Differentielle Genexpression von Urothel und Harnblasenkarzinomen

Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften

vorgelegt beim Fachbereich
Biochemie, Pharmazie und Lebensmittelchemie
der Johann Wolfgang Goethe - Universität

in Frankfurt am Main
von
Sven Bade
aus Mannheim

Frankfurt 1999
1. Einleitung ... 5
 1.1 Urothelkarzinome .. 6
 1.1.1 Epidemiologie .. 6
 1.1.2 Karzinogenese .. 7
 1.1.3 Klassifikation der Urothelkarzinome ... 10
 1.1.4 Diagnostik der Urothelkarzinome .. 12
 1.2 Uroplakine: Gewebsspezifische und differenzierungsabhängige Proteine des Urothels .. 13
 1.3 Tumormarker für Urothelkarzinome .. 15
 1.3.1 Tumormarker .. 15
 1.3.2 Marker für Urothelkarzinome ... 17
 1.4 Signaltransduktion durch Tyrosinkinasen .. 25
 1.5 Differential Display Reverse Transkription-Polymerase Kettenreaktion (ddRT-PCR) .. 26
 1.6 Homologiedomänen-Konsenssequenz RT-PCR (Hodoko RT-PCR) 27
 1.7 Zielsetzung der Arbeit .. 28

2. Material und Methoden ... 30
 2.1 Materialien .. 30
 2.1.1 Gewebeproben ... 30
 2.1.2 PCR-Primer-Oligonukleotide ... 31
 2.1.3 Zelllinien ... 32
 2.1.4 Nährmedien, Chemikalien und andere Materialien für die Zellkultur 33
 2.1.5 Chemikalien für die RT-PCR und Sequenzierung .. 34
 2.1.6 Geräte ... 36
 2.2 Methoden .. 37
 2.2.1 Gewebe und primäre Zellkulturen ... 37
 2.2.2 Gewinnung von Urothelzellen aus Nierenbecken, Harnleitern und -blasen 37
 2.2.3 Zellkulturbedingungen ... 39
 2.2.4 RNA Isolierung ... 39
 2.2.5 Komplementäre DNA Synthese (Reverse Transkription) .. 40
 2.2.6 Polymerase Kettenreaktion (PCR) .. 40

2
Ergebnisse ... 51

3.1 Uroplakin RT-PCR von humaner Urothel-mRNA unter Verwendung der bovinen
Sequenzen für die uroplakin-spezifischen Primer-Oligo-Nukleotide 51

3.2 Die Nukleinsäuresequenzen für die humanen Uroplakin Ia, Ib, II und III PCR-
Fragmente .. 53

3.3 Uroplakin Ib mRNA in primären Harnblasenkarzinomen 55

3.4 Uroplakin RT-PCR von humaner Urothel-mRNA mit den human-Uroplakin-
spezifischen Primer-Oligonukleotiden .. 55

3.5 Multiplexe Uroplakin RT-PCR von humaner Urothel- und Harnblasenkarzinom-
mRNA mit den human-Uroplakin-spezifischen Primer-Oligonukleotiden 56

3.6 Uroplakin Ib RT-PCR von Zellverdünnungsreihen in periphere Blut 58

3.7 Differential Display Reverse Transkription Polymerase Kettenreaktion (ddRT-PCR)
einer Reihe von Urothelkarzinomen verschiedener Malignitätsgrade (G1 bis G4)
und von zwei normalen Urothelien zum Vergleich – Nukleinsäuresequenzen der
differentiellen PCR-Produkte .. 59

3.8 Differential Display RT-PCR mit den AP1 und 2 Primern 60

3.8.1 Ferritin H (Schwere Kette) ... 60

3.8.2 Mitochondriale 12 S ribosomale RNA ... 61

3.9 Differential Display RT-PCR mit AP1+ / T12-NotI Primern 62

3.9.1 Metastase-assoziiertes , kalziumbindendes S100A4/MTS1 Protein 62

3.10 Homologiedomänen Konsenssequenz RT-PCR mit dem SH2-Bindungsregion EEY-
Primer und dT12-NotI .. 63

3.10.1 High mobility group Protein HMG-1 ... 64

3.10.2 L19 ribosomales Protein .. 65

3.10.3 Humanes Neutrophilen-Cytochrom b, leichte Kette 65

3.10.4 Homo sapiens keratin-verwandtes Protein, Zytokeratin 17 66

3.11 Unbekannte Sequenzen ... 66

3.12 Verifikation bzw. Falsifikation der differentiellen Expression der sequenzierten
ddRT-PCR Proben durch konventionelle PCR .. 69
3.13 Differentielle Expression einiger ausgesuchter Gene, die bei der Entstehung
und Ausbreitung von Urothelkarzinomen oder anderen Krebsarten von nachge-
wiesener oder potentieller Bedeutung sind und/oder als Tumormarker dienen
könnten. ... 74
4. Diskussion .. 79
 4.1 Uroplakin-PCR ... 79
 4.2 Differential Display RT-PCR .. 84
 4.3 Direktsequenzierung mit den kurzen 10-mer Differential Display-Primer-
Oligonukleotiden .. 90
 4.4 Durch die ddRT-PCR differenziell dargestellte Transkripte .. 91
 4.4.1 Ferritin, schwere Kette .. 91
 4.4.2 Mitochondriale 12S ribosomale RNA ... 92
 4.4.3 High mobility group Protein HMG-1 ... 93
 4.4.4 CAPL/S-100-related Calcium-binding Protein, p9Ka, mts1 Gen 96
 4.4.5 Weitere differenzielle Transkripte .. 97
 4.5 Untersuchung der differenziellen Expression verschiedener bekannter Gene mittels
 semiquantitativer RT-PCR ... 98
 4.6 Ausblick ... 101
5. LITERATURVERZEICHNIS .. 106
DANKSAGUNG ... 124
1. Einleitung

Angesichts der Unsicherheit bei der urinzytologischen Diagnostik gut differenzierter Urothelkarzinome – die Zellen sind nach rein zytomorphologischen Kriterien kaum von normalen abgeschilferten Epithelzellen der Harnwege (Urothelzellen) zu unterscheiden - besteht ein dringliches Interesse an geeigneten molekularen Markern, die neben der frühen Diagnose eines Urothelkarzinoms, differenzierte Aussagen über dessen Malignitätsgrad und die Prognose für den Patienten ermöglichen, damit eine angemessene Therapie eingeleitet werden kann. Auch für die Verlaufsbefundung bei therapeutischen Maßnahmen und zur Nachsorgeuntersuchung wäre ein Marker, der ein Rezidiv frühzeitig anzeigen würde, noch bevor ein Tumor sich zystoskopisch darstellte, von großer Wichtigkeit (vgl. auch Sidransky 1997). Denn die Progressionsrate zu bösartigen Tumoren ist bei rezidivierenden Urothelkarzinomen hoch, und je früher eine Therapie begonnen wird, um so besser sind die Aussichten für den Patienten, seine Harnblase zu behalten und zu überleben.

Mit der vorliegenden Arbeit wird der Versuch unternommen, zu einer verbesserten molekularen Diagnostik der Urothelkarzinome beizutragen. Dabei wird folgender Doppelstrategie gefolgt:

Erstens werden Botenribonukleinsäuren (mRNAs) einiger bekannter Gene auf ihre Eignung als Tumormarker an einer Reihe von Urothelkarzinomen unterschiedlicher Malignitätsgrade (Grad G1 bis G4) untersucht. Dabei liegt der Schwerpunkt auf den einzigen urothelspezifischen Molekülen, die bislang beschrieben wurden: den Uroplakinen.
Zweitens wird durch Darstellung differentieller Genexpression von Urothelkarzinomen im Vergleich zu normalen Urothenien mittels Differential Display Reverse Transkription Polymerase Kettenreaktion (ddRT-PCR) nach Genprodukten gesucht, die an der Entstehung und/oder Progression von Urothelkarzinomen beteiligt sein, und als Tumormarker dienen könnten.

1.1 Urothelkarzinome

1.1.1 Epidemiologie

Die **Inzidenz**, das ist die Zahl der in einem Jahr Neuerkrankten pro 100.000 Einwohner, beträgt im Mittel 20, wobei Männer beinahe 3mal so häufig betroffen sind wie Frauen. Sie steigt altersabhängig von 0,2 bei den unter Zwillingsjährigen bis auf 200 bei den männlichen über Achzigjährigen. Rauchen stellt den höchsten einzelnen Risikofaktor außer dem Alter dar. Weitere wesentliche Risikofaktoren sind Zugehörigkeit zu einer Rasse und geographische Aspekte (weiße US-Amerikaner erkranken mit einer Inzidenz von etwa 21, Schwarze aber nur mit einer Inzidenz von 10). Die Mortalität, das ist die Zahl der Todesfälle je 100.000 Einwohner in einem Jahr, beträgt in Südafrika 8, in Japan jedoch nur 2,4 und in Mitteleuropa liegt sie bei 5,6 (Rübben und Otto 1997).

Die von der **Dachorganisation Krebs** geschätzte Zahl jährlich neu an Krebs Erkrankter beträgt für das Jahr 1995 in Deutschland 333.000. Der Anteil von Harnblasenkrebs liegt bei 5,29% und steht in Deutschland damit an siebter Stelle nach dem Krebs der Brustdrüse (12,94%), der Lunge (11,11%), des Dickdarms (9,97%), der Prostata (7,54%), des Magens (5,95%) und des Mastdarms (5,56%). Betrachtet man die Zahlen für Männer und Frauen getrennt, so findet man bei Männern einen Anteil Harnblasenkrebs an Gesamtkrebserkrankungen von 7,74% (12.500 von 161.000), das ist etwa zweieinhalbfach häufiger als bei Frauen: 2,98% (5.100 von 171.400) (Robert Koch-Institut 1998). Die Zahlen für die jährlich standardisierte Inzidenz und Mortalität, altersspezifische Erkrankungsraten, altersstandardisierte und kumulative Erkrankungs- und Sterberaten, Altersverteilung der Erkrankungsraten, mittleres Erkrankungs- und Sterbealter, relative Überlebensraten, regionale und internationale Vergleiche sind auf der Internet-Seite des Robert Koch-Instituts (http://www.rki.de/GBE/KREBS/TRENDS/INDEX.HTM) zu finden.

1.1.2 Karzinogenese

Ionisierende Strahlen und chemische Karzinogene führen direkt oder indirekt zu Schäden an der DNA, die, wenn sie nicht repariert werden, zu dauerhaften Veränderungen der genetischen Information (Mutationen) führen können. Strukturelle Veränderungen können Punktmutationen (Austausch einer Base gegen eine Andere, Deletion oder Insertion einer Base, was Leserasterverschiebungen verursacht), Chromosomenbrüche mit eventueller Translokation von Genen, sowie mehr oder weniger große Deletionen oder Insertionen sein. Auf die Einzelheiten
bei den primären karzinogenen Ereignissen und Mechanismen soll hier nicht eingegangen werden. Bekannte direkte oder indirekte Auswirkungen der genetischen Veränderungen sind:

1. Inaktivierung von Tumorsuppressorgen durch Deletion des *einen* Allels, gefolgt von einer Mutation des noch Verbliebenen. Tumorsuppressorgenprodukte sind an der Zellzykluskontrolle beteiligt.

2. Aktivierung von Proto-Onkogenen: durch Translokation vor einen aktiven Promotor; durch Mutationen, die zu konstitutiv aktiven, d.h. nicht mehr der Regulation unterworfenen, Molekülen und damit zu unkontrollierter Zellteilung führen; durch Mutationen in regulatorischen Sequenzen, wie Promotor- und Enhancersequenzen, oder Spelßstellen; durch Genamplifikation mit resultierender erhöhter Expression, wie auch durch Trisomie (oder höher) eines Chromosoms oder eines Bruchstückes desselben. Proto-Onkogene können Wachtumsfaktoren oder deren Rezeptoren, Moleküle der mitogenen Signaltransduktion, sowie Transkriptionsfaktoren sein.

3. Expression von Wachtumsfaktoren und deren Rezeptoren, die zu autokriner Autonomie führen kann.

4. Unter- oder übermäßige Bildung von Adhäsionsmolekülen, was für Invasion und Metastasierung von Bedeutung sein kann.

5. Synthese von angiogenetischen Faktoren, die Gefäßneubildungen induzieren und damit für das Wachstum eines größeren Tumors (> 2mm) Voraussetzung sein können. Dies gilt nicht für das Urothelkarzinom.

7. Expression von immortalisierenden Molekülen, wie der *Telomerase*, einem Ribonukleoprotein, das die bei jeder Zellteilung verkürzten Telomere (Chromosomenenden) wieder verlängert, und so der Instabilität des Genoms bei Unterschreitung einer kritischen Telomerlänge und dem damit verbundenen Zelltod vorbeugt.

Rauchen dürfte der größte einzelne Risikofaktor für Blasenkrebs sein. Im Vergleich zu Nichtrauchern, tragen Raucher nach Schätzungen das doppelte Risiko diese Erkrankung zu entwickeln (Cairns und Sidransky 1998).

Zu den gesicherten Blasenkarzinogenen gehören neben 2-Naphtylamin, 4-Aminobiphenyl (Diphenylamin) und Benzidin, die besondere Bedeutung bei der Exposition bestimmter Berufsgruppen haben, auch die Medikamente Phenacetin (heute kaum mehr verwendet) und Cyclophosphamid, ein alkylierendes Zytostatikum (Rübben und Otto 1997).

Chronische Harnwegsinfekte führen zu einer Häufung von Urothelkarzinomen. Ob dies auf die damit verbundene Nitrosaminbildung zurückzuführen ist, gilt als noch nicht gesichert. Auch Dauerkatheterisierung und Blasenstein erhöhen das Erkrankungsrisiko. Bei chronischen Infekten mit Schistosoma haematobium, dem Erreger der Blasenbilharziose, besonders in Endemiegebieten (weite Regionen Afrikas und in arabischen Ländern), kommt es zu einer fortschreitenden Entartung von Urothelzellen, ausgehend von einer Hyperplasie (übermäßige Zellproliferation, die aber, im Unterschied zur Dysplasie und zum Karzinom, nach Ausschaltung der verursachenden Noxe, reversibel ist), über eine Dysplasie und plattenepitheliale Metaplasie (Umdifferenzierung), bis hin zu Plattenepithelkarzinomen. In diesen Gegenden macht diese Tumorart die Mehrheit der Harnblasenkarzinome (bis zu 80%) aus, während in den Industrieländern das Urothel- oder Übergangsepithelkarzinom (Transitional Cell Carcinoma, TCC) überwiegt (über 90%). Mehr als 80% der Plattenepithelkarzinome sind mäßig bis schlecht differenziert, und wachsen schon zum Zeitpunkt der Erstdiagnose muskelinvasiv. Die 5-Jahres-Überlebensrate liegt bei 5-26%. Adenokarzinome der Harnblase sind mit 0,2 bis 2% seltener und haben eine beinahe ebenso schlechte Prognose (5-Jahres-Überlebensrate von 18-33%) (Rübben und Otto 1997).

Ein saprophytisch in gelagertem Getreide wachsender Pilz, der Nephrotoxine und karzinogene Mykotoxine bildet (z.B. Ochratoxin A), soll nach der Mykotoxinhypothese an der Entstehung der Urothelkarzinome bei der Balkannephropathie beteiligt sein (nach der alternativen Pliozän-Lignit-Hypothese soll die Erkrankung durch Langzeitexposition mit polyzyklischen aromatischen Kohlenwasserstoffen und anderen toxischen organischen
Verbindungen verursacht sein, die aus Kohlelagerstätten in Siedlungsnähe ins Trinkwasser sickern (Tatu et al. 1998).

Diese bezieht sich allein auf veränderte Genexpression (Transkription), dargestellt durch Reverse Transkription-Polymerase Kettenreaktion (RT-PCR) Techniken. Gesucht werden Gene, deren Transkripte in veränderten Mengen in den Zellen vorliegen, wie beispielsweise bei Überexpression von Onkogenen; nach Verlust eines Tumorsuppressorgenallels mit resultierender Unterexpression des verbliebenen, häufig mutierten Allels; bei Hochregulierung von Motilitätsfaktoren (z.B. extrazelluläre Matrix- oder Basallaminaproteine abbauende Enzyme, Metalloproteinase e.g.); sowie bei Über- oder Unterexpression von Adhäsionsmolekülen, Wachstumsfaktoren und deren Rezeptoren, Signaltransduktionsmolekülen, z.B. Proteinkinasen und phosphatasen, sowie Transkriptionsfaktoren etc.

1.1.3 Klassifikation der Urothelkarzinome

TNM-Klassifikation:

Tis Carcinoma in situ (nicht infiltrativ, nicht exophytisch*)
Ta exophytisch, nicht infiltrativ
T1 Invasion in die Lamina propria
T2 Invasion in die oberflächliche Muskulatur
T3a Invasion in die tiefe Muskulatur
T3b Invasion in das perivesikale Fettgewebe
T4 Invasion in Nachbarorgane

* Exophytisches Wachstum: über die Epitheloberfläche ins Lumen wachsend

Urothelkarzinome metastasieren vor allem in Lunge, Leber und Knochen.

Die histopathologische Gradeinteilung (Grading) erfolgt nach zytologischen Kriterien, wie Zell- und Kernpolymorphie, Hyperchromasie des Zellkerns, erhöhte Kern-zu-Plasma-Relation, und Mitoserate bezogen auf die Gesamtzellzahl:

G1 gut differenziert
G2 mäßig differenziert
G3 schlecht differenziert
G4 undifferenziert, anaplastisch

Zwischen Infiltrationstiefe und Differenzierungsgrad besteht eine enge Korrelation. Oberflächlich wachsende Karzinome sind in 60% der Fälle gut differenziert, dagegen tief muskelinvasiv und extravesikal (außerhalb der Harnblase) wachsende Karzinome meist mittelgradig bis schlecht differenziert (Rübben und Otto 1997).

Der Differenzierungsgrad korreliert mit dem Ploidiegrad. Aneuploidie liegt nur bei 9% der G1-Tumoren, aber bei 73% der G3-Tumoren vor. Eine Risikoabschätzung lymphogener Metastasierung und eine Progressionsbeurteilung des Carcinoma in situ ist möglich, wenn man die Aneuploidiebestimmung durch die Bestimmung des Anteils Zellen in der S-Phase des Zellzyklus ergänzt (Rübben und Otto 1997).
Urothelkarzinome sind in der Regel multifokal, haben aber wahrscheinlich einen monoklonalen Ursprung. Dies legt eine Studie nahe, die X-chromosomale Inaktivierungsmuster an 13 Harnblasentumoren von Frauen untersucht hat (Sidransky et al. 1992).

1.1.4 Diagnostik der Urothelkarzinome

1.2 Uroplakine: Gewebsspezifische und differenzierungsabhängige Proteine des Urothels

Uroplakine (UP) wurden als die ersten gewebsspezifischen und differenzierungsabhängigen Marker für Urothel beschrieben. Sie wurden zuerst biochemisch aus den apikalen Plaques der luminalen Zellmembranen von urothelialen Deckzellen aus Rinderharnblasen isoliert (eine gute Übersicht geben Wu et al. 1994). Später wurden die zu den mRNAs der vier bekannten Uroplakine (Ia, Ib, II und III) komplementären DNA-Moleküle (cDNAs) kloniert und sequenziert (Yu et al. 1994; Lin et al. 1994; Wu und Sun 1993).

Uroplakine I und III sind stark N-glykosyliert und könnten damit zur Muzinschicht über den Plaques beitragen, von der angenommen wird, daß sie bakterielle Besiedlung verhindert (Wu et al. 1994).

Wirtsorganismus interpretiert und scheint durch eine Art der Apoptosis ausgelöst zu werden, die durch den Caspase-Inhibitor Boc-Aspartyl(OMe)-Fluormethylketon (BAF) blockiert wird, wie dieselben Autoren mit einem TUNEL-Test (terminal deoxynucleotidtransferase-mediated deoxyuridine triphosphate nick end labeling) zeigen. Uropathogene E. coli können diesem Wirtsabwehrmechanismus durch Eindringen in tiefere Gewebsschichten entgehen, und chronisch rezidivierende Harnwegsinfektionen verursachen.

Diese Befunde lassen vermuten, daß ein ähnlicher Grad der Übereinstimmung mit den humanen Uroplakinen existiert, sodaß Primer-Oligo-Nukleotide, die für eine uroplakin-spezifische Polymerase Kettenreaktion von den Nukleinsäuresequenzen der Rinder-Uroplakine ausgewählt werden, auch mit großer Wahrscheinlichkeit die entsprechenden Abschnitte humaner cDNAs spezifisch amplifizieren würden.

PCR-Amplifikation der entsprechenden Uroplakin-Abschnitte aus humaner urothelialer cDNA zu nutzen. Anschließend wurde die Methode verwendet, um die Uroplakinexpression primärer Harnblasentumoren zu testen. Desweiteren sollte die Methode so verfeinert werden, daß eine einzelne Urothelkarzinomzelle im Blut nachgewiesen werden kann.

1.3 Tumormarker für Urothelkarzinome

Es wird hier kurz darauf eingegangen, was unter Tumormarker verstanden wird und welche Moleküle bis heute als Marker für Urothelkarzinome untersucht wurden, da einerseits einige davon als Referenzmoleküle zur Charakterisierung der untersuchten Urothelkarzinome in die vorliegende Arbeit einbezogen werden, und um andererseits einen Überblick zu geben, Transkripte welcher Proteinfamilien bei der Darstellung der differentiellen Genexpression mittels Differential Display RT-PCR zu erwarten sind.

1.3.1 Tumormarker

Tumormarker stellen idealtypisch qualitative oder quantitative Veränderungen dar, die genutzt werden, eine bestimmte Krebsart zu erkennen (Diagnose), den Therapieerfolg zu überwachen, Rezidive zu entdecken und Hochrisikogruppen (z.B. bei beruflicher Karzinogenexposition) auf Anwesenheit eines Tumors zu untersuchen. Sie sollen also pathognomisch sein. Die geforderte Tumorspezifität ist in der Realität allerdings selten gegeben, da es sich meist um Moleküle handelt, die auch normalerweise im Körper vorkommen, wenn auch an anderem Ort oder zu anderer Zeit.

Bei den onko-fötalen Antigenen handelt es sich um Proteine, die während bestimmter Phasen der Embryonal- oder Fötalentwicklung exprimiert werden, im adulten Organismus aber nicht, oder nur in geringen Mengen vorhanden sind. Als Beispiel sei das Carcino-Embryonale

Als *zytogenetisch* auffälliger Tumormarker sei das *Philadelphia-Chromosom* bei der chronischen myeloischen Leukämie genannt. Es wird durch eine Translokation zwischen Chromosom 9 und 22 gebildet. Diese führt zu einem Fusionsprotein aus Teilen der Genprodukte der *bcr* (breakpoint cluster region) und des Protoonkogens *c-abl* mit Tyrosinkinaseaktivität und onkogener Wirkung.

Genamplifikation. Expressionsprodukte amplifizierter Gene können als Tumormarker dienen, wenn sie, wie z.B. N-*myc* in Neuroblastomen und *erbB* in Brustkrebs, verstärkt gebildet werden. Auch das amplifizierte Gen selbst kann als Marker verwendet werden, indem die Genamplifikation beispielsweise mit einer DNA-Sonde in einer *Southern Hybridisierung* oder in *situ* quantifiziert wird.

Der **Verlust der Heterozygotität** an einem Tumorsuppressorgenort kann u.a. durch *Fluoreszenz-in situ-Hybridisierung* (FISH) oder mittels *Mikrosatelliten-PCR* erkannt werden.

Außerdem können **gewebstypische Enzyme** als Tumormarker im weiteren Sinn genutzt werden, wenn sie, wie z.B. *saure Phosphatase* bei Prostatakarzinomen (eine Prostatamassage hat allerdings den gleichen Effekt) ins Blut gelangen und im Serum gemessen werden können.
1.3.2 Marker für Urothelkarzinome

1.3.2.1 Onkogene

Onkogene können die maligne Transformation normaler Zellen induzieren. Eine einzelne funktionsfähige Kopie eines dominanten Onkogens vermag Zellen einige Aspekte des malignen Phänotyps zu verleihen.

Ras ist ein Guaninnukleotid-bindendes Protein mit GTPase-Aktivität, und vermittelt die Signalübertragung von Wachstumsfaktoren, die an ihren Receptor gebunden haben. Die konstitutive Aktivierung des ras-Proto-Onkogens kann durch eine vertauschte Aminosäure im Protein, die Substitution eines Valin durch ein Glycin an Position 12 der Sequenz, geschehen (Darnell et al. 1990).

Das Proto-Onkogen \(c\text{-erbB} \, 2 \) weist teilweise Homologie zum Rezeptor des epidermalen Wachstumfaktors (\(EGF\text{-R} \)) auf. Seine Überexpression korreliert mit einer schlechten Prognose beim Mammakarzinom. Die Rolle beim Urothelkarzinom ist noch un klar.

Das \(c\text{-myc} \) Protein ist an der Regulation der Zellproliferation und Differenzierung beteiligt. In einer Vielzahl von Tumoren ist die \(c\text{-myc} \)-Expression verändert. Eine immunhistochemische Studie zeigt \(c\text{-myc} \) Überexpression in 18\% der in situ Karzinome (7/39), in 58\% der papillären urothelialen Tumoren (38/65), in 56\% der T1 und 59\% der muskelinfiltrierenden Tumoren der Harnblase. Es besteht aber keine Korrelation von \(c\text{-myc} \) Überexpression und Tumorgrad und -stadium (Schmitz-Drager 1997).

Das \(bcl\text{-2} \) Proto-Onkogen ist in wenig differenzierten Urothelkarzinomen geringfügig aber signifikant höher exprimiert als in gut bis mäßig differenzierten Tumoren oder in normalen Urothelien (King et al. 1996). \(bcl\text{-2} \) unterdrückt Apoptosis – den programmierten Zelltod – und kooperiert mit anderen Onkogenprodukten bei der malignen Transformation.

Obwohl viele Protoonkogene in Human tumoren identifiziert wurden, wurden nur wenige gefunden, die in Harnblasenkrebs konsistent verändert sind (Cairns u. Sidransky 1998). Sie sind als allgemeine Marker für Urotheltumoren wenig geeignet.

1.3.2.2 Tumorsuppressorgene

1.3.2.3 Wachstumsfaktoren und ihre Rezeptoren

Das c-erbB-1 Proto-Onkogen auf Chromosom 7 kodiert das EGF-Rezeptor Gen. Trisomie 7 ist eine häufige zytogenetische Beobachtung in Harnblase tumoren und könnte zu einer erhöhten

1.3.2.4 Zellskelettproteine: Zytokeratine

1.3.2.5 Zelladhäsionsmoleküle: Cadherine, Catenine und CD44

E-Cadherin ist ein kalzium-abhängiges Adhäsionsmolekül, das für die epitheliale Zell-Zell-Verbindung wichtig ist. Bei einer Untersuchung verschiedener Urothelkarzinomzelllinien zeigte sich, daß nicht-invasive Zelllinien (RT4 e.g.) eine starke *E-Cadherin*-Expression im Bereich der Interzellularkontakte aufweisen, während bei invasiven Zelllinien (J82) kein *E-Cadherin* nachweisbar war. Durch Transfektion mit *E-Cadherin* cDNA konnte diese invasive und metastatische Zelllinie in eine nicht-invasive Zelllinie transformiert werden (Frixen et al. 1991).

Die Unterdrückung der Invasivität von Krebszellen durch Transfektion mit *E- oder P-Cadherin* ist von Zell-Zell-Kontakten abhängig (Kontaktinhibition), wie in einem *in vitro* Matrigel-Filter-Inversions-Test mit mehr oder weniger dicht ausgesäten Transfektanten gezeigt wurde (Steinberg und Foty 1997).

In Magenkarzinomzelllinien konnten Oda et al. (1994) Mutationen im *E-Cadherin*-Gen nachweisen.

Eine verringerte *E-Cadherin*-Expression bei Harnblasenkarzinomen korreliert mit Tumorinvasivität und Rezidivhäufigkeit (Lipponen und Eskelinen 1995).

Die Lungenkarzinomzelllinie *PC9* exprimiert *E-Cadherin* und *b-Catenin*, nicht aber *a-Catenin*. *PC9* zeigt nur geringe *E-Cadherin*-abhängige Adhäsion. Nach Transfektion mit *a-N-Catenin* cDNA entstehen gut organisierte epitheliale Strukturen mit einiger Polarität und starker Zell-Zell-Adhäsion.

1.3.2.6 Desmosomale Proteine

1.3.2.7 Nexus (gap junction) Proteine

Die Connexine (Cx) wurden in Monolayerkulturen von Urothelkarzinomzellen mit unterschiedlicher urothelialer Differenzierung (HCV-29, RT4 und J82) immunhistochemisch und im Western Blot untersucht. Die Connexin-Expression war während der gesamten Dauer der

1.3.2.8 Motilitätsfaktoren: *Scatter Factor/HGF*

1.3.2.9 Hypomethylierung und die Rolle von DNA-Methyltransferasen

1.3.2.10 Telomerase

1.3.2.11 Fas/Fas-Ligand

Fas-Antigen-Ligandbindung spielt eine wichtige Rolle bei der zytotoxischen zellulären Immunreaktion (zytotoxische T-Lymphozyten und "Natural Killer" Zellen) gegen virusinfizierte
oder transformierte Zellen, wobei sie in Zielzellen Apoptosis induziert. Tumorzellen in verschiedenen neoplastischen Erkrankungen nutzen diesen Mechanismus, um z.B. durch Sekretion von Fas der Immunabwehr zu entgehen. Erhöhte Werte für lösliches Fas im Serum könnte mit einer schlechten Prognose für Harnblasenkarzinompatienten einhergehen (Mizutani et al. 1998).

1.3.2.12 Kernmatrixproteine

Ein Urintest auf NMP (nuclear matrix protein) 22 konnte in einigen Studien neu diagnostizierte oder rezidivierende Blasentumoren entdecken (Soloway et al. 1996; Stein et al. 1998).

1.3.2.13 Blutgruppenantigene und andere Glykoproteine der Zelloberfläche

Metanestin, ein weiteres Glykoprotein, welches eine Metastase-assozierte Expression in Urothelkarzinomen zeigt, wurde von Takemoto et al. (1997) entdeckt.

1.4 Signaltransduktion durch Tyrosinkinasen

Die zytosolischen Tyrosin-Kinasen werden durch Rezeptoren, die selbst keine intrinsische Kinaseaktivität haben, benutzt, um Signale zu transduzieren, wie z.B. viele Rezeptoren für Hormone, Zytokine und extrazelluläre Matrixproteine. Die zytosolischen Tyrosin-Kinasen werden in vier Hauptfamilien unterteilt: Fak, Jak, Src und ZAP70/Syk.

Durch Tyrosin-Phosphorylierung und -Autophosphorylierung werden hochaffine Bindungsstellen für SH2- (src-Homologie 2) und PTB- (Phosphotyrosinbindung) Domänen geschaffen, die für die Interaktion der an der intrazellulären Signalkaskade beteiligten Proteine von großer Bedeutung sind.

1.5 Differential Display Reverse Transkription-Polymerase Kettenreaktion (ddRT-PCR)

Probe eliminiert. Die differentiellen mRNAs werden in komplementäre DNA-Kopien revers-transkribiert, die dann kloniert und sequenziert werden. Es können mit den differentiellen Transkripten markierte Gensonden hergestellt werden, um cDNA Bibliotheken zu durchsuchen.

1.6 Homologiedomänen-Konsenssequenz RT-PCR (Hodoko RT-PCR)

Anstatt einerseits nur bekannte Genprodukte zu untersuchen, und damit wahrscheinlich nur einen kleinen Teil der für das Krebsgeschehen verantwortlichen Moleküle zu erfassen (konventionelle RT-PCR), und andererseits mit willkürlich ausgewählten Zufallssequenzen alle in einer Zellpopulation vorliegenden Transkripte repräsentieren zu wollen (ddRT-PCR), versucht diese Arbeit neben den eben genannten methodischen Ansätzen einen Mittelweg zu beschreiten: In Homologierregionen von Proteinfamilien wurden Kernkonsenssequenzen gesucht, die für die meisten Familienmitglieder gelten, und davon Oligonukleotidsequenzen für PCR-Primer abgeleitet. Für die SH2-Domäne z.B. wurde die maximale Übereinstimmung in der Aminosäuresequenz ESET (Glu-Ser-Glu-Thr) gefunden. Die gemäß des degenerativen genetischen Kodes abgeleitete Nukleinsäuresequenz lautet: gay ten gay ac (das 3’-terminale, unbestimmte Nukleotid wurde weggelassen, um das für die Primerbindung wesentliche 3’-Ende nicht unspezifisch zu lassen; y entspricht einem g oder a an derselben Position, n entspricht einer der vier Basen). Die Konsens-Aminosäuresequenz, die nach Tyrosinphosphorylierung am häufigsten durch SH2-Domänen gebunden wird, besteht aus EEY (Glu-Glu-Tyr). Die abgeleitete Nukleotidsequenz ist: gay gay ta (die letzte unbestimmte Base wurde wieder aus genanntem Grund weggelassen). Für die SH3-Domäne wurden zwei Konsenssequenzen identifiziert: LYDY (Leu-Tyr-Asp-Tyr) und SNYV (Ser-Asn-Tyr-Val). Die entsprechenden Nukleotidsequenzen lauten: ctn ta(t/c) ga(t/c) ta und agar(t/c) aat(c) ta(t/c) gt. Als Gegenstrang-Primer wurde ein

1.7 Zielsetzung der Arbeit

Ziel der vorliegenden Arbeit ist es, eine Reihe von Urothelkarzinom-Primärtumoren verschiedener pathologischer Malignitätsgrade und Stadien auf die Expression bekannter und unbekannter, für Tumorentstehung und maligne Phänotypen möglicherweise bedeutender Gene zu untersuchen. Durch Amplifikation genspezifischer mRNA-Fragmente durch Reverse Transkription Polymerase Kettenreaktion wird die Expression folgender, in der Einleitung kurz beschriebener Gene dargestellt: Der Mobilitätsfaktor Hepatozyten Wachstumsfaktor/Scatter Factor (HGF/SF); das für unbegrenzte Zellteilungen wichtige Telomerase-Ribonukleoproteinenzym (Telomerase RNA); die Adhäsonsproteine E-Cadherin und CD44; die mit E-Cadherin interagierenden zytoplasmatischen Catenine a und b; die für die Stabilität des Genoms und die allgemeine Genexpression bedeutenden DNA-Methyltransferasen Dnmt 1 und 2; die Zytokeratine 8, 18 und 20; die für Urotheldifferenzierung charakteristischen Uroplakine und das Mal-Protein; sowie das bei der multiplen Chemotherapieresistenz beteiligte, und als Effluxpumpe fungierende mdr1 (Multi Drug Resistance) Genprodukt P-gp 170.

Unbekannte Gene werden mittels Starter(Primer)-Oligonukleotide willkürlich gewählter Sequenzen in der Differential Display RT-PCR, oder mittels Konsensussequenz-Primer in der Homologiedomänen-Konsensussequenz (HoDoKo)-RT-PCR dargestellt. Unter den "Unbekannten" sind auch bekannte Gensequenzen zu erwarten. Zweck der Strategie ist es aber, die Möglichkeit für die Entdeckung „neuer“ Gene offenzuhalten, die differenziell exprimiert werden, und sich eventuell als „neue“ Onkogene, Tumorsuppressorgene oder andere Gene erweisen, die für die
maligne Transformation, Invasion oder Metastasierung mitverantwortlich sind. Sie könnten bei der mitogenen Signalübertragung, der Zellzykluskontrolle, der Absiedlung vom Primärtumor (Auflösung der Adhäson) und bei der Motilität, Invasivität, bis hin zur Gewebsaffinität (z.B. durch Expression bestimmter Integreine) während der ektopen Ansiedlung von Krebszellen und Bildung von Metastasen eine Rolle spielen. Sie könnten große diagnostische und/oder therapeutische Bedeutung bekommen. Umgekehrt sind auch Gene zu erwarten, die für die normale Differenzierung von Urothel, oder allgemein von Epithelen wichtig sind, und antitumorigen wirken könnten.

Die Expression der urothelspezifischen Uroplakine wird im Hinblick auf ihre Eignung als Marker für urotheliale Karzinome getestet und für die Entwicklung eines Uroplakin RT-PCR Bluttests genutzt.

Mit der vorliegenden Arbeit soll zur molekularen Charakterisierung von Urothelkarzinomen beigetragen werden. Sie geht von der Prämisse aus, daß nur durch die profunde Kenntnis der Unterschiede zwischen dem normalen und transformierten Zelltyp es möglich sein wird, den Phänotyp, einschließlich des malignen Verhaltens, wie Invasion, Metastasierung etc., zu verstehen und rationale Strategien zur Behandlung von Krebserkrankungen zu entwickeln, die gezielt und hochspezifisch in molekulare Strukturen und Prozesse transformierter Zellen eingreifen, ohne die Zelfunktionen normaler Gewebe zu stören. Darüberhinaus geben Erkenntnisse, die durch Untersuchungen an Krebszellen gewonnen werden, auch häufig Aufschluß über die entsprechenden Prozesse in normalen Zellen, Geweben und Organen, während der Entwicklung und im adulten Organismus (z.B. bei Regeneration, Wundheilung etc.).

Hoffnung und Zuversicht bleiben, daß immer mehr Krebsarten in ihren Ursache-Wirkungs-Zusammenhängen verstanden werden, und daß damit echte Heilung von Krebs realisierbar wird, was mit den heutigen therapeutischen Mitteln leider noch zu selten der Fall ist. Es besteht daher ein dringender Bedarf an verbesserten diagnostischen und therapeutischen Verfahren.
2. Material und Methoden

2.1 Materialien

2.1.1 Gewebeproben

In der folgenden Tabelle werden den verwendeten cDNA Proben der Gewebetyp und die pathologische Klassifizierung des jeweiligen Primärtumors zugeordnet, dem die RNA entstammt (G: Malignitätsgrad; OP: Operation; T: Tumorstadium; TUR: transurethrale Resektion; ZE: Zystektomie):

<table>
<thead>
<tr>
<th>Probe</th>
<th>Gewebetyp</th>
<th>TNM-Klassifizierung Grad</th>
<th>Histologie</th>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ureter-Bindege-webe ohne Urothel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Harnblasentumor</td>
<td>pTa</td>
<td>G1 klein, papillär</td>
<td>TUR</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>pTa</td>
<td>G1 bifokal, papillär</td>
<td>TUR</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>pT3b</td>
<td>G1</td>
<td>ZE</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>pTa</td>
<td>G1</td>
<td>ZE</td>
</tr>
<tr>
<td>6</td>
<td>Urothel von Patient 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Harnblasentumor</td>
<td>pT1</td>
<td>G2 papillär</td>
<td>TUR</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>pT1</td>
<td>G2 papillär</td>
<td>TUR</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>pT3a</td>
<td>G2 part. papillär</td>
<td>TUR</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>pT3b2</td>
<td>G2</td>
<td>ZE</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>G2</td>
<td>ZE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>G2</td>
<td>ZE</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>pT3b</td>
<td>G3 angedeutet adenoid-proliferativ</td>
<td>ZE</td>
</tr>
<tr>
<td>14</td>
<td>Urothel von Patient 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Harnblasentumor</td>
<td>pT3a</td>
<td>G3</td>
<td>ZE</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>G3</td>
<td>ZE</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>pT3b</td>
<td>G4 großzellig, part. adenoid</td>
<td>ZE</td>
</tr>
</tbody>
</table>
2.1.2 PCR-Primer-Oligonukleotide

Sequenzen der Oligonukleotide, die als Primer für die Amplifikation der angezeigten Fragmentgrößen aus den cDNAs der aufgelisteten Gene durch Polymerase Kettenreaktion (PCR) verwendet wurden:

<table>
<thead>
<tr>
<th>Gen</th>
<th>5´-Sinnstrang-Primer</th>
<th>3´-Gegensinnstrang-Primer</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>bovin:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uroplakin Ia</td>
<td>gct gac cag tac cgc ata ta</td>
<td>aca tgg cta tca gca tca cg</td>
<td>630</td>
</tr>
<tr>
<td>Ib</td>
<td>tcg tag gca tca tga.agt cc</td>
<td>ctc cag tag aac atg gt</td>
<td>541</td>
</tr>
<tr>
<td>II</td>
<td>tgc atc cca ggt gac aac cc</td>
<td>agc agt gga gat aag agc ag</td>
<td>340</td>
</tr>
<tr>
<td>III</td>
<td>cca ctc gct agt gtg acc tt</td>
<td>gtt cac aga cgt tga tga gg</td>
<td>741</td>
</tr>
<tr>
<td>human:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uroplakin Ia</td>
<td>tgc atc aag tcc tac accca</td>
<td>gcc ctt ggt gaa cag gta gt</td>
<td>320</td>
</tr>
<tr>
<td>Ib</td>
<td>ctc ttc ctg aag cag atg ct</td>
<td>tcc agt aga aca tgg tac cc</td>
<td>408</td>
</tr>
<tr>
<td>II</td>
<td>tgc atc cca ggt gac aac cc</td>
<td>ggg act tag ttc act gaa gc</td>
<td>527</td>
</tr>
<tr>
<td>III</td>
<td>gtc tac ctg tat gtc ctg gt</td>
<td>gat gga cgt gat gac gat ca</td>
<td>461</td>
</tr>
<tr>
<td>III<sub>Mac</sub></td>
<td>tgg tca cgg tgg gtg cca ac</td>
<td>gcc cgt gga cat aat gac cc</td>
<td>126</td>
</tr>
<tr>
<td>Mal-1</td>
<td>ttc tgc gtc ttc acc acc ttg c</td>
<td>gag agt aaa cac agg acc cac (Liebert et al. 1997)</td>
<td></td>
</tr>
<tr>
<td>a-Aktin</td>
<td>agg cca acc ggg aga aga tga</td>
<td>atg tca cac tgg gaa ggc</td>
<td>446</td>
</tr>
<tr>
<td>GAPDH</td>
<td>aca gtc cat gcc atc act gcc (Lycke und Larsen 1995)</td>
<td>gcc ttc acc acc ttc ttg</td>
<td>228</td>
</tr>
<tr>
<td>E-Cadherin</td>
<td>gat tct gct gct ctt ggt gc</td>
<td>agc ctt gtt gaa cgg at</td>
<td>451</td>
</tr>
<tr>
<td>a-Catenin</td>
<td>ctc tgg ctc ctg aat atc ag</td>
<td>gtt gct tac cac agg tca tc</td>
<td>389</td>
</tr>
<tr>
<td>b-Catenin</td>
<td>ctt gga ttt cgc cag gat ga</td>
<td>cag gca ctt tct gat aca cc</td>
<td>326</td>
</tr>
<tr>
<td>CK 8</td>
<td>gta cga gga tat tgc caa cc</td>
<td>cgt gtc cgc atc ttc ttc ac</td>
<td>609</td>
</tr>
<tr>
<td>CK 17</td>
<td>cgt cag gtt gtt acc atg gt</td>
<td>ttc tca tca ggg aag gaa gc</td>
<td>215</td>
</tr>
<tr>
<td>CK 18</td>
<td>tca gga ctc cgc caa gat ca</td>
<td>tgg tct cat tgg tct cac ac</td>
<td>551</td>
</tr>
<tr>
<td>CK 20</td>
<td>ttc gga gta cca tgg aac gc</td>
<td>gat att agg tgg tct aca gc</td>
<td>551</td>
</tr>
<tr>
<td>Vimentin</td>
<td>cag tcc ctc ccc acc gat ga</td>
<td>gat aac tgt cgc atc ttc ag</td>
<td>396</td>
</tr>
<tr>
<td>dnmt-1</td>
<td>ttc age cca acc gtc acc aa</td>
<td>cag aac tag tcc tta gca gc</td>
<td>290</td>
</tr>
<tr>
<td>dnmt-2</td>
<td>cta cca atc cct taa cca tt</td>
<td>cat atg acc atc ttt cag ag</td>
<td>251</td>
</tr>
<tr>
<td>Telomerase</td>
<td>aga tct cga cca gtc cct ca</td>
<td>tcc tac tgc tca agg tca tc</td>
<td>203</td>
</tr>
<tr>
<td>HGF</td>
<td>tga gaa tgg ttc tgt tgt tc</td>
<td>ctc cag tag ttt tct tag ga</td>
<td>250</td>
</tr>
<tr>
<td>P-gp</td>
<td>cca atc att gca atca gca gg</td>
<td>gtt cca act tct gct cct ga</td>
<td>157</td>
</tr>
<tr>
<td>Ferritin H</td>
<td>tca gtc act act gga act gc</td>
<td>cat tat ctc tgt cca cga gg</td>
<td>209</td>
</tr>
<tr>
<td>mt 12S rRNA</td>
<td>acg tta gtt cca ggt gta gc</td>
<td>gtt cgt cca aga gca ctt tc</td>
<td>281</td>
</tr>
<tr>
<td>rib. L19</td>
<td>cat gta tca cag cct gta cc</td>
<td>tct tgg tct cct cct tg</td>
<td>233</td>
</tr>
</tbody>
</table>
Die Oligonukleotide wurden in Auftragssynthese von MWG-Biotech in Ebersberg (http://www.mwgdna.com) hergestellt und in sterilem A. bidest. gelöst [100 µM].

2.1.3 Zelllinien

Die RT4 Harnblasenkarzinomzelllinie (Abbildung 1c auf Seite 50) stammt von einem niedriggradigen (G1) papillomatösen primären Harnblasenkarzinom ab und stellt sich auch in Zellkultur als gut differenziert dar (Masters et al. 1986). Der einschichtige Inseln bildende Zellrasen zeigt eine starke Tendenz zu einem epithelartig dichten Zusammenhang, der auf starke Interzellularrverbindungen schließen läßt. In der Regel bilden die RT4-Zellen einen einschichtigen Zellrasen, läßt man sie längere Zeit in einer Kulturflasche, so zeigen sie die Tendenz, anstatt sich flach über den Boden auszubreiten, eher innerhalb ihrer Inseln immer dichter zu wachsen, die Zellen werden dabei immer kleiner, um schließlich in die dritte Dimension auszuweichen, womit die Zellkultur mehrschichtig wird. So erscheint eine Zellinsel im phasenkontrast-mikroskopischen Bild im Vergleich zu typischen einschichtig wachsenden Zellkulturen als sehr dick, wie in der Abbildung (1c) auf Seite 50 an der Unschärfe des Pseudopodien-Randsaumes der Zellinseln und während des Mikroskopierens durch Auf- und Abfokussieren zu erkennen ist.
Die **5637** Harnblasenkarzinomzelllinie (Abbildung 1b auf Seite 49) besteht aus mäßig differenzierten (G2) Zellen, die nicht zur Inselbildung neigen, sondern sich relativ gleichmäßig über die gesamte Fläche der Kulturflasche ausbreiten. Es entstehen keine engen Interzellulärverbindungen wie bei den RT4 Zellen.

Die Zelllinien wurden vom Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg bezogen.

2.1.4 Nährmedien, Chemikalien und andere Materialien für die Zellkultur

Urothelzellprimärkultur

- Keratinozyten-Serumfreies Medium
 GibcoBRL, Eggenstein
- Rinderhypophysenextrakt
 GibcoBRL, Eggenstein
- Humaner Epidermaler Wachstumsfaktor (rhEGF), rekombinant [10 µg/ml]
 GibcoBRL, Eggenstein
- Choleratoxin
 Sigma, St. Louis, USA

Harnblasenkarzinomzelllinien

- RPMI 1640
 GibcoBRL, Eggenstein

Fibrozyten

- Dulbecco’s Modified Eagle’s Medium (DMEM)
 GibcoBRL, Eggenstein

Fötales Rinderserum

- L-Glutamin 200 mM
 GibcoBRL, Eggenstein
- Trypsin/EDTA (0,05%/0,02% in PBS, pH 7,2)
 GibcoBRL, Eggenstein
- Dispase I (lyophilisiert)
 Boehringer, Mannheim
- Trypanblau 0,5% (in 0,85% NaCl)
 Flow Laboratories, Virginia
- Zellkulturflaschen Nunclon™ 260 ml
 Nunc, Wiesbaden-Biebrich
- Multikammerkulturplatten (6-Kammer) Falcon
 Becton-Dickinson, Heidelberg
2.1.5 Chemikalien für die RT-PCR und Sequenzierung

TRIzol™-Reagenz GibcoBRL, Eggenstein
Oligo(dT)$_{12-18}$ [0,5 mg/ml] GibcoBRL, Eggenstein
MgCl$_2$ (50 mM) GibcoBRL, Eggenstein
dNTP-Mixtur (dATP, dCTP, dGTP, dTTP; jew. 10 mM) GibcoBRL, Eggenstein

Reverse Transkriptase:

M-MLV (Moloney Murine Leukemia Virus) bzw.
Superscript II Reverse Transkriptase (200 units/µl) GibcoBRL, Eggenstein
Erststrangpuffer 5 x [250 mM Tris-HCl (pH 8,3),
375 mM KCl, 15 mM MgCl$_2$] GibcoBRL, Eggenstein
Dithiothreitol (DTT) 100 mM GibcoBRL, Eggenstein

Thermus aquaticus (Taq) DNA Polymerasen:

Taq DNA Ploymerase [5 units/µl] Boehringer, Mannheim
AmpliTaq Gold [5 units/µl] Perkin Elmer, Weiterstadt
Platinum Taq [5 units/µl] GibcoBRL, Eggenstein
PCR-Puffer, 10-fach konz. (pH 8,3 bei 20°C) Boehringer, Mannheim
[100 mM Tris-HCl, 15 mM MgCl$_2$, 500 mM KCl]
bei Verwendung von PlatinumTaq Polymerase GibcoBRL, Eggenstein
oder AmpliTaq Gold Perkin Elmer, Weiterstadt
wurde die MgCl$_2$-Lösung [50 mM] separat geliefert

Die folgenden Chemikalien entsprachen der Reinheitsstufe für die Molekularbiologie:

Chloroform Merck, Darmstadt
Isopropanol Merck, Darmstadt
Ethanol Merck, Darmstadt
Diethylpyrocarbonat Sigma, St. Louis, USA
Acrylamid (30%)
Roth GmbH & Co, Karlsruhe

Bisacrylamid (2%)
Roth GmbH & Co, Karlsruhe

Ammoniumpersulfat (APS)
Merck, Darmstadt

TEMED (N,N,N',N'-Tetramethylethylendiamin)
Merck, Darmstadt

Tris (Tris(hydroxymethyl)-aminomethan)
Merck, Darmstadt

Borsäure
Merck, Darmstadt

EDTA (Ethylendiamintetraessigsäure)
Merck, Darmstadt

HCl (konz.)
Merck, Darmstadt

Ethidiumbromid
GibcoBRL, Eggenstein

SYBR® Green I
Molecular Probes, Eugene, USA

Primer Oligo-Nukleotide (Auftragssynthese)
MWG-Biotech, Ebersberg

Molekulargewichtsmarker:

100 bp DNA ladder
GibcoBRL, Eggenstein

BioLadder™ 100bp
AGS Angewandte Gentechnologie Systeme GmbH, Heidelberg

Stammlösungen:

Tris-Borat-EDTA (TBE)-Puffer, 10-fach konz.
[108 g Tris Base, 55 g Borsäure, 40 ml 0,5 M EDTA (pH 8,0) auf 1 Liter]

Ethidiumbromid [10 mg/ml] wässrige Lösung, dunkel aufbewahrt

DNA-Auftragspuffer (6-fach konz.): 30% (v/v) Glycerol, 0,25% (w/v) Bromphenolblau

Sequenzierung

BigDye™ Terminator Cycle Sequencing Kit
Perkin-Elmer, Weiterstadt

Centri-Sep Spin Columns
Princeton Separations, Adelphia, New Jersey, USA

QIAquick PCR Purification Kit
QIAGEN GmbH, Hilden
Klonierung

pGEM®-T Klonierungsvektor mit terminalen Thymidinüberhängen für PCR-Produkte
Promega, Madison, WI, USA

T4 DNA Ligase [3 Weiss Einheiten/µl]
mit 10-fach konz. Puffer [300 mM Tris-HCL, 100 mM MgCl₂, 100 mM DTT, 10 mM ATP]
Promega, Madison, WI, USA

JM109 kompetente *Escherichia coli*
Promega, Madison, WI, USA

IPTG (Isopropyl-b-D-thiogalactopyranosid)
Boehringer, Mannheim

X-Gal (5-Brom-4-Chlor-3-Indolyl-b-D-Galaktosid)
Boehringer, Mannheim

LB (Luria Bertani) Medium
GibcoBRL, Eggenstein

SOC Medium
GibcoBRL, Eggenstein

2.1.6 Geräte

Kühlzentrifuge 5402 (für 1,5 ml Röhrchen)
Eppendorf, Hamburg

Kühlzentrifuge Rotanta RP 4300 (15 ml und 50 ml)
Hettich, Tuttlingen

Thermocycler UNO und TRIO
Biometra, Göttingen

Horizontales Gel Elektrophorese System
GibcoBRL, Eggenstein

Vertikales Gel Elektrophorese System
(Mini-Protean II Dual Slab cell)
Bio-Rad, Richmond, CA, USA

ABI PRISM 310 Genetic Analyzer
Perkin-Elmer, Weiterstadt

ABI PRISM 373 A DNA Sequencer
Perkin-Elmer, Weiterstadt
2.2 Methoden

2.2.1 Gewebe und primäre Zellkulturen

2.2.2 Gewinnung von Urothelzellen aus Nierenbecken, Harnleitern und –blasen

Das Zellsediment wurde in 3 ml Trypsin/EDTA-Lösung (GibcoBRL) resuspendiert und 15 bis 20 min bei 37°C inkubiert. Nach Zugabe von 7 ml PBS oder Zellkultur-Medium wurde wieder bei 400 x g und 4°C zentrifugiert. Die sedimentierten Zellen wurden als Primärkultur in serumfreiem Medium (*Keratinozyten serumfreies Medium* mit 25 µg/ml Rinderhypophysenextrakt (BPE), 0,2 ng/ml epidermalem Wachstumsfaktor (rhEGF) und 30 ng/ml Choleratoxin (CT) resuspendiert, und nach Zellzählung in einer Neubauer Zählkammer (10 µl Zellsuspension wurde in 90 µl Trypanblau-Lösung verdünnt) in einer Dichte von 100.000 Zellen pro ml in 6-Kammer-Mikrokulturplatten oder 260 ml Kulturschalen gegeben und in einem Inkubator bei 37°C in einer Atmosphäre von 5% CO₂ und 100%iger Luftfeuchtigkeit gehalten. Das Medium wurde in der Regel zweimal in der Woche oder bei Bedarf, wenn Medium verbraucht und angesäuert erschien, d.h. wenn der im Medium enthaltene pH-Indikator Methylrot verblaßte und das Medium eine gelbliche Färbung annahm, auch häufiger gewechselt. Wenn die Zellkultur konfluierte, wurde sie mit 10 ml PBS gespült und in 3 ml Trypsin/EDTA bei 37°C vom Boden der Kulturschale oder Mikrokulturplatte gelöst, mit 7 ml PBS verdünnt, und in einem 15 ml Zentrifugenröhrchen 10 min bei 400 x g und 4°C zentrifugiert. Das Zellsediment wurde entweder in Zellkulturmethanol resuspendiert und in 1:4 Dichte der Ausgangskultur weiterkultiviert, oder zur Gewinnung von RNA verwendet (s. 2.2). Eine repräsentative Urothel-Primärkultur wird in der Abbildung (1a) auf Seite 49 gezeigt.

Die nach Ablösung des Urothels verbliebene Bindegewebschicht wurde mit einem Skalpell in kleine Stücke (ca. 1 mm x 1 mm) zerschnitten. Diese wurden entweder einzeln auf den Boden von 24-Kammer-Mikrokulturplatten gesetzt und nach 15 min Antrocknen bei Raumtemperatur mit DMEM/Ham’s F12/10% FBS (2 ml pro well) überschichtet. Alternativ wurden die Bindegewebsblöcken in einer Kollagenase-Lösung 1 bis 2 Stunden bei 37°C inkubiert und die Zellen mit PBS (10 x 5 ml) durch ein 100 µm Zellsieb (Falcon Cell Strainer) in ein 50 ml Zentrifugenröhrchen (Falcon) gespült, 10 min bei 400 x g und 4°C zentrifugiert und nach Zellzählung in einer Dichte von 200.000 Zellen pro ml in Medium resuspendiert und in Kulturschalen oder -platten gegeben. Die Kulturbedingungen waren wieder 37°C, 5% CO₂ und 100%ige Luftfeuchtigkeit. Die resultierende Fibroblasten-Kultur wurde bei Konfluenz 1 : 4 geteilt.

Zur Extraktion von Proteinen oder Nukleinsäuren wurden 10^6 Zellen in 1 ml PBS resuspendiert, in einem 1,5 ml Zentrifugenröhrchen (Eppendorf) 10 min bei 400 x g und 4°C in der Mikro-Zentrifuge sedimentiert und ohne Überstand („trocken“) bei –80°C gelagert oder sofort weiterverarbeitet.
2.2.3 Zellkulturbedingungen

Die Urothelzellen wurden in einem serumfreien Medium kultiviert, das für Keratinozyten optimiert wurde (Southgate et al. 1994). Serum-freies Medium mit 25 μg/ml Rinderhypophysenextrakt, 0,2 ng/ml rhEGF und gegebenenfalls 30 ng/ml Choleratoxin (Letzteres nur für frisch aus Gewebe isolierte Urothelzellen).

2.2.4 RNA Isolierung

Zellsedimente (1 Million Zellen) oder in flüssigem Stickstoff pulverisierte Gewebe (ca. 50 mg) wurden in 1 ml Trizol solange auf und abpipettiert, bis sie sich soweit wie möglich aufgelöst hatten. Nach 3 min Inkubation bei Raumtemperatur wurde 0,2 ml Chloroform dazugegeben und durch Invertieren gemischt. Nach Zentrifugation für 20 Minuten bei 10.000 x g und 4°C, wurde die obere, wässrige Phase vorsichtig abpipettiert, ohne die denaturierte Proteine enthaltende weiße Interphase zu stören, und in einem zweiten RNase-freien 1,5 ml Zentrifugenröhrchen mit 0,5 ml Isopropanol gemischt, um die RNA zu präzipitieren. Nach Zentrifugation bei 10.000 x g für 15 Minuten, wurde die Flüssigkeit vorsichtig abpipettiert und das RNA-Präzipitat in 1,5 ml

Zur Herstellung von RNase-freiem Wasser wurde destilliertes Wasser über Nacht mit Diethyl Pyrocarbonat behandelt (0,1-%ige Lösung) und anschließend zweifach autoklaviert.

2.2.5 Komplementäre DNA Synthese (Reverse Transkription)

Boten-Ribonukleinsäure (mRNA) wurde durch reverse Transkription (RT) in komplementäre DNA (cDNA) überschrieben. In einem 0,5 ml Probenröhrchen wurde 1 µg der Gesamt-RNA in 11 µl RNase-freiem Aqua bidest. zu 1 µl oligo (dT)\(_{12\text{-}18}\) (0,5 µg/µl) pipettiert und in einem Thermocycler 10 min bei 70°C denaturiert, um Sekundärstrukturen aufzulösen, und dann sofort für 1 min auf Eis gestellt. Danach wurden 7 µl von der eiskalten RT Reaktionslösung (4 µl 5 x Erstarrungspuffer, 2µl DTT [100 mM], 1 µl dNTP [10 mM] jeweils) dazugegeben und gemischt. Nach 5 min bei 45°C im Thermocycler wurde 1 µl der Reversen Transkriptase Lösung (200 Einheiten M-MLV oder Superscript II) dazupipettiert, die Lösungen im Probenröhrchen kurz und gut gemischt und weitere 55 min bei 45°C inkubiert. Das Enzym wurde anschließend 15 min bei 70°C oder 5 min bei 95°C denaturiert.

2.2.6 Polymerase Kettenreaktion (PCR)

Mit der Polymerase Kettenreaktion (Saiki et al. 1985 und 1988) wird ein Abschnitt einer DNA amplifiziert, der durch zwei Nukleinsäuresequenzen flankiert wird, die komplementär zu den Starter-Oligonukleotidsequenzen (Primer) sind. Ein Primer ist zum Sinnstrang, der Andere

2.2.6.1 Differential Display RT-PCR

Bei der Differential Display RT-PCR werden unbekannte Abschnitte von cDNAs mit Hilfe eines Primer-Oligonukleotids willkürlicher Sequenz (arbitrary primer) von 10 Basenpaaren Länge und eines dT₁₂VN Primer amplifiziert (Liang und Pardee 1992). Die Primer sind danach ausgesucht, daß sie einen GC-Gehalt von 50% haben und keine ununterbrochenen

Die herkömmliche ddRT-PCR Technik zielt darauf ab, alle mRNAs darzustellen, indem eine geeignete Anzahl 10mer Oligonukleotide willkürlichlicher Sequenzen verwendet wird, die zusammen theoretisch in der Lage sind, mindestens einmal in jeder mRNA zu binden und in der ddRT-PCR gemeinsam mit dem oloq dT-Primer ein amplifizierbares Fragment zu bilden.

2.2.6.2 Homologiedomänen-Konsenssequenz (HoDoKo) RT-PCR

Um die Trefferrate für Gene, die bei der Krebsentstehung eine Rolle spielen könnten, zu erhöhen, habe ich nach Konsenssequenzen in Proteinfamilien gesucht, die eine wichtige Rolle bei der malignen Transformation spielen können. Dazu gehören Wachstumsfaktoren und ihre Rezeptoren, Signaltransduktionsmoleküle, Transkriptionsfaktoren und andere Kernproteine,
Adhäsionsmoleküle und weitere Proteine, die teilweise auch als Onkogene bekannt sind.

Die Src Homologiedomänen SH2 (ESET) und SH3 (SNYV und LYDY) und EE(E/I)Y als Erkennungs- und Andockstelle für die SH2-Domäne.

Anstelle der 10mer Primer wurden 18 bis 20mer Oligonukleotide eingesetzt, die aus einer 3'-8mer-Bindungssequenz und einer 5'-Sequenz für die AatII und NcoI Restriktionsschnittstelle (gaagtccatg-8mer) bestehen. Die Sequenz des 8mer entsprach entweder der des Zufallsprimer (arbitrary Primer) AP1 und wurde AP1+ genannt, oder der abgeleiteten degenaratenen Sequenz von ausgesuchten Konsenssequenzen: für das Phospho-Tyrosin SH2-Bindungsmotiv EEY (Glu-Glu-Tyr) gargarta, für die Src Homologiedomänen SH2 ESET gan agy gar a, sowie SH3 SNYV agy aay tay gt und LYDY ctn twy gay tt. Damit das 3'-Ende, das für die Anheftung an die Zielsequenz besonders kritisch ist, nicht die "Wobble-Base" unspezifisch wird, wurde die 3'-terminale "Wobble-Base" weggelassen. Als 5'-Gegensinnprimer wurde ein 20mer, bestehend aus 12 Thyminnukleotiden am 3'-Ende und einer 5'-Sequenz mit der NotI-Restriktionsschnittstelle, verwendet. Der PCR Ansatz glich dem für 10mer Primer bei der ddRT-PCR, die PCR-Bedingungen bestanden aus 2 min Denaturierung bei 94°C, 4 min Anheftung mit niedriger Stringenz bei 50°C bis 40°C, wobei die Temperatur mit 0,2°C/sec erniedrigt wurde, gefolgt von 45 Zyklen bestehend aus 2 min bei 72°C, 30 sec bei 94°C und 30 sec bei 58°C. Danach schlossen sich 2 min bei 72°C, zur vollständigen Synthese der gesamten Fragmentlänge, und 4°C Dauerkühlung an.
2.2.6.3 Agarose-Gel Elektrophorese

In 0,5-fach konzentriertem TBE-Puffer wurden 1,5 oder 2% (w/v) Agarose (Elektrophoresegrad) in einem Mikrowellenofen durch Erhitzen vollständig gelöst und auf ca. 60°C abgekühlt in die zusammengesetzte Gelkammer gegossen. Die Lösung hatte etwa 1 Stunde Zeit zu gelieren. Nachdem die Kämme entfernt und das Gel mit 0,5-fach konz. TBE überschichtet war, wurden die Proben aufgetragen (6 µl pro Tasche). Die elektrophoretische Trennung wurde bei 6 V/cm Feldstärke für 30 bis 55 min durchgeführt. Das Gel wurde in Ethidiumbromid-Lösung [0,5 µg/ml] für 10 min gefärbt und anschließend auf dem UV-Transilluminator betrachtet und dokumentiert.

2.2.6.4 Polyacrylamid-Gel Elektrophorese

Für zwei vertikale Minigele wurden 10 ml Gel-Lösung gebraucht. Zu 5,2 ml H₂O wurde 1 ml 10-fach konz. TBE-Puffer, 2,6 ml Acrylamid (30%), 1,2 ml Bisacrylamid (2%), 50 µl APS (10%ige w/v wässrige Lösung, alle 2 Wochen frisch angesetzt und bei 4°C aufbewahrt), und 5 µl TEMED gegeben, gut gemischt und zwischen die Glasplatten der vorher zusammengesetzten Gelkammern gegossen. Anschließend wurden die Kämme eingefügt und das Acrylamid für mindestens 45 min polymerisiert. Die Kämme wurden entfernt, die Probenkammern kurz mit dest. Wasser ausgespült, und das Gel mit der Halterung in die Pufferkammer gestellt. Die Elektrophoresepufferreservoir wurden mit 1 x TBE aufgefüllt, Luftblasen unter dem Gel entfernt und die Proben aufgetragen. Die elektrophoretische Trennung lief 1,5 Stunden bei 5 V/cm Feldstärke. Anschließend wurde das Gel 20 min unter Bewegung in SYBR® Green I DNA-Fluoreszenzfarbstoff (1:10.000 Verd. in Wasser) gefärbt und auf einem UV-Transilluminator betrachtet bzw. zur Dokumentation mit einer CCD-Kamera mittels des Molecular Analyst Programms (Bio-Rad) in einen Computer eingelesen. Als TIFF-Datei wurden die Gelabbildungen in Adobe Photoshop invertiert und für den Laser-Ausdruck in Helligkeit und Kontrast eingestellt. Dies wurde aus Gründen des Druckes vorgenommen, weil die Farbsättigung des schwarzen Hintergrundes bei fluoreszenzgefärbten Gelen ungleichmäßig (Streifen und Flecken) verteilt und der Toner zu rasch verbraucht war. Außerdem ist so die Beschriftung auf den Abbildungen besser möglich. Es geht dabei keine Information verloren.
2.2.6.5 Reamplifikation differentiell exprimierter Banden

Differentiell exprimierte Banden wurden mit einem Skalpell auf dem UV-Illuminator aus dem Polyacrylamidgel geschnitten und in 50 µl A. dest. in 0,5 ml Probenröhrchen im Thermocycler 10 min lang bei 70°C erhitzt. Davon wurden 4 µl in 0,2 ml PCR Probenröhrchen in 40 µl PCR Reaktionsansätzen unter den gleichen Bedingungen wie bei der ddRT-PCR reamplifiziert. Die Reamplifikationsprodukte wurden in 2%igen Agarosegelen in 0,5 x TBE Puffer 50 min bei 5 V/cm Feldstärke elektrophoretisch als Banden bestimmter molekularer Größen dargestellt (Ethidiumbromid- Färbung).

2.2.6.6 Klonierung der PCR-Fragmente

Taq DNA Polymerase hängt häufig ein einzelnes Desoxyadenosin an die 3´-Enden der amplifizierten Fragmente. Durch die Addition eines 3´-terminalen Thymidin an beide Vektorenden, wird somit die Ligation von PCR-Produkten mit dem Vektor, im Vergleich zur Ligation stumpfer Enden, wesentlich erleichtert.

Ligation: In einem 0,5 ml Zentrifugenröhrchen wurden 1 µl T4 DNA Ligase Puffer, 1 µl pGEM-T Vektor, ein molarer Überschuß des zu klonierenden PCR-Produktes, 1 µl T4 DNA Ligase (3 Weiss Einheiten) mit deionisiertem Wasser auf ein Endvolumen von 10 µl gebracht und gemischt. Die Reaktion wurde über Nacht bei 4°C inkubiert.

Transformation kompetenter Escherichia coli (Stamm JM109):

Die kompetenten Bakterien wurden im Eisbad aufgetaut und vorsichtig suspendiert. 50 µl von dieser Zellsuspension wurden vorsichtig in 1,5 ml Zentrifugenröhrchen zu jeweils 2 µl Ligationsreaktionslösung pipettiert. Nachdem vorsichtig gemischt wurde, blieben die Röhrchen weitere 20 min auf Eis. Danach wurden die Zellen für 50 s einem Hitze Schock bei genau 42°C in einem Wasserbad ausgesetzt und wieder für 2 min auf Eis gelassen. Dann wurden 950 µl SOC Medium, das Raumtemperatur hatte, zu den transformierten Bakterien gegeben und 1,5 h bei 37°C unter Schütteln inkubiert. Jeweils 100 µl dieser Kulturen wurden auf LB Agarplatten, die Ampicillin, IPTG und X-Gal enthielten, ausplattiert und über Nacht (16-24 h) bei 37°C inkubiert (1,5% Agar in LB Medium gelöst, bei 50°C Ampicillin (100 µg/ml), IPTG (0,5 mM) und X-Gal (80 µg/ml) dazugegeben, gemischt und in 85 mm Petrischalen gegossen. Weiße Kolonien beherbergen inserierte DNA, blaue Klone
enthalten das intakte b-Galaktosidase-Gen, das nicht durch ein inseriertes PCR-Fragment unterbrochen, und damit funktionsunfähig gemacht wurde (Sambrook et al. 1989).

2.2.6.7 Direktsequenzierung von reamplifizierten differentiellen Fragmenten

Durchführung:

Reinigung des PCR-Amplifikationsproduktes, Abtrennung von dNTPs und Primer:

QIAquick™ PCR Purification Kit (QIAGEN). Alle Zentrifugationen wurden bei 12.000 x g durchgeführt. Die 5fache Menge des chaotrope Ionen enthaltenden Puffers PB wird zur PCR-Reaktionslösung gegeben, gemischt und auf das in einem 2 ml Sammelröhrchen steckende Zentrifugensäulchen, das eine Silikagelmembran als Adsorber enthält, aufgetragen und für 1
Minute zentrifugiert. Der Durchfluß wurde verworfen und die DNA im Säulchen mit 0,75 ml ethanolversetztem Puffer PE gewaschen und zentrifugiert. Nach Dekantieren des Durchflusses, wurde bei maximaler Geschwindigkeit (15.600 x g) zentrifugiert. Das Säulchen wurde anschließend in ein 1,5 ml Mikrozentrifugenröhrchen gesetzt, und die DNA mit 30 µl H₂O eluiert, indem die Elutionsflüssigkeit in Säulchenmitte aufgetragen, 1 Minute einwirken gelassen, und abzentrifugiert wurde. Das Eluat wurde direkt für die Sequenzierung weiterverwendet.

Sequenzieransatz:

30 bis 180 ng der PCR-Produkt DNA wurden mit 4 µl der Sequenziermischung (" Terminator Ready Reaction Mix") und 10 pmol Primer auf ein Volumen vom 20 µl gebracht, gut gemischt und kurz zentrifugiert.

Die PCR-Bedingungen für die zyklische Sequenzierung:

Es wurden 35 Zyklen durchgeführt, bestehend aus 30 sec bei 96°C, 5 sec bei 38°C, einem langsamen Anstieg der Temperatur auf 60°C mit einer Steigung von 0,2°C/min und dem Halten bei 60°C für 2 min. Nach der letzten Runde wurde auf 4°C gekühlt.

Reinigung und Denaturierung der Sequenzierprodukte:

Es wurden Centri-Sep™ Mikrozentrifugensäulchen P/N CS-901 verwendet. Die Säulchen wurden für mindestens 2 Stunden mit 0,8 ml destilliertem Wasser rehydriert. Danach wurden Luftblasen durch Anschnippen der Säulchen entfernt. Dem Gel wurde erlaubt sich wieder zu setzen. Nach Entfernen zuerst des oberen, dann des unteren Deckels, wurden die Säulchen so in einen Ständer gestellt, daß durch Wirkung der Schwerkraft das Wasser auslaufen konnte. Die Säulchen wurden in mitgelieferte Waschröhrchen gesteckt und bei 730 x g für 2 Minuten zentrifugiert, um interstitielle Flüssigkeit zu entfernen. Die Sequenzierproben wurden vorsichtig auf die Mitte der Geloberfläche pipettiert, das Säulchen in 1,5 ml Mikrozentrifugenröhrchen inseriert und bei 730 x g für 2 Minuten zentrifugiert. 4 µl des Eluats wurden mit 12 µl
Denaturierlösung (Template Suppression Reagent, TSR), die in dem Sequenzier Kit mitgeliefert wird, gemischt und bei 94°C für 2 Minuten denaturiert.

Alle Proben, außer die Uroplakin-Fragmente, wurden in einem ABI PRISM™ 310 Genetic Analyzer (Abteilung "Molekulare Hämatologie" des Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt), die UPla, Ia, II und III PCR-Produkte in einem ABI PRISM 373 A DNA Sequencer (Auftragssequenzierung bei SequiServe, Dr. Willi Metzger, Vaterstetten) aufgetrennt und detektiert. Die Uroplakin-Fragmente wurden zuvor in pGEM kloniert und die Plasmide isoliert.

Datenbankvergleich der gefundenen Sequenzen

Abbildung 1. Kulturen primärer Urothelzellen und Fibroblasten aus Ureter, sowie der Urothelkarzinomzellenlinien RT4 und 5637. Die Mikrophotografien wurden im Phasenkontrastverfahren mit einem inversen Mikroskop und einer Spiegelreflexkamera der Firma Olympus aufgenommen (100fache und 200fache effektive Vergrößerung auf der fotografischen Abbildung).

a) Urothelzellkultur (100fach)

b) 5637 Urothelkarzinomzellenlinie eines mäßig-differenzierten Primärtumors (G2) (200fach)
c) RT4 Urothelkarzinomzellinie eines gut-differenzierten Tumors (G1) (100fach)
3. Ergebnisse

Uroplakin RT-PCR

3.1 **Uroplakin RT-PCR von humaner Urothel-mRNA unter Verwendung der bovinen Sequenzen für die uroplakin-spezifischen Primer-Oligo-Nukleotide**

Die Amplifikation der *Uroplakin* (UP) Ia und Ib Fragmente aus humaner komplementärer DNA mit den bovinen Primern funktionierte hoch spezifisch (Abbildung 1). Sie erzeugten jeweils nur *ein* Fragment, das der vorhergesagten Länge entspricht (UPIa: 630 bp; UPIb: 541 bp). Die *Uroplakin* II RT-PCR ergab zwei Fragmente: das Eine von ca. 250 bp, und das Andere von ca. 780 Basenpaaren Länge, 440 bp größer als erwartet (340 bp). Es handelt sich bei dem größeren Fragment nicht um ein Amplifikationsprodukt von der genomischen UPII-Sequenz, denn die Überprüfung durch eine PCR, in die zur Kontrolle RNA eingesetzt wurde, zeigte auch nach 60 Zyklen noch keine Bande. Die UPIII-Primer amplifizierten mehrere Fragmente unterschiedlicher Längen, wobei die mittlere und stärkste Bande auf dem Gel der zu erwartenden Länge von 741 bp entspricht. Die Sequenzierung der gereinigten Reamplifikate der Gelbanden, bestätigte ihre jeweilige *Uroplakin*-Identität. Die Homologie mit den Rindersequenzen war wie erwartet hoch: Für UPIa zeigte sich eine 88 %ige Übereinstimmung der Nukleinsäuresssequenz, für UPIb 90 %, UPII 85 % und UPIII 70 %. Vor kurzem wurden die humanen *Uroplakin*-Sequenzen in den Datenbanken veröffentlicht. Der Sequenzvergleich in der *GenBank* mit dem BLAST-Programm zeigte folgende Übereinstimmungen der selbstermittelten Sequenzen mit den entsprechenden Abschnitten der humanen *Uroplakin* cDNAs: UPIa 98%, UPIb 99%, UPII 100% und UPIII 82%. Die Differenz zur erwarteten 100% Übereinstimmung liegt an den, besonders bei der UPIII Sequenzierung nicht eindeutig identifizierbaren Basenpositionen (n). Da es bei den Sequenzierungen lediglich um die Überprüfung der jeweiligen *Uroplakin*-Identität ging, war auf weitere Sequenzierungen verzichtet worden.

Abbildung (2) zeigt die UPIb-RT-PCR von drei unterschiedlichen Urothelpräparationen, daneben jeweils die nicht revers-transkribierte RNA zur Kontrolle der Reinheit der RNA-Isolation. Es ist keine Bande sichtbar, die auf das Vorhandensein genomischer DNA hinweisen würde. Die genomische Fragmentgröße ließ sich nur für UPII (ca. 2.500 bp, durch *Uroplakin*-PCR mit genomischer DNA) ermitteln, ein Hinweis darauf, daß alle eingesetzten Primerpaare ein bis mehrere Introns überspannen und somit eine eindeutige Zuordnung der amplifizierten *Uroplakin*-Fragmente zum Transkriptionsprodukt erlauben. Dies ist eine notwendige Voraussetzung bei der Detektion *einer* Urothelkarzinomzelle inmitten Millionen weißer
Blutzellen, deren DNA, die in Spuren die RNA-Lösungen verunreinigen könnte, mit DNase abgebaut werden müßte. Dieser Schritt konnte daher unterbleiben.

Abbildung 2. Kontroll PCR: Es wurden die cDNAs (+) und die RNAs (-) von drei verschiedenen Urothelproben (U) und einer nichturothelialen Zelllinie (S: SV80) als negative Kontrolle mit den UPIb-Primern mit 60 Zyklen amplifiziert. Das gleiche Ergebnis wurde auch mit den übrigen Uroplakin-primern erhalten (hier nicht gezeigt). Die UPIb-RT-PCR wurde gewählt, weil sie sich als die empfindlichste UP-RT-PCR erwies. In die (-) Ansätze wurde zehnmal mehr RNA eingesetzt, als in dem entsprechenden Volumen cDNA-Lösung (+) enthalten war, das in die PCR Reaktion eingebracht wurde.
3.2 Die Nukleinsäuresequenzen für die humanen Uroplakin Ia, Ib, II und III PCR-Fragmente

Uroplakin Ia:

cacaacgtgt gnnagtntca tgaagagatg acgtcttcnc ttgntcatkg attgcctact tctggeggyt ctcctctetc atggtarcga gttttgggttg ggggtcgccga cttggegcgc ggeggtcctat ggtctcact tacgttgtcgt cgtctcact tacgtgtctat actctctctctat gctctgatc gcaacaccca ttcctgacacta ccaagagat gttcaacgct tacaagctgg catagatg agcagactat gctgtgggactt atcctgaatctatgct cctctrtct cggacgccgac gggctgctgctgctgcctgctgc tctggtgctgctgcctgctgc t...
Die geringe Identität zum Human-UPIII von nur 82% ist durch die relativ hohe Zahl unbestimmter Basenpositionen (n) in der eigenen Sequenz zustande gekommen.
3.3 Uroplakin Ib mRNA in primären Harnblasenkarzinomen

Nachdem sich die Uroplakine Ia und Ib mit den bovinen Primern aus humanem Urothel gut amplifizieren ließen, wurde eine Reihe von humanen Harnblasenkarzinomen, die durch transurethrale Resektion oder nach Zystektomie aus Harnblasen entnommen worden waren, auf ihre UPIb-Expression hin getestet. Abbildung (3) zeigt das Ergebnis: alle gut bis mäßig differenzierten Urothelkarzinome zeigen die UPIb-Bande, während es bei den wenig differenzierten und anaplastischen Tumoren nur bei etwa der Hälfte zur Darstellung von UPIb kommt.

3.4 Uroplakin RT-PCR von humaner Urothel-mRNA mit den human-Uroplakin-spezifischen Primer-Oligonukleotiden

Die humanen Uroplakin-Primer wurden so selektioniert, daß die amplifizierten PCR-Fragmente eine Größenleiter bilden und in einer Multiplex-PCR einsetzbar sind. Die Uroplakin Ia, Ib und II RT-PCRs lieferten gute Ergebnisse (Abbildung 4), allein die UPIII-Primer zeigten nicht immer eine reproduzierbar saubere Bande, sondern hin und wieder, wie auf der Abbildung
zu sehen ist, einige zusätzliche Nebenbanden. Es existieren auch human-UPIII RT-PCR Gele mit nur einer Bande, aber es soll hier gezeigt werden, warum es wenig sinnvoll ist mit diesem Primerpaar zu arbeiten. Daher wurde ein zusätzliches Primerpaar ausgewählt, das einzige, welches mithilfe eines Nukleinsäureprogramms (MacVector) ausgesucht worden ist. Die etwas stärkere Intensität der UPIII$_{Mac}$-Bande in der Abbildung ist darauf zurückzuführen, daß die PCR in diesem Fall absichtlich mit 5 zusätzlichen Zyklen durchgeführt wurde, da diese 126 bp kleine Bande bei gleicher Zyklenzahl schwächer gefärbt wird, als die größeren Banden der Uroplakine Ia, Ib und II.

![Abbildung 4](image_url)

Abbildung 4. Uroplakin RT-PCR von urothelialer RNA. Die Primer-Sequenzen wurden den humanen Uroplakinsequenzen aus eigener Sequenzierung entnommen und amplifizieren folgende Fragmentgrößen: UPIa 320 bp, UPIb 408 bp, UPII 527 bp, UPIII 461 bp und UPIII$_{Mac}$ 126 bp. Das 2%-ige Agarosegel wurde mit Ethidiumbromid gefärbt und invers dargestellt. Der Molekulargewichtsmarker (linke Spur) ist eine 100 bp Leiter mit einer stärker fluoreszierenden 500 bp Bande.

3.5 Multiplexe Uroplakin RT-PCR von humaner Urothel- und Harnblasenkarzinom-mRNA mit den human-Uroplakin-spezifischen Primer-Oligonukleotiden

Mit einem Primeremisch für die Uroplakine Ia, Ib, II und III wurden die angezeigten Proben (siehe Material und Methoden S.24) einer Multiplex-RT-PCR unterzogen (Abbildung 5). Wie zu sehen ist, lassen sich alle vier Uroplakine simultan amplifizieren. Es kommt aber vereinzelt zu abweichenden Ergebnissen im Vergleich mit den Einzelgen-PCRs, d.h. daß die multiplexe Uroplakin-RT-PCR die Ergebnisse der Einzelgen-PCRs nicht zuverlässig reproduziert. Z.B. finden sich auf Spur 9 des Multiplex-PCR-Gels keine Banden, während die Einzelgen-PCRs UPIa und UPIb-Expression zeigen. Spur 10 zeigt UPIa und UPII-Expression in
der Multiplex-PCR, dagegen UPla und UPlb bei der Einzel-PCR. Auf einigen Spuren ist bei der Multiplex-PCR keine UPlb-Bande sichtbar, die aber auf dem UPlb-Einzel-PCR-Gel fett zu sehen ist. Das UPIII-Expressionsmuster stimmt dagegen gut überein, außer auf der Spur 14, wo bei der Einzel-PCR keine Bande zu sehen ist, wohl aber auf dem Multiplex-PCR-Gel.

3.6 Uroplakin Ib RT-PCR von Zellverdünnungsreihen in periphere Blut

Die Amplifikation des Uroplakin Ib-Fragmentes mit 45 PCR Zyklen aus mRNAs einer Verdünnungsreihe zeigt die Nachweismöglichkeit der Methode. 1.000, 100, 10 und 1 urotheliale Zellen wurden in jeweils einem Milliliter peripheren venösen Blutes eines normalen Probanden suspendiert, eine native Blutprobe diente als negative Kontrolle. 1 und 10 Zellen wurden unter mikroskopischer Kontrolle in jeweils 1 ml Blut pipettiert. Die Abbildung (6a) zeigt als Beispiel eine Verdünnungsreihe der gut differenzierten (G1) Harnblasenkarzinomzellen RT4. Ähnliche Ergebnisse wurden auch mit Urothelzellen aus Primärkulturen und mit der mäßig differenzierten (G2) Urothelkarzinomzelle 5637 erzielt.

Abbildung 6. Uroplakin Ib RT-PCR von Gesamt-RNA aus jeweils 1 ml peripheren venösen Blutes eines normalen Probanden mit 1.000, 100, 10 und 1 zugesetzten RT4 Harnblasenkarzinomzellen. Die negative Kontrolle bestand aus der nativen Blutprobe (0). In (a) ist das ethidiumbromidgefärbte Agarosegel abgebildet. Darunter (b) wird die graphische Darstellung der relativen Fluoreszenzintensitäten der DNA-Banden (adjusted volume count) gezeigt.

Das ethidiumbromidgefärbte Agarosegel liegt aus Gründen der Erkennbarkeit im Druckbild in einer invertierten und kontrastreichen Abbildung vor. Darunter erscheint die graphische

Differential Display Reverse Transkription Polymerase Kettenreaktion (ddRT-PCR)

3.7 Differential Display Reverse Transkription Polymerase Kettenreaktion (ddRT-PCR) einer Reihe von Urothelkarzinomen verschiedener Malignitätsgrade (G1 bis G4) und von zwei normalen Urothelien zum Vergleich – Nukleinsäuresequenzen der differenziellen PCR-Produkte

Nachdem die ddRT-PCR durch Einstellung von dNTP-Konzentration und Primeranheftungstemperatur so optimiert war, daß nur noch selten redundante Banden auftraten, wurden zunächst 10 Primer willkürlich ausgewählter Zufallssequenzen: AP1 bis 10 (10-mer Nukleotide, arbitrary primer) sukzessive in Kombination mit einem der vier 3’-Ankerprimer (dT٣٢VG) eingesetzt. Da es nicht zweckmäßig ist, hier alle Polyacrylamidgelge zu zeigen, sollen stattdessen einige Beispiele zur Anschauung kommen, von denen einige der sequenzierten Proben stammen. Die Dokumentation dieser fluoreszenzgefärbten Gele ist nur eingeschränkt möglich, weil der Dynamikbereich der Fluoreszenzintensitäten für die CCD-Kamera sehr groß ist. Sollen die schwachen Banden auf der Abbildung zu sehen sein, so muß lange belichtet werden, was dazu führt, daß starke Banden weite Bereiche des Gels und damit schwächere Banden überstrahlen. Entsprechendes gilt auch für die Entwicklungsdauer bei der Silberfärbung.

Durch Direktsequenzierung, die ohne Klonierung auskommt, konnten annähernd die Hälfte aller differentiell erschienenen, ausgeschnittenen und reamplifizierten ddRT-PCR-Fragmente in ihrer Sequenz bestimmt werden. Bei den restlichen Proben kam es zu mehr oder weniger starken Überlagerungen von zwei oder mehreren Sequenzen.

Abbildung (7) zeigt ein Differential Display-Gel (dd-Gel) mit den Primern AP1 und 2. Es steht exemplarisch für solche dd-Gele, die nur wenige starke Banden zeigen, wo also offensichtlich eine selektivere Primerbindung stattgefunden hat.
3.8 **Differential Display RT-PCR mit den AP1 und 2 Primern**

Die Differential Display RT-PCR mit den Primern AP1 und AP2 zeigt auf dem Gel (Abbildung 7a) nur wenige, dafür aber starke Banden. Die numerierten Banden wurden ausgeschnitten und unter gleichen PCR-Bedingungen reamplifiziert Gel (Abbildung 7b). Die Bande 1/2 erwies sich als Abschnitt aus der mRNA der schweren Kette von *Ferritin*, 2/1 als mitochondriale 12 S rRNA.

Abbildung 7. Differential Display RT-PCR mit den AP1 und 2 Primern in Kombination mit dT12VG (a). Es werden normales Urothel (U), autologes submuköses Bindegewebe (B) und das Harnblasenkarzinom (T) desselben Patienten miteinander verglichen. Das 8%ige Polyacrylamidgel wurde 20 min in SybrGreen gefärbt. Daneben ist ein ethidiumbromidgefärbtes Agarosegel mit den reamplifizierten Banden AP1/1, AP2/1 und AP2/2, die aus dem linken Gel geschnitten wurden, zu sehen. Diese wurden anschließend direktsequenziert. Die Bande 1/2 erwies sich als Abschnitt aus der mRNA der schweren Kette von *Ferritin*, 2/1 als mitochondriale 12 S rRNA.

3.8.1 **Ferritin H (Schwere Kette)**

Ferritin, schwere Kette:
tcagaacctag cctctgtaatg cttgggagage aggtgtgaatg caatgagagt gcagattcatc cggaaataa atgtgaatact ggtcacacga ttaacccaag tcaatagaag ccgnggttaa

3.8.2 Mitochondriale 12 S ribosomale RNA

Mitochondriale 12 S ribosomale RNA:
Gnttttagctttataagttacacccagtctcattgagattcatc aatcaccag atcaccag atcaccag acaagcatca aggggagtcgcggtggtgct cagccacccgc ggtcacacga ttaacccaag tcaatagaag ccgnggttaa

gaggtggttta gatcaccacco tccccaaaaaa
3.9 **Differential Display RT-PCR mit AP1+ / T12-NotI Primern**

3.9.1 Metastase-assoziiertes, kalziumbindendes S100A4/MTS1 Protein

Das Fragment wurde mit dem AP1+ und dem T12-NotI Primer amplifiziert (AP1+/4 Bande aus dem AP1+ ddRT-PCR Gel).

In einem Abschnitt von 139 Nukleinsäurebasen ist die ddRT-PCR-Sequenz mit dem mts1 Gen, das für das S100A4 kalziumbindende Protein (CAPL) kodiert, identisch (Nukleotid 2650 bis 2788 des Homo sapiens mts1 Gen: emb Z33457; Nukleinsäurebase 390 bis 528 der Homo sapiens CAPL Protein mRNA, complete cds.: gb M80563). Die benutzte Sinnstrang-Primersequenz AP1+ (gac gtc cat gga caa cga) stimmt in 12 Basen (fett), davon neun zusammenhängende Basen am 3’-Ende, mit der Sequenz von B2590 bis B2600 des mts1 Gen überein. Die letzten 27 3’-terminalen Basen vor dem Poly-Adenyl-Anhang stimmen wieder gut mit der humanen CAPL Protein mRNA überein. Die 16 Basen davor und die ersten 40 Basen am 5’-Beginn der Sequenz waren nicht lesbar. Die 26 anschließenden Basen bis zum Beginn der
vom BLAST Programm erkannten Region, konnten anhand der mts1-Sequenz identifiziert und bestätigt werden, d.h. sie sind positionsgenau in den einander überlagernden Sequenzen enthalten. Die differentiell dargestellte Sequenz beinhaltet den kodierenden Abschnitt für die C-terminalen 37 Aminosäuren des MTS1 Proteins, was 68% (112 von 165 Basen) von Exon 3 bzw. 36,6% der gesamten kodierenden Region ausmacht.

S100A4/MTS1/ CAPL:
ananannaag cggcccnagt ttacancnan ctnagcagt tcantacnn aacgaatact atgaaggett cccagataan cannccngga agaaatgaa actectntga ttaggttg ggtcttage cagctgggc cctccctgtc gccagtgggc acttttttt t

3.10 **Homologiedomänen Konsenssequenz RT-PCR mit dem SH2-Bindungsregion EEY-Primer und dT12-NotI**

Das folgende Gel (Abbildung 9) zeigt eine große Vielfalt der individuellen Expressionsmuster, es lassen sich aber differentielle Fragmente bei einigen Tumoren versus Urothel erkennen. Die Banden 3 und 6 sind stark im Tumor, schwach dagegen im zugehörigen Urothel exprimiert. Die Bande 12 kommt stärker in den fortgeschrittenen Tumorgraden vor. Die reamplifizierten Banden sind auf Abbildung (10) zu sehen.

Abbildung 9. Differential Display RT-PCR mit dem von der Konsenssequenz der SH2-Bindungsregion EEY abgeleiteten 5’-Primer und dem 3’-dT12-NotI. Die Proben stammen von folgenden Geweben: 1 Submuköses Bindegewebe; 2 bis 5 gutdifferenzierte Tumoren (G1); 6 normales Urothel des Patienten mit der Tumorprobe 5; 7 bis 10 mäßig differenzierte Tumoren (G2); 16, 17 und 19 wenig differenzierte Tumoren (G3); 18 zu 17 gehöriges Urothel; 21 ein undifferenziert G4 Tumor. Das 8%ige Polyacrylamidgel wurde in SybrGreen gefärbt. Die Banden, die ausgeschnitten und reamplifiziert wurden, sind numeiert.

3.10.1 High mobility group Protein HMG-1

Das Fragment, welchem die Bande 4 im EEY-ddRT-PCR Gel entspricht, stammt aus einem G1 Hamblasentumor. EEY/4 wurde reamplifiziert und sequenziert.

Ein Sequenzvergleich mit dem BLAST Programm zeigt, daß in einem Abschnitt von 19 Basen die ddRT-PCR-Sequenz (Base 45 bis 63) mit den Nukleinsäurebasen 722 bis 740 der Nicht-Histon-Chromatinprotein HMG-1 (High Motility Group 1) mRNA des Homo sapiens identisch ist (dbj D63874, complete cds.). Die visuelle Überprüfung der davorliegenden 5′-Sequenz im Elektropherogramm enthüllt, daß sie offensichtlich nicht durch das Low Complexity Filter des Programms gelangt ist. Es handelt sich um eine repetitive Sequenz von gga- und gat-Moten, die aber exakt mit der des HMG-1 Gens übereinstimmt. Unmittelbar davor befindet sich auf dem Gen in der zu erwartenden Position eine Sequenz mit großer Übereinstimmung (fett) mit dem 3′-Ende des verwendeten 5′-Primer: 5′-ggaggaga-3′. Auch die 3′-flankierende Sequenz läßt sich eindeutig dem entsprechen Abschnitt auf dem HMG-1 Gen zuordnen, auch dort, wo es an einigen Stellen zu Überlagerungen zweier Sequenzen gekommen ist. Der 3′-Oligo dT-Primer hat an einen Abschnitt von 7 Adeninnukleotiden (B802 - 808; D63874) der HMG-1 mRNA gebunden. Die Sequenz des differentiellen PCR Produktes kodiert die letzten 19 C-terminalen Aminosäuren des HMG-1 Proteins, die ausschließlich aus Asparagin- und Glutaminsäure bestehen (saure C-terminale Domäne, s. Landsmann und Bustin 1993).
HMG-1:
ggagagaga agagaagatg aagagaaga tgtatgatg gaataagttg ttctagcgc aagatnttt tntttgnt annaaangatt
taanneccacn ngnnaaan taattccttn aaannaaaaaa aaaaaagggg ggcggaaa

3.10.2 L19 ribosomales Protein

Mit dem von der Konsenssequenz für die SH2-Bindungsstelle abgeleiteten Primer wurde ein
Fragment amplifiziert und als Bande EEY/11 reamplifiziert, dessen Sequenz in einem Abschnitt
von 101 Basen mit der des ribosomalen Proteins L19 zu 100% identisch ist. Die Primersequenz
liegt an der richtigen Position in der L19 Sequenz, wo die Bindung zu erwarten ist. Allerdings
waren die zwei 3´-Basen (a,t) in ihrer Reihenfolge vertauscht.

L19 ribosomales Protein:
ttgtgcaga ctttcctcng gaggaagaga ccaagaata aacctccca cttgtcgtgt acatactgge ctctgtgatt acatatagca
gccattaata aaaaacagc cttatcgtg aaaaadaaaa

3.10.3 Humanes Neutrophilen-Cytochrom b, leichte Kette

Von 165 Basen zeigte ein Abschnitt von 105 Basen eine 99%ige Übereinstimmung mit der
mRNA der leichten Kette des humanen neutrophilen Cytochrom b. Die Insertion eines
Guaninnukleotids zwischen den Basenpaaren 583 und 584 des Cyt b Gens (human neutrophil
cytochrome b light chain M21186) könnte ein Sequenzierartefakt sein. Da diese mRNA sehr
wahrscheinlich aus neutrophilen Granulozyten, welche häufig in Tumoren zu finden sind,
stammt und das Gen zudem eindeutig identifiziert ist, wurde auf die Verifikation verzichtet.

Der von EEY abgeleitete Primer paßt in 10 Positionen zu einer Sequenz an der erwarteten
Stelle, nur die beiden 3´-Basen sind ge anstelle von ta, während die sieben in 5´-Richtung davor
liegenden Basen mit der Primersequenz identisch sind (gce cag ega ggaga gta, fett sind die
übereinstimmenden Positionen).
Humans Neutrophilen-Cytochrom b, leichte Kette:

tgctggngeg gcagcggcgg gncggngga gntccccagg tgaaccecat cnggtgace gacaaggtcg tgtacctcc
tgcaataaac gcagcgaagc cggaaaaaaa aaaaangen cgccgnaatnc ct

3.10.4 Homo sapiens keratin-verwandtes Protein, Zytokeratin 17

Der „EEY“-Primer beging eine Fehlpaarung an der vorletzten 3’-Position (c anstelle t), stimmt aber in den übrigen neun 3’-Positionen mit den im Zytokeratin-Gen an den erwarteten Positionen gefunden Basen überein (tggaggagta). Das Amplifikat stammt von einer G3 Tumorprobe (EEY/7). Die Sequenz stimmt in 355 von 361 Basen (98%) mit der *Homo sapiens* mRNA für das *Zytokeratin 17* Gen überein (beide sind identisch).

Zytokeratin 17:
aacaaactgcc gtaagaaagg acacatacca ggaatcanta atctgtcttg atgttaagac gcggntggag caggagattc cccactaccg cccgctgttg gaggagggagg atgcccaact gactcagta aagaaagaac eggtgaccac cggtggtgtg egtacccattg
tggagaggt caggagtgc cagggtcatct cctcccgcga gcaggteccac caggaccccg gctggagact cagctacccc
ggcggcgcac caggaggggc gaggcgcggc ccccaagctt cccgctcctcc ccggctctgg ctggctctgg gacaatagc actctaggg ggctagcttt cccctaaa

3.11 Unbekannte Sequenzen

S5: Die gut lesbare Sequenz stammt von einer G3 Tumorprobe (Probe 13), die mit dem „EEY“-Primer und dT12-Notl amplifiziert wurde (EEY/6) und stimmt in 20 zusammenhängenden Basen (B 43 bis B 62) mit dem Neisseria meningitidis pilC1 Gen (B 1512 bis B 1531: emb Y13020) und in 18 Basen (B 15 bis B 32) mit dem Homo sapiens Xp22 BAC GH3-590J6 (Genome Systems Human BAC library) Klön (B 108625 bis B 108608) überein. Das Programm *ORF Finder* identifizierte einen offenen Leserahmen in der Länge 108 Nukleinsäurebasen bzw. 35 Aminosäuren (B 109 bis B 2 der eingebenen Sequenz). Diese Sequenz war in den Datenbanken nicht auffindbar (Protein BLAST).
S5:
gecgagctc ggccgagct tgggacaagc cagcgttanc cagccgcgca ccagcccaact ccagatactt ctcttcgata nggggnnc cc
tcagcttc catgccttt gcgttcttttc accctgtg gtc tctgtagac ccctcaaggg ttctgaaaaa aaaaaa

S7: Die Sequenz ist ohne Uneindeutigkeiten lesbar. Mit dem BLAST-Programm wurde keine ähnliche oder identische Sequenz in den Datenbanken gefunden. Die Bande EEY/8 wurde aus einer Urothel cDNA amplifiziert.

tagcagctc caggttcgac agtcagtaac accatcttt ttccttaac gcgtctacat ttcagggaca acagtctgca aaaaagaat aagtcgcgcgt tctgtagac ccagcctcag ccagctttt gc ttacaggggac accagtccaa aaaagcgaggg gcgcggagcg gcccggcgcgg tctcctacaac ccagcctgcgc tctgtagac ccagcctctc ggcgaggca tctcctcag aagcgggtag cagagcgcgt acc

S19: Die eindeutige Sequenz der AP3.1/1 Bande entspricht keiner bekannten humanen Sequenz in den Datenbanken. Auf der Nukleinsäure-Ebene war der größte Treffer das *Bombbyx mori* (Seidenspinne) Gen für die Xanthin Dehydrogenase (21 von 21 zusammenhängende Basen, bei 366 bp eingegebener Sequenz). Es wurden zwei offene Leseraster (ORF) gefunden. Die eine Aminosäuresequenz war in 12 von 21 Positionen identisch und in 15 von 21 (71%) positiv mit der abgeleiteten Aminosäuresequenz des *Caenorhabditis elegans* Cosmid ZK 418.5.

gcaacctgtt gcctttgtc cccgaaaaa gactaatta atttctctc agaacctgtc tgctcagaaat aataagaaac ttctgactag tcaagaacct cagatgcaaa ggctcagac acaccaatca aaaaaaata gacgcgact ttctggattg taaaaattg atgtttaaa agagcgggt cacatacag acagatttgc ctagtatttc ctagatctgc gattataat gtacaggagg aacctagggtc ttcctcaggg gtagtatttc aagttagggg agg ttcagagag aagttagggg cctcagaaat acctatttgc ttcagagag aagttagggg ttcagagag aagttagggg
von *Mycobacterium tuberculosis*. Es wurden drei ORFs gefunden. Ein Abschnitt von 98 Aminosäuren war in 28 von 54 Positionen (51%) identisch und in 41 von 54 Positionen (75%) positiv mit dem *Escherichia coli* Gen für das *Methyl-Accepting Chemotaxis Protein*, sowie in 30 von 54 Positionen (55%) identisch und in 40 von 54 Positionen positiv für das *Escherichia coli* Serin-Chemorezeptorprotein.

S21:

gggnctgge ceggcaagt cegtaacaac ctaaaaatt ggtgtcgtat ctcctgtaat cggcttcac gcacgcttc
ataatgtg ctcctggtg cttgccgaat tacntctgg cgccagcgg cgttggac gacccaagg gccttggtgtg
atctgagaagctctgac ccgagccttt gcgcggcgtt gtacngcacc ctttgagctt ggttattacagctg

3.12 Verifikation bzw. Falsifikation der differenziellen Expression der sequenzierten ddRT-PCR Proben durch konventionelle PCR

Da Tumormaterial aus transurethralen Resektaten sehr limitiert war, konnte für die Überprüfung der differenziellen Expression keine Northern Hybridisierung, bei der µg-Mengen von RNA eingesetzt werden muß, um ein Signal zu erhalten, durchgeführt werden. Die empfindlichste, und daher materialschonendste Methode ist die PCR Amplifikation. Hierbei wurde die cDNA (1 µg RNA im 20 ml Ansatz) um den Faktor 50 verdünnt, um dann mit 1 µl in den 20 µl PCR Ansatz eingebracht zu werden (ein Äquivalent von 1 ng RNA). Diese Menge reicht theoretisch aus, um selbst Transkripte geringer Kopienzahl pro Zelle darzustellen.

Ferritin, schwere Kette

Die DNA-Banden zeigten bei allen Proben etwa die gleiche Fluoreszenzstärke. Eine differentielle Expression der schweren Kette von Ferritin konnte mit konventioneller RT-PCR nicht gezeigt werden.

Mitochondriale 12S ribosomale RNA

Für die mitochondriale 12S rRNA gilt dasselbe. Eine differentielle Expression wurde nicht bestätigt.
Das mit Metastasierung in Verbindung gebrachte mts-1 Gen scheint trotz einer differentiellen Bande in der ddRT-PCR in allen untersuchten Gewebeproben exprimiert zu sein. Bis auf die sehr schwache Bande bei der Probe 11, gibt es hier keine großen Unterschiede in der Expressionsstärke, weder zwischen den Tumoren unterschiedlicher pathologischer Grade, noch im Vergleich zu normalem Urothel und Bindegewebe.

Eine auffallend niedrige Expression von HMG-1 zeigt die Urothelprobe 14 im Vergleich zum autologen Harnblasentumor 13. Desweiteren wurden keine Korrelationen der Expressionsstärken mit Tumoren und Malignitätsgraden gefunden.
Eine gleichmäßige Stärke der Expression des L19 Proteins darf konstatiert werden.

Die differentielle Expression bestätigt sich auch beim Zytokeratin 17 nicht. Es ist aber ein leichter Rückgang der Expressionsstärke zu den wenig differenzierten Tumoren hin zu erkennen.
Nuclear Dual-specific Phosphatase

Die stärkste Gel-Bande zeigt die Probe 1, ein Ureterbindegewebe. Die Tumoren zeigen intensivere Banden als die korrespondierenden normalen Urothelien.

Die RT-PCR zeigt bei den meisten Proben die erwartete Bande bei 110 Basenpaaren (graue Balken). Fragmente von etwa 200 bp (schwarze Balken) sind bei zwei Proben (1 und 10) prominent, bei zwei weiteren vorhanden (15 und 17). Vier Proben (4, 8, 14 und 17) weisen jeweils ein etwa 500 bp langes Fragment auf (schräg gestreifte Balken).
Das S21-Fragment zeigt eine Tendenz zur abnehmenden Expression mit zunehmender Entdifferenzierung der Tumoren. Urothel exprimiert die entsprechende mRNA stärker als die korrespondierenden Tumoren. In einem Fall (5) ist die Intensität der Bande so schwach, daß sie im Hintergrund untergeht (Die Negativkontrolle zeigt eine Bande und wurde daher subtrahiert).

GAPDH

Glycerolaldehyd-3-Phosphat Dehydrogenase dient als wenig reguliertes Gen der Kontrolle der eingesetzten RNA bzw. cDNA Menge und der Standardisierung der PCR.

Zytokeratin 8

Die Expression von Zytokeratin 8 ist in den meisten Tumoren stärker exprimiert als in den Urothelien.

Zytokeratin 18

Ein Zusammenhang zwischen Tumorgrad und –stadium und Zytokeratin 18-Expression läßt sich nicht erkennen.
Zytokeratin 20

Einige der gut bis mäßig differenzierten Tumoren zeigen Mal-Expression, nicht aber die Urothelien.
E-Cadherin (Kalziumabhängiges epitheliales Zelladhäsionsmolekül, dessen metastasesupprimierende Eigenschaft experimentell belegt ist)

![Diagramm E-Cadherin]

a-Catenin (verankert den E-Cadherin-Catenin-Komplex im Zytoskelett)

![Diagramm a-Catenin]

β-Catenin (transduziert Signale nach homphiler Bindung von E-Cadherin)

![Diagramm β-Catenin]
Scatter Factor (SF/HGF)
(Wird von Stromazellen sezerniert und verleiht nach Bindung an seinen Rezeptor (MET) Zellen erhöhte Motilität, die zu Invasion und Metastasierung beiträgt)

Telomerase RNA
(Telomerase verlängert die repetetiven Chromosomenenden (Telomere), trägt damit zur Stabilität des Genoms bei und verleiht Zellen Immortalität)
DNA-Methyltransferase (dnmt 1) (Methyliert DNA und reguliert damit Transkription. Eine fehlerhafte DNA-Methylierung könnte zur Karzinogenese beitragen)

![Graph](image1)

DNA-Methyltransferase (dnmt 2)

![Graph](image2)

P-Glykoprotein (mdr1) (Vermittelt einen vorherrschenden Typ der multiplen Resistenz gegen bestimmte Zytostatika (Multi Drug Resistance; mdr))

![Graph](image3)
4. Diskussion

4.1 Uroplakin-PCR

Daher wurde der Versuch unternommen, mit uroplakinspezifischen Primer-Oligonukleotiden, deren Sequenzen von den bovinen Uroplakin mRNAs stammten, die entsprechenden Fragmente aus humaner Urothel-cDNA zu amplifizieren. Da dies gut funktionierte, war es anschließend möglich, die PCR-Fragmente, die die vier humanen Uroplakin-mRNAs repräsentierten, zu klonieren und zu sequenzieren. In den resultierenden humanen Uroplakin-Sequenzen wurden dann Abschnitte ausgesucht, nach denen neue Primer-Oligonukleotide synthetisiert wurden. Die Fragmentlängen wurden so gewählt, daß eine Koamplifikation in einer Probe sinnvoll möglich ist, d.h. daß die entsprechenden Banden im Agarosegel gut unterscheidbar sein würden. Es entstand eine aufsteigende Leiter von UPIa (320 bp), UPIb (408 bp), und UPII (527 bp), mit UPIII als Zwischensprosse (461 bp; das mit den bovinen Primer amplifizierte Fragment, ließ aufgrund seiner Größe keine konsequente Fortsetzung der Leiter nach Oben hin zu). Die Koamplifikation der vier Uroplakine war zwar möglich, es zeigte sich aber im Vergleich zu den Einzel-PCRs, daß hin und wieder eine Bande ausfiel. Somit ist die Zuverlässigkeit dieser multiplexen UP-RT-PCR nicht hundertprozentig gewährleistet. Daher wurden für diese Arbeit die Expressionsdaten aus den Einzel-UP-RT-PCRs verwendet. Bei den meisten Banden stimmten jedoch die Ergebnisse der multiplexen UP-RT-PCR mit denen der Einzel-UP-RT-PCRs auch quantitativ überein.

Mit den bovinen UPIb-PCR-Primern wurde in der vorliegenden Arbeit eine Reihe humaner Urothelkarzinome unterschiedlicher pathologischer Grade und Stadien mittels RT-PCR auf ihre UPIb-Expression untersucht und gefunden, daß alle gut bis mäßig differenzierten Urothelkarzinome und etwa die Hälfte aller wenig differenzierten bis anaplastischen Tumoren UPIb exprimieren.

In weitgehender Übereinstimmung mit diesem Ergebnis für UPIb zeigen Moll et al. 1995 in einer immunhistochemischen Studie, daß UPIII Protein in 88% (14/16) der untersuchten papillären nicht-invasiven, 53% (29/55) der invasiven und 66% (23/35) der Metastasen nachweisbar war. Dagegen waren 177 nichturotheliale Karzinome für Uroplakine negativ.

Die Expression von Uroplakin in Metastasen, sowie in chemisch induzierten Tumoren im Tiermodell ließ es als Möglichkeit denken, mit einem UP-RT-PCR Test ausgestreuende und potentiell metastasierende Urothelkarzinomzellen im Blut von Urothelkarzinom-patienten nachzuweisen.

Der hier entwickelte UPIb-RT-PCR Bluttest konnte eine urotheliale Zelle (von normalem Urothel, der gut differenzierten (G1) Urothelkarzinomzelllinie RT4, sowie der
mäßig differenzierten (G2) Urothelkarzinomzellen (5637) in einem Milliliter Blut nachweisen und zeigt damit eine sehr hohe Nachweisempfindlichkeit.

In guter Übereinstimmung mit der vorliegenden Arbeit kommen Lobban et al. zu dem Schluß, daß UPlb weniger auf differenziertes Urothel beschränkt ist, als die anderen Uroplakine. Seine konstitutive Expression in proliferierenden Urothelzellkulturen, sowie
die Expression in entdifferenzierten Urothelkarzinom-Tumoren, waren schließlich der Grund, warum in der eigenen Studie die \textit{UPIb} Expression als Marker für Urothelkarzinome gewählt wurde.

Zelle in 5 ml Blut zu erkennen. Von den 16 durch Finch et al. untersuchten Harnblasenkarzinomproben, zeigten im Northern Blot nur fünf Tumoren eine Expressionstärke vergleichbar mit Normalurothel. Verringerte Expression von UPIb mRNA wurde in vier Blasengeschwülsten beobachtet, und in sieben Tumoren war die UPIb Expression ganz verschwunden. Untersucht wurden vorwiegend mittelgradig bis entdifferenzierte Tumoren, und auch wenn, wie die Autoren richtig darlegen, aufgrund der geringen Probenzahl keine akkurate Korrelation zwischen der Höhe der Uroplakin-Expression und dem Grad der Invasion und dem Krebsstadium herstellbar ist, läßt sich aus der Verteilung der UPIb Expression dennoch die Tendenz erkennen, daß bevorzugt die G3 Tumoren sich unter den Proben befanden, die einen Verlust der UPIb Expression erfahren haben.

Im transgenen Mausmodell wurde gezeigt, daß ein Reportergenkonstrukt mit der UPII-Promotorregion (3,6 kb 5´-flankierende Sequenz) in den suprabasalen Zellschichten des Urothels exprimiert wird. Das Transgen war in keinem getesteten nichturothelialen Epithel oder anderen Gewebe, außer dem Hypothalamus, exprimiert (Lin et al. 1995).

auf der Transkriptebene, durch unsere RT-PCR-Untersuchungen für den Menschen nicht bestätigt werden.

Dies wird möglicherweise zusätzlich durch die Herkunft eines humanen cDNA Klons belegt, dessen Sequenz ihn als Uroplakin III Sequenz identifiziert. Er stammt aus mikrodissezierten Zellen, die histologisch als Prostatakarsinomzellen bestimmt wurden (Strausberg 1997). Es ist aber nicht auszuschließen, daß diese Zuordnung ein Irrtum war, und es sich dabei in Wirklichkeit um Urothelkarzinomzellen handelte.

Der Uroplakin-RT-PCR Bluttest könnte trotz der eingeschränkten Spezifität sinnvoll eingesetzt werden. Erstens könnten bei bekanntem Primärtumor eines Urothelkarzinoms disseminierte uroplakinpositive Tumorzellen mit hoher Nachweisempfindlichkeit aufgespürt werden, die eine Progression zum invasiven und damit potentiell Metastasen bildenden Stadium anzeigen würden, noch bevor Sekundärtumoren mit den herkömmlichen Methoden diagnostiziert werden könnten. Eine Einschränkung der Nützlichkeit erzwingt aber das Faktum, daß gerade von den stark entdifferenzierten Tumoren, die die größte Tendenz zu Invasion und Metastasierungs aufweisen, nur noch etwa die Hälfte Uroplakin bildet. Dies trifft genauso für eine ganze Reihe von Markern zu, einschließlich der Zytokeratine, die aber bei weitem nicht die Gewebsspezifität der Uroplakine aufweisen, auch wenn diese relativiert werden muß. Da die frühzeitige Diagnose eines progredienten Urothelkarzinoms von besonderer Dringlichkeit ist, sollte dieser Uroplakin-RT-PCR Bluttest an Blutproben von betroffenen Patienten getestet werden und empirisch festgestellt werden, ob er für die Diagnose taugt und von klinischer Nützlichkeit werden kann.

4.2 Differential Display RT-PCR

Der Arbeits- und Zeitaufwand, dieses Prozedere an vielen Gewebeproben durchzuführen, ist sehr viel größer. So müßte man sich auf eine stichprobenartige Auswahl beschränken, was aufgrund der großen Heterogenität bei Krebszellen nicht wünschenswert ist. Hat man nach substraktiver Hybridisierung, Klonierung differenzieller Transkripte oder dem Screening von cDNA Bibliotheken mit differenziellen Genproben, Gene identifiziert, muß der Nachweis, daß das gefundene Transkript auch bei anderen Geweben eine Rolle spielt erst noch erbracht werden, während dies bei der ddRT-PCR schon auf dem ersten Gel sichtbar wird. Der Nachteil der ddRT-PCR ist aber ihre Neigung, mRNAs hoher Kopienzahl bevorzugt zu amplifizieren und solche, die in wenigen Kopien pro Zelle vorliegen - dies könnte für das Krebsgeschehen sehr wichtige Gene betreffen - zu unterschlagen. Dieser Kritikpunkt gilt auch für die einfache substraktive Hybridisierung. Außerdem ist mit falsch positiven Fragmenten zu rechnen, was den Vorteil gewonnener Zeit wieder zunichte machen kann, wenn man bei der Überprüfung ihrer differenziellen Expression feststellt, daß es sich bei den ddRT-PCR Banden um falsch Positive handelt (Diatchenko 1996). In der vorliegenden Untersuchung zeigt sich dieses Problem deutlich: Die meisten der gefundenen differenziellen Gelbanden bzw. PCR-Fragmente repräsentieren Gene, deren differenzielle Expression durch eine konventionelle RT-PCR nicht bestätigt wurde. Der Einwand, dies könne an der Tendenz der konventionellen PCR liegen, quantitative Unterschiede zu nivellieren, sollte aus theoretischen Gründen hier nicht zutreffen, weil alle PCR-Reaktionen in der exponentiellen Phase gestoppt wurden. Außerdem waren Unterschiede sichtbar, aber diese ergaben selten konsistente Korrelationen zu pathologischen Kriterien, wie Tumorgrad und –stadium, oder zu bestimmten Harnblasentumoren im Vergleich mit den autologen Urothelen.

Die Beobachtung, daß die in der Differential Display RT-PCR gefundenen differenziellen PCR-Fragmente besonders solche Transkripte darstellen, die in hoher Kopienzahl in der Zelle vorliegen, wird von Bertoli et al. 1995 bestätigt. In einem Modellsystem wurde die Sensitivität der ddRT-PCR getestet. Primer mit den perfekt passenden Sequenzen für PR1a (Pathogenesis Related Protein, das in Tabakmosaikvirus-infizierten Blättern etwa 1% der mRNA ausmacht) und TobRB7, welches konstitutiv in Tabakwurzeln, nicht aber in Blättern exprimiert wird, und etwa 0,3% der gesamten mRNA repräsentiert, konnten in der ddRT-PCR die entsprechenden mRNAs nicht detektieren. In einem einfacheren System wurden in Verdünnungsreihen der sehr häufigen Kaninchen α- oder β-Globin mRNAs 4 pg Ziel-RNA in 2 mg Gesamt-RNA detektiert, was einem raren Transkript entspräche. Wurde aber in einem realistischeren System diese Globin RNA mit
heterologer Gesamt-RNA gemischt, so konnte keine Primer/Ziel-RNA Kombination α- oder β-Globin bei < 400 pg (1,2% von mRNA, entsprechend einer mittelmäßig bis häufig auftretenden mRNA) detektieren. Die Ursache hierfür liegt vermutlich bei der Kompetition um die in niedriger Konzentration eingesetzten Nukleotide. In hoher Kopienzahl vorliegende Transkripte sind schneller zu detektierbar, so daß seltene Transkripte keine Chance haben so hoch amplifiziert zu werden, daß sie auf dem Gel als Banden sichtbar werden. Die Nukleotide als limitierender Faktor können nicht in beliebig höherer Konzentration eingestellt werden, da dies den Hintergrund erhöhen würde. Eine Möglichkeit bestünde in einer stringenteren PCR mit längeren Primern bei höherer Anheftungstemperatur, was aber die Repräsentation für mRNAs verringerte. In der vorliegenden Arbeit wurde ein Kompromiß versucht: 20mer Nukleotid-Primer durften im ersten Zyklus bei wenig stringenter Anheftungstemperatur wie 7 bis 11-mere binden (40°C). Danach wurde die PCR unter stringenter Primerbindung bei 58°C, durchgeführt. Eine Reduzierung der Template-Komplexität wäre eine weitere Maßnahme, um die Repräsentation für Transkripte geringer Häufigkeit zu erhöhen.

unwahrscheinlich. Bei der Überprüfung der verwendeten Primer mit dem BLAST-Programm, das die eingegebene Sequenz mit allen in Datenbanken gespeicherten Nukleinsäuresequenzen vergleicht, wurde keine Übereinstimmung gefunden, was jedoch nicht ausschließen kann, daß es eine solche mit bislang noch nicht sequenzierten Genabschnitten gibt.

Im Widerspruch zu theoretischen Erwägungen, die eine exakte 3´-Basenpaarung fordern, zeigt die Analyse der von den Primern in den jeweiligen Genen gebundenen Sequenzen, daß eine Bindung und Extension durch Taq Polymerase auch noch an einem 3´-Ende stattfinden kann, bei dem die letzten beiden Basen in ihrer Reihenfolge vertauscht (at statt ta), oder durch andere Basen ersetzt sind (gc statt ta). Daß an den fraglichen Stellen tatsächlich Mutationen vorliegen ist äußerst unwahrscheinlich, aber nur nach Sequenzierung der entsprechenden Abschnitte zweifelsfrei auszuschließen. Dies würde aber über Aufgabe und Zweck dieser Arbeit hinausgehen. Eine mögliche Degradierung des Primer, dem die letzten beiden 3´-Basen fehlen und der mit diesem verkürzten 3´-Ende spezifisch bindet, wäre in diesem Zusammenhang noch zu diskutieren. Allerdings hätte diese Verkürzung des Primer zu einer schlechteren Bindung an die komplementäre Sequenz unter Hot Start Bedingungen, und damit zum Ausfall der Bande führen müssen.

Internes Priming unter niedrigstringenten PCR-Bedingungen

DNase-Behandlung der RNA-Lösung

Der initiale Versuch die Differential Display RT-PCR ohne DNAse-Behandlung der RNA in der Annahme durchzuführen, daß die Anreicherung der RNA bei der RNA-Isolierung ausreichen müsste, um Amplifikate von eventuellen Spuren genomischer DNA unter die Nachweigrenze zu drücken, hat zu einer relativ hohen Rate repetetiver Sequenzen wie Alu- und LINE 1/2-Repeats geführt. Die Behandlung der isolierten RNA mit RNase-freier DNase ist also erforderlich. Selbst nach dieser Maßnahme stellte sich in einem Fall das reamplifizierte, differentielle Fragment als repetetive Sequenz genomischer DNA heraus, die entweder nicht vollständig abgebaut, oder aber durch nachträgliche Kontamination noch vor der Amplifikation in die Probe gelang war.

Daß nicht nur polyadenyierte RNA bei der ddRT-PCR erfaßt wird, zeigen die Beispiele ribosomaler RNAs, die normalerweise nicht polyadenyiert sind (Baserga et al. 1985), und des HMG (High Mobility Group) Proteins, bei dessen mRNA die Oligo(dT)- Primer an einen internen Abschnitt von sieben Adeninnukleotiden gebunden hat. Auch die Bindung eines Zufallsprimers AP an Sinn- und Gegensinnstrang in amplifizierbarer Distanz und Ausrichtung ist möglich und tritt hin und wieder auf.

4.3 Direktsequenzierung mit den kurzen 10-mer Differential Display-Primer-Oligonukleotiden

Nach dem Standardprokoll des "ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit", ist die Sequenzierung mit den 10-mer Primern - nur die Anheftungstemperatur war wegen der kürzeren Primer auf 38°C gesenkt worden - nicht gelungen. Dies führte zu der Arbeitshypothese, wonach die Punktmutation im aktiven Zentrum der verwendeten speziellen Sequenzer-Taq Polymerase zwar einen besseren Einbau der Dideoxynukleotide erlaubt, aber zu einer Verschlechterung der Polymeraseaktivität führt. Die Vorstellung war, daß bei der niedrigen Anheftungstemperatur die Polymeraseaktivität noch zu gering ist, um die Primer zu verlängern, und daß der schnelle Anstieg auf die Synthesetemperatur zum vorzeitigen Ablösen der Primer führt. Würde aber die Temperatur nur langsam ansteigen, bliebe der durch die Punktmutation in ihrer Aktivität verschlechterten Polymerase genügend Zeit, die Primer in einer Geschwindigkeit zu verlängern, die mit dem Anstieg der Temperatur proportional ist, um so eine stabile Bindung an die Matrize zu gewährleisten. Ein langsamer Anstieg der Temperatur von 38°C auf 60°C mit einer Steigung von 0,2°C/min erlaubte schließlich die direkte Sequenzierung auch mit den 10mer-Zufallsprimern, wodurch die Arbeitshypothese bestätigt wurde.

Das oben beschriebene interne Anheften könnte das Phänomen der Sequenzüberlagerungen bei einigen differentiellen PCR-Amplifikaten erklären. Die 10 Basenpaare langen Primer der ddRT-PCR sind in diesen Fällen ungeeignet, und ein Klonierungsschritt oder die Ligation von doppelsträngigen Oligonukleotid-Linkern an das PCR-Produkt ist notwendig, um dann mit längeren Primern, die zu Plasmid- bzw. Linkersequenzen komplementär sind, eine saubere Sequenzierung zu erreichen. Längere

4.4 Durch die ddRT-PCR differentiell dargestellte Transkripte

4.4.1 Ferritin, schwere Kette

In einem Ratten Progressionsmodell, das phänotypisch und zytogenetisch humanem oberflächlichem Blasenkrebs ähnlich ist, haben Vet et al. 1997 durch differentielle Hybridisierungsanalyse eine Überexpression von Ferritin H (schwere Kette) in der

4.4.2 Mitochondriale 12S ribosomale RNA

4.4.3 High mobility group Protein HMG-1

des Chromosoms 12 beschrieben. Bei 13 von 122 Sarkomen war das \textit{HMG1-C} Gen amplifiziert. Acht dieser Proben waren Liposarkome, was die Bedeutung des Gens beim Zellwachstum von Adipozyten unterstreicht. Ein \textit{HMG1-C} Gegensinn-Expressionsvektor inhibierte die Zelltransformation durch onkogene Retroviren, was nahelegt \textit{HMG1} als Onkogen zu klassifizieren.

Eine erhöhte \textit{HMG-I} mRNA Expression (0,71 vs. 0,48 im Norther Blot) im Vergleich zu den entsprechenden Normalgeweben wurde bei 33 gastrointestinalen Adenokarzinomen gefunden, nachdem bei einem differentiellen Durchsuchen (Screening) der cDNA Bibliothek einer gut differenzierten Magenkarzinomzelllinie der cDNA Klon FM1 sequenziert und als humanes \textit{HMG-I} identifiziert wurde (die abgeleitete Aminosäuresequenz zeigte an drei Stellen substituierte Aminosäurereste: Arg durch Gly in Position 11; Gln durch Ala in Position 149 und Gly durch Asp in Position 190 (Xiang et al. 1997). Weil sich die Autoren daher nicht sicher waren, ob die Identität mit \textit{HMG-I} damit gesichert war, blieben sie bei der Bezeichnung FM-1 für ihren Klon).

Jayaraman et al. (1998) identifizierten einen p53 DNA-Bindung aktivierenden Faktor aus Kernextrakten von HeLa Zellen als HMG-1. Ebenso konnte HMG-2 die Bindung von p53 Protein an die spezifische p53 Bindungsstelle (Responsive Site) auf der DNA um den Faktor 10 bis 50 verstärken, wie in Electrophoretic Mobility Shift Assays gezeigt wurde. Im Gegensatz zu anderen Faktoren, die über eine Aufhebung der Autoinhibition durch das basische Carboxyl-Ende von p53 die sequenzspezifische DNA-Bindung verstärken, übt HMG-1 seine Wirkung auch auf die DNA-Bindung einer konstitutiv aktiven Form von p53 aus, bei der diese regulatorische Region deletiert ist.

Passalacqua et al. (1997) zeigten, daß die Sekretion und Bindung von HMG1 Protein an die externe Zellmembranoberfläche für die Mäuse-Erythroleukämizelldifferenzierung erforderlich ist.

HMG-1 und -2-Proteine zeigten eine hohe Bindungsaffinität für cisplatin-geschädigte DNA, die mit dem Grad der Schädigung durch Cisplatin, einem in der Krebstherapie häufig applizierten Zytostatikum, korrelierte (Hughes et al. 1992; Turchi et al. 1996; Zlatanova et al. 1998). Dabei gehen das Lysin 6 der HMG1 Box und das Platinatom selbst die Verbindung ein (Kane und Lippard 1996).

4.4.4 CAPl/S-100-related Calcium-binding Protein, p9Ka, mtsl Gen

p9Ka zeigt 27% Übereinstimmung der Aminosäuresequenz mit dem Vitamin D-abhängigen intestinalen Kalzium-bindenden Protein der Ratte, mehr als 40% Übereinstimmung mit den Vertretern der S-100 Familie *EF-Hand* enthaltender Proteine und dem wachstumsregulierten *Calcyclin*, und 32% Entsprechung mit p11, der kleinen Untereinheit von *Annexin II*. Wie diese Proteine enthält p9Ka zwei potentielle *EF-Hand* Kalziumbindungsstellen und bindet zwei Kalziumionen mit moderater Affinität (Kd 34 bis 38 mM für das rekombinante p9Ka). *EF-Hand* Hände bestehen aus einer Helix-Schleife-Helix-

Das humane p9Ka Gen ist auf Chromosom 1 in der q21 Region lokalisiert, die eine fragile Stelle enthält. Bei Brustkrebs sind die häufigsten zytogenetischen Veränderungen Abnormalitäten im Chromosom 1, wie Überrepräsentation des gesamten Chromosoms und Translokationen von Chromosom 1-Fragmenten, was beides zu einer Expression betroffener Gene führen könnte. Einige Zelllinien metastatischer Mammakarzinome exprimieren p9Ka mRNA stärker als epitheliale Zellen aus der Brustdrüse, die mit SV-40 Virus immortalisiert wurden, oder aus gutartigen humanen Brustdrüsenläsionen stammten.

Die eigene Untersuchung spricht nicht für eine Beteiligung des mts-1-Genproduktes an der Metastasierung. Das Transkript wird auch von nicht-metastasierenden Urothelkarzinomen und Normalurothel gebildet. Allerdings liegen keine Informationen über den weiteren Krankheitsverlauf vor, sodaß nicht auszuschließen ist, daß einige der Patienten noch ein metastasebildendes Stadium erreicht haben.

4.4.5 Weitere differentielle Transkripte

4.5 Untersuchung der differenziellen Expression verschiedener bekannter Gene mittels semiquantitativer RT-PCR

Da die semiquantitative RT-PCR keine widerspruchsfreien Ergebnisse erbrachte, wird hier auf eine detaillierte Diskussion verzichtet. Der Grund für die geringe Reproduzierbarkeit der differenziellen Expressionsmuster von Urothelkarzinomen verschiedener pathologischer Grade und Stadien im Vergleich zu morphologisch unverändertem Urothel liegt möglicherweise an der relativ hohen Verdünnung der eingesetzten cDNAs (1 ng Gesamt-RNA kam je PCR-Reaktion zum Einsatz). Diese Verdünnung war erforderlich, weil die verfügbare Gewebemenge bei einzelnen Tumorproben äußerst gering war (25 bis 80 mg Naßgewicht). Dadurch war auch die RNA-Menge limitierend, wenn man mit einer Reihe Zufallsprimer (20 AP- x 4 Ankerprimer) in der ddRT-PCR, und mit einer konventionellen RT-PCR noch weitere Gene testen will. Das Volumen, in dem die RNA verdünnt wurde, sollte für 100 RT-PCR-Ansätze reichen. Somit könnte es besonders bei Transkripten, die in niedriger Kopienzahl je Zelle vorliegen, zu stochastischen Effekten gekommen sein. Dafür spricht die Beobachtung, daß die Schwankungen zwischen gleichen Versuchsansätzen nicht kontinuierlich zu sein scheinen, sondern in quantisierter Art und Weise auftraten. Dies ließe sich damit erklären, daß zufällig ein, zwei, drei oder aber kein Transkriptmolekül in den PCR-Ansatz gelangt
war. Außerdem war eine gute Reproduzierbarkeit bei der GAPDH gegeben, deren Transkript in hoher Kopienzahl je Zelle vorliegt. Eine weitere Erklärungsmöglichkeit wäre eine nicht auszuschließende langsamer Degradation der cDNA und RNA trotz ihrer Aufbewahrung bei -80°C. Allerdings hätte dies auch zu Unregelmäßigkeiten bei der GAPDH RT-PCR führen müssen. Dies war aber nicht in dem Ausmaß der Fall, was eher für die erste Erklärung sprechen würde. Das Tumormaterial war teilweise äußerst limitiert. Einige Proben standen nur als transurethrale Resektate von 30 bis 50 mg Naßgewicht zur Verfügung. Es war somit nicht möglich, die Expression der vorgesehenen Anzahl von Genen mit den Standardmethoden Northern Hybridisierung oder RNase-Protection Assay zu quantifizieren. Daraus erklärt sich auch die eingesetzte Verdünnung der cDNAs. Da sich die Versuche auch nicht mehr mit frischem Gewebe - weil nicht mehr vorhanden - wiederholen lassen, kann keine abschließende Aussage über die Expressionsstärken der untersuchten Gene getroffen werden. Damit können diese auch nicht sinnvoll Gegenstand der Diskussion sein. Allerdings sei ausdrücklich darauf hingewiesen, daß, neben mts1 und HMG1, besonders die unbekannten Sequenzen aus der ddRT-PCR eine Tendenz zu differentieller Expression gezeigt haben und in weiteren Untersuchungen in ihrer Bedeutung für das Urothelkarzinom evaluiert werden sollten.

DNA-Methyltransferasen

Telomerase

Im Gegensatz zu Nagern, die längere Telomere und Telomerase-Aktivität in somatischen Zellen besitzen, zeigen menschliche Körperzellen keine oder kaum Telomeraseaktivität. Dadurch verkürzen sich die Telomere mit jeder Zellteilung.
und $hTERT$ keine in Weichagar wachsenden Fibroblastenkolonien erzeugen. Daher ist es wahrscheinlich, daß Large-T noch einen oder mehrere andere Wege betrifft.

4.6 Ausblick

Die Differential Display RT-PCR ist eine Methode mit großem Potential, aber leider auch mit dem Problem falsch-positiver Resultate und der Verschiebung hin zu häufigen Transkripten behaftet. Die Verwendung längerer Primer-Oligonukleotide (20-mere), die initial bei niedriger Temperatur relativ unspezifisch (wie 7-11-mere) binden dürfen, um dann in einer stringanten PCR auf die Bindung der eigenen komplementären Sequenz in voller Länge beschränkt zu werden, stellt eine wesentliche Verbesserung der Methode dar.

Der Einsatz von Primern, die von Konsenssequenzen homologer Regionen wichtiger Proteinfamilien abgeleitet sind, öffnet die Option, gezielt nach bekannten und unbekannten Mitgliedern ausgesuchter Gen- bzw. Proteinfamilien zu suchen, die aufgrund ihrer Funktion mit Krebsentstehung und -progression in Zusammenhang stehen können. In der vorliegenden Arbeit wurden die src-Homologieregionen SH2 und SH3, sowie die SH2-Bindungssequenz
ausgewählt. Diese Methode ließe sich aber universell für jede Proteinfamilie sowie auch bei anderen Fragestellungen anwenden. In der Praxis zeigt sich, daß die Primerbindung trotz des Startes der PCR bei 94°C nicht so stringent sequenzspezifisch stattfindet, wie die Theorie es fordert, und daß auch Proteine durch ihre mRNA erfaßt werden, die nicht die gesuchte Homologieregion enthalten. Obwohl keines gefunden wurde ist nicht auszuschließen, daß wenn alle dargestellten differenziellen Fragmente ausgewertet werden, auch die entsprechenden Proteinfamilien repräsentiert werden.

Vielleicht zeigten sich dann auch solche Transkripte, deren Expression durch die Interaktion der verschiedenen Zelltypen in den Tumoren induziert werden, und die bei der Untersuchung isolierter Zellpopulationen in vitro nicht entdeckt würden, die aber wesentlich zum Phänotyp der Tumoren beitragen könnten.

Wie die vorliegende Studie unterstreicht, sind Karzinome in ihren Expressionsmustern sehr individuell. Die meisten Forschungsansätze verfolgen aber das Ziel, den größten gemeinsamen Nenner bei einer bestimmten Entität, in unserem Fall den Urothelkarzinomen, zu finden, um eine möglichst einfache diagnostische oder therapeutische Methode entwickeln.
und etablieren zu können, die der größtmöglichen Teilmenge entspricht, aber auch bedauerlicherweise einen Teil ausschließt.

Um den komplexen Verhältnissen bei der differentiellen Genexpression von Tumorzellem im Vergleich zu den analogen Normalgeweben und der zyto- und molekulargenetischen Heterogenität der Malignome aus derselben Klasse – hier der Urothelkarzinome - gerecht zu werden, sollte die diagnostische Zukunft in einer möglichst differenzierten Charakterisierung eines individuellen Tumors bestehen, um so jedem Patienten die Aussicht auf eine maßgeschneiderte molekulare Therapie zu eröffnen.
5. LITERATURVERZEICHNIS

Agarwal A und Schatz DG (1997)
 RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination.
 Cell 89: 43-53

Alper SL, Lodish HF (1991)
 Impact of Molecular Biology on Nephrology, 1131-1133
 Harrison’s Principles of Internal Medicine

 Correlation between numbers of desmosomes and the aggressiveness of transitional cell carcinoma in human urinary bladder.
 Cancer 47: 104-112

 Expression of scatter factor in human bladder carcinoma.
 J Nat Cancer Inst 87: 372-377

 Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues.
 Cancer Res 56: 645-650

 Antibodies to HMG proteins in patients with drug-induced autoimmunity.
 Arthritis Rheum 37: 98-103

 Antibodies to high mobility group proteins in systemic sclerosis.
 J Rheumatol 21: 2071-2075

Barraclough R, Rudland PS (1994)
 The S-100-related calcium-binding protein, p9Ka, and metastasis in rodent and human mammary cells.
 Eur J Cancer 30A: 1570-1576

 Polyadenylation of a human mitochondrial ribosomal RNA transcript detected by molecular cloning.
 Gene 35: 305-312

106
The HMG-1 box protein family: classification and functional relationships.
Nucleic Acids Res **23**: 1604-1613

Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).
Nucleic Acids Res **21**: 4272-4280

An analysis of differential display shows a strong bias towards high copy number mRNAs.
Nucleic Acids Res **23**: 4520-4523

On the oncodevelopmental role of human imprinted genes.
Med Hypotheses **43**: 119-123

High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells.
Mol Cell Biol **18**: 4471-4487

Forms and functions of CD44.
IMMUNOL **93**: 139-148

Bustin M, Reeves R (1996)
High mobility group proteins.
Prog Nucleic Acids Res Mol Biol **54**: 35-100

Telomere elongation in immortal human cells without detectable telomerase activity.
EMBO J **14**: 4240-4248

Bladder Cancer, 639-645.
In: Vogelstein B, Kinzler KW (Hrsg): _The Genetic Basis of Human Cancer._
McGraw-Hill, New York St. Louis San Francisco
DNA hypomethylation leads to elevated mutation rates.
Nature **395**: 89-93

Essential role for oncogenic Ras in tumour maintenance.
Nature **400**: 468-472

Chomczynski P, Sacchi N (1987)
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal Biochem **162**: 156-159

Immunohistochemical staining with monoclonal antibody 32-2B to desmosomal glycoprotein 1.
Its role in the histological assessment of urothelial carcinomas.
Br J Urol **65**: 176-180

Blood group-related antigens in human urothelium: Enhanced expression of precursor, Le^x, and Le^y determinants in urothelial carcinoma.
Cancer Res **48**: 4113-4120

Darnell J, Lodish H, Baltimore D (1990)
Oncogenes and their proteins: Classification and characterization, 984-990.
Intermediate Repeat DNA and Mobile DNA Elements, S.369 ff.
In: *Molecular Cell Biology*.

Defilippi P, Tarone G (1997)
Activation of tyrosine kinases.
In: *Signal transduction by integrins*, S.29-46
Molecular Biology Intelligence Unit, Landes Bioscience, Austin, Texas, USA

Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries.
Proc Natl Acad Sci USA **93**: 6025-6030
Production of trophoblastic hormones by transitional cell carcinoma of the bladder: association to tumor stage and grade.
Hum Pathol **29**: 377-382

Fearon ER, Vogelstein BA (1990)
A genetic model for colorectal tumorigenesis.
Cell **61**: 759-767

Finch JL, Miller J, Aspinall JO, Cowled PA (1999)
Cloning of the human uroplakin 1B cDNA and analysis of its expression in urothelial-tumor cell lines and bladder-carcinoma tissue.
Int J Cancer **80**: 533-538

Freshney RI, Hg. (1986)
Animal cell culture: a practical approach.
IRL, Oxford

E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells.
J Cell Biol **113**: 173-185

Frequent association of p53 gene mutation in invasive bladder cancer.
Cancer Res **52**: 1393-1398

Reconstruction of the Urinary Bladder Mucosa in Three-Dimensional Collagen Gel Culture: Fibroblast-Extracellular Matrix Interactions on the Differentiation of Transitional Epithelial Cells
J Urol **153**: 2060-2067

Garnick MB, Brenner BM (1991)
Tumors of the urinary tract.
Harrison’s Principles of Internal Medicine
Receptor protein-tyrosine kinases and their signal transduction pathways.

Gent DC van, Hiom K, Paull TT, Gellert M (1997)
Stimulation of V(D)J cleavage by high mobility group proteins.
EMBO J **16**: 2665-2670

Detection of bladder tumors by immunostaining of the Lewis X antigen in cells from voided urine.
Urology **46**: 173-177

The mts1 gene and control of tumor metastasis.
Gene **135**: 229-38

Creation of human tumour cells with defined genetic elements.
Nature **400**: 464-468

Collision of transitional cell carcinoma and renal cell carcinoma. An immunohistochemical study and review of the literature.
Cancer **73**: 154-159

Hartwell LH, Kastan MB (1994)
Cell cycle control and cancer.
Science **266**: 1821-1828

Differential expression of human ferritin H chain gene in immortal human breast epithelial MCF-10Fcells.
Mol Carcinog **20**: 332-339

Hirohachi S (1998)
Inactivation of the E-cadherin-mediated cell adhesion system in human cancers.
Am J Pathol **153**: 333-339
Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991)
 p53 mutations in human cancers.
 Science 253: 49-53

 Correlation of expression of CD44 isoforms and E-cadherin with differentiation in human urothelial cell lines
 and transitional cell carcinomas.
 Cancer Lett 89: 81-87

Hubank M, Schatz DG (1994)
 Identifying differences in mRNA expression by representational difference analysis of cDNA.
 Nucl Acids Res 22: 5640-5648

Hughes EN, Engelsberg BN, Billings PC (1992)
 Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins
 1 and 2.
 J Biol Chem 267: 13520-13527

Iczkowski KA, Shanks JH, Bostwick DG (1998)
 Loss of CD44 variant 6 expression differentiates small cell carcinomas of urinary bladder from urothelial
 (transitional cell) carcinomas.
 Histopathology 32: 322-327

International Union Against Cancer (1992)
 Urological tumors.
 In Hermanek P, Sobin LH (Hrsg.)
 TNM Classification of Malignant Tumors.
 4. Aufl. Springer, Berlin

 High motility group protein-1 (HMG-1) is a unique activator of p53.
 Genes Develop 12: 462-472

 Significant telomere reduction in human superficial transitional cell carcinoma.
 Brit J Urology 78: 704-708
A cell cycle regulator potentially involved in genesis of many tumor types.
Science **264**: 436-440

Kane SA, Lippard SJ (1996)
Photoreactivity of platinum (II) in cisplatin-modified DNA affords specific cross-links to HMG domain proteins.
Biochemistry **45**: 2180-2187

Kaspar S (1998)

Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin.
Cancer Res **56**: 5330-5333

Khan J, Saal LH, Bittner ML, Chen Y, Trent JM, Meltzer PS (1999)
Expression profiling in cancer using cDNA microarrays.
Electrophoresis **20**: 223-229

Optimizing PCR.
In: *PCR 2, a practical approach.*
Oxford University Press, Oxford New York Athens

Specific association of human telomerase activity with immortal cells and cancer.
Science **266**: 2011-2015

King ED, Matteson J, Jacobs SC, Kyprianou N (1996)
Incidence of apoptosis, cell proliferation and bcl-2 expression in transitional cell carcinoma of the bladder: association with tumor progression.
J Urol **155**: 316-320
Knowles MA, Williamson M (1993)
Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing.
Cancer Res Jan **53**: 133-139

Connexin expression and intercellular communication in two- and three-dimensional in vitro cultures of human bladder carcinoma.
Am J Pathol **149**: 1321-1332

Kretzinger RH (1976)
Calcium-binding proteins.
Annu Rev Biochem **45**: 239-266

Tumoren, 180-246
In: Altwein, JE, Rübben H (Hrsg): *Urologie*
4. Aufl. Enke, Stuttgart

The role of DNA methylation in cancer genetics and epigenetics.
Annu Rev Genet **30**: 441-464

Landsman D, Bustin M (1993)
A signature for the HMG-1 Box DNA-binding proteins.
BioEssays **15**: 539-546

DNA methylation and genetic instability in colorectal cancer cells.
Proc Natl Acad Sci USA **94**: 2545-2550

Altered patterns of MDM2 and TP53 expression in human bladder cancer.
J Natl Cancer Inst **86**: 1325-1331

Liang P, Pardee AB (1992)
Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.
Science **257**: 967-971
Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction.
Differentiation **61**: 177-185

Precursor sequence, processing, and urothelium-specific expression of a major 15-kDa protein subunit of asymmetric unit membrane.
J Biol Chem **269**: 1775-1784

A tissue-specific promotor that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice.
Proc Natl Acad Sci USA **92**: 679-683

Microsatellite analysis and telomerase activity in archived tissue and urine samples of bladder cancer patients.
Int J Cancer **74**: 625-629

Reduced expression of E-cadherin is related to invasive disease and frequent recurrence in bladder cancer.
J Cancer Res Clin Oncol **121**: 303-308

Lisitsyn N, Lisitsyn N, Wigler M (1993)
Cloning the differences between two complex genomes.
Science **259**: 946-951

Uroplakin gene expression by normal and neoplastic human urothelium.

Lycke K und Larsen F (1995)
Deutsche Dynal GmbH, Hamburg

Control of invasive growth by the HGF receptor family.
J Cell Physiol **173**:183-186
Molecular detection of primary bladder cancer by microsatellite analysis.
Science **271**: 659-662

Tissue culture model of transitional cell carcinoma: Characterization of twenty-two human urothelial cell lines.
Cancer Res **46**: 3630-3636

Matuoka K, Shibata M, Yamakawa A, Takenawa T (1992)
Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries.
Proc Natl Acad Sci USA **89**: 9015-9019

Miettinen M (1995)
Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas.
Mod Pathol **8**: 384-388

Serum and urine ferritin in patients with transitional cell carcinoma of the bladder.
Arch Ital Urol Nefrol Androl **63**: 141-145

Prognostic significance of soluble Fas in the serum of patients with bladder cancer.
J Urol **160**: 571-576

High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma.
Am J Pathol **154**: 981-986

Moll R (1993)
Cytokeratine des Urothels und seiner Karzinome.
In: *Cytokeratine als Differenzierungs marker: Expressionsprofile von Epithelien und epithelialen Tumoren*.
Veröffentlichungen aus der Pathologie/Progress in Pathology **142**: 62-71

Moll R (1994)
Cytokeratins in the histological diagnosis of malignant tumors.
Int J Biol Markers **9**: 63-69
Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas.
Am J Pathol **147**: 1383-1397

Primary pulmonary hypertension: immunogenetic response to high mobility group (HMG) proteins and histone.
Clin Exp Immunol **106**: 389-395

Expression of CD44V2 in Transitional Cell Carcinoma of the Urinary Bladder and in Urine.
Urol Res **25**: 187-192

Mullis KB, Faloona FA (1987)
Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.
Methods Enzymol **155**:335-350

Induction and evasion of host defenses by type 1-piliated uropathogenic *Escherichia coli*.
Science **282**: 1494-1497

Transmembrane control of cadherin-mediated cell-cell adhesion.
Semin Cell Biol **4**: 175-181

The application of microsatellites in molecular pathology.
Pathol Oncol Res **4**: 310-315

Expression of E-cadherin, a-catenin, b-catenin and plakoglobin in esophageal carcinomas and its prognostic significance.
Oncology **54**: 158-165

Epithelial differentiation antigens and epidermal growth factor receptors in transitional cell bladder carcinoma: correlation with prognosis.
Urol Int **54**: 191-197

116
Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction.
Proc Natl Acad Sci USA 87: 7160-7164

E-cadherin gene mutations in human gastric carcinoma cell lines.
Proc Natl Acad Sci USA 91: 1858-1862

Ogawa K, Sun TT, Cohen SM (1996)
Analysis of differentiation-associated proteins in rat bladder carcinogenesis.
Carcinogenesis 17: 961-965

The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences.
Mol Cell Biol 14: 3376-3391

Molecular alterations in bladder cancer.
Urol Res 26: 223-233

Human chorionic gonadotropin beta-subunit synthesis by undifferentiated urothelial carcinoma with syncytiotrophoblastic differentiation.
Arch Pathol Lab Med 118: 715-717

Secretion and binding of HMG1 protein to the external surface of the membrane are required for murine erythroleukemia cell differentiation.
FEBS Letters 400: 275-279

Molecular genetic alterations in superficial and locally advanced human bladder cancer.
Cancer Res 51: 5405-5409

A Point Mutation is Responsible For the Aquisition of Transforming Properties By the T24 Human Bladder Carcinoma Oncogene.
Nature 300: 149-152
Robert Koch-Institut (1998)
http://www.rki.de/CHRON/KREBS/DACHDOK/ERGEBNIS/GESAMT95.HTM

Urinary and tissue levels of scatter factor in transitional cell carcinoma of bladder.
J Urol 157: 72-78

Rübben H, Otto T (1997)
Hamblasenkarzinom.
In: Rübben H (Hrsg)
Uroonkologie.
Springer, Berlin Heidelberg New York

Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.
Science 239: 487-491

Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle
cell anemia.
Science 230: 1350-1354

Cold Spring Harbor Laboratory, Cold Spring Harbor

Sandberg AA (1986)
Chromosome changes in bladder cancer: Clinical and other correlations.
Cancer Genet Cytogenet 19: 163-175

Sandberg AA (1990)
The Chromosomes in Human Cancer and Leukemia.

Sandberg AA, Berger CS (1994)
Review of chromosome studies in urological tumors. II. Cytogenetics and molecular genetics of bladder cancer.
J Urol 151: 545-560
V(D)J recombination: Modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extracts and DNA-bending proteins.

c-myc in Bladder Cancer. Clinical Findings and Analysis of Mechanism
Urol Res **25** Suppl 1: S45-S49

Serrano M, Hannon GJ, Beach D (1993)
A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.
Nature **366**: 704-707

Enhanced bladder cancer detection with the Lewis X antigen as a marker of neoplastic transformation.
J Urol **143**: 285-288

Sidransky D (1997)
Nucleic acid-based methods for the detection of cancer.
Science **278**: 1054-1059

Identification of p53 gene mutations in bladder cancer and urine samples.
Science **252**: 706-709

Clonal origin of bladder cancer.

Ectopic human chorionic gonadotrophin (HCG) production: is the detection by serum analysis of HCG of clinical relevance in transitional cell carcinoma of the bladder?
Br J Urol **73**: 409-412
Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment.

J Urol **156**: 363-367

Southgate J, Hutton KAR, Thomas DFM, Trejdosiewicz LK (1994)
Normal human urothelial cells in vitro: proliferation and induction of stratification.

Lab Invest **71**: 583-594

J Urol **160**: 645-659

SteinbergMS, Futy RA (1997)
Intercellular Adhesions as determinants of tissue assembly and malignant invasion.

J Cell Physiol **173**: 135-139

Steiner G, Schoenberg MP, Linn JF, Mao L, Sidransky D (1997)
Detection of bladder cancer recurrence by microsatellite analysis of urine.

Nat Med **3**: 621-624

Strausberg R (1997)

National Cancer Institute, Cancer Genome Anatomy Project (CGAP), Tumor Gene Index Accession:

c-srbB-2 (HER-2/neu) oncoprotein immunoreactivity in localized, high-grade transitional cell carcinoma of the bladder.

Modern Pathol **5**: 531-536

Signaling through CD44 is mediated by tyrosine kinases.

J Biol Chem **271**: 2863-2867
Metanestrin, a glycoprotein with metastasis-associated expression in transitional cell carcinoma of the urinary bladder.
Int J Cancer **74**: 7-14

Clinical significance of urine ferritin determination in urologic malignancies.
Chin Med J **102**: 356-360

Tatu CA, Orem WH, Finkelman RB, Feder GL (1998)
The etiology of Balkan endemic nephropathy: still more questions than answers.
Environ Health Perspect **106**: 689-700

Tremethick DJ, Molloy PL (1986)
High mobility group proteins 1 and 2 stimulate transcription *in vitro* by RNA polymerase II and III.
J Biol Chem **261**: 6986-6992

Turchi JJ, Li M, Henkels KM (1996)
Cisplatin-DNA binding specificity of calf high-mobility group 1 protein.
Biochemistry **35**: 2992-3000

High-mobility group (HMG) protein and TATA-binding protein-associated factor TAF (II)30 affect estrogen receptor-mediated transcriptional activation.
Mol Endocrinol **11**: 1009-1019

Differential expression of ferritin heavy chain in a rat transitional cell carcinoma progression model.
Biochim Biophys Acta **1360**: 39-44

The Genetic Basis of Human Cancer.
McGraw-Hill, New York St. Louis San Francisco

Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa.
Int J Cancer **74**: 1-6
Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins.
J Biol Chem **18**: 13716-13724

Wu XR, Sun TT (1993)
Molecular cloning of a 47 kDa tissue-specific and differentiation-dependent urothelial cell surface glycoprotein.
J Cell Sci **106**: 31-43

Wu XR, Sun TT, Medina JJ (1996)
In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections.
Proc Natl Acad Sci U S A **93**: 9630-9635

Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes.
Nucleic Acids Res **27**: 1517-1523

Telomerase activity in bladder carcinoma and its implication for noninvasive diagnosis by detection of exfoliated cancer cells in urine.
Cancer **79**: 362-369

Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins.
J Cell Biol **125**: 171-182

Expression of uroplakin Ib and uroplakin III genes in tissues and peripheral blood of patients with transitional cell carcinoma.
Jpn J Cancer Res **89**: 879-882

HMG-1 interacts with HOX-proteins and enhances their DNA binding and transcriptional activation.
EMBO J **15**: 4981-4991

Linker Histones versus HMG1/2: a struggle for dominance?
Bioessays **20**: 584-588
Proteins that specifically recognize cisplatin-damaged DNA: a clue to anticancer activity of cisplatin.
FASEB J 12: 791-799

High mobility group protein 2 functionally interacts with the POU domains of octomer transcription factors.
EMBO J 14: 1198-1208

Eigene Veröffentlichung zum Thema

Uroplakin RT-PCR: specific and sensitive detection of bladder cells.
Br J Urol 80 (Suppl. 2): 24
DANKSAGUNG

Dem Chef der Klinik für Urologie und Kinderurologie am Klinikum der Johann Wolfgang Goethe-Universität in Frankfurt am Main, Herrn Prof. Dr. med. Jonas danke ich für die Bereitstellung des urologischen Forschungslabors für die Durchführung meiner Forschungsarbeit.

Herrn PD Dr. med. H Schuldes, Oberarzt der Klinik für Urologie und Kinderurologie am Universitätsklinikum in Frankfurt am Main, danke ich für die freundliche Unterstützung meiner Arbeit.

Dem Medizinstudenten und Doktoranden im urologischen Forschungslabor, Herrn Stephan Kaspar, sei für die weiterführende Anwendung der von mir entwickelten Uroplakin RT-PCR und für seinen unermüdlichen Einsatz beim Sammeln von Gewebeproben und pathologischen Befunden herzlichst gedankt.

Den technischen Assistentinnen der chirurgischen Labors, Frau E. Oppermann, Frau K. Willems und Frau R. Schröder sei freundlichst für die logistische Unterstützung gedankt.

Den Molekularbiologen Frank Wempe, Irmgard Thorey und der Technischen Assistentin aus der Forschergruppe „Molekulare Hämatologie“ am Universitätsklinikum in Frankfurt am Main, sei herzlich für die freundliche Unterstützung bei den Sequenzierungen auf dem ABI PRISM Sequencer gedankt.

Den Chirurgen und Pflegern aus dem OP möchte ich dafür danken, daß sie daran gedacht haben, frisch entnommene Organe, Gewebe und Blutproben für das Forschungslabor zu reservieren, noch bevor alles routinemäßig in Formalin fixiert und in die Pathologie geschickt wurde.

Dem Pathologen Dr. Berger danke ich für seine Hilfe bei den Entnahmen von Gewebeproben aus Organen, die für die Pathologie bestimmt waren.