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PREFACE

In view of the facts that the de�nition of a ring led to the de�nition of a near-

ring, the de�nition of a ring module led to the de�nition of a near-ring module,

prime rings resulted in investigations with respect to primeness in near-rings,

one is naturally inclined to attempt to de�ne the notion of a group near-ring

seeing that the group ring had already been de�ned and investigated into by,

interalia, Groenewald in [7]. However, in trying to de�ne the group near-ring

along the same lines as the group ring was de�ned, it was found that the resulting

multiplication was, in general, not associative in the near-ring case due to the

lack of one distributive property.

In 1976, Meldrum [19] achieved success in de�ning the group near-ring. How-

ever, in his de�nition, only distributively generated near-rings were considered

and the distributive generators played a vital role in the construction. In 1989,

Le Riche, Meldrum and van der Walt [17], adopted a similar approach to that

which led to a successful and fruitful de�nition of matrix near-rings, and de-

�ned the group near-ring in a more general sense. In particular, they de�ned

R[G], the group near-ring of a group G over a near-ring R, as a subnear-ring of

M(RG), the near-ring of all mappings of the group RG into itself.

More recently, Groenewald and Lee [14], further generalised the de�nition

of R[G] to R[S :M ], the generalised semigroup near-ring of a semigroup S over

any faithful R-module M . Again, the natural thing to do would be to extend

the results obtained for R[G] to R[S : M ], and this they achieved with much

success.

v
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In this thesis, we de�ne R[G :M ], the generalised group near-ring of a group

G over any faithful R-moduleM , as a subnear-ring of all mappings fromMG to

MG. Immediately, we realise that R[G] � R[G : M ] � R[S : M ] and hence all

results that apply to R[S : M ] must obviously apply to R[G : M ]. We include

some of these results (with modi�cations in some cases), and we also bring in

some additional results. However, our main purpose here was to investigate

primeness in R[G : M ]. This brought us to the realisation that since R[G : M ]

was constructed over the R-module M , we �rst needed to investigate primeness

in M - an area where very little work has been done. Hence, we decided to

follow the following path in this thesis.

In the �rst chapter, we de�ne (as usual) the basic and essential concepts

related to near-rings, near-ring modules, prime near-rings, radicals of near-rings,

and to the group near-ring, R[G].

In chapter 2, we let M be a faithful left R-module, where R is a right near-

ring, and we proceed to de�ne the notions of prime, semiprime, s-prime and

strongly prime in M . As in the case of R, we distinguish between various types

of (related, but nonequivalent) primes and semiprimes in M and consequently,

based on our de�nition of an s-prime module, we were also able to identify

various types of s-primes inM . Besides the many general results we obtain with

respect to prime modules, we also investigate the inter-relationships between

primeness in M and primeness in R. However, to successfully achieve a two-

way relationship, we are compelled to introduce the idea of a multiplication

module. This we do at the end of this chapter.

In chapter 3, we turn our attention to some radical theory with respect

to near-ring modules. We de�ne special classes of near-ring modules, and then

show that classes of some of the primes de�ned in chapter 2 turn out to be

special radical classes in our sense of the de�nition.

In the �nal chapter, we de�ne the generalised group near-ring, R[G : M ].

We, then, establish some general results on R[G : M ], but, in this chapter our

main focus is to establish links between primeness in R[G :M ] and primeness in

the R-module M and/ or the base near-ring R. To this end, we achieved much
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success in commuting from R[G : M ] to M and/ or R, but the return journey

presented may obstacles. However, we conclude this chapter (and this thesis)

with a �icker of hope by showing that if R is a near-�eld and G is an ordered

group, then R[G] (ie. R[G :M ] with M = RR) is 2-prime.

All near-rings in this thesis will be zerosymmetric right near-rings.
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Chapter 1

PRELIMINARIES

In this chapter, we present some results (many known) which will be used re-

currently in the latter chapters. In some cases, proofs may be included. For

most of the results that follow, we refer the reader to either Meldrum [18] or

Pilz [21].

1.1 Near-rings

De�nition 1 (Near-ring)

A set R together with the two operations of addition and multiplication (writ-

ten as (R;+; :)) is called a near-ring if the following conditions are satis�ed:

(a) (R;+) is a group.

(b) (R; :) is a semigroup ie. R is closed and associative under multiplication.

(c) At least one of the following two distributive conditions hold:

(i) a(b+ c) = ab+ ac or (ii) (a+ b)c = ac+ bc

for all a; b; c 2 R.

Remark 2 (a) If c(i) holds, then R is called a left near-ring and if c(ii) holds,

then R is called a right near-ring.

1



2 CHAPTER 1. PRELIMINARIES

(b) R is called a near-ring with identity if R has multiplicative identity.

(c) If R is a right near-ring, then it is always true that 0:r = 0 for all r 2 R.

If it is also true that r:0 = 0 for all r 2 R, then R is referred to as a

zerosymmetric right near-ring.

(d) If (R;+) is an abelian group, then R is called an abelian near-ring.

From here on, all near-rings will be zerosymmetric right near-rings.

De�nition 3 (R-Subgroup)

A subset H of R is called a (two sided or invariant) R-subgroup of R if:

(a) (H;+) is a subgroup of (R;+).

(b) RH � H.

(c) HR � H.

If in the above de�nition, (a) and (b) are satis�ed, then H is called a left

R-subgroup whereas if (a) and (c) are satis�ed, then H is called a right R-

subgroup. (If H is a subgroup of R, this will be denoted by H � R)

De�nition 4 (Normal Subgroup)

An R-subgroup H of R is called a normal subgroup if for all r 2 R and all

h 2 H, we have r + h� r 2 H.

Theorem 5 If a 2 R, then Ra is a left R-subgroup of R.

Proof. Let r1a; r2a 2 Ra. Then r1a � r2a = (r1 � r2)a 2 Ra. Furthermore,

R(Ra) = (RR)a � Ra. So Ra is a left R-subgroup of R.

De�nition 6 (Ideal)

A subset I of R is called a (two sided) ideal of R if

(a) (I;+) is a normal subgroup of (R;+).

(b) IR � I.
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(c) r1(r2 + i)� r1r2 2 I for all r1, r2 2 R and i 2 I.

If I satis�es conditions (a) and (b), I is called a right ideal of R while I

is called a left ideal of R if (a) and (c) are satis�ed. (An ideal I of R will be

denoted by I C R, and for left ideals and right ideals we use the notations Cl
and Cr respectively).

De�nition 7 (Essential Ideal)

An ideal I of R is called an essential ideal (denoted by I C �R) if I \A 6= 0
for every 0 6= A C R.

De�nition 8 (Annihilator)

Let I C R. Then we de�ne the left annihilator of I in R as:

l(I) = fr 2 R : rI = 0g.

Theorem 9 If I is a left R-subgroup of R, then l(I) C R.

De�nition 10 (Quotient Near-ring)

Let I C R. Let
R

I
= fr + I : r 2 Rg be the set of cosets of I in R. Then�

R

I
;+; :

�
is called the quotient near-ring of R over I where + and : are de�ned

by:

(r1 + I) + (r2 + I) = (r1 + r2) + I

(r1 + I):(r2 + I) = (r1:r2) + I

for all r1, r2 2 R.

De�nition 11 (Prime Ideals)

Let P C R. Then P is called:

(a) 0-prime if for all ideals A;B of R, AB � P implies A � P or B � P .

(b) 1-prime if for all left ideals A;B of R, AB � P implies A � P or B � P .

(c) 2-prime if for all left R-subgroups A;B of R, AB � P implies A � P or

B � P .
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(d) 3-prime if a; b 2 R and aRb � P implies that a 2 P or b 2 P .

(e) completely prime (c-prime) if a; b 2 R and ab 2 P implies that a 2 P or

b 2 P .

De�nition 12 (Semiprime Ideals)

Let P C R. Then P is called:

(a) 0-semiprime if for all ideals A of R such that A2 � P , we have A � P .

(b) 1-semiprime if for all left ideals A of R such that A2 � P , we have A � P .

(c) 2-semiprime if for all left R-subgroups A of R such that A2 � P , we have

A � P .

(d) 3-semiprime if a 2 R and aRa � P implies that a 2 P .

(e) completely semiprime (c-semiprime) if a 2 R and a2 2 P implies that

a 2 P .

De�nition 13 If � = 0; 1; 2; 3; c, then R is called a �-prime (�-semiprime)

near-ring if f0g is a �-prime (�-semiprime) ideal of R.

Theorem 14 Let P C R and let � = 0; 1; 2; 3; c. Then P is �-prime (�-

semiprime) if and only if
R

P
is a �-prime (�-semiprime) near-ring.

Remark 15 Let P C R. Then the following have already been established in

[4]:

(a) P is c-prime =) P is 3-prime =) P is 2-prime =) P is 1-prime =) P

is 0-prime.

(b) If R has multiplicative identity, then P is 2-prime () P is 3-prime.

(c) P is c-semiprime =) P is 3-semiprime =) P is 2-semiprime =) P is

1-semiprime =) P is 0-semiprime.

(d) If R has multiplicative identity, then P is 2-semiprime() P is 3-semiprime.



1.2. NEAR-RING MODULES 5

(e) If � = 0; 1; 2; 3; c and P is �-prime, then P is �-semiprime.

De�nition 16 (Equiprime Ideals)

Let P C R. Then P is said to be equiprime if a 2 R r P and x, y 2 R,

then arx� ary 2 P for all r 2 R implies x� y 2 P . The near-ring R is called

equiprime if f0g is an equiprime ideal of R.

De�nition 17 (Nil Ideal)

An element r 2 R is said to be nilpotent if there exists n 2 N such that

rn = 0. An ideal A of R is called a nil ideal if every a 2 A is nilpotent.

De�nition 18 (Near-�eld)

Let (R;+; :) be a near-ring and let R� = Rr f0g. If (R�; :) is a group, then

(R;+; :) is called a near-�eld.

1.2 Near-ring Modules

De�nition 19 (R-module, R-submodule)

Let R be a near-ring and (M;+) be a group.

(a) Then M is called a left R-module if for all r1; r2 2 R and m 2M , it follows

that (r1 + r2)m = r1m+ r2m and (r1r2)m = r1(r2m).

(b) Let H �M such that for all r 2 R and h 2 H, we have that rh 2 H. Then

H is called an R-submodule of M . (We shall denote this by H �R M).

Remark 20 If R is a near-ring, then an obvious R-module is the group (R;+).

We shall denote this particular R-module by RR.

De�nition 21 An R-module M will be called an abelian module if (M;+) is

an abelian group.

Proposition 22 IfM is an R-module and m 2M , then Rm is an R-submodule

of M .

Proof. Similar to the proof of Theorem 5.
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De�nition 23 (R-ideal)

An R-ideal ofM is a normal subgroup P ofM such that for all r 2 R;m 2M

and n 2 P , r(m+ n)� rm 2 P . (We shall denote this as P CR M).

Note that if R is a zerosymmetric near-ring, then every R-ideal ofM is an R-

submodule ofM . Furthermore, ifM=RR, then the R-ideals ofM are essentially

the left ideals of R and the R-submodules of M are the left R-subgroups of R.

The following construction from a subset of M plays an important role in the

study of structural relationships between R and M .

De�nition 24 (The set (P :M)R)

Let P �M . Then we de�ne the set, written as (P :M)R, by:

(P :M)R = fr 2 R : rM � Pg.

If no confusion arises, we will simply write (P : M) in place of (P : M)R.

Furthermore, for our purposes here, we will write
�
P = (P :M)R.

Theorem 25 Let M be an R-module and let P �M . Then:

(a) If P is an R-submodule of M , then
�
P is a left R-subgroup of R.

(b) If P is an R-ideal of M , then
�
P is an ideal of R.

Proof. (a) Let a; b 2
�
P . Then aM � P and bM � P . Since P is an R-

submodule, (a � b)M = aM � bM � P and hence a � b 2
�
P . Now let r 2 R

and p 2
�
P . Then pM � P . So rpM � rP � P implies that rp 2

�
P whence

R
�
P �

�
P . This proves that

�
P is a left R-subgroup of R.

(b) Following the method for (a), we can show that
�
P is a subgroup of R.

Let r 2 R; a 2
�
P and m 2 M . Then (r + a � r)m = rm + am � rm 2 P

since rm 2 M;am 2 P and P is a normal subgroup of M . So r + a � r 2
�
P

implies that
�
P is a normal subgroup of R.

Now let r1; r2 2 R and a 2
�
P . Then, if m 2M , we have:

[r1(r2 + a)� r1r2]m = r1(r2m+ am)� r1(r2m) 2 P
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since r1 2 R; r2m 2M;am 2 P and P is an R-ideal of M .

Hence r1(r2 + a)� r1r2 2
�
P .

Finally, let a 2
�
P and r 2 R. Then aM � P and we get:

(ar)M = a(rM) � aM � P

So ar 2
�
P implies that

�
PR �

�
P , and the proof is complete.

Proposition 26 Let P C R. Then R
P
is an R-module with scalar multiplication

de�ned by:

r(r1 + P ) = rr1 + P where r; r1 2 R.

Proof. Let r1; r2; r3 2 R. Then:

(a) (r1 + r2)(r3 + P )

= [(r1 + r2)r3] + P

= (r1r3 + r2r3) + P

= (r1r3 + P ) + (r2r3 + P )

= r1(r3 + P ) + r2(r3 + P ).

(b) (r1r2)(r3 + P ) = (r1r2r3) + P = r1(r2r3 + P ).

Proposition 27 Let P C R. Then:

(a) If K is an R-submodule of the R-module
R

P
, then K =

L

P
for some left

R-subgroup L of R containing P .

(b) If K is an R-ideal of the R-module
R

P
, then K =

L

P
for some left ideal L

of R containing P .

Proof. Consider the R-modules, RR and
R

P
. Then, by [18, Lemma 2.24],

�:RR �! R

P
de�ned by �(r) = r + P is an R-epimorphism. Hence, by [18,

Theorem 2.26], there is a one-to-one correspondence between the R-submodules

(R-ideals) of
R

P
and the R-submodules (R-ideals) of RR containing P . But the

R-submodules of RR are the left R-subgroups of R and the R-ideals of RR are

the left ideals of R. Hence, since � preserves and re�ects inclusions, the results

follow.
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De�nition 28 (Quotient Group)

Let M be an R-module and P CR M . Then
M

P
= fm + P : m 2 Mg is

called the qoutient group of M over P .

Theorem 29 Let M be an R-module and P CR M . Then the qoutient group,
M

P
, is an R-module (called the qoutient R-module) with scalar multiplication

de�ned by:

r(m+ P ) = rm+ P where r 2 R and m 2M .

Proof. Same as the proof of Proposition 26

De�nition 30 (Left Annihilator)

If P �M , then the left annihilator of P in R is de�ned by:

l(P ) = fr 2 R : rP = 0g.

Remark 31 From the above de�nition, it clearly follows that l(P ) = (0 : P )R.

Theorem 32 Let M be an R-module and let P �M . Then:

(a) l(P ) is a left ideal of R.

(b) If P is an R-submodule of M , then l(P ) is an ideal of R.

Proof. (a) Let x; y 2 l(P ). Then xP = yP = 0. So (x � y)P = xP � yP = 0

implies that x� y 2 l(P ).

Now let r 2 R and x 2 l(P ). Then xP = 0 implies:

(r + x� r)P = rP + xP � rP = rP � rP = 0

Hence r + x� r 2 l(P ) and we have that l(P ) is a normal subgroup of R.

Finally, let r1; r2 2 R and x 2 l(P ). Then xP = 0 implies:

[r1(r2 + x)� r1r2]P

= r1(r2P + xP )� (r1r2)P

= r1r2P � r1r2P

= 0.

Therefore, l(P ) is a left ideal of R.
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(b) As in (a), we can show that l(P ) is a left ideal of R. To show that l(P ) is

a also a right ideal of R, let x 2 l(P ) and r 2 R. Then (xr)P = x(rP ) � xP = 0.

Hence xr 2 l(P ) and so we have that l(P )R � l(P ); thus proving that l(P ) is

an ideal of R.

Proposition 33 [21, Proposition 3.14] Let R be a near-ring and let I C R.

Then:

(a) If M is an
R

I
-module, then under the scalar multiplication rm = (r+ I)m,

M becomes an R-module with I � (0 :M)R.

(b) If M is an R-module and I � (0 : M)R, then M is an
R

I
-module with

respect to (r + I)m = rm.

(c) In both cases, (0 :M)R
I
=
(0 :M)R

I

Proof. (a) Let r1; r2 2 R and m 2M . Then:

(i) (r1+ r2)m = ((r1+ r2)+ I)m = ((r1+ I)+ (r2+ I))m = (r1+ I)m+

(r2 + I)m = r1m+ r2m.

(ii) (r1r2)m = (r1r2 + I)m = (r1(r2 + I))m = r1((r2 + I)m) = r1(r2m).

So M is an R-module.

Furthermore, if x 2 I, then x + I = 0 =) (x + I)m = 0 =) xm = 0 =)

x 2 (0 :M)R.

Therefore I � (0 :M)R.

(b) Reverse the process in (a).

(c) Let x 2 (0 : M)R
I
. Then x = r + I 2 R

I
for some r 2 R such that

xM = 0. Now rM = (r + I)M = xM = 0. Hence r 2 (0 : M)R which implies

that x 2 (0 :M)R
I

. So (0 :M)R
I
� (0 :M)R

I
.

On the other hand, let x 2 (0 :M)R
I

. Then x = r+I for some r 2 (0 :M)R.

Then rM = 0 and we have:

xM = (r + I)M = rM + I = I
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So xM = 0 and x 2 R

I
implies that x 2 (0 : M)R

I
. Hence we have that

(0 :M)R
I

� (0 :M)R
I
and the proof is complete.

De�nition 34 (Monogenic, Faithful, Tame)

Let M be an R-module. Then M is called:

(a) monogenic if there exists m0 2 M (called the generator of M) such that

Rm0 =M .

(b) faithful if r 2 R and rM = 0 implies r = 0.

(c) tame if every R-submodule of M is also an R-ideal of M .

Lemma 35 [21, Proposition 3.4] Let M be a monogenic R-module with gener-

ator m0: Then, if A is a left ideal of R, Am0 is an R-ideal of M .

Proof. If a1m0 2 Am0 and a2m0 2 Am0 where a1; a2 2 A, then:

a1m0 � a2m0 = (a1 � a2)m0 2 Am0 since a1 � a2 2 A:

So Am0 is a subgroup of M:

Let m 2M . Then, since M is monogenic, m = rm0 for some r 2 R:

Therefore, if am0 2 Am0, we get:

m+am0�m = rm0+am0�rm0 = (r+a�r)m0 2 Am0 since r+a�r 2 A.

Therefore Am0 is a normal subgroup of M .

Finally, if r 2 R; r1m0 = m 2M and am0 2 Am0, then:

r(r1m0+ am0)� r(r1m0) = [r(r1+ a)� rr1]m0 2 Am0, since A is

a left ideal of R implies that r(r1 + a)� rr1 2 A.

Hence Am0 is an R-ideal of M .

We conclude this section with some important isomorphisms which will prove

to be very useful in the third and fourth chapters.

De�nition 36 [18, De�nition 2.22] Let M be an R-module and I be an R-

ideal of M . Then � : M �! M

I
de�ned by �(m) = m+ I is called the natural

R-homomorphism associated with I.
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Lemma 37 [18, Lemma 2.24] The natural homomorphism, �, is an R-epimorphism

such that Ker � = I.

Theorem 38 [18, Theorem 2.26] Let M be an R-module and let A and B be

R-ideals of M with A � B. Then:
M
B
A
B

�=R
M

A

Theorem 39 [18, Theorem 2.28] Let M be an R-module, P an R-ideal and H

an R-submodule of M . Then:

(a) P +H is an R-submodule of M .

(b)
P +H

P
�=R

H

P \H .

1.3 Radicals of Near-rings

De�nition 40 (Closure)

A class R of near-rings is said to be:

(a) homomorphically closed if it is closed under homomorphic images (that is,

if I 2 R and J is a homomorphic image of I, then J 2 R).

(b) essentially closed if E is an essential ideal of a near-ring R and E 2 R

implies that R 2 R.

(c) closed under ideals if I C R and R 2 R implies that I 2 R.

(d) closed under subdirect sums if any subdirect sum of elements from R also

belongs to R.

De�nition 41 Let V denote any class of near-rings. Then:

(a) V is called a universal class if it is closed with respect to homomorphic

images and ideals.

(b) V is called a variety if it is closed with respect to homomorphic images and

subdirect sums.
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De�nition 42 (Kurosh-Amitsur Radical class)

A subclass R in the variety V of all near-rings is called a Kurosh-Amitsur

radical class (KA-radical) if R satis�es:

(K1) R is homomorphically closed.

(K2) R(N) =
P
fA C N : A 2 Rg 2 R for every N 2 V.

(K3) R
�

N

R(N)

�
= 0 for every N 2 V.

Let R be a KA-radical class and let the term R-ideal refer to an ideal

belonging to R. Then for any near-ring R 2 R, there exists an R-ideal I of R

which contains every other R-ideal of R. This ideal is called the radical of the

radical class. Many radicals have been de�ned for near-rings. If R is a near-ring,

then some of the various radicals for R are listed below:

(a) The 0-prime radical: P0(R) = \fI C R : I is a 0-prime ideal of Rg.

(b) The 2-prime radical: P2(R) = \fI C R : I is a 2-prime ideal of Rg.

(c) The 3-prime radical: P3(R) = \fI C R : I is a 3-prime ideal of Rg.

(d) The c-prime radical: Pc(R) = \fI C R : I is a c-prime ideal of Rg.

(e) The nil radical: @(R) = �fI C R : I is a nil ideal of Rg.

De�nition 43 (Hoehnke Radical class)

Let R be a subclass in the variety of all near-rings. For R 2 R, let � be a

function that associates R with its radical, �(R). Then R is called a Hoehnke

radical class if for every R 2 R, � satis�es:

(a)
(�(R) + I)

I
� �

�
R

I

�
for all I C R

(b) �
�

R

�(R)

�
= 0 for all R.

By de�nition, it is clear that the prime radicals listed above are all Hoehnke

radicals.

We will use R0 to represent the class of zerosymmetric near-rings.
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1.4 Group Near-rings

For the de�nitions and other basic concepts in this section, we refer you to Le

Riche, Meldrum and Van der Walt [17].

We begin with the following construction:

Let R be a near-ring with identity 1, G be a (multiplicatively written)

group with identity e, and let RG denote the cartesian direct sum of j G j copies

of (R;+) indexed by the elements of G. Then M(RG) is the right near-ring of

all mappings of the group RG into itself. Now, for r 2 R and g 2 G, let [r; g]

denote the function in M(RG) de�ned by:

([r; g](�))(h) = r�(hg) for all � 2 RG; h 2 G.

De�nition 44 (Group Near-ring)

The subnear-ring of M(RG), generated by the set f[r; g] : r 2 R; g 2 Gg, will

be called the group near-ring constructed from R and G and will be denoted by

R[G].

A powerful method for proofs in R[G] is by using induction on the complexity

of an element A of R[G]. Hence, we provide the following de�nitions:

De�nition 45 (Generating Sequence)

A generating sequence for an element A of R[G] is a �nite sequence A1; A2; :::; An

of elements of R[G] such that An = A, and for all i, 1 � i � n, one of the fol-

lowing three cases applies:

(a) Ai = [r; g] for some r 2 R; g 2 G.

(b) Ai = Ak +Al for some k and l where 1 � k; l < i.

(c) Ai = AkAl for some k and l where 1 � k; l < i.

De�nition 46 (Complexity)

The length of a generating sequence of minimal length for A 2 R[G] will be

called the complexity of A and denoted by c(A).
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Remark 47 From the above de�nitions, it is clear that:

(a) c(A) � 1 for all A 2 R[G].

(b) c(A) = 1 if and only if A = [r; g] for some r 2 R; g 2 G.

(c) If c(A) > 1, then A = B + C or A = BC for some B;C 2 R[G] with

c(B) < c(A) and c(C) < c(A).

Le Riche, Meldrum and Van der Walt [17] associated two important and

useful ideals of R[G] with an ideal of R. These are de�ned next:

De�nition 48 (The ideals A� and A+)

Let A be an ideal of the near-ring R. Then the following are ideals of R[G]:

(a) A� = fA 2 R[G] : A�(g) 2 A for all � 2 RG; g 2 Gg, and

(b) A+ =< f[a; e] : a 2 Ag > (that is, the ideal that is generated by the set

f[a; e] : a 2 Ag).



Chapter 2

PRIMENESS IN

NEAR-RING MODULES

INTRODUCTION

The notions of prime rings, semiprime rings, s-prime rings and strongly

prime rings and their extensions to ring modules have been extensively re-

searched by various authors, some of whom we shall cite in the main content

of this chapter. The natural question one would then ask is what about the

extension of the de�nitions of the various types of prime rings to near-rings?

In 1970, Holcombe [16] introduced the notion of a prime near-ring. However,

due to the lack of one distributive property as well as the fact that addition is

in general noncommutative in a near-ring, he was able to de�ne three types of

prime near-rings within the class of all prime near-rings. This resulted in the

de�nitions of 0-prime (or prime), 1-prime and 2-prime near-rings. Groenewald

[8] further added to these three types by introducing 3-prime and c-prime (com-

pletely prime) near-rings. All of these �ve types were found to be equivalent

in the class of associative rings but, in general, di¤erent within the class of

near-rings.

Similarly, in a natural way, there followed the de�nition of a semiprime near-

15
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ring (again �ve distinct types, �-semiprime where � = 0; 1; 2; 3; c). In 1964, s-

prime near-rings were introduced by van der Walt [22] and in 1988 Groenewald

[9] introduced the notion of a strongly prime near-ring.

In particular, we may view the various primes in a near-ring R as primes

in the R-module (R;+). Now let R be a right near-ring and let M be any

left R-module. In this chapter, we attempt to generalise the various notions of

primeness that were de�ned in R to the module M . Booth and Groenewald

[5] have already done this in the case of equiprime near-rings. So, for the

purpose of completeness and since many of their results can be extended to the

various other notions of primes, we begin this chapter by capturing some of

their results on equiprime near-ring modules. Thereafter, we provide various

characterizations of the di¤erent types of prime modules and show equivalences

between these characterizations. This results in the observation that, in general,

we cannot distinguish between 0-prime and 1-prime near-ring modules. Thus

1-prime modules were omitted from further investigations. Furthermore, if P

is a prime (semiprime, s-prime, strongly prime) R-ideal of the module M , we

show that the ideal
�
P = (P : M)R of R is also prime (semiprime, s-prime,

strongly prime). However, in some cases the reverse implication created some

di¢ culties. To overcome these problems, in the last section we introduce the

concept of a multiplication module.

In this chapter, R will denote a zerosymmetric right near-ring (without iden-

tity, unless speci�ed) and M a left R-module. Furthermore, if no ambiguity is

created, we will simply write the ideal (P :M)R of R as (P :M).

2.1 Equiprime Modules

Based on the de�nition and characterization of prime modules for rings, Booth

and Groenewald [5] provided a similar characterization for equiprime modules

of a near-ring. In this short section, we state some of their results. In section

2.2 we will observe that many of their results are analogously prevalent in the
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various notions of prime near-ring modules that we shall de�ne.

De�nition 49 Let M be an R-module and P be an R-ideal of M . Then:

(a) M is called equiprime if RM 6= 0 and the following condition is satis�ed:

If a 2 R with a =2 (0 : M) and m, m0 2 M , then arm � arm0 = 0 for all

r 2 R implies that m�m0 = 0.

(b) P is an equiprime R-ideal if a 2 R with a =2 (P :M) and m, m0 2M , then

arm� arm0 2 P for all r 2 R implies that m�m0 2 P .

If P is an R-ideal ofM , then it is well known that
�
P = (P :M) is an ideal of

R. The following proposition shows the relationship between the equiprimeness

of P and that of
�
P .

Proposition 50 If P is an equiprime R-ideal of the R-module M , then
�
P is

an equiprime ideal of R.

Proof. Let a 2 Rr
�
P and x; y 2 R such that arx�ary 2

�
P for all r 2 R. Then

(arx� ary)M � P for all r 2 R. Hence ar(xm)� ar(ym) = (arx� ary)m 2 P

for all r 2 R and for all m 2 M . Since P is equiprime and a =2
�
P , we have

that (x � y)m = xm � ym 2 P for all m 2 M . So (x � y)M � P implies that

x� y 2
�
P .

Corollary 51 If M is an equiprime R-module, then (0 : M) is an equiprime

ideal of R.

Proposition 52 [5, Proposition 2.1] Let R be a near-ring and P C R with

P 6= R. Then the following are equivalent:

(a) P is an equiprime ideal of R.

(b) There exists an equiprime R-module M such that P = (0 :M).

Corollary 53 [5, Corollary 2.2] If 0 6= R is a near-ring, then R is equiprime

if and only if there exists a faithful equiprime R-module M .
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Proposition 54 [5, Lemma 2.3] Let M be an equiprime R-module and suppose

that 0 6= H is an R-submodule of M . Then:

(a) (0 :M)R = (0 : H)R.

(b) H is an equiprime R-submodule.

Proposition 55 [5, Proposition 2.5] Let M be an equiprime R-module and let

A be an invariant subgroup of R such that A * (0 :M). ThenM is an equiprime

A-module.

2.2 Prime Modules

We begin this section with the de�nition of a �-prime R-ideal (� = 0; 1; 2; 3; c)

of the R-module M . We, then, proceed by providing equivalent de�nitions to

the initial de�nition of a �-prime R-ideal and by investigating various charac-

terisations (including those with respect to annihilators and m-systems) of the

�-prime R-ideals. Furthermore, as was done in the case of prime near-rings, we

look at the inter-relationships between the �ve (essentially four) types of prime

R-ideals (modules) de�ned in this section. Of importance, also, is the link be-

tween the primeness of an R-ideal of M to that of an ideal of the base near-ring

R. To this end, we show that if P CR M is �-prime, then so is the ideal
�
P

of R. We conclude this section with some hereditary properties concerning the

�-prime R-ideals (modules).

De�nition 56 Let P CR M such that RM * P . Then P is called:

(a) 0-prime if AB � P implies AM � P or B � P for all ideals, A of R, and

all R-ideals, B of M .

(b) 1-prime if AB � P implies AM � P or B � P for all left ideals, A of R,

and all R-ideals, B of M .

(c) 2-prime if AB � P implies AM � P or B � P for all left R-subgroups, A

of R, and all R-submodules, B of M .
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(d) 3-prime if rRm � P implies that rM � P or m 2 P for all r 2 R and

m 2M .

(e) completely prime (c-prime) if rm 2 P implies that rM � P or m 2 P for

all r 2 R and m 2M:

De�nition 57 M is said to be a �-prime (� = 0; 1; 2; 3; c) R-module if RM 6= 0

and 0 is a �-prime R-ideal of M .

Note that the de�nitions of the 0-prime, 1-prime and 2-prime R-ideals (or

modules) involve some substructure of R. In the results that follow, we provide

equivalent de�nitions to show that in the case of prime R-ideals, the substruc-

tures of R can be reduced to elements of R while, in the case of prime modules,

the de�nitions can be reduced to substructures in M only. However, we �rst

need the following lemma:

Lemma 58 Let P CR M and B �R M . Then:

B * P implies that (P : B) = (P : P +B):

Proof. Let a 2 (P : P + B). Then a(P + B) � P . Since B � P + B,

it follows that aB � P . Hence a 2 (P : B) and therefore it follows that

(P : P +B) � (P : B):

On the other hand, let a 2 (P : B). We need to show that a(p + b) 2 P

for all p 2 P and b 2 B. Now a(p + b) = [a(p + b) � ab] + ab: Since P is an

R-ideal and since ab 2 P , we have that [a(p + b) � ab] + ab 2 P , whence it

follows that a(p+ b) 2 P . Therefore a(P +B) � P implies a 2 (P : P +B): So

(P : B) � (P : P +B); and the proof is complete.

Corollary 59 Let P and B both be R-ideals of M . Then B * P implies that

(P : B) = (P : P +B).

Proof. Since R is a zerosymmetric near-ring, the R-ideal B of M is an R-

submodule of M: So the proof follows as for the previous lemma.

Proposition 60 Let P CR M . Then the following are equivalent:
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(a) P is a 2-prime R-ideal.

(b) For all a 2 R and R-submodules B of M such that aB � P , it follows that

aM � P or B � P:

(c) For all a 2 R and b 2 M such that a[b]R � P , it follows that aM � P or

b 2 P . (Here [b]R is the R-submodule of M generated by b).

(d) For all R-submodules N of M such that P � N , it follows that:

(P :M) = (P : N):

Proof. (d)) (c) : Let a 2 R and let b 2 M such that a[b]R � P . Suppose

that b =2 P . Then we have the following two possibilities:

(i) P � [b]R : Then a[b]R � P implies that a 2 (P : [b]R) = (P : M).

Hence aM � P .

(ii) There exists x 2 P such that x =2 [b]R. In this case, the submodule

P+[b]R strictly contains P and, by the given condition, (P :M) = (P : P+[b]R).

Furthermore, a[b]R � P implies that a 2 (P : [b]R) = (P : P+[b]R) from Lemma

58. So a 2 (P :M) and once again we have that aM � P .

(c)) (b) : Let a 2 R and let B be an R-submodule ofM such that aB � P .

Then for all b 2 B; a[b]R � aB � P . So, from (c), we have that aM � P or

b 2 P for all b 2 B. Hence aM � P or B � P .

(b) ) (a) : Let A be a left R-subgroup of R and B be an R-submodule of

M such that AB � P: If B � P , then we are done. So suppose that B * P .

Since aB � P for all a 2 A, by the given condition, aM � P . Since aM � P

for all a 2 A, it follows that AM � P . So P is 2-prime.

(a)) (d) : LetN be an R-submodule ofM such that P � N: If x 2 (P :M),

then xM � P implies that xN � P and hence x 2 (P : N). So, clearly, we have

(P :M) � (P : N):

On the other hand, if y 2 (P : N), then the left R-subgroup of R generated

by y is in (P : N). Since N is an R-submodule ofM and P is 2-prime, a routine
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computation yields that yM � P or N � P . Since P � N , it follows that

yM � P whence y 2 (P :M). So (P : N) � (P :M).

In a similar way to Proposition 60 we can construct and prove equivalent

de�nitions for 0-prime and 1-prime R-ideals. These are stated in the following

proposition:

Proposition 61 Let P be an R-ideal of M . Then the following are equivalent:

(a) P is a 0-prime (or 1-prime) R-ideal.

(b) For all a 2 R and for all R-ideals B of M such that aB � P , we have that

aM � P or B � P .

(c) For all a 2 R and b 2 M such that ahbiR � P , we have that aM � P or

b 2 P . (Here hbiR is the R-ideal of M generated by b).

(d) For all R-ideals N ofM such that P � N , we have that (P :M) = (P : N).

In view of Proposition 61, we note that that the de�nitions of a 0-prime and

a 1-prime R-ideal depend on elements of R and the same substructure of M .

Thus, in general, we cannot distinguish between 0-prime and 1-prime R-ideals or

R-modules. Henceforth, we will therefore restrict our investigations to 0-prime

R-ideals (modules) only.

Corollary 62 An R-module M is:

(a) 0-prime if and only if for all nonzero R-ideals N of M , it follows that

(0 :M) = (0 : N).

(b) 2-prime if and only if for all nonzero R-submodules N of M , it follows that

(0 :M) = (0 : N)

Proof. Follows from part (d) of Proposition 60 and Proposition 61.

Proposition 63 Let M be an R-module and P CR M: Then the following are
equivalent:
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(a) P is 3-prime and (P : m) C R for every m 2M r P:

(b) RM * P and (P : m) = (P :M) for every m 2M r P

Proof. (a)) (b): Since P is a 3-prime R-ideal, we have RM * P: Now let

m 2 M r P and consider x 2 (P : m): Since (P : m) is an ideal of R, we

have xR � (P : m) and therefore xRm � P: Again, since P is 3-prime, we

have that x 2 (P : M) or m 2 P . But m =2 P . So x 2 (P : M) implies that

(P : m) � (P :M): Clearly, (P :M) � (P : m).

(b)) (a): Let m 2 M r P: Clearly (P : m) C R since (P : m) = (P : M):
Let a 2 R be such that aRm � P: Since RM * P and (P : m) = (P : M) we

have Rm * P: So for every b 2 Rmr P; we have:

(P :M) � (P : Rm) � (P : b) = (P :M) whence (P : Rm) = (P :M).

Since aRm � P; we get a 2 (P : Rm) = (P : M). So aM � P implies that

P is a 3-prime R-ideal.

Proposition 64 Let P CR M . Then the following are equivalent:

(a) P is a 3-prime R-ideal.

(b) RM * P and (P : Rm) = (P :M) for every m 2M r P

Proof. (a)) (b): Since P is a 3-prime R-ideal, we have RM * P: Now let

m 2 M r P and consider x 2 (P : Rm): Then xRm � P: Now, since P is

a 3-prime R-ideal and since m =2 P , we get x 2 (P : M) and consequently

(P : Rm) � (P :M). Clearly, (P :M) � (P : Rm):

(b)) (a): Let m 2 M r P and let a 2 R such that aRm � P: Then

a 2 (P : Rm) = (P :M) implies aM � P and hence P is a 3-prime R-ideal.

Corollary 65 If P is a 3-prime R-ideal of M and (P : m) C R for every

m 2M r P , then RM * P and (P : m) = (P : Rm).

Proposition 66 Let P CR M . Then the following are equivalent:
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(a) P is a completely prime R-ideal.

(b) RM * P and (P : m) = (P :M) for every m 2M r P .

(c) P is 3-prime and (P : m) C R for every m 2M r P .

Proof. (a)) (b): Since P is a completely prime R-ideal, we have RM * P:

Let m 2M rP and consider x 2 (P : m): Then xm 2 P . Since P is completely

prime and m =2 P , we must have that x 2 (P : M). Hence (P : m) � (P : M):

The other inclusion is trivial.

(b)) (a): Let m 2M rP and let a 2 R such that am 2 P: So a 2 (P : m)

implies a 2 (P :M) implies aM � P . Hence P is a completely prime R-ideal.

(b), (c): Follows from Proposition 63.

Before we state the next proposition, we recall the following from De�nition

30 and Theorem 32:

(a) If P �M , then the left annihilator of P in R de�ned by

l(P ) = fr 2 R : rP = 0g

is a left ideal of R.

(b) If P �R M , then l(P ) C R.

Proposition 67 Let M be a faithful R-module. Then M is 2-prime if and only

if for all 0 6= A �R M , we have that l(A) = 0.

Proof. Suppose thatM is 2-prime and faithful, and let 0 6= A �R M . Then, by

de�nition, l(A):A = 0: Since M is 2-prime and A 6= 0, we have that l(A)M = 0:

Since M is faithful, l(A) = 0:

Conversely, Suppose M is not 2-prime. Then there exists some B � R and

some C �R M such that BC = 0 but BM 6= 0 and C 6= 0. Since C 6= 0, by the

given condition, l(C) = 0. Furthermore, since BC = 0, clearly we must have

that B � l(C) = 0 so that B = 0 and hence BM = 0, which is a contradiction.

Thus M is 2-prime.
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Corollary 68 If M is a faithful R-module, then M is 0-prime if and only if

for all 0 6= A CR M , we have that l(A) = 0:

Proof. Note that if A CR M , then l(A) C R. The rest of the proof follows as
in Proposition 67

Recall that if R is a near-ring and X � R, then X is called an m-system if

for all a; b 2 X, there exists a1 2 hai and b1 2 hbi such that a1b1 2 X. This

de�nition can be found in [21, De�nition 2.78]. In the de�nition that follows,

we extend this de�nition to near-ring modules. However, certain adjustments

together with various classi�cations were necessary.

De�nition 69 Let X �M where M is an R-module. Then X is called an:

(a) m0-system if 0 6= r 2 R and 0 6= x 2 X implies that rhxiR \X 6= ;.

(Recall that hxiR is the R-ideal of M generated by x).

(b) m2-system if 0 6= r 2 R and 0 6= x 2 X implies that r[x]R \X 6= ;.

(Recall that [x]R is the R-submodule of M generated by x).

(c) m3-system if 0 6= r 2 R and 0 6= x 2 X implies that rRx \X 6= ;.

(d) mc-system if 0 6= r 2 R and 0 6= x 2 X implies that rx 2 X.

Proposition 70 Let � = 0; 2; 3; c and let P CR M . Then P is �-prime if and

only if M r P is an m�-system.

Proof. We prove the case for � = 0. The others follow similarly.

Suppose that P is 0-prime. Let 0 6= r 2 R and 0 6= x 2 M r P . Suppose

that rhxiR \ (M r P ) = ;. Then clearly it must follow that rhxiR � P . Since

P is 0-prime, we have that rM � P or x 2 P . If rM � P , then since r 2 R

was arbitrary, RM � P which contradicts the de�nition of a 0-prime R-ideal. If

x 2 P , then x =2M rP which is again a contradiction. So rhxiR\ (M rP ) 6= ;.

Now suppose that M r P is an m0-system. Let 0 6= r 2 R and 0 6= x 2M

such that rhxiR � P . Suppose that x =2 P . Then 0 6= x 2MrP . SinceMrP is
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anm0-system, rhxiR\(MrP ) 6= ;: Hence there exists some a 2 rhxiR\(MrP ).

So a 2 rhxiR and a 2MrP ) a =2 P . This contradicts that rhxiR � P . Hence

x 2 P and therefore P is 0-prime.

If A C R, then we know that A is completely prime =) A is 3-prime =) A

is 2-prime =) A is 0-prime. Furthermore, if R is a near-ring with identity, then

the notions of a 2-prime ideal and a 3-prime ideal become equivalent. We show

that similar types of relationships exist among the R-ideals of M .

Proposition 71 Let P CR M . Then P is completely prime =) P is 3-prime

=) P is 2-prime =) P is 0-prime.

Proof. Suppose P is completely prime. Let a 2 R and m 2 M such that

aRm � P: Then, since a 2 R, we have a(am) 2 P . Since P is completely prime,

we have that aM � P or am 2 P . If aM � P , then we are done. If am 2 P ,

then again since P is completely prime, it follows that aM � P or m 2 P .

Hence P is 3-prime.

Suppose that P is 3-prime. Let A be a left R-subgroup of R and B be

an R-submodule of M such that AB � P . Let a 2 A and m 2 B. Then

aRm � ARB � AB � P . Since P is 3-prime, we have that aM � P or m 2 P .

Since a and m were arbitrary elements of A and B respectively, we conclude

that AM � P or B � P ; whence P is 2-prime.

Let P be 2-prime, and let A be an ideal of R and B be an R-ideal of M

such that AB � P . Then, clearly, A is a left R-subgroup of R and B is an

R-submodule of M . Since P is 2-prime, AM � P or B � P . So P is 0-prime.

Corollary 72 If M is an R-module, then M is completely prime =) M is

3-prime =)M is 2-prime =)M is 0-prime.

In general, a 0-prime R-ideal need not be 2-prime and a 2-prime R-ideal

need not be 3-prime. To show this, we present the following examples:

Example 73 Let K be the Klein�4�group;K = f0; 1; 2; 3g with multiplication

given by: r:3 = r and rb = 0 if b 2 f0; 1; 2g, r 2 K:We illustrate this in table

form:



26 CHAPTER 2. PRIMENESS IN NEAR-RING MODULES

� 0 1 2 3

0 0 0 0 0

1 0 0 0 1

2 0 0 0 2

3 0 0 0 3

Consider the R-module M = RR. Then M has no proper R-ideals and

f0; 2g is a proper R-submodule. Furthermore, f0g is a 0-prime R-ideal since R

is the only nonzero R-ideal and R2 6= f0g. However, f0g is not 2-prime since

2:f0; 2g = f0g but 2M 6= 0 and f0; 2g * f0g.

Example 74 Let R be the near-ring de�ned on Z3 = f0; 1; 2g by:

� 0 1 2

0 0 0 0

1 0 0 1

2 0 0 2

Let M = RR. Then M has no proper R-submodules; hence no proper R-

ideals. Since RM 6= 0; f0g is a 2-prime R-ideal. However, 1R1 = f0g but

1R=1M * f0g since 1:2 = 1 and also 1 =2 f0g. Therefore f0g is not a 3-prime

R-ideal.

Proposition 75 Let R be a near-ring with identity, 1, and let P be an R-ideal

of M . Then P is 2-prime if and only if P is 3-prime.

Proof. The fact that if P is 3-prime implies that it is 2-prime has already been

proved in Proposition 71 .

Now suppose that P is a 2-prime R-ideal. Let a 2 R and m 2 M such

that aRm � P . Then RaRm � RP � P . Since Ra is a left R-subgroup of R;

Rm is an R-submodule of M and since P is 2-prime, it follows that RaM � P

or Rm � P . In particular, since 1 2 R, it follows that 1:aM = aM � P or

1:m = m 2 P . Therefore P is 3-prime.

Proposition 76 If P is an equiprime R-ideal of an R-module M , then P is

3-prime.
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Proof. Let a 2 R and m 2 M such that aRm � P . Suppose aM * P .

Then a =2 (P : M). Since aRm � P and R is zerosymmetric, we have that

aRm� aR0 � P or arm� ar0 2 P for all r 2 R. Since P is equiprime, we have

that m = m� 0 2 P ; thus proving that P is 3-prime.

Corollary 77 If M is an equiprime R-module, then M is 3-prime.

In associative rings, the notions of 3-prime and equiprime (in fact, all our

notions of prime) coincide. However, in general, this is not true in the case of

near-rings and, hence, in the case of near-ring modules as the following example

demonstrates:

Example 78 Let R be the near-ring built on the cyclic group (Z5;+) with mul-

tiplication on R given by the following table:

� 0 1 2 3 4

0 0 0 0 0 0

1 0 1 1 1 1

2 0 2 2 2 2

3 0 3 3 3 3

4 0 4 4 4 4

Let M = RR. Then clearly M is 3-prime. However, M is not equiprime

since, for example:

2f1g4� 2f1g3 = 0 but 4� 3 6= 0.

If P CR M , then we recall that
�
P = (P : M) is an ideal of R. Now, if P

is a �-prime (� = 2; 3; c) R-ideal then does this imply that
�
P is also �-prime?

We investigate this in the propositions that follow. The case � = 0 is treated

separately.

Proposition 79 Let P be an R-ideal of M . Then:

(a) P is a 2-prime R-ideal of M implies that
�
P is a 2-prime ideal of R.

(b) P is a 3-prime R-ideal of M implies that
�
P is a 3-prime ideal of R.
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(c) P is a completely prime R-ideal of M implies that
�
P is a completely prime

ideal of R.

Proof. (a) : Let A;B be left R-subgroups of R such that AB �
�
P : Then

ABM � P , so that for all m 2 M , ABm � P . Since P is a 2-prime R-ideal

and Bm is an R-submodule of M , we have that AM � P or Bm � P for all

m 2 M . If AM � P , then A � (P : M) =
�
P and we are done. If Bm � P

for all m 2 M , then BM � P and hence B � (P : M) =
�
P . Therefore

�
P is a

2-prime ideal of R.

(b) : Let x; y 2 R such that xRy �
�
P . Suppose that y =2

�
P . Then yM * P

implies that there exists an m 2 M such that ym =2 P . Now xRy �
�
P implies

that xRym � P . Since P is a 3-prime R-ideal and ym =2 P , we must have that

xM � P ie. x 2
�
P . Thus

�
P is a 3-prime ideal of R.

(c) : Let x; y 2 R such that xy 2
�
P and suppose that y =2

�
P . Then yM * P

implies that there exists some m 2 M such that ym =2 P . Since xyM � P ,

x(ym) 2 P . But P is a completely prime R-ideal of M and ym =2 P . Hence

xM � P implies that x 2
�
P ; whence

�
P is a completely prime ideal of R.

Corollary 80 Let � = 2; 3; c. If M is a �-prime R-module, then (0 : M) is a

�-prime ideal of R.

Proposition 81 Let M be a faithful R-module and let � = 2; 3; c. Then, if M

is �-prime, R is a �-prime near-ring.

Proof. � = 2: Let A and B be left R-subgroups of R such that AB = 0.

Then (AB)M = 0 which implies that AB � (0 : M). Since M is 2-prime, so is

(0 : M). Hence it follows that A � (0 : M) or B � (0 : M) and thus AM = 0

or BM = 0. Since M is faithful, we have that A = 0 or B = 0.

� = 3: Let a; b 2 R such that aRb = 0. Then (aRb)M = 0 implies that

aRb � (0 : M). Since (0 : M) is 3-prime, a 2 (0 : M) or b 2 (0 : M) whence

aM = 0 or bM = 0. Once again the faithfulness of M implies that a = 0 or

b = 0, and hence R is a 3-prime near-ring.
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� = c: Similar to the previous case.

That P is a 0-prime R-ideal implies that
�
P is a 0-prime ideal of R, unfor-

tunately, does not follow as naturally as for the 2-prime, 3-prime and c-prime

cases. However, with certain restrictions on M , we �nd that the relationship

holds.

Proposition 82 Let P be a 0-prime R-ideal of a monogenic R-module M .

Then
�
P is a 0-prime ideal of R.

Proof. Let A;B be ideals of R such that AB �
�
P : Suppose that A *

�
P and

B *
�
P . Then we have that AM * P and BM * P . Since M is monogenic,

there exists m0 2 M such that Rm0 = M . Therefore, BM * P implies that

BRm0 * P . Furthemore, since B is an ideal of R; BR�B, and hence it follows

that BRm0 � Bm0. So Bm0 * P . From Lemma 35, Bm0 is an R-ideal of M

such that Bm0 * P . Since we also have that AM * P and that P is a 0-prime

R-ideal, it follows that ABm0 * P . So ABM * P implies that AB *
�
P which

is a contradiction. Therefore A �
�
P or B �

�
P implies that

�
P is a 0-prime ideal

of R.

Proposition 83 Let P be a 0-prime R-ideal of a tame R-module M . Then
�
P

is a 0-prime ideal of R.

Proof. Let A;B be ideals of R such that AB �
�
P . If B �

�
P , then we are done.

Suppose that B *
�
P . Then there exists m 2 M such that Bm * P . Now Bm

is an R-submodule of M and, since M is tame, Bm is also an R-ideal of M .

Furthermore, ABm � ABM � P . Since P is a 0-prime R-ideal and Bm * P ,

it must follow that AM � P . Hence A �
�
P implies that

�
P is 0-prime.

Corollary 84 If M is a 0-prime monogenic (or tame) R-module, then (0 :M)

is a 0-prime ideal of R.

Proposition 85 Let M be a faithful, monogenic (or tame) 0-prime R-module.

Then R is a 0-prime near-ring.
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Proof. Let A and B be ideals of R such that AB = 0: Then (AB)M = 0

implies that AB � (0 :M). Since (0 :M) is a 0-prime ideal of R, we have that

A � (0 : M) or B � (0 : M) whence AM = 0 or BM = 0. Since M is faithful,

A = 0 or B = 0 which implies that R is 0-prime.

The notions of monogenic and tame R-modules used in the preceding propo-

sitions are, in general, unrelated notions. In the example that follows, we show

that a tame R-module need not be monogenic. Thereafter we provide an exam-

ple of an R-module that is neither tame nor monogenic.

Example 86 Let R be the near-ring constructed on K4 = f0; 1; 2; 3g with mul-

tiplication on R given by the following table:

� 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 0 0

3 0 1 0 1

Let M = RR. Then the R-submodules of M are f0g; f0; 1g; f0; 2g and M

which are exactly the R-ideals of M . Hence M is a tame R-module.

However, for all m 2 M = RR we have Rm 6= M . Hence M is not mono-

genic.

Example 87 Let R be the near-ring constructed on K4 = f0; 1; 2; 3g with mul-

tiplication on R given by the following table:

� 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 0 1

Let M = RR. Then the R-submodules of M are f0g; f0; 1g; f0; 2g and M .

However, f0; 2g is not an R-ideal of M ; thus implying that M is not tame.

Furthermore, for all m 2M , Rm � f0; 1g. So Rm 6=M for all m 2M implies

that M is not monogenic.
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Now suppose that P is an R-ideal of M such that (P : M) is a �-prime

ideal of R for � = 0; 2; 3 and c. Does this imply that P is a �-prime R-ideal

of M? We investigate this in a later section when we introduce the notion of a

multiplication module. However, at present we have the following:

Lemma 88 Let P C R with P 6= R.

(a) If P is 0-prime then
R

P
is a faithful R-module and P =

�
0 :
R

P

�
R

:

(b) If P is 1-prime then there exists a 0-prime R-moduleM with P = (0 :M)R.

Proof. (a):
R

P
is an R-module with the natural operations. If p 2 P and

(r + P ) 2 R
P
, then p(r + P ) = pr + P = P and we have P �

�
0 :
R

P

�
R

: Now,

let a 2
�
0 :
R

P

�
R

. Hence aR � P and consequently < a > R � P: Since P is a

0-prime ideal we get < a >� P and thus a 2 P: Hence P =
�
0 :
R

P

�
R

and
R

P
is a faithful R-module.

(b): Let M =
R

P
. Since P is 1-prime, it is also 0-prime. Hence, from (a),

M is an R-module with P = (0 :M)R. We need to show that M is 0-prime. So

let A Cl R and B CR M such that AB = 0. Then, by Proposition 27, B =
L

P
for some left ideal L of R. Hence AB = 0 implies that AL � P . Since P is

1-prime, we have A � P = (0 : M)R or L � P . So AM = 0 or B = 0 implies

that M is 1-prime and, consequently, 0-prime.

Corollary 89 If R is a 0-prime near-ring, then RR is a faithful R-module.

Proposition 90 Let � = 2; 3; c and let P C R with P 6= R. Then there exists

a �-prime R-module M with (0 : M)R = P if and only if P is a �-prime ideal

of R.

Proof. If M is a �-prime R-module, then it follows from Corollary 80 that

P = (0 :M)R is a �-prime ideal of R.

For the converse, let P be a �-prime ideal of R. It follows from Lemma 88

that R
�
R

P

�
6= 0 and

�
0 :
R

P

�
R

= P in all three cases � = 2; 3; c. We, now,

consider the three cases separately.
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For the 2-prime case, let K 6 R and L 6R
R

P
such that KL = 0: Then,

by Proposition 27, L =
L1
P
for some left R-subgroup L1 of R. Hence we have

K

�
L1
P

�
= 0 and thus KL1 � P . Since P is a 2-prime ideal, it follows that

K � P =
�
0 :
R

P

�
R

or L1 � P whence K
�
R

P

�
= 0 or L = 0. Hence M =

R

P
is a 2-prime R-module.

For the 3-prime case, let m 2 R
P
and a 2 R such that aRm = 0:

If m = m1+P for some m1 2 R, we get aR(m1+P ) = aRm1+P = 0 which

implies that aRm1 � P: If m1 2 P; then m = 0 and we are done. Now suppose

m1 =2 P . Since P is a 3-prime ideal, we get a 2 P =
�
0 :
R

P

�
R

=) a

�
R

P

�
= 0:

Hence M =
R

P
is a 3-prime R- module.

For the c-prime case, let a 2 R and m = m1+P 2
R

P
for some m1 2 R such

that am = a(m1+P ) = am1+P = 0. Then am1 2 P , and since P is a c-prime

ideal, it follows that a 2 P =

�
0 :
R

P

�
R

or m1 2 P and thus a
�
R

P

�
= 0 or

m = m1 + P = 0. Hence M =
R

P
is a c-prime R-module.

Corollary 91 Let � = 2; 3; c and let P C R with P 6= R. Then R
P
is a �-prime

near-ring if and only if
R

P
is a �-prime R-module.

Proof. Let
R

P
be a �-prime near-ring. Then P is a �-prime ideal of R. By

Proposition 90, it follows that
R

P
is a �-prime R-module.

Conversely, if
R

P
is a �-prime R-module, then by Corollary 80,

�
0 :
R

P

�
R

is

a �-prime ideal of R. But P =
�
0 :
R

P

�
R

. Hence P is a �-prime ideal of R and

so
R

P
is a �-prime near-ring.

Corollary 92 Let P C R with P 6= R. Then R
P
is a 1-prime near-ring implies

that
R

P
is a 0-prime R-module.

Proof. Follows from Lemma 88.
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Thus far, we have considered M as an R-module. Now suppose that A is an

ideal of R. In what follows, we consider some prime relationships betweenM as

an R-module and M as an A-module. It is quite clear that if M is a completely

prime R-module, then M is a completely prime A-module. However, this result

does not follow easily in the �-prime cases for � = 0; 2; 3: For these cases, certain

restrictions were required on the near-ring or its substructures. Hence, before we

prove the next proposition we give the de�nition of an A-near-ring introduced

in [2].

De�nition 93 A near-ring R is called an A-near-ring if for any ideal A of R

and for any ideal B of A there exists n 2 N such that (< B >R)n � B.

Proposition 94 Let R be an A-near ring. If A C R and M is a 2-prime R

-module, then M is a 2-prime A-module.

Proof. Let B be a left A-subgroup of A and N a nonzero A-submodule of M

such that BN = 0: Since R is an A-near-ring there exists n 2 N such that

(<< B >A>R)
nN �< B >A N

Since BN = 0, we have B � (0 : N)A C A. Hence < B >A� (0 : N)A

implies < B >A N = 0. Therefore (<< B >A>R)nN = 0.

Let m be the minimal number such that (<< B >A>R)mN = 0:

If m = 1; then (<< B >A>R)N = 0. If N is also an R-submodule, then

since M is a 2-prime R-module we get (<< B >A>R)M = 0 or N = 0: If

N = 0; then we are done. So suppose N 6= 0: Hence (<< B >A>R)M = 0 and

therefore BM = 0: If N is not an R-submodule of M; then there exists t 2 N

such that Rt * N . Hence Rt is a nonzero R-submodule of M: Now we have:

(<< B >A>R)Rt � (<< B >A>R)t � (<< B >A>R)N = 0:

Since M is a 2-prime R-module and Rt 6= 0, we get (<< B >A>R)M = 0

and therefore BM = 0:

If m > 1; then (<< B >A>R)
m�1N 6= 0 and therefore there exists an

x 2 (<< B >A>R)m�2N �M such that (<< B >A>R)x 6= 0:
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Now, (<< B >A>R)(<< B >A>R)x = 0 and, again, since M is a 2-prime

R-module we get (<< B >A>R)M = 0: Hence it follows that BM = 0 and we

are done.

Proposition 95 Let R be a near-ring. If A is an invariant subgroup of R

such that A * (0 : M)R and M is a 3-prime R-module, then M is a 3-prime

A-module.

Proof. Since A * (0 :M)R we have AM 6= 0: Let a 2 A and m 2M such that

aAm = 0: If m = 0 then we are done. Suppose m 6= 0: If Am = 0; then we have

aRm � Am = 0 and since M is a 3-prime R -module, it follows that aM = 0:

So, again, we are done.

Now suppose Am 6= 0 and let 0 6= t = a1m 2 Am: Now, aRAm � aAm = 0:

Hence aRt = 0 and since M is a 3-prime R-module we have aM = 0: Hence M

is a 3-prime A-module.

Proposition 96 If M is a 2-prime (resp. 3-prime) R-module and 0 6= H CR
M; then H is a 2-prime (resp. 3-prime) R-module.

Proof. First, letM be a 2-prime R-module, and let A be a left R-subgroup of R

and B an R-submodule of H such that AB = 0: Since B is also an R-submodule

of M we get AM = 0 or B = 0: Hence AH = 0 or B = 0 and it follows that H

is a 2-prime R-module.

Now, let M be a 3-prime R-module and take a 2 R and h 2 H such that

aRh = 0. SinceM is 3-prime, we get that aM = 0 or h = 0: But aH � aM = 0.

Hence H is 3-prime.

Proposition 97 If A is any subset of a near-ring R and M is a c-prime R-

module, then M is a c-prime A-module.

Proof. Let a 2 A and m 2 M such that am = 0. Then a 2 R and since M is

a c-prime R-module, it follows that aM = 0 or m = 0.

Proposition 98 If M is a c-prime R-module and 0 6= H CR M , then H is a

c-prime R-module.
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Proof. Let a 2 R and h 2 H such that ah = 0. Since h 2 M and M is a

c-prime R-module, we have that aM = 0 or h = 0. So aH � aM = 0 or h = 0:

Hence H is also c-prime.

2.3 Semiprime Modules

As in the case of prime modules, in this section we generalise the concept of

semiprimeness from the near-ring R to any R-module M . However, we do not

delve as deeply into the theory of semiprime near-ring modules as we did for

prime near-ring modules. We present here some basic results analogous to those

obtained for semiprime near-rings or for prime near-ring modules.

De�nition 99 Let P be an R-ideal of an R-module M such that RM * P .

Then P is called:

(a) 0-semiprime if A2M � P implies AM � P for all ideals A of R.

(b) 1-semiprime if A2M � P implies AM � P for all left ideals A of R.

(c) 2-semiprime if A2M � P implies AM � P for all R-subgroups A of R.

(d) 3-semiprime if aRam � P implies am 2 P for all a 2 R and m 2M .

(e) completely semiprime ( c-semiprime) if a2m 2 P implies am 2 P for all

a 2 R and m 2M:

De�nition 100 An R-module M is called �-semiprime (� = 0; 1; 2; 3; c) if

RM 6= 0 and 0 is a �-semiprime R-ideal of M .

In Section 2.2, we included many equivalent de�nitions for the various types

of primes. For example, in Proposition 60, we proved that: "P is a 2-prime

R-ideal of an R-module M if and only if for all a 2 R and for all submodules

B of M such that aB � P , we have that aM � P or B � P". An analogue of

this proposition for a 2-semiprime R-ideal would be either:
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(a) P is a 2-semiprime R-ideal of M if and only if for all a 2 R and all

R-subgroups A of R such that a(AM) � P , we have aM � P ; or

(b) P is a 2-semiprime R-ideal of M if and only if for all a 2 R such that

a2M � P , we have aM � P .

The problem with (a) is that AM may only be a subset of M . Furthermore,

if we reconstruct (b) for a 0-semiprime R-ideal and a 1-semiprime R-ideal, the

results would imply that the three types of semiprime R-ideals are equivalent

structures. This we already know is in general not true if we consider M = RR.

Hence results obtained for prime modules may not follow naturally to semiprime

modules as they do in the near-ring case. However, we do have some analogous

results.

Proposition 101 Let P be an R-ideal of M . Then P is c-semiprime =) P is

3-semiprime =) P is 2-semiprime =) P is 1-semiprime =) P is 0-semiprime.

Proof. Suppose that P is c-semiprime. Let a 2 R and m 2 M such that

aRam � P . Then a4m = a(aa)am 2 aRam � P . Hence (a2)2m 2 P . Since

P is c-semiprime, a2m 2 P . Applying this again, we get that am 2 P , which

implies that P is 3-semiprime.

Now suppose that P is 3-semiprime. Let A be a left R-subgroup of R

such that A2M � P . Then a2m 2 P for all a 2 A and m 2 M . Now,

aRam � ARAM � A2M � P for all a 2 A;m 2 M . Since P is 3-semiprime,

for all a 2 A and m 2 M we get am 2 P . Hence AM � P and thus it follows

that P is 2-semiprime.

The rest of the proof follows as in Proposition 71.

Proposition 102 If R is a near-ring with identity, then P CR M is 2-semiprime

if and only if P is 3-semiprime.

Proof. Suppose that P is 2-semiprime. Let a 2 R and m 2 M be such that

aRam � P . Then (Ra)2m = RaRam � RP � P . Since P is 2-semiprime,

Ram � P and hence, since 1 2 R, we get am = 1:am 2 P .
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It is well known that in a near-ring R, a �-prime ideal is clearly �-semiprime

for � = 0; 1; 2; 3; c. In an R-module M , the same follows easily for a �-prime

R-ideal ofM where � = 2; 3; c. However, in the 0-prime or the 1-prime case, this

result is not trivial, unless we chooseM to be a monogenic or a tame R-module.

Proposition 103 Let � = 2; 3; c. If P is a �-prime R-ideal of an R-module

M , then P is also �-semiprime.

Proof. � = 2 : Let A be a left R-subgroup of R such that A2M � P . Then

A2 � (P : M). Now, since P is 2-prime, (P : M) is also 2-prime and hence,

being an ideal of R, it is also 2-semiprime. Therefore A � (P : M) and so

AM � P implies that P is 2-semiprime.

� = 3 : Let a 2 R and m 2M such that aRam � P . If m 2 P , then am 2 P

and we are done. So supposem =2 P . Then, since P is an R-ideal, am =2 P . Since

P is a 3-prime R-ideal, by Proposition 64, we have that (P : Ram) = (P :M).

Then:

aRaRam � aRam � P =) aRa � (P : Ram) = (P :M).

Now, since (P :M) is a 3-prime ideal of R, it is also 3-semiprime. Hence it

follows that a 2 (P :M). So aM � P implies am 2 P whence P is 3-semiprime.

� = c : Since P is a c-prime R-ideal of M , (P : M) is a c-prime ideal of

R and hence (P : M) is c-semiprime. Now let a 2 R and m 2 M such that

a2m 2 P . If m 2 P , then am 2 P and we are done.

Suppose m =2 P . Then, by Proposition 66, we have that (P : m) = (P :M).

So we have:

a2m 2 P =) a2 2 (P : m) =) a2 2 (P :M).

Since (P :M) is c-semiprime, a 2 (P :M) and hence aM � P =) am 2 P .

This proves that P is a c-semiprime R-ideal.

Proposition 104 LetM be a monogenic R-module with generator m0. Then P

is a �-prime (� = 0; 1) R-ideal of M implies that P is a �-semiprime (� = 0; 1)

R-ideal of M .
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Proof. Let A C R such that A2M � P . Then A(AM) � P implies that

A(Am0) � P . By Lemma 35, Am0 is an R-ideal of M and since P is 0-prime,

we have that AM � P or Am0 � P . If AM � P , then we are done.

On the other hand, if Am0 � P , then AM = ARm0 � Am0 � P . So, again

AM � P . Hence P is 0-semiprime.

The 1-prime case follows in exactly the same way.

Proposition 105 Let M be a tame R-module. Then P is a 0-prime (or 1-

prime) R-ideal of M implies that P is a 0-semiprime (or 1-semiprime) R-ideal

of M .

Proof. Let A C R such that A2M � P . Then A(AM) � P implies that

A(Am) � P for every m 2 M . Since M is tame, Am is an R-ideal of M and

since P is 0-prime, we have that AM � P or Am � P . If AM � P , then we

are done.

If Am � P , then Am � P for every m 2 M . So, again it follows that

AM � P . Hence P is 0-semiprime.

Again, the 1-prime case follows in exactly the same way.

We have seen already that if P is a 2-prime (3-prime or c-prime) R-ideal,

then
�
P = (P : M) is a 2-prime (3-prime or c-prime) ideal of R. Furthermore,

if M is a monogenic (or tame) R-module, then
�
P is 0-prime whenever P is

0-prime. We show that similar results also hold in the case of semiprime ideals.

Furthermore, for the 0-prime, 1-prime and 2-prime case, we show that their

converses also hold.

Proposition 106 Let P be an R-ideal of the R-module M and let
�
P be the

corresponding ideal of R. Then:

(a) P is a 0-semiprime R-ideal of M if and only if
�
P is a 0-semiprime ideal of

R.

(b) P is a 1-semiprime R-ideal of M if and only if
�
P is a 1-semiprime ideal of

R.
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(c) P is a 2-semiprime R-ideal of M if and only if
�
P is a 2-semiprime ideal of

R.

Proof. (a) Let A C R such that A2 �
�
P . Then A2M � P . Since P is

0-semiprime, AM � P . So A �
�
P implies that

�
P is 0-semiprime.

Conversely, let A C R such that A2M � P . Then A2 �
�
P . Since

�
P is a

0-semiprime ideal of R, it follows that A �
�
P : Hence AM � P implies that P

is a 0-semiprime R-ideal.

(b) Let A be a left ideal of R such that A2 �
�
P . The rest of the proof follows

as in (a).

(c) Let A be a left R-subgroup of R such that A2 �
�
P . The rest of the proof

follows as in (a).

Proposition 107 Let P be an R-ideal of M . Then:

(a) P is a 3-semiprime R-ideal of M implies that
�
P is a 3-semiprime ideal of

R:

(b) P is a c-semiprime R-ideal of M implies that
�
P is a c-semiprime ideal of

R

Proof. (a) If a 2 R such that aRa �
�
P , then aRaM � P implies that

aRam � P for all m 2 M . Since P is 3-semiprime, am 2 P for all m 2 M .

Hence aM � P implies that a 2
�
P . So

�
P is 3-semiprime.

(b) Let a 2 R such that a2 2
�
P . Then a2m 2 P for all m 2 M . Since P

is c-semiprime, it follows that am 2 P for all m 2 M . Therefore aM � P and

hence a 2
�
P . So

�
P is c-semiprime.

Whether the converses of the statements in the above proposition hold or

not is still an open question. However, we do have the following observation:

Corollary 108 Let R be a near-ring with identity. Then P is a 3-semiprime

R-ideal of M if and only if
�
P is a 3-semiprime ideal of R.
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Proof. Follows from the fact that 2-semiprime and 3-semiprime structures are

equivalent in both R and M when R has identity.

2.4 s-Prime Modules

In [22], van der Walt de�ned the notion of an s-system: "A subset S of a near-

ring R is called an s-system if S contains a multiplicative system S� such that

for every s 2 S, we have hsi \ S� 6= ;". He then called an ideal A of R an

s-prime ideal if RrA is an s-system. In [3], Birkenmeier et al called an ideal A

of a near-ring R nilprime if A is 0-prime and
R

A
has no nonzero nil ideals. They

then went on to prove that every s-prime near-ring is a nilprime near-ring. In

this section, we generalise the approach adopted by Birkenmeier et al to any

R-module M . However, once again we identify various types.

De�nition 109 Let P be an R-ideal of an R-module M such that RM 6= 0.

Let � = 0; 2; 3. Then P is called �-s-prime if:

(a) P is �-prime.

(b)
R

(P :M)R
contains no nonzero nil ideals (ie. for every A C R such that

A * (P :M), there exists an a 2 Ar (P :M) such that anM * P for all

n 2 N).

If we transfer the above de�nition to the moduleM itself, then we have that

M is �-s-prime if M is �-prime and
R

(0 :M)R
has no nonzero nil ideals (ie. for

every A C R, A * (0 :M), there exists an a 2 Ar (0 :M) such that anM 6= 0

for all n 2 N).

Furthermore, it is well kwown that the nil radical of a near-ring R is de�ned

as: @(R) =
P
fA C R : A is a nil ideal of Rg. With this in mind, we restate

De�nition 109 as follows:

De�nition 110 Let � = 0; 2; 3 and RM 6= 0. Then P CR M is called �-s-

prime if P is �-prime and @
�

R

(P :M)R

�
R

= 0.
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It is clear that every �-s-prime R-ideal (R-module) is �-prime for � = 0; 2; 3.

Furthermore, in section 2.2, we proved the following results for an R-ideal P of

M :

(a) P is 3-prime =) P is 2-prime =) P is 0-prime. (Note here that we pro-

vided examples to show that these three types of primes are nonequivalent

in general. We can use the same examples to conlude the nonequivalence

of the three types of s-primes).

(b) If R has identity, then P is 2-prime () P is 3-prime.

(c) For � = 2; 3, if P is �-prime, then
�
P = (P :M) C R is �-prime.

(d) If P is 0-prime and M is a monogenic (or tame) R-module, then
�
P C R is

0-prime.

By applying the above results and De�nition 109, we conclude the following

string of results with respect to a �-s-prime R-ideal P of an R-module M (or

with respect to M itself).

Proposition 111 P (orM) is 3-s-prime =) P (orM) is 2-s-prime =) P (or

M) is 0-s-prime. Furthermore, if R has identity, then P (or M) is 2-s-prime

() P (or M) is 3-s-prime.

Proposition 112 Let � = 2; 3. Then:

(a) P CR M is �-s-prime implies
�
P C R is also �-s-prime.

(b) M is a �-s-prime module implies (0 :M) is a �-s-prime ideal of R.

Proposition 113 Let M be a monogenic (or tame) R-module. Then:

(a) P CR M is 0-s-prime implies
�
P C R is also 0-s-prime.

(b) M is a 0-s-prime R-module implies (0 :M) is a 0-s-prime ideal of R.

Proposition 114 Let � = 2; 3 and let P be a �-s-prime ideal of R such that

P 6= R. Then there exists a �-s-prime R-module M with P = (0 :M).
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Proof. Since P is �-prime, from Proposition 90, we know that
R

P
is a nonzero

R-module,
R

P
is �-prime and P =

�
0 :
R

P

�
R

. So let M =
R

P
. Since M is

�-prime, the �rst condition of De�nition 109 is satis�ed.

For the second condition, since P is a �-s-prime ideal, it follows from the

de�nition of an s-prime ideal that
R

P
has no nonzero nil ideals.

But P =
�
0 :
R

P

�
R

. Hence
R

(0 : RP )R
=

R

(0 :M)R
has no nonzero nil ideals.

So M is a �-s-prime R-module.

Corollary 115 If P C R with P 6= R, then there exists a 2-s-prime (3-s-prime)
R-module M with P = (0 : M)R if and only if P is a 2-s-prime (3-s-prime)

ideal.

Proposition 116 Let M be a 2-s-prime (3-s-prime) R-module and let P be an

R-ideal of M . Then P is a 2-s-prime (3-s-prime) R-module.

Proof. From Proposition 96, P is a 2-prime (3-prime) R-module. Hence we

need only show that
R

(0 : P )R
contains no nonzero nil ideals.

Since M is 2-s-prime (3-s-prime),
R

(0 :M)R
contains no nonzero nil ideals.

But (0 : M)R � (0 : P )R implies that
R

(0 : P )R
� R

(0 :M)R
. So

R

(0 : P )R
also

contains no nonzero nil ideals.

Before we prove the next proposition, we state the following lemma from [3,

Corollary 12]:

Lemma 117 If R is an A-near-ring and I C R, then @(I) = I \ @(R).

Proposition 118 Let R be an A-near-ring and let A C R. If M is a 2-s-prime

R-module, then M is a 2-s-prime A-module.

Proof. It follows from Proposition 94 that M is a 2-prime A-module. So

we need only show that @
�

A

(0 :M)A

�
= 0. Since M is 2-s-prime, we know

that @
�

R

(0 :M)R

�
= 0. Furthermore, A \ (0 : M)R = (0 : M)A. Hence
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it follows that
A

(0 :M)A
=

A

[A \ (0 :M)R]
�=
[A+ (0 :M)R]

(0 :M)R
C R

(0 :M)R
.

Therefore, since
A

(0 :M)A
C R

(0 :M)R
, it follows from the previous lemma

that @
�

A

(0 :M)A

�
� @

�
R

(0 :M)R

�
= 0 and we are done.

Corollary 119 Let R be an A-near-ring and A C R. If M is a 3-s-prime

R-module, then M is a 3-s-prime A-module.

Proof. It follows from Proposition 95 that M is a 3-prime A-module. The rest

of the proof follows as for the previous proposition.

2.5 Strongly Prime Modules

Strongly prime rings were originally introduced by Handelman and Lawrence

[15]. They de�ned a nonzero module M of a ring R to be strongly prime if:

for all 0 6= m 2 M , there exists a �nite subset F of R (depending on

m) such that if a 2 R and aFm = 0, then a = 0:

If R is a near-ring andM is an R-module, the above de�nition can be used in

exactly the same way. (We will refer to this de�nition as: HL-strongly prime).

Beachy [1] introduced another notion of a strongly prime ring module. He

de�ned a nonzero module M of a ring R to be strongly prime if:

for each m0 2 M and 0 6= m 2 M , there exists a �nite subset F of R

such that a 2 R and aFm = 0 implies am0 = 0. (We will refer to this de�nition

as: Beachy-strongly prime).

Groenewald [10] extended the Handelman-Lawrence de�nition to near-rings

and de�ned a near-ring R to be right strongly prime if for every 0 6= a 2 R,

there exists a �nite subset F of R such that if r 2 R and aFr = 0, then r = 0.

Analogously, a near-ring R is de�ned to be left strongly prime if r(Fa) = 0

implies r = 0. Furthermore, an ideal P of R is called left strongly prime if
R

P
is

a left strongly prime near-ring. In this section we generalise these ideas to any

R-module M .
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De�nition 120 Let M be an R-module such that RM 6= 0. Then:

(a) M is said to be (left) strongly prime if for all 0 6= m 2 M , there exists a

�nite subset F = fr1; r2; :::; rng � R (depending on m) such that a 2 R

and aFm = 0 implies aM = 0:

(b) An R-ideal P of M is (left) strongly prime if RM * P and
M

P
is a (left)

strongly prime module. (ie. for all m 2M rP , there exists a �nite subset

F of R such that a 2 R and aFm � P implies that aM � P ).

Hereafter we shall refer to left strongly prime simply as strongly prime.

Furthermore, if we refer to a moduleM as being strongly prime we would mean

that it is strongly prime in terms of our de�nition above. It is quite clear (proof

can be seen in the proposition that follows) that a moduleM of a near-ring R is

HL-strongly prime =) M is Beachy-strongly prime =) M is strongly prime.

To get equivalence amongst the three de�nitions, we impose some additional

conditions. However, we �rst state the following de�nition:

De�nition 121 An R-module M is said to be cofaithful if there exists a �nite

subset F of M such that a 2 R and aF = 0 implies a = 0.

Proposition 122 Let M be an R-module of the near-ring R. Then the follow-

ing are equivalent:

(a) M is HL-strongly prime.

(b) M is cofaithful and Beachy-strongly prime.

(c) M is faithful and strongly prime.

Proof. (a)) (b): If M is HL-strongly prime, then for each 0 6= m 2M , there

exists a �nite F � R such that a 2 R and aFm = 0 implies a = 0. So for each

m0 2M it also follows that am0 = 0 and thereforeM is Beachy-strongly prime.

To show that M is cofaithful, choose F 0 = Fm �M and the result follows.

(b)) (c): Suppose M is cofaithful and Beachy-strongly prime. Since M is

cofaithful, it is clearly also faithful and there exists F 0 = fm1;m2; :::;mtg �M
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such that r 2 R and rF 0 = 0 =) r = 0. Let 0 6= m 2 M . Then, since M

is Beachy-strongly prime, for each mi 2 F 0 (1 � i � t) there exists a �nite

Fi � R such that a 2 R and aFim = 0 =) ami = 0. Now let F = [Fi where

i = 1; 2; :::; t: Then aFm = 0 =) a([Fi)m = 0 =) aFim = 0 =) ami = 0 for

all i = 1; 2; :::; t. Thus aFm = 0 =) aF 0 = 0 =) a = 0. Hence aM = 0 and M

is strongly prime.

(c)) (a): Since M is strongly prime, for each 0 6= m 2 M , there exists

a �nite F � R such that a 2 R and aFm = 0 implies aM = 0. Since M is

faithful, a = 0 and so M is HL-strongly prime.

Proposition 123 If M is a strongly prime R-module, then M is 3-prime.

Proof. Let a 2 R and m 2M such that aRm = 0: Suppose m 6= 0: Since M is

strongly prime, there exists a �nite subset F of R such that aFm � aRm = 0

implies that aM = 0. Hence M is 3-prime.

Proposition 124 LetM be a strongly prime R-module. Then for every nonzero

R-submodule S of M , there exists a �nite subset F = fs1; s2;:::; sng � S such

that a 2 R and aF = 0 implies aM = 0:

Proof. Let 0 6= S �R M and 0 6= m 2 S. Since M is left strongly prime, there

exists a �nite subset F = fr1; r2; :::; rng � R such that a 2 R and aFm = 0

implies that aM = 0: Let F1 = Fm = fr1m; r2m; :::; rnmg. Then F1 � S since

S is an R-submodule of M . Furthermore, aF1 = 0 =) aFm = 0 and hence it

follows that aM = 0.

Proposition 125 Let M be an R-module such that for every 0 6= m 2M there

exists an r 2 R such that rm 6= 0. If for every nonzero R-submodule S of M ,

there exists a �nite subset F = fs1; s2; :::; sng � S such that a 2 R and aF = 0

implies aM = 0, then M is strongly prime.

Proof. Let 0 6= m 2 M . Since Rm is a nonzero R-submodule of M , there

exists a �nite subset F = fs1m; s2m; :::; snmg � Rm such that a 2 R and
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aF = 0 imply aM = 0. Let F1 = fs1; s2; :::; sng � R. Then it follows that

aF1m = 0 =) aF = 0 =) aM = 0. Hence M is strongly prime.

Corollary 126 If R is a near-ring with identity then the R-moduleM is strongly

prime if and only if for every nonzero R-submodule S of M , there exists a �nite

subset F = fs1; s2; :::; sng � S such that aF = 0 implies aM = 0.

Proof. Let 0 6= m 2 M . Since R has identity, 1:m = m 6= 0. So the proof

follows from the previous two propositions.

Proposition 127 Let M be a HL-strongly prime R-module. Then for every

nonzero R-submodule S ofM , there exists a �nite subset F = fs1; s2; :::; sng � S

such that a 2 R and aF = 0 implies a = 0.

Proof. Follows by a similar argument used in the proof of Proposition 124.

Proposition 128 Let M be an R-module such that for every 0 6= m 2M there

exists an r 2 R such that rm 6= 0. If for every nonzero R-submodule S of M ,

there exists a �nite subset F = fs1; s2; :::; sng � S such that a 2 R and aF = 0

implies a = 0, then M is HL-strongly prime.

Proof. Follows by a similar argument used in the proof of Proposition 125.

Corollary 129 If R is a near-ring with identity then the R-module M is HL-

strongly prime if and only if for every nonzero R-submodule S of M , there exists

a �nite subset F = fs1; s2; :::; sng � S such that aF = 0 implies a = 0.

Proposition 130 If R is a near-ring with identity and M is an R-module with

no nonzero, proper R-submodules then M is Beachy-strongly prime.

Proof. Let m 2 M and 0 6= m1 2 M . Since R has an identity element, we

have that Rm1 is a nonzero R-submodule of M . Hence, from our assumption,

we have Rm1 = M . So there exists an r 2 R such that m = rm1. If we let

F = frg and aFm1 = 0, then am = arm1 = 0. Thus M is Beachy-strongly

prime:
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Example 131 Let F be a �eld, R = F � F and RM = 0 � F . Then RM

has no nonzero, proper R-submodules. So, from Proposition 130, it follows that

RM is Beachy-strongly prime. Since RM is clearly not faithful, it follows from

Proposition 122, that RM is not HL-strongly prime.

Although, in general, a 3-prime R-module is not strongly prime, we have the

following observation:

Proposition 132 Let M be an R-module. Then the following are equivalent:

(a) M is strongly prime.

(b) M is 3-prime and for every nonzero submodule S of M , there exists a

�nite subset F = fs1; s2;:::; sng � S such that a 2 R and aF = 0 implies

aM = 0:

Proof. (a)) (b): Follows from Propositions 123 and 124.

(b)) (a): Let 0 6= m 2 M . Then Rm 6= 0 (for if Rm = 0, then aRm = 0

for all a 2 R implies that aM = 0 for all a 2 R and hence RM = 0. Since M

is 3-prime, this is not possible). Hence there exists an r 2 R such that rm 6= 0.

So the result follows from Proposition 125.

Proposition 133 If P is a c-prime R-ideal of M , then P is a strongly prime

R-ideal.

Proof. Let m 2M r P . Since P is c-prime, RM * P and (P : m) = (P :M).

Furthermore, if Rm � P then R � (P : m) = (P : M) implies RM � P is a

contradiction. Hence Rm * P .

Let a 2 R such that am =2 P and let F = fag. If r 2 R such that rFm � P ,

we get r 2 (P : Fm) = (P : am). But am =2 P implies that (P : am) = (P :M).

Hence r 2 (P :M) implies rM � P whence P is strongly prime.

Corollary 134 If P is a 3-prime R-ideal of M and (P : m) C R for every

m 2M r P , then P is a strongly prime R-ideal.
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Proof. Since P is a 3-prime R-ideal and (P : m) C R for every m 2 M r P ,

it follows from Proposition 66, that P is a c-prime R-ideal of M . So the result

follows.

Since any 3-prime R-module is also 0-prime, clearly it follows that any

strongly prime R-module is also 0-prime. However, a 0-prime R-module is,

in general, not strongly prime - not even in the case of a zerosymmetric near-

ring. We demonstrate this in the following example taken from Groenewald

[10]:

Example 135 Let R be the near-ring with addition and multiplication de�ned

as in the following tables:

+ 0 a b c x y

0 0 a b c x y

a a 0 x y c b

b b x 0 y a c

c c y x 0 b a

x x b c a y 0

y y c a b 0 x

� 0 a b c x y

0 0 0 0 0 0 0

a 0 0 a a 0 0

b 0 0 c b 0 0

c 0 0 b c 0 0

x 0 0 x x 0 0

y 0 0 y y 0 0

Then R is a zerosymmetric near-ring. Consider the R-module M = RR.

Then M has no proper R-ideals. Furthermore, f0g is a 0-prime R-ideal of M

since R2 6= f0g. Hence M is a 0-prime R-module. However, M is not strongly

prime since for any subset F of R, aFx = 0 but a 6= 0.

Proposition 136 If P is a strongly prime R-ideal of M , then there exists a

�nite subset F of R such that (P : Fm) = (P :M) for all m 2M r P .

Proof. Let m 2M r P . Since P is strongly prime, there exists a �nite subset

F of R such that a 2 R and aFm � P =) aM � P . Hence r 2 (P : Fm) =)

rFm � P =) rM � P =) r 2 (P :M), so that we have (P : Fm) � (P :M).

The other inclusion is obvious.

Nicholson and Watters [20] de�ned the notion of an fm-system for a subset

X of a ring moduleM based on the Handelman-Lawrence de�nition of a strongly
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prime ring. We adopt their idea and provide the following de�nition of an Fm-

system for a near-ring module M :

De�nition 137 Let R be a near-ring. A nonempty subset X of an R-module

M is called an Fm-system if for each m 2 X, there exists a �nite subset F of

R such that aFm \X 6= ; for all a =2 (0 :M).

Proposition 138 An R-ideal P of M is strongly prime if and only if M r P

is an Fm-system.

Proof. Suppose that P CR M is strongly prime. Then
M

P
6= 0 (for, if M

P
= 0,

thenM � P implies that RM � P contradicts the de�nition of a strongly prime

R-ideal). Hence M r P 6= ;. Let m 2M r P . Then, since P is strongly prime,

there exists a �nite subset F of R such that a 2 R and aFm � P implies that

aM � P . Suppose there exists r =2 (P : M) such that rFm \ (M r P ) = ;.

Then clearly this implies that rFm � P but rM * P , which contradicts that P

is a strongly prime R-ideal of M: Hence rFm\ (M rP ) 6= ; for all r 2 (P :M)

and so M r P is an Fm-system.

Now assume that M r P is an Fm-system. Let m 2 M r P . Then there

exists a �nite subset F of R such that aFm\ (M r P ) 6= ; for all a =2 (P :M).

Let r 2 R be such that rFm � P . If rM * P , then r =2 (P : M) implies

that rFm \ (M r P ) 6= ;. So there exists an x 2 M such that x 2 rFm and

x 2 M r P and hence x 2 rFm but x =2 P . This contradicts that rFm � P .

So rM � P whence P is a strongly prime R-ideal of M .

Proposition 139 If P is a strongly prime R-ideal of M , then
�
P = (P :M) is

a strongly prime ideal of R.

Proof. Let a 2 R r (P : M). Then aM * P implies that there exists m 2 M

such that am =2 P . So am 6= 0. Since P is stongly prime in M , for this

0 6= am 2 M there exists a �nite subset F of R such that if b 2 R and

bFam � P , then bM � P . Now, if bFa � (P : M), then it follows that

bFaM � P =) bFam � P =) bM � P =) b 2 (P : M). Hence, by

de�nition, (P :M) is a strongly prime ideal of R.
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Corollary 140 If M is a strongly prime R-module, then (0 : M) is a strongly

prime ideal of R.

Proof. Replace P by the 0-ideal in the previous proof.

Proposition 141 If M is a faithful R-module such that M is strongly prime,

then R is a strongly prime near-ring.

Proof. Let 0 6= a 2 R. Since M is strongly prime, (0 : M) is a strongly

prime ideal of R. Hence there exists a �nite subset F of R such that r 2 R and

rFa � (0 : M) implies that r 2 (0 : M). So rM = 0 and, since M is faithful,

we have that r = 0.

So rFa = 0 =) rFa � (0 :M) =) r = 0. Therefore, R is a strongly prime

near-ring.

Proposition 142 Let P C R with P 6= R. Then P is a strongly prime ideal of
R if and only if there exists a strongly prime R-module M with P = (0 :M)R.

Proof. Let P be a strongly prime ideal of R with P 6= R. We know that R
P
is an

R-module with natural operations. Furthermore, since P is strongly prime, P is

3-prime and hence 0-prime. So by Lemma 88, we have that P =
�
0 :
R

P

�
R

:We

show that
R

P
is a strongly prime R-module. Let a+P 2 R

P
where a =2 P . Since

P is strongly prime, there exists a �nite subset F of R such that r 2 R and

rFa � P implies that r 2 P . Now for this F , we get: rF (a+P ) = rFa+P � P

since rFa � P . Hence rF (a+ P ) � P implies that r 2 P and so R
P
is strongly

prime. We let M =
R

P
.

For the converse, if M is a strongly prime R-module then (0 : M)R is a

strongly prime ideal of R. Since P = (0 :M)R, the result follows.

Corollary 143 Let P C R with P 6= R. Then R
P
is a strongly prime near-ring

if and only if
R

P
is a strongly prime R-module.
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Proof. If
R

P
is a strongly prime near-ring, then P is a strongly prime ideal of

R. Hence, by Proposition 142, M =
R

P
is a strongly prime R-module.

On the other hand,
R

P
is a strongly prime R-module implies that

�
0 :
R

P

�
R

is a strongly prime ideal of R. But, by Proposition 142, P =
�
0 :
R

P

�
R

. Hence

P is a strongly prime ideal of R and it follows that
R

P
is a strongly prime

near-ring.

Proposition 144 Let A C R, A 6= (0 : M) and M be a strongly prime R-

module. Then M is a strongly prime A-module.

Proof. Let 0 6= m 2 M . Since M is a strongly prime R-module, there exist a

�nite subset F of R such that a 2 A � R and aFm = 0 implies that aM = 0.

We consider the R-submodule, Am of M .

If Am = 0, then for every a 2 A, we have aAm � Am = 0. Since M is

a strongly prime R-module, we know that M is also a 3-prime R-module and

hence, from Proposition 95, M is a 3-prime A-module. Therefore, since m 6= 0,

it must follow that aM = 0 for all a 2 A and consequently AM = 0 which

contradicts A 6= (0 :M). So Am 6= 0.

Since Am 6= 0, there exists b 2 A such that bm 6= 0. Hence there exists a

�nite subset, F 0 � R, such that a 2 A � R and aF 0(bm) = 0 implies aM = 0.

If we let F1 = F 0b, then since A C R we have F1 � A and hence we get

aF1m = a(F 0b)m = aF 0(bm) = 0 which implies aM = 0. Therefore M is a

strongly prime A-module.

Proposition 145 If M is a strongly prime R-module and H CR M , then H is

a strongly prime R-module.

Proof. Let a 2 R and 0 6= h 2 H. Then, since 0 6= h 2 M and M is strongly

prime, there exists a �nite subset F of R such that aFh = 0 implies that

aM = 0. Hence aFh = 0 implies aH � aM = 0 and, therefore, H is strongly

prime.
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2.6 Multiplication modules

In the previous sections, we de�ned various types of prime R-ideals (modules)

and we were easily able to prove that if an R-ideal P of M satis�ed a certain

prime condition, then so did the corresponding ideal
�
P = (P :M) of R. However

the converse relation turned out to be problematic in many situations, especially

since it is di¢ cult to construct an R-ideal of M by starting with an ideal of R.

To overcome this problem, we now introduce the notion of a multiplication

module.

De�nition 146 Let M be an R-module. Then:

(a) C �M is called a multiplication set if
�
CM = C.

(b) m 2 M is called a multiplication element if the singleton set fmg is a

multiplication set.

Note that (b) above translates to gfmgM = m. For future applications we

will simply write gfmg as em.
De�nition 147 Let M be an R-module. Then:

(a) M is called a 0-multiplication module if every R-ideal of M is multiplica-

tion set.

(b) M is called a 2-multiplication module if every R-submodule of M is mul-

tiplication set.

(c) M is called a c-multiplication module if every m 2 M is a multiplication

element.

The three types of multiplication modules de�ned above are, in general,

nonequivalent. We demonstrate the existence of �-multiplication (� = 0; 2; c)

modules and their nonequivalence with the following examples:

Example 148 Let R be the near-ring constructed on K4 = f0; 1; 2; 3g with

multiplication on R given by the following table:
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� 0 1 2 3

0 0 0 0 0

1 0 0 0 1

2 0 1 2 2

3 0 1 2 3

Let M = RR. Then the R-ideals of M are f0g; f0; 1g and M . Clearly,gf0gM = f0g and fMM = M . Furthermore, f̂0; 1g = f0; 1g implies that

f̂0; 1gM = f0; 1g. Hence M is a 0-multiplication module. However, f0; 2g

is an R-submodule of M such that f̂0; 2gM = f0gM = f0g 6= f0; 2g. So M is

not a 2-multiplication module.

Example 149 Let R be the near-ring constructed on Z6 = f0; 1; 2; 3; 4; 5g with

multiplication given by the following table:

� 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 0 1 1

2 0 2 2 0 2 2

3 0 3 3 0 3 3

4 0 4 4 0 4 4

5 0 5 5 0 5 5

Let M = RR. Then the R-submodules of M are f0g; f0; 3g and M withgf0gM = f0g; f̂0; 3gM = f0; 3g and fMM = M . So M is a 2-multiplication

module. However, for any m 6= 0 we have gfmgM 6= fmg which implies that M

is not a c-multiplication module.

Example 150 Let R be the near-ring constructed on K4 = f0; 1; 2; 3g with

multiplication on R given by the following table:

� 0 1 2 3

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
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Let M = RR. Then for all m = 0; 1; 2; 3 we have emM = mM = m. Hence

M is a c-multiplication module.

Proposition 151 LetM be an R-module. ThenM is a c-multiplication module

=)M is a 2-multiplication module =)M is a 0-multiplication module.

Proof. Suppose thatM is a c-multiplication module. Let A be an R-submodule

of M . Since M is a c-multiplication module, for each a 2 A, we have �aM = a.

Hence
�
AM = A, thus proving that M is a 2-multiplication module.

Now suppose that M is a 2-multiplication module. Let A CR M . Since R
is zerosymmetric, A is an R-submodule of M . Since M is a 2-multiplication

module, we have
�
AM = A and the proof is complete.

At the outset, we did state that all near-rings in this thesis will be zerosym-

metric. This condition, although not speci�cally repeated in Proposition 151,

is a necessity for the truth of this proposition. We justify our claim with the

following counter example:

Example 152 Let R be the near-ring constructed on K4 = f0; 1; 2; 3g with

multiplication on R de�ned by the following table:

� 0 1 2 3

0 0 0 0 0

1 1 1 1 1

2 0 1 2 3

3 1 0 3 2

Then, clearly, R is not zerosymmetric. LetM = RR. Then the R-submodules

ofM are f0g; f0; 1g andM with gf0gM = f0g, f̂0; 1gM = f0; 1g and fMM =M .

So M is a 2-multiplication module.

However, f0; 2g is an R-ideal of M with f̂0; 2gM = f0gM = f0g. Hence M

is not a 0-multiplication module.

Lemma 153 If C is an ideal of R and R has a multiplicative identity 1, then
�
C = C.
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Proof. Let x 2
�
C = (C : R). Then xR � C and since 1 2 R, we have

x = x:1 2 C. So
�
C � C.

On the other hand, if x 2 C, then since C is an ideal of R, we have xR � C

which implies that x 2
�
C.

Lemma 154 Let M be an R-module. Then:

(a) an R-ideal C of M is a 0-multiplication ideal if and only if there exists an

ideal I of R such that IM = C.

(b) an R-submodule C of M is a 2-multiplication submodule if and only if there

exists an R-subgroup I of R such that IM = C.

(c) an element m of M is a c-multiplication element if and only if there exists

an element i 2 R such that iM = m.

Proof. (a) Let C be a 0-multiplication R-ideal of M . Since we know that

(C : M) is an ideal of R, we can set I = (C : M). Then, by de�nition of a

multiplication set, IM =
�
CM = C.

Conversely, if I C R such that IM = C, we have I �
�
C. This implies that

C = IM �
�
CM � C and hence

�
CM = C. Therefore C is a 0-multiplication

R-ideal.

(b) Here we note that if C is an R-submodule of M , then (C : M) is an

R-subgroup of R. Hence, we once again set I = (C : M) and the rest of the

proof follows as in (a).

(c) If m 2 M is a c-multiplication element then
�
mM = m. Hence there

exists i 2 �
m � R such that iM = m.

Conversely, let m 2 M and suppose that there exists an i 2 R such that

iM = m. Then iM = m implies i 2 �
m and hence we have:

iM = m =) �
mM = m.

So m is a c-multiplication element.
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Lemma 155 Let M be an R-module. Then the following are equivalent:

(a) M is a c-multiplication R-module.

(b) For every subset C of M we have IM = C for some subset I of R:

Proof. (a)) (b): Let C � M and let I =
S
x2C ~x. Then if a 2 I, it follows

that a 2 �
x for some x 2 C. Hence aM = x 2 C =) aM � C =) a 2

�
C. So

I �
�
C and hence, by de�nition of a c-multiplication module, IM = C.

(b)) (a): Follows directly from part (c) of the previous lemma by consid-

ering the elements of M as singleton subsets of M .

In view of the above de�nitions and lemmas, we are now in a position to

achieve the objectives of this section.

Proposition 156 Let P be an R-ideal of a 0-multiplication R-module M such

that
�
P is a 0-prime ideal of R. Then P is a 0-prime R-ideal of M .

Proof. Let A C R and B CR M such that AB � P . Since M is a 0-

multiplication module, we know that
�
BM = B. Hence we have:

A
�
BM = AB � P which implies that A

�
B �

�
P .

Since
�
P is a 0-prime ideal of R, we have that A �

�
P or

�
B �

�
P . If A �

�
P ,

then AM � P and we are done. If
�
B �

�
P , then B =

�
BM �

�
PM = P . So

B � P and once again we are done.

The following proposition can be proved in exactly the same way as the

previous proposition by choosing A to be a left R-subgroup of R and B to be

an R-submodule of M .

Proposition 157 Let P be an R-ideal of a 2-multiplication R-module M such

that
�
P is a 2-prime ideal of R. Then P is a 2-prime R-ideal of M .

Proposition 158 Let P be an R-ideal of a c-multiplication R-module M such

that
�
P is a 3-prime (resp. c-prime) ideal of R. Then P is a 3-prime (resp.

c-prime) R-ideal of M .
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Proof. Suppose that
�
P is a 3-prime ideal of R. Let a 2 R and m 2 M such

that aRm � P . Since M is a c-multiplication module, aR
�
mM = aRm � P

which implies that aR
�
m �

�
P . Since

�
P is a 3-prime ideal of R, a 2

�
P or

�
m �

�
P .

If a 2
�
P then aM � P and the proof is complete. If �m �

�
P , then

�
m � (P :M)

which implies that
�
mM � P . So m =

�
mM 2 P and once again we are done.

Now suppose that
�
P is a c-prime ideal of R. Let a 2 R and m 2 M such

that am 2 P . Then a�mM = am 2 P and the rest of the proof follows as for

the 3-prime case.

The following proposition follows easily from De�nition 109 and Propositions

156, 157 and 158:

Proposition 159 Let P be an R-ideal of M . Then:

(a) IfM is a 0-multiplication R-module and
�
P C R is 0-s-prime, then P CR M

is 0-s-prime.

(b) IfM is a 2-multiplication R-module and
�
P C R is 2-s-prime, then P CR M

is 2-s-prime.

(c) If M is a c-multiplication R-module and
�
P C R is 3-s-prime, then P CR M

is 3-s-prime.

Proposition 160 Let P be an R-ideal of a c-multiplication R-module M such

that
�
P is a strongly prime ideal of R. Then P is a strongly prime R-ideal of M .

Proof. Let m 2 M r P . Then if t 2 �
m, we get tM = fmg * P and hence

t =2 (P : M) =
�
P . Since

�
P C R is strongly prime, there exists a �nite subset F

of R such that a 2 R and aFt �
�
P implies that a 2

�
P .

Therefore, if r 2 R such that rFm � P , we get:

rF tM � P =) rF t �
�
P =) r 2

�
P

Hence rM � P implies that P is strongly prime R-ideal of M .
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Corollary 161 Suppose that M is a �-multiplication faithful R-module where

� = 0; 2; c. Then M is �-prime if and only if R is �-prime.

Furthermore, if M is a c-multiplication faithful R-module, then:

(a) M is 3-prime if and only if R is 3-prime.

(b) M is strongly prime if and only if R is strongly prime.

Finally, we conclude this section with the following de�nition and a further

characterization of prime modules.

De�nition 162 Let M be an R-module.Then:

(a) M is called a 0-fully faithful R-module if all nonzero proper R-ideals of

M are faithful R-modules.

(b) M is called a 2-fully faithful R-module if all nonzero proper R-submodules

of M are faithful R-modules.

Theorem 163 M is a �-prime R-module if and only if M is a �-fully faithful
R

(0 :M)R
-module, where � = 0 or 2.

Proof. We illustrate the proof for � = 0. The other case can be proved in a

similar way.

Suppose that M is a 0-prime R-module. Let 0 6= P CR M . Since M

is 0-prime, by Corollary 62, (0 : M) = (0 : P ). Furthermore, we note that

P is a faithful
R

(0 : P )R
-module. But

R

(0 : P )R
=

R

(0 :M)R
. Hence P is a

faithful
R

(0 :M)R
-module and it follows by de�nition thatM is a 0-fully faithful

R

(0 :M)R
-module.

Conversely, let 0 6= P be an R-ideal of M . Clearly, (0 : M) � (0 : P ). If

(0 : P ) * (0 : M), then there exists x 2 (0 : P ) with x =2 (0 : M). Since

P is a faithful
R

(0 :M)R
-module, it must also follow that xP 6= 0 which is a

contradiction. Hence (0 : P ) = (0 : M) and, once again by Corollary 62, M is

a 0-prime R-module.



Chapter 3

SPECIAL RADICALS OF

NEAR-RING MODULES

INTRODUCTION

In this chapter, we de�ne special radical classes of near-ring modules and

immediately thereafter, we establish that a special class of near-ring modules

leads to the construction of a special class of near-rings and, in turn, a spe-

cial class of near-rings leads to the construction of a special class of near-ring

modules. We, then, show that the classes of 2-prime, 3-prime, c-prime, strongly

prime and s-prime near-ring modules form A-special classes (Andrunakievich

special) with respect to our de�nition of a special class.

However, we �st begin with the following observations with regard to general

classes of near-ring modules.

3.1 General classes of near-ring modules

For each near-ring R, letMR be a class (possibly empty) of R-modules M with

RM 6= 0. Then we de�ne:

�(R) = \f(0 :M)R :M 2MRg.

59
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Now letM = [fMR : R is a near-ringg. Then we have the following de�n-

ition:

De�nition 164 The class M is called a general class of near-ring modules if

it satis�es the following conditions:

(G1) If I C R and M 2MR
I
, then M 2MR.

(G2) If M 2MR and I C R such that I � (0 :M)R, then M 2MR
I
.

(G3) If �(R) = 0, thenMI 6= ; for all nonzero ideals I of R.

(G4) IfMI 6= ; whenever 0 6= I C R, then �(R) = 0.

In view of the above de�nition, we record the following observations made

by Veldsman in [23]:

(a) Let R = fR : there exists M 2 MR such that (0 : M)R = 0g [ f0g. Then

R is a Kurosh-Amitsur radical class.

(b) If the classM satis�es (G1) and (G2), then R is a Hoehnke radical class.

Now let T be a class of near-rings that is closed under homomorphic images.

For the near-ring R, letMR be a class of near-ring modules and let:

M = [fMR : R is a near-ring}.

Then we have the following de�nition:

De�nition 165 The classM is called a T -general class if it satis�es:

(T1) If I C R and M 2MR
I
, then M 2MR.

(T2) If M 2MR and I C R with I � (0 :M)R, then M 2MR
I
.

(T3) If R 2 T and �(R) = 0, thenMI 6= ; for every 0 6= I C R.

(T4) If R 2 T andMI 6= ;, then whenever 0 6= I C R, we have �(R) = 0.

De�nition 166 IfM is a T -general class, then the class:

R = fR : there exists M 2MR with (0 :M)R = 0g [ f0g

is called a T -radical class.
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3.2 T -special classes of near-ring modules

In order to construct the de�nition of a special class of near-ring modules, we

recall the following result which we stated as Proposition 33 in the Chapter 1:

Let R be a near-ring and I C R. Let r 2 R and m 2M . Then:

If M is an
R

I
-module, then with respect to rm = (r+ I)m, M becomes

an R-module and I � (0 :M)R.

If M is an R-module and I � (0 :M)R, then M is an
R

I
-module with

respect to (r + I)m = rm.

In both cases, we have that (0 :M)R
I
=
(0 :M)R

I
.

Now let T be a nonempty class of all zerosymmetric right near-rings which is

closed under homomrphic images. For each near-ring R, letMR be a class of R-

modules (possibly empty). LetM = [fMR : R is a near-ringg. We introduce

the notion of a T -special class of near-ring modules.

De�nition 167 A classM = [MR of near-ring modules is called a T -special

class if it satis�es the following conditions:

(M1) If M 2MR and I C R with IM = 0, then M 2MR
I
.

(M2) If I C R and M 2MR
I
, then M 2MR.

(M3) If M 2MR and I C R 2 T with IM 6= 0, then M 2MI .

(M4) If M 2MR, then RM 6= 0 and R

(0 :M)R
is a 2-prime near-ring.

(M5) If I C R 2 T and M 2 MI , then there exists an R-module N 2 MR

such that (0 : N)I � (0 :M)I :

(M6) If K C I C R 2 T and there exists a faithful
I

K
-module M 2 M I

K
,

then K C R.

De�nition 168 A class F of near-rings is called a T -special class if the fol-

lowing conditions are satis�ed:

(R1) If R 2 F , then R is 2-prime.
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(R2) If R 2 F \ T and I C R, then I 2 F .

(R3) If K C I C R 2 T and
I

K
2 F , then K C R.

(R4) If I C �R and I 2 F , then R 2 F (ie. F is closed under essential

extensions).

In the previous chapter, we have seen that there were numerous relationships

between a near-ring and its modules. In particular, prime R-ideals of the R-

module M led to prime ideals of R and, under certain conditions, the converses

also existed. It is, therefore, natural to assume that there is a relationship

between special radicals of near-rings and special radicals of their modules. In

the two theorems that follow, we show the construction of a special class of

near-rings from a special class of near-ring modules and the reversal of the

process.

Theorem 169 LetM =[
R
MR be a T -special class of near-ring modules. Then

F = fR : there exists M 2 MR with (0 : M)R = 0g [ f0g is a T -special class

of near-rings.

Proof. (R1): Let R 2 F . Then there exists an M 2 MR with (0 : M)R = 0:

From (M4) we have that R =
R

(0 :M)R
is a 2-prime near-ring.

(R2): Let R 2 F \ T and I C R. Then there exists M 2 MR such that

(0 :M)R = 0. If I = 0, then I 2 F and we are done. If I 6= 0, then IM 6= 0 (for

if IM = 0, we have that I � (0 : M)R = 0 =) I = 0). Hence, from (M3), it

now follows that M 2 MI . Furthermore, (0 : M)I � (0 : M)R = 0. Therefore

I 2 F .

(R3): Let K C I C R 2 T with
I

K
2 F . Since I

K
2 F , there exists an

I

K
-module M (ie. M 2 M I

K
) such that (0 :M) I

K
= 0. From (M6), it follows

that K C R.

(R4): Let I C �R and suppose that I 2 F . So there exists M 2 MI with

(0 :M)I = 0. From (M5), there exists N 2MR such that:
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(0 : N)I � (0 :M)I = 0.

But 0 = (0 : N)I = (0 : N)R \ I. Since I C �R and (0 : N)R C R, we have
that (0 : N)R = 0. Hence we have that R 2 F .

Theorem 170 Let F be a T -special class of near-rings and for the near-ring

R, let MR = fM : M is an R-module, RM 6= 0 and
R

(0 :M)R
2 Fg. If

M = [MR, thenM is a T -special class of near-ring modules.

Proof. (M1): Let M 2 MR with I C R such that IM = 0. Since M 2 MR

we have RM 6= 0 and
R

(0 :M)R
2 F . Since I � (0 : M)R, it follows that M

is also an
R

I
-module with (0 : M)R

I
=
(0 :M)R

I
. Furthermore, since RM 6= 0,

we also have that
�
R

I

�
M 6= 0. Now,

R
I

(0 :M)R
I

�=
R
I

(0:M)R
I

�=
R

(0 :M)R
2 F .

Hence M 2MR
I
and (M1) is satis�ed.

(M2): Let I C R and M 2 MR
I
. Then we know that M is an

R

I
-module

and I � (0 : M)R. Since
�
R

I

�
M 6= 0, we have that RM 6= 0. Moreover,

R

(0 :M)R
�=

R
I

(0:M)R
I

=
R
I

(0 :M)R
I

2 F . Hence M 2MR.

(M3): Let M 2MR and I C R 2 T with IM 6= 0. Then M is an I-module

with IM 6= 0. Furthermore,
I

(0 :M)I
=

I

(0 :M)R \ I
�=
(I + (0 :M)R)

(0 :M)R
C R

(0 :M)R
2 F .

We also know that R 2 T and T is homomorphically closed. Hence we have

that
R

(0 :M)R
2 F \ T . So, from (R2), it follows that I

(0 :M)I
2 F , and hence

M 2MI .

(M4): Let M 2 MR. Then RM 6= 0 and
R

(0 :M)R
2 F . Since F is

T -special, from (R1) it follows that
R

(0 :M)R
is a 2-prime near-ring.

(M5): Let I C R 2 T such that M 2 MI . Since (0 : M)I C I C R and
I

(0 :M)I
2 F , it follows from (R3) that (0 :M)I C R. Now let

K

(0 :M)I
be the
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ideal of
R

(0 :M)I
which is maximal with respect to

I

(0 :M)I
\ K

(0 :M)I
= 0.

Then it is well known that
I

(0 :M)I
�=
I +K

K
C �R
K
. Since

I

(0 :M)I
2 F and

F is essentially closed, we have that
R

K
2 F . Now R

K
is an R-module; thus we

show that H =
R

K
is the rquired R-module.

Clearly, R
�
R

K

�
6= 0. We show that

�
0 :

R

K

�
R

= K. So let x 2 K. Then

x(r +K) = xr +K = K for all r 2 R. Therefore x 2
�
0 :

R

K

�
R

. Conversely,

let x 2
�
0 :

R

K

�
R

. Then xR � K. Since R
K
2 F , R

K
is a 2-prime near-ring and

hence K is a 2-prime ideal of R. But xR � K and K is 2-prime implies that

x 2 K. Hence we have that
�
0 :

R

K

�
R

= K.

Now
R�

0 : RK
�
R

=
R

K
2 F and R

�
R

K

�
6= 0. Hence H =

R

K
2MR.

Finally, we show that
�
0 :

R

K

�
I

� (0 : M)I . Let x 2
�
0 :

R

K

�
I

. Since

I C R, we have that xR � I. Furthermore, x
�
R

K

�
= 0 =) xR � K. Hence

xR � I\K, and from the de�nition of K

(0 :M)I
, we get xR � I\K � (0 :M)I .

Hence xRM = 0. Now xIM � xRM = 0 implies xI � (0 : M)I . Since

(0 : M)I is a 2-prime ideal of I (since
I

(0 :M)I
2 F), we get x 2 (0 : M)I . So�

0 :
R

K

�
I

� (0 :M)I and (M5) is satis�ed.

(M6): Let K C I C R 2 T and M 2 M I
K
be a faithful

I

K
-module. Since

M 2 M I
K
and M is faithful, we have that

I

K
=

I
K

(0 :M) I
K

2 F . So, from

(R3), it follows that K C R.

Proposition 171 LetM be a T -special class of near-ring modules and suppose

I C R 2 R0. Let F be the corresponding T -special class of near-rings. Then
R

I
2 F if and only if I = (0 :M)R for some M 2MR:

Proof. Suppose I C R 2 R0 and
R

I
2 F : Then there exists M 2 MR

I
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such that (0 : M)R
I
= 0: So it follows from (M2) that M 2 MR. Since

(0 : M)R
I
=
(0 :M)R

I
, it also follows that

(0 :M)R
I

= 0. Hence I = (0 : M)R

as required.

Conversely, suppose that I = (0 : M)R for some M 2 MR: Then by (M1),

we have M 2 MR
I
: Furthermore, (0 : M)R

I
=
(0 :M)R

I
=
I

I
= 0: Hence

R

I
2 F .

Booth and Groenewald [5] have already shown that the class,Me = [MR

whereMR = fM :M is an equiprime R-moduleg, is a special class of near-ring

modules if R belongs to the class of zerosymmetric near-rings. In the results

that follow, we prove that similar constructions of classes with respect to 2-

prime, 3-prime, c-prime, strongly prime and s-prime near-ring modules result

in special classes of the respective near-ring modules. However, we restrict R

to the class of A-near-rings (Andrunakievich near-rings). In each case, we show

that the six conditions of De�nition 167 are satis�ed. Although proofs of these

conditions for the various special classes may seem to be repetetive, we only

omit those parts which are exactly the same.

Proposition 172 Let R be an A-near-ring. Let MR = fM : M is a 2-prime

R-moduleg and let M2 = [MR. Then M2 is an A-special class of near-ring

modules.

Proof. (M1) : Let M 2 MR and I C R such that IM = 0. Then M is an
R

I
-

module with respect to (r + I)m = rm for r 2 R and m 2M . Now let A � R

I

and B �R M such that AB = 0. Then A =
L

I
for some left R-subgroup, L

of R, and hence
�
L

I

�
B = 0. So for all l 2 L, we have lB = (l + I)B = 0

implies that LB = 0. Since M is a 2-prime R-module, it follows that LM = 0

or B = 0. But, again by de�nition of the scalar operation in
R

I
, we have that

LM = (L + I)M =

�
L

I

�
M = AM . So AM = 0 or B = 0 whence M is a

2-prime
R

I
-module and therefore M 2MR

I
.
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(M2) : Let I C R and let M 2MR
I
. Then M is an R-module with respect

to rm = (r+I)m for r 2 R and m 2M . Now let A � R and B �R M such that

AB = 0. Then
A

I
� R

I
and for all a 2 A, we have: (a+ I)B = aB = 0. Hence�

A

I

�
B = 0 and since M is a 2-prime

R

I
-module, it follows that

�
A

I

�
M = 0

or B = 0. But for all a 2 A, (a + I)M = aM . Hence AM = 0 or B = 0 and

therefore M 2MR.

(M3) : Let M 2 MR and I C R 2 A with IM 6= 0. Then, since R is an

A-near-ring and M is a 2-prime R-module, by Proposition 94, we have that M

is a 2-prime I-module. Hence M 2MI .

(M4) : Let M 2 MR, then by de�nition of a 2-prime R-module, we have

that RM 6= 0. Now, sinceM is a 2-prime R-module, (0 :M)R is a 2-prime ideal

of R and so
R

(0 :M)R
is a 2-prime near-ring.

(M5) : Let I C R 2 A and let M 2 MI . Since M is a 2-prime I-module,

by Corollary 80, (0 : M)I is a 2-prime ideal of I. So (0 : M)I C I C R.

Since R is an A-near-ring and I

(0 :M)I
2 MR, from [3, Lemma 1] we have

that (0 : M)I C R. Now choose
K

(0 :M)I
C R

(0 :M)I
maximal with respect to

I

(0 :M)I
\ K

(0 :M)I
= 0. Then

I

(0 :M)I
�=
I +K

K
C �R
K
. Since

I

(0 :M)I
C �R
K

and
I

(0 :M)I
is a 2-prime near-ring,

R

K
is also a 2-prime near-ring. By Corollary

91,
R

K
is also a 2-prime R-module and so

R

K
2MR.

Let N =
R

K
. To show that (0 : N)I � (0 : M)I , the proof follows as in

Theorem 170.

(M6) : Let K C I C R 2 A and suppose that there exists a faithful
I

K
-

module M 2 M I
K
. Since M is a faithful

I

K
-module, (0 : M) I

K
= 0. But M

is a 2-prime
I

K
-module; therefore 0 = (0 :M) I

K
is a 2-prime ideal of

I

K
which

implies that
I

K
�=

I
K

(0 :M) I
K

is a 2-prime near-ring. Hence K is a 2-prime ideal

of I. Since I is an A-ideal of R, it follows from [3, Lemma 1] that K C R.
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Corollary 173 If M2 is an A-special class of near-ring modules, then the A-

special radical induced byM2 on a near-ring R is given by:

P2(R) = \f(0 :M)R :M is a 2-prime R-moduleg.

= \fI C R : I is a 2-prime ideal of Rg.

Proposition 174 Let R be an A-near-ring. Let MR = fM : M is a 3-prime

R-moduleg and let M3 = [MR. Then M3 is an A-special class of near-ring

modules.

Proof. (M1) : Let M 2 MR and let I C R such that IM = 0. Then M is an
R

I
-module with respect to (r + I)m = rm where r 2 R and m 2 M . Now let

a+ I 2 R
I
(where a 2 R) and m 2M such that (a+ I)

R

I
(m) = 0. Then for all

r 2 R, we have that arm = (ar+ I)m = (a+ I)(r+ I)m = 0. Hence aRm = 0.

Since M is a 3-prime R-module, it follows that aM = 0 or m = 0 whereby

(a+ I)M = 0 or m = 0. Thus M is a 3-prime
R

I
-module and so M 2MR

I
.

(M2) : Let I C R such that M 2 MR
I
. Then M is an R-module with

respect to rm = (r + I)m where r 2 R and m 2 M . Let a 2 R and m 2 M

such that aRm = 0. Then for all r 2 R, we have that:

(a+ I)(r + I)m = (ar + I)m = arm = 0.

So (a + I)
R

I
m = 0 and since M is a 3-prime

R

I
-module, it follows that

aM = (a + I)M = 0 or m = 0. Therefore M is a 3-prime R-module and so

M 2MR.

(M3) : Let M 2MR and I C R 2 A such that IM 6= 0. By Proposition 95,

M is a 3-prime I-module. Hence M 2MI .

(M4) : If M 2 MR, then by de�nition of a 3-prime R-module, we have

that RM 6= 0. Furthermore, by Corollary 80, (0 : M)R is a 3-prime ideal of

R whence
R

(0 :M)R
is a 3-prime near-ring. But any 3-prime near-ring is also

2-prime. Hence
R

(0 :M)R
is a 2-prime near-ring.

(M5) : Let I C R 2 A and M 2 MI . Since M is a 3-prime I-module,
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(0 :M)I is a 3-prime ideal of I. The rest of the proof follows as in Proposition

172 by replacing 2-prime with 3-prime.

(M6) : Let K C I C R 2 A and let M 2 M I
K
be a faithful

I

K
-module.

Since M is a faithful
I

K
-module, (0 : M) I

K
= 0. But M is a 3-prime

I

K
-

module. Hence 0 = (0 : M) I
K
is a 3-prime ideal of

I

K
=) I

K
is a 3-prime

near-ring =) K is a 3-prime ideal of I. Again by [3, Lemma 1], it follows that,

since I is an A-ideal of R, K C R.

Corollary 175 If M3 is an A-special class of near-ring modules, then the A-

special radical induced byM3 on a near-ring R is given by:

P3(R) = \f(0 :M)R :M is a 3-prime R-moduleg.

Proposition 176 Let R be an A-near-ring. Let MR = fM : M is a c-prime

R-moduleg and let Mc = [MR. Then Mc is an A-special class of near-ring

modules.

Proof. (M1) : Let M 2 MR and let I C R such that IM = 0. Then M is an
R

I
-module with respect to (r + I)m = rm where r 2 R and m 2 M . Now let

a+ I 2 R
I
(where a 2 R) and m 2M such that 0 = (a+ I)(m) = am. Since M

is a c-prime R-module, it follows that 0 = aM = (a+ I)M or m = 0. Thus M

is a c-prime
R

I
-module and so M 2MR

I
.

(M2) : Let I C R such that M 2 MR
I
. Then M is an R-module with

respect to rm = (r + I)m where r 2 R and m 2 M . Let a 2 R and m 2 M

such that 0 = am = (a+ I)m. Since M is a c-prime
R

I
-module, it follows that

0 = (a + I)M = aM or m = 0. Therefore M is a c-prime R-module and so

M 2MR.

(M3) : Let M 2MR and I C R 2 A such that IM 6= 0. By Proposition 97,

M is a c-prime I-module. Hence M 2MI .

(M4) : If M 2 MR, then by de�nition of a c-prime R-module, we have

that RM 6= 0. Furthermore, by Corollary 80, (0 : M)R is a c-prime ideal of
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R whence
R

(0 :M)R
is a c-prime near-ring. But any c-prime near-ring is also

2-prime. Hence
R

(0 :M)R
is a 2-prime near-ring.

(M5) : Let I C R 2 A and M 2 MI . Since M is a c-prime I-module,

(0 :M)I is a c-prime ideal of I. The rest of the proof follows as in Proposition

172 by replacing 2-prime with c-prime.

(M6) : Let K C I C R 2 A and let M 2 M I
K
be a faithful

I

K
-module.

SinceM is a faithful
I

K
-module, (0 :M) I

K
= 0. ButM is a c-prime

I

K
-module.

Hence 0 = (0 : M) I
K
is a c-prime ideal of

I

K
=) I

K
is a c-prime near-ring. So

K is a c-prime ideal of I and hence, by [3, Lemma 1], it follows that, since I is

an A-ideal of R, K C R.

Corollary 177 If Mc is an A-special class of near-ring modules, then the A-

special radical induced byMc on a near-ring R is given by:

Pc(R) = \f(0 :M)R :M is a c-prime R-moduleg.

Proposition 178 Let R be an A-near-ring. Let MR = fM : M is a strongly

prime R-moduleg and let Msp = [MR. Then Msp is an A-special class of

near-ring modules.

Proof. (M1) : Let M 2 MR and I C R such that IM = 0: Then M is an
R

I
-module with respect to (r + I)m = rm where r 2 R and m 2 M . Let

0 6= m 2 M . Since M is a strongly prime R-module, there exists a �nite set

F = fr1; r2; :::; rng � R such that x 2 R and xFm = 0 implies that xM = 0. Let

F1 = fr1+I; r2+I; :::; rn+Ig. Then F1 is �nite and F1 �
R

I
. If a+I 2 R

I
(where

a 2 R) such that (a+ I)F1m = 0, then we have:

aFm = (a+ I)F1m = 0

Since aFm = 0, we have 0 = aM = (a + I)M . So M is a strongly prime
R

I
-module. Hence M 2MR

I
.

(M2) : Let I C R and let M 2MR
I
. Then M is an R-module with respect

to rm = (r+ I)m where r 2 R and m 2M . Now let 0 6= m 2M . Since M is a
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strongly prime
R

I
-module, there exists a �nite set F = fr1+I; r2+I; :::; rn+Ig

contained in
R

I
such that x+ I 2 R

I
(where x 2 R) and (x+ I)Fm = 0 implies

(x+ I)M = 0. Let F1 = fr1; r2; :::; rng � R and let a 2 R such that aF1m = 0.

Then we have:

(a+ I)Fm = aF1m = 0

Since (a+ I)Fm = 0 and a 2 R, it follows that 0 = (a+ I)M = aM . Hence

M is strongly prime R-module implies M 2MR.

(M3) : Let M 2 MR and I C R 2 A such that IM 6= 0. Then, by

Proposition 144, M is a strongly prime I-module. Hence M 2MI .

(M4) : If M 2 MR, then, by the de�nition of a strongly prime R-module,

RM 6= 0. Since M is a strongly prime R-module, by Corollary 140, (0 : M)R

is a strongly prime, and hence a 2-prime, ideal of R. Therefore it follows that
R

(0 :M)R
is a 2-prime near-ring.

(M5) : Let I C R 2 A and M 2 MI . Since M is a strongly prime I-

module, (0 :M)I is a strongly prime ideal of I. The rest of the proof follows as

in Proposition 172 by replacing 2-prime with strongly prime.

(M6) : Let K C I C R 2 A and let M 2 M I
K
be a faithful

I

K
-module.

Since M is a faithful
I

K
-module, (0 : M) I

K
= 0. But M is a strongly prime

I

K
-module. Hence 0 = (0 : M) I

K
is a strongly prime ideal of

I

K
=) I

K
is a

strongly prime near-ring=) K is a strongly prime ideal of I. So by [3, Lemma

1], it follows that, since I is an A-ideal of R, K C R.

Corollary 179 If Msp is an A-special class of near-ring modules, then the

A-special radical induced byMsp on a near-ring R is given by:

Psp(R) = \f(0 :M)R :M is a strongly prime R-moduleg.

Recall that if M is an R-module with RM 6= 0, then M is said �-s-prime

(here we only consider � = 2; 3) if M satis�es:

(a) M is a �-prime R-module.
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(b)
R

(0 :M)R
contains no nonzero nil ideals.

Now let R be an A-near-ring. For � = 2; 3, letMR = fM :M is a �-s-prime

R-moduleg and letM�s = [MR.

We want to show thatM2s andM3s are A-special classes of near-ring mod-

ules. However, these two classes di¤er with respect to the condition thatM2s

contains 2-prime R-modules while M3s contains 3-prime R-modules but they

share a common condition that, in both classes,
R

(0 :M)R
must have no nonzero

nil ideals (that is,
�
@
�

R

(0 :M)R

�
= 0

�
). Furthermore, we have already shown

in Proposition 172 and Proposition 174 that the classM2 (consisting of 2-prime

R-modules) and the classM3 (consisting of 3-prime R-modules) are A-special

classes of near-ring modules.

In view of these observations, we consider the two classes simultaneously in

the next proposition. Furthermore, note that to conclude that M�s is an A-

special class of near-ring modules, we need only show that conditions (M1) to

(M6) of De�nition 167 are satis�ed with respect to condition (b) above. Hence

the proof of Proposition 181 should be read in conjunction with Propositions

172 and 174.

Lemma 180 Let R be an A-near-ring and let I C R. Then:

(a) @(I) � @(R)

(b) If I C �R such that @(I) = 0, then @(R) = 0.

Proof. (a): From Lemma 117, @(I) � I \ @(R). Hence @(I) � @(R).

(b): Suppose that A is a nonzero nil ideal of R. Since I C �R we have that
A \ I 6= 0. Furthermore, A \ I C I. Since @(I) = 0, A \ I cannot be a nil ideal
of I which implies that there exists x 2 A \ I � A such that xm 6= 0 for all

m 2 N. This contradicts the fact that A is a nil ideal of R. Hence @(R) = 0.

Proposition 181 Let R be an A-near-ring. For � = 2; 3, let MR = fM : M

is an �-s-prime R-moduleg and let M�s = [MR :Then M�s is an A-special

class of near-ring modules.
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Proof. (M1) : Let M 2MR and I C R with IM = 0. Then M 2MR implies

that
R

(0 :M)R
contains no nonzero nil ideals. But

R
I

(0 :M)R
I

=
R
I

(0:M)R
I

�=
R

(0 :M)R
.

Hence
R
I

(0 :M)R
I

contains no nonzero nil ideals and, thus, M 2MR
I
.

(M2) : If I C R and M 2 MR
I
,

R
I

(0 :M)R
I

contains no nonzero nil ideals.

So
R

(0 :M)R
�=

R
I

(0 :M)R
I

has no nonzero nil ideals implies that M 2MR.

(M3) : LetM 2MR and I C R 2 A with IM 6= 0. Then R

(0 :M)R
contains

no nonzero nil ideals. Now:
I

(0 :M)I
=

I

(0 :M)R \ I
�=
I + (0 :M)R
(0 :M)R

C R

(0 :M)R
.

SinceR is anA-near-ring, from Lemma 180(a), I

(0 :M)I
will also not contain

any nonzero nil ideals. Hence M 2MI .

(M4) : If M 2 MR, then, by the de�nition of a �-s-prime R-module, we

have RM 6= 0 and M is a �-prime R-module. In either case, whether � = 2

or 3, M is a 2-prime R-module. Hence (0 : M)R is a 2-prime ideal of R which

implies that
R

(0 :M)R
is a 2-prime near-ring.

(M5) : Let I C R 2 A and M 2 MI . Choose N =
R

K
as per construction

in Theorem 170 and, by using similar methods, it can be again proved that
I

(0 :M)I
C �R

K
. Since M 2 MI ,

I

(0 :M)I
contains no nonzero nil ideals.

Hence, from Lemma 180(b),
R

K
contains no nonzero nil ideals. But we already

know that K =

�
0 :

R

K

�
R

. Hence
R

(0 : RK )R
contains no nonzero nil ideals

implying that
R

K
2MR.

(M6) : Let K C I C R 2 A and let M 2 M I
K
be a faithful

I

K
-module.

Since M is a faithful
I

K
-module, (0 : M) I

K
= 0. But M is a �-s-prime

I

K
-
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module. Hence 0 = (0 : M) I
K
is a �-s-prime ideal of

I

K
=) I

K
is a �-s-prime

near-ring=) K is a �-s-prime ideal of I. So by [3, Lemma 1], it follows that,

since I is an A-ideal of R, K C R.

Corollary 182 Let � = 2; 3. IfM�s is an A-special class of near-ring modules,

then the A-special radical induced byM�s on a near-ring R is given by:

P�s(R) = \f(0 :M)R :M is a �-s-prime R-moduleg.
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Chapter 4

LINKS TO THE

GENERALISED GROUP

NEAR-RING

INTRODUCTION

In 1989, Le Riche, Meldrum and Van der Walt [17] introduced the general

notion of a group near-ring, R[G]. Recently, Groenewald and Lee [14] extended

this idea to what they referred to as the generalised semigroup near-ring, denoted

by R[S : M ]. Here R is a zerosymmetric right near-ring with identity 1, S

is a semigroup and M is any faithful left R-module. By considering MS as

the cartesian direct sum of jSj copies of (M;+), they de�ned the generalised

semigroup near-ring as follows:

For r 2 R, s 2 S and � 2MS, let [r; s] be the function de�ned by

([r; s]�)(h) = r�(hs) where h 2 S. R[S : M ] was then de�ned as the subnear-

ring of all mappings from MS to MS generated by the set f[r; s] : r 2 R; s 2 Sg.

In this chapter, we de�ne the generalised group near-ring, R[G :M ], follow-

ing the de�nition provided by Groenewald and Lee but by choosing G to be a

75
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group rather than a semigroup. Although, we provide some general results on

R[G :M ] (which may be construed as a degeneralisation of some of the results

obtained in [14]), our main intention here is to investigate the relationships be-

tween the prime ideals of R[G : M ] and that of the base near-ring R and/ or

the underlying module M . To this end, we begin with an R-ideal P of M . We

de�ne the ideals P � and P+ of R[G : M ] and proceed to show that if P � is a

�-prime ideal (� = 0; 2; 3), then P is a �-prime R-ideal of M and consequently
�
P = (P : M)R is a �-prime ideal of R. However, it turns out that a prime

condition in R and/ or M does not, in general, imply that prime condition

in R[G : M ]. We demonstrate this by providing various situations in which

R[G :M ] fails to preserve the prime condition of R and/ or M .

However, we end this chapter on a positive note by showing that if R is a

near-�eld and G is an ordered group, then R[G :M ] is 2-prime (where M is the

speci�c R-module RR) and consequently R[G :M ] is also �-prime for � = 0; 2; 3.

Throughout this chapter, R will denote a zerosymmetric right near-ring with

multiplicative identity 1, G will be a (multiplicatively written) group with neu-

tral element e, M will be a faithful left R-module, and MG will denote the

cartesian direct sum of jGj copies of M .

4.1 Some General Results

In this section, we provide some general results on the generalised group near-

ring. The construction of some of these results is based on the results given in

[17]. Therefore, we will omit some of the trivial proofs.

It is well known that the set of all mappings from the groupMG into itself is

a right near-ring with addition de�ned pointwise and multiplication de�ned by

composition of functions. Now, for r 2 R, g 2 G and � 2MG, let the function

[r; g] :MG !MG be de�ned by ([r; g]�)(h) = r�(hg) where h 2 G. (Note that,

since M is an R-module, r�(hg) 2M).

De�nition 183 The generalised group near-ring, denoted by R[G : M ], is de-
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�ned to be the subnear-ring of all mappings from MG to MG generated by the

set f[r; g] : r 2 R; g 2 Gg.

Remark 184 We note that:

(a) If we let M be the special case, M = RR, then R[G :M ] is simply the group

near-ring, R[G], as de�ned by Le Riche, Meldrum and Van der Walt in

[17].

(b) If A : MG �! MG, B : MG �! MG are elements of R[G : M ] and

� 2MG, then under the natural operations:

(A+B)� = A�+B�

(AB)� = A(B�)

MG is an R[G :M ]-module

De�nition 185 For � 2MG, we de�ne:

(a) the support of � by: supp(�) = fg 2 G : �(g) 6= 0g.

(b) M (G) as the subgroup of MG consisting of elements with �nite support.

It is quite clear from the above de�nition that if G is a �nite group, then

M (G) �=MG. In view of this and the following de�nition and lemma, which is a

direct generalisation of [17, Lemma 2.6], R[G :M ] could just as well have been

de�ned as a subnear-ring of all mappings from M (G) to M (G).

De�nition 186 Let � 2 MG; X � G. Then we de�ne �X : MG �! MG by

�X(h) = �(h) if h 2 X and �X(h) = 0 if h 2 GrX.

Lemma 187 Let h 2 G;� 2MG and A 2 R[G :M ]. Then there exists a �nite

set X (independent of �) such that for all X 0 � X, we have:

(A�)(h) = (A�X0)(h)

Theorem 188 M (G) is a faithful R[G :M ]-submodule of MG.
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Proof. Let A 2 R[G :M ] and � 2M (G) be arbitrary. We use induction on the

complexity, c(A) of A, to show that A� 2M (G).

If c(A) = 1; then A = [r; g] for some r 2 R; g 2 G. So for all hi 2 G, we get:

(A�)(hi) = ([r; g]�)(hi) = r�(hig)

Since � 2 M (G), �(hig) 6= 0 for �nitely many i and hence, r�(hig) 6= 0 for

�nitely many i. So A� 2M (G).

Now suppose that c(A) = n > 1 and assume that for any W 2 R[G : M ],

where c(W ) < n, it holds that W� 2M (G).

Since c(A) > 1, A = B + C or A = BC for some B;C 2 R[G : M ] with

c(B); c(C) < n.

If A = B + C, then:

A� = (B + C)� = B�+ C� 2M (G), since B�;C� 2M (G)

If A = BC, then:

A� = (BC)� = B(C�) 2M (G) since B(�) 2M (G) and � = C� 2M (G)

Hence A� 2 M (G) in all cases. Since A 2 R[G : M ] and � 2 M (G) were

arbitrary, it follows that R[G : M ]M (G) � M (G). So M (G) is an R[G : M ]-

submodule of MG:

To show that M (G) is faithful, let 0 6= A 2 R[G : M ]. Then there exists a

� 2MG and an h 2 G such that (A�)(h) 6= 0. But by Lemma 187, there exists a

�nite set X such that 0 6= (A�)(h) = (A�X)(h). Since X is �nite, we have that

�X 2M (G) such that A�X 6= 0. Hence M (G) is a faithful R[G :M ]-submodule

of M (G).

Lemma 189 Let r; r1; r2 2 R and g; g1; g2 2 G. Then the following apply in

R[G :M ]:

(a) If G has identity element e then R[G :M ] has identity element [1; e].

(b) [r1; g] + [r2; g] = [r1 + r2; g].
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(c) [r1; g1]:[r2; g2] = [r1r2; g1g2].

(d) [1; g] is a unit in R[G :M ].

(e) the map r ! [r; e] is an embedding of R into R[G :M ].

Proof. The proofs follow similar methods as in [17].

Proposition 190 R[G :M ] is a zerosymmetric near-ring.

Proof. Let
_
0 : MG �! MG be the zero mapping in R[G : M ]. We use

induction on c(A) where A 2 R[G :M ] is arbitrary, to show that A
_
0 =

_
0.

If c(A) = 1, then A = [r; g] for some r 2 R; g 2 G. Let � 2 MG. Then for

all h 2 G, we get:

(A
_
0�)(h) = ([r; g]

_
0�)(h) = r

_
0�(hg) = r0.

Since R is zerosymmetric, r0 = 0. Hence A
_
0 =

_
0.

If c(A) > 1, then A = B + C or A = BC where c(B) < c(A), c(C) < c(A).

We assume that B
_
0 =

_
0 and C

_
0 =

_
0.

If A = B + C, then:

A
_
0 = (B + C)

_
0 = B

_
0 + C

_
0 =

_
0 +

_
0 =

_
0.

If A = BC , then:

A
_
0 = (BC)

_
0 = B(C

_
0) = B

_
0 =

_
0:

Hence R[G :M ] is a zerosymmetric near-ring.

Proposition 191 Let P be an R-ideal of the R-module M . Let � 2 PG and

� 2 MG. Then for any A 2 R[G : M ], there exists a � 2 PG such that

A(�+ �) = A�+ �.

Proof. Again we use induction on the c(A).

If c(A) = 1, then A = [r; g] for some r 2 R and g 2 G. So for h 2 G, we get:

[A(�+ �)](h)

= ([r; g](�+ �))(h)
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= r(�+ �)(hg)

= r(�(hg) + �(hg))

= [r(�(hg) + �(hg))� r�(hg)] + r�(hg)

= p+ r�(hg) for some p 2 P .

= ([r; g]�)(h) + p0 for some p0 2 P .

Now de�ne � 2 PG by �(h) = p0 for h 2 G and the result follows.

Now suppose that c(A) > 1, and suppose that the result holds for any

D 2 R[G : M ] with c(D) < c(A). Since c(A) > 1, we have A = B + C or

A = BC with c(C) < c(A), c(B) < c(A) and B;C 2 R[G :M ].

If A = B + C, then:

A(�+ �)

= [B + C](�+ �)

= B(�+ �) + C(�+ �)

= B�+ �1 + C�+ �2 for some �1; �2 2 PG

= B�+ C�+ �3 for some �3 2 PG

= (B + C)�+ �3

= A�+ �3.

If A = BC, then:

A(�+ �)

= [BC](�+ �)

= B[C(�+ �)]

= B[C�+ �1] for some �1 2 PG

= B(C�) + �2 for some �2 2 PG

= (BC)�+ �2

= A�+ �2.

This completes the proof by induction.

Proposition 192 Let P be an R-ideal of the R-module, M . Then PG is an

R[G :M ]-ideal of the R[G :M ]-module, MG.
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Proof. Clearly, PG is a subgroup ofMG. Furthermore, if � 2 PG and � 2MG,

then:

(� + �� �)(g) = �(g) + �(g)� �(g) 2 P

for all g 2 G since �(g) 2M , �(g) 2 P and P is a normal subgroup of M .

Hence PG is a normal subgroup of MG.

We need to show that if A 2 R[G : M ], � 2 MG and � 2 PG, then

A(�+ �)�A� 2 PG. But, from Proposition 191, there exists � 2 PG with the

property that A(�+�) = A�+�. Hence A(�+�)�A� = � 2 PG, thus proving

that PG is an R[G :M ]-ideal of MG.

De�nition 193 Let P be a subset of the R-module M . Then we de�ne the

subset, P � of R[G :M ] by:

P � = fA 2 R[G :M ] : A� 2 PG for all � 2MGg.

Proposition 194 If P is an R-ideal of M , then P � is an ideal of R[G :M ].

Proof. Since P is an R-ideal of M , by Proposition 192, we know that PG is

an R[G : M ]-ideal of MG. Hence (PG : MG)R[G:M ] is an ideal of the near-ring

R[G :M ]. But by de�nition, P � = (PG :MG)R[G:M ]. So the result follows.

Another way of constructing an ideal in R[G : M ] lies in the following

de�nition:

De�nition 195 Let P be an R-ideal of the R-module M . Then we de�ne P+

to be the ideal in R[G :M ] generated by the set: f[a; e] : a 2 (P :M)Rg.

Immediately, we have the following:

Lemma 196 If P is an R-ideal of M , then P+ � P �.

Proof. Let � 2 MG and g 2 G. Then for every [a; e] 2 P+, we have

([a; e]�)(g) = a�(g) 2 P since a 2 (P : M)R and �(g) 2 M . Hence [a; e] 2 P �.

Since P � is an ideal of R[G :M ], all elements generated by the set

f[a; e] : a 2 (P :M)Rg

must also belong to P �. Therefore P+ � P �.
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Lemma 197 If A;B and C are R-ideals of the R-module M with the property

that (A :M)RB � C, then A+B� � C�.

Proof. Let U 2 A+; V 2 B� and � 2 MG. Then we need to show that

(UV )(�) 2 CG. But we know that V (�) 2 BG. Therefore, all we need to show

is that U(�) 2 CG for all � 2 BG. We use induction on the complexity of U .

If c(U) = 1, then U = [a; g] for some a 2 (A : M)R and g 2 G. So for all

h 2 G and � 2 BG, we get:

(U(�))(h) = ([a; g]�)(h) = a�(hg) 2 (A :M)RB � C.

Hence U(�) 2 CG.

Now suppose that c(U) = m, where m 2 N, m � 2 and suppose that

W (�) 2 CG for all � 2 BG if W 2 A+ and c(W ) < m. Since U 2 A+ (which is

a generated ideal), we have four possibilities:

(i) : U = U1 + U2 where U1; U2 2 A+ and c(U1); c(U2) < m. Then for all

� 2 BG, we get: U(�) = (U1 + U2)(�) = U1(�) + U2(�) 2 CG, by induction.

(ii) : U = U1X where U1 2 A+ and X 2 R[G : M ] with c(X) < m. Then

U(�) = (U1X)(�). Since, by Proposition 192, BG is an R[G : M ]-ideal of

MG, for all � 2 BG we have X(�) 2 BG. Hence, by induction, it follows that

U(�) = (U1X)(�) 2 CG.

(iii) : U = X(Y + U1) � XY where X;Y 2 R[G : M ] and U1 2 A+ with

c(U1) < m. Then for all � 2 BG, we have:

U(�) = [X(Y + U1)�XY ](�) = X(Y (�) + U1(�))�X(Y (�)).

Since U1(�) 2 CG, Y (�) 2 MG and CG is an R[G : M ]-ideal of MG, it

follows that U(�) 2 CG.

(iv) : U = X + U1 �X where U1 2 A+ with c(U1) < m and X 2 R[G :M ].

Then: U(�) = (X + U1 �X)(�) = X(�) + U1(�)�X(�).

Since U1(�) 2 CG and (CG;+) is a normal subgroup of (MG;+), we must

have that U(�) 2 CG.
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At this point we would like to point out that although the de�nitions of A+

and A� in R[G : M ] are equivalent to the de�nitions of A+ and A�in R[G],

that is when we take M = RR, we need to be weary of how we apply these

de�nitions.

Corollary 198 If A is an ideal of the near-ring R, and B and C are R-ideals

of the R-module M such that AB � C, then A+B� � C�.

Proof. Since R has identity, it follows from Lemma 153 that (A : R)R = A. So

AB � C implies that (A : R)RB � C, and hence the rest of the proof follows

in exactly the same way as the previous proof.

The ideals, A� and A+ of R[G :M ], both have important applications when

we investigate the prime relations between M (or R) and R[G : M ] in the

next section. Of importance, also, will be the construction of (left) R[G : M ]-

subgroups of R[G :M ]. We begin with the following simple lemma:

Lemma 199 If A 2 R[G : M ], then R[G : M ]A is a left R[G : M ]-subgroup of

R[G :M ].

Proof. Let BA, CA 2 R[G : M ]A where B;C 2 R[G : M ]. Then since

B � C 2 R[G :M ], we have:

BA� CA = (B � C)A 2 R[G :M ]A

Furthermore, R[G :M ](R[G :M ]A) = (R[G :M ]R[G :M ])A � R[G :M ]A.

Hence the proof is complete.

We know that if M is an R-module, then for any m 2 M , Rm is an R-

submodule ofM . In the following lemma, we show that (Rm)� is a leftR[G :M ]-

subgroup of R[G :M ]:

Lemma 200 Let M be an R-module and let m 2 M . Then (Rm)� is a left

R[G :M ]-subgroup of R[G :M ].

Proof. Let A;B 2 (Rm)�, and let � 2MG, h 2 G. Then:
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((A�B)�)(h) = (A�)(h)� (B�)(h).

Since (A�)(h) 2 Rm and (B�)(h) 2 Rm, and since Rm is an R-submodule

of M , we have that (A�)(h)� (B�)(h) 2 Rm. Hence A�B 2 (Rm)�.

Now let A 2 R[G :M ]. We, once again, show by induction on the complexity

of A that A(Rm)� � (Rm)�.

If c(A) = 1, then A = [r; g] for some r 2 R and g 2 G. Then, for all

� 2MG; h 2 G and B 2 (Rm)�, we have:

((AB)�)(h) = (([r; g]B)�)(h) = r((B�)(hg)) 2 rRm � Rm.

So AB 2 (Rm)�. Since B 2 (Rm)� was arbitrary, A(Rm)� � (Rm)�.

Now let c(A) > 1. Then A = D + E or A = DE where D;E 2 R[G : M ],

c(D) < c(A), c(E) < c(A), D(Rm)� � (Rm)� and E(Rm)� � (Rm)�.

If A = D + E, then:

A(Rm)� = (D+E)(Rm)� = D(Rm)�+E(Rm)� � (Rm)�+(Rm)� � (Rm)�.

If A = DE, then:

A(Rm)� = (DE)(Rm)� = D((E(Rm)�) � D(Rm)� � (Rm)�.

Since A 2 R[G : M ] was arbitrary, we have that R[G : M ](Rm)� � (Rm)�,

thus proving that (Rm)� is a left R[G :M ]-subgroup of R[G :M ].

We now introduce another R[G : M ]-submodule of the R[G : M ]-module

MG which we use in the next section, and which could have wide applications

in group near-ring theory.

De�nition 201 Let M be an R-module of any near-ring R and let G be any

group. Then we de�ne the diagonal of MG by:

d(MG) = f� 2MG : �(g1) = �(g2) for all g1; g2 2 Gg

Lemma 202 d(MG) is a nonzero, proper left R[G :M ]-submodule of MG.

Proof. It is clear from the de�nition that d(MG) is a nonzero, proper subset

of MG. Now let g1; g2 2 G.
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(i) : If �; � 2 d(MG), then:

(�� �)(g1) = �(g1)� �(g1) = �(g2)� �(g2) = (�� �)(g2).

So �� � 2 d(MG) and hence d(MG) is a subgroup of MG.

(ii) : We need to show that R[G :M ](d(MG)) � d(MG). Let A 2 R[G :M ]

and � 2 d(MG). We use induction on c(A) to show that A� 2 d(MG).

If c(A) = 1, then A = [r; g] for some r 2 R and g 2 G. Then:

(A�)(g1) = ([r; g]�)(g1) = r�(g1g) = r�(g2g) = ([r; g]�)(g2) = (A�)(g2)

Let c(A) > 1. Then A = B + C or A = BC where c(B); c(C) < c(A) with

(B�)(g1) = (B�)(g2) and (C�)(g1) = (C�)(g2).

If A = B + C, then:

(A�)(g1)

= ((B + C)�)(g1)

= (B�)(g1) + (C�)(g1)

= (B�)(g2) + (C�)(g2)

= ((B + C)�)(g2)

= (A�)(g2).

If A = BC, then:

(A�)(g1)

= ((BC)�)(g1)

= B((C�)(g1))

= B((C�)(g2))

= ((BC)�)(g2)

= (A�)(g2).

Therefore in all three cases, we have that A� 2 d(MG) and consequently it

follows that d(MG) is an R[G :M ]-submodule of MG.

Corollary 203 For any near-ring R and any group G, d(RG) is a nonzero,

proper left R[G]-subgroup of RG.
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4.2 Prime Relations between R[G :M ], M and R

If P C R, it has already been proved [6, Theorem 4.9] that whenever P � is

a 0-prime ideal of the group near-ring R[G], P is a 0-prime ideal of the base

near-ring, R. However, the reverse implication is still an open problem. Now let

P be an R-ideal of the R-module M . In this section, we show that if � = 0; 2; 3

and P � is a �-prime ideal of R[G :M ], then P is a �-prime R-ideal of M . This,

then, leads to a link between P � and a �-prime ideal of R.

Furthermore, we provide situations under which R[G : M ] is not �-prime

(� = 2; 3; c), independent of the prime condition imposed on M and/ or R.

Nevertheless, we end this section with some faith in the fact that if R is a near-

�eld and G is an ordered group, then R[G] (the speci�c case of R[G :M ] where

M = RR) is 2-prime. This result was taken from [13], a paper by Groenewald,

Meyer and the current author.

We begin this section with the following lemma:

Lemma 204 Let P be an R-ideal of a 2-multiplication module M such that P

is not 3-prime. Then there exists an m 2M such that:

(a) (Rm)+ * P �

(b) (Rm)+ * P+

Proof. (a) : Since P is not 3-prime, there exists a 2 R and m 2 M such that

aRm � P but a =2 (P : M)R =
�
P and m =2 P . Consider [a; e] 2 R[G : M ].

Then:

(i) If [a; e] 2 P �, then ([a; e]�)(g) 2 P for all � 2 MG and g 2 G. So

a�(g) 2 P for all � 2 MG and g 2 G =) aM � P which contradicts that

a =2 (P :M)R. Hence [a; e] =2 P �.

(ii) If Rm � P , then since 1 2 R it follows that 1:m = m 2 P which

contradicts that m =2 P . So Rm * P .
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(iii) If gRm �
�
P , then gRmM �

�
PM . Since M is a 2-multiplication module,

we have that Rm = gRmM �
�
PM = P which contradicts that Rm * P . SogRm *

�
P .

Now suppose that (Rm)+ � P �. Then for all [b; e] 2 (Rm)+, [b; e] 2 P �. This

means that for all b 2 gRm, we have that for all � 2MG and g 2 G:

([b; e]�)(g) = b�(g) 2 P

which implies that bM � P , that is b 2
�
P . So gRm �

�
P which contradicts

(iii) above. Hence (Rm)+ * P �.

(b): Follows as a direct consequence of (a) since P+ � P �.

Proposition 205 If P is an R-ideal of a 2-multiplication module M such that

P � is a 3-prime ideal of R[G :M ], then P is a 3-prime R-ideal of M .

Proof. If P is not 3-prime, then there exists an a 2 R and m 2 M such that

aRm � P but aM * P and m =2 P . Hence, by Lemma 204, (Rm)+ * P �.

Now let W 2 (Rm)+ r P �. We prove by induction on the complexity of

A 2 R[G :M ] that (AW�)(h) 2 Rm for all � 2MG; h 2 G.

If c(A) = 1, then A = [t; g] for some t 2 R and g 2 G. So:

(AW�)(h) = ([t; g]W�)(h) = t((W�)(hg)).

Since W 2 (Rm)+ � (Rm)�, we have t(W�)(hg) 2 tRm � Rm and conse-

quently (AW�)(h) 2 Rm.

Now let c(A) > 1. Then A = B +D or A = BD where c(B); c(D) < c(A),

(BW�)(h) 2 Rm and (DW�)(h) 2 Rm.

If A = B +D, then:

(AW ) = (B+D)W = (BW )+ (DW ) 2 (Rm)�+(Rm)� = (Rm)�.

So ((AW )�)(h) 2 Rm.

If A = BD, then:
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(AW ) = (BD)W = B(DW ) 2 B(Rm)� � (Rm)� since (Rm)� is a

left R[G :M ]-subgroup of R[G :M ].

So, once again, we have ((AW )�)(h) 2 Rm.

Since A was arbitrary, it follows that (R[G : M ]W�)(h) � Rm. Further-

more, [a; e](R[G :M ]W�)(h) = a(R[G :M ]W�)(h) � aRm � P .

Hence [a; e]R[G : M ]W � P �. Since P � is a 3-prime ideal of R[G : M ] and

W =2 P �, it follows that [a; e] 2 P �.

So for all � 2 MG and g 2 G, ([a; e]�)(g) = a�(g) 2 P which implies that

aM � P . Therefore we have a contradiction, and consequently it follows that

P is 3-prime.

Corollary 206 If P is an R-ideal of a 2-multiplication module M such that P �

is a 3-prime ideal of R[G :M ], then
�
P is a 3-prime ideal of the near-ring R.

Proof. Follows from the fact that if P is a 3-prime R-ideal of M , then
�
P is a

3-prime ideal of R.

It is well known that if R is a near-ring with multiplicative identity 1, then

R is 2-prime if and only if R is 3-prime. From Proposition 75, it follows that the

same is also true, in general, for any R-moduleM . Now R[G :M ] is a near-ring

constructed from the near-ring R and R[G : M ] has identity [1; e]. Hence, we

have the following result:

Proposition 207 Let P be an ideal of R[G : M ]. Then P is 2-prime if and

only if P is 3-prime.

Proof. Supose that P is 3-prime. Let A and B be left R[G : M ]-subgroups of

R[G :M ] such that AB � P. Then, if A 2 A and B 2 B, we have:

AR[G :M ]B � AR[G :M ]B � AB � P

Since P is 3-prime, it follows that A 2 P or B 2 P. But A and B were

arbitrary elements of A and B respectively. Hence A � P or B � P which implies

that P is 2-prime.
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Conversely, suppose that P is 2-prime and let A;B 2 R[G : M ] such that

AR[G :M ]B � P. Then:

(R[G :M ]A)(R[G :M ]B) = R[G :M ](AR[G :M ]B) � R[G :M ]P � P.

By Lemma 199, R[G : M ]A and R[G : M ]B are left R[G : M ]-subgroups

of R[G : M ]. Hence, since P is 2-prime, it follows that R[G : M ]A � P or

R[G :M ]B � P.

In particular, since R[G :M ] has identity [1; e], we get:

[1; e]A 2 P or [1; e]B 2 P =)A 2 P or B 2 P.

Therefore P is 3-prime.

As immediate consequences of Proposition 205 and Proposition 207, we have

the following two results:

Corollary 208 If P is an R-ideal of a 2-multiplication module M such that P �

is a 2-prime ideal of R[G :M ], then P is a 2-prime R-ideal of M .

Corollary 209 If P is an R-ideal of a 2-multiplication module M such that P �

is a 2-prime ideal of R[G :M ], then
�
P is a 2-prime ideal of the near-ring R.

Proposition 210 Let P be an R-ideal of M and assume that P � is a 0-prime

ideal of R[G;M ]. Then P is a 0-prime R-ideal of M .

Proof. Let A C R and B CR M such that AB � P . Then, by Corollary 198,

A+B� � P �. Since P � is a 0-prime ideal of R[G :M ] and A+ and B� are ideals

of R[G :M ], we have that A+ � P � or B� � P �.

If A+ � P �, then [a; e] 2 P � for all a 2 A. So for all � 2 MG; h 2 G and

a 2 A, a�(h) = ([a; e]�)(h) 2 P which implies that AM � P .

If B� � P �, then B+ � P �. Hence we also have B � P .

This proves that P is a 0-prime R-ideal.

Corollary 211 Let P be an R-ideal of a monogenic (or tame) R-module M

and assume that P � is a 0-prime ideal of R[G;M ]. Then
�
P is a 0-prime ideal

of R.
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Proof. If M is monogenic (or tame) and P is a 0-prime R-ideal of M , then

we know that
�
P is a 0-prime ideal of R. Therefore the result follows from the

previous proposition.

Thus far we have shown that if P is an R-ideal of M (a 2-multiplication

module in some cases) such that P � is a �-prime ideal in R[G : M ], then P is

a �-prime R-ideal of M , where � = 0; 2; 3. In the next part of this section, we

investigate the reverse situation of some of these implications by considering the

primeness of R[G :M ] under certain conditions imposed on R and/ or M .

Theorem 212 Let R be any near-ring, M a nonzero R-module and G be a

cyclic group of order n. Then R[G :M ] is not completely prime.

Proof. Let G = fe = g0; g1; g2:::; gn�1g and consider the following two elements

of R[G :M ]:

U = [1; e] + [1; g] + :::+ [1; gn�1], and

V = [1; e] + [�1; g], where g 6= e.

Then, if we de�ne � 2MG by:

�(e) = m 6= 0, and

�(gi) = 0 for all i = 1; 2; :::; n� 1,

we have that:

(U�)(e) = (([1; e]+[1; g]+:::+[1; gn�1])�)(e) = �(e)+�(g)+:::+�(gn�1) = m

(V �)(e) = (([1; e] + [�1; g])�)(e) = �(e)� �(g) = m

Since m 6= 0, it follows that both U and V are nonzero.

However, we show that UV = 0. Let � 2MG be arbitrary. Then:

(V �)(gi) = (([1; e] + [�1; g])�)(gi) = �(gi)� �(gi+1).

Hence:

(UV �)(gi)

= (([1; e] + [1; g] + :::+ [1; gn�1])V �)(gi)

= (V �)(gi) + (V �)(gi+1) + :::+ (V �)(gi+n�1)
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= �(gi)��(gi+1)+�(gi+1)��(gi+2)+:::+�(gi+n�1)��(gi+n)

= �(gi)� �(gi), since gi+n = gi

= 0.

So UV = 0, but neither U nor V are 0, thus proving that R[G : M ] is not

completely prime.

Theorem 213 Let M be an R-module with jM j> 2. Suppose that R contains
a nonzero element c with the property that cm1 + cm2 = cm2 + cm1 for all

m1;m2 2M . If G is �nite with j G j� 2, then R[G :M ] is not 3-prime.

Proof. Let G = fe = g1; g2; :::; gng where n � 2 and consider the elements:

U = [c; e] + [c; g2] + :::+ [c; gn], and

V = [1; e] + [�1; g2].

Then as in the proof of Theorem 212, we can show that both U 6= 0 and

V 6= 0.

Now let � 2MG be arbitrary. Then for 1 � k � n, we have:

(U�)(gk)

= (([c; e] + [c; g2] + :::+ [c; gn])�)(gk)

= c�(gkg1) + c�(gkg2) + :::c�(gkgn), where e = g1.

Since �(gkgi) 2M for all i = 1; 2; :::; n, it follows that:

c�(gkg1) + c�(gkg2) = c�(gkg2) + c�(gkg1) for all g1; g2 2 G.

Hence, by repeated re-arrangement of the c�(gkgi), we conclude that for all

i; k = 1; 2; :::; n:

(U�)(gk) = (U�)(gi).

By the de�nition of d(MG), it follows that U� 2 d(MG). Since d(MG) is an

R[G : M ]-submodule of MG, we have that R[G : M ]U� � d(MG). So, for all

� 2 d(MG) and for all k = 1; 2; :::; n, we get:

(V �)(gk)

= (([1; e] + [�1; g2])�)(gk)
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= �(gk)� �(gkg2)

= 0.

Therefore V (R[G : M ])U = 0, but U 6= 0 and V 6= 0 which implies that

R[G :M ] is not 3-prime.

Corollary 214 If M is an abelian R-module and G is a �nite group, then

R[G :M ] is not 3-prime.

Corollary 215 If M is an abelian R-module and G is a �nite group, then

R[G :M ] is not completely prime.

Proof. If R[G :M ] is completely prime, then we know that R[G :M ] is 3-prime.

Hence the result follows from the contrapositive statement.

Corollary 216 If M is an abelian R-module and G is a �nite group, then

R[G :M ] is not 2-prime.

Proof. The result follows from the fact that R[G :M ] is 2-prime if and only if

it is 3-prime.

Now let (M;+) be a group. Then it is well known that R = M0(M) is a

near-ring of all zerosymmetric mappings from M to M . Furthermore, M is an

R-module with respect to (r1+r2)m = r1(m)+r2(m) and (r1r2)m = r1(r2(m))

where r1, r2 2 R and m 2M . In view of this we have the following result:

Theorem 217 Let R = M0(M) where (M;+) is a group with j M j> 2. If G
is a �nite group, then R[G :M ] is not 3-prime.

Proof. Fix 0 6= m0 2M and let c 2 R be such that:

c(m) =

8<: m0 if m 6= 0

0 if m = 0

9=;
Now let r1, r2 2 R and m 2M . Then:

c(r1(m)) + c(r2(m))
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=

8>>>>>><>>>>>>:

c(m0) + c(m0) if r1(m) 6= 0 and r2(m) 6= 0

c(m0) if r1(m) 6= 0 and r2(m) = 0

c(m0) if r1(m) = 0 and r2(m) 6= 0

0 if r1(m) = 0 and r2(m) = 0

9>>>>>>=>>>>>>;

=

8>>>>>><>>>>>>:

m0 +m0 if r1(m) 6= 0 and r2(m) 6= 0

m0 if r1(m) 6= 0 and r2(m) = 0

m0 if r1(m) = 0 and r2(m) 6= 0

0 if r1(m) = 0 and r2(m) = 0

9>>>>>>=>>>>>>;
= c(r2(m)) + c(r1(m))

Hence, for all m1, m2 2 M , we have that cm1 + cm2 = cm2 + cm1 and the

result follows from Theorem 213.

Corollary 218 Let R = M0(M) where (M;+) is a group with j M j> 2. If G
is a �nite group, then R[G :M ] is neither c-prime nor 2-prime.

In the preceding theorems, we demonstrated many negative results. In the

�nal part of this section, we present a positive result which could have a great

impact on future research on group near-rings. To this end, we let R be a

near-�eld and we consider the speci�c R-module, M = RR. We then show that

R[G : M ] (or more speci�cally R[G], the notation that we will use for the rest

of this chapter) is 2-prime.

However, before we proceed we recall that R(G) = f� 2 RG : �(g) 6= 0 for

at most �nitely many g 2 Gg is a subgroup of RG. Furthermore, we also noted

that R[G] could just as well be de�ned as a subnear-ring of all mappings from

R(G) to R(G).

Lemma 219 Let R be a near-�eld and G be an ordered group. Let � 2 R(G),

� 6= 0. Then for any �nite set X = fx1; x2; :::; xng � G with x1 < x2 < ::: < xn
and any q1; q2; :::; qn 2 R, there exists a V 2 R[G] such that (V �)(xi) = qi for

i = 1; 2; :::; n.
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Proof. Since � 2 R(G) and � 6= 0, there exists k1 < ::: < km in G and nonzero

r1; :::; rm 2 R such that:

�(g) =

8<:ri if g = ki, 1 � i � m

0 otherwise

9=;
Now, de�ne � = [r�11 ; k1]� and let �1 = [q1; x

�1
1 ]�. De�ne �i inductively by:

�i = [qi � �i�1(xi); x�1i ]� + �i�1, 2 � i � n.

We show by induction that �n(xi) = qi for 1 � i � n.

If n = 1, then:

�1(x1)

= ([q1; x
�1
1 ]�)(x1)

= ([q1; x
�1
1 ][r�11 ; k1]�)(x1)

= q1([r
�1
1 ; k1]�)(e)

= q1r
�1
1 � (k1)

= q1r
�1
1 r1

= q1

Now assume that �i�1(xi) = qi.

Then, if n = i, we have:

�i(xi)

= ([qi � �i�1(xi); x�1i ]� + �i�1)(xi)

= ([qi � �i�1(xi); x�1i ][r�11 ; k1]�)(xi) + (�i�1)(xi)

= (qi � qi)([r�11 ; k1]�)(e) + qi

= qi

Hence, �n(xi) = qi for 1 � i � n. We note that the proof also shows the

existence of V 2 R[G] such that (V �)(xi) = qi for i = 1; 2; :::; n.

Theorem 220 Let R be a near-�eld and G be an ordered group. Then R[G] is

2-prime.

Proof. Supose that R[G] is not 2-prime. Then there exists left R[G]-subgroups

I and J of R[G], both nonzero, such that IJ = 0.
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Let 0 6= U 2 I and 0 6= V 2 J . Then there exists �; � 2 R(G) such that

U� 6= 0 and V � 6= 0.

Since U� 6= 0, there exists nonzero s1; :::; sn 2 R and group elements l1; :::; ln
in G such that:

U�(g) =

8<:si if g = li, 1 � i � n

0 otherwise

9=;
Similarly, since V � 6= 0, there exists nonzero r1; :::; rm 2 R and group ele-

ments k1; :::; km in G such that:

V �(g) =

8<:ri if g = ki, 1 � i � m

0 otherwise

9=;
By Lemma 187, there is a �nite set X = fx1; :::; xtg � G such that:

0 6= s1 = U�(l1) = U�X(l1)

where �X(g) = �(g) if g 2 X and �X(g) = 0 otherwise.

Let qi = �(si), 1 � i � t. Then, by Lemma 219, there exists V1 2 R[G] such

that V1V �(xi) = qi for i = 1; 2; :::; t. Let � = V1V �. Then �X = �X , and again

by Lemma 187, we have 0 6= s1 = U�X(l1) = U�X(l1) = UV1V �(l1).

Hence, 0 6= UV1V 2 IJ is a contradiction, thus implying that R[G] is

2-prime

Corollary 221 If R is a near-�eld and G is an ordered group, then R[G] is

�-prime for � = 0; 2; 3.

Proof. From the previous theorem, we know that R[G] is 2-prime. Since any

2-prime near-ring is also 0-prime, R[G] is 0-prime. Furthermore, since R[G] has

identity [1; e], R[G] is 2-prime if and only if it is 3-prime. Hence R[G] is also

3-prime.
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