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Abstract 

This thesis presents an investigation of the 4-methoxypyrrolic constituents of two South 

African marine invertebrates, the nudibranch Tambja capensis and the bryozoan Bugula 

dentata.  Three known compounds tambjamine A (7), tambjamine E (13) and the 

tetrapyrrole (15) were isolated during this investigation.  All three compounds were 

shown to be active against oesophageal cancer in accordance with the general anticancer 

and immunosuppressive properties observed for 4-methoxypyrrolic natural products.  

Tambjamine A (7), tambjamine E (13) and the tetrapyrrole (15), together with 

tambjamine K (21) and L (22) (previously isolated in our laboratory) were used as 

standards to quantitatively assess the presence of these tambjamines in T. capensis and B. 

dentata collected from three different sites along the South African coast.  This study 

confirmed that B. dentata is the source of the 4-methoxypyrrolic natural products 

sequestered by T. capensis and eliminated the closely related bryozoan B. neritina as a 

source of these metabolites.  

 

The paucity of tambjamine L (21) and K (22) obtained in previous investigations of the 

sequestered chemistry of T. capensis prompted an attempt at the development of synthetic 

methodology that could be used to synthesize tambjamines in sufficient yield for in depth 

bioactivity studies.  In order to by pass the extensively reported problems associated with 

the synthesis of this group of compound 3-methoxy-2-formylpyrrole (47), readily 

accessible from 3-methoxypyridine N-oxide (48), was used as the starting material in a 

singlet oxygen induced 2,2’ bipyrrole coupling reaction.  Although 47 proved unreactive 

in this coupling reaction, when the N-Boc protected analogue of 47 was used, and the 

reaction worked up in the dark, the novel methyl 4-aza-5-oxo-6,6-di-(2-pyrrolyl)-2(Z)-

hexenoate (57) was obtained in low yield. 

 

The physical properties of tambjamine (E) (13) and the tetrapyrrole (15) were 

investigated to further the understanding of the proposed oxidative DNA cleavage 

mechanism and to determine the potential of the 4-methoxypyrrolic natural products as 

photodynamic therapy agents.  
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The 4-methoxypyrrolic natural products, include the tripyrrole prodigiosins, bipyrrole 

tambjamines and the tetrapyrrole, all sharing a common 4-methoxy-2,2’-bipyrrole 

system. As an introduction to this thesis an overview of the isolation of the naturally 

occurring 4-methoxypyrrolic natural products from microorganisms and marine 

invertebrates is provided.  The international interest in the potential pharmaceutical 

applications of 4-methoxypyrrolic metabolites, led by Manderville’s group at Wake 

Forest University in North-Carolina and Fürstner’s group at the Max-Planck-Institute 

in Germany, have been recently reviewed.1,2 Since the publication of these reviews, 

only one article of interest has appeared in the literature detailing the crystal structure 

of a prodigiosin-copper (II) complex.3 Both reviews have therefore been extensively 

used to provide the necessary background to this thesis.  Frustratingly, the numbering 

of 4-methoxypyrrolic natural products and synthetic analogues is not consistent in the 

literature.  The first reported isolation of tambjamine natural products by Carté and 

Faulkner4 number the bipyrrole natural products using the numbering scheme shown 

below in Figure 1.1.  An alternative numbering scheme was used by Blackman and Li 

and is also provided in Figure 1.1.  Later, Manderville and co-workers in their 

structure-activity studies alphabetically ordered (A-C) each pyrrole ring in their 

prodigiosin derivatives.5 For the purposes of this thesis, the numbering scheme used 

by Carté and Faulkner coupled with Manderville’s alphabetical ordering of the pyrrole 

rings will be used. 

  

N
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N

OMe

R3

R2

R1
N
H

N

OMe

R3

R2

R1
A B2

3
44'

5'
2'
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5
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11

 

Carté and Faulkner4        Blackman and Li6 

Figure 1.1: General structure of 4-methoxypyrrolic natural products and two different 

numbering schemes commonly used in the literature. 

 

An attempt to synthesise a 4-methoxypyrrolic metabolite isolated from a South 

African opiothobranch mollusc necessitated a review of synthetic strategies directed 

towards the synthesis of this group of compounds and this is presented in Chapter 3. 
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1.1 Sources of 4-methoxypyrrolic natural products 

1.1.1 Microorganisms 

 

 

Figure 1.2: The red pigmented bacterium Serratia marcescens – a source of 4-

methoxypyrrolic natural products.2 

 

Bright red microorganisms such as Serratia and Streptomyces are occasional 

contaminants of bread and other foods.  On reaching maturity, the colonies become 

fluid and resemble droplets of blood in the contaminated food leading to historical 

reports of “bleeding bread”.2 The red colour of these gram-negative bacterial colonies 

attracted natural product chemists interested in the chemical structure of the red 

pigment.  The first isolation of a red alkaloid pigment from Serratia marcescnes was 

reported in 1929.2 However, only in 1960 was the correct structure of the red pigment, 

prodigiosin (1), established through synthesis.7 With advances in separation 

techniques and structure elucidation technology, prodigiosin has been shown to be 

several closely related analogues possessing the same pyrrolylpyrromethene core but 

differing in alkyl substitution at C-2 and C-3.8-12 Today the prodigiosins, the general 

name given to this group of closely related metabolites, are divided into the linear and 

macrocyclic forms which both share a common 4-methoxy-2,2’-bipyrrole system with 

variation limited to the C-pyrrole ring.1 The linear prodigiosins include prodigiosin 

(1) with a methyl and pentyl alkyl substituents at C-2 and C-3 respectively and 

undecylprodigiosin (2),13 with an undecyl substituent at C-2. 
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1       R1 = C5H11 

R2 = CH3 

 

             2       R1 = H 

                 R2 = C11H25 

 

  Examples of the macrocyclic prodigiosins include metacycloprodigiosin (3),14 

streptorubin B(4),15 cycloprodigiosin (5)16 and nonylprodigiosin (6).17   

Nonylprodigiosin differs from the other macrocyclic prodigiosins as the alkyl 

substituent is attached to both the A and C rings, locking the conformation of the 

prodigiosin molecular framework. All of the reported isolations of prodigiosin thus far 

have been from terrestrial microorganisms.2 
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1.1.2 Marine organisms 

 

Figure 1.3: Tambja eliora, a nudibranch that sequesters 4-methoxypyrrolic natural 

products from its bryozoan diet.18 

The first isolation of tambjamine natural products from the nudibranchs Tambja 

abdere, Tambja eliora and Roboastra tigris, collected on the west coast of North 

America, was reported by Carté and Faulkner in 1983.  Tambjamines A-D (7-10) 

were isolated from all of the nudibranchs together with the respective bipyrrole 

aldehydes (11,12), which were shown to be isolation artefacts rather than natural 

products.4 Highly coloured secondary metabolites of unknown structure had been 

previously implicated in the chemical defence mechanism of the bryozoan 

Sessibugula translucens.19 Since both T. abdere and T. eliora were observed feeding 

on this bryozoan, it was thought that the bryozoans sequestered the natural products to 

form their own chemical defence.  Accordingly, in an elegant study by Faulkner and 

Carté, tambjamines were found to be present in the mucus secreted by T. abdera 

when attacked by R. trigis and present in low concentrations in the slime trail 

produced by the Tambja nudibranchs.  Antimicrobial activity of the tambjamines 

against Eschericia coli, Staphlococcus aureu, Bacillus subtilis and Vibrio anguillarum 
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was also demonstrated.4   In 1991 the isolation of tambjamines A and C was reported 

from the marine ascidian Atapozoa sp. along with two new tambjamines E (13) and F 

(14) and the tetrapyrrole natural product (15)20 which had previously been isolated 

from S. marcescens,21 an unidentified Australian ascidian22 and the bryozoan Bugula 

dentata collected in Japan.23  

N
H

N
NHR4

R3

R1

OMeR2

 

 R1 R2 R3 R4 Tambjamine 

7 H H H H A 

8 Br H H H B 

9 H H H CH2CH(CH3)2 C 

10 H H Br CH2CH(CH3)2 D 

13 H H H CH2CH3 E 

14 H H H CH2CH2Ph F 

16 Br H H CH2CH3 G 

17 Br H H CH2CH2CH3 H 

18 Br H H CH2CH(CH3)2 I 

19 Br H H CH3CH(CH3)CH2CH3 J 

 

N
H

N
H

OMe

CHO

R2

R1

 

11 R1 = R2 = H 

         12 R1 = Br, R2 = H 
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NNH

OMe

HN

HN

OMe

 

15 

Interest in the tambjamines prompted Paul et al.24 to investigate the role of the 

tambjamine and tetrapyrrole natural products in the chemical defence of the marine 

invertebrates producing these metabolites to protect themselves from predation.  In 

their study of the ascidian Atapozoa sp. and its nudibranch predators in the tropical 

Indo-Pacific they found that both the ascidian and nudibranch predators contained 

tambjamine natural products.  Only tambjamine A (7) and the tetrapyrrole natural 

product (15), however, were found in the nudibranchs, suggesting that the 

nudibranchs selectively sequestered the metabolites from their ascidian prey.  

Although the concentrations of the individual 4-methoxypyrrolic natural products was 

found to vary greatly between different collections, generally the nudibranchs showed 

a higher concentration of 4-methoxypyrrolic metabolites that would be expected if the 

nudibranchs were sequesting the 4-methoxypyrrolic metabolites from their diet.  In an 

assay to determine the feeding deterrent potential of the 4-methoxypyrrolic natural 

products, it was found that a mixture of tambjamine natural products was an effective 

feeding deterrent against a variety of carnivorous fish found on the reefs from which 

the collections.  The tambjamine natural products were found to not all be equally 

deterrent.  When tested alone, 7 and 13 were not deterrent, whilst 9 and 15 showed 

increased individual and increasing deterrent activity.24   In 1994, a further four new 

tambjamine natural products, tambjamines G-J (16-19), were isolated from the 

Australian bryozoan B. dentata together with the known tambjamines E (13) and 

tetrapyrrole (15).6 More recently, 17 has been isolated from the nudibranchs 

Nembrotha kubaryana collected in Hawaii.25 

 

The biosynthetic origin of 4-methoxypyrrolic natural products in marine organisms 

has not been rigorously established, however, the occurrence of these metabolites in 

such phylogenetically distinct organisms such as marine organisms4,23 and terrestrial 
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bacterial sources21 would seem to suggest a symbiotic, microbial source for 4-

methoxypyrrolic natural products.26  

 

1.2 Bioactivity of 4-methoxypyrolic natural products 

The first attempts to isolate the red pigment from Serratia strains were aimed at 

utilising prodigiosin as a commercial dye.  Unfortunately, the pure form of 

prodigiosin turned out to be too sensitive to light and was therefore unsuitable for 

commercial exploitation.2 Since then, the 4-methoxypyrrolic natural products have 

attracted increasing attention because of their antibacterial, anticancer and 

immunosuppressive properties.1,2 

 

1.2.1 Antibacterial, antifungal and antiprotozoa activity 

4-methoxypyrrolic natural products appear to show broad spectrum activity against 

bacteria, protozoa and pathogenic fungi, however their high systemic toxicity has 

prevented further development of these compounds as antibiotics.27,28  Of particular 

interest is the effect of 4-methoxypyrrolic metabolites on the life cycle of the 

plasmodium Plasmodium falciparum, the causative agent of malaria.  

Metacycloprodigiosin (3) at doses below the acute cytotoxicity threshold exhibited an 

IC50 of 5 x 10-3 µg/mL.29 Attempts to improve their application profile through 

investigations into structure-activity relationships have shown that the therapeutic 

window of the prodigiosin analogues is too narrow for development as antimalarials 

and possible antibiotics.27,29,30 A pharmaceutical with a large therapeutic window is 

one in which the efficacy of the pharmaceutical exceeds unwanted side effects. 

 

1.2.2 Anticancer activity 

The second pharmaceutical area in which the 4-methoxypyrrolic natural products 

have attracted attention is for their anticancer properties.  The prodigiosins have been 

shown to cause cell death through apoptosis (programmed cell death).31-35 They also 

exhibit activity against melanoma36 and liver cancer cell lines.31 Of particular interest 

is the development of pharmaceuticals for the treatment of hepatocellular carcinoma 

(liver cancer)31 for which there is currently no treatment available.37 In order to 

advance in the development of 4-methoxypyrolic natural products as anticancer drugs, 
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a full understanding of their mechanism of action is required.1 Two modes of action 

have been proposed viz oxidative DNA cleavage and disruption of the H+-ATPase.1,2   

 

The acidic environment within cell organelles, including the synaptic vesicles, 

chromaffin granules, secretary granules, lysosomes and trans-Golgi networks, are 

maintained by vacuolar-type H+-ATPases which are located on the membranes of 

these organelles.38 The H+-ATPases pump protons into and out of the organelles, 

using energy from ATP hydrolysis, to maintain the acidic environment important for 

various cellular functions including cell growth and death.39-42 In support of this 

hypothesis, ATPase enzymes have been found on the membranes of cells such as 

osteoclasts, macrophages, activated neutrophils, renal epithelial cells and certain 

tumour cells which also require an acidic cytosolic pH.38  

 

Metabolite 2 has been shown to raise the lysosomal pH and suppress glycoprotein 

processing through its ability to inhibit H+-ATPase without showing apparent 

protonophoric activity.43 Unlike other known Vacuolar-ATPase inhibitors, the 

prodigiosins do not bind directly to the proteolipids of V-ATPases  and have no direct 

inhibitory effect on ATP hydrolysis,44,45 making them the fourth general class of 

compounds capable of altering vacuolar pH after weak bases, acidic ionophores and 

V-ATPase inhibitors.44 The proposed mechanism of inhibition by prodigiosins 

involves the initial protonation of prodigiosin with a chlorine counter ion to form a 

lipophilic ion pair that facilitates H+-coupled transmembrane transport of chloride 

ions.44 

 

There is also growing evidence of a relationship between the cytotoxicity of 

prodigiosins and their DNA-damaging capacity. Manderville proposed that the 

bipyrrole nucleus of 13 could bind to DNA with intercalation through hydrogen 

bonding from the methoxy and the ring nitrogens facilitating the DNA binding.46 

Polypyrroles are easily oxidised suggesting that the nuclease activity of the 4-

methoxypyrrolic natural products could be enhanced in the presence of a redox-active 

metal such as zinc or copper.46 Accordingly, Manderville and co-workers have shown 

that 1, 13 and 15 were able to bind DNA, with a preference for adenine and thymine 

bases, and cleave supercoiled DNA in the presence of only copper (II) and not other 

metals such as zinc, iron or nickel.  Interestingly, bipyrrole 13 caused single strand 
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DNA cleavage whilst 1 and 15 caused the more lethal double strand DNA 

cleavage.1,46-49  

 

The mechanism by which the DNA cleavage occurs is similar to that of bilirubin (20).  

In both cases, the reduction of Cu (II) to Cu (I) results in the initial formation of the π-

radical cation of the electron-rich pyrrolylpyrromethene chromophore.  This 

chromophore generates reactive oxygen species which cause DNA damage.46,49  

N
H

N
H

N
H

N
H

OO

COOH COOH

 

          20 

 

1.2.3 Immunosuppressive activity 

One of the most interesting properties of the prodigiosins is their immunosuppressive 

activity at sub-cytotoxic doses.  Although the therapeutic window of the prodigiosins 

is too small for direct clinical application, they may provide leads for novel 

immunosuppressive drugs.2 The prodigiosins appear to operate through a mechanism 

different to that of currently used immunosuppressors such as cyclosporin or FK 506 

which act as calcineurine inhibitors,2 thereby preventing the proliferation of the 

immune system T cells in the early G1 stages of their life cycle.50,51 Conversely, 

prodigiosins have been shown to selectively inhibit phosphorylation and activation of 

the cytoplasmic Janus tyrosine kinase (JAK-3) by interfering with interleukin (IL-2) 

signal transduction.44,45 Interestingly, when synthetic analogues of prodigiosin are 

administered in combination with cyclosporin A, they appear to have a synergistic 

effect and dramatically increase the mean survival time of heart-transplanted rats.50,51 

 

1.3 Structure-activity studies 

Work carried out at the National Cancer Institute (NCI) to determine the cytotoxic 

properties of prodigiosins (1), steptorubin B (4) and tambjamine I (18) using the 

COMPARE algorithm, a program which compares the patterns of activity of newly 

discovered cytotoxic compounds with known anti-cancer agents, revealed some 

interesting results.  Although none of the prodigiosins tested compared favourably at 



  Chapter 1 

 11

the growth inhibition (GI50) level, some similarities were observed at the cytocidal 

(LC50) level between 1, 4, 18 and pyrimidine analogues, which act as antimetabolites 

interfering with enzymatic reactions in nucleic acid synthesis,52 and topoisomerase 

inhibitors.  Topoisomerases control the topological state of DNA by preventing the 

DNA strands from becoming tangled up during replication, transcription and 

recombination.  There are two forms of topoisomerases, Type I and Type II.  Type I 

enzymes break only one strand of DNA whilst type II break both strands to release 

tension in the strands during the replication process.  The inhibition of topoisomerase 

is thought to occur through an initial intercalation with DNA which prevents the 

topoisomerase from performing its function.53,54  Similarities were also noted with 

3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzo-quinone (AZQ) which crosses 

the blood-brain barrier and causes alkylation of DNA.  From the trends observed 

using COMPARE analysis it was concluded that the 4-methoxypyrrolic natural 

products act as DNA-intercalative agents which form the largest class of clinically 

used anticancer pharmaceuticals.55 

D’Alessio and co-workers carried out synthetic modifications of prodigiosin in order 

to develop compounds with a superior immunosuppressive activity/cytotoxicity ratio 

and therefore increase the therapeutic window of the prodigiosin type compounds.  A 

range of analogues were synthesised to first investigating the importance of the A-

pyrrole ring, secondly the alkoxy substituent (R1) and thirdly substitution in the C-

ring (R2 and R3).  From their studies they showed that a nitrogen-containing 

heterocyclic A-ring and extensive conjugation of the π electron system is required for 

immunosuppressive activity.  Furthermore, the addition of electron donating 

substituents on the A-ring enhanced potency whilst electron withdrawing groups 

decreased potency.56 

N
H

N

HN

R1

R2

R3

A B

C

 

All the naturally occurring 4-methoxypyrrolic metabolites contain a methoxy 

substituent at R1 and removal of this substituent leads to a drastic decrease in 
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immunosuppressive activity while increasing the size of the alkoxy substituent (e.g. 

OCH2Ph) leads to a reduction in cytotoxicity whilst still maintaining the desired 

immunosuppressive activity.28,56  Lengthening of the alkyl chain substituent in the C-

ring (R2 and R3) also reduced cytotoxicity.  Interestingly a complete loss of 

immunosuppressive and cytotoxic activity was observed when the C-ring substituents 

contained a carboxyl group.56 Using this information, D’Alessio and co-workers 

synthesised the prodigiosin derivative PNU-156804 (20a) which has a therapeutic 

index almost ten fold that of the natural product, undecylprodigiosin (2).56 

   

N
H

N

O

HN

 

      

     20a 



Chapter Two 

Investigation of the natural product chemistry of two South 

African marine invertebrates, Tambja capensis and Bugula 

dentata 

13 



  Chapter 2 

 14

2.1 Introduction 

As part of an ongoing investigation of marine natural products sequestered by 

Southern African marine molluscs,57-61 this chapter presents a study of the 4-

methoxypyrrolic natural products isolated from extracts of the nudibranch Tambja 

capensis and the bryozoan Bugula dentata, and also includes a quantitative 

examination of the occurrence of these metabolites in a variety of nudibranch and 

byrozoan samples collected along the South African coast.  Our interest in the natural 

product chemistry of T. capensis followed from the isolation of two novel 

tambjamines, tambjamine K (debromo tambjamine H) (21) and an inseparable 

mixture of tambjamines G (16) and a new isomer tambjamine L (22).62 The paucity of 

tambjamine L (less than 1 mg), isolated from T. capensis, however hampered 

complete structural elucidation of this compound.  The original aim of the natural 

product investigation was to isolate more tambjamine L to resolve the structural 

anomalies. 

N
H

N
NHR4

R3

R1

OMeR2

 

 

 R1 R2 R3 R4 Tambjamine 

7 H H H H A 

13 H H H CH2CH3 E 

17 Br H H CH2CH2CH3 H 

21 H H H CH2CH2CH3 K 

16 Br H H CH2CH3 G 

22 H Br H CH2CH3 L 
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HN

HN
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Two separate natural product isolations were carried out on firstly the nudibranch, T. 

capensis from which tambjamine natural products had been previously isolated and 

secondly, the bryozoan, B. dentata which as mentioned in Chapter 1 and was thought 

to be the source of the metabolites sequestered by T. capensis.  

 

Tambja capensis appears to be endemic to the colder temperate waters of the Cape 

Province of South Africa and has been collected from Cape Town to as far east as 

Port Elizabeth and East London.  This species is a common nudibranch in shallow 

subtidal waters and easily distinguished by its dark blue colour with green lines along 

the periphery of its dorsal surface.   T. capensis is reported to feed on bryozoans such 

as B. dentata and Bugula neritina18 supporting our supposition that B. dentata was the 

source of the sequestered chemistry of T. capensis. 

 

 

 

Figure 2.1 Tambja capensis, a common nudibranch found along the temperate 

southeast coast of South Africa.18 
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B. dentata is a common dark blue-green bryozoan, abundant in the Indo-Pacific 

region, from the west coast of Australia to Queensland and the east coast of Southern 

Africa.  The species is typically found in coastal waters on sheltered rocky reefs and 

usually a size of around 8 cm.63 

 

 

 

Figure 2.2 Bugula dentata upon which T. capensis has been observed grazing and is 

putatively the source of 4-methoxypyrrolic natural products isolated from T. capensis. 

 

The ongoing collection of marine invertebrates along the Southern African coast by 

the marine natural products research group at Rhodes University provided a unique 

opportunity to quantitatively study the diversity of 4-methoxypyrrolic metabolites in 

specimens of T. capensis collected from three different localities along the South 

African coast (Figure 2.3).  In addition, the abundance of B. dentata in Algoa Bay 

enabled us to examine more closely the ecological relationship between this bryozoan 

and T. capensis. 
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2.2 Isolation of 4-methoxypyrrolic natural products from T. capensis 

A total of 39 specimens of T. capensis were collected using SCUBA from depths 

between 3 and 10 m off Simonstown, False Bay, South Africa in August 1999.  The 

specimens were steeped in acetone and the extracts were concentrated and partitioned 

between dichloromethane and water.  The dichloromethane extract was dried and 

concentrated to yield a dark oil (427 mg) that was subjected to reversed phase vacuum 

liquid chromatography on a Waters C-18 solid-phase extraction cartridge employing a 

0.1 M ammonium acetate buffered water/methanol solvent gradient.  1H NMR 

spectroscopy showed that the dark blue fraction (276 mg) eluting with 1:1 

methanol/water contained resonances indicative of 4-methoxypyrrolic alkaloids, and 

was purified further through semi-preparative C-18 reversed phase HPLC (both 

gradient and isocratic elution) to give the known tambjamines A (7) (11 mg), and E 

(13) (10 mg), and the tetrapyrrole natural product (15) (3 mg).  All the isolated 
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tambjamines were isolated as their acetate salts, 13 and 15 were converted into their 

free base form through treatment with aqueous ammonia for later physical studies.  

Subsequent analysis of the 13C data indicated the loss of the acetate resonance and 

supported the presence of the free bases.  The 13C and 1H NMR data of 13 and 15 

were consistent with those acquired previously by Gray and confirmed by comparison 

with literature values.4,23,62 The structure elucidation of tambjamine A (7) using 

HRFABMS and standard 2D-NMR spectroscopic techniques is presented in the 

following section. 

 

2.21 Structural elucidation of tambjamine A (7) 

The molecular formula of 7, C10H11N3O, was obtained from HRFABMS analysis (M+ 

= 189.0901, C10H11N3O requires 189.0902) implying seven degrees of unsaturation.  

Analysis of the IR spectrum gave an indication as to the functional groups present 

including stretching frequencies at 1675 cm-1 and 1605 cm-1 which were assigned to 

C=N and C=C respectively and two N-H absorbances at 3635 and 3480 cm-1.   All the 

carbon and proton resonances were observed in the 13C and 1H NMR spectra 

respectively.   

 

A gradient HSQC experiment was used to establish the 1H-13C connectivity, from 

which seven protonated 13C resonances were identified (including the acetate counter 

ion), accounting for seven of the nine 1H resonances, suggesting the presence of two 

exchangeable 1H resonances, which was consistent with the N-H absorbances 

observed in the IR spectrum.  Five non-protonated carbons were observed in the 13C 

spectrum and these were assigned as a carbonyl (δC 169.6) and aromatic ring (δC 

165.2, 144.8, 122.7 and 112.8) carbons respectively as shown in Table 2.1. From the 

COSY spectrum of 7 (Figure 2.4), a contiguous 3J coupling sequence between the 

three olefinic methines (δH 7.09, δC 124.7, H-3’; δH 6.28, δC 110.6, H-4’; δH 6.75, δC 

114.1, H-5’) and allowed establishment of the partial structure A.   

H

H H 3'

4'

5'  

Partial Structure A 

Figure 2.4: COSY correlations used in the establishment of partial structure A. 
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ppm (t1 )
5 .06 .07 .08 .09 .01 0 .01 1 .01 2.0

pp

 

 

Figure 2.5 Expanded (δ 5.0-12.5 ppm) section of the 1H NMR spectrum (400 MHz, 

CDCl3) of 7 (p = phthalate ester plasticiser contaminant). 
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Figure 2.6 Expanded (δ 50–170 ppm) 13C NMR spectrum (100 MHz, CDCl3) of 7.
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H-6 H-3’ H-5’ H-4’

H-3

 

Figure 2.7 An expanded (F1 = F2 = δ 5-8 ppm) COSY NMR spectrum (400 MHz, 

CDCl3) of 7. 

  

Partial structure A was confirmed by long range proton-carbon correlations observed 

in the HMBC spectrum of 7.  Correlations between the olefinic methine resonances 

(δH 6.75, δC 114.1, H-5’) and (δH 7.09, δC 124.7, H-3’) with the aromatic quaternary 

carbon (δC 122.7) suggested a connection between C-3’ and C-2’.   No correlations in 

the COSY or HMBC spectra were observed with the exchangeable protons.  The 

chemical shifts of the protons at H-3’, H-4’ and H-5’ suggested that these protons 

were part of a pyrrole ring, (partial structure B) in accordance with the A ring of 

tambjamine A. 

N
H

HH

H
H-5'

H-4'
H-3'

 

Partial structure B 

Figure 2.8: Important HMBC correlations used in determining partial structure B. 
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Additional correlations in the HMBC spectra were observed between the methoxy 

protons (δH 3.89, δC 58.3) and the quaternary carbon (δC 165.2, C-4) indicating that 

the methoxy moiety is attached at this position.   Further long range correlations were 

observed from the methine proton H-3 (δH 5.94, δC 91.6) to the quaternary carbons C-

2 (δC 144.8) C-5 (δC 112.8) and C-2’ (δC 122.7).   A correlation was observed from 

the methine H-6 (δH 7.43, δC 138.6) with quaternary carbon (δC 112.8) suggesting that 

the enamine motif is substituted onto this carbon, requiring the carbons C-2 and C-2’ 

to form the 2-2’ bipyrrole bond allowing the structure shown in Figure 2.7 to be 

determined.  

N
H

N

OMe

NH2

H

2
4

4'

1'

6
7

H+OAc-

 

Figure 2.9 Important HMBC correlations used to confirm the structure of ring B in 7. 

 
 

Position 

δδδδC 

ppm 

δδδδH ppm COSY coupling 

to 

HMBC coupling 

to 

Literature 

data 

δδδδH
4
 

1 - - - - - 

2 144.8 - - - - 

3 91.6 5.94 (s) - C-2, C-2’, C-5 5.95 

4 165.2 - - - - 

5 112.8 - - - - 

1’ - 10.31 - - 9.20 

2’ 122.7 - - -  

3’ 124.7 7.09, (dd), 3.7, 

2.7 

H-4’, H-5’* C-2’, C-5’ 7.09 

4’ 110.6 6.28 (m) H-5’ C-2’, C-3’ 6.30 

5’ 114.1 6.75 (m) H-4’ C-2’, C-3’ 6.78 

OMe 58.3 3.89 (s)  C-4 3.92 

6 138.6 7.43 (s) - C-5 7.49 

7 - 12.06 - - 11.30 

 

Table 2.1 The 1H (400 MHz), 13C (100 MHz) and 2D NMR data obtained for 7 

(CDCl3).
* 

*  see Figure 2.9 for numbering system 
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2.3 Isolation of 4-methoxypyrrolic metabolites  from B. dentata 

To explore the possible original source of 4-methoxypyrrolic natural products 

sequestered by T. capensis, we investigated extracts of B. dentata on which T. 

capensis had been observed grazing in Algoa Bay. B. dentata (wet mass –1500 g, dry 

mass- 217 g) was collected from Algoa Bay using SCUBA in the summer of 2003.  

The bryozoan was steeped in methanol (2 L) overnight in the dark at –20oC and then 

filtered to yield the first extract (96.4 g) The animal material was again steeped in 

methanol overnight and filtered in the same manner to give the second extract (14.8 

g).  Keeping the first and second extracts separate, the individual extracts were loaded 

onto an HP-20 column (500 mL, 45 x 5 cm) conditioned with acetone (1.5 L) and 

methanol (1.5 L).   

 

The HP-20 column packing64 comprises small cross-lined polystyrene beads and is 

particularly useful for fractionating aqueous marine extracts which require both the 

removal of sodium chloride and the concentration on the bead of organic metabolites 

present in the extract.  Once absorbed, these organic metabolites can be sequentially 

stripped from the HP-20 beads by eluting the column with aqueous acetone eluents of 

increasing acetone concentration.  The advantages of the chromatography technique, 

commonly known as cyclic loading, are not only that large masses of extract can be 

successfully processed but also that the beads can be re-used for several consecutive 

chromatographic runs. 

 

Given the column size, only 15 g of extract in methanol (2 L) were loaded at a time.  

The eluent (2 L) was then diluted with ammonium acetate buffer (0.1 M, 2 L) and 

passed through the column.  The eluent was again diluted with ammonium acetate 

buffer (0.1 M, 4 L) and passed through the column.  The column was then stripped 

with 20%, 40%, 60% and 80% acetone/0.1 M ammonium acetate buffer (1.5 L) and 

100% acetone.  To remove excess water from the eluents making concentration less 

problematic, in a process termed back-loading, the four eluents were then diluted with 

0.1M ammonium acetate buffer (1.5 L) and loaded onto a second HP 20 column (15 

cm x 4 cm, 100 mL) and then stripped with methanol (200 mL) and acetone (200 

mL).    
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Figure 2.10 The set-up used for HP-20 cyclic loading of B. dentata extracts. 

 

The 1H NMR spectra of various fractions (40%, 60% and 80% acetone/ 0.1 M 

ammonium acetate buffer) showed resonances in the 6-8 ppm region, indicative of 

tambjamine natural products.  From the masses of the samples obtained, only the 60% 

and 80% acetone/ammonium acetate buffer fractions were chosen to be purified 

further using semi-preparative C-18 reversed phase HPLC (both gradient and isocratic 

elution) to give the tetrapyrrole natural product (15, 130 mg).  Unfortunately, attempts 

to isolate tambjamine natural products from the 60% acetone/ammonium acetate 

buffer fractions were unsuccessful, as the fractions were insoluble in methanol, water, 

or any combination of the two, making this fraction unsuitable for further reversed 

phase HPLC.  In addition, substantial streaking was observed during thin layer 

chromatography of this fraction on silica plates making the fraction unsuitable for 

normal phase HPLC.  Despite its insolubility in water and methanol, the fraction was 

soluble in chloroform and the 1H NMR spectrum, acquired in CDCl3, showed a 

resonance (δ 9.5 ppm) indicative of an aldehyde proton suggesting that the 

tambjamine natural products had hydrolysed to give aldehydes, a phenomenon 

previously reported by Carté and Faulkner.4 
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The tambjamine natural products appear to be very susceptible to hydrolysis, for this 

reason the later reports in the literature of tambjamine natural product isolation use a 

0.1 M ammonium acetate buffer for all chromatographic separations.  Under these 

conditions the natural product is isolated as an acetate salt, which appears to be vital 

for stabilising the enamine motif.  In our workup procedure of the bryozoan, 

ammonium acetate was only added to the water used in the loading and stripping 

procedure but not to either the methanol or acetone.  This means that the fraction of 

interest, the 60% acetone elution, the ammonium acetate concentration was reduced in 

the eluting solvent from the required 0.1M to 0.04 M. Furthermore in the back-

loading procedure, no ammonium acetate was added to the acetone or methanol used 

to strip the column, meaning that the tambjamine natural products were probably not 

present as their acetate salts and for this reason they were more susceptible to 

hydrolysis. The tetrapyrrole natural product (15), which does not have an enamine 

motif, appeared to be more resistant to hydrolysis allowing it to be isolated in large 

quantities.   

 

Using HP-20 to fractionate marine extracts as previously mentioned has the advantage 

that it allows large quantities of extracts to be worked up in a very convenient and 

time conserving manner.  The process of cyclic loading, however, leads to a very 

large increase in aqueous volume, which could make it unsuitable for compounds 

such as tambjamines which are very prone to hydrolysis. 

 

2.4 Quantitative analysis of tambjamine and tetrapyrrole metabolites in T. 

capensis, B. dentata and B. neritina 

4-Methoxypyrrolic natural products are implicated in the chemical defence of marine 

invertebrates.4,20,65 Both tambjamines and tetrapyrrole have been isolated from the 

nudibranch T. capensis and the bryozoan B. dentata. This section presents a 

quantitative study of tambjamines 7, 13, 21, 22 and 15 in specimens of T. capensis, B. 

dentata and B. neritina collected from three sites off the South African coast (Figure 

2.3).  During the SCUBA collections of the marine invertebrates, T. capensis was 

observed grazing on both B. dentata and the related species B. neritina.  B. dentata is 

dark blue-green in colour while the latter species is a dark maroon colour.  Although 

the colour of B. dentata would suggest that the green tambjamines and the dark blue 

tetrapyrrole are sequestered from this species, we deemed it necessary to eliminate B. 
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neritina as a possible source of either the tambjamines or the tetrapyrrole natural 

product. The details of the organisms collected and the size and locality of the 

collection are presented in Table 2.2. 

 

 Sample Name Species Collection Site Date Sample Details 

TamEL T. capensis Harbour, East London 1999 10 individuals 

TamFB T. capensis Simonstown, False Bay 2000 15 individuals 

TamAB(1) T. capensis Harbour, Algoa Bay 2001 29 individuals 

TamAB (2) T. capensis White Sands, Algoa Bay 2001 2 individuals 

BryAB B. dentata White Sands, Algoa Bay 2003 Wet mass = 29.5 g 

NerAB (1) B. neritina White Sands, Algoa Bay 2001 Wet mass = 391.2 g 

NerAB (2) B. neritina White Sands, Algoa Bay 2001 Wet mass = 267.8 g 

   

Table 2.2 Nudibranch and bryozoan sample size and collection details. 

 

In order to determine the concentration of the tambjamine and tetrapyrrole content of 

the B. dentata, B. neritina and T. capensis specimens, all the samples were steeped in 

acetone overnight followed by concentration and partioning between dichloromethane 

and water.  The dichloromethane partition was concentrated under reduced pressure 

and injected onto an analytical reversed phase C-18 HPLC column with a suitable 

gradient to allow optimum separation of the natural products.  The concentration in 

each of the dichloromethane partitions was calculated by comparing the area under 

the peaks absorbing at 405 nm and 590 nm against standard curves carefully 

constructed using standards of the tambjamines 7, 13, 21, 22 and tetrapyrrole natural 

product (15).  The wavelengths of 405 nm and 590 nm were chosen to monitor the 

concentration, as these wavelengths are the λmax of the bipyrrole tambjamine and 

tetrapyrrole (15) natural products respectively.  This study makes the assumption that 

the area of the peaks measured represents only a single compound, and ideally to 

eliminate this uncertainty a variety of reversed phase columns should be used to give 

different retention times of the natural products.  Unfortunately, time constraints and 

the unavailability of suitable alternative HPLC columns prevented us confirming the 

reproducibility of these results under different chromatographic conditions. An 
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example of a typical chromatograph obtained in the analysis is shown below in Figure 

2.11.  

 

 

 

Figure 2.11 Chromatograph obtained for sample TamAB showing the presence of the 

respective tambjamine natural products. 

 

Table 2.3 clearly indicates that all the samples of T. capensis and the B. dentata 

collected from Algoa Bay contained 15 while there appeared to be variation in the 

tambjamines present in T. capensis specimens collected from different localities.  All 

four tambjamines were present in B. dentata extracts and neither 15 nor the 

tambjamines were found in B. neritina, thus eliminating the latter species as the 

source of the sequestered chemistry in T. capensis. 

 

 Two studies have been carried out investigating the concentration of the 4-

methoxypyrrolic natural products in marine invertebrates.  Carté and Faulkner 

collected samples of T. abdere, T. eliora, and R. tigris from the Gulf of California and 

an unidentified bryozoan from Mexico.  They were able to isolate tambjamines A-D 

(7–10) and found that the Tambja species showed little variation in the chemical 

constituents.   They reported that the concentration of the tambjamine natural products 

was lower in that of R. tigris and the unidentified bryozoan when compared to that of 

the nudibranchs.4   
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Table 2: Tambjamine and tetrapyrrole natural product concentrations in T. capensis, 

B. neritina and B. dentata samples. 

 

Later Paul et al. investigated the concentration of tambjamines and the tetrapyrrole 

natural product from the tropical ascidian Atapozoa sp. and its nudibranch predator 

Nembrotha spp. from various locations in the Philippine islands.  Interestingly, 

tambjamine C (9) and tambjamine F (14) were shown to be present in the highest 

concentrations and as we have also observed, found the concentrations of the 

tambjamines varied between collections from different habitats.24 Interestingly, we 

found tambjamine A (7) and E (13) in the highest concentrations, which contradicts 

the findings of Carté and Faulkner, and Paul et al.4,24 

 

Paul et al. indicated differing deterrent potential of the tambjamines and proposed that 

a mixture of the natural products was superior to the pure natural product in its 

deterrent activity.24 Unfortunately, individual animals were not analysed in our study 

and we therefore are unable to comment on the selectivity, if any, of individual 

specimens of T. capensis during the sequestration of tambjamines 7, 13, 21, 22 and 15 

from B. dentata.  As would be expected from their sequestering ability, the 

nudibranchs appear to concentrate the natural products, generally showing higher 

concentrations than the bryozoan B. dentata. 

 

Sample 

Name 

Extract 

mass 

(mg) 

Total 

tambjamine 

yield (%) 

(% extract) 

Tambjamine 

A  

(7) 

(% extract) 

Tambjamine 

E 

(13) 

(% extract) 

Tambjamine 

K 

(21) 

(% extract) 

Tambjamine 

L 

(22) 

(% extract) 

Tetrapyrrole 

(15) 

(% extract) 

TamEL 136.9 20.6 0.6 19.2 - - 0.9 

TamFB 219.3 29.8 2.5 6.0 - 14.6 6.8 

TamAB(1) 427.1 19.3 9.4 3.6 0.2 0.6 5.6 

TamAB(2) 21.6 15.5 7.5 3.0 1.5 3.0 0.5 

BryAB 141 15.0 1.8 1.5 1.0 1.2 9.5 

NerAB(1) 192.9 - - - - - - 

NerAB(2) 648.1 - - - - - - 
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2.5 Conclusion 

Attempts to isolate the novel natural products, 21 and 22 from either T.  capensis or B. 

dentata proved unsuccessful, however the known 7, 13 and 15 natural products were 

isolated.  Using the 4-methoxypyrrolic natural products isolated in our laboratory 

allowed a tentative quantitative analysis of the tambjamine and tetrapyrrole 

metabolites present in the nudibranch T. capensis and the bryozoan B. dentata which 

allowed as to demonstrate that T. capensis appears to concentrate the metabolites and 

could sequester the natural products from it bryozoan food source. 

 

In order to complete the structural elucidation of tambjamine L, a synthetic 

methodology was investigated to enable the synthesis of tambjamine natural products 

and is described in Chapter 3.  The physical properties of the isolated natural 

products, 13 and 15, were studied to establish further the mechanism of oxidative 

DNA cleavage proposed by Manderville and co-workers and to determine the 

potential of the 4-methoxypyrrolic natural products as photodynamic therapy agents 

and is presented in Chapter 4.  



Chapter Three 

Attempted synthesis of 4-methoxyyrrolic natural products 

29 



  Chapter 3  

 30

3.1 Introduction 

4-methoxy-2,2’bipyrrole carboxaldehyde (11), also referred to as the bipyrrole aldehyde 

in this chapter, is a key precursor in the synthesis of tambjamines (e.g. 7), the tetrapyrrole 

natural product (15) and prodigiosins (e.g. 1).  Unfortunately, the synthesis of 11 is 

problematic.  Difficulties associated with the synthesis of this compound include firstly 

the introduction of the methoxy substituent at the C-3 position, secondly the 

interconversion of the C-2 substituent (usually an ester) to an aldehyde and thirdly the 

coupling of the A and B rings.1,2 

  

Although a number of semi-syntheses of the tambjamines4,66 and tetrapyrrole21 natural 

products have been reported, a total synthesis of both the tambjamine and tetrapyrrole 

natural products remains elusive.  Conversely, total synthesis of prodigiosin and its 

analogues have regularly appeared in literature and are reviewed here. 

 

3.2 Synthetic approaches to prodigiosin 

The synthetic approaches to prodigiosin follow two distinct paths; a biomimetic approach 

in which 11, the biosynthetic intermediate, is the initial goal and the more recent cross-

coupling approach in which 11 is not a target.2 Retrosynthetic analyses of these two 

approaches are presented in Schemes 3.1 and 3.2. 
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Scheme 3.1 Retosynthesis of prodigiosin (1): a biomimetic approach. 
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Scheme 3.2 Retrosynthesis of prodigiosin (1): the cross-coupling approach. 

 

3.2.1 Synthesis of prodigiosin using biomimetic condensation reactions 

Rapoport and Holden reported the first total synthesis of prodigiosin (1) in 1962 (Scheme 

3.3).  In their ground breaking synthesis which confirmed the structure of prodigiosin (1), 

they targeted 4-methoxy-2,2’-bipyrrole carboxyaldehyde (11) as a key intermediate.  The 

intermediate was prepared firstly by the condensation of diethyl 

ethoxymethylenemalonate (23) with the sodium salt of diethyl N-ethoxycarbonyl 

glycinatinate (24) to produce diethyl 3-hydroxypyrrole-2,4-dicarboxylate (25) in low 

yield.  This transformation was proposed to proceed through an initial Michael addition 

followed by the loss of ethoxide and ring closure.  Methylation of 25 with diazomethane, 

followed by selective removal of the ester substituent at C-4 through hydrolysis and 

subsequent decarboxylation yielded 3-methoxy-2-ethoxycarbonylpyrrole (26). This 

selective hydrolysis was not commented on by the authors, however Boger later proposed 

that the selectivity observed could be accounted for by the greater electronic and steric 

accessibility of the C-4 substituent.27 The low yielding coupling of the A and B rings was 

achieved via reaction of 26 with pyrroline, subsequent dehydrogenation of the coupled 
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product yielded ethyl-3-methoxy-2,2’-bipyrrole-5-carboxylate (27).  The conversion of 

27 to the corresponding aldehyde 11 could only be achieved using the low yielding (32%) 

McFayden-Stevens reduction which involved the treatment of 27 with anhydrous 

hydrazine followed by p-toluenesulfonyl chloride.67 The final step in the synthesis of the 

prodigiosin natural product was the acid-catalysed condensation of 11 with 2-methyl-3-

amylpyrrole (28).7 
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Scheme 3.3 The total synthesis of prodigiosin (1) by Rapoport and Holdern.7 

 

Despite the major breakthrough that this synthesis represented, the difficulties that have 

continued to plague the synthesis of the 4-methoxypyrrolic natural products were the low 

yielding ring coupling and McFayden-Stevens reduction steps.  After this initial synthesis 

there were no more syntheses reported in literature until the late 1980s, when Brown et 

al. were able to synthesise N-substituted prodigiosin derivatives.68 These derivatives 
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however lacked the methoxy substituent which has been shown to be essential for the 

bioactivity of prodigiosin type compounds.28 

 

In the late 1980s Boger and co-workers and Wasserman et al. detailed two different 

approaches to the synthesis of the 4-methoxy-2,2’-bipyrrole carboxyaldehyde (11).  

Boger and co-workers’ approach (Scheme 3.4) utilised the inverse-electron demands of 

the Diels-Alder reaction to form the Diels Alder cycloadduct (29) from reaction of 

1,2,4,5-tetrazine-3,6-dicarboxylate (30) with 1,1-dimethoxyethylene (31).27,28,30 
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Scheme 3.4 Boger and Patel’s synthesis of prodigiosin.28 

 

Zinc catalysed ring contraction gave dimethyl-3-methoxypyrrole-2,5-dicarboxylate (32).  

One of the ester groups was removed through selective hydrolysis with aqueous lithium 

hydroxide.  Iodinative decarboxylation followed by hydrogenolysis yielded 3-methoxy-2-

(methoxycarbonyl)pyrrole (33).  An intramolecular palladium(II)-promoted 2,2’-

bipyrrole coupling was employed to join the A and B rings.  Coupling was achieved 

through initial reaction of the sodium salt of 33 with pyrrole-1-carboxylic acid (34) to 
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give 35.  Triphenylphosphine-tetrachloride and polymer supported palladium(II)acetate 

quantitatively promoted the required 2,2’ coupling in 35. Lithium methoxide was used to 

effect decarboxylation, while the low yielding McFayden-Stevens reduction was 

employed to convert the methyl ester into the aldehyde (11).27,28,30 

 

Wasserman and co-workers developed two separate approaches to the synthesis of the 

bipyrrole aldehyde (11).  The first of these approaches, shown in Scheme 3.5, involved 

the synthesis of the key intermediate (36) via treatment of the toluenesulfonyl pyrrole-2-

carboxyaldehyde derivative (37) with the dianion of ethyl acetoacetate followed by 

dehydration with gaseous hydrochloric acid in chloroform.  The activated methylene in 

the side chain was then oxidised with N,N-dimethyl-p-nitrosoaniline in ethanolic sodium 

hydroxide.  Ring closure was achieved in low yield with 3,4-dimethoxybenzylamine in 

acetic acid.  The bimethoxybenzyl group was removed using Evan’s procedure which 

involved oxidation with sulphuric acid.  The ether ester bipyrrole (27) was generated 

following detosylation using ethanolic sodium hydroxide. The ring closing step, which 

indirectly gave rise to the coupling of the A and B rings, was again a low yielding 

reaction while the reduction of the ester moiety to the aldehyde to give 11 again required 

the unsatisfactory low yielding McFayden-Stevens reduction.67, 69  

 

Wasserman and co-worker’s second approach involved using singlet oxygen (1O2) to 

oxidise tert-butyl 3-methoxypyrrole-2-carboxylate (38) (Scheme 3.6).  The proposed 

intermediate (39) was more susceptible to electrophilic attack by pyrrole to give the 

coupling of the A and B rings in moderate yields.70-72 The synthesis of 38 was achieved 

through the reaction of ammonia with a vinyl tricarbonyl ester to give 40 which was 

simply converted to 41 with dehydrating reagents such as silica gel.69,70 This simple two-

step procedure represented a vast improvement on previously used methods of 

synthesising the B-ring of 11.  Methylation was quantitatively achieved with sodium 

hydride and dimethyl sulphate.  Interestingly, the formation of the C-3 methyl ether gave 

higher yields when the butyl ester was used when compared to other esters.70 
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Scheme 3.5 Wasserman and co-workers vicinal tricarbonyl route to bipyrrole aldehyde 

(11).69 
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Scheme 3.6 Wasserman and co-workers singlet oxygen oxidation approach to bipyrrole 

aldehyde (11).72 
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Although Wasserman and Boger provided alternative routes for the synthesis of the 

bipyrrole aldehyde (11), the approaches still relied on the poor yielding McFayden-

Stevens reduction as the final step.67 Despite the problems in both Wasserman’s and 

Boger’s approaches, they were used in the synthesis of a variety of synthetic analogues of 

prodigiosin28,69,72 for example streptorubin B (4).9   The synthesis of these prodigiosin 

analogues allowed an investigation of the structure-activity relationships and hence the 

structural requirements for the bioactivity of this group of compounds. 

 

3.2.2 Syntheses of prodigiosin via cross-coupling reactions 

The synthesis of prodigiosin by cross-coupling reactions was pioneered by D’Alessio and 

co-workers in an attempt to optimise the immunosuppressive properties of prodigiosin 

(Scheme 3.7).  The approach was developed to avoid the poor yielding McFayden-

Stevens reduction and allow a combinatorial synthetic approach, more applicable for the 

synthesis of a large number of analogues.  Rather than incorporating 11, they targeted the 

enelactam 42 as their precursor of prodigiosin.  Suzuki coupling reactions were employed 

to couple the A and B rings.  This four step synthesis could easily be scaled up allowing 

them to produce a large number of derivatives relatively easily.73 

 

Compound 43, obtained via Vilsmeier formylation of 2-undecylpyrrole, was condensed 

with the commercially available pyrrolinone (44) to produce predominantly the Z-

enelactam. (42) The triflate group required for the Suzuki coupling was introduced with 

triflic anhydride and Suzuki cross-coupling was performed using the N-Boc pyrrole-2-

boronic acid (45).   Various cross-coupling methodologies were attempted and 

interestingly Stille conditions were found to be unsuitable.  The basic conditions of the 

reaction allowed Boc-deprotection to take place in the same step.73 D’Alessio and co-

workers’ route was successful and allowed the synthesis of many different prodigiosin 

analogues including PNU-156804 (20), which has shown superior immunosuppressive 

properties and low cytotoxicity compared to the naturally occurring prodigiosins.56,73,74 

 

Fürstner and co-workers used a similar cross-coupling approach to synthesise  the 

macrocyclic nonylprodigiosin. The flexibility of the method allowed the generation of 
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many synthetic analogues incorporating aromatic rings other than pyrrole into their 

backbone.2,75,76  
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Scheme 3.7 D’Alessio and co-workers cross-coupling approach to the synthesis of 

prodigiosin.73 

 

3.3 Semi-syntheses of tambjamine and the tetrapyrrole natural products 

3.3.1 Semi-synthesis of the tetrapyrrole natural product (15) 

Only one synthesis of the tetrapyrrole natural product has been reported in the literature.  

Wasserman et al. synthesised the tetrapyrrole (15) via condensation of 4-methoxy-2,2’-

bipyrrole (46), prepared by the soda-lime distillation of prodigiosin, with 4-methoxy-2,2’-

bipyrrole aldehyde (11) in ethanolic hydrochloric acid (Scheme 3.8).21 
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Scheme 3.8 Wasserman and co-workers semi-synthesis of tetrapyrrole natural product 

(15). 

 

3.3.2 Semi-synthesis of tambjamine natural products  

During their isolation of tambjamine natural products from nudibranchs, Carté and 

Faulkner also obtained the bipyrrole aldehyde (11), which they proposed was not a 

natural product but rather an artifact formed from the hydrolysis of the corresponding 

naturally occurring enamines i.e. tambjamines during the isolation.  They were able to 

convert the bipyrrole aldehyde (11) into the respective tambjamines through treatment of 

11 with the relevant amine using chloroform as the solvent in the presence of molecular 

sieves.4 Using the bipyrrole aldehyde (11) as a template, Davis et al. were able to 

generate a tambjamine natural product combinatorial library by designing a semi-

synthesis which avoided silica-based chromatography and used a simple liquid-liquid 

purification.  Acid conditions were used, under which the enamine salt was preferentially 

soluble in dichloromethane, whilst the ammonium acetate was more soluble in water, 

allowing for a simple separation of these two salts as shown in Scheme 3.9.66 
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Scheme 3.9 Davies et al. synthesis of a tambjamine combinatorial library. 
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3.4 An approach to the synthesis of tambjamine L (22) 

Our interest in the synthesis of tambjamine natural products isolated from T. capensis 

arose from the paucity of the natural product, 22, which hampered complete structural 

elucidation and investigations of biological activity of this compound.  The bipyrrole 

aldehyde (11) was chosen as our initial target, as conversion to the enamine natural 

products had been shown to be a facile, high yielding procedure from 11.66 Wasserman’s 

approach using singlet oxygen oxidation to drive the bipyrrole coupling72 attracted us 

because of the expertise at Rhodes University in the development of dyes for 

photodynamic therapy, which in the presence of red laser light are able to generate singlet 

oxygen as a cytotoxic species. 

 

Bellamy et al. reported the synthesis of 3-methoxy-2-formylpyrroles (47) from 

substituted pyridine N-oxide (48) with irradiation in the presence of copper sulfate.77 This 

reaction was attractive to us as it produced in one step the B-pyrrole ring of 11 with the 

methoxy moiety in the correct position and the aldehyde functionality, rather than the 

ester moiety thereby potentially avoiding the poor yielding McFayden-Stevens reduction 

at a later stage in the synthesis.67 Furthermore, 3-methoxypyrridine-N-oxide (48) is a 

cheap, commercially available starting material. Our proposed method of synthesising 22 

is shown in Scheme 3.10. 

 

The synthesis of 3-bromopyrrole (49) is not straightforward and therefore tambjamine K 

(21), in which the A ring is an unsubstituted pyrrole, was chosen as the initial synthetic 

target to develop the synthetic methodology.  
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Scheme 3.10 Proposed pathway for the synthesis of tambjamine L (22). 

 

3.5 Synthesis of 3-methoxy-2-formyl pyrrole (47) 
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The synthesis of 3-methoxy-2-formyl pyrrole was carried out as per the published 

procedure of Bellamy et al. by irradiating an aqueous solution (400 mL) of 48 (2 g, 15.8 

mmole) and copper sulfate (40 g, 15.8 mmole) in a classical immersion well-photoreactor 

at room temperature (see Figure 3.1). 
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Figure 3.1 The immersion well-photoreactor used to synthesise 3-methoxy-2-formyl 

pyrrole (47). 

 

The decrease in the amount of starting material (48) present in the reaction mixture was 

followed using UV-spectroscopy (see Figure 3.2).  Shortly after beginning the irradiation, 

the blue copper sulfate solution changed to a green colour from the formation of the green 

copper-pyrridine-N-oxide complex.77 After irradiation (4-9 hr), the aqueous solution was 

saturated with sodium chloride and partitioned with chloroform.  Compound 47 was 

obtained in a crude yield of 40%, the major product of the reaction was a black 

intractable gum soluble in neither water nor chloroform.  The 1H NMR (DMSO-D6) of 

this black gum was complex and suggested that the gum was polymeric in nature.  3-

Methoxy-2-formylpyrrole was successfully purified by sublimation (100°C, 2.5 mmHg) 

to yield a white crystalline product (m.pt 109°C, Lit 120°C77).  The 1H NMR showed a 
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non-exchangeable resonance (δ 9.51) indicative of an aldehyde proton and an 

exchangeable NH resonance (δ 10.3).  
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Figure 3.2 The UV spectrum of the photoirradiation reaction showing the decrease in the 

λmax
 of 48 (260 nm) and the increase in the λmax

 of 47 (298 nm). 

 

Bellamy et al. proposed a mechanism for the ring contraction of 48 to give 47 (Scheme 

3.11).  In this mechanism, the intermediate (A) can either isomerise to an acrylonitrile or 

undergo a ring contraction to form the pyrroline (B).  The copper salt is thought to 

interact with the intermediate (A) through a reversible electron transfer, thus driving the 

ring contraction.77 
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Scheme 3.11 Proposed mechanism of ring contraction during photoirradiation of 48.77 
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Despite the relatively low yields of 47 obtained from this light induced ring contraction 

procedure, the ready availability of 48, the ease of work-up and purification made the 

procedure a very attractive starting point for the synthesis of tambjamines.   

 

3.6 Bipyrrole coupling using singlet oxygen oxidation 

3.6.1 Attempted synthesis of 11 from 47 
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3.6.1.1 Methylene blue as a singlet oxygen producer 

The bipyrrole coupling was then attempted following a similar procedure to that reported 

by Wasserman et al (Scheme 3.6).72 The reaction was performed by stirring (10 min) a 

solution of 47 (20 mg, 160 µmole) and methylene blue (1 mg) in dichloromethane (20 

mL) at room temperature to allow the methylene blue to dissolve.  The solution was 

subsequently cooled (–78°C) and purged with oxygen (10 min).  Irradiation (30 min) of 

the cold solution was carried out using a 350 W Tungsten light with a red filter to 

optimise the wavelength of light for methylene blue to generate singlet oxygen while 

preventing photodegradation.  Oxygen was continually bubbled through the solution from 

a balloon (Figure 3.3).  Although Wasserman et al. reported that a decrease in the starting 

material was observed following irradiation,72 no apparent decrease or change was 

observed on either silica or C-18 TLC plates. 
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Figure 3.3: Apparatus used in the photooxidative bipyrrole coupling reaction.  

 

Following irradiation, cold (-78°C) pyrrole (45 µL, 400 µmole) in dichloromethane (2 

mL) was added and the solution was allowed to warm up to room temperature and stirred 

(1 hr).  The methylene blue was removed by filtration through celite and the filtrate 

concentrated under reduced pressure.  Chromatography of the concentrated filtrate (C18 

Sep-Pak eluted with water, 25%, 50%, 75% aqueous methanol and methanol) yielded five 

fractions.  1H NMR analysis of these chromatographic fractions revealed that the pyrrole 

products were confined to the 25% aqueous methanol fraction, which contained 

predominantly unchanged 47.  There was no spectroscopic evidence (NMR and UV) that 

suggested any oxidation of 47 to 3-methoxy-2-pyrrole carboxylic acid had occurred.  The 

presence of the unchanged starting material was confirmed by UV-spectroscopy which 

showed a peak at 298 nm indicative of the 47.  Additional absorbances (λmax
 350 nm and 

450 nm) were of interest as they are similar to that of tripyrrole 1 (λmax 450 nm).  ESIMS 
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(Electrospray ionisation mass spectrometry) in the positive ion mode conclusively 

showed that the 47 was the major product of the reaction from the peak observed  at m/z 

126.0. 

 

The addition of a small amount of pyridine has been reported to enhance photooxidation 

reactions.78 The addition of 3 drops of pyridine to the reaction mixture had no influence 

on our reaction, nor did the removal of the red filter.  The singlet oxygen production of 

methylene blue under the experimental conditions was determined using the method 

described in Chapter 4 and was found to be similar to those reported in literature.79   

 

3.6.1.2 Zinc phthalocyanine as a singlet oxygen producer 

Following the apparent lack of observed reactivity of 47 at –78°C, the procedure was 

modified to use a solution of zinc phtalocyanine in DMSO-D6 with irradiation at room 

temperature to produce singlet oxygen.  The singlet oxygen production of zinc 

phtalocyanine has been well studied at Rhodes University.  Deuterated solvents have 

been reported to increase the triplet lifetime of photo-excited compounds, as described in 

Chapter 4, and so it was hoped that this solvent would improve the success of the 

reaction.  Furthermore, the use of DMSO-D6 also allowed an easy method to follow the 

reaction using NMR without out any prior chromatographic work-up, which was 

suspected as being a possible source of decomposition of the bipyrrole if it had formed in 

the reaction. 

 

The reaction was performed by dissolving 47 and zinc phthalocyanine in DMSO-D6, 

purging the solution with oxygen for 10 minutes and then irradiating using a 350 W 

tungsten lamp with a red filter.  Following irradiation (20 min), pyrrole was added and 

the solution was stirred (1 hr) at room temperature.  The 1H NMR spectrum showed 

resonances consistent with 47 and zinc phthalocyanine with no other major products 

suggesting that 47 had not reacted under the modified reaction conditions. 

 

The unusual stability of 47 could possibly be explained by the 3-methoxy functionality 

and the pyrrole NH taking part in a vinylogous ester or amide reaction with the aldehyde 
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carbonyl.80 The stability of vinylogous esters and amides is well established.81,82 Figure 

3.4 shows possible vinylogous esters (49) and amide (50) canonical structures of 47. 
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Figure 3.4: Possible vinylogous ester (49) and amide (50) canonical structures of 47. 

 

Given the stability of 47 in the singlet oxidation reduction and our reluctance to convert 

the aldehyde to the ester, to avoid the McFayden-Stevens reduction, alternative 

modifications to 47 were investigated to counter the stability of the vinylogous systems 

thought to be hampering the coupling of 47 to pyrrole. 

 

3.6.2 Modifications of 47 to improve reactivity 

3.6.2.1 Attempted 2,2-bipyrrole coupling via singlet oxygen oxidation of the 2-

propylimino-3-methoxypyrrole (51) 

Given the unreactivity of the 47 to oxidation with singlet oxygen, the aldehyde 

functionality was first converted into the propyl imine (51) in an attempt to improve the 

reactivity of 47 by masking the aldehyde functionality.  This conversion had the added 

advantage of providing the complete right hand hemisphere of tambjamine K (21). 

 

 

 

 

 

 

The synthesis of the 51 was a modification of the method reported by Davis et al.83 

Compound 47 (10 mg, 80 µmole) was added to anhydrous 1,2-dichloroethane (1-2 mL) 

under constant argon followed by the propylamine (66 µL, 800 µmole) and acetic acid 
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(46 µL, 800 µmole).   The solution was then stirred (4 hr) at room temperature, and 

partitioned between aqueous sodium carbonate (10% w/v) and dichloromethane.  The 

dichloromethane partition layer was then concentrated under vacuum, which removed 

most of the unreacted amine.  Although Davis et al. reported a quantitative conversion of 

the bipyrrole aldehyde (11) to enamine,66 the best conversion we obtained was 95% 

(established from 1H NMR by comparing the integration of the aldehyde proton δH 9.51 

with the enamine proton δH 8.04).  The amount of acetic acid added was crucial to 

obtaining an acceptable conversion because of the competing reverse hydrolysis reaction. 

Optimum conversion was obtained when the quantity of acetic acid was added in slightly 

less than the 10 molar equivalence reported by Davis et al.66 Attempts to purify the 

enamine using a C-18 Sep-Pak were unsuccessful as only 47 was obtained, suggesting 

that hydrolysis either occurs on contact with the column packing material or in the 

aqueous eluting solvents.  Consequently, we decided that given the almost quantitative 

yield of 51 the reaction mixture was not purified further prior to the singlet oxygen 

reaction.  

 

Wasserman’s singlet oxygen coupling reaction was then attempted using similar reaction 

procedures to those described for the attempted photooxidation of 47. In a typical 

reaction, 51 (20 mg, 120 µmole) was dried on a freeze drier and then dissolved in 

anhydrous dichloromethane (20 mL), methylene blue (1 mg) was then added and the 

solution was stirred (10 min) at room temperature.  The solution was then cooled to –

78°C and purged with oxygen (10 min) prior to irradiation (30 min) using a 350 W 

tungsten light with a red filter under a constant flow of oxygen.  Cold pyrrole (20 µL, 600 

µmole) in dichloromethane (3 mL) was added and the solution allowed to warm to room 

temperature, followed by stirring (1 hr).  The methylene blue was removed by filtration 

through celite 535.  The 1H NMR of the reaction solution showed a plethora of peaks in 

the region of interest (5-8 ppm) while UV analysis showed absorbances at 296 nm 

(starting material) and 330 nm, suggestive of a possible bipyrrole product.   Once again 

ESIMS was used to analyse the products of the reaction.  A major peak at m/z 248.7 in 

the ESI (positive ion mode) mass spectrum and was attributed to the structure of 52.  

Substitution of an alcohol group at the C-5 position such as that in 52 has been reported 
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by Wasserman and co-workers in similar photooxidation reactions when the peroxide 

intermediate (Scheme 3.6) is reduced to an alcohol.70,71 
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Disappointingly, attempts to isolate 52 using reversed phase HPLC were fruitless, with 

once again only 47 being isolated from the reaction mixture.  It was concluded that 

although the results from ESIMS looked promising, the enamine 51 was too unstable to 

work with. 

 

3.6.2.2 Lithium aluminium hydride reduction of 47  

In an attempt to obtain a stable, reactive compound which could be used in the singlet 

oxygen oxidative coupling, the conversion of the aldehyde to the primary alcohol (53) 

was attempted. 
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The reduction was first attempted by dissolving 47 (40 mg, 320 µmole) in anhydrous 

tetrahydrofuran (1 mL), following which lithium aluminium hydride (12 mg, 320 µmole) 

dissolved in anhydrous tetrahydrofuran (1 mL) was added dropwise via a canula at 0°C.  

The reaction mixture was then warmed to room temperature and stirred (2 hr), before 5 

drops of dilute hydrochloric acid were added.  The reaction mixture was then partitioned 

between ethyl acetate and water and the ethyl acetate partition, washed three times with 

water to remove any unreacted acid.  Both TLC and 1H NMR indicated that no reduction 

had occurred and the major product was again 47. 
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The procedure was then modified such that the reaction mixture was refluxed (1 hr) 

resulting in a dark red aqueous soluble, possibly polymeric product.  None of the 

expected reduction product 53 formed in this reaction as evidenced by NMR analysis, 

disappearance of the aldehyde proton (δH 9.51) and appearance of a deshielded 

oxymethylene singlet would have indicated success of the reaction. 

 

3.6.2.3 Preparation of the acetal derivative (54) 

Again in the hope to improve the reactivity of the starting material in the photooxidation 

reaction, the protection of the aldehyde moiety as an acetal (54) was attempted. 
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The protection was carried out using a standard procedure84 by dissolving 47 (60 mg, 0.5 

mmole), ethylene glycol (175 µL, 2.9 mmole) and p-toluene sulphonic acid (5 mg, 26 

µmole) in anhydrous benzene (30 mL).  The reaction solution was refluxed (24 hrs) with 

a Dean-Stark trap.  The solution turned a dark red colour and a black solid precipitate 

formed suggesting that polymerisation had again occurred. 

 

3.6.2.4 Attempted 2,2’-bipyrrole coupling via the singlet oxygen oxidation of the N-

Boc protected derivative (55) 

The unusually high stability of 47 was thought to be due to the vinylogous ester and 

amide resonance discussed earlier.  It was thought that that use of the butyl ester 

derivative, 38, as used by Wasserman, could have either prevented the delocalisation of 

electrons through the electron rich ester group or alternatively the bulky tertiary butyl 

group could alter the planar relationship between the pyrrole ring and the carbonyl 

substituent thus preventing resonance as the 2p orbitals were no longer aligned for 

optimal overlap.  Given our reluctance to convert 47 to an ester, requiring the low 

yielding MacFayden-Stevens reduction back to the aldehyde at a later stage we proposed 
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an alternative approach that would remove electron density from the pyrrole ring and 

negate stable vinylogous amide/ester formation.   N-Boc protection is a common 

procedure used to protect amines.  It was hoped that the addition of the Boc group would 

both decrease the electron density in the pyrrole ring and provide a sterically bulky 

tertiary butyl group to force the aldehyde carbonyl group out of plane with the pyrrole 

ring.  A modified procedure described by Davis for the N-Boc protection of pyrrole-2-

carbaldehyde was followed.83 Davis’s procedure required mixing equimolar equivalents 

of di-tert-butyldicarbonate and pyrrole-2-carbaldehyde at room temperature.  When the 

reaction was performed in our laboratory under these conditions, using pyrrole-3-

methoxy-2-carbaldehyde, a yield of only 40% of the N-Boc protected pyrrole-3-methoxy-

2-carbarldehyde was obtained in addition to some insoluble dark material suggestive of 

polymerisation.  The increased polymerisation was attributed to the higher reactivity of 

47 due to the methoxy substituent compared to pyrrole-2-carbaldehyde.  In a successful 

attempt to reduce polymerisation, the procedure was modified to use a slight excess of di-

tert-butyldicarbonate and lowering of the reaction temperature to 0°C as follows: 
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Compound 47 (140 mg, 1.12 mmole) was dissolved in acetonitrile (5 mL) and the 

solution cooled to 0°C, 4-dimethylaminopyridine  (13 mg, 0.11 mmole) and di-tert-

butyldicarbonate (366 mg, 1.68 mmole) were added and the solution was stirred (2 hr, 

0°C) under argon.  The reaction solution was concentrated and then purified using a silica 

flash column (100 x 10 mm), eluting with firstly using 100% hexane and secondly 100% 

dichloromethane.  Compound 55 eluted in the 100% dichloromethane fraction and after 

evaporation in vacuo afforded white crystalline 55 (m.pt 74°C) in 97% yield. 
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The attempted singlet oxygen oxidation to give bipyrrole coupling was carried out in a 

similar way to that reported earlier in this chapter for the compound 47.  Compound 55 

(20 mg, 93 µmole) was dissolved in dichloromethane (10 mL), cooled (-78°C) and purged 

with oxygen (10 min).  The solution was irradiated using a tungsten lamp with a red filter 

(20 min, -78°C) under a constant steam of oxygen.  Pyrrole (30 µL, 466 µmole) in cold 

dichloromethane (3 mL) was added under nitrogen and stirred (2 hr) allowing the 

temperature of the solution to rise to room temperature.  Following concentration under 

reduced pressure, the 1H NMR spectrum of the reaction showed a plethora of peaks in the 

6-8 ppm region characteristic of pyrrole type compounds. High resolution FABMS was 

used to determined the presence of the required compound in the reaction mixture.  A 

peak m/z 291.1345 was observed and supported a molecular formula of C16H18N2O4, 

suggesting that the reaction may have at last yielded the desired product (56).  
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Purification of 56 proved to be problematic, various methods of purification were 

attempted; silica flash column (eluting with 100% hexane, 25%, 50%, 75% ethyl 

acetate/hexane and 100% ethyl acetate).  Fractions eluted with 100% hexane and 50% 

ethyl acetate/ hexane from examination of their 1H NMR spectra looked promising, 

however, again contained a variety of peaks in the 6-8 ppm region, the effect of the Boc 

protecting group on the proton shifts was not certain and hampered identification.  The 

fraction eluting with 25% ethyl acetate/hexane contained pure 55.  HP-20 purification 

was then attempted using cyclic loading, similar to that described in Chapter 2, and 

eluting with 25%, 50%, 75% acetone/water and 100% acetone, the first two fractions 

from 1H NMR contained mainly 55 whilst the 75% acetone/water and 100% acetone 

fraction had a variety of peaks in the 6-8 ppm region.  Reversed phase HPLC was then 

attempted eluting with 80% methanol/water followed by a 100% methanol wash.  Two 
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fractions were collected from HPLC, which from 1H NMR spectrum appeared to contain 

the starting material 55 and 56 in a 1:0.6 ratio.  At this point it was decided that the Boc 

protecting groups was making 55 and 56 inseparable and so methods of deprotection 

were investigated prior to separation. 

 

Various methods of Boc-deprotection are reported in literature, the most common method 

cited is the use of trifluoroacetic acid, this method however is not always suitable for 

acid-labile molecules.85-88 To develop a methodology for deprotection, initially 55 was 

used given the instability of 47 to acid.  Compound 55 (10 mg, 0.05 mmole) was 

dissolved in dichloromethane (10 mL) and treated with trifluoroacetic acid (40 µL, 0.5 

mmole) under argon.  The reaction mixture was stirred at room temperature (1 hr) and 

then partitioned between aqueous potassium carbonate (10 mL) and dichloromethane.  

The organic partition was dried over magnesium sulphate and then concentrated.  The 1H 

NMR showed quantitative deprotection (loss of Boc protecting group methyl resonance 

δH 1.60 ) and no signs of polymerisation were observed.  

 

In the synthesis of prodigiosin, D’Alessio and co-workers reported Boc-deprotection 

under basic conditions using potassium carbonate.73,74 We were intrigued with the 

possibilities of this reaction as it might enable the synthesis of tambjamine L (22) in a 

one-pot synthesis from 55 as shown in Scheme 3.12. 
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Scheme 3.12 Proposed deprotection and enamine synthesis. 

 

This formation and deprotection was tested by dissolving 55 (10 mg, 44 µmole) in 

dichloromethane (6 mL) followed by the treatment with propylamine (60 µL, 0.80 
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mmole) and acetic acid (40µL, 0.75 mmole) under argon.  The solution was stirred (4 hr) 

at room temperature, following which potassium carbonate (0.1 g) was added and the 

solution was stirred (12 hr) and then partitioned between water (6 mL) and 

dichloromethane (6 mL), the aqueous layer was washed three times with 

dichloromethane.  The organic partition fraction was then dried over anhydrous 

magnesium sulphate and concentrated in vacuo.  The 1H NMR spectrum showed 

complete deprotection and quantitative conversion to the enamine, confirmed by the lack 

of an aldehyde proton resonance (δH 10.22) and the appearance of the enamine methine 

resonance (δ 8.04), two methylene resonances (δH 3.43 and δH 1.62) and a methyl 

resonance (δH 0.90).   

 

The deprotection reaction was repeated in a similar manner on the inseparable reaction 

mixture from the singlet oxygen bipyrrole step (130 mg), described earlier.  Care was 

taken to ensure that the amount of acetic acid added was slightly less than the 10 molar 

equivalents propylamine added.  Following partioning between water (10 mL) and 

dichloromethane (10 mL), the organic partition was concentrated and then purified using 

reversed phase gradient HPLC using a gradient from 1:1 methanol/water to 100% 

methanol over 30 minutes.  The first fraction collected (10.3 mg), from the 1H NMR 

spectrum, appeared to contain a mixture of 47 (40%), 51 (50%) and 22 (10%).  The 

presence of 51 was confirmed by both ESIMS (positive ion mode after the addition of a 

few drops of formic acid) and high resolution FABMS, however, from the mass analysis 

carried out there was unfortunately no indication of either 47 or 22.   

 

Attempts to purify the product were hampered by a red polymer which formed during 

concentration of the reaction mixture and was only soluble in 100% methanol making 

semi-preparatory HPLC difficult due to precipitation of the polymer in aqueous solvents 

necessary for reversed phase HPLC elution.  The 1H NMR spectrum of the red polymer 

did not shed any light on the nature of the polymeric material and strangely did not show 

any resonances in the 6 – 8 ppm region consistent with pyrrole type compounds. 
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Frustratingly neither 56 nor its enamine analogues could be isolated from the reaction 

mixture by HPLC.  The continual formation of significant amounts of red polymeric 

material necessitated an analysis of the reaction conditions during the singlet oxygen 

induced pyrrole coupling with a view to reducing unwanted side reactions. 

 

In addition to the observed possible polymerisation, some interesting colour changes 

were noted in the course of the reaction; during irradiation, the solution is a blue colour 

from the methylene blue, following reaction with pyrrole, the solution changes to a green 

colour similar to that of the tambjamine natural products.  Finally, when the solution is 

concentrated it becomes a dark red oil suggesting that polymerisation has occurred.  The 

polymerisation observed was thought to be due to either excess acid in the solution, free 

radicals following irradiation, excess singlet oxygen or exposure to sunlight.  To 

investigate the cause(s) of polymerisation the singlet oxygen reaction was run as before 

however before concentrating under reduced pressure, where polymerisation was usually 

observed to occur, the reaction mixture was divided into four fractions and each fraction 

was separately treated with diazobicylooctane (50 mg) to remove any radicals, purged 

with argon to remove excess oxygen and neutralised with a 2% potassium carbonate 

solution.  The fourth fraction was treated as a control and worked up in the normal way.  

Interestingly, on the addition of diazobicylooctane the green solution changed to a dark 

red colour immediately, all the other samples remained green when concentrated on a 

rotary evaporator followed by final concentration to dryness under a stream of nitrogen.  

Polymerisation, however, was observed in all the samples when they were kept in 

solution at room temperature for 10 minutes with the exception of the solution purged 

with argon which only polymerised after standing for several hours.  These results 

suggested that exposure to sunlight may be contributing to polymerisation and the 

polymerisation is exacerbated in the presence of oxygen following irradiation. 

 

The polymerisation of pyrrole when exposed to sunlight is easily observable as the clear 

solution rapidly turns a dark brown colour, for this reason, pyrrole was always freshly 

distilled before use.  Given these observations the reaction procedure was modified, the 

flask containing the reaction mixture was covered in tin foil and purged with argon.    
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3.7 Synthesis of novel dipyrrole, methyl 4-aza-5-oxo-6,6-di-(2-pyrolyl)-2(Z)-

hexenoate (57) from the photooxidation of 55 
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Using the modified procedure to reduce polymerisation, 55 (200 mg, 0.88 mmole) and 

methylene blue (1 mg) were dissolved in dichloromethane (10 mL) and stirred at room 

temperature to allow the methylene blue to dissolve, then cooled (-78°C) and purged with 

oxygen (10 min).  The solution was then irradiated using a tungsten lamp with a red filter 

(30 min) under a constant stream of oxygen.  Following irradiation, the flask containing 

the solution was immediately wrapped in tin foil to prevent exposure to light and freshly 

distilled pyrrole (420 µL, 6.3 mmole) in cold dichloromethane (3 mL) was added and the 

solution was stirred (2 hr).  The reaction mixture was then concentrated in vacuo without 

heating.  The green oil obtained was then purified using a silica flash column (30 x 7 

mm) eluting with 70% ethyl acetate/ 30% hexane to remove any polymeric material.  The 

eluent was concentrated under nitrogen without heating, in the dark and then further 

purified using normal phase HPLC (7:3 hexane: ethyl acetate) to yield three fractions.   

The first of these fractions showed a plethora of peaks in the 1H NMR spectrum attributed 

to a mixture of three inseparable photooxidation products.  1H and 13C NMR analysis of 

the second fraction indicated that this fraction contained a single pure compound (57).  

Compound 57 was obtained in a 15% isolated yield. The third fraction was found to be 

un-reacted starting material.  

 

3.7.1 Structure Elucidation of 57 

The molecular formula of 57, C14H15N3O3, was obtained from HRFABMS data (calcd. 

for C14H15N3O3 273.1113, obs. 273.1118) implying nine degrees of unsaturation.  
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Analysis of the IR spectrum gave an indication of the functional groups present and 

showed N-H (3437 cm-1), amide carbonyl (1633 cm-1) and ester carbonyl (1718 cm-1) 

absorbances. Only ten carbon and nine proton resonances were observed in the 13C and 
1H NMR spectra respectively.  The integration of the proton signals suggested two 

pyrrole substituents in 57, with the three pyrrole protons (H-3’ – H-5’) (δH 6.14, 6.18 and 

6.76) and exchangeable proton, NH-1’ (δH 8.65) each integrating to two protons as shown 

in Figure 3.6. 

 

 

 

ppm (f1)
3.04.05.06.07.08.09.010.011.0

 

Figure 3.5: Expanded (δ 3-11 ppm) section of the 1H NMR spectrum (400 MHz, CDCl3) 

of 57. 
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Figure 3.6: Expanded region (δ 6 – 9 ppm) of the 1H NMR spectrum (400 MHz, CDCl3) 

obtained for 57 showing integration of the pyrrole resonances. 

ppm (f1)
50100150

 

Figure 3.7: Expanded region (50 – 170 ppm) of  the13C NMR spectrum (100 MHz, 

CDCl3) of 57. 
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Using HSQC to establish 13C – 1H connectivity, seven protonated carbon resonances were 

identified.  Thus seven of the nine 1H resonances, could be accounted for.  The presence 

of two exchangeable proton resonances, was consistent with the N-H stretch observed in 

the IR spectrum.  Three further non-protonated carbons were observed in the 13C 

spectrum and these were assigned as carbonyls (δC 168.8, 169.7) and aromatic (δC 125.9) 

carbons (Table 3.1).  

 

The COSY spectrum of 57 (Figure 3.9) revealed 3J coupling between the two olefinic 

methines H-2 (δH 5.16) and H-3  (δH 7.43) and an exchangeable resonance H-4 (δH 10.58) 

and provided the partial structure A.  The geometry of the double bonds was assigned as 

(Z) from the J2,3 coupling constant (9 Hz). A small long range 4J coupling was observed 

in the COSY spectrum from an exchangeable proton H-1’(δH 8.63) to the aromatic proton 

H-4’(δH 6.18).  The H-4’ proton was further coupled to two other aromatic protons H-5’ 

(δH 6.76) and H-3’ (δH 6.14).  The exchangeable proton H-1’ was also coupled to H-5’. 
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Figure 3.8: Important COSY correlations used to establish partial structures A and B. 
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NH-1’

H-3’ H-4’ H-5’

 

Figure 3.9: An expanded (F1 = F2 = δ 5-11 ppm) COSY spectrum of 57 (CDCl3; 400 

MHz) showing correlations used to establish partial structures A and B. 

 

A three bond 1H-13C correlation in the HMBC spectrum, (Figure 3.11), was observed 

between the methoxy protons (δH 3.67, δC 51.3) and an ester carbonyl carbon C-1 (δC 

168.8).  Similarly an olefinic methine proton H-2 (δH 5.15, δC 98.0) showed correlations 

with this ester carbonyl carbon, an olefin carbon C-3 (δC 137.2) and an amide carbonyl 

carbon (δC 169.7).   A further three bond correlation coupling was observed between the 

exchangeable proton H-4 (δH 10.58) and the amide carbonyl C-5 (δC 169.7).   These 

observations allowed elaboration of substructure A to include both methyl ester and 

amide linkages as shown in substructure C (Figure 3.10). 
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Figure 3.10: Important HMBC correlations used to construct substructure C. 
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Further correlations were observed in the HMBC spectrum between the three aromatic 

protons H-3’ – H-5’ and the aromatic quaternary carbon (δC 125.9) supported by the 

pyrrole substructure B.  An HMBC correlation between H-6 (δH 5.07) and the pyrrole 

quaternary carbon, C-2’ (δC 125.9, C-9) placed the two pyrrole rings at C-6 (δC 45.5).  An 

additional HMBC correlation was observed from H-3’ (δH 6.14) to the methine carbon C-

6 implying a C-2’ linkage of the two pyrrole rings to C-6.   If the pyrrole was substituted 

in the C-3 position one would expect to see two HMBC correlations from pyrrole protons 

H-2’ and H-4’ to C-6. The C-2 linkage was unequivocally supported by the 1H-13C 

coupling constants obtained from the coupled gradient spectrum (Table 3.1).  From 

literature values the 1H-13C coupling constant of the protons in the 2’ and 5’ positions is 

approximately 182 Hz whilst for protons in the 3 and 4 positions JC,H is approximately 

170 Hz.89 Methine protons H-3’ (δH 6.14) and H-4’ (δH 6.18) were found to have JC,H 170 

Hz and 172 Hz respectively confirming that these protons were in the 3’ and 4’ position 

in the pyrrole ring whilst the methine proton H-5’ (δH 6.761) was observed to have a JC,H 

of 185 Hz suggesting that this proton is at C-5’.  Finally an HMBC correlation from H-6 

to the amide carbonyl (δC 169.7) completed the structure elucidation of 57.  

 

The synthesis of product, 57, generated some interesting mechanistic questions.  Firstly, 

the Boc group was not present in 57, which raised the question of whether or not the Boc 

group was lost during the reaction or in the chromatographic work-up.  As the major 

product of the reaction isolated was unreacted 55 this suggests that the loss of the Boc 

protecting group was rather a function of the reaction than the work-up. The loss of the 

Boc group therefore raised the question of the importance of the Boc group in the 

reaction that yielded 57.  To test this hypothesis, the reaction was repeated using 47 

treating the reaction mixture as previously described to reduce polymerisation by 

eliminating light.  From normal phase thin layer chromatography of the final reaction 

mixture, there was no evidence of 57 or any other reaction products, suggesting that the 

Boc group had increased the reactivity of 47 and was required to produce 57. 
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Similar ring opening as observed in 57 has been reported by Wasserman and co-workers 

in their singlet oxygen oxidation studies of 2-carboxy-3-methoxy-N-benzylpyrrole (58) 

shown in Scheme 3.13.90 The ring opening observed was proposed to occur through 

intermediate  59 and a similar intermediate may be involved in our preparation of 57. 

 

 

  

        

 

 

 

Figure 3.11: Expanded section (F1 = 30 – 200 ppm, F2 = 3 – 8 ppm) of the HMBC 

spectrum of 57. 
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Table 3.1:  1H (400 MHz, CDCl3), 
13C (100 MHz, CDCl3), HMBC and COSY NMR data 

obtained for 57. 

 

 

 

 

Position δδδδC 

ppm 

δδδδH ppm (int., 

mult., J/Hz) 

HMBC 

correlation to 

COSY 

coupling to 

Coupled 

HSQC (J/ Hz) 

1 168.8 - - -  

2 98.0 5.16 (1H, d, 

8.8) 

C-3 H-5 171  

3 137.2 7.43 (1H, dd, 

8.8, 11.1) 

C-4, C-7 H-4, H-6  

4 - 10.58 (1H, d, 

10.1) 

- H-5  

5 169.7 - - -  

6 45.5 5.07 (1H, s) C-7, C-9, C-10 - 129  

1’ - 8.65 (2H, s) - H-11, H-12 - 

2’ 125.9 - - -  

3’ 107.9 6.14 (2H, t, 

3.6) 

C-9, C-12 - 170 

4’ 108.8 6.18 (2H, dd, 

5.7, 2.8) 

C-9, C-12 H-12, H-13 172 

5’ 118.4 6.76 (2H, dd, 

3.9, 2.5) 

C-9, C-11 H-11, H-13 185 

Me 51.3 3.67 (3H, s) C-3, C-4 - 148 
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Scheme 3.13 Products from photooxidation reaction of 58. 

 

The C-6 di-pyrrole substitution in 57 is also of interest.  Similar dipyrrole products have 

been reported from acid-catalysed condensation of aromatic aldehydes e.g. benzaldehyde.  

These dipyrrole precursors have been used in the synthesis of meso-substituted 

porphyrins and porphyrin analogues.91-93 Interestingly, no acid was added to the reaction 

mixture, however given the catalytic amount of acid required to drive such reactions it is 

possible that a small amount of acid may have been generated during the irradiation 

which could drive the condensation on addition of pyrrole.  Therefore a method of 

improving the low yield (15%) of 57 could be to add a small amount of trifluoracetic acid 
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following the addition of pyrrole to the reaction mixture.  Conversely from our 

experience the addition of acid will probably enhance polymerisation and make 57 

increasingly difficult to isolate. 

 

3.8 Computer modelling 

Following the success in increasing the reactivity of 47 using the Boc protecting group 

computer modelling was used to investigate possible reasons for this increased reactivity.  

As discussed earlier it was thought that the unreactivity of 47 could be due to the 

formation of the vinylogous ester (49) and amide (50) canonical structures. 
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The addition of bulky substituents, such as the tert-butyl ester group in 38 used by 

Wasserman and co-workers in their synthesis of the bipyrrole (11) and the Boc protecting 

group necessary for the formation of 57, could alter the planar relationship between the 

carbonyl substituent and pyrrole ring thus reducing the optimal overlap of the 2p orbitals 

necessary for resonance.  

 

The first objective of the computer modelling was to investigate the effect of the bulky 

substituents in 38 and 55 on the planar relationship between the carbonyl sustituents and 

the pyrrole ring.  The energy minimised structures of 38, 47 and 55 were obtained using 

Dmol3 with the density functional theory using BLYP functional with DND as the basis 

set.  Figure 3.13 and Figure 3.15 show the energy minimised diagrams of 47 and 55, 

showing the carbonyl group out of plane in 55.  
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Figure 3.12 Energy minimised diagram of 47. 

 

 

Figure 3.13 Energy minimised diagram of 47, showing the aldehyde carbonyl 

functionality in plane with the pyrrole ring. 
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Figure 3.14 Energy minimised diagram of 55. 

 

 

Figure 3.15 Energy minimised diagram of 55 showing the aldehyde carbonyl out of 

plane with the pyrrole ring. 
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The torsional angle between the carbonyl group and pyrrole ring in the energy minimised 

diagrams of 47, 55 and 38 was measured to allow a quantitative comparison between the 

analogues, the results are shown below in Table 3.2. 

 

Compound 

Number 

Torsional angle between the aldehyde carbonyl and pyrrole 

ring 

 

47 1.24° 

38 -0.02° 

55 2.68° 

 

Table 3.2 Torsional angle between the carbonyl substituent and pyrrole ring. 

 

The comparison of the torisonal angles provided some interesting results, as Table 3.2 

shows, 38 was found to be the most planar, allowing maximal overlap of the 2p orbitals 

whilst in 55 even though the largest torsional angle was observed, one questions whether 

the angle of 2.68°, is significant enough to affect overlap of the p-orbitals and 

delocalisation of the π electrons.  Surprisingly bulky substituents appeared to have very 

little effect on the planar relationship between the carbonyl and pyrrole ring. 

 

An alternative explanation was that 47 could exist in a preferred tautomeric form (59) 

making it unreactive to singlet oxygen oxidation.  To quantitatively compare the energies 

of the tautomers, the global minimum energy values of 47, 38 and 55 were compared 

with their tautomeric forms 59, 60 and 61 respectively (Table 3.3). 
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47 59 

-438.0442 Hartrees -438.0196 Hartrees 

55 61 

-783.5912 Hartrees -783.8783 Hartrees 

38 60 

-670.5167 Hartrees -670.4842 Hartrees 

 

Table 3.3 Global energy minimum values calculated for 38, 47 and 55 compared to 

tautomeric forms.    

 

The global minimum energy values for 47 and 38 are lower than those of their tautomeric 

forms 59 and 60 respectively suggesting that they exist predominantly as 47 and 38 rather 

than their tautomeric forms.  The difference between the two forms was calculated to be 

0.0246 Hartrees for 47 and 59 and 0.0325 for 38 and 61 suggesting that the original form 

is more energetically favoured in 38 compared to that of 47.  The global energy minimum 

energy values for 55 and it tautomer suggest that the tautomeric form is energetically 

favoured, however due to the charge and atom difference the energy values cannot be 

directly compared. 

 

Computer modelling found that bulky substituents have little effect on the planar 

relationship between the carbonyl group and the pyrrole ring and that when the global 

minimum energy values are compared there is no evidence of tautomerism occurring.  

Both of these observations are contrary to the proposed reasons for the unreactivity of 47 

to singlet oxygen oxidation.  This suggests that the unreactivity may be due to another 

factor which could not be readily be resolved by computer modelling. 

 

3.9 Conclusion and further work 

Initially 3-methoxy-2-formylpyrrole (47) appeared to be a very attractive starting point 

for the synthesis of the tambjamine and possibly prodigiosin natural products.  The 

moderate yielding reaction gave 47 in a simple method, in good purity allowing us to 
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avoided the low yielding McFayden-Stevens reduction at a later stage in our synthesis.  

The work presented in this thesis conclusively shows that 47 is not suitable for the 

synthesis of the bipyrrole carboxyaldehyde intermediate 11, required for tambjamine and 

prodigiosin natural product synthesis, using singlet oxygen oxidation.  Attempts to 

improve the reactivity of 47 to singlet oxygen oxidation, revealed the instability of 47 to 

any form of acid treatment.  Modification of 47 via N-Boc protection, appeared to yield 

the required precursor 56 however in such low yields that the product could not be 

isolated.  However, N-Boc protected derivative (55) provided a route to the dipyrrole 

analogue 57.  The moderate biological activity of 57 is described in Chapter 4.  

 

The synthesis of 4-methoxypyrrolic natural products by D’Alessio and co-workers’ cross 

coupling methods (Scheme 3.7) have become increasingly popular.56,73 Unfortunately, 

their pyrrolinone derived methodology cannot be directly applied to the synthesis of 

tambjamine natural products.  Following the failure of singlet oxygen oxidation to give 

bipyrrole coupling another possible synthetic pathway using Stille coupling is proposed 

to give bipyrrole coupling (Scheme 3.14).   
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Scheme 3.14 Proposed bipyrrole synthesis using Stille coupling conditions. 

 

D’Alessio and co-workers reported that Stille conditions were particularly poor for 

bipyrrole coupling.73 However, in their synthetic pathway they utilised the triflate leaving 

group whereas our proposed method uses the bromine leaving group which could 
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improve the success of the coupling. The method proposed has the following advantages; 

firstly the synthesis of 58 has previously been reported in literature in high yields through 

a relatively simple procedure,94 secondly the use of 47 as the starting material avoids the 

low yielding McFayden-Stevens reduction and thirdly the synthesis could be adapted to a 

combinatorial approach  allowing the synthesis of a wide range of synthetic derivatives 

which could be useful for structure-activity studies.   

 

 

 

 



Chapter Four 

Bioactivity and physical properties of tambjamine E (13), 

tetrapyrrole (15) and novel di-pyrrole (57) 

71 
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4.1 Introduction 

Cancer occurs when the genetic material of a cell is altered resulting in uncontrolled 

cell division leading to the formation of tumours.  These tumours can be either benign 

or malignant.  Currently treatment of cancer involves the removal of the tumour cells 

either through surgery, chemotherapy which utilises the different responses of normal 

and cancerous cells to cytotoxic drugs, or either radiotherapy or photodynamic 

therapy, which use ionizing radiation and cytotoxic oxygen species respectively to 

facilitate selective cell death. 

 

The 4-methoxypyrrolic natural products, have been identified as defensive 

metabolites in the marine invertebrates producing them4,24 and have become of 

interest due to their anticancer activity, against liver cancer and melanoma cell lines, 

and their immunosuppressive properties.1,2 This chapter describes the bioactivity of 

13, 15 and 57 against oesophageal cancer and the physical properties of the natural 

products 13 and 15.  The physical properties were investigated firstly to explore 

further the mechanism of DNA cleavage first proposed by Manderville and co-

workers,1,46-49 and secondly to determine the potential of the 4-methoxypyrrolic 

natural products as photodynamic therapy agents. 

  

4.2 Anticancer activity of the 4-methoxypyrrolic natural products 

One of the most interesting properties of the 4-methoxypyrrolic natural products is 

their selective anticancer activity.  As mentioned in Chapter 1, the 4-methoxypyrrolic 

natural products have been shown to facilitate cell death through apoptosis and show 

activity against melanoma and liver cancer cell lines.  Two methods of action have 

been proposed for the anti-cancer activity; Manderville and co-workers proposed the 

DNA cleavage mechanism and were subsequently able to show that tambjamine E, 

prodigiosin and the tetrapyrrole natural products were all able to cause oxidative DNA 

cleavage in the presence of copper (II).46,48,49 Ohkuma and Wasserman have shown an 

alternative method of action involving the prodigiosins ability to uncouple vacuolar 

ATPase.39,44 

 

As part of an going collaboration with the Department of Medical Biochemistry at the 

University of Cape Town, aimed at developing pharmaceuticals for the treatment of 

oesophageal cancer,95 the activity of 13, 15 and 57 against oesophageal cancer cell 
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lines was investigated.  Oesophageal cancer has an abnormally high incidence in 

Southern Africa amongst the black populations.  The high incidence of this disease is 

associated with a range of environmental factors including cigarette smoking, 

woodsmoke, alcohol, the inadvertent consumption of carcinogenic mycotoxins 

produced by the Fusarium fungus that thrives on grain stored under damp conditions 

and a diet poor in fresh fruit and vegetables.  The identification of novel agents with 

significant cytotoxic activity against oesophageal cancer cells would substantially 

enhance our ability to treat this debilitating disease in Africa.  Given the strong 

anticancer activity of the 4-methoxypyrrolic natural products, provide reason to 

investigate the natural and synthetic products activity against oesophageal WHCO1 

cancer cell lines.  Preliminary screening data indicates that tambjamine A (7), 

tambjamine E (13) and the tetrapyrrole (15) are strongly active against oesophageal 

cancer, whilst dipyrrole (57) is moderately active.  However, the highly pigmented 

nature of these compounds and their fluorescent properties interferes with the 

fluorescent dye based interpretation of the anticancer activity and this problem needs 

to be resolved before quantitative IC50 values can be calculated.  The preliminary 

screening results are shown below in Figure 4.1 and 4.2. 

 

Figure 4.1: Preliminary screening results of the isolated natural products against 

oesophageal cancer WHC01 cancer cell lines. 
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Figure 4.2: Dose response curve of novel dipyrrole (57) against oesophageal 

WHCO1 cancer cell lines. 

  

4.2.1 Oxidative DNA cleavage proposed by Manderville and co-workers 

Manderville and co-workers first proposed that oxidative DNA cleavage is the main 

mode of cytotoxic activity of the 4-methoxypyrrolic natural products.  It was 

originally suggested that the planar bipyrrole structure4,6,20,24,96 of the tambjamine 

natural products could enable them to intercalate with DNA, utilising the hydrogen 

bonding from the methoxy moiety and pyrrole nitrogens to facilitate this.97 This 

hypothesis was confirmed as tambjamine E (13), prodigiosin (1) and tetrapyrrole (15) 

were shown to bind to calf thymus DNA by monitoring changes in the UV-vis 

absorption and fluorescence spectra.  Based on the optical changes observed, it was 

concluded that 4-methoxypyrrolic natural products bind to DNA with a preference for 

adenine and thymine sites.46-49 

 

As polypyrroles have been reported to be readily oxidised,98 Borah et al. proposed 

that the tambjamine natural products could, in the presence of a redox-active metal, 

show nuclease activity.46 Using gel electrophoresis, Manderville and co-workers 

investigated the DNA cleavage of supercoiled plasmid DNA, testing the effect of 4-

methoxypyrrolic natural products alone and in the presence copper (II), iron (III), 

nickel (II) and zinc (II).  Interestingly DNA cleavage was only observed in the 

presence of both the natural product and copper (II).  DNA cleavage was not observed 
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when only the natural product or alternative redox metals were used.46,48,49,99 The 

nuclease activity was thought to be a result of oxidative DNA cleavage.  The reactive 

oxygen species responsible for the DNA cleavage was investigated using gel 

electrophoresis by treating the samples loaded onto the gel with argon and various 

oxygen radical scavengers.  DNA cleavage was slightly reduced when an argon 

atmosphere was used and when treated with the singlet oxygen radical scavenger 

sodium azide.  DNA cleavage was completely inhibited when samples were treated 

with catalase, an enzyme which breaks down hydrogen peroxide to oxygen and water.  

No inhibition of cleavage was observed when the samples were treated with tert-butyl 

alcohol, a hydroxyl radical or superoxide dismutase, a superoxide scavenger.  Some 

inhibition was observed with the metal chelator EDTA.  From the results obtained, it 

was concluded that hydrogen peroxide was the reactive oxygen species responsible 

for initiating DNA cleavage.1,46-49 

 

In the early studies of DNA cleavage, Manderville originally used 13, which was 

shown to cause single stand cleavage in the presence of copper (II).  In their later 

work, it was shown that similar DNA cleavage was observed with 1 and 15, however, 

1 and 15 were found to cause the more lethal double strand DNA cleavage rather than 

the single strand cleavage.47,49 

 

Melvin et al. used electrochemistry to investigate the mechanism of DNA cleavage 

further.  After studying the electrochemical characterisation and bioactivity of 1 and 

its analogues, a structure activity relationship was proposed that showed the A-pyrrole 

ring to be of importance in determining the cytotoxicity of the prodigiosin derivatives.  

The addition of an electron withdrawing group to the A-pyrrole ring was shown to 

diminish cytotoxicity.  On the basis of this information, two mechanisms for oxidative 

DNA cleavage were proposed, firstly endogenous oxidative DNA damage in a 

mechanism involving the reduction of copper (II) to copper (I) which in turn produces 

hydroxyl-like radicals capable of causing oxidative double-strand DNA 

cleavage.47,100,101 The second proposed method involves base induced oxidation 

through the reduction of DNA bound copper (II), which could lead to single strand 

nicks.48,76   

Electrochemical studies have been carried out on prodigiosin derivatives, which 

clearly showed differences in cytotoxicity of the derivatives.  Prodigiosin analogues 
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with the lowest anodic oxidation were shown to be the most effective at promoting 

DNA cleavage.  Interestingly polymerisation is not observed in prodigiosin (1) with 

repetitive scans where the scan only includes the first oxidation peak.  This suggests 

that the first anodic oxidation peak is the oxidative process involved in DNA cleavage 

in the presence of Cu (II), reducing Cu (II) to Cu (I) forming a redox-active species 

which is capable of causing site-specific double strand-DNA cleavage.5,99   

 

The electrochemistry of the closely related natural products tambjamine E (13) and 

the tetrapyrrole (15) has not been reported to date. Given that 13 and 15 cause 

different types of DNA cleavage, which could occur through two separate 

mechanisms, we sought to investigate these mechanisms further, through 

electrochemical studies of 13 and 15 in a hope to identify differences, which could 

result in the elucidation of the cytotoxic modes of action of 13 and 15. To extend an 

understanding of the mechanism of action an attempt was made to gain a tetrapyrrole 

(15)-copper (II) complex using a procedure similar to that described by Park et al.3 

 

4.2.2 Electrochemistry of tambjamine E (13) and tetrapyrrole (15) 

Cyclic voltammeter is a very popular method to investigate redox systems and 

involves a linear change in potential with time.  The resultant current is measured 

allowing the oxidative and reductive processes occurring to be investigated.102 Cyclic 

voltametry was chosen as the method for investigating the oxidative processes of 13 

and 15 using similar conditions to those reported by Melvin et al.5 

 

The redox potentials of 13 and 15 were measured in acetonitrile using cyclic 

voltametry with a silver/silver chloride reference electrode.  As Figure 4.3 shows, a 

single CV scan of tetrapyrrole showed three oxidation peaks (Ep/2
1 = 0.51 V, Ep/2

2 = 

0.88 V, Ep/2
3 = 1.2 V) similar to that of 1 reported by Melvin et al.5   The peak current 

(Ip
i) increased linearly with the square root of the scan rate at low scan rates.  At scan 

rates higher than 400 V/s, however, this relationship was no longer observed 

indicating that polymerisation was occurring.  Subsequent CV scans of tetrapyrrole 

were different from the first scan further indicating that polymerisation was 

occurring.103  
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Figure 4.3: Cyclic Voltamogram of tetrapyrrole (15 6.0 mM) in acetonitrile (0.5 M 

TEAP) using a glassy carbon working electrode and a silver electrode coated with 

silver chloride reference, ν = 200 V/s. 

 

Similarly, three oxidation peaks were observed in the CV scans of tambjamine E 

(Ep/2
1 = 0.14 V, Ep/2

2 = 0.79 V, Ep/2
3 = 1.2 V) as shown in Figure 4.4. Ip

i increased 

linearly with the square root of the scan rate indicating that the process was diffusion 

controlled.  Subsequent CV scans of 13 were different from the first scan indicating 

however that a similar polymerisation to 15 was occurring.103   

 

Studies carried out by Melvin et al. showed that only analogues of prodigiosin with 

low anodic oxidation potentials in acetonitrile were capable of promoting DNA 

cleavage.5 From our investigations, 15 was shown to have a lower first anodic 

oxidation potential of 0.14 V in comparison to 13, which had a significantly higher 

potential of 0.5 V.  The second and third anodic oxidation peaks occurred at similar 

potentials suggesting that these oxidative processes lead to polymerisation.   
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Figure 4.4: Cyclic voltamogram of tambjamine E (13 6.0mM) in acetonitrile (0.5 M 

TEAP) using a glassy carbon working electrode and a silver electrode coated with 

silver chloride reference, ν = 200 V/ s. 

 

 Tambjamine E (13) Tetrapyrrole (15) 

i 508 mV 149 mV 

ii 884 mV 794 mV 

iii 1272 mV 1220 mV 

 

Table 4.1: Oxidation peaks observed in the cyclic voltamograms of 13 and 15. 

 

In conclusion, our results suggest that 15 is capable of oxidising copper (II) more 

readily than 13.  The superior reducing potential of tetrapyrrole could allow it to cause 

the more lethal double strand DNA cleavage whilst tambjamine E, as a result of its 

lower reducing potential, causes single strand nicks. 

  

To further this electrochemical study, the cyclic voltametry of tetrapyrrole and copper 

(II) was investigated.  Given the insolubility of tetrapyrrole in aqueous systems and 

the poor solubility of copper (II) in organic solvents such as acetonitrile and dimethyl 

formamide, no conclusive data was obtained. 
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4.3 Copper binding studies 

The crystal structures of prodigiosin/copper and prodigiosin/zinc complexes have 

been recently reported in literature.3 Prodigiosin was found to complex with copper 

(II) in a 1:1 ratio compared to zinc (II), which complexed with a 1:2 ratio.  

Surprisingly, the C-pyrrole ring in the copper complex was found to have been 

oxidised and contained an OH group which was suggested to be derived from water in 

the solvent.  Following the same procedure described by Park et al. the formation of a 

copper/tetrapyrrole complex was attempted to allow a crystal structure to be 

obtained.3 

 

Tetrapyrrole (15 mg, 44.9 µmol) was dissolved in tert-butanol (5 mL) followed by the 

addition of potassium tert-butoxide (134 µmol) which yielded a dark blue solution.  

Copper (II) chloride (15 mg, 89 µmol) was then added in dimethyl sulfoxide (0.5 

mL), following which the solution changed to a dark brown solution.  After 

concentration under reduced pressure, a dark solid was obtained which was insoluble 

in all common organic solvents suggesting that polymerisation had occurred, similar 

to that reported by Manderville and co-workers with tambjamine E and copper (II).48 

 

Given the lack of success, a weaker base than potassium tert-butoxide was sought 

which would hopefully reduce polymerisation.  During the isolation of tambjamines, 

the natural products are often isolated as the acetate salt as a consequence of the 

ammonium acetate buffer used to prevent hydrolysis of the enamine motif.  A 

literature method suggested using aqueous ammonia to convert the acetate salt into 

the natural product.6 Using ammonia to adjust the pH of the solution, a modified 

procedure was attempted to obtain a single crystal of the tetrapyrrole/copper (II) 

complex. 

 

Tetrapyrrole (10 mg, 25 µmol) was dissolved in a methanol solution (5 mL), the pH 

of the solution was adjusted to 10 using concentrated ammonia, to give a red solution 

with an absorbance at λmax = 540 nm.  Copper chloride (8.5 mg, 50 µmol) was then 

added and the solution changed to a dark green/brown colour, the UV spectrum 

indicated a dramatic decrease λmax = 540 nm, indicating that complexation with 

copper had occurred.  Following partitioning with ether, the organic extract was 
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concentrated and the resulting solid, dissolved in ethyl acetate.  Polymerisation had 

again occurred, however, some of the solid redissolved in ethyl acetate.  The ethyl 

acetate solution was filtered through cotton wool to remove undissolved polymeric 

material and although a pentane vapour diffusion method was attempted no crystals 

were obtained. 

 

4.4 Photodynamic therapy 

Both photodynamic therapy and radiotherapy utilise free radicals to cause damage and 

ultimately lead to cellular death of cancerous tumours.  The method of free radical 

production differs in the two therapies.  Radiotherapy involves the production of free 

radicals using radiation whilst photodynamic therapy utilises a photosensitiser to 

produce singlet oxygen and other reactive oxygen species.104 Free radicals are 

molecules with an unpaired electron and are produced naturally through metabolic 

processes and as intermediates in the drug metabolism.  If the free radical contains 

oxygen, they are termed reactive oxygen species (ROS) and are typically highly 

reactive and short-lived.  Living organisms produce a range of antioxidants to prevent 

ROS from causing damage to macromolecules e.g. DNA.  Some free radicals such as 

nitric oxide and superoxide, however, have been shown to be of importance in 

controlling blood pressure and in the bodies’ defence against harmful bacteria.   The 

cell damaging ability of free radicals has attracted interest in anti-cancer drug 

development.104  

 

Photodynamic therapy involves the administration of a photosensitiser which 

accumulates preferentially in tumour cells.  The photosensitiser upon irradiation with 

laser light produces highly toxic singlet oxygen (1O2) which damages various 

important macromolecules leading to cell death.  The advantage of photodynamic 

therapy is that the photosensitiser is only toxic when activated by light.  Using an 

optical fibre, only the required tumour is targeted thereby minimising the side-effects 

associated with traditional cancer therapies.  

 

The following characteristics are desired in a photodynamic therapy agent:105 

1) Strong absorption in the red light region to allow maximum penetration of 

irradiating light as red light is not absorbed by body tissue 

2) Non-toxic in the absence of light 
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3) Excited triplet state with a life time sufficient to allow the production of 

singlet oxygen or other cytotoxic species 

4) Selective retention in cancerous cells 

5) Rapid removal from the body following treatment 

 

Given the similarity in structure of the 4-methoxypyrrolic natural products to 

presently used photosensitisers e.g. haematoporphyrin derivative106 or the sodium salt 

of the tetrasulfonated aluminium phthalocyanine which is currently at the end of the 

second stage of clinical trials,107  it was thought that the 4-methoxypyrrollic natural 

products could be potential photodynamic therapy agents.  To investigate this 

potential, the fluorescent quantum yields, singlet oxygen production and 

photodegradation of 13 and 15 were investigated. 

 

4.4.1 Photochemistry 

The term photosensitiser was first developed by Oscar Raab who showed that 

common dyes such as acridiens and xanthenes caused death in protozoa when 

exposed to light and oxygen, making the protozoa sensitised to normally harmless 

wavelengths of light.108 Today, the term photosensitiser is used to describe a vast 

group of compounds, which when activated by light, generate oxygen species toxic to 

living cells.  When a molecule absorbs light, there are various different relaxation 

pathways which it could undergo as shown in the Jablonski diagram in Figure 4.5.104 

 

Ground State of Photosensitiser

Excited State of Photosensitiser

Metastable Triplet State of Photosensitiser

Absorption
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Photochemistry
3O2

1O2

 

Figure 4.5: Jablonski diagram. 
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Depending on environment and molecular structure, one of the pathways shown in 

Figure 4.5 is followed after excitation.  Internal conversion involves radiationless 

decay whilst fluorescence involves the emission of a photon typically at a higher 

wavelength than that at which absorption occurred.  Intersystem crossing is another 

method of relaxation to the lower triplet state, this requires a spin inversion and is 

termed a forbidden transition, giving the triplet state longer lifetimes.  This 

intersystem conversion is promoted by heavy atoms.  The molecule in the triplet state 

can then either phosphoresce through radiative decay109 or generate ROS in its 

relaxation from the triplet to ground state. In the generation of ROS there are two 

separate pathways that the activated photosensitiser can undergo.  These two 

pathways differ in the reactive oxygen species produced, Type I leads to the 

production of radical forms of oxygen such as superoxide (O2
-), hydrogen peroxide 

(H2O2) or hydroxyl radicals (OH
.
) whilst Type II produces the non-radical, highly 

toxic singlet oxygen (1O2).
108 
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0S – photosensitiser in ground state 
1S – photosensitiser in excited singlet state 
3S – photosensitiser in long-lived triplet state 

R – reducing substrate 

Figure 4.6 Formation of activated oxygen species from photosensitsers 
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4.4.2 Photochemical techniques 

In order to determine the potential of the 4-methoxypyrollic natural products as 

photodynamic therapy agents, the photobleaching, fluorescent quantum yields and 

singlet oxygen quantum yields of 13 and 15 were determined. 

 

4.4.2.1 Photodegradation 

Photodegradation was the first physical property of the 4-methoxypyrrolic natural 

investigated.  Knowledge of the rate and mechanism of photodegradation is of 

importance when determining the photodynamic potential, as a PDT agent needs to be 

stable enough to produce singlet oxygen to give rise to the destruction of tumour cells, 

but also needs to breakdown in reasonable time in order to allow the body to remove 

the drug.  During irradiation of the PDT agent, radicals such as singlet oxygen are 

produced that will lead to the destruction of the agent itself in addition to the 

cancerous cell.  Photostabilities are expressed as photodegradation quantum yields 

(quantum cm-2 s
-1) which give an indication of how many molecules are degraded per 

quantum of light.  The photodegradation quantum yields (ΦD) is calculated using 

Equation 4.1:104 

ΦD = (Co – Ct) V 

               Iabs x t      ……..(4.1) 

Where: 

 V is the sample volume 

t is irradiation time 

Co is the initial concentration of the natural product 

Ct the final concentration of the natural product following irradiation 

Iabs is the absorbed light determined using Equation 4.2: 

Iabs = αSI 

          Na       ……..(4.2) 

Where: 

α is the fraction of light absorbed 

S is the irradiated cell area 

I is the light intensity 

Na Avogardo’s number  
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The mechanism of photobleaching was investigated by measuring the effect of 

saturating with oxygen and nitrogen, in the presence of the radical scavenger 

diazobicyclooctane (DABCO, 1 x 10-3 M) and in DMSO-D6.  Photodegradation 

studies were carried out by adjusting the concentration of the natural product to give 

an absorption of approximately 1 followed by irradiation using a tungsten lamp.  A 

Wratten Special Filter 21+58 was used for 15 and water bath filter was used for 13 to 

optimise the wavelength for each natural product.  The change in the UV-Vis 

absorption spectra was followed to monitor photodegradation.  Figure 4.7 shows the 

rates of photodegradation of tetrapyrrole with the different treatments described. 

 

0.000024

0.000025

0.000026

0.000027

0.000028

0.000029

0.00003

0.000031

0 200 400 600 800 1000 1200 1400

Time of Irradiation (sec)

C
on

ce
nt

ra
ti

on
 (

M
)

DMSO

dDMSO

DABCO

Nitrogen

Oxygen

 

Figure 4.7: Effects of diazobicyclooctance, oxygen saturation, nitrogen saturation and 

deuterated dimethylsulfoxide on the photodegradation of tetrapyrrole natural product 

in dimethylsulfoxide. 

 

As Table 4.2 and Figure 4.7 show the tetrapyrrole natural product degraded with a 

quantum yield of 1.04 x 10-4.  An increase in the rate of photodegradation was 

observed when the dimethylsulfoxide solution was saturated with oxygen. This result 

indicates the production of a reactive oxygen species which is involved in 

degradation, this species is not singlet oxygen however as no increase in the rate of 

photodegradation was observed with DMSO-D6.  Deuterated solvents are known to 

increase the lifetime of the triplet state.104 Both nitrogen and DABCO reduced the 
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quantum yield from 1.04x10-4 to 8.93x10-5 and 1.57x10-5 respectively, suggesting that 

an oxygen radical species is involved in photobleaching.   

 

Similar results were obtained for 13, as with 15 the rate of photodegradation was 

increased when the solution was saturated with oxygen and slowed following purging 

with nitrogen gas and treatment with diazobicyclooctane.  When dimethylsulfoxide-

D6 was used, a slight increase in the rate of photodegradation was observed however 

this is too small to be considered significant.  From the photodegradation results, it 

can be concluded that 13 and 15 follow the same radical mechanism of degradation 

which could possibly be from the formation of an oxygen radical.  Of particular 

interest is the higher photodegradation quantum yield of 13 (1.94 x 10-3) compared to 

that of 15 (1.04 x 10-4). 

 

 Quantum Yields 

of 

Photobleaching 

of 13 

Quantum Yields 

of 

Photobleaching 

of 15 

DMSO 1.94 x 10-3 1.04x10-4 

D6-

DMSO 

2.94 x 10-3 3.70x10-5 

DABCO 2.48 x 10-4 1.57x10-5 

Nitrogen 2.90 x 10-3 8.93x10-5 

Oxygen 5.11 x 10-3 2.85x10-4 

 

Table 4.2: Photobleaching quantum yields of 13 and 15 when dimethylsulfoxide 

solution saturated with oxygen or nitrogen and in the presence of diazobicylooctane (2 

x 10-3 M) and dimethylsulfoxide-D6. 

 

4.4.2.2 Fluorescence quantum yield determinations 

As shown in Figure 4.3, following excitation one of the methods of relaxation is 

fluorescence, typically at a higher wavelength to that of absorption.  Fluorescence is 

quantified using the fluorescence quantum yield, which is defined as the number of 

photons emitted relative to the number of photons absorbed.  In order to standardise 
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the quantum yield values, the fluorescence is compared to a standard with a known 

quantum yield.  To experimentally determine the fluorescence quantum yield the 

fluorescence at various concentrations is measured and calculated using the following 

equation:104 

 

ΦF = ΦF (standard) x grad(sample) x η2
(sample) 

              grad(standard) x η2 (standard)     ……….4.3 
Where: 

grad is the gradient when fluorescence is plotted against the respective absorbance 

η is the  refractive indices of the solvent used 

 

In order to prevent fluorescence quenching, low concentrations were used with 

absorbance values less than 0.1. 

 

Using dimethylsulfoxide as the solvent the fluorescence quantum yields of 13 and 15 

were determined using chlorophyll and Rhodamine 6G as the respective standards.  In 

dimethylsulfoxide 15 was found to have a maximum absorbance at 537 nm and 13, a 

maximum absorbance at 350 nm.  Excitation was carried out at these wavelengths.  

The fluorescence of tetrapyrrole was found to be very concentration dependant and 

aggregation was suspected to be occurring, thereby interfering with dilutions used in 

determinations.  To standardise the experimental procedure following dilution, the 

solution was left to stand for 5 minutes. 

 

The tetrapyrrole natural product (15) was found to exhibit a very high fluorescence 

quantum yield of 0.90 ± 0.01.  It was expected that tambjamine E (13) would 

similarly show a high fluorescence quantum yield, however in dimethylsulfoxide at 

concentrations with absorbances ranging from 0.005 to 0.5, no fluorescence was 

detected.  This result could be explained by solvent quenching given the low 

excitation wavelength used (350 nm).  To ensure that solvent quenching was not 

taking place, the experiment was repeated using hexane as the solvent and again, very 

little fluorescence was observed.  A similar result has been reported by Manderville 

and co-workers who state that tambjamine E, tetrapyrrole and bipyrrole aldehyde all 

exhibit weak emission spectra in water which increases slightly in methanol and 

chloroform.49 
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4.4.2.3 Singlet oxygen production quantum yield 

Singlet oxygen production is quantified using the singlet oxygen production quantum 

yield, which describes the number of singlet oxygen species formed per photon of 

light absorbed.  The method employed to determine the singlet oxygen quantum yield 

involved the use of 1,3-dipenylisobenofuran (DPBF) which absorbs with a maximum 

wavelength of 417 nm.  DPBF is a quencher, which reacts with singlet oxygen and 

degrades the quencher, allowing easy measurement of singlet oxygen through 

monitoring the decrease in the absorption at 417 nm.  Only the first 20% decrease is 

measured to ensure that first order kinetics data applies.  Using the following 

equation, the singlet oxygen quantum yield can be determined:104 

-[DPBF]  = Kq [DPBF][1O2] 

      dt          ……….3.4 

This equation can be rearranged as follows: 

 

Φ∆
sample = Φ∆

standard x (Co – Ct)
sample x (αt)standard x [DPBF]standard 

               (Co – Ct)
standard   (αt)sample     [DPBF]sample 

Where: 

Co – Ct is the change in DPBF concentration 

α is the fraction of light absorbed (α = 1,determined by S. Maree)104 

t is the irradiation time 

 

Determination of singlet oxygen production was carried out by irradiating a solution 

of tetrapyrrole and DPBF in dimethylsulfoxide using a Nd-YAG laser (532 nm), and 

measuring the decrease in the absorption of DPBF.  Very little decrease in the 

absorption of DPBF was observed and photodegradation of the tetrapyrrole was 

observed evidenced by a decrease in absorption at 540 nm.  This could be due to the 

high intensity of light, so the experiment was repeated using a tungsten lamp rather 

than laser light.  Again, photodegradation of tetrapyrrole was observed and the singlet 

oxygen production quantum yield was determined to be less than 0.01.  This result is 

not surprising given the high fluorescence quantum yield as fluorescence and the 

triplet states are in competition as explained earlier in Figure 4.3. 

 



  Chapter 4
   

 88

Singlet oxygen production by 13 was hampered by the similarity in absorption 

wavelengths of 13 and DPBF.  When experiments were conducted using a water bath 

filter, a decrease in the absorption of DPBF was observed.  The rate of decrease in the 

absorption of DPBF was found to be similar to that of the photodegradation of DPBF 

in the absence of 13, suggesting that only photodegradation was occurring and not 

quenching of any singlet oxygen produced.  The UV absorbance maxima of 

tambjamines, however, makes them unsuitable for use as a photodynamic therapy 

agent as compounds with a maximum absorbance greater than 600 nm are favoured 

for maximal absorbance of tissue penetrating red laser light. 

 

4.5 Conclusion 

While the 4-methoxypyrrolic natural products were shown to be poor singlet oxygen 

producers which may make them unsuitable for use as photosensitisers, their high 

fluorescence could however allow them to be used as a diagnostic dyes.  Manderville 

and co-workers found that DNA cleavage carried out by the 4-methoxypyrrolic 

natural products with copper (II) was completely inhibited when the enzyme catalase 

was added, this could suggests that DNA cleavage could occur through a mechanism 

involving hydrogen peroxide as the reactive oxygen species.  This work could be 

extended to investigate the production of hydrogen peroxide by 4-methoxypyrrolic 

natural products and compare the effect of copper on fluorescence and hydrogen 

peroxide production.  Heavy metal atoms have been reported to promote intersystem 

crossing, thus when the 4-methxoypyrrolic natural products are complexed with 

copper (II), the triplet state could be promoted and rather than fluorescing, the excited 

molecules could relax through the mechanism described previously leading to the 

production of hydrogen peroxide as a cytotoxic species.  The absorption spectrum of 

tetrapyrrole is very close to the required 600 nm for PDT, with slight synthetic 

modification, this absorption could be shifted to longer wavelengths.   



Chapter Five 

Experimental 

89 
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5.1 General experimental procedures 

5.1.1 Analytical 

The 1H (400 MHz), 13C (100 MHz) and 2D NMR spectra were recorded on a Bruker 

AVANCE 400 NMR spectrometer.  Chemical shifts are reported in ppm and are 

referenced to residual undeuterated solvent resonances.  Infrared data were obtained 

on a Perkin-Elmer Spectrum 2000 FT-IR spectrometer with compounds as films 

(neat) on NaCl disks.  Low resolution mass spectra were recorded on a Hewlett-

Packard 5988A spectrometer using electrospray ionisation in the positive ion mode.  

High resolution fast atomic bombardment mass spectra (FABMS) were obtained by 

Professor L. Fourie of the Mass Spectrometry Unit at the University of 

Potchefstroom, South Africa.  Melting points were obtained using a Gallenkamp 

melting point apparatus.  Cyclic voltametry scans were performed using a BAS CV-

50W Cyclic Voltametery Analyser.  UV spectra were measured using a Varian Cary 

500 UV/Vis spectrometer, and fluorescence data obtained using a Varian Cary Eclipse 

Fluorescence Spectrophotometer.   

 

5.1.2 Chromatography 

General laboratory solvents were distilled from glass before use.  Analytical normal 

phase thin layer chromatography was carried out on 25 DC-Plastikfolien Kiesegel 60 

F254 plates and reverse phase thin layer chromatography was carried out using DC-

Ferigplatten RP18 F254 plates.  TLC plates were viewed using a UV lamp (254 nm and 

365 nm).  Solid phase extraction was performed using at Waters C18 Sep-pak (2 g or 

10 g) and Diaion  HP-20®.  Reversed phase semi-preparative HPLC separations were 

performed at a flow rate of 4 mL/min on a Phenomenex Luna 10µ C18 column, 

gradient elutions were performed on an Agilent HP1100 LC-MSD (consisting of a 

quaternary pump, a degasser, a DAD detector, an 1100 MSD and a ChemStation for 

data acquisition and processing) and isocratic elutions being performed using a 

Spectra Physics Isochrom LC Pump and a Waters R401 Differential Refractometer.  

Normal phase semi-preparative HPLC separations were carried out using a Whatman 

Magnum 9 Partsil 10 column using a Water 410 Differential Refractometer. 
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5.1.3 Synthesis 

Anhydrous reactions were carried out using oven-dried apparatus (150°C) under an 

argon atmosphere.  Solvents requiring drying were prepared by standard 

procedures,110 prior to use.  THF was distilled from sodium metal/benzophenone 

ketyl, CH2Cl2 was distilled from CaH2 and pyrrole was distilled from glass.  MeCN 

and CH2Cl2 were stored over 4 Å molecular sieves.  All reactions were magnetically 

stirred.  Potassium tert-butoxide, propyl amine, 4-methoxypyrridine-N-oxide were 

purchased from Sigma-Aldrich S.A. (Pty) Ltd. 

 

5.1.4 Molecular modelling 

Molecular modelling was performed on a Silicon Graphics computer employing Dmol 

3 with the density functional theory using GGA functional with the Double Numeric 

d-function (DND) basis set.  A molecular dynamics routine was used to explore 

conformational space and establish global energy minima of the compounds 

modelled.  Atomic charges were calculated using a Muliken analysis. 

 

5.1.5 Electrochemistry 

Tetraethylammonium perchlorate (TEAP) electrolyte was prepared by mixing equal 

volumes of hot solutions of 1.0 M sodium perchlorate and 1.0 M tetraethylammonium 

chloride.  The solution was then cooled in an ice bath and the resulting precipitate 

filtered, washed with cold ethanol and then recrystallised from hot redistilled ethanol. 

MeCN solvents used in electrochemistry were dried over CaH2 and distilled before 

use.  Nitrogen gas was bubbled through the solution prior to recording cyclic 

voltamograms, and the inert atmosphere was maintained throughout the cyclic 

voltametry scans.  Prior to cyclic voltammetry scans, the working electrodes were 

polished using alumina pastes on a Buehler felt pad, followed by washing with 

deionised H2O and rinsing with Me2CO, MeOH and MeCN.   

 

5.1.6 Photochemistry 

Photodegradation and singlet oxygen studies were carried out using a general electric 

quartz lamp (300 W).  A H2O filter, to filter off ultraviolet and far infra-red radiation 

and an interference filter (Wratten Special Filter 21+58A), were placed before the 
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light source.  The light intensity was measured using a power meter and was found to 

be 5x1016 photons/cm2.104  Singlet oxygen studies were carried out using the general 

electric quartz lamp using the setup explained above and Nd-Yag laser providing 400 

mJ, 9 ns pulses of laser light at 10 Hz.  All photochemical experiments were carried 

out in a spectrochemical cell of 1 cm pathlength using DMSO as a solvent without 

deoxygenating, or by bubbling of oxygen when stated.  1,3-diphenylisobenzofuran 

(DPBF) and 1,4-Diazabicyclo(2,2,2)octane (DABCO) were purchased from Aldrich.   

 

5.2 Chapter two experimental 

5.2.1 Animal material 

Natural product isolation was carried out on 23 specimens of Tambja capensis 

specimens were collected from Simonstown in August 1999 (Tam99) and Bugula 

dentata (wet mass = 267 g, dry mass = 98 g) collected in Algoa Bay, 2003 (Bry03) 

using SCUBA.  For details of samples used in the quantitative analysis of tambjamine 

and tetrapyrrole metabolites, see Table 2.2, page 25.  

  

5.2.2 Extraction and isolation of 4-methoxypyrrolic alkaloids from T.capensis 

Tam99 was steeped in Me2CO at –20°C in the dark until February 2003.  The Me2CO 

extract was concentrated under reduced pressure to give an aqueous suspension that 

was partitioned between CH2Cl2.  The organic extract was dried (MgSO4) and 

concentrated to give a dark brown oil (427 mg) that was adsorbed onto C18 (2g) and 

applied dry to a Waters C-18 solid-phase extraction cartridge (10 g) equilibrated in 

1:1 MeOH/H2O solution containing 0.1 M NH4OAc. The column was eluted under 

vacuum (flow-rate = 4 ml/min) using gradient elution (1:1, 3:2, 7:3, 4:1, 9:1 

MeOH/H2O, MeOH and 1:1 MeOH/CH2Cl2; all eluents buffered with 0.1 M 

NH4OAc), using 1H NMR spectroscopy to determine which fractions contained 4-

methoxypyrrolic compounds.  Of the 7 fractions collected, only the first fraction (276 

mg; eluting with 1:1 MeOH/H2O) was selected for further purification.  Semi-

preparative reversed phase gradient HPLC (isocratic elution with 1:1 MeOH/H2O for 

5 min, linear gradient of 1:1 MeOH/H2O to MeOH over 30 minutes, isocratic elution 

with MeOH for 5 minutes; all eluents buffered with 0.1 M NH4OAc; simultaneous 

DAD detection at 254, 405 and 590 nm) and isocratic reversed phase HPLC of 
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selected fractions (using either 6:4 MeOH/H2O buffered with 0.1 M NH4OAc or 7:3 

MeOH/H2O buffered with 0.1 M NH4OAc) afforded (in order of elution) 7 (11 mg), 

13 (10 mg) and 15 (3.3mg).  Natural product 15 was converted from the OAc salt 

through treatment with NH3 in MeOH. 
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     7    13    15 

Tambjamine A (7): Green oil; IR νmax 3635, 3480, 1675, 1605, 1535 cm-1; UV 

(MeOH) nm (log ε) 397 (4.32); 1H NMR (CDCl3, 400 MHz) δ 12.06 (1H, s, H-7), 

10.31 (1H, brs, H-1’), 7.41 (1H, brs, H-6), 7.08 (1H, dd, J = 3.7, 2.7 Hz, H-3’), 6.75 

(1H, m, H-5’), 6.28 (1H, m, H-4’), 5.94 (1H, s, H-3), 3.93 (3H, s, OMe), 2.08 (3H, s, 

OAc); 13C NMR (CDCl3, 100 MHz) δ 178.9 (OAc), 165.2 (C-4), 144.8 (C-2), 138.6 

(C-6), 124.7 (C-3’), 122.7 (C-2’), 114.1 (C-5’), 112.8 (C-5), 110.6 (C-4’), 91.6 (C-3), 

58.3 (OMe), 24.4 (OAc); HRFABMS m/z 189.0902, calcd 189.0901. 

 

Tambjamine E (13):  Green solid, IR νmax 3500, 2800, 1664, 1608, 1529, 1170, 977 

cm-1; UV (MeOH) nm (log ε) 405 (4.39); 1H (CDCl3, 400 MHz) δ 12.40 (1H, brs, H-

1’), 7.33 (1H, brs, H-6), 7.03 (1H, dd, J = 2.3, 1.4 Hz, H-3’), 6.68 (1H, dd, J = 2.4, 1.2 

Hz, H-5’), 6.24 (1H, dd, J = 3.6, 2.6 Hz, H-4’), 5.94 (1H, s, H-3), 3.89 (3H, s, OMe), 

3.50 (2H, q, J = 7.6 Hz, H-8), 2.09 (3H, s, OAc), 1.34 (3H, t, J = 7.2 Hz, H-9); 13C 

(CDCl3, 100 MHz) δ 179.5 (OAc), 164.2 (C-4), 145.2 (C-2), 140.9 (C-6), 123.7 (C-

3’), 123.0 (C-2’), 112.6 (C-5’), 111.2 (C-5), 110.1 (C-4’), 91.2 (C-3), 58.2 (OMe), 

46.0 (C-8), 25.4 (C-9), 15.6 (OAc); HRFABMS m/z 217.1215, calcd 217.1215. 

 

Tetrapyrrole  (15):  Blue solid, IR νmax 1635, 1630, 1590, 1537, 1510, 1260, 1233, 

960 cm-1; UV (MeOH) nm (log ε) 591 (4.81), 555 (4.46), 325 (4.00), 280 (3.83); 1H 

NMR (CDCl3, 400 MHz) δ 11.98 (2H, brs, H-1’, H-7’), 11.77 (1H, brs, H-11), 7.12 
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(1-H, brs, H-6), 7.11 (2-H, brm, H-5’, H-7’), 6.79 (2H, ddd, J = 4.7, 2.4, 1.3 Hz, H-3’, 

H-9’), 6.31 (2H, ddd, J = 4.6, 2.8, 0.7 Hz, H-4’, H-8’), 6.07 (2H, d, J = 1.6 Hz, H-3, 

H-9), 3.95 (6H, OMe); 13C NMR (CDCl3, 100 MHz) δ 163.5 (C-4, C-8), 143.2 (C-2, 

C10), 124.8 (C-5’), 123.3 (C-2’, C-10’), 117.6 (C-5, C-9), 114.4 (C-3’, C-9’), 111.4 

(C-4’, C-8’), 109.6 (C-6), 92.7 (C-3, C-9), 58.8 (OMe); HRFABMS m/z 334.1429, 

calcd 334.1582. 

 

5.2.3 Extraction and isolation of 4-methoxypyrrolic alkaloids from B. dentata 

Extraction and cyclic loading: 

 The bryozoan sample (1.5 kg) was cut into small cubes (~2 cm per side) and was 

extracted twice with MeOH (2 x 2 L) for 12 hr. The second extract (2 L, 14.8 g) was 

passed through an HP-20 column (500 mL, 45 x 5 cm) conditioned by washing with 

Me2CO (1.5 L) and MeOH (1.5 L).  The eluent, was collected and diluted with 0.1 M 

NH4OAc buffer (2 L) then passed through the same column. Finally, the eluent was 

diluted further with 0.1 M NH4OAc buffer (4 L) and was passed again through the 

same column.  

 

Stripping  and backloading: 

The column was then eluted with 1.5 L fractions 20%, 40%, 60%, 80% Me2CO/0.1M 

NH4OAc and 100% Me2CO. Each fraction from the stripping stage was then loaded 

onto a second HP-20 column (100 mL, 15 x 4 cm) pre-equilibrated with Me2CO (300 

mL) and then stripped using MeOH (200 mL) and Me2CO (200 mL) which were 

combined to give one fraction. 

 

A similar procedure was carried out on the first extract (2 L, 44 g) however, given the 

large mass of the first extract, the extract was divided into three separate batches 

which were combined at the end of backloading.  The second and first extracts were 

kept separate throughout the isolation procedure.    The 1H spectra of the fractions 

showed peaks in the 6-8 ppm region, indicative of tambjamine natural products, in the 

40%, 60% and 80% Me2CO/ 0.1 M NH4OAc buffer.  From the masses of the samples 

obtained only the 60% and 80% Me2CO/ 0.1 M NH4OAc buffer fractions were chosen 

to be purified further using semi-preparative C-18 reversed phase HPLC (isocratic 
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elution with 1:1 MeOH/H2O for 5 min, linear gradient of 1:1 MeOH/H2O to MeOH 

over 30 minutes, isocratic elution with MeOH for 5 minutes; all eluents buffered with 

0.1 M NH4OAc; simultaneous DAD detection at 254, 405 and 590 nm) and isocratic 

reversed phase HPLC of selected fractions using 7:3 MeOH/H2O buffered with 0.1 M 

NH4OAc  to give 15 (130 mg).   

 

5.2.4 Analysis of tambjamine and tetrapyrrole content of collected samples 

All of the samples analysed were steeped in redistilled acetone at –20°C in the dark 

until February 2003.  The Me2CO extracts were concentrated under reduced pressure 

to give an aqueous suspension that was partitioned with CH2Cl2.  The organic extract 

was dried (MgSO4) and concentrated.  Using analytical reversed phase HPLC using a 

linear gradient of 1:1 MeOH/H2O to MeOH over 30 minutes, followed by isocratic 

elution with MeOH for 5 minutes; all eluents buffered with 0.1 M NH4OAc; 

simultaneous DAD detection at 254, 405 and 590 nm.  Standard curves of tambjamine 

A (7), E (13), K (21), I (22) and tetrapyrrole (15) were established by measuring the 

absorbance at 405 nm and 590 nm with varying concentrations.  Known 

concentrations of the sample extracts were then injected and the concentrations 

determined from their relative absorbances. 

 

5.3 Chapter three experimental 

5.3.1 Synthesis of 3-methoxy-2-formylpyrrole (47) 

Compound 48 (2 g, 16 mmole) and CuSO4 (39 g, 160 mmole) were dissolved in H20 

(500 mL) and irradiated in a classical well immersion photoreactor for (4-9 hr), then 

saturated with NaCl and partitioned with CHCl3.  The organic partition was 

concentrated under reduced pressure and purified through sublimation (100°C, 2.5 

mmHg) to yield a white crystalline product (660 mg, 33% yield). 

 

N
H

OMe

CHO

4

5

  

              47 
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White crystalline solid; m.pt 109°C, Lit.77 120°C; IR νmax 3138, 2918, 2850, 2360, 

1625, 1513, 1344, 1074, 799, 749 cm-1; UV (CHCl3) nm (log ε) 284 (4.39); 1H NMR 

(CDCl3, 400 MHz) δ 10.30 (1H, brs, H-1), 9.51 (1H, s, H-7), 6.94 (1H, t, J = 2.8 Hz, 

H-5), 5.88 (1H, t, J = 2.4 Hz, H-4), 3.86 (3H, s, OMe); 13C (CDCl3, 100 MHz) δ 175.3 

(CHO), 158.7 (C-3), 126.7 (C-5), 118.8 (C-2), 95.4 (C-4), 57.9 (OMe); ESIMS m/z 

[M+1]+ 126.0; HRFABMS m/z 125.0476, calcd 125.0476. 

 

5.3.2 Attempted synthesis of 3-methoxy-2,2’-bipyrrole carboxyaldehye (11) 

Methylene blue singlet oxygen producer 

Compound 47 (20 mg, 160 µmole) and methylene blue (1mg) was dissolved in 

dichloromethane, cooled (-78°C) and purged with oxygen gas (10 min).  The solution 

was then irradiated using a 350 W tungsten lamp (30 min, -78°C) following which 

cold pyrrole (45 µL, 400 µmole) in CH2Cl2 (2 mL) was added and the solution was 

stirred (1 hr).  The solution was then filtered through celite 535 and solvent removed 

under reduced pressure and purified using a C-18 Sep-pak eluted using 25%, 50%, 

75% aqueous MeOH and 100% MeOH).  The 1H NMR spectrum showed that the 

major product of the reaction was unreacted 47, which eluted in the 25% aqueous 

MeOH fraction. 

 

ZnPc singlet oxygen producer 

Compound 47 (20 mg, 160 µmole) and ZnPc (1 mg) was dissolved in DMSO-D6 and 

purged with oxygen followed by irradiation using a 350 W tungsten lamp (30 min) 

under a constant stream of oxygen.  Pyrrole (45 µL, 400 µmole) was added and the 

solution was stirred (1 hr).  1H NMR spectrum showed the major components of the 

reaction mixture were 47, pyrrole and ZnPc. 

 

5.3.3 Synthesis of 2-propylimine-3-methoxypyrrole (51) 

Compound 47 (10 mg, 80 µmole) was added to anhydrous 1,2 EtCl2 (1.2 mL) 

followed by the addition of propylamine (66 µL, 800 µmole) and AcOH (40 µL, 695 

µmole) under argon and the solution stirred (4 hr).  The solution was then partitioned 

between aqueous Na2CO3 (3 mL, 10% w/v) and CH2Cl2 (3 mL) and aqueous layer 
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washed with CH2Cl2 (3 x 3 mL).  The organic partition was then concentrated under 

reduced pressure to yield 51 (13.0 mg, 98%).   

 

N
H N

OMe4

5 6

7

9  

              51 

Red oil; IR νmax 3589, 2088, 1634, 1556, 1520, 1428, 1346, 1281, 1073, 1005 cm-1; 

UV (CHCl3) nm (log ε) 329 (4.03), 301 (4.13); 1H NMR (CDCl3, 400 MHz) δ 8.04 

(1H, s, H-7), 6.72 (1H, d, J = 2.8 Hz, H-5), 5.85 (1H, d, J = 2.8 Hz, H-4), 3.80 (3H, s, 

OMe), 3.43 (2H, t, J = 6.8 Hz, H-7), 1.62 (2H, sex, J = 7.2 Hz, H-8), 0.90 (3H, t, J = 

7.2 Hz, H-9); 13C NMR (CDCl3, 100 MHz) δ 148.7 (C-3), 126.0 (C-5), 121.4 (C-6), 

114.4 (C-2), 95.4 (C-4), 61.8 (C-7), 58.1 (C-8), 24.4 (OMe), 11.7 (C-9); ESIMS m/z 

[M+1]+ 167.1; HRFABMS m/z 166.1106, calcd 166.1105. 

 

5.3.4 Attempted synthesis of 21 from 51 

Compound 51 (20 mg, 120 µmole) and methylene blue were dissolved in anhydrous 

CH2Cl2 (20 mL), the solution was stirred (10 min), cooled (-78°C) and purged with 

oxygen (10 min).  The solution was then irradiated using a 350 W tungsten lamp with 

a red filter under a constant flow of oxygen following which cold pyrrole (20 µL, 600 

µmole) in CH2Cl2 (3 mL) was added and solution was stirred (1 hr).  The methylene 

blue was then removed by filtration through celite 535 and solution was concentrated 

under reduced pressure.  No conclusions could be drawn from the 1H NMR spectrum.  

The ESIMS (positive ion mode) showed a major peak at 248.7, this product could not 

be isolated, only unreacted 47 was isolated using gradient reversed phase HPLC. 

 

5.3.5 Attempted reduction of 47 to the primary alcohol (53) using lithium 

aluminium hydride 

Compound 47 (40 mg, 320 µmole) was dissolved in anhydrous THF followed by the 

addition of lithium aluminium hydride (12 mg, 320 µmole) in anhydrous THF (1 mL) 
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dropwise via a cannula at 0°C.  The reaction mixture was then allowed to warm to 

room temperature and stirred (2 hr) followed by the addition of dilute HCl (5 drops) 

and partitioned between EtOAc and H2O.  The organic layer was washed with H2O (3 

x 3 mL).  From TLC and 1H NMR it was concluded that only unreacted 47 remained.  

When the solution was refluxed, a dark solution was obtained and the desired 

reduction product was not detected. 

 

5.3.6 Attempted preparation of the acetal derivative 54 

Compound 47 (60 mg, 480 µmole), ethylene glycol (175 µL, 2880 µmole) and p-

TsOH (5 mg, 26 µmole) were dissolved in dry benzene (30 mL) and the solution was 

refluxed in a Dean-Stark trap (24 hr).  A dark red solution was obtained with a black 

insoluble product suggesting that polymerisation had occurred. 

 

5.3.7 N-Boc protection of 47 

Compound 47 (140 mg, 1.12 mmole) was dissolved in anhydrous MeCN (5 mL) 

followed by the addition of Boc2O (366 mg, 1.68 mmole) and DMAP (13 mg, 0.11 

mmole) at 0°C, the solution was then stirred (2 hr) under argon.  The mixture was 

evaporated to dryness in vacuo and the resulting residue was purified by flash 

chromatography on SiO2 (40 x 15 mm) eluting with 100% hexane and 100% CH2Cl2.  

Compound 55 eluted with 100% CH2Cl2 and following evaporation afforded a white 

solid  (244 mg, 97% yield). 

N

OMe

CHO

O O

55

4

5

1'

2'

 

White solid; m.pt 74oC; IR νmax 3445, 2981, 2939, 2103, 1746, 1651, 1557, 1448, 

1257, 1149, 1090, 846, 753 cm-1; UV (CHCl3) nm (log ε) 298 (4.13), 275 (4.17); 1H 

NMR (CDCl3, 400 MHz) δ 10.22 (1H, s, CHO), 7.36 (1H, d, J = 3.2 Hz, H-5), 6.07 

(1H, d, J = 3.6 Hz, H-4), 3.92 (3H, s, OMe), 1.60 (9H, s, H-3’); 13C NMR (CDCl3, 
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100 MHz) 180.9 (CHO), 158.9 (C-3), 148.7 (C-1’), 127.0 (C-5), 119.0 (C-2), 99.6 (C-

4), 85.9 (C-2’), 58.9 (OMe), 28.3 (C-3’); HRFABMS m/z 225.1001, calcd 225.1001. 

 

5.3.8 Attempted bipyrrole synthesis from N-Boc derivative (55) 

Compound 55 (140 mg, 622 µmole) and methylene blue (1 mg) were dissolved in 

CH2Cl2 (20 mL), stirred (10 min), cooled (-78°C) and irradiated (30 min) followed by 

the addition of cold pyrrole (290 µL, 3262 µmole) in CH2Cl2 (2 mL) and stirred (1 hr) 

in the dark.  Following concentration in vacuo, the residue loaded onto a SiO2 flash 

column and eluted with 100% hexane, 25%, 50%, 75% EtOAc/hexane and 100% 

EtOAc.  The 1H NMR spectra of the fractions revealed that the fraction eluting with 

25% EtOAc/hexane contained pure 55 whilst the other fractions contained 

unidentified material. 

 

5.3.9 TFA Boc deprotection of 55 

Compound 55 (10 mg, 44 µmole) was dissolved in CH2Cl2 (5 mL) and was treated 

with TFA (40 µL, 522 µmole) under argon.  The solution was stirred at room 

temperature (1 hr) and then partitioned between aqueous K2CO3 (5 mL, 1% v/w) and 

CH2Cl2 (5 mL), the aqueous layer was washed with CH2Cl2 (3 x 5 mL) and organic 

partitions combined, dried over MgSO4 and then concentrated under reduced pressure.  

The 1H NMR data showed that quantitative deprotection had occurred. 

 

5.3.10 K2CO3 Boc deprotection of 55 

Compound 55 (10 mg, 44 µmole) was dissolved in CH2Cl2 (5 mL) and propyl amine 

(60 µL, 799 µmole) and AcOH (40 µL, 710 µmole) were added under argon and the 

solution was stirred at room temperature (4 hr).  K2CO3 (0.1 g) was then added and the 

solution was stirred under argon (12 hr) followed by partitioning between H2O and 

CH2Cl2.  The aqueous layer was washed with CH2Cl2 (3 x 5 mL) and the organic 

layers were combined and then dried over MgSO4 and then concentrated under 

reduced pressure.  The 1H NMR spectrum showed quantitative deprotection and 

conversion to the enamine (51). 
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5.3.11 Synthesis of methyl-4-aza-5-ox-6,6-di-(2-pyrroyl)-2(Z)-hexenoate (57) 

Compound 55 (200 mg, 0.88 mmole) and methylene blue (1 mg) were dissolved in 

CH2Cl2 (10 mL) and the solution was stirred at room temperature (10 min), cooled (-

78°C) and purged with oxygen (10 min).  Irradiation (30 min) was then carried out (-

78°C) under a constant flow of oxygen, followed by the addition of pyrrole (420 µL, 

6.3 mmole) in cold CH2Cl2 (3 mL) and stirred (2 hr) in the dark.  The solution was 

then concentrated without heating and the resulting residue was purified by flash 

column chromatography on SiO2 (30 x 7 mm) eluting with 70% EtOAc/30% hexane 

and then purified further using normal phase HPLC using a 70% hexane/EtOAc 

eluting solvent to yield 57.   (16 mg, 15% yield). 

 

Me O

O H
N

O

NH

NH
1 4 1'

3'

 

57 

Red oil; IR νmax 3437, 2960, 2067, 1718, 1633, 1464, 1382, 1273, 1205, 1122, 1073 

cm-1; UV (CHCl3) nm (log ε) 271 (3.67); 1H NMR (CDCl3, 400 MHz) δ 10.58 (1H, d, 

J = 10.1 Hz, H-4), 8.65 (2H, s, H-1’), 7.43 (1H, dd, J = 8.8, 11.1 Hz, H-3), 6.76 (2H, 

dd, J = 3.9, 2.5 Hz, H-5’), 6.18 (2H, dd, J = 5.7, 2.8 Hz, H-4’), 6.14 (2H, t, J = 3.6 Hz, 

H-3’), 5.16 (1H, d, J = 8.8 Hz, H-2), 5.07 (1H, s, H-6), 3.67 (3H, s, OMe); 13C NMR 

(CDCl3, 100 MHz) 169.7 (C-5), 168.8 (C-1), 137.2 (C-3), 125.9 (C-2’), 118.4 (C-5’), 

108.8 (C-4’), 107.9 (C-3’), 98.0 (C-2), 51.3 (OMe), 45.5 (C-6); HRFABMS m/z 

273.1118, calcd 273.1113. 

 

5.4 Chapter four experimental 

5.4.1 Photochemical studies 

The fluorescence quantum yield was determined by carrying out a series of dilutions 

in DMSO and plotting fluorescence against concentration.  Fluorescence of 13 (406 

nm) was determined after exciting at 350nm, compared to a chlorophyll a standard 

whilst fluorescence of 15 (590 nm) was measured after exciting at 537 nm against a 

Rhodamine 6G standard.  For Rhodamine 6G standard the Φfluor is 0.95.111    



  Chapter 5 

 101

 

Photodegradation experiments of 13 and 15 were performed whereby the solutions 

were deaerated with nitrogen, saturated with oxygen, addition of free radical 

scavenger DABCO (2x10-3 M) and DMSO-D6 in order to determine the mechanism 

for photobleaching.   

 

The singlet oxygen quantum yields were determined relative to Rhodamine 6G 

standard (Φ∆ in DMSO is 0.12) 111 using DPBF as a singlet oxygen scavenger (3 x 10-

5 M). 

 

5.4.2 Electrochemistry 

Cyclic voltametry (CV) was carried out in MeCN using a three-electrode minicell 

consisting of a glassy carbon working electrode, Pt counter electrode and a Ag wire 

coated with AgCl reference electrode using TEAP as the supporting electrolyte. 

 

5.4.3 Copper complex of 15 with Cu(II) 

Potassium tert-butoxide as a base 

15 (15 mg, 44.9 µmole) was dissolved in tert-butanol (5 mL) with 3 equivalents of 

potassium tert-butoxide to give a dark blue solution.  CuCl2.2H2O (15 mg, 88 µmole) 

in DMSO (0.5 mL) was then added to afford a dark brown solution.  Following 

removal of the solvents under reduced pressure, a dark insoluble residue was obtained 

which was thought to be a polymerisation product. 

 

Ammonia as a base 

15 (10 mg, 25 µmole) was added to MeOH (3 mL) which had been adjusted to a pH 

of 10 using NH3, to give a red solution, followed by the addition of CuCl2.2H2O (8.5 

mg, 50 µmole) to afford a dark green solution.  The solution was then partitioned 

between H2O (3 mL) and EtOAc (3 mL).  The H2O layer was washed with EtOAc (3 

x 3 mL) and organic extracts combined and concentrated under reduced pressure.  The 

solid was then dissolved in EtOAc ( 2 mL) and filtered to remove undissolved solid.  

Pentane was allowed to diffuse slowly into the EtOAc in the dark, only polymeric 

material was observed after the solution was left for two weeks. 
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