table B.1: Error of y(t) for Example 1 (h = 0.1)

t Method A Method B

0.3 1.8428727e-004 2.2810119e-004

0.4 2.4052639e-004 5.1440716e-004

0.5 4.5748153e-004 8.5876660e-004

0.6 5.8078449e-004 1.2697656e-003

0.7 8.4856274e-004 1.7575791e-003

0.8 1.0543354e-003 2.3338030e-003

0.9 1.3952231e-003 3.0116219e-003

1.0 1.7044890e-003 3.8060145e-003

Table B.2: Error of y(t) for Example 2 (h = 0.1)

t Method A Method B

0.3 4.5065362e-004 5.8284717e-004

0.4 2.9443804e-004 9.7450032e-004

0.5 6.7867750e-004 1.2528296e-003

0.6 4.3923840e-004 1.4525075e-003

0.7 8.0112923e-004 1.5966312e-003

0.8 5.1017146e-004 1.7007588e-003

0.9 8.6895411e-004 1.7756254e-003

1.0 5.4196872e-004 1.8287918e-003

Table B.3: Error of y(t) for Example 1 (h = 0.1) for methods A, B and [9]

t Method A Method B [9]

0.4 2.9443804e-004 9.7450032e-004 4.2530000e-004

0.5 6.7867750e-004 1.2528296e-003 7.1200000e-004

0.6 4.3923840e-004 1.4525075e-003 1.0556000e-003

0.7 8.0112923e-004 1.5966312e-003 1.4620000e-003

1.0 5.4196872e-004 1.8287918e-003 3.1397000e-003
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Table B.4: Error of y(t) for Example 1 (h = 0.1)

t Method C Method D Method E Method F

0.3 3.9207500e-005 3.7016804e-005 2.6716341e-005 2.3962309e-005

0.4 8.4890939e-005 8.1906006e-005 7.1444753e-005 6.3614004e-005

0.5 1.3983292e-004 1.3583079e-004 1.2883332e-004 1.1388709e-004

0.6 2.0539203e-004 2.0019529e-004 1.9547040e-004 1.7156573e-004

0.7 2.8319791e-004 2.7659929e-004 2.6911307e-004 2.3454770e-004

0.8 3.7510163e-004 3.6686362e-004 3.4824665e-004 3.0142337e-004

0.9 4.8320835e-004 4.7305897e-004 4.3182385e-004 3.7122645e-004

1.0 6.0991014e-004 5.9753835e-004 5.1910500e-004 4.4328173e-004

Table B.5: Error of y(t) for Example 2 (h = 0.1)

t Method C Method D Method E Method F

0.3 1.0547721e-004 1.0823124e-004 4.6064141e-006 6.7971098e-006

0.4 1.8156813e-004 1.8399233e-004 1.4349767e-005 2.1497021e-005

0.5 2.3569468e-004 2.3785106e-004 2.9862905e-005 4.5378172e-005

0.6 2.7460440e-004 2.7656997e-004 5.1892600e-005 7.9915113e-005

0.7 3.0275940e-004 3.0458348e-004 8.1313344e-005 1.2680491e-004

0.8 3.2316603e-004 3.2488108e-004 1.1914183e-004 1.8799699e-004

0.9 3.3789855e-004 3.3952672e-004 1.6655518e-004 2.6572679e-004

1.0 3.4841822e-004 3.4997514e-004 2.2491025e-004 3.6255372e-004
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Table C.1:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− ypps(x)

∥∥
∞

5 2.11× 10−5 1.98× 10−5

8 5.71× 10−8 4.56× 10−8

16 1.11× 10−16 5.55× 10−17

Table C.2:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

5 5× 10−5 2.09× 10−5

15 2× 10−6 3.33× 10−16

16 8× 10−7 1.67× 10−16

18 4× 10−19 1.67× 10−16

30 5× 10−7

95 8× 10−8

Table C.3:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

8 3.13× 10−6 3.24× 10−8 3.20× 10−8

11 6.40× 10−8 2.52× 10−12 5.14× 10−12

16 3.92× 10−8 3.50× 10−18 6.66× 10−16

Table C.4:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

8 8.98× 10−2 1.21× 10−1 1.20× 10−1

15 1.54× 10−2 1.76× 10−2 1.38× 10−2

20 1.68× 10−2 1.92× 10−2 1.50× 10−2
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Table C.5:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ymps(x)
∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

5 2.22× 10−15 9.09× 10−16

8 1.63× 10−15

9 2.53× 10−16

12 1.38× 10−15

17 1.25× 10−16

Table C.6:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

5 8.31× 10−2 7.64× 10−2 1.07× 10−1

8 8.75× 10−1 8.86× 10−1 8.73× 10−1

9 1.54× 10−2 3.97× 10−2 4.86× 10−2

17 1.12× 10−2 2.05× 10−2 2.17× 10−2

Table C.7:

N ‖y(x)− yt(x)‖∞
∥∥y(x)− yps(x)

∥∥
∞

∥∥y(x)− ypps(x)
∥∥
∞

5 3.26× 10−1 5.99× 10−1 1.84× 10−1

8 2.42× 10−1 9.59× 10−1 2.10× 10−2

16 2.05× 10−1 5.27× 10−1 7.15× 10−2
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