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ABSTRACT 
 
This study is based on a qualitative investigation framed within an interpretive 

paradigm, and aims to investigate the extent to which question design affects the 

solution strategies adopted by children when solving linear number pattern 

generalisation tasks presented in pictorial and numeric contexts.   
 
The research tool comprised a series of 22 pencil and paper exercises based on 

linear generalisation tasks set in both numeric and 2-dimensional pictorial contexts.  

The responses to these linear generalisation questions were classified by means of 

stage descriptors as well as stage modifiers.  The method or strategy adopted was 

carefully analysed and classified into one of seven categories. 

 

A meta-analysis focused on the formula derived for the nth term in conjunction with 

its justification.  The process of justification proved to be a critical factor in being 

able to accurately interpret the origin of the sub-structure evident in many of these 

responses.  From a theoretical perspective, the central role of justification/proof 

within the context of this study is seen as communication of mathematical 

understanding, and the process of justification/proof proved to be highly successful 

in providing a window of understanding into each pupil’s cognitive reasoning. 

 
The results of this study strongly support the notion that question design can play a 

critical role in influencing pupils’ choice of strategy and level of attainment when 

solving pattern generalisation tasks.  Furthermore, this study identified a diverse 

range of visually motivated strategies and mechanisms of visualisation.  An 

awareness and appreciation for such a diversity of visualisation strategies, as well 

as an understanding of the importance of appropriate question design, has direct 

pedagogical application within the context of the mathematics classroom.   
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CHAPTER ONE 
 

INTRODUCTION 
 

 

1.1 MATHEMATICS AND PATTERN 
 

Patterns are the very essence of mathematics, the language in 
which it is expressed. 

(Sandefur and Camp, 2004:211)  
 

Mathematicians have always been fascinated by the art and science of patterns 

(Joseph, 2000).  In a parallel with the visual arts, to meaningfully engage with a 

pattern requires a necessary discernment of the principle on which its elements are 

ordered.  Pattern itself does not lie in the individual elements, but rather the rule 

which governs their mutual relationship (Taylor, 1964:69-70).  From relatively 

humble beginnings, the exploration of patterns, both numeric and pictorial, soon 

gave rise to an extensive and elaborate mathematical treatment of pattern. 

 

The connection between mathematics and the notion of pattern is prevalent at all 

levels of mathematical endeavour.  Goldin (2002:197) describes mathematics as 

“the systematic description and study of pattern.”  Perhaps more generalised and 

all-encompassing, Steen (1988:616) defines mathematics as “the science of 

patterns.”  Pattern, in a broad sense of the word, is by no means restricted to 

numeric or pictorial patterns, although this is the usual context of the word for most 

school mathematics syllabi.  “The mathematician seeks patterns in number, in 

space, in science, in computers, and in imagination” (Steen, 1988:616). 

 

 

1.2 NUMBER PATTERNS IN THE CLASSROOM 
 

Working with number patterns or number sequences in the classroom offers 

valuable opportunities for recognizing, describing, extending and creating patterns 

(Hargreaves, Threlfall, Frobisher and Shorrocks-Taylor, 1999:67).  It has been 

suggested that these processes have considerable value as a precursor to formal 
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algebra (English and Warren, 1998).  Searching for patterns is also an important 

strategy for mathematical problem solving (Stacey, 1989:147).  Furthermore, in 

their seminal paper on an organising principle for mathematics curricula, Cuoco, 

Goldenberg and Mark (1996) identify the search for pattern as a critical habit of 

mind.   

 

The study of pattern has become an integral component across all Grades of the 

South African school Mathematics curriculum (Department of Education, 2002; 

Department of Education, 2003b).  In the Intermediate Phase (Grades 4-6) the 

importance of number pattern activities is in “laying the foundation for the study of 

formal algebra in the Senior Phase while at the same time developing important 

mathematical thinking skills” (Department of Education, 2003a:37).  Number 

pattern activities in the Senior Phase (Grades 7-9) are essentially an extension of 

the Intermediate Phase.  However, in Grades 8 and 9 there is an expectation that 

learners “use algebra and algebraic processes in their description of these 

patterns” (Department of Education, 2003a:39). 

 

South African schools began the phasing in of a revised Mathematics curriculum in 

the Further Education and Training (FET) band (Grades 10-12) in January 2006.  

The four general Learning Outcomes (LO) for Mathematics in the FET band, as 

outlined in the National Curriculum Statement (NCS) (Department of Education, 

2003b:12-14), are: 

• LO 1 - Number and Number Relationships 

• LO 2 - Functions and Algebra 

• LO 3 - Space, Shape and Measurement 

• LO 4 - Data Handling and Probability 

 

As part of LO 1, learners will “solve problems related to arithmetic, geometric and 

other sequences and series” as well as “explore real-life and purely mathematical 

number patterns and problems which develop the ability to generalise, justify and 

prove” (Department of Education, 2003b:12).  There are a variety of different 

number patterns (more formally understood as sequences or progressions) which 

fall under the above framework, amongst others: linear or arithmetic sequences, 

quadratic sequences, power sequences, geometric sequences, and Fibonacci-type 

sequences (Jacobs, 1970:42-82). 



 3

Hargreaves et al. (1999) outline a number of basic processes that may be involved 

in working with number patterns – these include searching for patterns in a 

sequence; recognising the existence of a pattern within a sequence; describing 

sequences orally and in a written form; continuing a sequence; predicting terms in 

a sequence; testing a rule for a sequence and generalising a rule in words and/or 

algebraic symbols.  The basic processes as outlined by Hargreaves et al. (1999) 

can all be accomplished numerically – i.e. in terms of patterns presented as a 

sequence of numerical symbols.  However, implicit in the requirement that learners 

be able to “provide explanations and justifications and attempt to prove 

conjectures” (Department of Education, 2003b:18) is the necessity that at least 

some of the pattern questions be set in non-numeric or pictorial contexts.  This 

would appear to be the interpretation of the NCS adopted by textbook developers – 

see for example de Waal, McAlister, Müller, Wallace and Williams (2005), 

Pretorius, Potgieter and Ladewig (2005) and Goba and van der Lith (2005).    

 

There are numerous pictorial and practical contexts in which pattern questions can 

be set, among the most obvious being dot patterns, tiling patterns, matchstick 

patterns as well as two- and three-dimensional building block patterns.  Such 

pattern tasks usually require some form of generalisation of the pattern, usually in 

terms of algebraic symbols.  It can be argued that setting pattern questions within a 

pictorial context should allow for greater scope in terms of learner solution 

strategies, since a pictorial representation can readily be reduced to a purely 

numeric equivalent provided the pictorial context has been meaningfully 

understood1.  However, although pattern problems presented in a pictorial and/or 

practical context have the potential to widen the scope of solution strategies for 

some learners, it can be argued that for others this may well create additional 

complications. 

 

 

1.3 GOALS & OBJECTIVES 
 

The emphasis of the NCS on investigation as a pedagogical approach to number 

pattern generalisation tasks, as well as its requirement that learners be able to 

                                                 
1 I use the expression “meaningfully understood” to imply a sufficient understanding of the underlying structure 
of the pictorial context to allow a learner to both continue the pattern and provide a generalising rule for the 
pattern, either in words or algebraic symbols. 
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investigate number patterns and hence “make conjectures and generalisations” as 

well as “provide explanations and justifications and attempt to prove conjectures” 

(Department of Education, 2003b:18), has important pedagogical implications for 

classroom practitioners.  An understanding of how question design of such pattern 

generalisation tasks is likely to influence the approach adopted by children would 

greatly assist teachers in terms of their choice of such activities. 

 

Under what circumstances and conditions different contexts 
simplify or complicate this approach to generalization through 
pattern tasks is an important and still largely unresolved question.  
Teachers would be greatly assisted by knowing much more about 
when and how to use particular kinds of pattern tasks and, if 
possible, with whom. 

(Orton, Orton and Roper, 1999:121) 
  

It is within the context of the above statement that the present investigation finds 

both impetus and import. 

 

Thus, in broad terms, this study aims to qualitatively investigate the solution 

strategies adopted by children in number pattern generalisation tasks presented in 

pictorial and numeric contexts.  The fundamental research question is:  In number 

pattern generalisation tasks, to what extent does question design, in both pictorial 

and numeric contexts, affect the solution strategies adopted by learners? 

 

 

1.4 THEORETICAL FRAMEWORK 
 

While embracing the basic tenets of constructivism, central to this study is the 

fundamental notion that constructivism is a descriptive as opposed to prescriptive 

philosophy (Towers and Davis, 2002:314).  Built onto this philosophy is the firm 

belief in the use of both language and notation systems/representations as 

important mediators in the process of construction – both in terms of their 

contribution to the organisation of the thinking process itself, as well as the cyclical 

nature of reflection (Kaput, 1991). 

 

The role of visualisation is also central to the present study, and it is acknowledged 

that while generalisation problems presented in a pictorial or practical context have 
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the potential to widen the scope of solution strategies for some pupils, for others 

this may well create additional complications (Orton et al., 1999).   

 

The notions of generalisation, justification and proof are intricately interwoven.  

Generalisation, by its very nature, can not be separated from justification/proof, 

and justification is seen as a critical component of the generalisation process.  The 

types of generalisation activities included in this study purposefully include those 

presented in pictorial contexts, thus allowing for a possible connection to a 

referential context that has the potential to aid and enhance the generalisation 

process.  The central role of proof within the context of this study is seen as 

communication of mathematical understanding, and students’ justifications of their 

generalisations are seen to provide “…a window to view their understanding of the 

general nature of their rules” (Lannin, 2005:251). 

 

 

1.5 METHODOLOGY 
 

This study is based on a qualitative investigation framed within an interpretive 

paradigm.  The essential character underpinning the data analysis is the treatment 

of all responses, particularly those that are unexpected or idiosyncratic, with a 

genuine interest in understanding their character and origins – a firm conviction 

that “the constructions of others … have integrity and sensibility within another’s 

framework” (Confrey, 1990:108). 

 

The present study attempts to interrogate pupils’ responses to various linear 

generalisation tasks from both a technical as well as strategic viewpoint.    A case 

study methodological strategy was adopted and an appropriate group of research 

participants was identified - the members of a mixed gender, high ability Grade 9 

class of 24 learners at an independent school in Grahamstown. 

 

Over a period of 3 months, the 24 research participants each completed a series of 

22 pencil and paper exercises based on linear generalisation tasks set in both 

numeric and 2-dimensional pictorial contexts.  For each pattern, participants were 

required to provide numerical values for the next, 10th and 50th terms as well as a 

written articulation of their reasoning at each stage.  Participants were also asked 
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to provide an algebraic expression for the nth term as well as to justify their 

expression.  In addition to written responses, individual participants were informally 

interviewed where the written articulation of their mental reasoning was either 

ambiguous or required illumination by oral explication. 

 

The responses to the various linear generalisation questions were classified by 

means of stage descriptors as well as stage modifiers.  The method or strategy 

adopted for determining each of the next, 10th and 50th terms was carefully 

analysed and classified into one of seven categories.  In addition, a separate 

framework was used to characterise each pupil’s justification of the nth term in 

terms of the extent to which the justification was linked to the pictorial context.  A 

meta-analysis of the generalisation/justification process was also undertaken.  The 

stage descriptors and modifiers together with the adopted solution strategies and 

justification characterisation were used to create a rich profile for each research 

participant as well as for each individual pattern generalisation task. 

 

 

1.6 SIGNIFICANCE 
 

The results of the present study give strong support to the notion that question 

design can play a key role in influencing which strategies are adopted by pupils 

when solving pattern generalisation tasks, in both pictorial and purely numeric 

contexts.  This observation is central to the theme of this study, and the notion that 

different contexts (numeric vs. pictorial) will resonate differently with different 

pupils.  In addition, the process of justification/proof proved to be highly successful 

in providing a window of understanding into each pupil’s general formula.  

Furthermore, this study identifies a diverse range of visually motivated strategies 

and mechanisms of visualisation.  An awareness and appreciation for such a 

diversity of visualisation strategies, as well as an understanding of the importance 

of appropriate question design, has direct pedagogical application within the 

context of the mathematics classroom.   
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1.7 THESIS OVERVIEW 
 

Chapter 2 – Literature Review 
A review of past and current research focusing on number pattern generalisation 

tasks was undertaken in order to inform the present investigation.  Key issues 

arising from the literature review are highlighted and discussed in this chapter. 

 

Chapter 3 – Theoretical Framework 
This chapter seeks to establish a theoretical framework for the epistemological 

assumptions that will inform and guide the research process.  There are three key 

elements to this contextual backdrop: constructivism; visualisation; and the 

interwoven nature of generalisation, justification and proof. 

 

Chapter 4 - Methodology 
Further theoretical elements pertaining to more practical methodological issues are 

interrogated in this chapter.  The choice of methodology and methodological 

strategies are justified within the context of the adopted theoretical framework. 

 

Chapter 5 – Results, Analysis & Discussion 
The results of this study are presented firstly to provide a global overview.  A more 

in-depth analysis then investigates the influence of question design on various 

parameters.  In addition, a meta-analysis of individual responses highlights the 

diversity of identified mechanisms of visualisation as well as a number of 

anomalies and idiosyncrasies.  Finally, a comparison of two different cognitive 

styles is undertaken. 

 

Chapter 6 – Findings & Conclusion 
The final chapter consolidates the findings of this study within the context of the 

original research question, and with reference to the adopted theoretical framework 

and methodological choices.  In addition, both the limitations and significance of 

the study are interrogated, and some recommendations for further research are 

suggested. 
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CHAPTER TWO 
 

LITERATURE REVIEW 
 

 

2.1 INTRODUCTION 
 

A review of past and current research focusing on number pattern generalisation 

tasks was undertaken in order to inform the present investigation.  Pattern as an 

approach to algebra has fallen under the spotlight for many years (Pegg and 

Redden, 1990b; English and Warren, 1998; Orton and Orton, 1999; Zazkis and 

Liljedahl, 2002).  Much research has also focused on children’s strategies when 

solving number pattern generalisation tasks (Stacey, 1989; Orton, 1997; 

Hargreaves, Shorrocks-Taylor and Threlfall, 1998; Orton and Orton, 1999).  Issues 

relating to visualisation (Nixon, 2002), visual reasoning (Hershkowitz, Arcavi and 

Bruckheimer, 2001), the connection of the visual with the symbolic (Noss, Healy 

and Hoyles, 1997; Healy and Hoyles, 1999) and the influence of computerised 

environments (Hershkowitz et al., 2002) have all found voice within the context of 

pattern generalisation.  In addition, a large volume of research emanates from the 

Pattern in Mathematics Research Group, set up in 1992 at the University of Leeds.  

Of particular interest to the present investigation are the research findings of 

Hargreaves et al. (1999) who investigated children’s strategies with linear and 

quadratic sequences; Orton et al. (1999) who were concerned with the perception 

of pattern within pictorial and practical contexts; and Waring, Orton and Roper 

(1999) who focused on the notions of proof and justification within the context of 

pattern.   

 

Recent research focusing on number pattern generalisation tasks would thus seem 

to encompass a broad range of topics.  Key issues arising from the literature 

review are highlighted and discussed in this chapter. 
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2.2 TYPES OF NUMBER SEQUENCES 
 

2.2.1 LINEAR OR ARITHMETIC SEQUENCES 
 

In linear or arithmetic sequences, each term can be obtained by adding (or 

subtracting) a constant value to the preceding term in the sequence.  Linear 

sequences can in general be written in the form cax ±  where a  and c  are constant 

values, and x  is a variable representing the position of the term in the sequence. 

 

Since the difference between any two successive terms is constant, arithmetic 

sequences can be defined formally as sequences in which the difference between 

any two successive terms is a constant value (Laridon et al., 1996).  Using formal 

nomenclature, for an arithmetic sequence with first term a  and common difference 

d , the general term (or thn  term) is given by dnaTn )1( −+= . 

 

By way of example, consider the arithmetic sequence 2 ; 6 ; 10 ; 14 ; …  Since the 

first term is 2 and the common difference is 4, the general term can be expressed 

as 4)1(2 −+= nTn , which in turn can be simplified to 24 −= nTn , where n  

represents the position of the term in the sequence. 

 

 

2.2.2 QUADRATIC SEQUENCES 
 

Quadratic sequences can in general be written in the form cbnan ±±2  where a , b  

and c  are constant values, and n  is a variable representing the position of the 

term.  In a quadratic sequence, the difference between successive terms is not 

constant.  However, the difference between the differences (i.e. the second 

difference) is a constant value.     
 

By way of example, consider the quadratic sequence 3 ; 5 ; 11 ; 21 ; 35 ; …   
 

 Term position:  1         2        3         4         5 

Term value:   3         5       11       21       35 

First difference:        2        6       10        14 

Second difference:             4        4         4 
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Since the general formula is of the form cbnanTn ±±= 2 , one can readily solve for 

a , b  and c  by substituting three different points e.g. (1;3) , (2;5) & (3;11) and 

solving simultaneously.  The general formula thus works out to be 542 2 +− nn , 

where n  represents the position of the term in the sequence. 

 
 
2.2.3 POWER SEQUENCES 
 

In power sequences, each term is found by raising a counting number to a specific 

power, e.g. the sequence of squares or cubes.  The sequence of squares, 1 ; 4 ; 9 

; 16 ; 25 ; 36 ; 49 ; …, can be written in the form ;7;6;5;4;3;2;1 2222222  …  

Likewise, the sequence of cubes, 1 ; 8 ; 27 ; 64 ; 125 ; …, can be written in the 

form ;5;4;3;2;1 33333  …  Higher power sequences are also possible.   

  

Power sequences are readily recognisable, and their general formulae are of the 

form k
n nT =  (e.g. 2nTn =  or 3nTn = ) where k  is a constant and n  represents the 

position of the term in the sequence. 
 

 

2.2.4 GEOMETRIC SEQUENCES 
 

In geometric sequences, each term in the sequence can be obtained by multiplying 

the preceding term by a constant value, formally known as the common ratio.   

 

Since the ratio of any two successive terms is a constant value, geometric 

sequences can be defined formally as sequences in which the ratio r  of any two 

successive terms is a constant (Laridon et al., 1996).  Using formal nomenclature, 

for a geometric sequence with first term a  and common ratio r , where 
n

n

T
T

r 1+= , 

the general term (or thn  term) is given by 1−= n
n arT . 

 

By way of example, consider the geometric sequence 3 ; 6 ; 12 ; 24 ; …  Since the 

first term is 3 and the common ratio is 2, the general term can be expressed as 
1)2(3 −= n

nT , where n  represents the position of the term in the sequence. 
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2.2.5 FIBONACCI-TYPE SEQUENCES 
 

The Fibonacci sequence (Higgins, 1998:180-199; Livio, 2002:92-123), so dubbed 

by the French Mathematician Edouard Lucas in the nineteenth century, is one of 

the most well known recursive sequences.  Fibonacci-type sequences, also known 

as recursive sequences, are characterised by each term being the sum of the two 

terms immediately preceding it ( )21 −− += nnn TTT .  Possibly the most famous 

sequence of this type is the Fibonacci sequence itself: 1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 

…  In order to calculate the 50th term (for example) of a recursive sequence, one 

would first have to determine each preceding term by means of an iterative or 

recursive approach.  Such a procedure, while manually rather time-consuming, is 

well suited to solution by computer.   

 

 

2.3 PICTORIAL AND PRACTICAL CONTEXTS 
 

There are numerous pictorial and practical contexts in which pattern questions can 

be set (Mason, Graham, Pimm and Gowar, 1985; Orton, Orton et al., 1999), 

among the most obvious being dot patterns (Kenney, Zawojewski and Silver, 

1998), tiling patterns (Lannin, 2004), matchstick patterns (Orton, 1997; English and 

Warren, 1998; Pegg and Redden, 1990a) as well as two- and three-dimensional 

building block patterns (Miller, 1991; Nolder, 1991; Abbott, 1992; Pagni, 1992; 

Lannin, 2003).  Polygonal or figurate numbers (e.g. triangular, square, pentagonal 

and hexagonal numbers) also make use of simple visual patterns to portray 

numbers (Crookes, 1988; Andrews, 1990; Miller, 1990; Malloy, 1997).    

 

Figure 2.1 shows a typical pictorial representation of a number pattern.  This 

particular example shows the first three terms of the linear sequence 4 ; 7 ; 10 ; … 

with general term 13 += nTn .  Typical questions would require pupils to determine, 

for example, the next, 10th, 20th and 100th terms, as well as an expression (either 

verbal or symbolic) for the nth term and a possible justification for their general 

formula. 
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        Figure 2.1  Typical pictorial context for a number pattern 

 

Far from simply being a visual representation of a numeric pattern, number 

sequences presented in a pictorial/practical context allow for a potentially deeper 

appreciation of the underlying structure of the pattern, as the pictorial/practical 

context allows for both a greater depth and scope of interpretation.  Furthermore, 

provided the pictorial context has been meaningfully understood, number patterns 

presented pictorially are inherently less ambiguous than purely numeric sequences 

(see discussion of Figure 2.2 and Figure 2.3).  Indeed, Clausen (1992) asserts that 

working directly from a practical or pictorial context is often preferable to an 

algebraic treatment derived from purely numerical patterns.  The use of a pictorial 

context is also deemed “safer” as it limits the chance that “irrelevant number 

patterns will mislead one into assuming the truth of an invalid generalization” 

(Clausen, 1992:18)2. 

 

By way of explication, it is worth noting that for a finite sequence of numbers there 

is an infinite number of functions that could generate the sequence.  This is 

equivalent to plotting a finite number of points in the Cartesian Plane where there 

would obviously be an infinity of curves that could be drawn through the given 

points (Samson, 2006:8).  Thus, no finite sequence of numerical terms uniquely 

generates the next term in the sequence.  It is perhaps also worth noting that 

mathematicians have studied more than 150 sequences starting 1 ; 2 ; 4 ; …  More 

specifically, they have studied more than 30 sequences starting 1 ; 2 ; 4 ; 8 ; … 

and at least 9 which start 1 ; 2 ; 4 ; 8 ; 16 ; … (Wells, 1987:3). 

 

Thus, when presented with the numerical sequence 2 ; 6 ; 12 ; … (for example), 

one needs to be cognizant of the fact that there are an infinite number of ways to 

continue the sequence, and for each of these numerical patterns would be a 
                                                 
2 See de Jager (1999) and Clausen (1992) for two different treatments of a classic scenario which calls for 
both circumspection and caution when searching for patterns – the old-established problem of the number of 
regions created by joining n  points on the circumference of a circle such that there is no point of intersection 
inside the circle with more than two lines passing through it. 

Stage 3Stage 1 Stage 2
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corresponding general formula, complex or otherwise.  However, should the same 

numerical sequence be accompanied by a pictorial representation, the underlying 

structure of the pattern should become immediately apparent.  By way of example, 

consider the following two pictorial patterns: 
 

 

 

 

 

 

 
 

Figure 2.2  Herring-bone pattern        Figure 2.3  Growing Z-shapes 
 

 

For both patterns the first three terms are numerically equivalent, viz. 2 ; 6 ; 12.  

However, the underlying structure inherent in the pictorial representation of each of 

the two numerical sequences points to two very different general terms.  

Continuing the so-called herring-bone pattern leads to the sequence 2 ; 6 ; 12 ; 20 ; 

30 ; 42 ; …, while continuing the growing pattern of Z-shapes leads to the 

sequence 2 ; 6 ; 12 ; 22 ; 40 ; 74 ; ….  Careful analysis of the pictorial context 

allows one to arrive at the general formulae )1( += nnTn  and )1(22 −+= nT n
n  

respectively. 

 

Mathematics education journals abound with number pattern activities and 

investigations making use of pictorial contexts (Van de Walle and Holbrook, 1986; 

French, 1990; Onions, 1991; Pagni, 1992; Malloy, 1997; Szetela, 1999; de Mestre, 

2001; Lannin, 2004; Farmer and Neumann, 2004; Quinn, 2005).  In essence, the 

use of a pictorial context aims to exploit the visual decoding of the pictorial 

sequence to give meaning to the symbolic expressions constructed. 

 

Pictorial tasks are often considered to be more elementary than purely symbolic 

tasks.  Orton et al. (1999) comment that this view may be supported by considering 

Bruner’s three stage theory of learning – from the enactive (practical) to the iconic 

(pictorial) to the symbolic (Baumann, Bloomfield and Roughton, 1997).  An 

alternative view within the context of patterning activities is that a sequence or 

table of numbers should be sufficiently concrete for pupils old enough to be 
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introduced to algebra, and a pictorial context may simply obfuscate and create 

additional complications (Orton et al., 1999). 

 

Andrews (1990:13) comments that it is “preferable to offer pupils a situation which 

can be generalised with reference to the situation itself”. This notion is supported 

by Hershkowitz et al. (2002) who observed that presenting sequences in a pictorial 

context tends to encourage generalisation expressed in terms of the independent 

variable (as opposed to a recursive method), particularly if the pictorial terms are 

non-consecutive.  They comment that as a reflection of the counting method 

employed to determine specific terms in the sequence, the use of a pictorial 

context seems to give strong meaning to the general formula.  However, in a study 

by English and Warren (1998), students found it easier to generalise, both verbally 

and symbolically, when patterns were presented in tabular form as opposed to 

pictorial form.  Of particular interest here is the fact that the tables included both 

the position of the term (the independent variable) and the term itself (the 

dependent variable), while it would seem that the pictorial contexts only made 

mention of the stage number (equivalent to the position of the term).  Two central 

issues thus emerge, the importance of task design/presentation, and the notion 

that different contexts (numeric, tabular, pictorial) will resonate differently with 

different pupils. 

 

Based on their studies, Orton et al. (1999) caution that placing a pattern in a 

pictorial context must not automatically be assumed to be helpful.  In addition, 

some contexts are more difficult than others and the perceived relationship 

between pattern and context may also be problematic.  Furthermore, English and 

Warren (1998) comment that one of the potential limitations of using pictorial 

patterning contexts as an approach to algebra is that only positive integer values 

can be assigned to the variable.  They advocate the use of tables of data (where 

the variable can take on any real value) in conjunction with pictorial contexts to 

impart the idea of a variable being a generalised number.  

 

As an aside, Burke and Orton (1999) have also commented that the spatial 

arrangement of numbers and number sequences are likely to assist the 

identification and analysis of pattern in certain situations.  In this sense, a pictorial 
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equals

Plus

 

context could be interpreted as being nothing more than a spatial arrangement of 

the individual numerical terms of the pattern. 

 

 

2.4 PATTERNING STRATEGIES 
 

Hargreaves et al. (1998, 1999) investigated the strategies used by children aged 

between 7 and 11 years when asked to provide a verbal generalisation (in natural 

language) for simple sequences of numerical terms (linear, quadratic and 

Fibonacci-type sequences).  Strategies utilised were: looking for differences (i.e. 

the numerical difference between consecutive terms); looking at the nature of the 

differences (usually in terms of odd and even); looking for differences between 

differences (see Section 2.2.2); looking at the nature of the numbers (usually in 

terms of odd and even); looking for multiplication tables; combining terms to make 

other terms.   

 

Healy and Hoyles (1999) devised a classification system of strategies (construction 

approaches) that purposefully distinguished between iconic (visual) approaches 

and symbolic strategies.  This classification system was used to investigate the 

connections pupils made between visual and symbolic reasoning while 

generalising number patterns.  The classification system is shown in Table 2.1 

which highlights the mathematical equivalence of the symbolic and iconic 

approaches. 

 
Table 2.1  Classification of construction approaches 

Symbolic approach Iconic approach 

Counting 
Counting individual items in an unstructured 
way 

Eidetic 
Focusing on perceptual rather than 
mathematical properties of the data 

Operating terms 
Calculations using known terms to obtain a 
target term 

Combining diagrams 
“Chunking” of known terms to obtain others 
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→ First has four, rest have 3

→ add this each time

Operating on differences between 
terms 
Calculations based on the numerical 
difference between consecutive terms 
 

Inter-term “chunking” 
“Chunking” based on a relation between terms 
 
 
 
 
 
 

Operating on a variable 
Calculations based on a relation between 
dependent and independent variables 

Intra-term “chunking” 
“Chunking” based on a relation within a term 
 
 
 
 
 

 

Adapted from Healy and Hoyles (1999:67) 

 

Stacey (1989) has investigated and analysed the various strategies adopted by 

children (aged 9 to 13 years) when performing linear generalisation tasks.  Some 

of the problems used were set within a pictorial context.  The four methods which 

were most commonly used were:   
• Counting method (successive addition) 

• Difference method3 

• Whole-object method4 

• Linear method 

 

The counting method (or method of successive addition) represents a recursive 

approach whereby subsequent terms were determined by successively adding the 

identified constant difference to previous terms.  The difference method (or 

“difference product”) was based on identifying the common difference and then 

multiplying it by the term number.  Using this approach, the 20th term of the 

sequence 2 ; 5 ; 8 ; 11 ; … would be incorrectly calculated as being 203× .  The 

whole-object method (or “short-cut”) involved the assumption that, for example, the 

20th term would be 4 times the 5th term.  This approach, although generally 

incorrect, does produce a correct answer for linear sequences based on direct 

proportion ( cax ±  where 0=c ).  The linear method acknowledged that both 

multiplication and addition were involved.  Correct use of this method should have 

always led to the correct answer. 

 

                                                 
3 Orton and Orton (1999) have adopted the term “difference product” for this method. 
4 Orton and Orton (1999) have adopted the term “short-cut” for this method, while English and Warren (1998)    
refer to it as a “ratio” strategy. 

→ Line of 1 more than 3

→ Line of 3

→ Line of 3
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Lannin (2003) provides a useful summary of student strategies observed both by 

himself and other researchers, notably Stacey (1989) and Swafford and Langrall 

(2000).  The strategies are presented in Table 2.2 using Lannin’s nomenclature. 

 
Table 2.2  Student strategies for pattern generalisation 

Strategy Description 

Counting Drawing a picture or constructing a model and 
physically counting the desired attribute 

Recursion Constructing a term by building onto a previous term 
or terms 

Whole-object 
Constructing larger units by using multiples of smaller 
units (with or without a correction for over- or 
undercounting) 

Contextual Determining a rule directly from a relationship 
inherent in the problem context  

Guess and Check Guessing a rule without regard as to why the rule 
may work 

Rate-adjust 

Using a constant rate of change as a multiplying 
factor followed by an adjustment (adding or 
subtracting of a constant) to ensure the rule holds for 
the given terms 

 

Adapted from Lannin (2003:344) 

 

Lannin (2005) classifies these strategies as being either explicit or non-explicit.  

Explicit strategies (Whole-object, contextual, guess and check, rate-adjust) allow 

for the direct calculation of the dependent variable given a specific value of the 

independent variable.  Non-explicit strategies (counting, recursion) do not allow for 

this, as the calculation of a specific term requires the calculation of all preceding 

terms.   

 

Choice of strategy is a crucial consideration.  Students’ difficulties in forming 

generalisations often result from the inappropriate strategies they used to 

determine a general rule (English and Warren, 1998).  As Orton and Orton (1999) 

remark, there is little chance of pupils being able to generalise correctly, and in an 

acceptable algebraic form, if they adopt inappropriate methods.  In an investigation 

of the patterning ability (using a series of matchstick patterns) of mixed-ability 

pupils aged between 9 and 13 years, Orton (1997) comments that the most 

common methods which yielded wrong answers were the short-cut and difference 

product.  There were also examples of pupils’ own idiosyncratic reasoning.  In 

addition, the method of differencing (recursive strategy) has been found to be 
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particularly popular with children (Stacey, 1989; Hargreaves et al., 1998; Orton and 

Orton, 1999; Lannin, 2004).  It is likely that this is a conditioned/habitual response 

to typical number pattern activities, or an artefact of the way in which number 

pattern generalisation tasks are presented.  The importance of question design has 

also been raised and questioned by other researchers (Orton et al., 1999; Swafford 

and Langrall, 2000).  The influence of question design is central to the present 

study, and is discussed in detail in Section 5.3. 

 

 

2.5 THE PREVALENCE OF THE RECURSIVE STRATEGY 
 

A number sequence can be generated either by using a general formula, where the 

independent variable represents the position of a term, or by relating recursively to 

the previous term in the sequence.  Use of a recursive approach tends to 

emphasize a local aspect of the relationship, while an explicit formula reflects the 

relationship in a general way. 

 

A common theme in the research literature relates to the tendency of pupils to 

generalise recursively rather than using the independent variable in a general 

formula (Hargreaves et al., 1998; Hershkowitz et al., 2002).  Lannin (2004) 

comments that there would seem to be a natural tendency for pupils to reason 

recursively when they begin to examine number patterns.  English and Warren 

(1998) found that once students had established a recursive strategy they were 

reluctant to search for a functional relationship, and Orton et al. (1999) observed 

that progression to far generalisation tasks usually required a rejection of a such a 

counting or recursive strategy.  MacGregor and Stacey (1993), investigating 

pattern generalisation tasks presented in table format with 14- and 15-year olds, 

cite one of the main causes of difficulty in formulating algebraic rules as being 

pupils’ tendency to focus on the recursive patterns of one variable rather than the 

relationship linking the two variables.  Similar observations have been made by 

other researchers (Orton, 1997).  Interestingly, a reliance on differencing (i.e. a 

recursive strategy) has also been found with adults (Orton and Orton, 1994). 

 

Noss et al. (1997) comment that the tendency of pupils to focus on a recursive 

strategy shouldn’t necessarily be interpreted as pupil failure.  They remark that 
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strategies are influenced not only by the nature of the task but also by its 

presentation.  This has been echoed by Frobisher and Threlfall (1999) who 

comment that presenting a task in sequential stages (e.g. asking for the 10th, 20th 

and 50th terms) often leads pupils to use a step-by-step recursive approach.  

Hershkowitz et al. (2002) found that the presentation of consecutive terms 

encouraged recursion, while terms presented non-consecutively tended to 

encourage generalisation by means of the independent variable.  The use of a 

pictorial context, particularly if non-consecutive terms were presented, also tended 

to encourage generalisation by means of the independent variable.  Hershkowitz et 

al. (2002) have also made the observation that spreadsheet environments often 

have the effect of encouraging recursive generalisations.    

 

Lannin (2004) comments that reasoning based on a functional relationship has 

historically been valued over recursive strategies because of the relative 

inefficiency and tediousness of iterative procedures.  However, with the 

introduction of technology into the classroom environment, using recursive 

strategies is far less tedious and time-consuming than it once was.  Noss et al. 

(1997) lend support to this by citing the potential flexibility of the computer 

environment.  Quinn (2005) argues that with the increased speed and power of 

computers, iterative algorithms are regaining importance.  There is thus justification 

for investigating recursive/iterative strategies.  Furthermore, Lannin (2003) argues 

that in the case of linear sequences the recursive approach provides for a strong 

connection with the concept of gradient or slope (i.e. the constant 

increase/decrease in the dependent variable for a unit increase in the independent 

variable). 

 

 

2.6 CLASSIFYING PATTERNING ABILITY 
 

Patterning ability has often been investigated by providing a sequence of terms, 

presented either numerically or pictorially, and asking for the calculation of, for 

example, the 5th, 10th, 50th and nth terms.  While investigating adults’ generalisation 

of quadratic patterns using a similar sequential approach, Orton and Orton (1994) 

found evidence for a hierarchical classification of patterning ability, at least in the 
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sense that there were no candidates who successfully answered a particular 

question without having succeeded on all the previous questions. 

 

This led Orton and Orton (1996, 1999) to attempt an investigation into the stages in 

the development of children’s patterning ability using a hierarchical classification 

system as research instrument.  Hierarchical frameworks are well established, both 

within the general domain of cognition (e.g. Piaget’s constructivist theory of 

cognitive development (Labinowicz, 1980)) and the more specific realm of 

mathematical thought (e.g. the van Hiele model of levels of geometric thought (van 

Hiele, 1986)).  Notions of hierarchy, both in terms of the learning of mathematics as 

well as mathematical ability, have nonetheless been subject to criticism (Ernest, 

1991).  Ernest dismisses the notion of there being an overall mathematical 

hierarchy by arguing that mathematics is composed of “… a multiplicity of distinct 

theories, that these cannot be reduced to a single system, and that no one of these 

is adequate to capture all the truths even in its limited domain of application” 

(Ernest, 1991:233). 

 

Nonetheless, Orton and Orton (1996, 1999) attempted to develop a hierarchical 

classification system of patterning ability which they adapted to classify children’s 

(aged 10 to 13) responses to linear generalisation questions.  In order for a child to 

be classified at a particular stage, all the terms within that stage must have been 

correctly calculated.  The various stage descriptors were: 
 

• Stage 0: no progress 

• Stage 1: next term provided 

• Stage 2: next and 20th terms provided 

• Stage 3: next, 20th and 100th terms provided 

• Stage 4: next, 20th, 100th and nth terms provided 

Stage 4 was further subdivided as follows: 
• Stage 4a: a correct verbal statement 

• Stage 4b: a creditable attempt at an algebraic expression 

• Stage 4c: a correct algebraic representation, but not necessarily the simplest 

 

The specific choice of the 20th and 100th terms in the above framework is not 

critical per se – these terms have simply been chosen to represent “near 
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generalisation” and “far generalisation” tasks5. However, Orton and Orton 

(1996:87) found that children’s responses to linear generalisation questions did not 

necessarily conform to a strict hierarchy.  This led to subdivisions of the stages to 

cover all possibilities, using the letters t, x and y to indicate errors in the next, 20th 

or 100th terms respectively.  This modification allowed for the classification of a 

child who made an error in a previous stage but was nonetheless able to progress 

correctly to a higher stage.   A child who gave a correct 100th term but an incorrect 

20th term was thus classified at Stage 3x, the 3 indicating a correct calculation of 

the 100th term (Stage 3) and the x indicating an error in the calculation of the 20th 

term.  These modified stage descriptors provide a useful picture of children’s 

proficiency in linear generalisation tasks and can possibly be used as an enabling 

framework for further research. 

 

The purpose of such a sequential approach to pattern generalisation is to scaffold 

the generalisation process.  However, in an investigation of the patterning ability 

(using a series of matchstick patterns) of mixed-ability pupils aged between 9 and 

13 years, Orton (1997) found little evidence to suggest that such a sequential 

approach assisted in the process of generalisation.  Orton et al. (1999) also found 

that a sequential approach to patterning tasks did not necessarily assist pupils in 

finding the general term.  Even when pupils were successful in determining the 5th, 

10th and even 50th terms, this did not always lead to an acceptable expression for 

the general term.  An earlier study with adults (Orton and Orton, 1994) also 

indicated that success with the 5th, 10th and 50th terms by no means automatically 

guarantees success with the nth term.   

 

 

2.7 PATTERNING AS A ROUTE TO ALGEBRA 
 

French echoes the views of numerous mathematics teachers and educationalists 

when he opines thus: 

 
The initial encounters that students have with algebra are crucially 
important in establishing both their attitudes towards the subject 

                                                 
5 Stacey (1989:150) uses the term “near generalisation” to denote a question which can be solved by step-by-
step counting or drawing and “far generalisation” to denote a question which goes beyond reasonable practical 
limits of such a step-by-step approach. 
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and the foundations on which to build their subsequent study of 
the subject together with its links to the rest of mathematics. 
 

(French, 2002:44) 
 

The use of number patterns as a didactic approach to the introduction of algebra 

has been advocated by numerous mathematics educators (Mason et al., 1985; 

Pegg and Redden, 1990b; de Jager, 2004).  MacGregor and Quinlan (1992:250) 

comment that proponents of this approach would seem to expect that algebraic 

symbolism will emerge as a natural consequence of pupils needing to write their 

verbal rules in a more succinct manner.  There is certainly some evidence to 

support this notion (Pegg and Redden, 1990a).   

 

From a pedagogic standpoint, French (2002) comments that introducing algebra 

through what is potentially a wide range of pattern generalisation activities may be 

effective in assisting pupils to see algebra as both meaningful and purposeful right 

from the earliest stages.  After all, generalisation is one of the core components of 

mathematical activity.  As Mason et al. (1985:8) succinctly put it, “generality is the 

lifeblood of mathematics and algebra is the language in which generality is 

expressed”.  Thus, algebraic symbolism arising as a natural consequence during 

pattern generalisation activities is certainly an attractive notion.  In addition, from a 

pedagogic point of view, pattern generalisation activities are a meaningful way of 

arriving at algebraically equivalent expressions of generality.  This lends itself well 

to exploring the notion of algebraic equivalence in a practical context where pupils 

would experience the process of negotiation towards meaning (Mason et al., 

1985). 

 

Nonetheless, the approach is not without its potential pitfalls.  Remarking on their 

experiences with using the patterning approach to introducing the concept of 

variable, English and Warren (1998) comment that apart from sound arithmetic 

skills, flexible and articulate thinking are particularly important to a student’s 

success with this approach.  In addition, although a generalisation can be 

expressed in numerous ways, both verbally and symbolically, some verbal 

expressions do not translate as readily as others into an algebraic format, and this 

may well undermine the process.    
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2.8 VISUALISATION AND VISUAL REASONING 

 

There are many different kinds of visualisation in mathematics6.  Furthermore, 

visualisation as both the product and process of creating, interpreting and 

reflecting upon images, is gaining increased focus in the fields of both mathematics 

and mathematics education (Zimmermann and Cunningham, 1991; Arcavi, 2003). 

 

Within the realm of pattern generalisation, Hershkowitz et al. (2001) uncovered 

various “mechanisms” of visualisation in the building of a mathematical 

generalisation in a pictorial context.  They distilled the various visual strategies into 

the following analytical components: (a) decomposition of a structure into smaller 

substructures and units, (b) creation of auxiliary constructions, (c) transformation of 

the whole structure into a different configuration, and (d) recomposition and 

synthesis.  Their results led Hershkowitz et al. (2001) to propose that visualisation 

can be far more than the intuitive support of higher level reasoning, in that it may 

well constitute “the essence of rigorous mathematics” (Hershkowitz et al., 

2001:255).  Although this research was conducted with more mature subjects (in-

service teachers), there is evidence to suggest that younger children are also 

capable of utilising similar visualisation mechanisms (Orton et al., 1999; Waring et 

al., 1999). 

 

The use of metaphor can also be seen as a type of visualisation.  Nolder (1991) 

reports on the use of metaphors such as “staircases”, “wings” and “triangles” by 

pupils presented with number patterns in 3-dimensional practical context.  She 

comments that although these terms are useful in helping learners communicate 

their ideas, some metaphors are less helpful than others when it comes to finding 

an algebraic generalisation of the pattern.     

 

Of particular import to the present investigation is the observation that, although 

pattern generalisation problems presented in a pictorial or practical context have 

the potential to widen the scope of solution strategies for some pupils, for others 

this may well create additional complications.  This issue is interrogated in more 

detail in the following chapter. 

 

                                                 
6 Theoretical aspects pertaining to visualisation are interrogated in Section 3.3. 
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2.9 PROOF AND JUSTIFICATION 
 

In a study of students’ generalisations and justifications derived from patterning 

tasks, Lannin (2005) made use of an algebraic adaptation of the framework of 

Simon and Blume (1996) for classifying and characterising levels of justification.  

The first level appeals to an authoritative source (e.g. mathematics teacher or 

textbook).  The second level of justification appeals to inductive or empirical 

evidence.  Levels 3 and 4 display deductive justification based on shared 

mathematical knowledge, either expressed in terms of specific cases (Level 3) or 

generality independent of particular instances (Level 4).   

 

In an investigation into the patterning skills of sixth-graders, Lannin (2005) reports 

that the two types of justification most widely used were empirical justifications and 

generic examples.  The former was generally used by pupils to test their rules.   

This echoes an earlier study (Lannin, 2003) where a common approach used by 

pupils when justifying a general formula was to demonstrate that their rule results 

in the correct values for a few individual cases. 

 

Orton (2004:114) observes that there is evidence to suggest that justifying pattern 

generalisations is a legitimate approach to proof, and provides pupils with valuable 

pre-proof experiences en route to more formalised mathematical proofs.  This has 

been echoed by other researchers (Waring et al., 1999).   

 

The interconnectedness of generalisation, justification and proof is dealt with more 

extensively in the following chapter. 

 

 

2.10 PATTERN SPOTTING 
 

There is a concern amongst mathematics educationalists (Hewitt, 1992; Byatt, 

1994; Noss et al., 1997; de Jager, 1999) that pattern generalisation activities are 

becoming nothing more than rote exercises in the systematic collection and 

tabulation of data from which a generalised formula may be obtained/conjectured.  

Indeed, Clausen (1992) mentions that mark schemes structured to assess pupil 

aptitude for such pattern generalisation tasks often “assume such an approach, 
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and apportion marks accordingly” (Clausen, 1992:17).  Noss, Healy and Hoyles 

capture the situation as follows: 

 
… attention tends to become focused on the numeric attributes of 
the output.  Worse still, school mathematics becomes constructed 
– by students and teachers alike – as a stereotypical data-driven 
‘pattern-spotting’ activity in which it is acceptable to search for 
relationships by constructing tables of numeric data without 
appreciating any need to understand the structures underpinning 
them. 

(Noss et al., 1997:205) 
 

 

Of central concern is the notion that much genuine mathematical exploration has 

become superficial through a preoccupation with tabulating results as a means to 

describing patterns and arriving at a generalised rule.  As such, there is a grave 

concern that pattern generalisation activities often get reduced to numerical pattern 

spotting exercises where spotting patterns in the numbers becomes “an activity in 

its own right and not a means through which insights are gained into the original 

mathematical situation” (Hewitt, 1992:7).  The danger with such an approach is that 

the focus seems to be “the development of an algebraic relationship, rather than 

the development of a sense of generality” (Thornton, n.d.:252).  As such, the 

general rule for the pattern becomes divorced from the scenario – pictorial, 

practical or otherwise – that gave rise to it.  Such disconnected algebraic 

formulation neither illuminates the problem nor provides a means for validating the 

generated functional relationship (Noss et al., 1997).  This becomes particularly 

problematic in situations where the justification of the general rule assumes 

significance (Byatt, 1994:25).  The ability to justify a general formula is by no 

means commensurate with a pupil’s proficiency in deriving such a generalisation.  

Indeed, as Hewitt (1992:7) succinctly remarks, the problem with divorcing patterns 

of numbers from their original context is that any generalised statements become 

“statements about the results rather than the mathematical situation from which 

they came”.   

 

Byatt (1994) summarises an oft-occurring mode of generalisation and justification 

in Figure 2.4.  
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Figure 2.4   Mode of generalisation and justification, adapted from Byatt (1994:25) 

 

Figure 2.4 represents a mode of justification whereby the original pictorial scenario 

is simply reduced to a numerical table of results.  A pattern is then sought in this 

table of numbers, with little or no regard for the original context of the question.  A 

crucial missing connection, particularly critical in terms of the justification process, 

is the link back to the original pictorial/practical context.  Such connectivity is critical 

inasmuch as it pertains to looking for a pattern “in the situation, not in the numbers 

given in the results” (de Jager, 1999:23).  Byatt (1994) asserts that such 

redirection, at least in part, lies in the skills and incisive questioning of the sensitive 

practitioner. 

 

There is a diverse mathematical richness that potentially can be extracted from 

pattern generalisation activities.  Hewitt (1992) argues that critical to extracting 

such mathematical richness is the meaningful engagement with a particular 

scenario in some depth, rather than a superficial treatment in order to reduce the 

context to a mere table of numbers.  The pedagogical distinction here is the notion 

of pattern analysis as opposed to pattern recognition.  Central to the core of 

mathematical activity is the concept of generalisation, the formulating of a general 

formula which describes a scenario, which derives from an in-depth analysis of the 

given situation.  Mathematicians are concerned with pattern analysis, “which 

involves analyzing the situation or the scientific context, not just pattern 

recognition” (Dancis, n.d.:1).  Furthermore, Roper (1999) points out that searching 

for patterns without regard for the underlying contextual structure may in fact be 

counter-productive in terms of encouraging mathematical problem-solving.   

Pictorial scenario, 
practical activity 
or mathematical 
model of activity 

 
Generalisation / 
general formula 

 
Table of results 
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2.11 VERBAL VS ALGEBRAIC GENERALISATION 
 

Not surprisingly, students often find it easier to express their generalisations 

verbally than to record them symbolically.  English and Warren (1998) comment 

that this situation generally arises because, although a generalisation can be 

expressed in numerous ways, both verbally and symbolically, some verbal 

expressions do not translate as readily as others into an algebraic format.  Orton et 

al. (1999) found that the ability to express a result in words (natural language) was 

often present when pupils were unable to provide a symbolic (algebraic) 

expression.  

 

MacGregor and Stacey (1993), investigating pattern generalisation tasks presented 

in table format with 14- and 15-year olds, cite one of the main causes of difficulty in 

formulating algebraic rules as being pupils’ inability to clearly articulate the 

structure of perceived patterns and relationship using natural language.  The 

results of their findings suggest that the verbal description is an important and 

perhaps even necessary part of the process of expressing an algebraic 

generalisation.  In support of this, Franzblau and Warner (2001), in their teaching 

of sequence notation, found that an important first step in the learning of sequence 

notation is the writing of descriptions of both explicit and recursive rules in natural 

language.   

 

 

2.12 TECHNOLOGICAL INFLUENCES 
 

Simple computer programming has been used in the classroom environment for 

some years as a means of exploring number patterns (Bitter and Edwards, 1989).  

However, in the past two decades much work has been done by mathematics 

educators in creating interactive computerised settings with the express purpose of 

enhancing visualisation as a powerful cognitive support in the learning of 

mathematical concepts.  Lapp (1999) advocates the use of technology (e.g. 

graphing calculators) as a powerful means of merging representations and forming 

links between different representations of the same scenario. 
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The study of polygonal or figurate numbers (e.g. triangular, square, pentagonal and 

hexagonal numbers) lends itself well to visual strategies.  Abramovich, Fujii and 

Wilson (1994) have demonstrated the usefulness of a multiple-application medium 

for the study of polygonal numbers by using software tools such as dynamic 

geometry, a relational grapher, and spreadsheets as a means of enhancing 

mathematical visualisation by providing a dynamic interplay between geometric, 

analytical and numerical representations.   

 

Healy and Hoyles (1999) investigated computer-integrated task (CIT) patterning 

activities making use of different software environments - spreadsheets, and a 

specially designed Logo microworld called Mathsticks, what Noss et al. (1997) 

refer to as an autoexpressive environment, providing a domain of situated 

abstraction.  Pupils working through the Mathsticks CITs tended to show well-

connected iconic and symbolic approaches by the end of the task sequence.  

Healy and Hoyles (1999) suggest that the fusion of action, visualisation and 

symbolic representation has the potential to provoke cognitive reorganisation and 

forge connections between the visual and symbolic representations.  The use of a 

spreadsheet environment was found to be less effective in connecting the visual 

with the symbolic.     

 

Hoyles, Sutherland and Healy (1991) have investigated how different computer 

environments promote differing modes of discussion and generalisation within the 

context of collaborative interaction.  The research contrasted a spreadsheet 

environment with a Logo programming environment.  It was found that in the Logo 

environment the natural language of the pupils and the software tools developed 

together in a dialectical manner, and served simultaneously as scaffolding towards 

generalisation.  However, in the spreadsheet environment the influences of inter-

pupil and pupil-computer interaction were seen to operate at different points in the 

generalisation process.   
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2.13 SUMMARY OF LITERATURE REVIEW 
 

Recent research focusing on number pattern generalisation tasks would thus seem 

to encompass a broad range of topics.  Key issues arising from the literature 

review include the various types of number sequences, patterning strategies, 

pictorial versus practical contexts, the classification of patterning ability, patterning 

as a route to algebra, visualisation and visual reasoning, notions of proof and 

justification, the reduction of pattern generalisation activities to rote pattern spotting 

exercises, the interplay of verbal and algebraic generalisation, and the role of 

technology. 

 

Key issues highlighted in the literature will be used to inform both the focus and 

methodology employed in the present investigation, as well as provide a 

meaningful backdrop to the processes of analysis and interpretation. 
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CHAPTER THREE 
 

THEORETICAL FRAMEWORK 
 

 

3.1 INTRODUCTION 
 

The purpose of this chapter is to establish a theoretical framework for the 

epistemological assumptions that will inform and guide the research process.  

There are three key elements to this contextual backdrop: constructivism; 

visualisation; and the processes of generalisation, justification and proof. 

 

Firstly, rather than provide a general exposé and critique of the constructivist 

movement, I will attempt to distil only those key epistemological principles and 

attitudes of mind that have critical bearing on this study.  Secondly, the importance 

of recognising and valuing different cognitive styles is highlighted.  Finally, the 

interwoven nature of generalisation, justification and proof is explored.  Further 

theoretical elements pertaining more to practical methodological issues are 

interrogated in Chapter 4. 

 

 

3.2 CONSTRUCTIVISM 
 

An important consideration both in terms of the structuring of the research 

methodology and the associated epistemological assumptions, is the emphasis of 

the NCS on investigation as a pedagogical approach7.  Assessment Standard 

10.1.3 of the NCS for Grade 10 asserts that learners should be able to investigate 

number patterns (including, but not limited to, linear patterns) and hence “make 

conjectures and generalisations” as well as “provide explanations and justifications 

and attempt to prove conjectures” (Department of Education, 2003b:18).  Frobisher 

(1994:169) describes the essence of an investigative approach as “the application 

of communication, reasoning, operational and recording processes to a study of 

                                                 
7 “Competence in mathematical process skills such as investigating, generalising and proving is more 
important than the acquisition of content knowledge for its own sake” (Department of Education, 2003b:9). 
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the core topics which make up the content of a mathematics curriculum” 

(Frobisher, 1994:169).  In practise, an investigative approach should be 

characterised by a “spirit of dynamic engagement” on the part of the investigator 

(Orton and Frobisher, 1996:32).  The core epistemological principles that underpin 

the investigative approach position it comfortably within a constructivist framework.   

 

Broadly speaking, constructivism is “a philosophical perspective on knowledge and 

learning” (Jaworski, 1994:14). More specifically, constructivism is a theory about 

the limits of human knowledge, “a belief that all knowledge is necessarily a product 

of our own cognitive acts” (Confrey, 1990:108).  Thus, we construct understanding 

through our own experiences.  Furthermore, in an unavoidable cyclical nature, the 

character of those experiences is in turn influenced to a large extent by our own 

cognitive lenses (Confrey, 1990). 

 

The basic tenet of constructivism, viz. the notion that knowledge is the result not of 

the passive reception of information but rather the product of a learner’s activity, is 

embraced by all constructivists (von Glasersfeld, 1991).  Nonetheless, the term 

“constructivism” has been subject to a diversity of interpretations, many of which 

are seen as being trivialisations of the underlying theory (Towers and Davis, 

2002:313).  In addition, there is also a continuum of constructivist theories with 

different emphasis being placed on the role of the individual and the influence of 

social processes (Lerman, 1994; Ernest, 1994).  Radical constructivism prioritizes 

the individual aspects of learning while social constructivism views mathematics as 

a social construction.  It has also been argued that there is a major division 

between two types of social constructivism “according to whether Piagetian or 

Vygotskian theories of mind and learning are adopted as underlying assumptions” 

(Ernest, 1994:63).   

 

For the purposes of the present study, I will adopt the constructivist stance 

advocated by Cobb (2000) that there is a reflexive relation between an individual 

student’s mathematical reasoning and the social context of the classroom 

microculture.  However, as the research methodology focuses on the cognitive 

reasoning of the individual, of more critical importance is the overarching notion 

that constructivism is a descriptive as opposed to prescriptive philosophy (Towers 

and Davis, 2002:314).   
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Clements and Battista (1990:34) mention one of the basic tenets of constructivism 

as being the notion that children “create new mathematical knowledge by reflecting 

on their physical and mental actions”.  Of particular import to the present 

investigation is the role of notation systems and representations as mediators in 

this constructive process and the notion that these mathematically oriented 

notations contribute to the organisation of the thinking process.  Kaput (1991:55) 

distinguishes between mental structures and notation systems.  While mental 

structures are a “means by which an individual organizes and manages the flow of 

experience”, notation systems are “materially realizable cultural or linguistic 

artefacts shared by a cultural or language community” (Kaput, 1991:55).  Such 

notations can be either consensual or idiosyncratic.  When materially instantiated 

(e.g. physical marks on paper), notation systems are used by individuals to 

“organise the creation and elaboration of their own mental structures” (Kaput, 

1991:56).  This is accomplished by structuring physical records of prior mental 

activity and by structuring both physical and mental actions on those records in a 

cyclical process (Kaput, 1991).     

 

A further tenet of the constructivist view of teaching and learning is the notion that 

“no one true reality exists, only individual interpretations of the world” (Clements 

and Battista, 1990:34).  A representational perspective can thus possibly be seen 

to be inconsistent with a constructivist epistemology.  However, Kaput (1991) 

argues that notation systems as a representational framework for mathematical 

cognition are indeed consistent with constructivism, and highlights the semantic 

distinction between “representations” and “re-presentations”, the latter being a 

more meaningful interpretation with respect to the constructivist position.   

 

Confrey (1990) asserts that one of the most essential skills for a constructivist 

educator to embrace is that of approaching “a foreign or unexpected response with 

a genuine interest in learning its character, its origins, its story and its implications” 

(Confrey, 1990:108).  Furthermore, attempting to see a situation as perceived by 

another human being should be imbued “with the assumption that the 

constructions of others … have integrity and sensibility within another’s framework” 

(Confrey, 1990:108).  To a constructivist, the notion of knowledge without belief is 

therefore contradictory.  This has particular import within an interpretive research 

paradigm. 
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Thus, the present study firmly embraces the notion of the use of both language and 

notation systems/representations as being important mediators in the process of 

construction – both in terms of their contribution to the organisation of the thinking 

process itself, as well as the cyclical nature of reflection.  Furthermore: 

 

From the constructivist point of view, there can be no doubt that 
reflective ability is a major source of knowledge on all levels of 
mathematics.…  To verbalize what one is doing ensures that one 
is examining it.  And it is precisely during such examination of 
mental operating that insufficiencies, contradictions, or 
irrelevancies are likely to be spotted. 
 

(von Glasersfeld, 1991: xviii) 
 

Within the context of the present study, the primary notation system that will be 

used as mediator and representational framework in the construction process is 

algebra.  According to Mason et al. (1985:1) “algebra is firstly a language – a way 

of saying and communicating”.  In essence, algebra is the mathematical language 

of generalisation.  Schoenfeld and Arcavi (1988) advocate the verbalizing of 

mathematical generalisations prior to the formalising of such generalisations into 

mathematical language.  By summarising observed patterns verbally, the transition 

from arithmetic to algebra, and in particular to the concept of variable, may well be 

assisted.  Indeed, Radford (2000), investigating students’ emergent algebraic 

thinking during their very first encounter with the algebraic generalisation of 

pattern, observes that “…the objectification of the general in natural language 

proved to be fundamental to the rise of the symbolic formula in that the symbolic 

formula appeared as contracted or abbreviated speech” (Radford, 2000:261).  

Furthermore, research by Pugalee (2004) has shown that in mathematical problem 

solving, not only can the process of writing be a useful tool for supporting a 

metacognitive framework, but it would seem to be more effective than the use of 

think-aloud processes.  
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3.3 VISUALISATION 
 

“Objects are concealed from our view, not so much because they 
are out of the course of our visual ray as because we do not bring 
our minds and eyes to bear on them…” 
 

Henry David Thoreau, Autumnal Tints 
 

 

Presmeg (1992:38) makes mention of three aspects which could influence the way 

in which a pupil performs a mathematical task: 

• The attributes of the task itself 

• The instructions to do the task in a certain way 

• The individual differences in cognitive styles of pupils 

The first two of these aspects relate to question design and are discussed further in 

the methodology chapter.  However, the third relates to an important theoretical 

consideration in terms of the present study, based as it is on generalisation tasks 

set in two different contextual scenarios - numeric and pictorial.   

 

The issue of individual differences in mathematical processing was highlighted in 

the late 1970s with the publication of the English translation of Krutetskii’s book, 

The Psychology of Mathematical Abilities in Schoolchildren.  Krutetskii’s research 

focused on the relative role of the verbal-logical and visual-pictorial components of 

pupils’ mental activity.  His research suggested that, at least at school level, the 

two components are not “necessary [emphasis mine] components in the structure 

of mathematical abilities” (Krutetskii, 1976:315).  The importance of Krutetskii’s 

research lies in his observation that although the strength or weakness of the two 

components does not necessarily determine the extent of mathematical ability, it 

does however play an important role in determining its type.   

 

A pupil can be mathematically capable with a different correlation 
between the visual-pictorial and the verbal-logical components, 
but the given correlation determines what type he belongs to. 
 

Krutetskii (1976:315) 
 

 

It is worth making note of Krutetskii’s remark that “strictly speaking, the verbal-

logical component is well-developed in all mathematically able pupils” (Krutetskii, 
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1976:316).  One can thus argue that while the level of mathematical ability is 

determined largely by the verbal-logical component of cognition, the type of 

mathematical giftedness is determined largely by the visual-pictorial component.  In 

the case of the latter component, as Presmeg (1986b:300) highlights, it is not only 

the ability to use it which determines the type of mathematical giftedness of an 

individual, but rather the preference for its use. 

 

Krutetskii made use of the relative role of the verbal-logical and visual-pictorial 

components of pupils’ mental activity to categorise mathematics pupils into four 

groups: 

• Analytic – pupils who operate easily with abstract relationships and have no 

need for visual supports in problem-solving.   

• Geometric – pupils who find it necessary to give visual expression to 

abstract mathematical relationships. 

• Abstract-harmonic – pupils who have equally well developed verbal-logical 

and visual-pictorial components but who are disinclined to use visual 

supports. 

• Pictorial-harmonic – pupils who have equally well developed verbal-logical 

and visual-pictorial components but who find the use of visual supports 

helpful. 

 

Visualisation is recognised as being a central component in mathematical activity 

(Cunningham, 1991; Hershkowitz et al., 2001; Arcavi, 2003).  Furthermore: 

 

Visualization, as both the product and the process of creation, 
interpretation and reflection upon pictures and images, is gaining 
increased visibility in mathematics and mathematics education. 
 

(Arcavi, 2003:215) 
 

It has even been suggested that visual thinking may well become “…the primary 

way of thinking in the future” (Hershkowitz and Markovits, 1992:38).  

 

It has been argued (Thornton, n.d.) that there are at least three reasons to re-

evaluate the role of visual thinking in school mathematics.  The first is the popular 

trend to identify mathematics with the study of patterns and the potential danger in 

the use of technology devaluing algebraic thinking.  This concern is echoed by 
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numerous mathematics educationalists (Hewitt, 1992; Byatt, 1994; Noss et al., 

1997; de Jager, 1999).  The second relates to the importance of establishing 

connections between different areas of mathematics.  The third, and perhaps the 

most pertinent in terms of the present study, draws on the importance of 

recognising and valuing different cognitive styles. 

 

Presmeg (1986a, 1992) has identified five different kinds of visual imagery in an 

attempt to “operationalize” (van Garderen and Montague, 2003:246) such visual 

imagery.  The five types of imagery included in Presmeg’s taxonomy (1986a, 1992) 

can be summarised as follows: 

• Concrete, pictorial imagery or mental images 

• Pattern imagery showing pure relationships depicted in a visual-spatial 

scheme 

• Memory images of formulae, involving the visual recall of formulae 

• Kinaesthetic imagery involving movement and gestures 

• Dynamic imagery, involving dynamic transformations of geometric figures 

 

Although Presmeg (1986a) acknowledged that all imagery types have the potential 

to play a functional role in mathematical problem solving, she considered pattern 

imagery as being the most essential type, as it identifies the relational aspects of a 

problem and is thus arguably better suited to abstraction and generalisation.  As 

Thornton points out, the development of such mathematical imagery which focuses 

on relationships and patterns “is surely one of the principal goals of mathematics 

education” (Thornton, n.d.:254).  Hegarty and Kozhevnikov (1999) distinguish 

between two different types of visual-spatial representations: schematic imagery 

which focuses on the spatial relationships between objects, and pictorial imagery 

where the focus lies with the visual appearance of the objects themselves.  

Hegarty and Kozhevnikov (1999) found that the use of schematic representations 

was positively related to success in mathematical problem solving, whereas use of 

pictorial representations was negatively correlated with success.  This echoes 

Presmeg’s (1986a) ascription of pattern imagery, in which the concrete details are 

disregarded in favour of pure relationships, as the most essential role in 

mathematical problem solving.  
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Kirby and Kosslyn (1992) suggest that inasmuch as image representations are 

depictive, imagery can be exploited to aid problem-solving.  This stems from the 

notion that, unlike propositional representations, spatial relations in imagery are an 

emergent property of the depicted perceptual units.  Nonetheless, in terms of 

mathematical problem solving, the fact that the human mind tends to perceive a 

given visual stimulus as a whole is not without its drawbacks.  For a given visual 

configuration, a specific structure or order is imposed on the mind which may 

obscure crucial aspects and elements of the problem.  In order to overcome this 

imposed structure “a reorganization of the elements is needed, which then 

hopefully enables the individual to comprehend how the elements fit together, thus 

achieving what Gestaltists termed structural understanding” (Orton, 2004:78).  Far 

more than merely a theory of form perception, Gestalt theory is pre-eminently a 

theory of behaviour.  However, some of the most interesting phenomena of visual 

perception were discovered by the Gestalt psychologists, and the founding of the 

Gestalt movement in the early 20th century is considered one of the most important 

events in the history of perception (Palmer, 1992:39-40). 

 

The literature concerning Gestalt laws/principles is substantial (see for example 

Wertheimer, 1938; Katz, 1951; Zusne, 1970:111-135).  Helson (1933) was able to 

distil and articulate 114 such “laws” or propositions.  Although only a few of these 

mention visual form specifically (e.g. the laws of similarity, proximity, symmetry, 

good continuation, and closed forms), the majority are applicable to visual 

perception (Zusne, 1970:111).  It is important to note that the various Gestalt laws 

are by no means independent of one another.  A number of configurational forces 

may be in operation at the same time, often in conflict with one another.  Thus, 

although pattern generalisation problems presented in a pictorial or practical 

context have the potential to widen the scope of solution strategies for some pupils, 

for others this may well create additional complications.  It is only if the underlying 

structure is perceived in a meaningful or useful way, dependent on the nature of 

the pictorial scenario, that a visually guided/mediated solution may be more readily 

accessible.  Furthermore, being able to translate both flexibly and competently 

between the visual and analytic representations of the same scenario is a 

necessary requirement for visualisation to be cognitively meaningful (Arcavi, 2003). 
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Fischbein claims that visualisation “not only organizes data at hand in meaningful 

structures, but … is also an important factor guiding the analytical development of 

a solution” (Fischbein, as quoted in Hershkowitz et al., 2001:262).  Building on from 

Fischbein is the suggestion by Hershkowitz et al. that visualisation can in some 

instances take on the role of “the analytical process itself which concludes with a 

general formal solution” (2001:262).  Such analytical components may include: 

• Decomposition of a structure into substructures and/or units 

• Creation of auxiliary constructions 

• Transformation of the original structure into other structures 

• Re-composition and synthesis 

 

Cunningham (1991:70) comments that visualisation within the realm of 

mathematics education not only promotes intuition and understanding, but also 

allows students to “learn new ways to think about and do their own [emphasis 

mine] mathematics”.  There is thus an important connection between visualisation 

and the constructivist view of teaching and learning.    

 

The role of visualisation is central to the present investigation.  From a theoretical 

perspective, the methodology employed in the data capturing process needs to be 

sensitive to the relative roles of the verbal-logical and visual-pictorial components 

of a pupil’s cognitive processes.  In addition, both the data capturing and data 

analysis methodologies should take cognizance of the role of visualisation in the 

generalisation process.  For the purposes of this study, visualisation is understood 

to incorporate the process of forming images (either mentally or by means of 

physical instantiation) and using such images to aid mathematical discovery and 

understanding (Zimmermann and Cunningham, 1991).  Furthermore, pattern 

imagery (Presmeg, 1986a, 1992), which identifies the relational aspects of a 

problem or scenario, as an emergent property of the depicted perceptual units, is 

considered the most essential type of imagery for the purposes of abstraction and 

generalisation. 

 

One of the key questions raised in the intensified study of visualisation is to what 

extent visual representations can be used in the justification, as opposed to a mere 

role of evidential support, of a mathematical statement (Hanna, 2000; Brown, 

1997).  This issue will be explored further in the following section. 
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3.4 GENERALISATION, JUSTIFICATION AND PROOF 
 

The National Curriculum Statement (NCS) for South African schools (Department 

of Education, 2003b) places fundamental importance on the process skills of 

generalisation, justification and proof.  Furthermore, competence in such skills is 

regarded as being central to the underlying tenets of the revised South African 

school Mathematics curriculum. 

 

Competence in mathematical process skills such as investigating, 
generalising and proving is more important than the acquisition of 
content knowledge for its own sake. 
 

(Department of Education, 2003b:9) 
 

As one of the fundamental outcomes of LO1 within the FET band (Grades 10-12) 

of the NCS, learners will “explore real-life and purely mathematical number 

patterns and problems which develop the ability to generalise, justify and prove” 

(Department of Education, 2003b:12). 

 

The concepts of generalisation, justification and proof as mathematical skills are 

developed over time within the framework of the NCS, with ever increasing 

complexity and sophistication.    In Grade 7 the expectation is for learners to be 

able to describe, explain and justify observed relationships or rules in their own 

words.  By Grade 8 such explanations and justifications should also be attempted 

algebraically, while in Grade 9 the algebraic component becomes far more central.  

By Grade 10, with the commencement of the FET band, learners are expected not 

only to make generalisations and conjectures, but to be able to explain and justify 

their generalisations, and attempt to prove their conjectures (Department of 

Education, 2002, 2003a, 2003b). 

 

It has been observed that mathematical power lies not only in being able to detect, 

construct, invent, understand and manipulate patterns, but “in being able to 

communicate these patterns to others” (Goldin, 2002:213).  Statements of 

generality, along with the discovery and investigation of generality, “…are at the 

very core of mathematical activity” (Lannin, 2005:233).  According to Dörfler (as 

quoted in Zazkis and Liljedahl, 2002:381), generalisation is not only an end in itself, 

but “…a means of thinking and communicating”.  Kaput (1999) makes the 
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observation that “generalisation and formalisation are intrinsic to mathematical 

activity and thinking – they are what make it mathematical” (Kaput, 1999:136).  

Thus, “generalization as a didactic device cannot avoid the problem of validity” 

(Radford, as quoted in Lannin, 2005:235).  Indeed, generalisation, by its very 

nature, can not be separated from justification and proof. Hanna (2000:7) 

comments further that mathematical proofs are at the core primarily conceptual, 

rather than mere syntactic derivations.  Proofs are the “mathematician’s way to 

display the mathematical machinery for solving problems and to justify that a 

proposed solution to a problem is indeed a solution” (Rav, 1999:13).  Thus, the 

notions of generalisation, justification and proof are intricately interwoven. 

 

The notion of proof is used with various shades of meaning by mathematicians and 

mathematics educators.  According to Bell (1976), the concept of proof carries 

three senses within the realm of mathematical meaning.  The first is verification or 

justification, focusing on the truth of a proposition.  The second is illumination, in 

the sense that a proof should convey insight into why a proposition is true.  The 

third, the most “characteristically mathematical” (Bell, 1976:24), is that of 

systematisation – the organisation of results into a deductive system of axioms, 

major concepts and theorems.  Building on from Bell’s (1976) distinction between 

the various functions of proof, de Villiers (1990) outlined the following useful model: 

• Verification (concerned with the truth of a statement) 

• Explanation (providing insight into why it is true) 

• Systematisation (the organisation of various results into a deductive system) 

• Discovery (the discovery or invention of new results) 

• Communication (the transmission of mathematical knowledge) 

Hanna and Jahnke (1996) further add an additional three functions to the model of 

de Villiers (1990): 

• Construction of an empirical theory 

• Exploration of the meaning of a definition or the consequences of an 

assumption 

• Incorporation of a well-known fact into a new framework and thus viewing it 

from a fresh perspective. 

 

Hanna (2000:8) comments that such a richly diverse view of the concept of 

mathematical proof could only be the result of a long historical development.  As a 
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result of the differing and constantly developing views on the nature and role of 

proof, translating such a concept into the classroom is far from simple (Hanna and 

Jahnke, 1996).  Nonetheless, “proof is an essential characteristic of mathematics 

and as such should be a key component in mathematics education” (Hanna and 

Jahnke, 1996:877). 

 

One could argue that the nature and role of proof and/or justification depends 

largely on the level of mathematics under consideration (Waring, 2001).  With that 

in mind, Porteous’ (1994:5) definition that “a proof of a statement is any adequate 

expression of the necessity of its truth” is perhaps somewhat more meaningful to 

the context of the school mathematics classroom.  Porteous (1994:5) goes on to 

specify that in order to count as adequate: 

• true and accurate statements  must be made about the context 

• the full domain of applicability of the statement must be addressed – i.e. a 

general statement requires a general treatment 

• the description of why the statement is true must reflect an awareness of 

the logical necessity of that truth 

• the individual, having given the proof, must by that account consider the 

statement in question to be true   

 

Slomson (1996:11) summarises the situation by succinctly stating that “a 

mathematical proof is a correct and convincing mathematical argument”, while 

noting that what counts as convincing has changed over the course of time, and 

will necessarily vary from person to person.  Simply put, a proof is nothing more 

than a “…convincing argument, as judged by competent judges” (Hersh, 

1993:389). 

 

It has been argued that “the most significant potential contribution of proof in 

mathematics education is the communication of mathematical understanding” 

(Hanna and Jahnke, 1996:878).  This resonates with Hersh’s (1993) distinction 

between the different roles of proof in differing contexts.  While mathematical proof 

and justification can both convince and explain, “in mathematical research, its 

primary role is convincing [whereas] at the high-school or undergraduate level, its 

primary role is explaining” (Hersh, 1993:398).  Expressed differently, within the 
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realm of the classroom, “…the key role of proof is the promotion of mathematical 

understanding” (Hanna, 2000:5). 

 

Simpson (as cited in Hanna, 2000:9) differentiates between proof through logic and 

proof through reasoning, the latter focusing on investigations and heuristic 

argument.  There is thus a view that heuristic techniques are appropriate to 

developing skills in both reasoning and justification.  Formalism and rigour are not 

necessarily essential components to the process of justification.  Indeed, the 

idiosyncratic and informal reflection of a genuine generalisation should not be seen 

to diminish the validity of such a justification.  As Hersh (1993:391) remarks, ”all 

real-life proofs are to some degree informal”.  Thus, for the teacher the only 

significant question when assessing a learner’s proof or justification is whether or 

not the public performance which is the proof reflects an adequate private 

perception which generated it (Porteous, 1994:4).  

 

There is a general prevailing acceptance that pictures, although pedagogically 

important, are nonetheless essentially heuristic devices (Brown, 1997).  However, 

there is some support for the notion that pictures have “…a legitimate role to play 

as evidence and justification, well beyond a heuristic role” (Brown, 1997:161).  As 

Barwise and Etchemendy (1991:9) claim, “visual forms of representation can be 

important, not just as heuristic and pedagogic tools, but as legitimate elements of 

mathematical proofs”.  The choice of a pictorial context for the generalisation 

activities in the present study thus provides a referential context for the use of a 

generic example, what Lannin (2005:236) describes as “a particular example that 

embodies the general characteristics of an argument”, serving as a means of 

justification.  The use of the generic example will of course only be seen as a 

legitimate justification for someone who is able to perceive the general nature of 

the example (Mason and Pimm, 1984). 

 

“Generalization … cannot avoid the problem of validity” (Radford, as quoted in 

Lannin, 2005:235).  Thus, generalisation, by its very nature, can not be separated 

from justification, and justification should be seen as a critical component of the 

generalisation process.  In terms of the justification of an algebraic model, an 

argument is deemed acceptable when it connects the algebraic generalisation to a 

general relation inherent in the original problem context.  When the context is 
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provided as a pictorial scheme, the generalisation and associated justification is 

often based on a visual conceptualisation of the scenario (Lannin, 2005).  This type 

of justification is valued “…because it explains rather than simply convinces” 

(Lannin, 2005:235).   

 

The types of generalisation activities included in this study purposefully include 

those presented in pictorial contexts, thus allowing for a possible connection to a 

referential context that has the potential to aid and enhance the generalisation 

process.  Researchers (Stacey, 1989; Healy and Hoyles, 1999; Goulding, Suggate 

and Crann, 2000; Hershkowitz et al., 2001; Lannin, 2004) have demonstrated that 

such activities and contexts encourage the construction of a variety of 

generalisations.  In addition, Friedlander and Hershkowitz (1997:446-447) put 

forward their belief that problem situations based on the generalisation and 

justification of patterns help promote an appreciation for “…mathematical 

reasoning and an understanding of the nature of mathematical proofs”.    

 

From the various functions of proof, as outlined by Bell (1976), de Villiers (1990), 

and Hanna and Jahnke (1996), those seen to be critical in terms of this study are 

explanation and communication.  Thus, from a theoretical perspective, the central 

role of proof within the context of this study is seen as communication of 

mathematical understanding, and students’ justifications of their generalisations 

are seen to provide “…a window to view their understanding of the general nature 

of their rules” (Lannin, 2005:251).  Finally, while mathematical proofs are perhaps 

“the ultimate in justifications” (Sowder and Harel, 1998:670), proof within the 

context of the present study will be used in the somewhat broader sense of 

justification.   

 

 

3.5 SUMMARY OF THEORETICAL FRAMEWORK 
 

While embracing the basic tenets of constructivism, central to this investigation is 

the fundamental notion that constructivism is a descriptive as opposed to 

prescriptive philosophy.  Built onto this philosophy is the firm belief in the use of 

both language and notation systems/representations as important mediators in the 
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process of construction – both in terms of their contribution to the organisation of 

the thinking process itself, as well as the cyclical nature of reflection. 

 

The role of visualisation is central to the present investigation, and it is 

acknowledged that while generalisation problems presented in a pictorial or 

practical context have the potential to widen the scope of solution strategies for 

some pupils, for others this may well create additional complications.  Thus, from a 

theoretical perspective, the methodology employed in the data capturing process 

needs to be sensitive to the relative roles of the verbal-logical and visual-pictorial 

components of a pupil’s cognitive processes.  In addition, both the data capturing 

and data analysis methodologies should take cognizance of the role of 

visualisation in the generalisation process. 

 

The notions of generalisation, justification and proof are intricately interwoven.  

Generalisation, by its very nature, can not be separated from justification/proof, 

and justification is seen as a critical component of the generalisation process.  The 

types of generalisation activities included in this study purposefully include those 

presented in pictorial contexts, thus allowing for a possible connection to a 

referential context that has the potential to aid and enhance the generalisation 

process.  The central role of proof within the context of this study is seen as 

communication of mathematical understanding, and students’ justifications of their 

generalisations are seen to provide “…a window to view their understanding of the 

general nature of their rules” (Lannin, 2005:251). 
 

Practical issues of how this theoretical framework is reflected in the methodology of 

the present research are addressed in the following chapter. 
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CHAPTER FOUR 
 

METHODOLOGY 
 

 

4.1 THEORETICAL CONTEXT 
 

This study is based on a qualitative investigation framed within an interpretive 

paradigm.  According to Cohen and Manion (1994:36), the central endeavour 

within the context of the interpretive paradigm is “to understand the subjective 

world of human experience”.  In an effort to retain the integrity of the phenomenon 

under investigation, efforts must be made to “get inside” the research subject in 

order to “understand from within”.  Furthermore, attempting to see a situation as 

perceived by another human being should be imbued “with the assumption that the 

constructions of others … have integrity and sensibility within another’s framework” 

(Confrey, 1990:108).  This has particular import within an interpretive research 

paradigm.  Thus, the essential character underpinning the data analysis of the 

present study is the treatment of all responses, particularly those that are 

unexpected or idiosyncratic, with a genuine interest in understanding their 

character and origins. 

 

The epistemological assumptions which provide a theoretical backdrop to this 

qualitative and interpretive study have been oriented within a constructivist 

perspective.  The choice of the constructivist perspective is based on the emphasis 

of the NCS on investigation as a pedagogical approach to pattern generalisation 

tasks.  The core epistemological principles that underpin the investigative approach 

position it comfortably within a constructivist framework.  Of particular relevance is 

the overarching notion that constructivism is a descriptive as opposed to 

prescriptive philosophy (Towers and Davis, 2002:314).  For the purposes of this 

study, the constructivist stance as advocated by Cobb (2000) has been adopted, in 

that there is a reflexive relation between an individual student’s mathematical 

reasoning and the social context of the classroom microculture.  However, while 

acknowledging the reflexive relation between the individual and the social context, 

within the methodology of this study the focus will fall primarily on the mathematical 
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reasoning of the individual.  Of particular import is the role of notation systems and 

representations as mediators of the constructive process and the notion that these 

mathematically oriented notations contribute to the organisation of the thinking 

process (Kaput, 1991).  In addition, central to the theoretical orientation that 

underpins the methodology and task design is the notion that mathematical 

meanings are developed and strengthened by forging links between alternative 

expressions of the same mathematical concept, and that successful engagement 

with the subject depends on the capacity to move flexibly and meaningfully 

between these different forms of representation. 

 

Of central importance in terms of the methodology of the present study is that the 

focus here lies on the analysis of the solution strategies themselves, their 

classification and their cognitive and pedagogical implications.  While for some 

researchers (Noss et al., 1997; Healy and Hoyles, 1999; Radford, 2000; Lannin, 

2005) the focus of similar pattern generalisation investigations lies in the actual 

process of construction of these solutions, this is of much lesser importance in the 

present study.  Thus, the methodology employed here seeks accurately to 

summarise, analyse and classify the solution strategies themselves without 

providing detailed protocols of the actual process of construction.  A review of 

recent research into patterning activities served to inform the various classification 

frameworks. 

 

 

4.2 PILOT STUDY 
 

A small-scale pilot study was conducted prior to commencement of the formal data 

collection.  The purpose of this pilot study was to assess the clarity of the 

instructions on the mathematical processing response sheets as well as space and 

time issues relating to written participant responses.  Three Grade 9 learners and 

one Grade 10 learner took part in the pilot study.  The four pupils chosen were of 

mixed mathematical ability.  The three questions chosen for the pilot study included 

purely numeric terms (presented as both a simple sequence of numbers and in 

tabular form) as well as a pictorial pattern, presented using three consecutive 

terms.  The four learners involved in this pilot study did not take part in the main 
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study.  Insights gleaned from the pilot study are addressed elsewhere in this 

chapter. 

 

 

4.3 THE CASE STUDY AS METHODOLOGICAL STRATEGY 
 

The case study is not a methodological choice per se, but rather a choice of the 

specific object to be studied (Stake, 1994).  The small-scale pilot study suggested 

that one would gain “insight into the [research] question by studying a particular 

case” (Stake, 1995:3), in this instance a class of high ability learners.  Stake (1994, 

1995) refers to this type of enquiry as an instrumental case study, as opposed to 

two other broad types of case study which he identifies - intrinsic and collective.  In 

an instrumental case study, the choice of case is made on the basis that it is 

expected to advance the understanding of the issue under investigation.  Although 

the emphasis of a case study is to optimise understanding of the specific case 

under scrutiny rather than generalisation beyond that case, a case study can 

nonetheless be a useful small step towards a larger generalisation, or an 

increasingly refined generalisation (Cohen and Manion, 1994; Stake, 1994, 1995).  

The choice of participants for this study was thus guided by the chosen case study 

methodological strategy. 

 

 

4.4 PARTICIPANTS 

 

The members of a mixed gender, high ability Grade 9 class of 24 learners at an 

independent school in Grahamstown were chosen as research participants for this 

study.  This purposeful sampling can be justified as follows.  Firstly, the purpose of 

purposeful sampling is “to select information-rich cases whose study will illuminate 

the questions under study” (Patton, 1990:169).  Since the data collection process 

requires learners to attempt to articulate their own cognitive processes, a high 

ability group of learners was thought to be more suited to this methodology.  The 

previously mentioned small-scale pilot study seemed to confirm this.  In the same 

pilot study it also became apparent that high ability learners were more likely to 

progress further in the type of pattern generalisation tasks under investigation and 

thus more likely to constitute “information-rich cases” (Patton, 1990:169).  
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Secondly, Grade 9 represents the final year of the General Education and Training 

(GET) band.  Choice of Grade 9 participants thus ensures that responses to tasks 

are not based on a section of work formally taught at the start of the FET band 

(Grade 10) but rather the accumulated experiences of prior learning. 

 

 

4.5 ETHICS 
 

The issue of ethics is recognised as playing an important role in any research 

investigation in the social sciences (Cohen and Manion, 1994:347).  Firstly, formal 

permission was obtained from the headmaster of the school in question for 

permission to conduct the research.  Anonymity of both the school as well as the 

research participants was assured.  Secondly, only those learners who agreed to 

participate in the study through voluntary informed consent formed part of the 

research sample.  Participants also had the freedom to withdraw from the study at 

any stage.  Participant anonymity has been assured at all times by the use of 

appropriate pseudonyms when referring to the research participants. 

 

 

4.6 DATA GENERATION 
 
4.6.1 MATHEMATICAL PROCESSING RESPONSE SHEETS (MPRS) 
 

Data was generated from a research instrument that used a series of pencil and 

paper exercises based on linear generalisation tasks set in both numeric and 2-

dimensional pictorial contexts.  Design considerations for mathematical processing 

response sheets centred round the key elements of what Frobisher (1994) 

describes as the essence of an investigative approach - communication, 

reasoning, operational processes and recording – in an attempt to invoke a sense 

of dynamic engagement on the part of the investigator (Orton and Frobisher, 

1996). 

 

Various pattern generalisation tasks were drawn from the relevant literature, e.g. 

Stacey (1989), Orton (1997), Healy and Hoyles (1999) and Waring et al. (1999), 

and adapted to the needs of this study.  The extent to which question design 
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Position 1 2 3 4 . . . 

Number 3 5 7 9 . . . 

affects the solution strategies adopted by pupils was investigated in both numeric 

and pictorial contexts.  For each pattern, participants were required to provide 

numerical values for the next, 10th and 50th terms as well as a written articulation of 

their reasoning at each stage.  Participants were also asked to provide an 

algebraic expression for the nth term as well as to justify their expression.  Each 

task was thus constructed so that participants worked sequentially from relatively 

small terms to larger ones.  It was hoped that this would encourage participants to 

closely examine the general relations in the problem context, particularly in the 

case of the “far generalisation” tasks where a recursive strategy would have been 

impractical. 

 

The use of notation systems within this process was viewed as “contributing to the 

organization of that person’s thinking processes” (Kaput, 1991:54).  Sufficient 

space was thus provided on the mathematical processing response sheets for 

participants to write both their solution as well as a written articulation of their 

thought process8.  This written articulation served a three-fold purpose.  Firstly, it 

was a necessary requirement in order to accurately categorise the adopted 

solution strategies.  Secondly, it was hoped that the material instantiation of 

participants’ cognitive reasoning would scaffold the cyclical process of reflection 

(Kaput, 1991).  Thirdly, a verbal reasoning in natural language, as opposed to 

mathematical abstraction, was hoped to assist en route to the symbolic formulation 

of the general term. 

 

Numeric patterns were presented as a simple sequence of numbers (Figure 4.1) as 

well as tabular form (Figure 4.2).  Pictorial patterns were presented using three 

consecutive terms (Figure 4.3), two non-consecutive terms (Figure 4.4) or one 

single term9 (Figure 4.5).  
 

 

 
 
Figure 4.1   Number sequence     Figure 4.2   Tabular form    

 

 

                                                 
8 The issue of sufficient space was taken into consideration in the pilot study. 
9 The use of single terms was restricted to cases where a single pictorial term provides an unambiguous 
explanation of the underlying structure. 

 

   4 ; 7 ; 10 ; 13 ; . . .  
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Figure 4.3   Three consecutive terms   
 

 

 

 

 

 

 

 

 
Figure 4.4   Two non-consecutive terms  

 

 

 

 

 

 
 

      Figure 4.5   A single pictorial term  

 

In order to compare numeric tasks with pictorial tasks, each numeric pattern has an 

isomorphic10 pictorial counterpart.  The choice of a pictorial context for the 

generalisation activities is intended to provide a referential context for the use of a 

generic example in the justification of the general term. 

 

The literature review undertaken to inform this research suggested that linear 

sequences would be most appropriate in terms of eliciting rich data at all levels of 

the pattern generalisation process.  Accordingly, 22 linear/arithmetic sequences of 

the type cax ±  )0( ≠c  were chosen.  The choice of sequences with non-zero 

constant terms was a purposeful attempt at ensuring that choice of an 

                                                 
10 Isomorphic patterns are based on the same general formula.  By way of example, the pictorial pattern 
shown in Figure 4.4 would be isomorphic with the numerical pattern 4 ; 7 ; 10 ; 13 ; . . .  since they both have 
the general formula  13 += nTn

. 

3 houses2 houses1 house

7 squares require 22 matches

3 squares require 10 matches

The diagram shows a fence containing 5 upright poles and 12 horizontal rails
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inappropriate strategy (e.g. difference product or whole object) didn’t produce a 

spurious yet numerically correct answer.  The 22 sequences were split between 

pictorial and non-pictorial contexts.  The choice of the actual sequences as well as 

the various pictorial contexts was an attempt to provide sufficient variety for the 

differing verbal-logical and visual-pictorial reasoning skills likely to be found in the 

group of 24 Grade 9 pupils. 

 

Responses to the pattern generalisation tasks were recorded on mathematical 

processing response sheets over a period of three months.  On average, one 42 

minute school period was set aside approximately every 10 days for the duration of 

the study.  Three pattern generalisation tasks were asked per session, thus 

allowing for approximately 14 minutes per pattern11. 

 

In a qualitative study, “research design should be a reflexive process operating 

through every stage of a project” (Hammersley and Atkinson, 1983 as cited in 

Maxwell, 1996:2).  Thus, through a reflexive process of on-going evaluation, the 

specific pattern generalisation tasks, as well as the actual question design, 

remained open to modification and/or development during the course of the study.  

However, it did not prove necessary to make any alterations to the original 

decisions.   

 

The mathematical processing response sheets used in the investigation are 

included as Appendix A.  The 22 number patterns (linear sequences) chosen are 

summarised hereunder, grouped into the following five categories: 
 

• Pictorial scenarios using a single term 

• Pictorial sequences with two non-consecutive terms 

• Pictorial sequences with three consecutive terms 

• Simple numeric sequences 

• Numeric sequences in tabular form 
 

For each pattern, participants were required to provide numerical values for the 

next, 10th and 50th terms as well as a written articulation of their reasoning at each 

stage.  Participants were also asked to provide an algebraic expression for the nth 

term as well as to justify their expression. 

                                                 
11 The pilot study suggested that this was sufficient time for most pupils. 
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3 squares require 10 matches

If there are 4 vertical matchsticks you need 
a total of 13 matchsticks. 

• PICTORIAL SCENARIOS USING A SINGLE TERM 
 

Question 1 
 
 
 
 
 
 
 
 
 
Question 2 
 

 

 

 

 
 

 

 

Question 3 
 

 

 
 
 
 
 

 
Question 4 
      
 
 
 
      
 
 
 
Question 5 
 

 

 

 

A pattern with 3 horizontal matchsticks requires
a total of 11 matchsticks

For a row of 3 striped tiles there are 12 white 
tiles in the border. 

 

For 3 photos you need 10 drawing pins 
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• PICTORIAL SEQUENCES WITH TWO NON-CONSECUTIVE TERMS 
 

Question 6 
 

 

 

 

 

 

Question 7 
 

 

 

 

 

 

Question 8 
 

 

 

 
 

 

 

Question 9 
 

 

 

 

 
 

 

Question 10 
 

 

 

 

 

For 5 base matches you need a total of 19 matches.For 3 base matches you need a total of 11 matches

For a 2x2 square of striped 
tiles, 12 white tiles are needed. 

For a 5x5 square of striped tiles, 
24 white tiles are needed. 

For 2 squares you need a total of 19 matches. For 5 squares you need a total of 40 matches.

Base is 4 dots long
Base is 6 dots long

For a 2x3 square of striped 
tiles, 14 white tiles are needed. 

For a 4x5 square of striped tiles, 
22 white tiles are needed. 
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• PICTORIAL SEQUENCES WITH THREE CONSECUTIVE TERMS 
 

Question 11 
 

 

 

 

 

Question 12 
 

 

 

 

 

 
 

Question 13 
 

 

 

 

 

 
 
Question 14 
 

 

 

 

 

 

Question 15 
 

 

 

 

 

 

16 dots12 dots8 dots

 4 matches 

16 matches 
28 matches 
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Question 16 
 

 

 

 

 

 

 

• SIMPLE NUMERIC SEQUENCES 
 
Question 17 
 

 

 

Question 18 
 
 
 
 
 
Question 19 
 
 
 
 
 
• NUMERIC SEQUENCES IN TABULAR FORM 
 

Question 20 
 

 

 

 

 
 
Question 21 
 

 

 

 

 

 

12 white tiles 16 white tiles  20 white tiles 

8 ; 12 ; 16 ; … 

12 ; 19 ; 26 ; … 

3 ; 7 ; 11 ; … 

1st 2nd 3rd … 

4 13 22 … 

1st 2nd 3rd … 

4 7 10 … 
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Question 22 
 

 

 
 
 
4.6.2 INFORMAL INTERVIEWS 

 
Individual participants were informally interviewed where the written articulation of 

their mental reasoning was either ambiguous or required illumination by oral 

explanation.  The informal interview (Patton, 2002:342), otherwise known as the 

unstructured interview (Cohen and Manion, 1994:273), is an open-ended approach 

to interviewing in which questions flow from the immediate context.   

 

During these interviews participants were given time to read their own written 

explanations and then asked to provide an oral expansion or explanation of their 

mental reasoning.  These interviews took place as soon as possible after the 

completed mathematical processing response sheets had been analysed, and in 

most instances this was one day after completion of the MPRS. 

 

The purpose of these interviews was to provide research participants with the 

opportunity to further explain or expand on the written articulation of their mental 

processing.  This process of member checking constitutes a form of external 

validation (Lewis and Ritchie, 2003:276).  Since the main outcome of these 

interviews was to allow for an accurate categorisation of the adopted solution 

strategy, only field notes were taken.  In addition, interviews were restricted to 

those specific cases where a participant’s written articulation of their mental 

reasoning was either ambiguous or required illumination by oral explanation. 

 

 

4.7 DATA ANALYSIS 
 

The essential character underpinning the data analysis stage was the treatment of 

all responses, particularly those that were unexpected or idiosyncratic, with a 

genuine interest in understanding their character and origins.  Confrey (1990) 

1st 2nd 3rd … 

4 16 28 … 
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asserts that these are some of the most essential skills for a constructivist educator 

to embrace.  Furthermore, the treatment of responses was also imbued with the 

firm belief that “the constructions of others … have integrity and sensibility within 

another’s framework” (Confrey, 1990:108). 

 

 

4.7.1 STAGE CLASSIFICATION 
 

For each of the 22 questions, participants were asked to provide numeric values 

for the next, 10th and 50th terms, as well as an algebraic representation for the nth 

term.  Using the nomenclature of Stacey (1998:150), the 10th and 50th terms 

represent “near generalization” and “far generalization” tasks respectively.  

Determining the 10th term thus represents a task which can be accomplished by 

means of step-by-step counting or drawing, while determining the 50th term 

represents a task which goes beyond reasonable practical limits of such a step-by-

step approach.  The nth term denotes an algebraic generalisation of the pattern.   

 

 

4.7.1.1  Stage descriptors & modifiers 
 

The responses to the various linear generalisation questions were classified by 

means of stage descriptors as well as stage modifiers.  A similar model was used 

to that employed by Orton and Orton (1996; 1999).  The various stage descriptors 

can be summarised as follows: 

• Stage 0: no progress 

• Stage 1: next term correctly provided 

• Stage 2: next and 10th terms correctly provided 

• Stage 3: next, 10th and 50th terms correctly provided 

• Stage 4: next, 10th, 50th and nth terms correctively provided 

 

The above scheme is not intended as a hierarchical classification system, but 

rather as a qualitative framework for analysis.  Thus, since it is possible for a pupil 

to correctly determine the 50th term despite having incorrectly determined the 10th 

term (for example), stage modifiers were used to cover all possibilities.  The letters 

t, x and y were used to indicate errors in the next, 10th or 50th terms respectively.  
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These modifiers allow for the classification of a pupil who made an error in a 

previous stage but was nonetheless able to progress correctly to a higher stage.  

By way of example, a pupil who gave a correct 50th term but an incorrect 10th term 

would be classified at Stage 3x; the 3 indicating a correct calculation of the 50th 

term (Stage 3) and the x indicating an error in the calculation of the 10th term.  The 

absence of a stage modifier (t, x, y) thus implies that all preceding stages were 

successfully reached.  The use of both stage descriptors as well as stage modifiers 

allowed for both a quantitative as well as qualitative description of the level of 

attainment of each participant for each pattern generalisation task. 

 

 

4.7.1.2  Careless errors 
 

Careless numerical slips were ignored provided there was sufficient preceding 

written evidence to indicate that (i) the slip was in no way intentional and (ii) the 

absence of the slip would have resulted in the correct answer.  By way of example, 

consider Greg’s calculation of the 50th term of Question 6: 

 

 

190
1200

1)450(
1)4(

=
−=

−×=
−×= matchesbasematchesofNo

  

Apart from the careless numerical slip in the final line, both Greg’s reasoning and 

mathematics are faultless.  The slip is thus ignored and a final answer of 199 is 

assumed.  

 

Similarly, careless slips in the algebraic representation of the nth term were also 

ignored provided there was sufficient written evidence to justify such a decision.  

By way of example, James’s expression for the nth term of Question 12 was 

“ 14 +n ”.  However, for the calculation of the next, 10th and 50th terms, James made 

express use of the formula 24 +n .  Furthermore, James justifies his formula for the 

nth term as follows:  “To get one extra level you are adding four, thus multiplying by 

4.  In the first shape there were two matches on the bottom, thus adding 2”.  In this 

case there is sufficient evidence to suggest a numerical slip in James’s written 

expression for the nth term, and the correct formula of 24 +n  is assumed. 
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Within the question response analysis sheets, the letter “s” has been used to 

indicate all cases were a slip has been identified and the correct answer assumed.  

 

 

4.7.1.3  Criteria for Stage 4 classification 
 

In order to be classified at Stage 4, a pupil needed to provide a correct algebraic 

representation of the general (nth) term.  There was no necessity for the nth term to 

be expressed in simplified algebraic form, and all algebraic expressions were 

accepted provided they were algebraically equivalent to the correct simplified 

form12.  By way of example, the general formula for Question 13 is 59 −n .  Each of 

the following expressions is algebraically equivalent to 59 −n  and would thus be 

accepted as a correct response in order to be classified at Stage 4: 

• 1))2(2(3 +−+ nn  

• )1(54 −+ nn  

• 1)23(3 +−n  

• [ ] 11)1(33 ++−n  

• )1(94 −+ n  

 

Subdivision of Stage 4 (as per Orton and Orton, 1996) was not deemed necessary 

for this high-ability group of pupils.  Nonetheless, one minor modifier was needed 

in the classification of Stage 4 responses.  General terms which did not conform to 

standard algebraic conventions were deemed “creditable attempts” at Stage 4 

provided the written expression was sufficiently lucid to be correctly interpreted.  By 

way of example, Sizwe gave the following general term for Question 13: 

“ 4,9,1 +×− answernth ”.  This is sufficiently lucid to be interpreted as 4)1(9 +−n  in 

conventional algebraic format, and since this is algebraically equivalent to 59 −n  it 

is deemed a creditable attempt at a Stage 4 response.  Similarly, Jason’s response 

to the same question, “ ]31[)]3)21(4[ ×−+××−+ nn ” is algebraically incorrect in 

terms of standard algebraic conventions, but closer inspection of his calculation of 

the 10th and 50th terms clearly shows his understanding to be 

]3)1[(]3)2)1((4[ ×−+××−+ nn .  Since this is also algebraically equivalent to 59 −n , 

                                                 
12 The unsimplified format is actually preferable as this is far more revealing of how the general formula was 
derived. 
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it is deemed a creditable attempt at a Stage 4 response.  Within the question 

response analysis sheets, all Stage 4 creditable attempts are indicated by an 

asterisk (*). 

  

 

4.7.2 STRATEGY/METHOD CLASSIFICATION 
 

The method or strategy adopted for determining each of the next, 10th and 50th 

terms was carefully analysed and classified into one of the following seven 

categories: 

• Counting (Co) 

• Chunking (Ch) 

• Difference Product (DP) 

• Explicit (Ex) 

• Whole-object uncorrected (Wu) 

• Whole-object corrected (Wc) 

• Nature of numerical terms (Na) 

 

The literature review revealed very little consistency in the naming of patterning 

strategies.  Although the basic procedural descriptions of various strategies are 

largely similar, nomenclature seems to be somewhat idiosyncratic.  As a result, the 

seven strategies referred to in this investigation were named after distilling and 

somewhat modifying the various nomenclatures found in the research literature 

(Stacey, 1989; English and Warren, 1998; Hargreaves et al., 1998, 1999; Healy 

and Hoyles, 1999; Orton & Orton, 1999; Swafford and Langrall, 2000; Lannin, 

2003, 2005). 

 

Since the method classification is a critical component of this study, each of the 

seven strategies will now be described in detail.  For the purposes of explication, 

the numeric/pictorial pattern of growing squares of matchsticks shown in Figure 4.6 

will be referred to in the description of each method. 
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Figure 4.6   Growing squares of matchsticks 
 

 

• COUNTING 
 

The counting method (or method of successive addition) represents a recursive 

approach whereby subsequent terms are determined by successively adding the 

identified constant difference to previous terms. 

 

e.g. The 10th term could be calculated by adding (in a recursive manner) six lots 

of the constant difference (3) to the 4th term (13). 

31
3333331310

=
++++++=T

 

e.g. The use of a table, constructed in a recursive manner (i.e. where each term 

is determined successively from its preceding term by addition of the 

constant difference), would also be classified as a counting method. 
 

Term 1 2 3 4 5 6 7 8 9 10 

Matches 4 7 10 13 16 19 22 25 28 31 
 

 

In a pictorial context, the counting method can be realised by simply drawing a 

diagram of the required pictorial term and counting individual elements. 

 

e.g. 

 

 

 

 

 

 

 

 

13 matches10 matches7 matches4 matches

31 matches31 matches 
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• CHUNKING 
 

The chunking method is similar to the counting method.  However, instead of the 

successive addition of the constant difference in a recursive manner, “chunks” of 

the constant difference are added to a given term.   

 

e.g. The 10th term could be determined by adding a “chunk” of six lots of the 

constant difference (3) to the 4th term (13). 

 
31

1813
361310

=
+=

×+=T
 

 

 

• DIFFERENCE PRODUCT 
 

The difference product method is based on identifying the common difference and 

then multiplying it by the position number of the desired term.  Using this approach, 

the 10th term of the sequence 4 ; 7 ; 10 ; 13 ; … would be incorrectly calculated as 

being 30103 =× , where 3 is the common difference and 10 is the position number 

of the desired term.  This approach, although generally incorrect, does produce a 

correct answer for linear sequences based on direct proportion ( anTn =  where a  is 

a constant) e.g. 3 ; 6 ; 9 ; 12 ; …. 

 

 

• EXPLICIT 
 

The explicit method refers to a strategy where a general formula is first derived for 

the nth term and the desired term is then calculated directly from the general 

formula by using the independent variable (i.e. the position of the term).  Provided 

the general term has been correctly formulated, the explicit method will yield any 

number of algebraically equivalent expressions for the nth term.  In the examples 

that follow, the general terms of )1(2 ++= nnTn , 31 ×+= nTn , )1(4 −−= nnTn  and 

13 += nTn  are all algebraically equivalent. 
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e.g.  

 

 

 

 

By subdividing the structure into vertical and horizontal matches, one can 

arrive at the following general formula:  )1(2 ++= nnTn .  For the 10th term: 

31
)110(2010

=
++=T

 

 

e.g.  

 

 

 

By subdividing the structure into one initial starting match followed by the 

addition of n  groups of three matches, one can arrive at the following 

general formula:  31 ×+= nTn .  For the 10th term: 

31
310110

=
×+=T

 

 

e.g. By studying the given pictorial terms one could argue that the 5th term (for 

example) contains five squares, giving a total of 2045 =×  matches.  

However, four of these matches would have been counted twice due to 

overlapping, and would need to be subtracted.  For five squares there are 

thus 16420 =−  matches.  By generalizing this reasoning one could argue 

that the nth term (containing n  squares) would contain n4  matches of which 

1−n  would need to be subtracted due to overlapping, thus arriving at the 

general formula: )1(4 −−= nnTn .  For the 10th term: 

 
31

940
)110(10410

=
−=

−−×=T
 

 

e.g. One could also derive a general formula (explicit strategy) given purely 

numeric terms.  By considering the numeric sequence 4, 7, 10, 13, … one 

could argue that since the common difference is 3, the general term must be 

Term 3 (i.e. n = 3)
"n+1" vertical matches
"2n" horizontal matches

Term 2 (i.e. n = 2)
1 starting match
"n" groups of 3 matches
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of the form “ cn ±3 ” where c  is a constant.  Since cn ±3  must equal 4 for the 

first term (where 1=n ), one readily arrives at the general formula 13 += nTn .  

For the 10th term: 

 
31

1)10(310

=
+=T

 

 

Lannin (2003) differentiates between a “contextual” strategy and a “rate-adjust” 

strategy.  Both of these strategies result in an explicit formula for determining the 

numerical value of any term from the independent variable.  In the case of the 

contextual strategy, the general formula is derived from the context of the problem 

situation (first 3 examples), while the “rate-adjust” strategy stems from an 

essentially numeric or abstract argument (last example).  However, the distinction 

between the two strategies does not take into account those pupils who made use 

of a blend of both abstract and contextual elements.  Thus, within the methodology 

of the present investigation, no distinction is made between the two strategies.  

However, the extent to which the justification of the general term was specifically 

linked to the pictorial (as opposed to numerical) context is rated separately.  This 

characterisation is discussed in the next section. 

 

 

• WHOLE-OBJECT UNCORRECTED 
 

The whole-object method involves the assumption that, for example, the 10th term 

would be 2 times the 5th term.  A slight variation of the whole-object method 

involves the assumption that, for example, the 10th term can be arrived at by simply 

adding the 4th and 6th terms.  This approach, although generally incorrect, does 

produce a correct answer for linear sequences based on direct proportion ( anTn =  

where a  is a constant) e.g. 3 ; 6 ; 9 ; 12 ; ….  For linear sequences not based on 

direct proportion ( canTn ±=  where a  and c  are both constants), the uncorrected 

whole-object method will always result in an incorrect answer (more specifically, an 

over-count) as it does not compensate for overlapping units. 
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e.g.  

 

 

 

  

Using an uncorrected whole-object method, the 20th term could be 

incorrectly calculated as being 5 times the 4th term: 
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135
5 420

=
×=
×= TT

 

 

e.g. Using a slight variation of the whole-object method, the 7th term of the given 

sequence could be incorrectly calculated by simply adding the 3rd and 4th 

terms: 

 
23

1310
437

=
+=
+= TTT

 

  

 

• WHOLE-OBJECT CORRECTED 
 

The corrected whole-object method is similar to the uncorrected whole-object 

method.  However, in the corrected method the final answer is adjusted to 

compensate for overlapping units.  If done accurately, the corrected whole-object 

method should always result in the correct answer. 

 

e.g.  

 

 

  
 

Since the 3rd term contains 10 matches, the 6th term could be calculated by 

adding together two units of ten matches and then subtracting one match to 

compensate for overlapping: 

 
19

1102
12 36

=
−×=
−×= TT

 

   Term 3
10 matches

   Term 4
13 matches

   Term 3
10 matches
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e.g.  

 

 

Since the 5th term contains 16 matches, the 20th term could be calculated by 

adding together four units of 16 matches and then subtracting 3 matches to 

compensate for overlapping: 

61
3164
34 520

=
−×=
−×= TT

 

 

Within the classification methodology of this study, the whole-object method is 

regarded as a local (as opposed to global) strategy, and this distinction is very 

important.  The above examples show a local treatment of the corrected whole-

object method which results in a numerical value of a specific term.  If the whole-

object method is treated in a more abstract global sense to arrive at an explicit 

generalised formula for nT , then the strategy is classified as being explicit - e.g. by 

arguing that the nth term, containing n  squares, would contain n4  matches of 

which 1−n  would need to be subtracted due to overlapping, thus yielding general 

formula: )1(4 −−= nnTn . 

 

 

• NATURE OF NUMERICAL TERMS 
 

This method involves identifying a property applicable to some or all of the 

numerical terms in a given sequence. 

 

e.g. Given the sequence 4 ; 7 ; 10 ; 13 ; 16 ; 19 ; … one might observe that the 

pattern is even, odd, even, odd… and (for example) that between any two 

adjacent even numbers there are two “missing” even numbers (e.g. 12 and 

14 are “missing” between 10 and 16).  Alternatively, from the given 

numerical terms, one could make the spurious observation that every 

alternate number is a prime number. 

 

 

   Term 5
16 matches
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4.7.3 JUSTIFICATION CLASSIFICATION 
 

In each question, pupils were asked to justify their general formula – i.e. to explain 

why their formula for the nth term works.  Simon and Blume (1996) highlight four 

levels of justification.  The first level appeals to an authoritative source (e.g. 

mathematics teacher or textbook).  The second level of justification appeals to 

inductive or empirical evidence.  Levels 3 and 4 display deductive justification 

based on shared mathematical knowledge, either expressed in terms of specific 

cases (Level 3) or generality independent of particular instances (Level 4).  In a 

study of students’ generalisations and justifications derived from patterning tasks, 

Lannin (2005) made use of an algebraic adaptation of the framework of Simon and 

Blume (1996).   

 

Lannin’s (2005) adaptation was considered as a possible framework for the 

present study.  However, the framework soon proved to be unsuited to the data 

collection methodology of this study and had to be abandoned.  However, a far 

more pertinent aspect of the justification process was an analysis of the extent to 

which pupils used the pictorial scenario as a referential context for the use of a 

generic example in their justification of the general term.  To this end, responses 

were rated in terms of whether or not the justification was specifically linked to the 

pictorial (as opposed to numerical) context – a contextual connectivity rating 

(CCR).  Only those questions that had a pictorial element (Questions 1 - 16) were 

rated.  Scores of 1, ½ or 0 were awarded depending on the extent to which the 

pictorial context featured in the justification. 

 

   Table 4.1   Contextual connectivity rating (CCR) for justification of nT  

CCR Description 

1 Justification makes express reference (either 
diagrammatically or verbally) to the pictorial context 

½ 
Justification either makes only partial reference to the 
pictorial context or makes use of both pictorial and 
numerical elements 

0 Justification is purely numerically based and contains 
no reference to the pictorial context 
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Furthermore, since the processes of generalisation and justification are so 

intricately interwoven, it soon became apparent that a meta-analysis of the 

generalisation process, as articulated by each pupil in the justification stage, would 

yield a rich tapestry of fascinating data centred on the pictorial scenario as 

referential context.  The meta-analysis (Section 5.4.1) entailed carefully relating the 

pictorial scenario to the structure of the general term. 

 

 

4.8 VALIDITY 
 

The main threat to validity in the study is ambiguity or lack of clarity with respect to 

participants’ written articulation of their own reasoning processes.  Individual 

participants were informally interviewed where written responses were either 

ambiguous or required illumination by oral explanation.  Member checking was 

thus used as a form of external validation (Lewis and Ritchie, 2003:276).  In order 

to ensure valid comparisons of numeric and pictorial tasks, it was ensured that 

each numeric pattern had an isomorphic pictorial counterpart, as previously 

discussed. Furthermore, the order in which the various tasks were presented to the 

research participants was of critical importance in terms of validity considerations.  

The questions needed to be presented in such a way that a task under 

consideration was influenced as little as possible by the question design of 

previously experienced tasks within this study.  In order to ensure this, the 

following order was strictly adhered to: pictorial scenarios using a single term; 

pictorial sequences with two non-consecutive terms; pictorial sequences with three 

consecutive terms; simple sequence of numbers; numeric sequences in tabular 

form.  The validity of the individual tasks themselves was ensured by virtue of each 

question having been drawn from relevant and applicable literature.     
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4.9 SUMMARY OF METHODOLOGY 
 

The present study attempts to interrogate pupils’ responses to various linear 

generalisation tasks from both a technical as well as strategic viewpoint.  Over a 

period of 3 months, 24 Grade 9 pupils from a mixed gender, high ability class each 

completed a series of 22 pencil and paper exercises based on linear generalisation 

tasks set in both numeric and 2-dimensional pictorial contexts.  More specifically, 

numeric patterns were presented as a simple sequence of numbers as well as in 

tabular form, while pictorial patterns were presented using three consecutive terms, 

two non-consecutive terms, or one single term.  For each pattern, participants were 

required to provide numerical values for the next, 10th and 50th terms as well as a 

written articulation of their reasoning at each stage.  Participants were also asked 

to provide an algebraic expression for the nth term as well as to justify their 

expression.  In addition to written responses, individual participants were informally 

interviewed where the written articulation of their mental reasoning was either 

ambiguous or required illumination by oral explication. 

 

The responses to the various linear generalisation questions were classified by 

means of stage descriptors as well as stage modifiers.  The method or strategy 

adopted for determining each of the next, 10th and 50th terms was carefully 

analysed and classified into one of seven categories.  In addition, a separate 

framework was used to characterise each pupil’s justification of the nth term in 

terms of the extent to which the justification was linked to the pictorial context.  A 

meta-analysis of the generalisation/justification process was also undertaken.  The 

stage descriptors and modifiers together with the adopted solution strategies and 

justification characterisation were used to create a rich profile for each research 

participant as well as for each individual pattern generalisation task. 
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CHAPTER FIVE 
 

RESULTS, ANALYSIS & DISCUSSION 
 

5.1 INTRODUCTION 
 

Responses to all questions were carefully analysed and categorised in terms of 

strategy/method employed, stages successfully attained, and the contextual 

connectivity behind the justification of the general term.  The results of this analysis 

were summarised on Question Response Analysis Sheets (QRAS) for each of the 

22 questions, and these appear in Appendix B.  These summary sheets were used 

to give a global view of the results. 

 

Secondly, the influence of question design on strategy choice, stage progress, 

contextual connectivity, and the diversity of expressions for the general term was 

analysed. 

 

Thirdly, a meta-analysis of the Stage 4 responses was prompted by the diversity of 

algebraic representations of the general term.  The meta-analysis focused on the 

sub-structure evident in the formula derived for the general term in conjunction with 

its justification.  In addition, the diverse nature of visually mediated solutions and 

visual strategies uncovered by the meta-analysis are highlighted and discussed. 

 

Finally, a vignette of anomalous and idiosyncratic approaches is presented and 

discussed, and a comparison of two different cognitive styles is undertaken in order 

to highlight the divergent influence of question design on different pupils.  

 

 

5.2 GLOBAL PICTURE 
 

Responses to all questions were carefully analysed and categorised in terms of (a) 

strategy choice, (b) stage classification, and (c) contextual connectivity rating 

(CCR).  The results of this analysis were summarised on Question Response 
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Analysis Sheets (QRAS) for each of the 22 questions, and these appear in 

Appendix B.  These summary sheets were used to give a global view of the results.  

 

 

5.2.1 STRATEGY CHOICE 
 

For each of the 22 number patterns, the 24 research participants were asked 

individually to determine numerical values for the next, 10th and 50th terms along 

with a written articulation of their reasoning behind each, yielding a total of 1584 

responses ( 32422 ×× ).  Each of these responses was carefully analysed and 

categorised into one of the seven strategies previously described (Section 4.7.2): 

counting, chunking, difference product, explicit, whole-object uncorrected, whole-

object corrected, nature of numerical terms.  Table 5.1 shows the global picture of 

the extent to which each of these strategies was utilised13.  

 

The total number of strategies identified (1658) is in excess of the 1584 individual 

responses on account of a number of pupils using more than one strategy within a 

particular stage.  84 individual instances of more than one strategy being used for 

a single stage were identified.  There were also 10 instances of a question not 

having been attempted at a particular stage, for which no analysis or 

characterisation was possible. 
 

         Table 5.1   Global picture of strategy utilisation 

  STAGE14 

  1 
(next) 

2 
(10th) 

3 
(50th) TOTAL 

Counting (Co) 255 36 0 291 

Chunking (Ch) 0 6 2 8 

Difference Product (DP) 3 7 6 16 

Explicit (Ex) 329 488 504 1321 

Whole-object uncorrected (Wu) 0 8 10 18 

Whole-object corrected (Wc) 0 1 1 2 

ST
R

A
TE

G
Y 

Nature of numerical terms (Na) 2 0 0 2 
 TOTAL 589 546 523 1658 

                                                 
13 Stage 0 is indicative of no progress having been made, and is consequently not included in Table 5.1 as no 
characterisation was possible.  Similarly, Stage 4 is not included in Table 5.1 as it represents an algebraic 
generalisation rather than a numerical result. 
14 See Section 4.7.1.1 
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In terms of calculating the next term in a given sequence, two strategies clearly 

dominated: counting (43%) and explicit (56%).  The counting strategy represents a 

recursive or iterative approach where the common difference is simply added to an 

existing term, either numerically or pictorially, in order to calculate the following 

term in the sequence.  It is thus not surprising that this strategy proved popular at 

Stage 1, what Lannin (2004:217) remarks as being an almost natural tendency.  

The explicit strategy makes use of a general formula for nT   in terms of the 

independent variable n , the position of the term in the sequence.  The general 

formula could derive from either the pictorial context, or could be purely numerically 

driven.  The explicit strategy thus requires the construction of a general formula 

which embodies the underlying structure of the pictorial/numeric pattern.  In this 

regard it is perhaps a little surprising that so many pupils used this strategy at the 

Stage 1, where the counting strategy would have been arguably a faster and more 

direct approach.  Together, the explicit and counting strategies account for 99% of 

all strategies attempted at Stage 1. 

 

At Stage 2, the explicit strategy alone represents approximately 89% of all 

responses, while the counting strategy accounts for just less than 7%.  Stage 2 

represents what Stacey (1989:150) refers to as a “near generalisation” task, where 

a step-by-step counting procedure would still be within the bounds of feasibility.  It 

is thus perhaps a little surprising that, already at this point, so many pupils rejected 

a recursive approach in favour of an explicit strategy, since the recursive approach 

would have required at most an additional 6 iterations from Stage 1.   

 

Stage 3 is what Stacey (1989:150) refers to as a “far generalisation” task – a 

question that goes beyond reasonable practical limits of a step-by-step 

counting/drawing approach.  At Stage 3, the explicit strategy accounts for almost 

96% of all responses, while the counting strategy was not employed at all. 

 

In total, the explicit strategy represents almost 80% of all strategies used, while a 

step-by-step counting procedure accounts for 17.5%.  The remaining five 

strategies account for less than 3% of all responses.  The predominance of the 

explicit strategy is surprising in view of the common theme in the research literature 

(e.g. Hargreaves et al., 1998; MacGregor and Stacey, 1993; Hershkowitz et al., 

2002) which relates to the tendency of pupils to generalise recursively rather than 



 73

using the independent variable, i.e. the explicit strategy.  Furthermore, English and 

Warren (1998) found that once students had established a recursive strategy they 

were reluctant to search for a functional relationship.  This is certainly not the case 

in the present study, where the tendency to generalise recursively drops markedly 

after Stage 1 – from 43% at Stage 1 to just less than 7% at the Stage 2.  

Associated with this is a marked increase in the number of pupils using an explicit 

strategy after Stage 1 – from 56% at Stage 1 to just over 89% at Stage 2.  These 

shifts are a clear indication of pupils changing from a counting strategy to an 

explicit strategy. 

 

A particularly interesting observation is the number of instances where two different 

strategies were employed in the same stage, both resulting in the same correct 

numerical answer.  Equally interesting is the fact that the only two strategies used 

in combination were the counting and explicit strategies, although considering the 

preponderance of those two methods this is not too surprising.  In total, 84 

separate instances were noted where these two strategies were used in 

combination, 63 at Stage 1, and 21 at Stage 2.  In some instances (19 of the 84) 

this merely amounted to extending the numerical sequence by means of the 

constant difference and using this to confirm the answer obtained from the explicit 

strategy.  However, in the vast majority of cases (65 of the 84), the combined 

strategy entailed checking the answer obtained from the explicit strategy by means 

of drawing the required pictorial term and counting the required elements 

(matches, dots etc.).  In addition to merely acting as a check, the physical act of 

drawing a pictorial representation of the desired term could also possibly have 

served as a meaningful specific reference for investigating the general structure 

underlying the pictorial context.  This may well have assisted some pupils in the 

generalisation process in terms of seeing the general in the particular and hence 

moving towards an algebraic expression for the general term. 

 
 

5.2.2 STAGE CLASSIFICATION 
 

The responses to the various linear generalisation questions were classified by 

means of the stage descriptors (Stages 0 – 4) and stage modifiers (t, x and y) 

previously described (Section 4.7.1.1).  It is important to keep in mind that Stages 0 

through 4 do not represent a hierarchical structure.  Being classified at a particular 
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stage is not dependent on providing correct responses for all the previous stages, 

hence the need for the stage modifiers.  While not being a hierarchical structure, 

the stages do however represent increased levels of difficulty, requiring numerical 

values for the next (Stage 1), 10th (Stage 2) and 50th (Stage 3) terms, and finally an 

algebraic expression for the nth term (Stage 4).  Stage 0 is indicative of no progress 

having been made.   

 

Table 5.2 shows the global picture for the stage classification of all 24 research 

participants for each of the 22 questions.  All stage modifiers have been included, 

and asterisks indicate general terms which were given in non-standard algebraic 

format but which were nonetheless sufficiently lucid to be deemed “creditable 

attempts” at Stage 4.  In order to highlight all incorrect responses, Stages 0 

through 3 have been shaded along with Stage 4 responses which include a stage 

modifier (i.e. an incorrect response at one of the previous stages).  In addition, an 

average “total stage attainment” (TSA) value is indicated for each research 

participant as well as for each individual question.  This is an attempt to ascribe a 

numerical value to the level of attainment of the research participants as a whole to 

each of the 22 questions, as well as the level of success attained on average by 

each of the 24 research participants.  The TSA value was calculated for each 

individual question by awarding 1 point for a correct Stage 1 response, 2 points for 

a correct Stage 2 response, 3 points for a correct Stage 3 response, and 4 points 

for a correct Stage 4 response.  The highest obtainable score for a single question 

is thus 10 (1+2+3+4) for a pupil who correctly answered all four stages15.  The 

intention of this global picture is twofold. Firstly it is intended to give an overview of 

how well the research participants, as a whole, fared in each of the questions.  

Secondly, it is intended to show the spread of levels of attainment for each of the 

24 research participants.  Table 5.2 represents this global picture. 

 

 

 

 

 

 

                                                 
15 By way of further example, a pupil classified at Stage 3 would be awarded a mark of 6 (1+2+3+0), while a 
pupil classified at Stage 4y (having made an error at Stage 3 but nonetheless managing a correct Stage 4 
response) would be awarded a mark of 7 (1+2+0+4). 
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On the whole, the research participants fared well with the majority of the 

questions.  In fact, in 17 of the 22 questions more than 80% of the research 

participants were able to provide a correct Stage 4 response.  Question 13 

(average TSA = 6.29) was the most poorly answered question by some 

considerable margin.  Question 21 (average TSA = 9.63) proved to be the best 

answered question.  The lowest average TSA for an individual research participant 

was 4.41, which was markedly lower than the next lowest value of 6.23.  At the 

other end of the scale, there were 5 pupils who managed to give correct responses 

at all four stages in all 22 questions. 

 

The high general level of success, in terms of reaching a correct Stage 4 response, 

can be ascribed to at least two reasons.  Firstly, all of the questions chosen for this 

study were linear/arithmetic sequences - i.e. of the form cax ±  where a  and c  are 

constants.  This was a purposeful decision, as the literature review suggested that 

the alternative (quadratic sequences) would prove too problematic for pupils in the 

age group under investigation16.  It thus seemed reasonable to postulate that linear 

sequences would allow research participants to progress further in the type of 

pattern generalisation tasks envisaged, and would thus more likely constitute 

“information-rich cases” (Patton, 1990:169).  Secondly, the high success rate can 

in part be ascribed to the fact that the research participants represent a group of 

high ability learners.  Once again this was a purposeful decision based on the 

argument that a high ability group of learners would be better suited to a 

methodology in which the data collection process required learners to attempt to 

articulate their own cognitive reasoning17.   

 

 

5.2.3 CONTEXTUAL CONNECTIVITY RATING 

 
For each question, the pupils’ written justifications of their general terms were rated 

in terms of whether or not the justification was specifically linked to the pictorial (as 

opposed to numerical) context.  This rating has been dubbed the “Contextual 

Connectivity Rating” (CCR).  Only those questions that had a pictorial element 

                                                 
16 Other types of number sequences – power, geometric, and Fibonacci-type sequences – were not 
considered, as they lacked sufficient variety for the purposes of this investigation. 
17 A small-scale pilot study seemed to confirm this, and the high Stage 4 success rate indicated in Table 5.2 
certainly seems to validate both of the decisions taken. 
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(Questions 1 - 16) were rated.  Scores of 1, ½ or 0 were awarded depending on 

the extent to which the pictorial context featured in the justification.  For a score of 

1 to have been awarded, the justification must have made explicit reference (either 

diagrammatically or verbally) to the pictorial context.  A score of 0 indicates that the 

justification is purely numerically based and contains no reference to the pictorial 

context.  A score of ½ is indicative of those justifications that either made only 

partial reference to the pictorial context or where both pictorial and numerical 

elements play a role in the justification.  

 

Table 5.3 shows the average CCR for each research participant as well as each of 

the 16 questions that were set in a pictorial/practical context.  All general term 

justifications were awarded a CCR, irrespective of whether or not the general term 

represented a correct Stage 4 response.  The CCR is thus not a measure of 

success at Stage 4 (algebraic generalisation), but rather a measure of the extent to 

which the Stage 4 response made reference, either correctly or incorrectly, to the 

pictorial context. 
 

Table 5.3   Global picture of average contextual connectivity ratings  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pupil AVE 
CCR 

Alex 1.00 
Bianca 0.88 
Carol 0.91 
Dana 0.94 
Greg 0.75 

Hannah 0.81 
Helen 0.88 
James 0.72 
Jason 0.78 
Julian 0.50 
Kyle 0.78 
Lisa 0.81 

Lucas 0.91 
Mark 0.81 
Mary 0.38 
Nell 0.81 

Owen 0.94 
Phil 0.59 

Richard 0.47 
Ryan 0.22 
Sizwe 0.25 
Sonya 0.78 
Sue 0.56 
Ted 0.69 

Question AVE 
CCR 

1 0.88 
2 0.77 
3 0.90 
4 0.92 
5 0.85 
6 0.85 
7 0.81 
8 0.77 
9 0.81 
10 0.75 
11 0.50 
12 0.90 
13 0.52 
14 0.56 
15 0.42 
16 0.23 
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The average CCR values for individual research participants show a good spread – 

from 1.00 (Alex) to 0.22 (Ryan).  Alex was the only pupil to make explicit reference 

to the pictorial context in all 16 questions.  The average CCR values for individual 

questions were also well spread – from 0.92 (Question 4) to 0.23 (Question 16).  

There is a definite downward trend of the CCR as the questions progress from 1 

through 16.  This is an important observation, and its significance is discussed later 

in this chapter. 

 
Figure 5.1 shows a scatter plot of average TSA against average CCR for each of 

the 24 research participants.  The intention of the graph is to investigate the 

correlation between these two parameters.  At best one could say that there is a 

very weak positive correlation between average TSA and average CCR, but even 

this statement should be treated with due circumspection.  While a higher CCR 

seems to correspond to a higher average TSA for some pupils, the exact opposite 

is true for others.  This observation is central to the theme of the present study, and 

the notion that different contexts (numeric vs. pictorial) will resonate differently with 

different pupils.  While a pictorial context may be helpful to some pupils, for others 

it may simply create additional complications. Furthermore, some pupils may 

simply opt to convert a pictorial pattern into a numerical equivalent, and give no 

further thought to the pictorial context.  This theme is expanded on as the chapter 

unfolds.  

 
 
 
 
 
 
 
 
 
 
 

    Figure 5.1   Scatter plot of average TSA versus CCR 

 
 
 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00 8.00 10.00

Average "total stage attainment" (TSA)

A
ve

ra
ge

 "
co

nt
ex

tu
al

 c
on

ne
ct

iv
ity

ra
tin

g"
 (C

C
R

)

 



 79

5.3 INFLUENCE OF QUESTION DESIGN 
 

Each of the 22 pattern generalisation tasks used in this study fell into one of 6 

different question design formats.  The structure of these 6 formats was guided by 

insights gleaned from the literature review.  As previously discussed, the order in 

which the various tasks were presented to the research participants was of critical 

importance in terms of validity considerations.  The questions needed to be 

presented in such a way that a task under consideration was influenced as little as 

possible by the question design of previously experienced tasks within this study.    

In order to ensure this, the following order was strictly adhered to: pictorial 

scenarios using a single term; pictorial sequences with two non-consecutive terms; 

pictorial sequences with three consecutive terms; simple sequence of numbers; 

numeric sequences in tabular form.  

 

The six different question design formats are summarised below, where the 

dependent variable refers to the numerical value of the term itself, while the 

independent variable refers to the position of the term in the sequence. 

 

Questions 1 - 5: A single pictorial term in which the underlying structure is 
unambiguous.  Both dependent and independent variable 
mentioned in the context of the picture. 

 
Questions 6 – 10: Two non-consecutive pictorial terms.  Both dependent and 

independent variable mentioned in the context of the 
picture. 

 
Questions 11 – 13:  Three consecutive purely pictorial terms. 
 
Questions 14 – 16:  Three consecutive pictorial terms with numerical value of 

dependent variable indicated. 
 
Questions 17 – 19:  Three consecutive purely numeric terms (dependent 

variable indicated). 
 
Questions 20 – 22:  Three consecutive purely numeric terms in table format 

(dependent and independent variables indicated). 
 
 

The influence of question design on (a) strategy choice, (b) stage progress, (c) 

contextual connectivity, and (d) the diversity of expressions for the general term 

was analysed. 
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5.3.1  INFLUENCE OF QUESTION DESIGN ON STRATEGY  
 

MacGregor and Stacey (1993), cite one of the main causes of difficulty in 

formulating algebraic rules as being pupils’ tendency to focus on the recursive 

patterns of one variable rather than the relationship linking the two variables.  

Similar observations have been made by other researchers (e.g. Orton, 1997).  

This part of the analysis focuses on the extent to which question design either 

attracts or discourages a recursive approach. 

 

The counting strategy (recursive approach) was used in one of two different modes 

in this investigation, either (a) on its own as sole strategy, or (b) in combination with 

an explicit strategy.  Table 5.4 shows the percentage of total responses using a 

counting strategy (as sole strategy) for Stages 1, 2 and 3.  The value under the 

“Total” column indicates the number of responses using the counting strategy as a 

percentage of the total responses (using any strategy) for Stages 1, 2 and 3 

combined.  The rationale behind considering only those responses that used 

counting as the sole strategy was the fact that when counting and explicit 

strategies were used in combination, the counting strategy was used simply to 

check the answer derived from the explicit strategy, and was thus not critical to a 

correct response at that stage. 

 
Table 5.4   Percentage of total responses using counting as sole strategy  

 STAGE 

QUESTIONS Next 
(Stage 1) 

10th 
(Stage 2) 

50th 
(Stage 3) Total 

1 – 5 36.7 % 2.5 % 0.0 % 13.1 % 
6 – 10 17.5 % 0.0 % 0.0 % 5.8 % 

11 – 13 38. 9 % 2.8 % 0.0 % 13.9 % 
14 – 16 47.2 % 2.8 % 0.0 % 16.6 % 
17 – 19 51.4 % 8.3 % 0.0 % 19.9 % 
20 – 22 40.3 % 1.4 % 0.0 % 13.9 % 

 

 

Table 5.4 reveals some interesting trends.  There is a dramatic drop in the number 

of pupils using the counting strategy when two non-consecutive pictorial terms are 

used instead of one single pictorial term.  There could be two possible reasons for 

this.  Firstly, a single pictorial term may not be a sufficient scaffold to enable some 
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pupils to derive a general expression.  A second diagram, physically drawn by the 

pupil, may have been necessary in order to see the general structure underlying 

the pictorial context.  Thus, using a counting strategy at Stage 1 may have been a 

necessary prerequisite to moving to an explicit strategy at Stage 2.  Secondly, 

questions incorporating two non-consecutive pictorial terms tended to have slightly 

bigger physical structures compared to the single term scenario, and drawing the 

next diagram in such a case may have been considered impractical by some 

pupils.  

 

There is a dramatic increase in the number of pupils using the counting strategy 

when three consecutive purely pictorial terms are used instead of two non-

consecutive pictorial terms.  This increase is even more pronounced when the 

three consecutive terms are accompanied by an indication of the dependent 

variable.  The initial increase could be a result of two possibilities.  Firstly, the fact 

that the three consecutive pictorial terms are the first three terms in the sequence, 

the physical structures of the pictorial representations are a little less complex than 

in the case of the two non-consecutive terms.  This may have encouraged pupils to 

simply draw the next term rather than looking for an explicit strategy.  Secondly, 

because the three consecutive terms give a physical representation of growth, 

pupils may have been drawn to the recursive nature of the pattern and simply 

added the common difference to the third term in order to obtain a numerical value 

for the next term.  This seemed to be slightly more often the case than simply 

drawing the next term and counting the number of elements.  The even greater 

increase when the three consecutive terms are accompanied by an indication of 

the dependent variable can be explained in terms of the common difference having 

been made somewhat more explicit by the inclusion of the dependent variable and 

pupils thus being drawn even more towards a recursive strategy. 

 

The simple presentation of three consecutive purely numeric terms resulted in the 

highest proportion of pupils opting for the recursive strategy.  Just over 51% of all 

responses at Stage 1 made use of the counting strategy in the three questions 

presented in this format.  Furthermore, just over 8% of the responses at Stage 2 

also made use of the counting strategy, far more than in any other question design.  

Once again, the common difference becomes immediately clear from the given 

terms, and pupils seem to have been drawn towards this, and used a recursive 
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approach as a result.  Interestingly, when the three consecutive numeric terms are 

put into table format, which necessarily includes the independent variable, there is 

a slight drop in the tendency to pattern recursively.  One can only surmise that the 

explicit presence of both dependent and independent variables assisted some 

pupils in seeing a general relation between the two and hence being more inclined 

to use an explicit strategy over a recursive approach. 

 
Table 5.5 shows the percentage of total responses using an explicit strategy at 

Stages 1, 2 and 3.  The value under the “Total” column indicates the number of 

responses using the explicit strategy as a percentage of the total responses (using 

any strategy) for Stages 1, 2 and 3 combined.  As a result of the preponderance of 

the counting and explicit strategies being the main two strategies employed, the 

picture is essentially the negative image of Table 5.4. 

 
Table 5.5  Percentage of total responses using an explicit strategy  

 STAGE 

QUESTIONS Next 
(Stage 1) 

10th 
(Stage 2) 

50th 
(Stage 3) Total 

1 – 5 63.3 % 88.3 % 92.5 % 81.4 % 
6 – 10 81.7 % 95.0 % 96.7 % 91.1 % 

11 – 13 61.1 % 95.8 % 98.6 % 85.2 % 
14 – 16 51.4 % 93.1 % 95.8 % 80.1 % 
17 – 19 44.4 % 86.1 % 91.7 % 74.1 % 
20 – 22 58.3 % 97.2 % 98.6 % 84.7 % 

 

 

The question design that seems to best encourage an explicit strategy is that using 

two non-consecutive pictorial terms – just over 90% of all responses used an 

explicit strategy for this type of question.  One can conjecture that the presence of 

two non-consecutive terms makes the common difference less obviously 

noticeable, encouraging pupils to make use of an explicit rather than recursive 

strategy.  Interestingly, almost 82% of pupils made use of an explicit strategy 

already at Stage 1 with this type of question.   

 

The question design that least encouraged an explicit strategy was the simple 

presentation of three consecutive numeric terms with no indication of the 

independent variable.  The use of consecutive numeric terms seems to draw 
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attention to the common difference and hence toward a recursive approach.  

However, when a tabular format is used, including an indication of the independent 

variable, recursion seems to lose favour to an explicit strategy.  Once again one 

can only surmise that the explicit presence of both dependent and independent 

variables assisted some pupils in seeing a general relation between the two and 

hence being more inclined to use an explicit strategy over a recursive approach. 

 
The above observations lend support to Hershkowitz et al. (2002) who found that 

the presentation of consecutive terms encouraged recursion, while terms 

presented non-consecutively tended to encourage generalisation by means of the 

independent variable. Hershkowitz et al. (2002) also found that the use of a 

pictorial context, particularly if non-consecutive terms were presented, tended to 

encourage explicit generalisations.  Table 5.5 clearly shows the influence of using 

two non-consecutive pictorial terms with respect to encouraging an explicit 

approach to patterning.  Furthermore, the results give strong support to the notion 

that question design can play a key role in influencing which strategies are adopted 

by pupils when solving pattern generalisation tasks. 

 

 

5.3.2  INFLUENCE OF QUESTION DESIGN ON STAGE PROGRESS 
 

Table 5.6 shows the average “Total Stage Attainment” (TSA) values for each of the 

six different question designs.  The average TSA values are indicative of the level 

of attainment/progress made by the research participants as a whole. The 

calculation of these values has been described in Section 5.1.2.  

 
         Table 5.6   Average TSA per question type  

QUESTIONS Average TSA
1 – 5 8.91 
6 – 10 8.98 

11 – 13 7.97 
14 – 16 8.68 
17 – 19 8.75 
20 – 22 9.32 
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Although the majority of the average TSA values lie fairly close to one another, of 

interest are the highest and lowest values, which are well distanced from the rest of 

the cluster.  The highest level of attainment (average TSA = 9.32) was achieved on 

those questions presented purely numerically, in tabular format.   The explicit 

presence of both the dependent and independent variable, along with the fact that 

the terms were consecutive and hence made the common difference easier to 

recognise, all seem to have allowed for greater overall attainment.  This finds 

resonance with a study by English and Warren (1998) where students found it 

easier to generalise, both verbally and symbolically, when patterns were presented 

in tabular form as opposed to pictorial form. 

 

The lowest level of attainment (average TSA = 7.97) was achieved on those 

questions presented as three consecutive purely pictorial terms.  In these 

questions, no mention was made of either the dependent or independent variable.  

This is an interesting observation when taken in conjunction with Table 5.5.  

Question designs making use of (a) three consecutive purely pictorial terms, and 

(b) three consecutive purely numeric terms in tabular format show almost identical 

values for the percentage of total responses using an explicit strategy (85.2% vs. 

84.7%).  However, there is a marked difference in level of attainment in these two 

question types (7.97 for the former, 9.32 for the latter).  This adds weight to the 

notion that a pictorial representation is only of benefit if the underlying structure can 

be clearly seen.  Despite the fact that pupils made almost equal use of an explicit 

strategy in the two question types, the lower level of success in the purely pictorial 

context would seem to suggest the use of explicit strategies based on 

misinterpretation of the general structure inherent in the pictorial context.  Thus, 

while a purely pictorial context may be useful to some pupils, to others it may well 

create complications.  A contextualised indication of both the dependent and 

independent variable (e.g. for 2 squares you will need 7 matchsticks) in conjunction 

with the pictorial representation (Questions 1-5 and 6-10) seemed to be most 

successful in alleviating this problem. 
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5.3.3  INFLUENCE OF QUESTION DESIGN ON CONTEXTUAL CONNECTIVITY 
 

Table 5.7 shows the average “Contextual Connectivity Rating” (CCR) for each of 

the four different question designs that were based on a pictorial context (i.e. 

Questions 1-16).  The CCR (which has been described more fully in section 4.7.3) 

is indicative of the extent to which the justification of the general term makes 

reference to the pictorial context.   

 
     Table 5.7  Average CCR per question type 

QUESTIONS Average CCR 
1 – 5 0.86 
6 – 10 0.80 

11 – 13 0.64 
14 – 16 0.40 
17 – 19 - 
20 – 22 - 

 

 

The results shown in Table 5.7 reveal a fascinating trend.  The effect of presenting 

consecutive terms (Questions 11-13 and 14-16) seems to have a big influence on 

moving pupils’ nT  justifications away from the referential context (the pictorial 

representation) toward a more numerically based argument.  This effect is even 

more pronounced in those questions (14-16) where the pictorial context is 

presented in conjunction with values for the dependent variable.  The most likely 

explanation for this observation is that consecutive terms attract attention to the 

common difference, hence away from the underlying general structure inherent in 

the pictorial context, and thus to a more numeric approach to extracting and 

justifying the general formula for nT . 

 

There is also a slight decrease in the average CCR value when moving from 

questions involving a single pictorial term (Questions 1-5) to those making use of 

two non-consecutive pictorial terms (Questions 6-10).  It is worth keeping in mind 

that both these question types make contextualised reference to both the 

dependent and independent variables.  Thus, the slight decrease can probably be 

ascribed to the presence of more numeric points of reference. 
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5.3.4 INFLUENCE OF QUESTION DESIGN ON DIVERSITY OF EXPRESSIONS  
           FOR nT  
 

Table 5.8 shows the average number of nT  variations per question type.  This gives 

an indication of the diversity of responses in formulating a general algebraic 

expression for the nth term.  Only correct Stage 4 responses have been 

considered.  

        Table 5.8   Average number of nT  variations per question type 

QUESTIONS 
Average number of 

correct nT  variations 
1 – 5 3.6 

6 – 10 6.2 

11 – 13 4.7 

14 – 16 6.0 

17 – 19 2.7 

20 – 22 2.3 

 

 

The dramatic drop in the number of correct nT  variations for those questions 

incorporating purely numeric terms is both expected and understandable, since the 

lack of a referential (pictorial) context severely limits the scope of readily 

identifiable variations in nT .  Without a pictorial frame of reference, expressions for 

nT  can only be derived from purely numeric considerations, the resulting 

expressions usually taking the form dna )1( −+  or )( dadn −+ , or those deriving 

fortuitously from a guess-and-check approach. 

 

The increase in the number of correct nT  variations when moving from questions 

involving a single pictorial term (Questions 1-5) to those making use of two non-

consecutive pictorial terms (Questions 6-10) can probably be ascribed to pupils’ 

enhanced appreciation of the underlying general structure inherent in the pictorial 

context as a result of the additional term.  The same argument could be applied 

when moving from two pictorial terms (Questions 6-10) to three pictorial terms 

(Questions 11-13 and 14-16).  The value of 4.7 (Questions 11-13) is thus 

somewhat anomalous, and is probably a result of the specific questions chosen for 

that particular design type.  Responses to Stage 4 in question 13 gave rise to 
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seven different nT  variations, while Question 11 and Question 12 had only 4 and 3 

respectively.  It is worth bearing in mind that some pictorial designs yield fewer 

accessible (easily identifiable) expressions for nT , and this is likely to have been 

the situation in this case. 

 

Comparing the number of correct nT  variations per question type with average 

CCR values should be treated with extreme caution.  There is no reason to 

assume that a high CCR value implies a high diversity of  nT  variations.  The CCR 

value relates to the contextualisation of the justification for the nth term, but the 

justification itself is not necessarily an indication of the approach used to derive the 

algebraic expression for nT .  It is thus hardly surprising that there is little correlation 

between the average CCR values per question type and the average number of nT  

variations per question type. 

 

Nonetheless, the diversity of algebraic representations of nT  derived for each 

question was most informative, and prompted a meta-analysis of the generalised 

formulae in conjunction with their justification.  The results of the meta-analysis are 

discussed later in the chapter, but it is worthwhile at this point listing the various 

expressions for nT  in order to gain an idea of their remarkable richness and 

diversity (Tables 5.9 – 5.14).  Only correct Stage 4 responses have been included, 

and where necessary, pupils’ written responses for the nth term have been 

converted into equivalent expressions in standard algebraic format.  The number of 

occurrences of each expression is indicated, along with the total number of correct 

Stage 4 responses for each question. 
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Table 5.9  Pupils’ algebraic expressions for nT  (Questions 1-5) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q5 

Q4 

Q3 

Q2 

Q1 

Question Expression for nT  Tally Total 
13 +n  18  

)1(2 ++ nn  1  3 squares require 10 matches

 )1(34 −+ n  1 20 
23 +n  21  

)2(4 −− nn  1  A pattern with 3 horizontal matchsticks requires
a total of 11 matchsticks

 )1(35 −+ n  1 23 
62 +n  16  

2)2(2 ++n  2  
nn −+ )2(3  1  
)1(28 −+ n  1  

For a row of 3 striped tiles there are 12 white 
tiles in the border. 

nnn −+++ ]2)2(2[  1 21 
13 +n  21  

)1(4 −− nn  1  

 

 

For 3 photos you need 10 drawing pins 

4)1(3 +−n  1 23 
34 −n  7  
nn +− )1(3  8  
1)1(4 +−n  1  

If there are 4 vertical matchsticks you need 
a total of 13 matchsticks. 

 

33 −+ nn  2 18 
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Table 5.10   Pupils’ algebraic expressions for nT  (Questions 6-10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q8 

Q9 

Q10 

Q6 

Q7 

Question Expression for nT  Tally Total 
14 −n  11  

)1(3 −+ nn  9  
)1(2 −++ nnn  2  

 

For 5 base matches you need a total of 19 matches.For 3 base matches you need a total of 11 matches 

15 −− nn  1 23 
44 +n  15  
nn 2)2(2 ++  2  

422 ++ nn  1  
)1(4 +n  2  

22)2( nn −+  2  

 

For a 2x2 square of striped 
tiles, 12 white tiles are needed. 

For a 5x5 square of striped tiles, 
24 white tiles are needed. 

4)2(2 +n  1 23 
57 +n  16  

4)1(6 +++ nn  1  
)]22(2[]4)1(3[ +++− nn  1  

1633 −+++ nnn  1  
534 ++ nn  1  

 

For 2 squares you need a total of 19 matches.  For 5 squares you need a total of 40 matches.  

44)13( +++ nn  1 21 
44 −n  7  

)2(22 −+ nn  5  
4)2(4 +−n  1  

)1(4 −n  3  
)42(2 −+ nn  1  

)32()12( −+− nn  3  
)4(3 −+ nn  1  

 

Base is 4 dots long
Base is 6 dots long  

)32()1( −+−+ nnn  1 22 
4)1(22 +++ nn  9  

4)1()1( ++++++ nnnn 1  
)11(2)1(2 ++++ nn  1  

2)1(4 ++n  3  
4222 +++ nn  1  

)1()3)(2( +−++ nnnn  1  

 

For a 2x3 square of striped 
tiles, 14 white tiles are needed. For a 4x5 square of striped tiles, 

22 white tiles are needed.  

4)]1([2 +++ nn  2 18 
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Table 5.11  Pupils’ algebraic expressions for nT  (Questions 11-13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 5.12   Pupils’ algebraic expressions for nT  (Questions 14-16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q14 

Q15 

Q16 

Q11 

Q12 

Q13 

Question Expression for nT  Tally Total 
23 −n  12  

)1(2 −+ nn  2  
1)1(3 +−n  7   

1)1(2)1( +−+− nn  1 22 
24 +n  16  

6)1(4 +−n  2  

 

 )1(22 ++ nn  1 19 
59 −n  6  

1))2(2(3 +−+ nn  1  
)1(54 −+ nn  1  
1)23(3 +−n  1  

1]1)1(3[3 ++−n  2  
)1(94 −+ n  2  

 

)1(3))1(2(34 −+−+ nn 1 14 

Question Expression for nT  Tally Total
44 +n  12  
nn 2)2(2 ++  4  

)1(4 +n  2  
4)2(4 −+n  1  

 

16 dots12 dots8 dots  
8)1(4 +−n  2 21 

812 −n  6  
4))]1(3(4[ +−n  3  

4)1(12 +−n  8  
)2(331)1(33 −+++−+ nnnn  1  

4)44(3 +−n  1  

 

 
 

4 matches 

16 matches 
28 matches 

4))]1(4(3[ +−n  1 20 
84 +n  8  

6)12(2 ++n  3  
6)1(2 +++ nn  1  

)2(4 +n  5  
4)1(4 ++n  1  

12)1(4 +−n  2  

 

12 white tiles 16 white tiles  20 white tiles 

4)3(4 −+n  1 21 



 91

Table 5.13  Pupils’ algebraic expressions for nT  (Questions 17-19) 

 

 

 

 

 

 

 

 

 

 

Table 5.14   Pupils’ algebraic expressions for nT  (Questions 20-22) 

 

 

 

 

 

 

 

 

 

 

5.3.5  QUESTION DESIGN – FURTHER CONSIDERATIONS 
 

The 6 purely numeric patterns (Questions 17-19 and 20-22) each have an 

isomorphic pictorial counterpart for comparison purposes.  Patterns based on the 

same general formula can thus be compared in different contexts.  Although the 

influence of question design on strategy, progress, contextual connectivity and 

diversity of nT  expressions has already been discussed in some detail, there are a 

number of smaller observations which can be made by comparing isomorphic 

pairs. 

 

One of the most striking comparisons is for the pair of questions based on the 

general expression 59 −n : Question 13 (three consecutive pictorial terms) and 

Question 20 (three consecutive numeric terms in table format).  For Question 13, 

Q20 

Q21 

Q22 

Q17 

Q18 

Q19 

Question Expression for nT  Tally Total
44 +n  15  
)1(4 +n  5  

 8 ; 12 ; 16 ; … 
 8)1(4 +−n  1 21 

57 +n  17  
2)1(7 −+n  1  

 12 ; 19 ; 26 ; … 
 12)1(7 +−n  1 19 

14 −n  21   3 ; 7 ; 11 ; … 
 )1(3 −+ nn  1 22 

 

Question Expression for nT  Tally Total
59 −n  20   1st 

4 

2nd 

13 

3rd 

22 

… 

…  4)1(9 +−n  3 23 
13 +n  20  

)1(4 −− nn  1  
 1st 

4 

2nd 

7 

3rd 

10 

… 

…  
)1(34 −+ n  2 23 

812 −n  18   1st 

4 

2nd 

16 

3rd 

28 

… 

…  )1(124 −+ n  3 21 
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although only 14 of the 24 pupils managed to provide a correct algebraic 

expression for the nth term, 7 different expressions were realised.  For Question 20, 

only 2 different forms of the general term were realised.  However, 23 of the 24 

pupils managed to arrive at a correct algebraic expression.  Thus, although the 

pictorial context for this particular question would seem to have encouraged 

diversity of responses at Stage 4, far fewer pupils managed to reach this level.     

 

This was not always the situation, however.  Consider the comparison of Question 

8 (two non-consecutive pictorial terms) and Question 18 (three consecutive 

numeric terms), both of which are based on the general formula 57 +n .  In 

Question 8 there were 6 different forms provided for the general term, while 21 of 

the 24 pupils managed to provide correct Stage 4 responses.  However, in 

Question 18, only 3 different expressions were realised for the general terms, while 

at the same time there was a slight drop in the number of pupils who successfully 

reached Stage 4 – from 21 to 19.  For this particular number pattern the specific 

pictorial context chosen seems to have been successful in both eliciting a greater 

variety of expressions for the general term, as well as allowing more pupils to 

reach Stage 4.  

 

Another interesting comparison is that of Question 1 and Question 4, both based 

on the general formula 13 +n .  Both questions are of the same type – a pictorial 

representation of a single term.  However, Question 4 is more of a practical than 

merely pictorial context – photos being pinned to a board.  Both questions resulted 

in only 3 different expressions for the nth term, although the practical context 

allowed 2 more pupils to successfully reach Stage 4 (23 pupils, compared with 21 

pupils in Question 1).  However, one striking difference is the number of pupils 

using a counting strategy as sole strategy at Stage 1 – 50% for Question 1 

compared with 21% for Question 4.  This is a marked difference, and could well be 

ascribed to the practical context affording a more dynamic visualisation of the 

scenario, and hence encouraging an explicit strategy earlier on.   

   

The above three observations are intended to give some idea of the complex 

interplay between the number pattern itself, the nature of the question design and 

the specific pictorial context chosen.  This interwoven complexity, and its 

interpretation and treatment with the diverse cognitive skills of each individual pupil 
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(verbal-logical and visual-pictorial components), will ultimately be manifested in 

choice of strategy, progress through the different stages, contextual connectivity, 

and the diversity of nth term expressions.  There is thus a high degree of 

interconnectedness, and correlations between different aspects should be treated 

with due caution. 

 

 

5.4 MECHANISMS OF VISUALISATION 
 

As discussed in Section 3.3, for the purposes of this study, visualisation is 

understood to incorporate the process of forming images (either mentally or by 

means of physical instantiation) and using such images to aid mathematical 

discovery and understanding (Zimmermann and Cunningham, 1991).  

Furthermore, pattern imagery (Presmeg, 1986a, 1992), which identifies the 

relational aspects of a problem or scenario, is considered the most essential type 

of imagery for the purposes of abstraction and generalisation. 

 

 

5.4.1  META-ANALYSIS OF nT  EXPRESSIONS 

 

A meta-analysis of the Stage 4 responses was prompted by the diversity of 

algebraic representations of nT  (Section 5.3.4).  The meta-analysis focused on the 

formula derived for the nth term in conjunction with its justification.  The process of 

justification proved to be a critical factor in being able to accurately interpret the 

origin of the sub-structure evident in many of the Stage 4 responses.  The use of a 

pictorial context allowed pupils to make use of a generic example within this 

reference frame as a means of scaffolding the justification process.  From a 

theoretical perspective, the central role of proof within the context of this study is 

seen as communication of mathematical understanding.  The process of 

justification/proof was highly successful in providing a window of understanding 

into each pupil’s general formula.  The results of the meta-analysis reveal a 

number of fascinating visually driven generalisations and gives strong support for 

the use of a pictorial context to enhance both visual approaches to generalisation 

and justification, as well as intensifying the diversity of resulting general solutions. 
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Two different questions have been chosen to represent the meta-analysis – 

Question 8 (involving a dot pattern) and Question 9 (a matchstick pattern).  The 

meta-analysis of the general solutions to these two specific questions (chosen for 

their rich diversity of general solutions) gives a good vignette of the rich spectrum 

of visually driven explicit strategies evinced by the pictorial context.  It is clear that 

visualisation played an important role for many pupils in the structuring of the 

algebraic (symbolic) representation of the general formula.  Given that these two 

questions were presented in a pictorial context, the use of visual strategies is 

perhaps not surprising.  However, what is surprising is the immense diversity of 

those visual strategies.  Equally interesting is the fact that visualisation played very 

little role for some pupils, who favoured a numerically based derivation of the 

general formula (e.g. by using a table and searching for a likely formula to link the 

dependent and independent variables).   

 

Visually mediated solutions to Questions 8 and 9 that came to light in the meta-

analysis are described in detail hereunder: 

 

 

5.4.1.1  Question 8  ( 57 += nTn ) 

 

Table 5.10 in Section 5.3.4 contains a summary of nT  expressions generated for 

Question 8.  For the purposes of explication, the following diagram shows the 

generic example (incidentally the 3rd term of the sequence) which will be used in all 

descriptions.  The diagram is characterised by the nth term containing n  squares. 

 

 

 

 

 
 
 
 
 
 
 

3=n  
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• General formula 4)1(6 +++ nn  

 

 

 

 

 

 

 

With this visual strategy, Alex sub-divided the whole into smaller units – triangles, 

V-shapes, and single vertical matches.  The triangles were not visualised 

separately, but rather in pairs situated vertically above and below one another.  For 

the nth pattern there will be n  pairs of triangles, each pair requiring 6 matches, and 

thus n6  matches in total.  The nth term there will also contain 1+n  vertical 

matches.  Finally the V-shapes at either end, which are constants and thus 

independent of which term is under consideration, will always require 4 matches.  

The total count thus comes to 4)1(6 +++ nn . 

 

• General formula )]22(2[]4)1(3[ +++− nn  

 

 

 

 

 

 

 

In this visual scheme, Carol subdivided the structure into squares and triangles.  

The central portion of the pattern is identical to Question 1, and was further 

subdivided into an initial square and a series of sideways U-shapes, each 

containing 3 matches.  By starting with one square of 4 matches, n  squares in total 

would require an additional )1(3 −n  matches, yielding a total of 4)1(3 +−n  matches.  

To complete the overall picture, Carol reasoned as follows.  For n  squares there 

are a total of 22 +n  perimeter matches - n  on top, n  below, and 1 on either side.  

Each of these perimeter matches requires an additional 2 matches to construct the 
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triangles, i.e. )22(2 +n  matches.  The total count for the complete diagram is thus 

)]22(2[]4)1(3[ +++− nn  matches. 

 

• General formula 44)13( +++ nn  

 

 

 

 

 

 

 
 

Nell visualised the problem in a similar way to Carol, but her somewhat different 

approach led to a slightly different expression for the nth term.  Nell also subdivided 

the structure into squares and triangles, but further subdivided the inner portion 

into a single vertical match followed by n3  sideways U-shapes, requiring a total of 

13 +n  matches.  For the remainder of the structure, each square has two 

associated triangles – one above and one below – requiring 4 matches per pair 

and thus n4  matches in total.  In addition, 4 extra matches are required to 

complete the triangles at either end.  The triangles thus require 44 +n  matches, 

and the count for the structure as a whole comes to 44)13( +++ nn . 

 

• General formula 534 ++ nn  

 

 

 

 

 

 

 

Sonya’s approach was almost identical to Nell’s, but a slightly different visualisation 

led to a slight variation in general formula.  Instead of subdividing the inner 

structure into a single match followed by n  sideways U-shapes, Sonya let the 

single match form part of a triangle on the left. The inner portion thus contains n  

sideways U-shapes requiring a total of n3  matches.  For the remainder of the 
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structure, each square has two associated triangles – one above and one below – 

requiring 4 matches per pair and thus n4  matches in total.  5 additional matches 

are required for the triangle at the left and the V-shape on the right, giving a final 

formula of 534 ++ nn . 

 

• General formula 1633 −+++ nnn  

 

 

 

 

 

 

 

 

Helen subdivided the overall structure into two different component parts – 

triangles and vertical lines.  What is particularly interesting in this instance is that 

after visually deconstructing the diagram into triangles, the squares become 

“negative space” as the matches that originally formed them have been 

apportioned to different component parts.  Nonetheless, Helen made use of these 

squares to scaffold her reasoning.  For each square there are 2 triangles, 1 above 

and 1 below.  For n   squares there are thus n  triangles on top, each requiring n3  

matches, and another n  triangles below, also requiring n3  matches.  In addition, 6 

matches are required to form the triangles at either end, and 1−n  matches are 

needed for the vertical lines.  The total count is thus 1633 −+++ nnn . 

 

• General formula 57 +n  

 

 

 

 

 

 

A popular visual strategy (of which there were two varieties) was to subdivide the 

structure into a V-shape at one end, a triangle at the other, and the remainder into 

the 7-match additive portion – i.e. the basic unit which is effectively inserted into 
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the structure to progress from one term to the next.  For the nth shape there are n  

of these basic units comprising 7 matches each, thus n7  matches, and an 

additional 5 for the V-shape and triangle at the two ends.  The final count is thus 

57 +n . 

 

• General formula )1(712 −+ n  

 

 

 

 

 

 

 

 

 

Ryan was unable to give the correct algebraic expression stemming from his visual 

reasoning, which in itself was partly faulty, but his visual strategy is worth noting 

nonetheless.  From the given two terms, Ryan deduced that the first term in the 

sequence resembled a star shape comprising 12 matches.  Since the second term 

was given (19 matches) he deduced the shape of the 7-match segment needing to 

be added.  From this point on his visualisation became faulty, as he reasoned that 

only multiples of 6 matches (in the form of an upper and lower triangle) needed to 

be added for subsequent terms.  This deconstruction of his visual reasoning at 

least explains his general formula )26(127 −×++ n , which in itself doesn’t conform 

to standard algebraic convention.  Nonetheless, his initial visual reasoning has the 

potential to create another variation for the general term, )1(712 −+ n . 

 

• Mechanisms of visualisation (Question 8) 
 
A number of mechanisms of visualisation become apparent from this meta-

analysis, and are quite revealing in terms of the subtlety and complexity of the 

visual reasoning evident in the generalisation strategies.  Most visual strategies 

began by deconstructing a generic example into a number of component parts.  In 

some instances these component parts were further subdivided into even smaller 

parts.  This decomposition of the generic example is essentially a retro-synthesis of 
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n-2 dots n-2 dots

n dots

n dots

n dotsn dots

n-2 dots

n-2 dots

the whole into perceived component parts.  The complexity of these subdivisions 

ranged from single matches, V-shapes (2 matches), U-shapes (3 matches), 

squares (4 matches) and finally an odd shaped 7-match additive unit.  Once 

separated into component parts, the visualisation process became one of 

reconstruction by means of multiplying the various parts by the frequency of their 

appearance, and finally summing the various multiples and constants together to 

arrive at a final general term.  In general, the greater the number of different 

component parts, the greater will be the complexity of the derived general 

expression. 

 

 

5.4.1.2  Question 9 ( 44 −= nTn ) 

 

Table 5.10 in Section 5.3.4 contains a summary of nT  expressions generated for 

Question 9.  For the purposes of explication, the following diagram shows the 

generic example (incidentally the 4th term of the sequence) which will be used in all 

descriptions.  The diagram is characterised by the nth term containing n  dots along 

the base. 

 

 

 

 

 

 

• General formula )2(22 −+ nn  

 

 

 

 

 

 

 

Despite the diagram being described as a “double L”, a popular visual strategy was 

to deconstruct it into vertical columns of dots and horizontal rows of dots.  The first 

variation on this theme was to subdivide the whole into 2 rows of n  dots, requiring 

4=n  
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n dots

n dots

2n-4 dots

 

a total of n2  dots, as well as 2 vertical columns of 2−n  dots (each column being 2 

dots shorter than the horizontal rows), requiring a total of )2(2 −n  dots.  This yields 

a final total of )2(22 −+ nn .  Alternatively, but equivalently, the whole could be 

divided into 2 columns of n  dots, and 2 rows of 2−n  dots. 

 

• General formula )42(2 −+ nn  

 

 

 

 

 

 

In this similar strategy, Julian subdivided the structure into 2 horizontal rows of n  

dots, requiring a total of n2  dots.  He then reasoned that the number of remaining 

vertical dots would always be 4 less than the total number of horizontal dots, i.e. 

42 −n , yielding an overall total of )42(2 −+ nn . 

 

• General formula 4)2(4 +−n  

 

 

 

 

 

 

 

In a somewhat more symmetrical approach, Bianca isolated the 4 bottom corner 

dots and treated them as a constant.  She then subdivided the remaining dots into 

2 rows and 2 columns, each containing 2−n  dots.  In total there are thus 4 groups 

of 2−n  dots, along with the 4 corner dots, yielding the general formula 4)2(4 +−n . 

 

 

 

 

 

4 dots

n-2 dots n-2 dots

n-2 dots

n-2 dots
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4 dots

4 dots

4 dots

 

• General formula 44 −n  

 

 

 

 

 

 

 

In an equally symmetrical approach, a number of pupils visualised the structure as 

being 4 overlapping rows of dots – 2 lying vertically and 2 horizontally – each 

comprising n  dots.  This yields a total of n4  dots.  However, as a result of the 

overlapping, there are 4 dots that have effectively been counted twice, and these 

need to be subtracted from the n4 , giving a final count of 44 −n  dots. 

 

• General formula )1(4 −n  

 

 

 

 

 

 

James visualised the scenario somewhat differently, and his visualisation may well 

have been an artefact of the two given pictorial terms having an even number of 

dots along their base.  As a result, James noticed that the entire structure could be 

subdivided into blocks of 4 dots, and that the quantity of these blocks would always 

be 1−n .  This led him to structure his general formula as )1(4 −n .  It is worth 

recalling at this point that the function of a generic example is to show the general 

in the particular.  Thus, strictly speaking, James’s justification doesn’t make use of 

a generic example, as the next pictorial term in the sequence couldn’t be split into 

a similar arrangement of blocks of 4 dots. 

 

 

 

 

 

n dots

n dots

n dotsn dots
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2n-3 dots

n dots

n dots
 

• General formula )32()12( −+− nn  and )32()1( −+−+ nnn  

 

 

 

 

 

 

 

A number of pupils visualised the whole as being composed of an inner and outer 

L-shape.  The outer L-shape was then visually deconstructed into 2 overlapping 

rows of dots – one lying vertically, the other horizontally – each containing n  dots.  

Correcting for overlapping thus gave the outer L-shape a total of 12 −n  dots.  The 

number of dots in the inner L-shape was then given as 32 −n , justified by the visual 

observation that the inner L-shape would always be 2 dots shorter than the outer L-

shape.  This brought the final tally of dots to )32()12( −+− nn .  Using a similar 

approach, Sonya arrived at the general formula )32()1( −+−+ nnn . 

 

• Mechanisms of visualisation (Question 9) 
 

The mechanisms of visualisation identified in Question 9 can also be described in 

terms of deconstruction and reconstruction, as discussed in Question 8.  In most 

instances the structure was visualised in terms of rows and columns of dots of 

varying length.  The component part was thus the single dot, its frequency of 

appearance being the length of the columns and rows.  Another type of 

substructure comprising single dot components was the L-shape.  Visualisation 

strategies in this particular question also had to frequently take into account a 

correcting mechanism for overlapping dots.  There is also evidence to suggest, 

given James’s deconstruction, that the presence or absence of specific terms may 

well attract or discourage a particular visually motivated strategy.  
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5.4.2  FURTHER EVIDENCE OF THE ROLE OF VISUALISATION 
 

Throughout this investigation there was much evidence of visualisation playing a 

leading role both in terms of the justification of pupils’ general rules and the actual 

structuring of the general rules themselves.  The visual strategies used in 

Questions 8 and 9 have been described in detail.  What follows is a small selection 

of some of the more interesting and unexpected visual strategies found in the other 

14 questions based in pictorial contexts, with an aim at highlighting the diverse 

nature of visually motivated strategies. 

 

• Question 3 

 

 

 

 

 

In this question, most pupils’ visual strategy made use of the global observation 

that each striped tile had 2 white tiles associated with it, one above and another 

below.  Thus, for n  striped tiles there would be n2  white tiles.  Adding on the extra 

3 at either end gave the formula 62 +n .  There were one or two minor variations on 

this theme, but the idea was much the same.  Interestingly, Lisa first worked out 

the total number of tiles, both striped and white combined.  Since n  represents the 

number of striped tiles, each row contains 2+n  tiles, giving a total of )2(3 +n .  

From this she then subtracted the central portion of n  striped tiles, giving a final 

tally of nn −+ )2(3 .  Ryan saw the situation quite differently.  He worked backwards 

from the given term and realised that the first term of the sequence would be a 

single striped tile surrounded by 8 white tiles.  Rather than a global strategy, his 

visual strategy then focused on the recursive aspect of the growing sequence.  His 

visual imagery at this point became dynamic as opposed to static, as he saw that 

moving from one term to the next would require the insertion of an additional 

striped tile along with 2 additional white tiles.  Although he was unable to express 

this algebraically, his visual reasoning leads to the expression )1(28 −+ n . 

 

 

 

For a row of 3 striped tiles there are 12 white 
tiles in the border. 
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• Question 7 

 

 

 

 

 

 

Sonya’s visual reasoning for this particular question involved a dynamic 

appreciation for the growth process of the given pictorial structure.  Sonya focused 

on the recursive aspect of moving from one term to the next.  She reasoned that 

for each additional row or column that gets inserted, an additional 2 white tiles 

would be needed.  Since the visualisation focused on the expanding nature of the 

pictorial representations of the terms, the imagery is once again dynamic.  This 

visualisation helped her realise that for each row of striped tiles there are 2 white 

tiles, one at either end.  The same reasoning applies for the columns of striped 

tiles.  Visually, the striped tiles thus form part of two different overlapping 

structures, rows and columns.  Since there are n  rows and n  columns, this would 

require 22 ×n  white tiles.  Adding on the 4 corner tiles yields a final tally of 

422 +×n .  Sonya’s strategy in this question is quite similar to Ryan’s treatment of 

Question 3, the added complexity of Question 7 being a result of the terms 

expanding in two directions instead of just one. 

 

• Question 10 

 

 

 

 

 

 

In this question, Phil visualised the scenario as a rectangle of striped tiles 

overlapping, or nested inside, a rectangle of white tiles.  His visual strategy was 

thus to first work out the number of tiles in the larger rectangle and then to subtract 

the number of tiles in the smaller rectangle.  For an n  by 1+n  rectangle of striped 

tiles, the size of the bigger rectangle would be 2+n  by 3+n .  Phil’s final formula 

For a 2x2 square of striped 
tiles, 12 white tiles are needed. 

For a 5x5 square of striped tiles, 
24 white tiles are needed. 

For a 2x3 square of striped 
tiles, 14 white tiles are needed. 

For a 4x5 square of striped tiles, 
22 white tiles are needed. 
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3 overlapping radial arms Greg’s strategy 

was thus )]1([)]3)(2[( +×−++ nnnn .  Lisa also followed a similar visual strategy for 

this question. 

 

• Question 11 

 

 

 

 

A number of pupils approached this problem by viewing the structure as three rows 

of dots radiating out from a single central dot.  Since each of these radial arms 

contains n  dots, there would be a total of n3  dots.  Correcting for overlapping 

leads to the formula 23 −n . 

 

 

 

 

 

 

 

A number of other pupils arrived at an identical formula, but based on purely 

numeric observations.  Greg had a slightly different approach, nonetheless yielding 

the same general formula.  He visualised the entire structure as being composed of 

inverted V-shapes nested inside one another.  For the nth term in the sequence 

there would be n  nested V-shapes, each containing 3 dots, with the exception of 

the smallest (first) V-shape which only contains a single dot.  This visualisation led 

directly to the formula 23 −n .  The visual strategy employed by Greg makes use of 

what Hershkowitz et al. (2001:263) refer to as “auxiliary constructions”.  Greg’s 

physical addition of straight lines between the 3 dots added in the creation of each 

subsequent term allowed him to view the overall structure quite differently.  The 

use of “auxiliary constructions” has thus transformed the whole in such a way that 

different and quite unexpected visual patterns have emerged.  This re-organisation 

of the whole is what led Greg to his generalisation of the pattern. 

 

 

 

 



 106

→

• Question 13 

 

 

 

 

 

Question 11 and Question 13 were completed during the same session.  This was 

fortuitous, as it provoked Lisa into visually reorganising the structures given in 

Question 11 so that the intrinsic similarity to the pattern in Question 13 became 

apparent: 

 

 

 

 

 

This visual similarity prompted Lisa to make use of the previously derived formula 

23 −n .  This formula then prompted a visual deconstruction of the structures in 

Question 13 into U-shaped components of 3 matches, and a single match on the 

far left to close off the structure: 

 

 

 

 

 

 

Since each dot (in Question 11) has effectively been replaced by 3 matches (in 

Question 13), Lisa simply multiplied the previously derived formula ( 23 −n ) by 3, 

and added on the additional match needed on the far left to complete the structure.  

This gave the final formula 13)23( +×−n .  In this scenario it was the juxtaposition 

of two different questions that prompted a visual strategy in one that may not 

otherwise have been realised.  In addition, the deconstruction process was 

prompted by both visual imagery as well as a symbolic representation of an 

associated pattern.  
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Using a similar visual strategy, but not relating it to Question 11, Owen first focused 

on the number of “boxes” formed by the matches, i.e. a macro-structure, for which 

he derived the formula 1)1(3 +−n .  He then deconstructed the whole in an identical 

manner to Lisa, allowing him to produce the formula 1)1)1(3(3 ++−n . 

 

• Question 16 

 

 

 

 

 

 

Kyle began this question using a visual strategy, but this proved to be algebraically 

unhelpful, and he very quickly rejected it in favour of a numerical trial-and-

improvement approach to arrive at a general formula. 

 

Kyle’s initial visual strategy focused on the recursive relation between terms.  He 

visualised moving from one term to another by subtracting two white tiles, replacing 

them with striped tiles, and adding on 6 further white tiles to close the two ends of 

the structure.  Thus: 

 

 

 

 

 

 

 

Kyle then rejected this visual approach and used the numerical values of the 

dependent and independent variables to arrive at the formula )2(4 +n .  In this 

particular instance it was the rejection of an inappropriate, or at least unhelpful, 

visual strategy that allowed Kyle to progress to Stage 4 of the generalisation 

process.  

 

 

 

12 white tiles 16 white tiles  20 white tiles 

20  white tiles 

→  

2−

→  

6+  24=  
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Lisa’s visual strategy for this same question was prompted by the L-shape of the 

striped tiles: 

 

 

 

 

For each term in the sequence there are 2 L-shapes made from white tiles, each 

equivalent in size to the striped L-shape.  Once the L-shapes have been accounted 

for, there are always 6 remaining white tiles.  For the nth shape in the sequence, 

each L-shape contains 12 +n  tiles.  Thus, taking the 2 white-tiled L-shapes along 

with the remaining 6 white tiles gives a total of 62)12( +×+n .  Lisa’s visual strategy 

in this question was prompted by a substructure embedded in the whole, even 

though that substructure didn’t contain elements that needed to be counted in the 

final tally. 

 

 

5.5 ANOMALIES AND IDIOSYNCRASIES 
 

Orton and Orton (1999:120) mention that one of the four main obstacles to 

successful generalisation is the fact that “idiosyncratic methods are adopted by 

individual pupils in unpredictable ways”.  The purpose of this section is to highlight 

some of the anomalous and idiosyncratic approaches that were observed in this 

study.    

 

 

5.5.1  TRIAL AND ERROR NUMERIC APPROACHES 
 

The numeric strategy of trial and error, sometimes referred to as “guess and 

check”, was a common approach to problems when pupils were trying to find a 

functional relationship between dependent and independent variable using a 

numeric strategy.  Sometimes elements of the pictorial context acted as prompts in 

these numeric approaches.  On other occasions, despite the presence of a pictorial 

frame of reference, pupils simply ignored the pictorial context and relied purely on 

the numbers themselves.  This led to some surprising algebraic expressions that 

had no relation to the number pattern under investigation, but which somewhat 
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3 squares require 10 matches

 

incidentally yielded correct terms in one or two instances of the independent 

variable.  In such cases, pupils tended to justify their expression for the general 

formula by citing the one or two instances where the expression had worked.  This 

form of justification, based on empirical evidence, which appeals through the 

correctness of particular examples, would be classified at Level 2 in Lannin’s 

(2005) algebraic adaptation of the framework of Simon and Blume (1996).  Four 

particular examples of unexpected expressions arising from such trial and error 

approaches are shown below: 

 
Table 5.15   Trial and error numeric approaches 

 

 

5.5.2  ALGEBRAICALLY UNHELPFUL GENERALISATIONS 
 

Although generalisations can be expressed in numerous ways, both verbally and 

symbolically, some verbal expressions do not translate as readily as others into an 

algebraic format.  The case in point is an example of just such a problem. 

 

 

 

 

In Question 1, Sonya’s generalisation strategy entailed building onto the pre-

existing structure given in the original question, using a chunking strategy.  For 10 

squares, Sonya worked out the number of matches required as follows: 

 7310 =−  (i.e. an additional 7 squares need to be added) 

 2137 =×   (since 3 additional matches are needed to make an extra square) 

 311021 =+   (21 additional matches added to the original 10) 

                                                 
18 This is an algebraic representation of Sizwe’s verbal description of his general term.  Interestingly, in those 
cases where )1( +nn  is not divisible by 3, Sizwe simply ignored the remainder in the final answer.  Based on 

this approach, his formula also gives the correct answer for the 4th term, 224 =T . 

Question Pupil Correct nT Pupil’s nT  Terms for which 
pupil’s nT  is correct 

1 Ryan 13 +n  nn×+3  41 =T  and 72 =T  
8 Sizwe 57 +n  152 +n  192 =T  and 405 =T  
9 Mary 44 −n  41)3( +−×n  247 =T  
10 Sizwe18 64 +n  163)1( +÷+nn 265 =T  and 306 =T  
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To complicate matters further, Sonya then attempted to symbolically generalise her 

own specific generalisation.  Letting x  be the number of existing squares, she 

proceeded as follows: 
 yxn =−  

 by =×3  

 answeryourxb =+  

 

Interestingly, Phil approached this same problem in an identical manner, chunking 

multiples of 3 matches onto the pre-existing structure of 10.  For his Stage 4 

response, Phil gives the general formula 6]3)1[( −×−n .  On closer inspection, 

although this isn’t a correct expression for nT , it turns out to be a correct expression 

for the number of additional matches needed to be added onto the original 10. 

 

 

5.5.3  REDEFINING THE INDEPENDENT VARIABLE 
 

In a number of instances, pupils altered the meaning of the independent variable.  

Invariably this was done in cases where n  was redefined to mean either 1+n  or 

1−n  in the original context.  There are three possible reasons for this anomalous 

behaviour.  Firstly, it may stem from a lack of desire to work with the more complex 

expressions 1+n  or 1−n .  Secondly, it may simply stem from an inability to use 

these more complex notations.  Thirdly, and what would seem to be a likely 

scenario, pupils may have internally redefined the independent variable, so that 

incorrect expressions for nT  arising from this redefinition are nonetheless correct in 

the pupil’s frame of reference.  

 

Occasionally this redefinition was made explicit, e.g. Sizwe’s redefinition of the 

independent variable in Question 3 to become the “next consecutive no. of striped 

tiles”19.  However, in the overwhelming majority of cases, the redefinition was 

entirely implicit.   

 

 

 
                                                 
19 This is a strange alteration to have made given the context of the question, but entirely plausible in the light 
of Sizwe’s generalisation strategy being a numerically driven trial and error approach. 
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In the same question, Carol arrived at the general formula n28+  for the number of 

white tiles needed to put a border around a row of n  striped tiles.  Carol’s formula 

makes sense in terms of her justification.  She started by realising that the first 

shape in the sequence would be a single striped tile surrounded by 8 white tiles.  

She reasoned that for every additional striped tile in the shape, 2 additional white 

tiles would be needed.  Her general formula, n28+ , thus reflects the original 8 tiles 

plus 2 for every additional striped tile.  Within her own frame of reference, the 

formula is entirely correct, but she has effectively redefined the independent 

variable. In Carol’s frame of reference, n  no longer represents the number of 

striped tiles in the whole structure, but rather the 1−n  additional striped tiles added 

onto the first shape in the sequence.  Replacing n  with 1−n  in Carol’s formula 

yields )1(28 −+ n  which simplifies to 62 +n , the correct general term in the original 

context. 

 

 

5.5.4  ADDING OR REMOVING THE FIRST TERM 
 

The effect of adding an additional first term, or removing the existing one, is 

identical to redefining the independent variable.  However, I have classified the 

process differently for two reasons.  Firstly, the alteration lies not in the meaning of 

the algebraic symbols, but in the physical structure of the pattern itself.  Secondly, 

the alteration is both explicitly and purposefully carried out. 

 

Consider Dana’s alteration of Question 17: 

 

 

 

 

 

 

For a row of 3 striped tiles there are 12 white 
tiles in the border. 

8 ; 12 ; 16 ; … →  4 ; 8 ; 12 ; 16 ; … 
  

1      2       3        4 

Original question Dana’s alteration 
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The original sequence was 8 ; 12 ; 16 ; …  Not only has Dana added in an 

additional first term, but she has quite expressly labelled the new term as being the 

first term of the sequence.  All of Dana’s calculations are based on her new 

sequence, and are thus constantly 4 short of the correct numerical answers.  Her 

expression for the general term is n4 , which is also 4 short of the correct general 

expression 44 +n  since the nth term of the original sequence is in fact term 1+n  of 

Dana’s sequence.  There seems to be no rational explanation for Dana’s decision 

to alter the sequence, as both her numeric and algebraic skills are exceptional and 

she has successfully generalised far more complex sequences than this particular 

one. 

 

As an example of the removal of the first term, consider Sonya’s alteration of 

Question 13: 

 

 

 

 

 

Instead of physically scratching out the first term, Sonya has simply called the first 

term “Shape 0”, thus effectively starting the sequence at the second term of the 

original pattern.  Having done this, Sonya found it much easier to arrive at a 

general expression, 4)9( +× n .  This may well have been a deliberate attempt to 

avoid having to work with the numeric expression 1−n , as the general term of the 

original sequence, based on Sonya’s reasoning, would have been 4)1(9 +−n .  In 

addition to labelling the sketch, Sonya makes express mention of her alteration of 

the pattern in her justification of her general term: “9 matches are needed to get to 

the next shape and 4 are needed for the original block.  Do not count the original 

block as shape one!” 

 

 

 

 

 

 

 

 

Shape 
0 

   Sh 1 

Sh 2 
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5.5.5  GENERAL EXPRESSIONS BASED ON SPURIOUS OBSERVATIONS 
 

Numerically based trial and error strategies were occasionally based on spurious 

observations.  In Question 19, Mary noticed that the sequence 3, 7, 11, … was 

composed entirely of prime numbers, which prompted her to give the next term in 

the sequence, Stage 1, as being 13.  This led her to the general formula 1)3( +×n , 

which yielded prime numbers for 10=n  and 50=n , Stages 2 and 3 respectively.  

Her justification of the general expression simply amounted to “all prime numbers”.  

By focusing on a spurious and incidental observation, Mary didn’t even consider 

using a simple counting strategy, based on the difference between consecutive 

terms, to calculate the next term in the sequence.  In addition, the fact that her 

general formula only held true for one of the original 3 terms didn’t seem to deter 

her from using it to calculate the 10th and 50th terms of the sequence. 

 

In Question 12, Mary also made use of a somewhat coincidental yet entirely 

spurious observation to arrive at a general formula, in this case the correct general 

formula. 

 

 

 

 

Mary noticed that the first shape in the sequence contained 4 horizontal matches 

and 2 vertical matches.  This prompted her to search for a working formula using a 

trial and error approach based on the numbers 4 and 2.  This eventually led her to 

the formula 2)4( +×n , which seemed to work for the given terms.  She thus 

adopted the formula and used it to calculate the 10th and 50th terms in the 

sequence.  In this particular case, Mary managed to progress right through to 

Stage 4 of the generalisation process despite her initial visual prompt being 

spurious and incidental. 
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1 4 7 10 13 

5.5.6  LOOKING FOR PATTERNS WITHIN PATTERNS 
 

Ryan took a somewhat unusual approach to generalising Question 22: 

 

 

 

 

 

 

The numbers above the table were added in by Ryan after he realised that 4, 16 

and 28 were the 1st, 4th and 7th multiples of 4 respectively.  He then saw the 

recursive nature of his new pattern, which he extended to the 5th term.  He 

correctly calculated the 4th term of the original sequence by multiplying the 4th term 

of his sequence by 4.  However, in order to calculate both the 10th and 50th terms 

he made use of an erroneous uncorrected whole-object strategy.  After extending 

his new sequence to 13 (the 5th term), Ryan reasoned that the 10th term would 

simply be double the 5th term.  He thus doubled 13 to get 26 and then multiplied 26 

by 4 (giving an answer of 104) to give the 10th term of the original sequence.  He 

then reasoned that the 50th term of the original sequence would simply be 5 times 

the 10th term, giving an answer of 520. 

 

 

5.5.7  FIXATION WITH THE FORMULA 
 

As discussed in the literature review, much attention has focused on pupils’ 

reliance on the method of differencing, i.e. the use of a recursive strategy to move 

from a given term to the next, and so on in an iterative manner.  Orton and Orton 

(1999:120) mention that one of the four main obstacles to successful 

generalisation is a “fixation with a recursive approach [which] can seriously 

obstruct progress towards the universal rule”.   

 

In Question 10, Mary handed back a largely blank response sheet.  Apart from one 

or two minor calculations, nothing had been written at all, and no answers were 

supplied for any of the 4 stages.  When interviewed shortly afterwards, she 

explained that she couldn’t do this particular question because she “couldn’t find 

1st 2nd 3rd … 

4 16 28 … 
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the formula”.  Here we have a situation where a pupil was so fixated on an 

expression for the general term that she was unable to employ a simple counting 

strategy to work out the next term in the sequence. 

 

 
5.6 A COMPARISON OF COGNITIVE STYLES 
 

Throughout the analysis it became apparent that question design did not have a 

uniform influence on all research participants.  While some pupils favoured a 

pictorial context, others found greater resonance with a purely numeric context.  In 

addition, for some pupils the context of the generalisation problems had little to no 

effect.  By way of example, two research participants who were influenced 

differently by the question design were Mary and Ryan.  An analysis of their 

progress over the course of the 22 questions reveals some interesting cognitive 

differences. 

 
       Table 5.16  Pupil profile - Ryan 

Method Question 
Next 10th 50th 

Overall 
stage 

descriptor 
CCR TSA 

1 Co Wu Wu 1 0 1 
2 Co Wu Wu 4xy 0 5 
3 Co Wu Wu 1 1 1 
4 Co Wu Wu 4xy 0 5 
5 Co Wu Wu 1 0.5 1 
6 Ex Ex Ex 4 0 10 
7 Ex Ex Ex 4 0 10 
8 Co Ch Ex 0 1 0 
9 Ex Ex Ex 0 1 0 

10 Ex Ex Ex 3 0 6 
11 Ex Ex Ex 4 0 10 
12 Co Co/Ex Ex 4 0 10 
13 Co/Ex Ex Ex 3 0 6 
14 Co DP DP 1 0 1 
15 Co Ex Ex 4 0 10 
16 Co Ex Ex 4 0 10 
17 Ex Ex Ex 4 - 10 
18 Ex Ex Ex 4 - 10 
19 Ex Ex Ex 4 - 10 
20 Ex Ex Ex 4* - 10 
21 Ex Ex Ex 4 - 10 
22 Na Wu Wu 1 - 1 

AVERAGE - - - 2.86 0.22 6.23 
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Ryan made use of 6 different strategies during the course of the study – counting, 

explicit, chunking, difference product, whole-object uncorrected, and nature of 

numerical terms.  The explicit strategy was used most frequently (40 instances), 

with the counting and uncorrected whole-object strategies each being used 12 

times.   Only twice did Ryan use a counting strategy in conjunction with an explicit 

strategy, the double method being used to confirm the numerical result.   In 

addition, there was one occasion in which he used three different methods in the 

same question, one for each stage.  Interestingly, there were only five occurrences 

of this happening in the entire study.   

 

A brief glance at Table 5.16 shows a very clear trend, a trend which becomes even 

more pronounced when average TSA values are compared for the different 

question designs: 
 

       Table 5.17  Average TSA values per question type - Ryan 

Question design Questions Average TSA 
Single pictorial term 1 – 5 2.60 

Two non-consecutive pictorial terms 6 – 10 5.20 
Three consecutive pictorial terms 11 – 16 7.83 
Three consecutive numeric terms 17 – 22 8.50 

 
 

Ryan fared most poorly with the generalisation problems presented as a single 

pictorial term.  For all five he used a counting strategy to determine the next term, 

and then focused on the numerical terms using an erroneous (uncorrected) whole-

object strategy to determine the 10th and 50th terms.  In two of the five questions he 

managed to arrive at a correct general term, but did not use his expression to 

calculate numerical values for any of the preceding three stages.  In addition, he 

was unable to justify these algebraic expressions.   

 

He fared somewhat better with the patterns presented as two non-consecutive 

pictorial terms, focusing almost exclusively on an explicit strategy.  Interestingly, 

the three questions for which his Stage 4 justification was purely numerically based 

(CCR = 0) were much better handled than the two questions in which he attempted 

to base his justification on the underlying structure of the pictorial context.  In the 

case of Questions 8 and 9, it would seem that the pictorial frame of reference acted 

as a distraction, effectively complicating the generalisation process.   
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→  

16 dots12 dots8 dots

When the pictorial terms were presented as three consecutive terms, Ryan was 

even more successful with the generalisation process.  The only question with 

which he had no success was Question 14, in which he extended the pictorial 

pattern backwards in order to generate a new first term: 

 

 

 

 

 

 

From the modified sequence, Ryan arrived at the general term n×4 .  Although this 

is a correct general expression for the modified sequence, it does not hold true for 

the original pattern.  In this particular case it would seem that Ryan’s fixation on the 

numbers enticed him into creating a new first term in order to convert the pattern 

into the sequence of multiples of 4. 

 

For the last six questions, presented as purely numeric terms, Ryan managed 

excellently.  The exception was the very last question, where he attempted to use a 

short-cut approach based on multiples of 4, and resorted to an erroneous 

(uncorrected) whole-object method, as described in Section 5.5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 dots12 dots8 dots  

Original question Ryan’s modification 
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      Table 5.18   Pupil profile - Mary 

Method Question 
Next 10th 50th 

Overall 
stage 

descriptor 
CCR TSA 

1 Co Ex Ex 4 1 10 
2 Co/Ex Ex Ex 4 0.5 10 
3 Co/Ex Ex Ex 4 1 10 
4 Co/Ex Ex Ex 4 0.5 10 
5 Ex Ex Ex 0 0.5 0 
6 Co Ex Ex 4 1 10 
7 Ex Ex Ex 4 0 10 
8 Ex Ex Ex 4 0 10 
9 Co/Ex Ex Ex 1 0 1 

10 - - - 0 - 0 
11 Co Ex Ex 1 0 1 
12 Co/Ex Ex Ex 4 1 10 
13 Ex Ex Ex 0 0 0 
14 Ex Ex Ex 1 0.5 1 
15 Ex Ex Ex 0 0 0 
16 Ex Ex Ex 1 0 1 
17 Co DP DP 1 - 1 
18 Co DP DP 1 - 1 
19 Na Ex Ex 0 - 0 
20 Co Ex Ex 1 - 1 
21 Ex Ex Ex 4 - 10 
22 Co Ex Ex 0 - 0 

AVERAGE - - - 1.95 0.38 4.41 
 

 

Mary made use of 4 different strategies during the course of the study – counting, 

explicit, difference product, and nature of numerical terms.  The explicit strategy 

was used most frequently (51 instances), followed by the counting strategy (12 

instances).   Mary used a counting strategy in conjunction with an explicit strategy 

five times.  Each time that the counting strategy was used in a pictorial context, 

Mary either drew the next term in the sequence or adjusted a pre-existing term by 

adding additional elements (e.g. matches or dots) to it. 

 

A brief glance at Table 5.18 shows a very clear trend, a trend which becomes even 

more pronounced when average TSA values are compared for the different 

question designs: 
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       Table 5.19  Average TSA values per question type - Mary 

Question design Questions Average TSA 
Single pictorial term 1 – 5 8.00 

Two non-consecutive pictorial terms 6 – 10 6.20 
Three consecutive pictorial terms 11 – 16 2.17 
Three consecutive numeric terms 17 - 22 2.17 

 
Mary fared best with the generalisation problems presented as a single pictorial 

term.  In all five questions her justification was linked, or at least partially linked, to 

the pictorial context.  Interestingly, the only question of the five where her visual 

reasoning was faulty was also the only question of the five where she didn’t 

physically draw the next term in the sequence.  One can only speculate that had 

she done so she may well have experienced a better understanding of the pictorial 

context and thus been able to have correctly interpreted the scenario. 

 

She fared slightly less well with the patterns presented as two non-consecutive 

pictorial terms.  Mary’s general term for Question 6 was justified in terms of the 

pictorial context.  Those for Questions 7 and 8 were not justified in terms of the 

pictorial context, but there was evidence of the pictorial patterns having assisted in 

the generalisation process.  In Question 9, Mary made no reference to the given 

pictorial terms, and focused primarily on the given numbers.  She managed to 

determine the next term in the sequence by means of a recursive approach, and 

then searched for a general formula which would afford a numerical answer.  She 

adopted this erroneous formula in order to calculate numerical answers for Stage 2 

and 3, and justified the algebraic expression on the basis of it having worked in one 

particular instance.  In Question 10, Mary’s focus became so fixated on 

determining an algebraic expression to account for the two given terms, that she 

was unable even to employ a simple counting strategy to determine the next term 

in the sequence.  She was unable to progress with this question simply because 

she “couldn’t find the formula”. 

 

When the pictorial terms were presented as three consecutive terms, Mary seems 

to have largely ignored the pictorial context and rather focused on the numerical 

aspects of the situation, either making use of the common difference in her 

algebraic formula, or applying a trial and error approach by comparing the 

dependent and independent variables.  Rather than simply focusing on one 
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diagram and trying to find a global strategy, Mary seems to have been distracted 

by the consecutive nature of the diagrams in these particular questions.   
 

Mary fared equally poorly for the last six questions, presented as three consecutive 

purely numeric terms.  Once again, her focus seemed to be drawn to either the 

difference between the terms, or to numerical properties of the numbers 

themselves.  This prompted Mary to take unjustified and inappropriate short-cuts in 

determining her responses to the various stages of the generalisation process.  As 

an additional complication, Mary seemed to struggle conceptually with the 

algebraic notions of 1−n  and 1+n .  Without a pictorial frame of reference, which 

may well have provided some scaffolding for this conceptual difficulty, the purely 

numerical/algebraic context is likely to have exacerbated this problem. 
 

In summary, Ryan and Mary responded differently to the various pattern 

generalisation problems, a difference most likely arising from a tension between 

their preferred modes of cognitive processing, and the context and design of the 

patterning tasks.  While Ryan became more successful as the problems moved 

away from a pictorial context into a more numerical one, for Mary this change in 

question design had exactly the opposite effect.  For other pupils, the context of the 

generalisation problems had little to no effect on their success rate.  A graphical 

summary of the comparison between Ryan and Mary is given in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 
 

           Figure 5.2  Comparison of average TSA  vs. question design for Ryan and Mary 
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CHAPTER SIX 
 

FINDINGS & CONCLUSION 
 

 

6.1 INTRODUCTION 
 

The purpose of this final chapter is to consolidate the findings of this study within 

the context of the original research question, and with reference to the adopted 

theoretical framework and methodological choices.  In addition, both the limitations 

and significance of the study are interrogated, and some recommendations for 

further research are suggested. 

 

 

6.2 REVIEW OF THEORETICAL FRAMEWORK 
 

While embracing the basic tenets of constructivism, central to this study is the 

fundamental notion that constructivism is a descriptive as opposed to prescriptive 

philosophy (Towers and Davis, 2002:314).  Built onto this philosophy is the firm 

belief in the use of both language and notation systems/representations as 

important mediators in the process of construction – both in terms of their 

contribution to the organisation of the thinking process itself, as well as the cyclical 

nature of reflection (Kaput, 1991). 

 

The role of visualisation is also central to the present study, and it is acknowledged 

that while generalisation problems presented in a pictorial or practical context have 

the potential to widen the scope of solution strategies for some pupils, for others 

this may well create additional complications (Orton et al., 1999).  Thus, from a 

theoretical perspective, the methodology employed in the data capturing process is 

sensitive to the relative roles of the verbal-logical and visual-pictorial components 

of a pupil’s cognitive processes.  In addition, both the data capturing and data 

analysis methodologies take cognizance of the role of visualization in the 

generalisation process. 
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The notions of generalisation, justification and proof are intricately interwoven.  

Generalisation, by its very nature, can not be separated from justification/proof, 

and justification is seen as a critical component of the generalisation process.  The 

types of generalisation activities included in this study purposefully include those 

presented in pictorial contexts, thus allowing for a possible connection to a 

referential context that has the potential to aid and enhance the generalisation 

process.  The central role of proof within the context of this study is seen as 

communication of mathematical understanding, and students’ justifications of their 

generalisations are seen to provide “…a window to view their understanding of the 

general nature of their rules” (Lannin, 2005:251). 

 

 

6.3 REVIEW OF METHODOLOGY 
 

This study is based on a qualitative investigation framed within an interpretive 

paradigm.  According to Cohen and Manion (1994:36), the central endeavour 

within the context of the interpretive paradigm is “to understand the subjective 

world of human experience”.  Furthermore, attempting to see a situation as 

perceived by another human being should be imbued “with the assumption that the 

constructions of others … have integrity and sensibility within another’s framework” 

(Confrey, 1990:108).  Thus, the essential character underpinning the data analysis 

of the present study is the treatment of all responses, particularly those that are 

unexpected or idiosyncratic, with a genuine interest in understanding their 

character and origins. 

 

The present study attempts to interrogate pupils’ responses to various linear 

generalisation tasks from both a technical as well as strategic viewpoint.  A small-

scale pilot study conducted prior to commencement of the main study suggested 

that one would gain “insight into the [research] question by studying a particular 

case” (Stake, 1995:3), in this instance a class of high ability learners.  A case study 

methodological strategy was accordingly adopted and an appropriate group of 

participants was identified. 

 

Over a period of 3 months, 24 Grade 9 pupils from a mixed gender, high ability 

class each completed a series of 22 pencil and paper exercises based on linear 
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generalisation tasks set in both numeric and 2-dimensional pictorial contexts.  

More specifically, numeric patterns were presented as a simple sequence of 

numbers as well as in tabular form, while pictorial patterns were presented using 

three consecutive terms, two non-consecutive terms, or one single term.  For each 

pattern, participants were required to provide numerical values for the next, 10th 

and 50th terms as well as a written articulation of their reasoning at each stage.  

Participants were also asked to provide an algebraic expression for the nth term as 

well as to justify their expression.  In addition to written responses, individual 

participants were informally interviewed where the written articulation of their 

mental reasoning was either ambiguous or required illumination by oral explication. 

 

The responses to the various linear generalisation questions were classified by 

means of stage descriptors as well as stage modifiers.  The method or strategy 

adopted for determining each of the next, 10th and 50th terms was carefully 

analysed and classified into one of seven categories.  In addition, a separate 

framework was used to characterise each pupil’s justification of the nth term in 

terms of the extent to which the justification was linked to the pictorial context.  A 

meta-analysis of the generalisation/justification process was also undertaken.  The 

stage descriptors and modifiers, together with the adopted solution strategies and 

justification characterisation, were used to create a rich profile for each research 

participant as well as for each individual pattern generalisation task. 

 

 

6.4 FINDINGS OF THIS STUDY 
 

6.4.1  STRATEGY CHOICE – A GLOBAL PICTURE 
 

In terms of calculating the next term in a given sequence, two strategies clearly 

dominated: counting (43%) and explicit (56%).  The counting strategy represents a 

recursive or iterative approach, what Lannin (2004:217) remarks as being an 

almost natural tendency.  It is thus not surprising that this strategy proved popular 

at Stage 1.  The explicit strategy, however, requires the construction of a general 

formula in terms of the independent variable.  In this regard it is perhaps a little 

surprising that so many pupils used this strategy at Stage 1, where a simple 

counting strategy would have been a more direct approach.   
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At Stage 2, the explicit strategy became far more dominant (89%).  Stage 2 

represents what Stacey (1989:150) refers to as a “near generalisation” task, where 

a step-by-step counting procedure would still be within the bounds of practicality.  It 

is interesting that, already at this point, so many pupils rejected a recursive 

approach in favour of an explicit strategy, since the recursive approach would have 

required at most an additional 6 iterations from Stage 1.   

 

Stage 3 is what Stacey (1989:150) refers to as a “far generalisation” task – a 

question that goes beyond reasonable practical limits of a step-by-step 

counting/drawing approach.  At Stage 3, the explicit strategy accounted for almost 

96% of all responses, while the counting strategy was not employed at all. 

 

In total, the explicit strategy represented almost 80% of all strategies used, while a 

step-by-step counting procedure accounted for 17.5%.  The predominance of the 

explicit strategy is surprising in view of the common theme in the research literature 

(MacGregor and Stacey, 1993; Hargreaves et al., 1998; Hershkowitz et al., 2002) 

which relates to the tendency of pupils to generalise recursively rather than using 

the independent variable, i.e. the explicit strategy.  Furthermore, English and 

Warren (1998) found that once students had established a recursive strategy they 

were reluctant to search for a functional relationship.  This is certainly not the case 

in the present study, where there is a clear indication of pupils changing from a 

counting strategy to an explicit strategy when moving from Stage 1 to Stage 2. 

 

A particularly interesting observation is the number of instances where two different 

strategies were employed in the same stage, both resulting in the same correct 

numerical answer.  The only two strategies used in combination were the counting 

and explicit strategies.  In total, 84 separate instances were noted where these two 

strategies were used in combination.  In some instances this merely amounted to 

extending the numerical sequence by means of the constant difference and using 

this to confirm the answer obtained from the explicit strategy.  However, in the vast 

majority of cases the combined strategy entailed checking the answer obtained 

from the explicit strategy by means of drawing the required pictorial term and 

counting the required elements (matches, dots etc.).  In addition to merely acting 

as a check, the physical act of drawing a pictorial representation of the desired 

term could also possibly have served as a meaningful specific reference for 



 125

investigating the general structure underlying the pictorial context.  This may well 

have assisted some pupils in the generalisation process in terms of seeing the 

general in the particular and hence moving towards an algebraic expression for the 

general term. 

 

 

6.4.2  STAGE CLASSIFICATION – A GLOBAL PICTURE 
 

On the whole, the research participants fared well with the majority of the 

questions.  In 17 of the 22 questions more than 80% of the research participants 

were able to provide a correct Stage 4 response, and 5 pupils managed to give 

correct responses at all four stages in all 22 questions.  It is important to bear in 

mind that Stages 0 through 4 do not represent a hierarchical structure.  Although 

the stages do represent an increasing level of difficulty, being classified at a 

particular stage is not dependent on providing correct responses for all the 

previous stages.   

 

The high general level of success, in terms of reaching a correct Stage 4 response, 

can be ascribed to at least two reasons.  Firstly, all of the questions chosen for this 

investigation were linear/arithmetic sequences - i.e. of the form cax ±  where a  and 

c  are constants.  This was a purposeful decision, as the literature review 

suggested that linear sequences would allow the research participants to progress 

further in the type of pattern generalisation tasks envisaged, and would thus more 

likely constitute “information-rich cases” (Patton, 1990:169).  Secondly, the high 

success rate can in part be ascribed to the fact that the research participants 

represent a group of high ability learners.  Once again this was a purposeful 

decision based on the argument that a high ability group of learners would be 

better suited to a methodology in which the data collection process required 

learners to attempt to articulate their own cognitive reasoning.  
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6.4.3  CONTEXTUAL CONNECTIVITY RATING – A GLOBAL PICTURE 
 

The CCR proved to be a useful mechanism for ascribing a numerical value to the 

extent to which pupils’ written justifications of their general terms were specifically 

linked to the pictorial (as opposed to numerical) context.  The average CCR values 

for individual research participants showed a good spread – from 1.00 to 0.22.  

Only one pupil made express reference to the pictorial context in all 16 questions.  

The average CCR values for individual questions were also well spread – from 

0.92 to 0.23.  There was a definite downward trend of CCR values as the questions 

progressed from 1 through 16.  This is an important observation, and its 

significance is discussed later in this chapter. 

 

A comparison of CCR with TSA showed that while a higher CCR seems to 

correspond to a higher average TSA for some pupils, the exact opposite was true 

for others.  This observation is central to the theme of this study, and the notion 

that different contexts (numeric vs. pictorial) resonate differently with different 

pupils.  While a pictorial context may be helpful to some pupils, for others it may 

simply create additional complications. Furthermore, some pupils may simply opt to 

convert a pictorial pattern into a numerical equivalent, and give no further thought 

to the pictorial context.   

 

 

6.4.4  INFLUENCE OF QUESTION DESIGN ON STRATEGY  
 

MacGregor and Stacey (1993), cite one of the main causes of difficulty in 

formulating algebraic rules as being pupils’ tendency to focus on the recursive 

patterns of one variable rather than the relationship linking the two variables.  

Similar observations have been made by other researchers (e.g. Orton, 1997).  

Question design seems to have an important influence on pupils’ choice of 

strategy, and the findings of this study would suggest that the tendency to pattern 

recursively could be discouraged by careful question design. 

 

There was a dramatic drop in the number of pupils using the counting strategy 

when two non-consecutive pictorial terms were used instead of a single pictorial 

term.  There are two possible reasons for this.  Firstly, a single pictorial term may 



 127

not be a sufficient scaffold to enable some pupils to derive a general expression.  A 

second diagram, physically drawn by the pupil, may have been necessary in order 

to see the general structure underlying the pictorial context.  Thus using a counting 

strategy at Stage 1 may be a necessary prerequisite to moving to an explicit 

strategy at Stage 2 for some pupils.  Secondly, one can not ignore the fact that 

questions incorporating two non-consecutive pictorial terms tended to have slightly 

bigger physical structures compared to the single term scenario, and drawing the 

next diagram in such a case may have been considered impractical by some 

pupils.  

 

There was a dramatic increase in the number of pupils using the counting strategy 

when three consecutive purely pictorial terms were used instead of two non-

consecutive pictorial terms.  This increase was even more pronounced when the 

three consecutive terms were accompanied by an indication of the dependent 

variable.  The initial increase could be a result of two possibilities.  Firstly, the fact 

that the three consecutive pictorial terms are the first three terms in the sequence, 

the physical structures of the pictorial representations are a little less complex than 

in the case of the two non-consecutive terms.  This may have encouraged pupils to 

simply draw the next term rather than looking for an explicit strategy.  Secondly, 

because the three consecutive terms give a physical representation of growth, 

pupils may have been drawn to the recursive nature of the pattern and simply 

added the common difference to the third term in order to obtain a numerical value 

for the next term.  This seemed to be slightly more often the case than simply 

drawing the next term and counting the number of elements.  The even greater 

increase when the three consecutive terms are accompanied by an indication of 

the dependent variable can be explained in terms of the common difference having 

been made somewhat more explicit by the inclusion of the dependent variable and 

pupils thus being drawn even more towards a recursive strategy. 

 

The simple presentation of three consecutive purely numeric terms resulted in the 

highest proportion of pupils opting for the recursive strategy – both in Stage 1 and 

Stage 2.  Once again, the common difference becomes immediately clear from the 

given terms, and pupils seem to have been drawn towards this, and used a 

recursive approach as a result.  Interestingly, when the three consecutive numeric 

terms were put into table format with the inclusion of the independent variable, 
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there was a slight drop in the tendency to pattern recursively.  One can only 

surmise that the explicit presence of both dependent and independent variables 

assisted some pupils in seeing a general relation between the two and hence being 

more inclined to use an explicit strategy over a recursive approach. 

 

The above observations lend support to Hershkowitz et al. (2002) who found that 

the presentation of consecutive terms encouraged recursion, while terms 

presented non-consecutively tended to encourage generalisation by means of the 

independent variable. Hershkowitz et al. (2002) also found that the use of a 

pictorial context, particularly if non-consecutive terms were presented, tended to 

encourage explicit generalisations.  The results of the present study give strong 

support to the notion that question design can play a key role in influencing which 

strategies are adopted by pupils when solving pattern generalisation tasks. 

 

 

6.4.5  INFLUENCE OF QUESTION DESIGN ON STAGE PROGRESS 
 

The highest level of progress was achieved on those questions presented purely 

numerically, in tabular format.   The explicit presence of both the dependent and 

independent variable, along with the fact that the terms were consecutive and 

hence made the common difference easier to recognise, all seem to have allowed 

for greater overall attainment.  This finds resonance with a study by English and 

Warren (1998) where students found it easier to generalise, both verbally and 

symbolically, when patterns were presented in tabular form as opposed to pictorial 

form. 

 

The lowest level of progress was achieved on those questions presented as three 

consecutive purely pictorial terms where no mention was made of either the 

dependent or independent variable.    This adds weight to the notion that a pictorial 

representation is only of benefit if the underlying structure can be clearly seen and 

correctly interpreted.  Thus, while a purely pictorial context may be useful to some 

pupils, to others it may well create complications.  A contextualised indication of 

both the dependent and independent variable (e.g. for 2 squares you will need 7 

matchsticks) in conjunction with the pictorial representation seemed to be most 

successful in alleviating this problem. 
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6.4.6 INFLUENCE OF QUESTION DESIGN ON DIVERSITY OF nT  
           EXPRESSIONS 
 

The dramatic drop in the number of correct nT  variations for those questions 

incorporating purely numeric terms is both expected and understandable, since the 

lack of a referential (pictorial) context severely limits the scope of readily 

identifiable variations in nT .  Without a pictorial frame of reference, expressions for 

nT  can only be derived from purely numeric considerations, the resulting 

expressions usually taking the form dna )1( −+  or )( dadn −+ , or those deriving 

fortuitously from a guess-and-check approach. 

 

The increase in the number of correct nT  variations when moving from questions 

involving a single pictorial term to those making use of two non-consecutive 

pictorial terms can probably be ascribed to pupils’ enhanced appreciation of the 

underlying general structure inherent in the pictorial context as a result of the 

additional term.  The same argument could be applied when moving from two 

pictorial terms to three pictorial terms, although it is worth bearing in mind that 

some pictorial designs yield fewer accessible (easily identifiable) expressions for 

nT . 

 

The richness and diversity of algebraic representations of nT  derived for each 

question was most informative, and prompted a meta-analysis of the generalised 

formulae in conjunction with their justification.  The results of the meta-analysis are 

discussed later in the chapter. 

 
 
6.4.7  QUESTION DESIGN – FURTHER CONSIDERATIONS 
 

Pupils’ responses gave evidence of the complex interplay between the number 

pattern itself, the nature of the question design and the specific pictorial context 

chosen.  This interwoven complexity, and its interpretation and treatment with the 

diverse cognitive skills of each individual pupil, will ultimately be manifested in 

choice of strategy, progress through the different stages, contextual connectivity, 

and the diversity of nT  expressions.  There is thus a high degree of 
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interconnectedness, and correlations between different aspects should be treated 

with due circumspection. 

 

 

6.4.8  MECHANISMS OF VISUALISATION 
 

A meta-analysis of the Stage 4 responses was prompted by the diversity of 

algebraic representations of nT .  The meta-analysis focused on the formula derived 

for the nth term in conjunction with its justification.  The process of justification 

proved to be a critical factor in being able to accurately interpret the origin of the 

sub-structure evident in many of the Stage 4 responses.  The use of a pictorial 

context allowed pupils to make use of a generic example within this reference 

frame as a means of scaffolding the justification process.  From a theoretical 

perspective, the central role of proof within the context of this study is seen as 

communication of mathematical understanding.  The process of justification/proof 

proved to be highly successful in providing a window of understanding into each 

pupil’s general formula.  The results of the meta-analysis revealed a diverse 

number of fascinating visually driven generalisations and gives strong support for 

the use of a pictorial context to enhance both visual approaches to generalisation 

and justification, as well as intensifying the diversity of resulting general solutions.  

While visualisation played an important role for many pupils in the structuring of the 

general formula, it is worth bearing in mind that for others visualisation played very 

little role, a numerically based derivation of the general formula being favoured.  

 

A number of mechanisms of visualisation became apparent from the meta-

analysis, and are quite revealing in terms of the subtlety and complexity of the 

visual reasoning evident in the generalisation strategies.  Most visual strategies 

began by deconstructing a generic example into a number of component parts.  In 

some instances these component parts were further subdivided into even smaller 

parts.  This decomposition of the generic example is essentially a retro-synthesis of 

the whole into perceived component parts.  For questions involving matchsticks, 

the complexity of the subdivisions ranged from single matches (vertical or 

horizontal), V-shapes (2 matches), U-shapes (3 matches), triangles (3 matches), 

squares (4 matches) and oddly shaped question-specific additive units.  For 

questions involving dots or tiles, the structure was most often visualised in terms of 
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rows and columns of dots/tiles of varying length.  The component part was thus the 

single dot/tile, its frequency of appearance being the length of the columns and 

rows.  Once separated into component parts, the visualisation process became 

one of reconstruction by means of multiplying the various parts by the frequency of 

their appearance, and finally summing the various multiples and constants together 

to arrive at a final general term.  Visualisation strategies also had to frequently take 

into account a correcting mechanism for overlapping units. 

 

Throughout this study there was much evidence of visualisation playing a leading 

role both in terms of the justification of pupils’ general rules and the actual 

structuring of the general rules themselves.  The essential character underpinning 

the data analysis of this study was the treatment of all responses, particularly those 

that were unexpected or idiosyncratic, with a genuine interest in understanding 

their character and origins.  The data analysis process was thus imbued with the 

firm conviction that “the constructions of others … have integrity and sensibility 

within another’s framework” (Confrey, 1990:108).  This has critical bearing within 

an interpretive research paradigm, and allowed for the identification of a diverse 

range of other visually motivated strategies: 
 

• The use of “negative space” to scaffold visual reasoning 

• Global versus recursive observations 

• Dynamic versus static visual imagery 

• The use of “auxiliary constructions” (Hershkowitz et al., 2001:263) 

• The visualisation of overlapping or nested structures 

• Visual transformation or re-organisation of the original pictorial structure 

• Identification of an imbedded macro-structure 

• Visual strategies prompted by an otherwise irrelevant substructure element 

 

In addition, there was also evidence to suggest that the presence or absence of 

specific terms may well attract or discourage a particular visually motivated 

strategy.  
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6.4.9  ANOMALIES AND IDIOSYNCRASIES 
 

Orton and Orton (1999:120) mention that one of the four main obstacles to 

successful generalisation is the fact that “idiosyncratic methods are adopted by 

individual pupils in unpredictable ways”.  A number of anomalous and idiosyncratic 

approaches were observed in this study: 

 

• Numeric strategies based on a trial and error approach 

• “Guess and check” strategies based on spurious observations 

• Approaches based on algebraically unhelpful generalisations 

• General terms based on an implicitly redefined independent variable 

• Physical alteration of the given pattern by addition or removal of term 1 

• Looking for patterns within patterns 

• Lack of progress due to a fixation with determining the general formula 

   

 

6.5 LIMITATIONS 
 

A case study approach was adopted as methodological strategy for this study.  

Accordingly, the members of a mixed gender, high ability Grade 9 class of 24 

learners were chosen as research participants - “information-rich cases whose 

study will illuminate the questions under study” (Patton, 1990:169).  This 

purposeful sampling was justified in terms of a small-scale pilot study undertaken 

prior to the commencement of the main study.   

 

Although the emphasis of a case study is to optimise understanding of the specific 

case under scrutiny rather than generalisation beyond that case, a case study can 

nonetheless be a useful small step towards a larger generalisation, or an 

increasingly refined generalisation (Cohen and Manion, 1994; Stake, 1994, 1995).  

Thus, although any general trends or patterns observed in the course of this study 

are only relevant to the group of 24 research participants who took part in the 

study, such “generalisations” could be broadened or increasingly refined by future 

research involving further samples from the larger population.  
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Furthermore, pupils’ responses gave evidence of the complex interplay between 

the number pattern itself, the nature of the question design and the specific 

numeric/pictorial context chosen.  Choice of strategy, level of stage progression, 

contextual connectivity, and the diversity of nT  expressions are a manifestation of 

this interwoven complexity in conjunction with the diverse cognitive skills of each 

individual pupil.  There is thus a high degree of interconnectedness, and 

correlations between different aspects should be treated with due circumspection. 

 

 

6.6 SIGNIFICANCE 
 

The emphasis of the NCS on investigation as a pedagogical approach to number 

pattern generalisation tasks, as well as its requirement that learners be able to 

investigate number patterns and hence “make conjectures and generalisations” as 

well as “provide explanations and justifications and attempt to prove conjectures” 

(Department of Education, 2003b:18), has important pedagogical implications for 

classroom practitioners.  An understanding of how question design of such pattern 

generalisation tasks is likely to influence the approach adopted by children would 

greatly assist teachers in terms of their choice of such activities.  It is within this 

pedagogical context that this study finds practical significance and import. 

 

The results of the present study give strong support to the notion that question 

design can play a key role in influencing which strategies are adopted by pupils 

when solving pattern generalisation tasks, in both pictorial and purely numeric 

contexts.  This observation is central to the theme of this study, and the notion that 

different contexts (numeric vs. pictorial) will resonate differently with different 

pupils.  While a pictorial context may be helpful to some pupils, for others it may 

simply create additional complications.  Nonetheless, the use of a pictorial context 

allowed pupils to make use of a generic example within this reference frame as a 

means of scaffolding the justification process.  From a theoretical perspective, the 

central role of justification/proof within the context of this study is seen as 

communication of mathematical understanding, and the process of 

justification/proof proved to be highly successful in providing a window of 

understanding into each pupil’s general formula.  Furthermore, this study identified 

a diverse range of visually motivated strategies.  An awareness and appreciation 



 134

for such a diversity of visualisation strategies has direct pedagogical application 

within the context of the classroom discourse.   

 

 

6.7 RECOMMENDATIONS FOR FURTHER RESEARCH 
 

The present study focused on a high ability group of learners.  It would be 

interesting to repeat this study using a lower ability group of research participants.  

This would in all likelihood require a modification of the data collection protocol, 

however, as the small-scale pilot study suggested that lower ability pupils would 

probably struggle to sufficiently articulate a written explanation of their cognitive 

reasoning. 

 

It would be equally interesting to repeat the present study with other high ability 

groups of learners, possibly with an augmented selection of patterning questions.  

This would serve to broaden and/or increasingly refine any localised 

“generalisations” identified in the present study.  In addition, this would add further 

insight into the complex interplay between the number pattern, the nature of the 

question design and the specific numeric/pictorial context chosen. 
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6.8 CONCLUDING COMMENTS 
 

The connection between mathematics and the notion of pattern is prevalent at all 

levels of mathematical endeavour.  Goldin (2002:197) describes mathematics as 

“the systematic description and study of pattern.”  Furthermore, searching for 

patterns is an important strategy for mathematical problem solving (Stacey, 

1989:147).   

 

The study of pattern has become an integral component across all Grades of the 

South African school Mathematics curriculum (Department of Education, 2002, 

2003b).  In addition, the process of searching for patterns, making and testing 

conjectures, and formulating and justifying generalisations are essential in both 

mathematical thinking and the generation of mathematical knowledge (Thompson, 

1985).  

 

The results of this study strongly support the notion that question design can play a 

critical role in influencing pupils’ choice of strategy and level of attainment when 

solving pattern generalisation tasks.  Furthermore, this study identified a diverse 

range of visually motivated strategies and mechanisms of visualisation.  An 

awareness and appreciation for such a diversity of visualisation strategies, as well 

as an understanding of the importance of appropriate question design, has direct 

pedagogical application within the context of the mathematics classroom.   

 

Finally, “at the most basic level,” as Adler (2005:2) succinctly puts it, “we have yet 

to understand how to make mathematics learnable by all children.”  It is hoped that 

this study will add, in some small way, to that growing discourse. 
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NAME:  _________________________ 

 

Look at the diagram below.  10 matchsticks have been used to make a row of 3 squares. 
 
 
 
 
 
 

• How many matchsticks will you need to make a row of 4 squares?  Explain and/or show 
HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need for a row of 10 squares?  Explain and/or show 
HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need for a row of 50 squares?  Explain and/or show 
HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the number of matchsticks needed 
for a row of “n” squares . 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

3 squares require 10 matches

      Appendix A – MPRS Question 1 
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NAME:  _________________________ 

 

Look at the diagram below.  11 matchsticks have been used to make the pattern. 
 
 
 
 
 
 

• How many matchsticks will you need in total if there were 4 horizontal matchsticks?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need in total if there were 10 horizontal matchsticks?    
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need in total if there were 50 horizontal matchsticks?    
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the number of matchsticks needed in 
total for a pattern containing “n” horizontal matchsticks . 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

A pattern with 3 horizontal matchsticks requires
a total of 11 matchsticks

      Appendix A – MPRS Question 2 
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NAME:  _________________________ 

 

Look at the diagram below.  12 white tiles have been used to build a border all the way round 
a row of 3 striped tiles. 
 
 
 
      
 
 

• How many white tiles will you need to put a border around a row of 4 striped tiles?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many white tiles will you need to put a border around a row of 10 striped tiles?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many white tiles will you need to put a border around a row of 50 striped tiles?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the number of white tiles you will 
need to put a border around a row of “n” striped tiles . 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For a row of 3 striped tiles there are 12 white 
tiles in the border. 

      Appendix A – MPRS Question 3 
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NAME:  _________________________ 

 

Look at the following diagram.  Photos have been pinned to a board as shown below. 
 
 
 
      
 
 

• How many drawing pins will you need to display 4 photos in the same way?  Explain 
and/or show HOW you got to your answer.  

 
 
 
 
 

• How many drawing pins will you need to display 10 photos in the same way?  Explain 
and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many drawing pins will you need to display 50 photos in the same way?  Explain 
and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the number of drawing pins you will 
need for “n” photos. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For 3 photos you need 10 drawing pins 

      Appendix A – MPRS Question 4 
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Look at the following diagram.  A “fence” has been built using matchsticks. 
 
 
 
      
 
 

• How many matchsticks will you need in total if there are 5 vertical matchsticks?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need in total if there are 10 vertical matchsticks?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need in total if there are 50 vertical matchsticks?  
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the total number of matchsticks you 
will need if there are “n” vertical matchsticks. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

If there are 4 vertical matchsticks you need 
a total of 13 matchsticks. 

      Appendix A – MPRS Question 5 



 153

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAME:  _________________________ 

 

Look at the following diagrams.  “Bridges” have been built using matchsticks. 
 
 
 
      
 
 

• How many matchsticks will you need in total if there are 6 base matchsticks?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need in total if there are 10 base matchsticks?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need in total if there are 50 base matchsticks?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the total number of matchsticks you 
will need if there are “n” base matchsticks. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For 5 base matches you need a total of 19 matches.For 3 base matches you need a total of 11 matches 

      Appendix A – MPRS Question 6 
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Look at the following diagrams.  A border of white tiles has been built around squares of 
striped tiles. 
 
 
 
        
 

 
• How many white tiles will you need to put a border around a 6x6 square of striped 

tiles?  Explain and/or show HOW you got to your answer.  
 
 
 
 
 

• How many white tiles will you need to put a border around a 10x10 square of striped 
tiles?  Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many white tiles will you need to put a border around a 50x50 square of striped 
tiles?  Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out many white tiles you will need to put 
a border around an “nxn” square of striped tiles. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For a 2x2 square of striped 
tiles, 12 white tiles are needed. 

For a 5x5 square of striped tiles, 
24 white tiles are needed. 

      Appendix A – MPRS Question 7 
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Look at the following diagrams containing squares and triangles built from matchsticks. 
 

 
 
      
 
 
 

• How many matchsticks will you need in total if there are 6 squares?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need in total if there are 10 squares?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need in total if there are 50 squares?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the total number of matchsticks you 
will need if there are “n” squares. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For 2 squares you need a total of 19 matches. For 5 squares you need a total of 40 matches.

      Appendix A – MPRS Question 8 
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Look at the following “double L” diagrams made from dots. 
 

 
 
      
 
 
 

• How many dots will you need in total if the base is 7 dots long?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many dots will you need in total if the base is 10 dots long?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many dots will you need in total if the base is 50 dots long?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the total number of dots you will need 
if the base is “n” dots long. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

Base is 4 dots long  Base is 6 dots long

      Appendix A – MPRS Question 9 
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Look at the following diagrams.  A border of white tiles has been built around rectangles of 
striped tiles.  The rectangles are always one tile longer than they are wide. 
 
 
 
        
 

 
• How many white tiles will you need to put a border around a 5x6 square of striped 

tiles?  Explain and/or show HOW you got to your answer.  
 
 
 
 
 

• How many white tiles will you need to put a border around a 10x11 square of striped 
tiles?  Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many white tiles will you need to put a border around a 50x51 square of striped 
tiles?  Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out many white tiles you will need to put 
a border around an “nx(n+1)” square of striped tiles. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

For a 2x3 square of striped 
tiles, 14 white tiles are needed. 

For a 4x5 square of striped tiles, 
22 white tiles are needed. 

      Appendix A – MPRS Question 10 
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NAME:  _________________________ 

 

Look at the following growing pattern of dots. 
 

 
 
      
 
 
 

• How many dots will you need for the next shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many dots will you need for the 10th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many dots will you need for the 50th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out how many dots you will need for  
the nth shape in the sequence. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

 

      Appendix A – MPRS Question 11 
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Look at the following growing pattern of “towers” made from matchsticks. 
 

 
 
      
 
 
 

• How many matchsticks will you need for the next shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need for the 10th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need for the 50th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out how many matchsticks you will need 
for the nth shape in the sequence. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

      Appendix A – MPRS Question 12 
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Look at the following growing pattern of “skew L shapes” made from matchsticks. 
 

 
 
      
 
 
 

• How many matchsticks will you need for the next shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need for the 10th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need for the 50th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out how many matchsticks you will need 
for the nth shape in the sequence. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

      Appendix A – MPRS Question 13 
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Look at the following growing pattern of “hollow squares” made from dots. 
 

 
 
      
 
 
 

• How many dots will you need for the next shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many dots will you need for the 10th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many dots will you need for the 50th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out how many dots you will need for the 
nth shape in the sequence. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

16 dots12 dots8 dots

      Appendix A – MPRS Question 14 
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Look at the following growing pattern of “crosses” made from matchsticks. 
 

 
 
      
 
 
 

• How many matchsticks will you need for the next shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 

• How many matchsticks will you need for the 10th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• How many matchsticks will you need for the 50th shape in the sequence?   
Explain and/or show HOW you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out how many matchsticks you will need 
for the nth shape in the sequence. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

 4 matches 

16 matches 
28 matches 

      Appendix A – MPRS Question 15 
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Look at the following diagrams.  A border of white tiles has been built around growing “L 
shapes” of striped tiles. 
 
 
 
        
 

 
• How many white tiles will you need in the next diagram?  Explain and/or show HOW 

you got to your answer.  
 
 
 
 
 

• How many white tiles will you need in the 10th diagram?  Explain and/or show HOW 
you got to your answer.  

 
 
 
 
 
 

• How many white tiles will you need in the 50th diagram?  Explain and/or show HOW 
you got to your answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out many white tiles you will need in the 
nth diagram. 

 
 

• Justify your formula – i.e. explain WHY your formula works. 
 
 
 

12 white tiles 16 white tiles  20 white tiles 

      Appendix A – MPRS Question 16 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

8 ; 12 ; 16 ; … 

      Appendix A – MPRS Question 17 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

12 ; 19 ; 26 ; … 

      Appendix A – MPRS Question 18 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

3 ; 7 ; 11 ; … 

      Appendix A – MPRS Question 19 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

1st 2nd 3rd … 

4 13 22 … 

      Appendix A – MPRS Question 20 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

1st 2nd 3rd … 

4 7 10 … 
 

      Appendix A – MPRS Question 21 
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Look at the following sequence of numbers: 
 
 
 
        
 

 
• What is the next number in the sequence?  Explain and/or show HOW you got to your 

answer.  
 
 
 
 
 

• What is the 10th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• What is the 50th number in the sequence?  Explain and/or show HOW you got to your 
answer.  

 
 
 
 
 
 

• Give an algebraic “rule” or “formula” to work out the nth number in the sequence. 
 
 
 

• Try to explain HOW you arrived at your formula. 
 
 
 

1st 2nd 3rd … 

4 16 28 … 

      Appendix A – MPRS Question 22 
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Kyle s    4 Ex Ex Ex 13 +n  1 

Lisa     4 Co Ex Ex 13+×n  1 

Lucas     4 Ex Ex Ex 13 +n  1 

Mark     4 Co 
Ex 
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Ex Ex 1)3( +×n  1 

Mary     4 Co Ex Ex 1)3( +×N  1 

Nell     4 Ex Ex Ex 13 +n  ½ 

Owen     4 Ex Ex Ex 13 +n  1 

Phil     3 Co Ch Ch [ ] 63)1( −×−n  0 

Richard     4 Co Ex Ex 13 +x  1 

Ryan     1 Co Wu Wu nn×+3  0 

Sizwe     4 Co Ex Ex 13+×x  1 

Sonya    * 4*y Co Ch Ch answeryourxbbyyxn =+=×=− ;3;  ½ 

Sue     4x Co DP Ex 1)3( +× n  1 

Ted     4 Ex Ex Ex )1(34 −+ n  1 

 

3 squares require 10 matches

 

QUESTION 1 
      Appendix B – QRAS 1 
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Jason     4xy Co Wu Wu 23 +n  1 

Julian     4 Co Ex Ex )2()4( −−× nn  0 

Kyle     4 Co 
Ex Ex Ex 23 +x  1 

Lisa     4 Co Ex Ex 232)3( +=+× nn  1 

Lucas     4 Ex Ex Ex 23 +n  1 

Mark     4 Co 
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Co 
Ex Ex 2)3( +× n  1 

Mary     4 Co 
Ex Ex Ex 2)3( +×n  ½ 

Nell     4 Ex Ex Ex 23 +n  ½ 

Owen     4 Co 
Ex Ex Ex 3)1(5)(32 −++ norn  1 

Phil     4 Co 
Ex Ex Ex 23 +n  0 

Richard     4 Co Ex Ex )3(2 ×+ x  1 

Ryan     4xy Co Wu Wu 2)3( +×n  0 

Sizwe     4 Co Ex Ex 23+×x  0 

Sonya     4 Co Ex Ex 2)3( +×n  1 

Sue     4 Co Ex Ex 2)3( +×n  ½ 

Ted     4 Ex Ex Ex 2)3( +×n  1 

QUESTION 2 
      Appendix B – QRAS 2 

A pattern with 3 horizontal matchsticks requires
a total of 11 matchsticks
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Helen     4 Co 
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James     4 Ex Ex Ex 62 +n  1 

Jason     4 Co Ch Ex 62 +n  1 

Julian     4 Co Ex Ex 62+×n  1 
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Ryan     1 Co Wu Wu 2)8( ++n  1 
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Sonya     4 Ex Ex Ex 6)2( +×n  1 

Sue     4 Co Co Ex [ ] nnnn −+++++ 2)2()2(  ½ 

Ted     4 Co 
Ex Ex Ex 62 +n  1 

QUESTION 3 
      Appendix B – QRAS 3 

 
 For a row of 3 striped tiles there are 12 white 

tiles in the border. 
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Sizwe     4 Co Ex Ex 13+×x  1 

Sonya     0 Ex Ex Ex 2)3( +×n  1 

Sue     4 Co Ex Ex 131)3( ++× norn  ½ 

Ted     4 Co 
Ex Ex Ex 4)1(3 +−n  1 

QUESTION 4 
      Appendix B – QRAS 4 

 
 

For 3 photos you need 10 drawing pins 
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If there are 4 vertical matchsticks you need 
a total of 13 matchsticks. 
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Hannah     4 Co Ex Ex 34−×n  1 

Helen     4 Ex Ex Ex ( )3]1[ ×−+ nn  1 

James     4 Ex Ex Ex nn +×− 3)1(  1 

Jason     1 Co Ch Ex 14 +n  1 

Julian     4 Co Ex Ex 34−×n  1 

Kyle     4 Co 
Ex Ex Ex 34 −n  1 

Lisa     4 Co Ex Ex nn +− )1(3  1 

Lucas     1 Co Ex Ex 14 +n  1 

Mark     4 Co 
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Co 
Ex Ex 3)4( −×n  1 

Mary     0 Ex Ex Ex 1)3( +×n  ½ 

Nell     4 Co 
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Ex Ex 34 −n  1 

Owen     4 Ex Ex Ex 1)1(4 +−n  1 

Phil     4 Co Ex Ex 34)1(3 −=+− nnn  1 
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Sonya     4 Ex Ex Ex 3)3( −+× nn  1 

Sue     4 Co Co Ex )3(3 −+ nn  0 

Ted     4 Ex Ex Ex 34)1(3 −+− nornn  ½ 

QUESTION 5 
      Appendix B – QRAS 5 
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For 5 base matches you need a total of 19 matches.  
For 3 base matches you need a total of 11 matches 
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Hannah   s  4 Ex Ex Ex 14 −×n  1 

Helen     4 Ex Ex Ex )1(3 −+× nn  1 

James     4 Ex Ex Ex 14 −x  1 

Jason     4xy Co Wu Wu 13 −+ nn  1 

Julian     4 Ex Ex Ex )1(3 −+× nn  1 

Kyle     4 Co 
Ex Ex Ex 14 −n  1 

Lisa     4 Ex Ex Ex 14 −n  0 

Lucas     4 Ex Ex Ex 14 −n  1 

Mark     4 Co 
Ex Ex Ex 1)4( −×n  1 

Mary     4 Co Ex Ex 1)4( −×n  1 

Nell     4 Co 
Ex Ex Ex )1(3 −+ nn  1 

Owen     4 Ex Ex Ex 14 −n  1 

Phil     4 Ex Ex Ex 14 −n  1 

Richard     4 Co Ex Ex )2()1( ×+−+ nnn  1 

Ryan     4 Ex Ex Ex 1)4( −×N  0 

Sizwe     4 Co Ex Ex 15 −−× xx  0 

Sonya     0 Ex Ex Ex 23 +n  1 

Sue     4txy Co Co 
Ex Ex )1(31)3( −+−+× xxorxx  ½ 

Ted     4 Ex Ex Ex )1()3( −+× nn  1 

QUESTION 6 
      Appendix B – QRAS 6 
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For a 2x2 square of striped 
tiles, 12 white tiles are needed. 

For a 5x5 square of striped tiles, 
24 white tiles are needed. 
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Dana     4x Ex Ex Ex 442)2(2 +++ nornn  1 

Greg     4 Ex Ex Ex 4)2()2( +×+× nn  1 

Hannah     4 Ex Ex Ex 44 +×n  1 

Helen     4 Ex Ex Ex 4)1( ×+n  1 

James     4 Ex Ex Ex 44 +n  1 

Jason     4 Co Wc Wc 44 +n  1 

Julian     4 Ex Ex Ex 44 +×n  1 

Kyle     4 Co 
Ex Ex Ex 44 +n  1 

Lisa     4 Ex Ex Ex 22)2( nn −+  1 

Lucas     4 Ex Ex Ex )1(4 +n  1 

Mark     4 Co 
Ex Ex Ex 4)4( +×n  1 

Mary     4 Ex Ex Ex 44 +n  0 

Nell     4 Co Ex Ex )1(444 ++ norn  1 

Owen     4 Ex Ex Ex 44 +n  1 

Phil     4 Ex Ex Ex )()2)(2( nnnn ×−++  ½ 

Richard     4 Ex Ex Ex 44 +n  1 

Ryan     4 Ex Ex Ex 4)4( +×n  0 

Sizwe     0 Co - - - - 

Sonya     4y Ex Ex Ex 4)22( +×n  1 

Sue     4 Co 
Ex Ex Ex nn 2]2)2[( ++  1 

Ted     4 Ex Ex Ex 44 +n  0 

QUESTION 7 
      Appendix B – QRAS 7 



 177

 

For 2 squares you need a total of 19 matches. For 5 squares you need a total of 40 matches.   
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Julian     4 Ex Ex Ex 57 +×n  1 

Kyle     4 Co 
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Lisa     4 Ex Ex Ex 57 +n  1 

Lucas     4 Ex Ex Ex 57 +n  1 

Mark     4 Co 
Ex Ex Ex 5)7( +×n  1 

Mary     4 Ex Ex Ex 57 +x  0 

Nell     4 Co 
Ex Ex Ex 57 +n  1 

Owen     4 Ex Ex Ex 5)(7 +n  1 

Phil     4 Ex Ex Ex 57 +n  1 

Richard     1 Co Ex Ex )7( ×+ nn  0 

Ryan     0 Co Ch Ex )26(127 −×++ n  1 

Sizwe     0 Ex Ex Ex 152 +x  0 

Sonya     4 Ex Ex Ex 534 ++ nn  1 

Sue     4 Ex Ex Ex 57 +x  0 

Ted s    4 Ex Ex Ex 5744)13( +=+++ nnn  1 

QUESTION 8 
      Appendix B – QRAS 8 
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Base is 4 dots long
Base is 6 dots long  
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Hannah   s  4 Co Ex Ex 44 −n  1 

Helen     4 Ex Ex Ex 2)2(2 ×−+× nn  1 

James     4 Ex Ex Ex )1(4 −n  1 

Jason     4 Co Ch Ex 2)2()2( −+ nn  1 

Julian     4 Ex Ex Ex )42(2 −+ nn  1 

Kyle     4 Co Ex Ex 44 −n  1 

Lisa     4 Ex Ex Ex )32()12( −+− nn  1 

Lucas     4 Ex Ex Ex 44 −n  1 

Mark     4 Co 
Ex 
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Ex Ex 2)2()2( ×−+× nn  1 

Mary     1 Co 
Ex Ex Ex 41)3( +−×n  0 

Nell     4 Co Ex Ex 44 −n  1 

Owen     4 Ex Ex Ex )1(4 −n  0 

Phil     4 Co Ex Ex 44 −n  1 

Richard     4 Co Ex Ex )4(3 −+ nn  0 
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Sonya     4 Ex Ex Ex )32()1( −+−+ nnn  1 

Sue     4 Co Co 
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Ted     4y Ex Ex Ex 44)32()12( −=−+− nnn  1 

QUESTION 9 
      Appendix B – QRAS 9 
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For a 2x3 square of striped 
tiles, 14 white tiles are needed. 

For a 4x5 square of striped tiles, 
22 white tiles are needed. 
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Jason     4 Ex Ex Ex 42)1()2( +++ nn  1 

Julian    * 4* Ex Ex Ex 24+×numberbase  0 

Kyle    * 4* Co Ex Ex 4)22( +×+× yn  1 
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Mark     4 Co 
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QUESTION 10 
      Appendix B – QRAS 10 
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QUESTION 11 
      Appendix B – QRAS 11 
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