LITHOSTRATIGRAPHY, SEDIMENTOLOGY AND PROVENANCE OF THE BALFOUR FORMATION (BEAUFORT GROUP) IN THE FORT BEAUFORT-ALICE AREA, EASTERN CAPE PROVINCE, SOUTH AFRICA

BY DAVID KATEMAUNZANGA

A dissertation submitted in fulfilment of the requirements of the degree of Master of

Science in Geology

Department of Geology

Faculty of Science and Agriculture

University of Fort Hare

2009

ABSTRACT

A traverse through the Balfour Formation was chosen in the area around the towns of Fort Beaufort and Alice in the Eastern Cape Province. The main objectives of the study were to map the lithological variations within the Balfour Formation and to distinguish it from the underlying Middleton Formation and the overlying Katberg Formation.

A combined desktop, field and laboratory approach was used in this study. Aerial photographs, satellite images and digital topographical maps formed the basis of the desktop work. After desktop mapping, a number of field traverses were measured through the study area. Sedimentary structures were observed, photomosaics were done, stratigraphic sections were measured and samples were collected for thin sectioning, heavy mineral separation and major, trace and REE analysis.

Sedimentological development of the Balfour Formation has been outlined in relation to its provenance during the Late Permian. Lithological variation of the Balfour Formation is characterised by alternating sandstone-dominated and mudstone-dominated members. Arenaceous Oudeberg and Barberskrans Members are contain facies ranging from intraformational conglomerates (Gmm), massive sandstones (Sm & Ss), horizontally laminated sandstones (Sh), planar and trough cross-bedded sandstones (Sp, Sl & St), trough cross-laminated sandstones (Sr) and fine-grained sediments (Fm & Fl), whereas the mudstone dominated members are characterised by the facies Fm and Fl. Lithofacies together with bedforms observed in the Balfour Formation were used in architecturalelement analysis. Sandstone–rich members are dominated by channel fill elements such as LS, DA, SB, LA and CH, whereas the fine-grained component consists of mainly, FF element. The mudstone-dominated members contain FF, CS and LV elements, with LA, SB and CH in the subordinate sandstones.

Petrography, geochemistry and palaeocurrent analysis indicated that the source of the Balfour Formation was to the south-east and the rocks had a transitional/dissected magmatic arc signature. This led to the postulation of the Karoo Basin to have developed in a retro-arc foreland basin where there was supralithospheric loading in the Cape Fold Belt due to a compressional regime initiated by the subduction of Palaeo-Pacific plate underneath the Gondwana plate. The tectonic loading was episodic with eight major paroxysms affecting the Karoo Supergroup. The Balfour Formation coincides with the fourth paroxysm, this paroxysm in turn consists of two third-order paroxysm that initiated the deposition of the Oudeberg and Barberskrans Members in low sinuosity streams. Each paroxysm was followed by a period of quiescence and these resulted in the deposition of the Daggaboersnek, Elandsberg and Palingkloof Members in meandering streams.

Depositional environments were determined mainly from the sedimentary structures and 3D architecture of the rock types. Sandstone rich members were formed by seasonal and ephemeral high energy low sinuous streams whereas the fine-grained rich members were formed by ephemeral meandering streams. Palaeoclimates have been equated to the present temperate climates; they were semi-arid becoming arid towards the top of the Balfour Formation. This has been determined geochemistry (CIA), sedimentary structures and other rock properties like colour.

DECLARATION

I declare this dissertation to be my own unaided work. It is being submitted for the Master of Science Degree in Geology at the University of Fort Hare, Alice. It has not been submitted before for any degree at any other University.

.....

David Katemaunzanga

July 2009

DEDICATION

To my mother and father, this is the path that you set me on,

and,

To wife and daughter, your love and support have been my strength.

ACKNOWLEDGEMENTS

I would like to acknowledge with sincere thanks my supervisor Mr. C.J. Gunter for his assistance, guidance, suggestions and constructive criticism. I value the time that we shared in the field. Grateful acknowledgement also goes to Prof. B. Zhao for his assistance and encouragement.

I would like to thank the Govan Mbeki Research Institute for funding my studies and stay at the university. Council for Geoscience, particularly Dr S. Foya, for the time I was given to work on the dissertation and funding the geochemical analysis and thin sections. Colleagues at the CGS your comradeship and encouragements are also appreciated. Thanks are also due to Dr Mike Johnson for his assistance and comments. Ronel Malan assisted with some figures and maps.

Special thanks are also due to colleagues at Fort Hare for the time, arguments and meals we shared; Cleopas Chiyangwa, Eric Madi, Kudakwashe Chipendo, Batsirai Bakare Ntokozo Malaza, Eliza Chihobvu, Monica Ogenekhome, Victor Mpofu and others that I have not mentioned by names this is for you.

Finally but not least I would like to thank my wife Maidei, daughter Ropafadzo Eileen, who were robbed of their time to be with me. My brother Munyaradzi and family you were a pillar of support to me. The Madondo family thanks for your support.

TABLE OF CONTENTS

ABSTRACT	ii
DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xiii
LIST OF TABLES	xviii

1 INTRODUCTION

1.1 Background	1
1.2 Problem statement	2
1.3 Objectives	2
1.4 Location	3

2 LITERATURE REVIEW

2.1 Introduction	5
2.2 General Geology of the Karoo Group	5
2.2.1 Dwyka Formation	7
2.2.2 Ecca Group	7
2.2.3 Beaufort Group	8
2.2.4 Molteno Formation	9
2.2.5 Elliot Formation	9

2.2.6 Clarens Formation	10
2.2.7 Drakensberg Group	10
2.3 Tectonic Setting of the Karoo Basin	10
2.4 Stratigraphy of the Balfour Formation	12
2.5 Controls on Balfour Sedimentation	16
2.6 Provenance of the Balfour Formation	17

3 METHODOLOGY

	3.1 Introduction	18
	3.2 Desktop Study	18
	3.2.1 Aerial photo interpretation	18
	3.2.2 GIS and remote sensing	19
	3.3 Geological Mapping	19
	3.3.1 Recording sedimentary structures	20
	3.4 Laboratory Investigation	21
	3.4.1 Petrography	21
	3.4.2 Grain size measurements	22
	3.4.3 Heavy minerals	23
	3.4.4 Whole rock geochemistry	24
4 STR	RATIGRAPHY	
	4.1 Introduction	26
	4.2 Lithostratigraphy of the Balfour Formation2	29
	4.2.1 Oudeberg Member	30

-	
4.2.2 Daggaboersnek Member	31

4.2.3 Barberskrans Member	32
4.2.4 Elandsberg Member	33
4.2.5 Palingkloof Member	34
4.3 Biostratigraphy of the Balfour Formation	34
4.3.1 Cistecephalus Assemblage Zone	35
4.3.2 Dicynodon Assemblage Zone	36
4.3.3 Lystrosaurus Assemblage Zone	36
4.4 Sequence stratigraphy	37
4.5 Chronostratigraphy	

5 SEDIMENTOLOGY

5.1 Introduction	39
5.2 Lithofacies Analysis	40
5.2.1 Oudeberg Member	40
5.2.1.1Intrafomational Conglomerate (Gmm)	41
5.2.1.2 Massive sandstone (Sm, Ss & Sh)	42
5.2.1.3 Crossbedded sandstone (Sp, Sl, St ±Ss)	43
5.2.1.4 Trough cross-laminated sandstone (Sr)	43
5.2.1.5 Mudstones (Fm & Fl)	43
5.2.2 Daggaboersnek Member	44
5.2.2.1 Intraformational conglomerate (Gmm)	45
5.2.2.2 Sandstone (S)	45
5.2.2.3 Fine-grained facies (Fm & Fl)	47
5.2.3 Barberskrans Member	48

5.2.3.1 Massive sandstone	48
5.2.3.2 Horizontally-bedded sandstone (Sh)	49
5.2.3.3 Low angle cross-bedded sandstone (Sl & Sp)	49
5.2.3.4 Fine-grained sediments (Fm &Fl)	.50
5.2.4 Elandsberg	50
5.2.5 Palingkloof	50
5.3 Architectural-Element Analysis	51
5.3.1 Channel Deposits	53
5.3.1.1 Fine-grained members (Daggaboersnek & Elandsberg).	.54
5.3.1.2 Sandstone rich members (Oudeberg & Barberskrans)	55
5.3.2 Overbank Deposits	56
5.3.2.1 Coarse- grained floodplain deposits	.59
5.3.2.2 Fine-grained floodplain deposits	.60
5.4 Conclusion	.61
6 SANDSTONE PETROGRAPHY OF THE BALFOUR FORMATION	
6.1 Introduction	63
6.2 Petrography	63
6.2.1 Quartz	65
6.2.2 Feldspar	69
6.2.3 Lithic fragments	.70
6.3 Sandstone Classification	71
6.4 Grain size measurements	.72
6.5 Heavy minerals	.74

6.6 Conclusions	74		
7 MUDSTONE GEOCHEMISTRY OF THE BALFOUR FORMATION			
7.1 Introduction	75		
7.2 Previous Work7	'6		
7.3 Results	77		
7.3.1 Major Elements	77		
7.3.2 Trace Elements	80		
7.4 Provenance Determination	83		
7.5 Palaeoredox Conditions	39		
7.6 Conclusions	91		
8 PROVENANCE OF THE BALFOUR FORMATION			
8.1 Introduction	93		
8.2 Sediment Dispersal patterns	94		
8.3 Sandstone Petrography	98		
8.3.1 Quartz10	02		
8.3.2 Feldspar10	03		
8.3.3 Lithic Fragments10)4		
8.3.4 Grain Size10	05		
8.4 Mudstone Geochemistry10)5		
8.5 Conclusions10	06		
PALAOENVIRONMENTAL RECONSTRUCTION			

9.1 Introductions10	8
9.2 Tectonic Setting and Basin Analysis	8

9.2.1 Controls on Sedimentation	113
9.3 Depositional Environment of the Balfour Formation	114
9.3.1 Sandstone Rich Members	116
9.3.1.1 Oudeberg	116
9.3.1.2 Barberskrans	117
9.3.2 Fine Grained Members	118
9.4 Palaeoclimates	122
10 SUMMARY AND CONCLUSION	

10.1 Summary and Conclusions	
10.2 Recommendations	131
REEFERENCES	132

LIST OF FIGURES

Figure 1-1 Location map of the study area4
Figure 2-1 Previous geological coverage in the Eastern Cape14
Figure 4-1 Geology of the Fort-Beaufort-Alice area
Figure 4-2 The stratigraphy of the Beaufort Group. The grey coding represents the
sandstone-rich units and the wavy line represent an unconformity (modified after
Hancox and Rubidge, 2001)30
Figure 4-3 Summary of the stratigraphic position of the P-T boundary in the Beaufort
Group and its relation to the Balfour Formation (After Botha and Smith,
2007)
Figure 4-4 Chronostratigraphic scheme of the Balfour Fomation. After Catuneanu and
Elango (2001)53
Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour
Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice
 Figure 5-1 Intraformational conglomerate from the Oudeberg Member of the Balfour Formation south of Alice

- Figure 7-2 Figure 7-2 PAAS normalised major element oxide distribution of mudrock

 samples of the Balfour Formation.
 80

Figure 7-3 PAAS normalised trace elements distribution of the mudrock samples from
the Balfour Formation83
Figure 7-4 TiO_2 vs Ni bivariate data for mudrocks of the Balfour Formation. The
bottom left corner represents acidic provenance rocks, whereas the top right
corner represents basic rocks85
Figure 7-5 K ₂ O/Na ₂ O vs SiO ₂ tectonic discrimination diagram (after Roser and Korsch,
1986)
Figure 7-6 Chemical Index of Alteration (CIA) of the Balfour Formation mudstones. The
insert shows the corresponding average CIA of the different members. The graphs
are directional going up the stratigraphy from the left to the right
Figure 7-7 Th/Co vs La/Sc diagram for mudstone samples from the Balfour Formation
(fields after Cullers, 2002 in Nagaragan et. al., 2007)90
Figure 8-1 Sediment dispersal pattern in the Balfour Formation. The numbers next to
flow arrows represent the mean palaeotransport direction
Figure 8-2 Summary rose diagram of the Balfour Formation (n=67, vector mean μ =341 ⁰
and circular standard variation = 43 [°])96
Figure 8-3 Palaeoflow directions for the lithostratigraphic members of the Balfour
Formation with the exception of the Palingfloof Member. The number of
readings, mean vector azimuth and circular standard deviations are shown in
Table 8-2
Figure 8-4 QmFLt plot showing the provenance after Dickinson (1988). The cross =
Elandsberg Member, star = Barberskrans Member, box = Daggaboersnek

Member, downward triangle = Oudeberg Member and circles are samples from (Johnson 1991). The later has been circled with a larger circle......101

- Figure 8-5 The quartz/feldspar ratio of the Balfour Formation sandstones......103
- Figure 9-1 Palaeotectonic map of the Karoo Basin in the context of the Gondwanian foreland system in the Permian, (after Catuneanu and Elango, 2001)......109

- Figure 9-4 Figure 9-4 Depositional model of the Oudeberg and Barberskrans members of the Balfour Formation, (after Miall, 1996 and Neveling, 2003)......119

Figure 9-7 Postulated distribution of landmasses and climate zones in the Early Triassic,

(after Neveling	(2003)1	25
(after nevening	(2003)	L_{J}

LIST OF TABLES

Tuble 2 1 Tuboryshis and occurred in the Supe Fold Delt and the depositional events and
they affected in the main Karoo Basin (Hälbich, 1983; 1992; Catuneanu et al.,
1998)11
Table 2-2 Stratotype, type locality, type area, source of names and proposers of the
lithostratigraphic units in the study area. (SACS, 1980)13
Table 2-3 Lithostratigraphic subdivision into the members of the Balfour Formation
according to various authors. Grey parts represent sandstone-dominated
units14
Table 4-1 Distribution of Dicynodonts in the Cistecephulus Assemblage Zone (After
Smith and Keyser, 1995)35
Table 5-1 Facies classification and definitions (After Miall 1996)41
Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47
Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47 Table 5-3 Description of the architectural-elements observed in the Balfour
Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47 Table 5-3 Description of the architectural-elements observed in the Balfour Formation
Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47 Table 5-3 Description of the architectural-elements observed in the Balfour Formation
 Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47 Table 5-3 Description of the architectural-elements observed in the Balfour Formation
 Table 5-2 Hierarchy of depositional units in alluvial deposits. (From Miall, 1996)47 Table 5-3 Description of the architectural-elements observed in the Balfour Formation

Table 6-3 Mean modal compositions of sandstones from the different units of the Balfour
Formation the mineral classes are defined in Figure 6-1. The last three columns
are percentages of Qm, F (F+Ft) and Lt (L+Qp)68
Table 6-4 Grain sizes in the Balfour Formation sandstones
Table 7-1 Major element oxides in percentage concentrations for mud rocks of the Balfour
Formation. The Post Archaean Australian average shale (PAAS) values are also
shown79
Table 7-2 Correlation coefficients of the major element oxides in mudrocks of the
Balfour Formation81
Table 7-3 Trace elements concentrations (ppm) of Balfour Formation mudrocks and
elemental ratios critical for interpretation of source rock compositions82
Table 7-4 Elemental ratios of the Balfour Formation compared to the ratios derived from
felsic rocks, mafic rocks, upper continental crust (UCC) and PAAS (Modified
after Nagarajan <i>et al.</i> , 2007)89
Table 8-1 Palaeocurrent stations on the Balfour Formation, with the number of readings
taken at each site. PCL= primary current lineation, TXB= trough cross bedding,
MXL= planar cross lamination95
Table 8-2 Mean palaeotransport vector azimuth, number of readings and circular
standard deviations for the different subdivisions of the Balfour Formation98