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Abstract 

Habitat selection may be considered a behavioural consequence of an individual 

actively selecting where it lives or passively persisting in a certain habitat. There are a 

variety of approaches to assessing habitat selection, including relating densities to 

predefined habitats and the characteristics of these habitats, measuring the behaviour 

of animals within predefined habitats in order to assess the relative benefits to the 

animal and comparing these between habitats, and using optimality theory to allow 

the animal to provide measures of its preference for particular habitats or patches. 

Each approach provides different perspectives on an animal’s choice and use of 

habitat, with some approaches working more effectively with certain species or 

habitats than others. There have, however, been no attempts to apply all these 

approaches to a single species at a single site. The objective of this study was 

therefore to apply the three above-mentioned approaches to assess habitat use and 

quality to a single species, the springbok (Antidorcas marsupialis) at the Augrabies 

Falls National Park (AFNP), on the northern bank of the Orange River, in order to 

provide the basis for further work on comparing and integrating these approaches. The 

relative abundance of springbok in Augrabies Falls National park was used to develop 

a habitat suitability model for the park, and thus determine the habitat variables that 

influenced habitat suitability. Isodar analysis revealed information on the mechanisms 

underlying habitat preference. Behavioural models were developed to improve our 

understanding of how springbok behaviour changes in relation to the habitat, and 

incorporated the variables identified in the habitat suitability model. The different 

spatial and temporal scales influencing springbok habitat selection were determined 

using optimal foraging theory and giving-up densities. Springbok preferred open 

habitats providing high food quality. Springbok behaviour was related to the foraging 

and predation risk characteristics of the habitat, and springbok varied their temporal 

and spatial utilisation so as to minimise their risk of predation and maximise their 

food intake. The habitat suitability model, behaviour models and giving-up densities 

were compared for ease of use and applicability. Using giving-up densities to reveal 

habitat suitability had greater applicability and was both efficient and objective. 

 

Keywords: Habitat suitability, isodar, giving-up density, behaviour, springbok, 

vigilance, predation risk. 
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Chapter 1 

Introduction 
 

Habitat suitability 

Habitat is one of the most widely used terms in ecology (Morris 2003b). It represents 

a central tenet in ecological thinking, linking an organism to its environment (Henley 

2001). Habitat influences individual behaviour, affecting activity patterns (Belovsky 

1981), reproduction (Deutsch 1994), territoriality (Itzkowitz 1979), antipredator 

behaviour (Repasky 1996), and foraging behaviour (Roese et al. 1991; Rosenzweig 

1991; Krasnov et al. 2000). Differential use of habitats by species influences species 

richness (Vernier & Fahrig 1996) and community composition (Morris 1990; 

Danielson 1991; Ziv 1998). Our understanding of wildlife ecology is strongly 

influenced by the habitat concept (Henley 2001). 

 

Habitat characteristics influence the behaviour of a species, including activity patterns 

(Belovsky 1981), territoriality (Itzkowitz 1979), foraging behaviour (Rosenzweig 

1991; Duncan & Gordon 1999) and anti-predator behaviour (Repasky 1996). 

Acquiring food and avoiding predators are considered to be the two principal 

components of the survival strategies of most animals (Cowlishaw 1997). However, 

in order to maximise fitness, many animals are forced to trade-off these components 

(see Fraser & Huntingford 1986; Lima & Dill 1990 for reviews) through the strategic 

use of habitats and appropriate shifts in behavioural patterns (Cowlishaw 1997). 

 

Despite its importance, habitat remains one of the most ambiguous terms in ecology 

(Morris 2003b). Depending on the context, habitat has been used to represent biome, 

ecosystem, community, spatial mosaic and foraging patch (Morris 2003b). It is 

seldom defined, and those definitions that do exist are often broad generalisations that 

refer to an organism’s habitat either as the place where it occurs (Black 1954; Begon 

et al. 1990), or its association with a plant community (Grzimek 1973; Smithers 1983; 

Hutto 1985). Neither offers much insight into the relationship between an animal and 

its environment. For the purposes of this study, a more rigorous definition of habitat 

will be used, referring to habitat as that place which provides for the life needs of an 

organism (Harris & Kangas 1988; Owen-Smith 1988; Fabricius 1989). 
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The way in which an animal perceives and uses its environment is central to studies of 

animal ecology (Johnson 1980). Since the environment in which an animal lives 

contains habitats that vary in quality both in terms of the costs and the benefits, this 

can influence an individual’s ability to survive and reproduce (Melton 1987). The 

classification of habitats into discrete categories (and measurement of their relative 

availability) from which an animal chooses allows one to determine if the use of 

habitat is selective (Arthur et al. 1996). The use of habitat and habitat selection may 

be considered a behavioural consequence of an individual actively selecting where it 

lives or passively persisting in a certain habitat (Boyce & McDonald 1999). The 

selection of habitats by animals can be viewed as a multilevel, hierarchical process 

acting at different scales that should permit individuals to avoid effects of those 

factors most able to limit their individual fitness (Johnson 1980). At a macro-habitat 

scale the selection of habitat may be influenced by factors such as substrate and 

vegetation type. At the smallest micro-habitat scale, factors such as the extent of cover 

within a patch may influence habitat selection. The extent of habitat use suggests the 

quality and abundance of resources, which in turn affects the fitness in that habitat 

(Boyce & McDonald 1999). 

 

Assessing habitat 

There are a variety of approaches to assessing habitat, including relating densities of 

the study species to predefined habitats and the characteristics of these habitats 

(Schamberger & O’Neil 1986), measuring the behaviour of animals within predefined 

habitats in order to assess the relative benefits to the animal (feeding opportunities, 

etc) and comparing these between habitats (Siegfried 1980), and using optimality 

theory to allow the animal to provide measures of its preference for particular habitats 

or patches (typically in terms of measuring feeding opportunities that are not utilized) 

(Brown 1988). Each of these approaches provide different perspectives on an animal’s 

choice and use of habitat, and some approaches work more effectively with some 

species or habitats than others. There have, however, been no attempts to apply all 

these approaches to a single species at a single site. 

 

The objective of this study was therefore to apply the three above-mentioned 

approaches to assessing habitat use and quality to a single species, in order to provide 
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the basis for further work on comparing and integrating these approaches. The chosen 

study species was the springbok, Antidorcas marsupialis, a medium-sized antelope 

occurring in open, semi-arid habitat in southern Africa. This species was selected due 

to its relative abundance, visibility on the landscape, as well as the fact that it has been 

reasonably well studied, providing background information (see Chapter 2) to develop 

hypotheses regarding its habitat selection. The study was undertaken at the Augrabies 

Falls National Park (AFNP, see Chapter 2 for details), on the northern bank of the 

Orange River. This conservation area provided a relatively undisturbed population of 

springbok (tourism is limited in the section of the AFNP where the study was 

undertaken) as well as a reasonable variety of habitats (open plains – woodlands) 

within the centre of the distribution range of springbok. 

 

Aims and hypotheses 

One of the aims of this study was to contribute towards a standardised and 

comparable set of criteria for evaluating springbok habitat in AFNP by applying three 

different approaches to assessing habitat use by this species. 

 

A secondary aim of this study was to make a contribution towards the effective 

management of springbok within AFNP. This was achieved through  

a) improving our understanding of springbok association with their habitat by 

developing a habitat model to account for the variation in springbok abundance 

across habitats, and by using isodar analysis to reveal information on the 

mechanisms underlying habitat preference by springbok, 

b) improving our understanding of how springbok behaviour changes in relation to 

their habitat by developing behaviour models to account for changes in springbok 

behaviour according to the foraging and predation risk characteristics of the habitat 

as well as individual and group factors, 

c) improving our understanding of how they perceive differences in their habitats at 

different temporal and spatial scales using optimal foraging theory and giving up 

densities. 
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The following general hypotheses were addressed (see Chapter 2 for background 

information that was used to develop these hypotheses): 

 

1. Springbok prefer open habitats that allow early predator detection and fast escape 

as they rely on detection and running to reduce predation (Shortridge 1934; Leistner 

1967; Bigalke 1972; Bednekoff & Ritter 1994). This habitat preference can be 

described by habitat models (which measure their association with habitat variables) 

and isodar analysis (which measure their density in adjacent habitats). The habitat 

model and isodar analysis were used to test the predictions arising from the 

hypothesis, namely that 

• the maximum number of springbok would be found in open areas with high 

food quality, and  

• the minimum number of springbok would be found in densely vegetated, 

rocky areas. 

 

2. Springbok behaviour changes across the landscape in a non-random fashion that 

can be described by behaviour models which measure how the time spent in each 

activity (Novellie 1978; Davies & Skinner 1986a,b; Liversidge & Gubb 1994), 

groups of different size (Novellie 1978; Skinner et al. 1996), choice of diet (Leistner 

1967; Bigalke 1972; Cooper 1993; Nagy & Knight 1994; Vorster 1994), and the sex 

ratio (Jackson et al. 1993; Bednekoff & Ritter 1994) varies according to the habitat. 

These models were used to test the predictions arising from the hypothesis, namely 

that 

• springbok would spend more time being vigilant in areas of greater predation 

risk, 

• springbok would feed more in areas of low predation risk with high quality 

food items, 

• springbok would move more in areas of high predation risk  

• springbok would move more in areas with low quality food items, 

• springbok would spend more time resting or grooming in areas with low 

predation risk, 

• the adult sex ratio would differ between habitats, since males and females 

have different requirements associated with reproduction,  
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• springbok would spend more time feeding and less time vigilant with 

increasing group size, 

• the greater the proportion of adults in the group, the more time would be spent 

vigilant and less time feeding as subadults would feed more and be less 

vigilant than adults, 

• males would be more vigilant and feed less than females since males exhibit 

territoriality and may be found alone, due to the presence of territorial 

individuals, and finally 

• the time spent moving and grooming would be greater for females to meet the 

nutritional requirements of their offspring and keep them free of parasites 

than for males. 

 

3. Springbok perceive differences in their habitats at different temporal and spatial 

scales that can be evaluated using optimal foraging theory and giving up densities 

(Brown 1988; Brown & Kotler 2004). Foraging theory was used to test the 

prediction that springbok prefer feeding at night in order to obtain more water from 

their diet (Louw & Seely 1982; Nagy & Knight 1994), and in open, non-rocky 

habitats on ridges away from drainage lines (Shortridge 1934; Leistner 1967; 

Bigalke 1972; Bednekoff & Ritter1994). As a result, giving-up densities would be 

• higher during the day than at night,  

• higher on rocky substrates than on sandy substrates,  

• higher in the drainage lines than on ridges, and 

• higher under a bush than in the open. 
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Chapter 2 

Study site and study species 
 

Study site 

Augrabies Falls National Park (AFNP), covering 55 365 ha along the Orange River, is 

the largest conservation area in the Orange River Nama Karoo (Hoffmann 1996). The 

Orange River Nama Karoo, synonymous with Acock’s (1975) Orange River Broken 

Veld (ORBV) Type is the second largest veld type in the Nama Karoo Biome 

(Scheepers 1983). The Nama Karoo, Succulent Karoo and Desert Biomes comprise 

the Karoo-Namib Region which is the largest phytochorion in southern Africa 

(Rutherford & Westfall 1986). The Nama Karoo biome is the largest of the three and 

occupies 22.7% of the southern African region (Palmer 1997). The vegetation is 

characterised as a dwarf open shrubland (Campbell et al. 1981), or open dwarf-shrub 

steppe (Werger 1980). Vegetation is dominated by Acacia mellifera, Rhigozum 

trichotomum and Zygophyllum suffruticosum (Palmer 1997). Where the terrain 

becomes hilly, at the higher elevations, Aloe dichotoma and Euphorbia avasmontana 

occur (Palmer 1997). The bedrock consists of highly reflective stony surfaces 

(quartzites and calc-silicates) derived from the Namaqualand complex (Palmer 1997). 

In terms of ecology, it is one of the least studied of southern Africa's biomes (Palmer 

1997). 

 

Only 1.5% of the ORBV is conserved, of which AFNP occupies 1.0% (Hoffmann 

1996). AFNP is situated in the Gariep Center of Endemism, and 54% of its flowering 

plant species have not been recorded in any of the three nearest major conservation 

areas, namely the Goegap Nature Reserve, Kalahari Gemsbok National Park and 

Vaalbos National Park (Zeitsman & Bezuidenhout 1999). The park is approximately 

120 km west of Upington and extends from 28°25’ S to 28°38’ S and from 19°53’E to 

20°24’ E. The Orange River divides the park into a northern and southern section 

(Bezuidenhout 1996). 

 

The study area, known as the Waterval section, is in the northern section of AFNP 

and comprises 7532 ha of the park (Fig 2.1). Most of this area was declared a 

“Schedule One” National Park in 1982. The western part had livestock on it until 
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1974, while the north-eastern part had livestock on it until 1992. Eleven vegetation 

communities with one community sub-division have been identified in the study area 

(Fig. 2.2) (Buk 2004) (see Appendix 1 for a description of these communities). These 

vegetation types proved useful in delineating springbok habitats as shown in Chapter 

3. According to Land Type Survey Staff (1986), four land types are represented in the 

study area (Table 2.1) (see Appendix 2 for the geographical location of these land 

types). 

 

 
 

Figure 2.1: The location of the Waterval section in Augrabies Falls National Park (AFNP) in 

relation to the rest of South Africa. 

 

The altitude in the study area varies from 420 to 750 m above sea-level. AFNP has a 

tropical, arid climate with summer rainfall. The annual precipitation (1945 to 1999) at 

Augrabies Waterfall averaged 123 ± 72.57 mm with a coefficient of variation of 59% 

(Buk 2004). The rainfall for the period during which data were collected (August 2002 

- November 2003) was 45.6mm. The majority of the rain falls between November and 

April, with a peak in March (Fig. 2.3). The three major seasons are the hot/wet season 

(January to April), the dry/cold season (May to August), and the hot/dry season 

0 10 20 Kilometers

AFNP

Orange River

AFNP road

Waterval Section

N

N

Namibia
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(September to December) (Fig. 2.3) (Schulze 1997). The absolute maximum and 

minimum temperatures (1984-1990) were 46.0 °C and - 2.0 °C respectively (Buk 

2004). Mean monthly humidity ranges from 10 - 40% (Buk 2004). 

 

Table 2.1: The location and geology of the four land types represented in the study area 

(Land Type Survey Staff 1986). Quartzite granite outcrops occur in the three latter land types. 

Land Type Location Geology 

Ia1a The gently sloping upper river valley ranging 
in height from 610-630m. 

Intrusive rocks, primarily granite, 
overlain with silt and fine sand 

Ic3a 

The lower river valley and incised gorge 
area ranging in height from 420-620 m, and 
the north-eastern mountainous area ranging 
in height from 610-750 m. 

Comprised mostly of exposed 
red biotite granite gneiss 

Ag2d The central basin generally sloping south 
and west ranging in height from 550-610 m. 

Same as Ic3a, overlain with 
sand and gravel 

Ae110b A small area of high-lying plain in the far 
north ranging in height from 705-725 m. Tectonic intrusive rock 

 

 

Figure 2.2: Distribution of the eleven vegetation communities (Buk 2004) within the study 

area. 

 

Augrabies Falls National Park is an ideal location for this study since the relative 

simplicity of the ecological interactions within desert ecosystems greatly facilitates 

N

0 2 4 Kilometers

Vegetation communities
Acacia erioloba - Schmidtia kalahariensis short, closed woodland
Acacia erioloba - Zygophyllum microcarpum short, closed woodland
Acacia karroo - Ziziphus mucronata short, riverine forest
Acacia mell ifera - Euphorbia spp. tall, open shrubland
Acacia mell ifera - Stipagrostis hochstetteriana tall, open shrubland
Acacia mell ifera - Zygophyllum dregeanum - Euphorbia rectirama tall, open shrubland
Acacia mell ifera - Zygophyllum dregeanum - Monechma spartioides tall , open shrubland
Adenolobus garipensis - Boscia albitrunca tall, open shrubland
Euphorbia gregaria - Osteospermum microcarpum tall, open shrubland
Schotia afra - Indigofera pechuelii low, open woodland
Sisyndite spartea - Forskaolea candida tall, open shrubland
Tamarix usneoides - Maytenus linearis tal l, open shrubland



 

9 

ecological analyses and the construction of predictive models (Louw 1982). The 

paucity of vegetative cover in AFNP improves sitelines, facilitating the ability to 

observe animals and making AFNP ideal for studying animal behaviour. AFNP also 

provides a reasonable variety of habitats, from open plains to woodlands, within the 

centre of the distribution range of springbok. The extreme spatial and temporal 

heterogeneity within AFNP allow one to separate the system into component parts. 

Finally, this conservation area also provides a relatively undisturbed population of 

springbok since tourism is limited in this section of AFNP. 
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Figure 2.3: Simplified composite climatic diagram for data collected at the AFNP weather 

station from 1995 to 2003 (Weather Bureau 2004). Temperature is indicated by the line and 

rainfall is revealed in the bars. 

 

Study species 

The springbok, Antidorcas marsupialis (Zimmerman 1780), is an indigenous ungulate 

species with widespread distribution throughout the arid regions of southern Africa. 

The shoulder height of springbok is approximately 750 mm, with their hindquarters 

appearing higher than their forequarters (Skinner & Louw 1996). This gives them a 

sloping appearance. Body mass varies with geographic location (Robinson 1979); the 

mean mass for males is 41.0 kg (range: 31.3 - 47.6 kg), and the mean mass for 

females is 37.1 kg (range: 26.5 - 43.5 kg) (Skinner & Smithers 1990). Both males and 

females possess horns, however the horns of males are heavily ridged and slope 
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backwards then diverge outwards, and in older males the horns curve sharply inwards 

in a hook at the tip. Female horns are more lightly ridged, smaller, more slender and 

wider apart at the base (Skinner & Louw 1996). 

 

Historically springbok occurred throughout much of Africa but widespread and 

indiscriminate hunting of this species has resulted in a reduced distribution. Springbok 

are adapted to an arid habitat with unpredictable food resources (Nagy & Knight 

1994). Springbok are highly mobile, capable of moving large distances in search of 

food or water, responding rapidly to rainfall and the subsequent growth of herbaceous 

plants (Knight et al 1988; Vorster 1994). The energy requirements of springbok are 

unusually low, as is characteristic of many desert mammals (Nagy & Peterson 1988). 

Instead of having reduced water requirements, springbok have enhanced abilities to 

obtain water from their environment (Nagy & Knight 1994). These include drinking 

water when it is available, selecting succulent foods over drier food types, or perhaps 

if neither of these is available, feeding at night after drier food items have taken up 

water from humid night air (Nagy & Knight 1994). 

 

The digestive system of the springbok is functionally adapted to the environment in 

which they live (Nagy & Knight 1994; Skinner & Louw 1996). They have been 

described as an intermediate type or mixed-dicotyledonous feeder (Hofmann 1989). 

They forage selectively (Davies & Skinner 1986a; Fairall et al. 1990; Cooper 1993; 

Liversidge & Gubb 1994), usually selecting a mixed diet and avoiding high-fibre 

diets, and are able to increase their food intake two- to three-fold when forage is 

plentiful (Hofmann 1989). According to Hofmann et al. (1996), the digestive tract of 

springbok provides them with a high potential for digesting mixed forage. Springbok 

appear to prefer plants undergoing relatively active growth, because of the succulence 

and higher nutrient content of such vegetation (Skinner & Louw 1996). Springbok 

feed on grasses mainly when the grass is young and tender but the major portion of 

the diet of springbok consists of short, karoid vegetation as well as the leaves of 

several tree species (Leistner 1967; Bigalke 1972; Fairall et al. 1990; Liversidge & 

Gubb 1994). Karoid shrubs, according to Louw (1969), contain sufficient protein to 

provide for the maintenance requirements of ruminants during winter. Springbok 
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spend long periods feeding due to their selective feeding habits (Novellie 1978; 

Davies & Skinner 1986b). 

 

Population size, food availability and day length (Davies & Skinner 1986b; Cooper 

1993) influence the daily activities of springbok. As high-quality food becomes 

scarcer springbok spend a greater proportion of their time feeding (Davies & Skinner 

1986a). When nutritional conditions are better and there is a risk of predation, 

springbok spend less time feeding (Cooper 1993). Springbok exhibit alternating peaks 

of feeding and ruminating throughout the day, with feeding peaks at dawn (05h00-

07h30) and dusk (17h30-19h00), although nocturnal feeding patterns have not been 

described (Davies & Skinner 1986b; Bigalke 1972). There are also claims that a 

feeding peak at midday is indicative of environmental stress (Novellie 1975). Cooper 

(1993) found that rumination time decreased as the forage became more succulent and 

abundant and that time spent resting increased as ambient temperatures increased, 

particularly when there was no wind. 

 

Springbok drink from natural water holes at all times through the day, during all 

seasons, but stop after rain and during cold weather (Child et al. 1971; Bigalke 1972). 

Springbok are able to survive indefinitely without free water provided that that they 

can get water from their diet (Nagy & Knight 1994). They acquire moisture by 

selecting succulent plant parts, including flowers, fruits and tubers (Cooper 1993; 

Nagy & Knight 1994). 

 

The spatial dispersion pattern of springbok appears to be independent of food and 

water; therefore, social structure may act to influence levels of dispersion (Davies et 

al. 1986). Springbok rams maintain a social hierarchy by territorial spacing and 

exclude bachelor herds from these territories (Bigalke 1972). Mean territory size of 

rams has been calculated as 0.21 km2 by Novellie (1975) and 0.22 km2 by Schijf 

(1978). In contrast to females and non-territorial males, territorial rams do not respond 

as sensitively to environmental change, and as a result are exposed to greater 

environmental risks (Jackson et al. 1993). Territorial males feed less efficiently than 

non-territorial animals, particularly during the rut when increased physical activity 

aggravates this disadvantage (Jackson 1995). In addition to the nutritional stress 
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imposed by territoriality, solitary males are more isolated and more vulnerable to 

predation. Jackson (1995) suggests that greater mortality among males is due to their 

being more solitary, in smaller herds, having a greater neighbour distance within the 

herd, and having a greater tendency to be found at the periphery of herds and in areas 

of tall vegetation after the rain. 

 

The breeding season in springbok, although unrestricted, is sensitive to climatic 

change (Skinner & Louw 1996). Rainfall appears to be the cue evoking territorial and 

rutting behaviour in springbok rams (Davies 1985). Territorial rams exhibit a rut that 

is characterised by loud vocalising, grunting and increases in male sexual activity 

(Skinner & Louw 1996). During the rut, anoestrous springbok ewes show a classic 

oestrus response to the territorial rams, known as the “ram effect” (Skinner et al. 

1992). This response later results in a synchronised birth of lambs. This 

synchronisation may serve to reduce the impact of predation (Estes 1976), although it 

occurs in springbok in an opportunistic manner due to the unpredictability of the 

environment (Skinner & Louw 1996). 

 

The majority of lambs are born in September in summer rainfall areas, although in the 

Kalahari Gemsbok National Park, where rainfall peaks in the second half of summer, 

lambs are born in February/March (Skinner & Louw 1996). The observed major peak 

in springbok lambing in early summer agrees with previous literature (Shortridge 

1934; Bigalke & Van Hensbergen 1993) and coincides with optimal environmental 

conditions which may serve to maximise the chance of survival of lambs. A minor 

peak in lambing in autumn is thought to be a result of early summer rain (Bigalke 

1970). However, springbok are known to adjust their reproductive behaviour to the 

unpredictable arid environment that they inhabit and can breed throughout the year 

(Skinner & Louw 1996; Skinner et al. 1996). 

 

Although generally gregarious, sociality varies seasonally depending on food, feeding 

style and reproductive behaviour (Skinner & Louw 1996). Springbok herd size and 

composition can vary in relation to season, year, and region and appears to be 

influenced by ecological factors (David 1978). In summer rainfall areas springbok 

form small herds from about April to October when dry conditions prevail, and 
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aggregate in large herds when vegetation responds to favourable conditions (Skinner 

& Louw 1996). 

 

Springbok generally fit the gazelle pattern in having herds averaging 10-30 animals 

(Estes 1976; David 1978). Bigalke & Van Hensbergen (1993) described the following 

social grouping for springbok: 

a. nursery herds containing females and young 

b. harem herds containing a nursery herd and one adult male 

c. bachelor male herd containing males from about 10 months old 

d. territorial males 

e. mixed herds 

Harem herds and territorial behaviour are most common during the mating season. 

 

There are a number of animals that may prey upon the springbok and their lambs, 

including leopards (Panthera pardus), caracal (Felis caracal), black-backed jackals 

(Canis mesomelas), African wild cats (Felis sylvestris), martial eagles (Polemaetus 

bellicosus) and black eagles (Aquila verreauxii) (Mills 1984; Hofmeyr and Louw 

1987; Jackson et al.1993). In the Kalahari Gemsbok National Park, Mills (1984) 

found that cheetahs prey heavily on springbok. Leopards are ambush predators which 

also prey relatively heavily on springbok (Jackson et al. 1993). Both predators appear 

to influence the structure of the population and may be responsible for distorted adult 

sex ratios in favour of females (Jackson et al. 1993). 

 

Bednekoff & Ritter (1995) recorded three instances when springbok approached 

predators. In the first instance, 25 ewes advanced in a wedge-shaped formation to 

drive off an African wild cat (Bednekoff & Ritter 1995). On the other occasions, a 

large group (200-250) of springbok formed a wedge and advanced to within 50-100 m 

of a leopard and a cheetah, respectively (Bednekoff & Ritter 1995). Bednekoff & 

Ritter (1995) postulated that such approaches enable the springbok to gain 

information which may assist them to thwart later attacks (Bednekoff & Ritter 1994). 

Similar approaches to large predators have been observed in Thomson's gazelle 

(Fitzgibbon 1994). 
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AFNP falls within the historical range distribution of springbok (de Graaff & 

Penzhorn 1976). Reports of springbok near the Augrabies Falls occur from as early as 

1827 (du Plessis 1969). Census results (Fig. 2.4), uncorrected for potential bias, for 

the mammalian herbivores in the Waterval section show that springbok are the most 

numerous species in the study area and the population has been increasing in recent 

years (Castley pers. comm.1). Springbok are highly mobile and able to move 

throughout the study area in search of food or water, responding rapidly to changes in 

environmental conditions. While habitat use may be influenced by density-dependent 

factors, the growth and freedom of movement exhibited by springbok is assumed to 

mitigate this effect, thereby reducing the amount of variation in distribution which 

cannot be explained by models of habitat selection. 
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Figure 2.4: Census estimates for the herbivores in the Waterval section of AFNP (J.G. 

Castley pers. comm.1). 

                                                           
1 J.G. Castley; Scientific Services; S.A. National Parks; Port Elizabeth 
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The benefit of using springbok for this study includes their morphological and 

behavioural adaptations to an arid habitat with unpredictable food resources. 

Springbok are able to exploit ephemerally favourable conditions, and are not limited 

to specific habitats by the availability of water, which results in a distribution that 

reflects responses to current environmental conditions. Springbok adjust their diet, 

microhabitat, foraging time, and social groupings in response to changes in the 

environment, making it possible to evaluate their perception of the environment using 

behaviours that are easy to read. Also, springbok generally form conspicuous, discrete 

groups and typically inhabit open, gently undulating country covered in short grass 

and scattered small bushes (Siegfried 1980) and hence are easy to observe. 
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Chapter 3 

Habitat preferences of springbok revealed through a habitat suitability 

model and isodar analysis 
 

Introduction 

Habitats differ in quality for different organisms, habitat quality being governed by 

both the costs (e.g. risk of predation) and benefits (e.g. availability of food) associated 

with living in that habitat (Melton 1987). Habitat quality influences population 

viability and persistence (Doncaster et al. 1996; Root 1998). As a result, habitat 

evaluation has emerged as a vital component of wildlife conservation and 

management (Fabricius & Mentis 1991). 

 

To effectively manage populations, the definition of a habitat should be based on a 

clear understanding of the environmental conditions upon which animals are 

dependent, and should be described in terms of the suite of environmental conditions 

which provide for the needs of an organism to sustain life and reduce the risk of 

mortality (Henley 2001). This includes a broad understanding of the life requisites of 

the species in question (Farmer et al. 1982). From a conservation and management 

perspective habitat should therefore be defined by measurable environmental factors 

that allow individuals to grow or maintain body condition, reproduce, and minimise 

the risk of mortality (Henley 2001). In this way, habitat is defined by a set of 

environmental factors which correspond with known determinants of population 

abundance and is consistent and comparable among habitats (Henley 2001). 

 

The habitat concept has been used as the basis for modelling efforts to assist in 

planning studies since it integrates the concepts of population and carrying capacity 

and provides a consistent basis for baseline, impact assessment, mitigation, and 

monitoring studies (Fish & Wildlife Services 1980a, 1980b). Habitat suitability 

modelling refers to a set of models developed as part of the Habitat Evaluation 

Procedure (HEP), in which the suitability of an area for a species is summarised by a 

single unitless value or index (Whitaker & McCuen 1976; Noss & Cooperrider 1994). 

The Habitat Suitability Index (HSI) value is determined by combining Suitability 
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Index (SI) scores which represent the organisms’ response to a particular 

environmental condition (Schamberger & O’Neil 1986). 

 

Habitat Suitability Models were developed and used in the context of determining 

habitat quality (Fish & Wildlife Service 1981a) and designed for use in situations 

where land use and habitat conditions were expected to change. These Habitat 

Suitability Index (HSI) models were intended to allow assessment of changes in 

habitat quality and availability for selected wildlife species (Schamberger & O’Neil 

1986; Stauffer & Best 1986). HSI models are based on the premise that it is possible 

to link habitat suitability in terms of individual habitat variables, these relationships 

being described by primarily linear relationships (Fish & Wildlife Service 1981a). 

These separate variables can then be combined into a meaningful index that represents 

the suitability of a given patch of habitat for a specific wildlife species (Laymon & 

Barrett 1986). By definition, the HSI provides a 0-1.0 index of habitat suitability for a 

species at a given site and is not intended for prediction of population levels, but to 

indicate habitat quality (Blenden et al. 1986; Schamberger & O’Neil 1986). Because 

each model identifies key habitat variables, these models serve as a linkage to 

management actions that can be designed to enhance wildlife populations (Loomis 

2002). 

 

Isodars and the Ideal Free Distribution 

Habitat use data document the use of, or preference for, particular areas (habitat 

patches) by a species and assume (based on optimality theory - Rosenzweig 1974; 

Charnov 1976; Pyke 1984) that individuals of a species will select and use areas best 

able to satisfy their life requirements and as a result, greater use will occur in high 

quality habitat (Schamberger & O’Neil 1986). Habitat selection is the process 

whereby individuals preferentially use or occupy a non-random set of available 

habitats (Morris 2003b). An ideal-free distribution will occur whenever individuals 

select habitats that maximise their Darwinian fitness, and when they are free to 

occupy the habitats they choose (Fretwell & Lucas 1969). In such a case the densities 

in different habitats are adjusted such that the mean fitness is the same in each (Morris 

1987a). One way to reveal this distribution, and to measure the various interactions 

among species that influence it, is to plot the densities in adjacent habitats. The 
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relationship of the number of individuals in each habitat type when plotted in a state 

space of density in each habitat type produces a line along which fitness is equal in 

both habitats at different densities and is known as the habitat isodar (Morris 1987a, 

1987b 1988, 1989). Quantitative differences between habitat features alter the 

intercept of the line whereas qualitative differences, that alter efficiency, modify its 

slope (Morris 1988). Competitive interactions as well as the degree of density 

dependent habitat selection are therefore revealed by the corresponding regression 

coefficients (Morris 1989, 1999a; Rodriguez 1995; Morris et al. 2000). 

 

It thus appears that fundamental insights into the relative qualities of the habitats a 

species occupies can be gained simply by analysing its pattern of abundance in 

adjacent habitats (Morris 2003b). Factors such as spatial scale, boundaries between 

habitats, and source-sink dynamics may influence the distribution and abundance of 

species (Morris 2003b). Population determinants may override habitat features, or 

variation in animal numbers may be explained by considering the scale of 

measurement or stochastic variation in population size independent of the details of 

habitat and other biotic features (Rotenberry 1986). These factors have the potential to 

mislead estimates of habitat quality (Van Horne 1986). 

 

Springbok habitat use 

Springbok prefer open areas and are often found in grassveld or more arid plains 

(Shortridge 1934) although they are also able to occupy densely vegetated habitat 

(Bigalke 1972). They sometimes occur in fairly thick belts of bush that intersect 

grasslands; however, they avoid unbroken areas of bush or forest (Shortridge 1934). 

Tall grassland is avoided as it is too high and unpalatable, and it causes springbok to 

run awkwardly (Bigalke 1972). Rocky hills are avoided unless Acacia mellifera is 

present and flowering, or unless they are hard pressed during a hunt (Bigalke 1972). 

As a mixed forager, springbok adjust their diet, microhabitat and foraging time to the 

highly variable quality of the forage in arid areas (Hofmann et al. 1996). They are 

able to change from habitat opportunists and diet selectors to habitat selectors and diet 

opportunists as the environmental conditions dictate (Hofmann et al. 1996). 
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The factors considered most important to springbok include the availability of 

preferred food plants, the mineral content of plants, physical attributes of the 

vegetation that may affect ease of movement, and a preference for open areas 

(Leistner 1967; Bigalke 1972). 

 

It is hypothesised that springbok prefer open habitats that allow early predator 

detection and fast escape as they rely on detection and running to reduce predation. 

Therefore, the objectives of this study were: 

1. to identify proximate environmental features to which springbok are responsive; 

2. to develop a habitat suitability index (HSI) model to account for the variation in 

springbok abundance across habitats; 

3. to use isodar analysis to reveal information on the mechanisms underlying habitat 

preference by springbok; 

4. to relate the component variables of these models to the biology of springbok so 

as to develop our understanding of their ecology. 

 

Methods 

Population density 

Accurately estimating population size is difficult, and therefore ecologists often rely 

on indices of population size as a proxy for actual population size (Gibbs 2000). An 

index to population size is simply a measurable correlate of density (Caughley 1977) 

derived from sampling a small fraction of a population using a standardised 

methodology, and is expressed as individuals counted per sampling unit (Gibbs 2000). 

 

Estimates of density for species that occur in reasonably open habitats can be obtained 

by counting the animals directly, normally using transect or point sampling 

approaches (Buckland 1993). Buckland (1993) suggests that line transect sampling of 

animal density is preferable to point sampling methods. This is because the time spent 

sampling in line transect surveys may be greater, however, often more time is spent 

travelling between and locating sampling points for point sampling (Bollinger et al. 

1988). Since the present study area is large, the efficient utilisation of effort may have 

been an order of magnitude better for line transect surveys (Buckland 1993). 
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I used drive transects to determine the density of springbok in the different habitats 

(see Table 3.1 for habitat definitions). Springbok are most active during the morning 

and late afternoon, making these times ideal for sampling density and group sizes 

(Bigalke 1972; Davies & Skinner 1986). I therefore used these times to drive transects 

and utilised most of the roads in the study area. I used two observers for the drives, 

each of whom counted groups independently until the total from each observer was 

within 5% of each other. I used five different transects to cover as great an extent of 

the park and as many habitats as possible (Appendix 3 shows the roads of the park, 

the area of the park covered by each drive transect, the habitat within these drives, and 

the number of drives completed for each). Not all of the roads were used in the drive 

transects, and drive transects utilised more than one road. 

 

During the drive transects, I recorded the date and time, the number of individuals 

present, the GPS position (in decimal degrees) of the vehicle, the distance and bearing 

to the animal from the vehicle, and habitat type for each animal or group of animals 

sighted. If possible, I determined the number of individuals of different age and sex 

classes comprising the group. I also recorded the social group type (solitary males, 

bachelor herds, harem herds, and nursery groups), and the behaviour of the group or 

individual. I also noted if no animals were sighted on a drive transect. 

 

I determined the exact location of the springbok using the following equations: 

Latitude: 

 latitude of vehicle + [COS(vehicle bearing + animal bearing) × distance to 

 animal × latitude correction]      (3.1) 

Longitude: 

 longitude of vehicle + [SIN(vehicle bearing + animal bearing) × distance to 

 animal] × longitude correction     (3.2) 

 

I inputted these locations into a table, along with the group size, and imported these 

data into the geographical information system (GIS) program ArcView®. I overlayed 

these locations onto a vegetation map of AFNP. I used the vegetation community map 

from South African National Parks (SANParks) as the basis of my habitats. This map 

was created with the goal of describing the Waterval section of AFNP in terms of the 
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medium to large browsers’ resources and therefore describes the vegetation 

communities in terms of substrates, vertical availability of all browse species and the 

availability of shade for each community (Buk 2004). I recoded this vegetation map to 

reflect the habitats for the different vegetation communities (Table 3.1). 

 

Table 3.1: Summary of the vegetation communities according to the vegetation map (Buk 

2004) and the habitat codes I assigned to create the habitat map used in analyses. 

Vegetation Community/Habitat 
Habitat 
Code 

Acacia erioloba - Schmidtia kalahariensis short, closed woodland 1 
Acacia erioloba - Zygophyllum microcarpum short, closed woodland 2 
Acacia karroo - Ziziphus mucronata short, riverine forest 3 
Acacia mellifera - Euphorbia spp. tall, open shrubland 4 
Acacia mellifera - Stipagrostis hochstetteriana tall, open shrubland 5 
Acacia mellifera - Zygophyllum dregeanum - Euphorbia rectirama tall, open shrubland 6 
Acacia mellifera - Zygophyllum dregeanum - Monechma spartioides tall, open shrubland 7 
Adenolobus garipensis - Boscia albitrunca tall, open shrubland 8 
Euphorbia gregaria - Osteospermum microcarpum tall, open shrubland 9 
Schotia afra - Indigofera pechuelii low, open woodland 10 
Sisyndite spartea - Forskaolea candida tall, open shrubland 11 
Tamarix usneoides - Gymnosporia linearis tall, open shrubland 12 

 

I determined the habitat at the location of each sighting by performing a spatial join of 

the habitat data and the location data. I then exported this information into the 

spreadsheet Microsoft Excel for further analysis. I calculated the mean number of 

individuals sighted per habitat for each drive completed. 

 

In order to determine the density of individuals in the different habitats, I first had to 

create a visibility map for each drive in order to estimate the area sampled. A person 

walked perpendicular to the vehicle, away from the road until an observer in the 

vehicle could no longer see them (due to the uneven topography) and this was taken 

as the springbok visibility distance. The GPS location at this point was recorded. This 

was done on both sides of the vehicle at regular intervals along the transect roads. I 

imported these points into ArcView®, and then joined them using lines to make a 

polygon along all the transect roads. I separated this polygon into segments according 

to the drive transects. I then intersected these polygons with the habitat map of the 

park. This gave the habitats sampled in each transect. Because the area inside a 

drainage line is obscured by vegetation and not visible from the road, I excluded these 

from the transect areas. I did this by creating a buffer map of the drainage lines in 
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AFNP using a buffer of 2 m which I intersected with the habitat map for each drive 

transect. I selected all the areas outside the buffer and converted it into a separate 

map. I then updated the area of the maps using the X-tools function in ArcView®, 

which resulted in a table showing the area of each habitat visible from the road for 

each drive transect (Tables 3.1 and 3.2). 

 

Table 3.2: Summary of the four drive transects (S1, S2, M1, L1, and L1(B)) used in the 

analysis. The total area of the park and the visible area of each habitat covered by transects is 

included. The total visual area of the habitats is less than the sum of areas in the drives since 

some areas of the drives overlap. See Table 3.1 for the details of the habitats. 

Habitat 
Area of study 
site in AFNP 

(ha) 

Total visible 
area in all 
drives (ha) 

Visible 
area in 
S1 (ha) 

Visible 
area in 
S2 (ha) 

Visible 
area in 
M1 (ha) 

Visible area 
in L1 and 
L1(B) (ha) 

1 31.57 18.36 – – 4.48 17.65 
2 8.15 7.50 3.42 4.45 4.63 4.63 
3 83.37 4.44 0.04  3.52 3.80 
4 1098.92 346.17 –  71.43 338.20 
5 936.99 337.01 33.04 104.60 125.91 230.17 
6 879.90 285.83 213.11 6.16 53.80 72.70 
7 210.16 106.54 92.89 13.61 13.64 13.64 
8 878.86 54.91 1.64 0.36 0.36 52.78 
9 507.65 112.22 4.16 30.49 57.24 70.54 

10 2755.43 87.75 – 6.88 19.48 84.22 
11 51.74 36.72 – –       – 36.72 
12 76.19 14.06 0.09 0.07 13.98 13.98 

Total 7518.93 1411.50 348.37 166.61 368.48 939.01 
 

I incorporated this information with the sightings information obtained earlier, and 

thus was able to estimate the density of springbok in each habitat for each drive. In 

order to determine if springbok were exhibiting a preference in their habitat use, I 

compared their observed density with their expected density (based on a random 

habitat use model) using a Chi-square test. I used box-and-whisker plots showing the 

mean, first and third quartiles and the range to illustrate the data since the data were 

not normally distributed (Kolmogorov-Smirnov test, P < 0.05). Although outliers and 

extremes were used in the analysis, I have not represented them in the box plots in 

order to avoid cluttering and to facilitate interpretation of the trends. I made pairwise 

comparisons in springbok density between the 12 vegetation types using a Mann-

Whitney U test, adjusted for multiple comparisons using a Bonferroni adjustment, to 

determine which vegetation types were significantly different from each other. The 

major disadvantage of the Bonferroni adjustment is that it is not an exact procedure. 
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The Bonferroni adjusted P value is larger than the true P value. Therefore, in order for 

the Bonferroni adjusted P value to be 0.05, the true P-value must be smaller, 

especially when comparing many treatment groups (Dallal 2003). I therefore 

considered P > 0.1 to indicate significant differences.  

 

Habitat suitability model 

Because the vegetation in AFNP is sparse, and often occurs in clumps, I used strip 

transects in order to quantify the biotic characteristics of habitat for the different 

habitats. Transects were randomly located within each habitat, using randomly 

generated numbers applied to GPS coordinates. I measured components of all woody 

plants inside each transect. For each plant, I measured the number and diameter of the 

stems, as well as the height below the canopy and the height to the top of the canopy. 

I also measured the longest diameter of the canopy and the diameter of the canopy at 

right angles to this. Where possible, the species was identified in the field and voucher 

specimens were collected. These voucher specimens were sent to the herbarium 

(SANParks Herbarium, Kimberley; MacGregor Museum, Kimberley) for verification 

and identification of the unknown species. From this I determined the total canopy 

cover, as well as the canopy cover for three plant species important to springbok, 

namely Acacia mellifera, Boscia albitrunca and Ceraria namaquensis. 

 

Other information I collected at each line transect included the percent ground cover 

of boulders, rocks, stones, pebbles, grit, sand and clay. In addition to this I recorded 

the percent aerial and basal cover of the herbaceous layer (divided into grasses, herbs, 

forbs and succulents), aspect, slope, topographic position, soil texture, moisture status, 

shading, and protection from wind. I also estimated the type, intensity and frequency 

of erosion, deposition and herbivory (see Appendix 4 for a complete list of habitat 

variables and the codes for categorical variables). 

 

I combined the percent cover of stones and pebbles into one category called stones, 

and the percent cover of grit and sand into one category called sand. Because the 

aerial component of herbs and forbs is more important as a source of forage, I 

combined the percent aerial cover of herbs and forbs into a single category and 

removed the basal cover of both from further analysis. The basal cover of annual 
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grasses is a more reliable estimate of productivity; therefore I used this parameter and 

removed the percent aerial cover from further analysis. Since the percent cover of 

succulents was less than 5% in all habitats, and 0% in most, I also removed this from 

further analysis. Since ungulate populations may be expected to fluctuate annually, 

therefore I removed those environmental variables (such as slope and aspect) which 

may be expected to change only on a longer time frame (Henley 2001). Next, I 

removed those variables highly correlated with other variables using the correlation 

matrix generated in Principle Component Analysis. I then combined these 

environmental data with the density estimates generated earlier in order to generate 

the habitat suitability model. I calculated the mean density per drive per habitat, as 

well as the mean values for the environmental variables data per habitat. 

 

Habitat suitability models are composed of response curves that define the 

relationship among environmental parameters and animal abundance, and a habitat 

suitability index (HSI) equation which defines the relationship among the response 

curves and between response curves and habitat suitability. 

 

To account for the typically non-linear nature of the relationship among 

environmental parameters and animal relative abundance, I used polynomial 

regressions to generate the HSI response curves. Because the direct effect of 

environmental parameters on populations is considered, the requirement of 

dependency is met (Gutzwiller & Anderson 1986; Ter Braak & Looman 1987). The 

polynomial regressions helped establish an a priori understanding of the relationship 

between environmental parameters and springbok population density (Johnson 

1981a). Non-significant Durbin-Watson statistics suggest that the data did not suffer 

from a lack of independence of error terms, and therefore I did not correct for 

autocorrelation (Gutzwiller & Anderson 1986). I did not remove outliers from 

samples as it was not obvious whether these were the result of observer error, error in 

recording, miscalculation or atypical behaviour on the part of the study animal 

(Gutzwiller & Anderson 1986; Morrison et al. 1992). Environmental parameters 

showing the weakest relationship with springbok population density were discarded 

from further analysis. Given the number of environmental parameters under 

consideration I have included only the simplified response curves for those 
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environmental parameters that I considered for the model. In the retained parameters I 

converted the range of densities making up the y-axis to a 0 to 1 scale, with 1 

corresponding to the highest density recorded. In this way, I transformed the samples 

into suitability index (SI) scaled from 0 to 1. I used transformed data in comparable 

units for the multiple regression analysis. 

 

I used a multiple linear regression to determine the contribution of each habitat 

variable to the HSI equation and thus establish the best formula for defining the 

relationship among the habitat variables and springbok density (Morrison et al. 1992). 

This forms the basis of the linear equation that is the HSI model. Tolerance values 

associated with each multiple regression were used to test for multicollinearity. 

 

Isodars 

I determined the density of springbok in adjacent habitats along a drive and for each 

drive. I used only those habitats that showed a significant difference in their densities 

for the isodar analysis. I restricted isodar analysis to those situations when both 

habitats were occupied since inclusion of zero densities can bias the isodar 

calculations because they may not yield a uniquely determined density in the 

alternative habitat (multiple possible densities below the isodar intercept) (Morris 

2003a). Adjacent habitats that met these criteria were habitats 5 and 7, and habitats 6 

and 7. 

 

Results 

Population density 

Springbok displayed preferential use of habitat (Chi-square test: ?2
0.05,89 = 35602.82; P 

< 0.001), with habitats 4 (median density = 0.015 springbok/ha, range 0 – 0.40, n = 

31) and 5 (median density = 0.006 springbok/ha, range 0 – 0.75, n = 54) having the 

greatest population density (Fig. 3.1,Table 3.3). Springbok were seen more than half 

of the time in these habitats and less than 30% of the time in all other habitats (Table 

3.3). For this reason the median density in all habitats other than 4 and 5 is 0, while 

maximum densities varied between 0.12 and12.09 springbok/ha (Fig. 3.1, Table 3.3). 

Springbok where never seen in habitat 1. The greatest maximum density occurred in 

habitat 2; however springbok were only ever seen once in this habitat (Table 3.3). 
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Figure 3.1: Preference in habitat use (box plots show the median, the first and third quartiles 

and the range of the data, excluding extremes and outliers. N = the number of times the 

habitat was sampled for estimating springbok density. There is a significant difference in the 

observed density of springbok to what would be expected if springbok were distributed 

randomly throughout the habitats 

 

Table 3.3: Summaries for the density of springbok (springbok/ha) recorded alone or in groups 

in the different habitat types. The median, minimum and maximum density of springbok is 

shown, as is the number of times springbok were seen in each habitat, and as a percent of the 

total number of times that habitat was sampled. Springbok were never seen in habitat 1. N = 

number of transects sampling that habitat. 

Habitat N 

Median 
density 

(springbok/ha) 

Minimum 
density 

(springbok/ha) 

Maximum 
density 

(springbok/ha) 

Number of 
springbok 
sightings 

Sightings 
per drive 
transect 

(%) 
1 31 0.000 0.00 0.00 0 0 
2 54 0.000 0.00 12.09 1 2 
3 43 0.000 0.00 0.53 1 2 
4 31 0.015 0.00 0.12 20 65 
5 54 0.006 0.00 0.75 28 52 
6 54 0.000 0.00 0.72 17 31 
7 54 0.000 0.00 0.15 7 13 
8 54 0.000 0.00 6.12 5 9 
9 54 0.000 0.00 0.25 12 22 

10 42 0.000 0.00 0.18 6 14 
11 27 0.000 0.00 0.60 2 7 
12 54 0.000 0.00 1.14 4 7 

Total 552 0.021 0.00 12.09 103 19 
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Table 3.4 shows the results of the pairwise comparisons of habitats. Springbok density 

in habitat 4 was significantly different from all habitats except habitat 5. Springbok 

density in habitat 5 was significantly different from all habitats except 4 and 6, while 

density in habitat 6 was significantly different from all habitats except for 5 and 9 

(Table 3.4). None of the remaining habitats is significantly different from each other. 

Habitats 1, 2, and 3 display the same differences relative to other habitats as do 

habitats 7, 8, 10, 11, and 12 (Table 3.4). 

 

The total area of each habitat in the Waterval section was known (Buk 2004), as was 

the visible area sampled by the drive transects for each habitat, and the proportion of 

the total that this represents (Table 3.5). Thus the density in the transect area could be 

extrapolated to the whole of the Waterval section  and a total observed population size 

for the Waterval section could be estimated by multiplying the total density of 

springbok in the drives by the total area of the Waterval section. I estimated the 

expected population size by averaging the uncorrected population estimates obtained 

from SANParks census for 2003 and 2004 (137 and 175 springbok respectively). The 

observed population size (150 springbok) was not significantly different from the 

expected population size (156 springbok) (G-test: ?2
0.05,1 = 3.84; P < 0.05). 

 

Habitat suitability model 

The habitat variables used in the habitat suitability model (Fig 3.2) are listed in Table 

3.6 in the order in which they were entered into the model as part of the linear 

regression. This provides some indication of the contribution of each variable to the 

overall regression coefficient; those entered first generally had the greatest 

contribution. All variables must pass the tolerance criterion to be entered in the 

equation; the default tolerance level is 0.0001. Also, a variable is not entered if it 

would cause the tolerance of another variable already in the model to drop below the 

tolerance criterion. None of the variables entered had a beta coefficient that is 

significant at the 95% confidence level. The model had a low correlation coefficient; 

however, this may be due to a lack of variation in the habitat variables since they were 

averaged before input into the model, rather than indicating a lack of fit for the data 

(Morrison et al. 1992). 
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Table 3.5: Summary for the total area, the visible area covered by the drive transects, and the 

proportion of the total that this represents for each habitat in the Waterval section of AFNP. 

The density of springbok estimated in the drive transects is extrapolated to estimate a total 

population size for springbok in the Waterval section by multiplying the total density of 

springbok in the drive transects by the total area of the Waterval section.  

Habitat Area of 
AFNP (ha) 

Visible area 
in all drive 
transects  

(ha) 

Proportion of 
habitat covered 

in drive 
transects 

Density in 
drives 

(springbok/ha) 

1 31.57 18.36 0.58 0.00 
2 8.15 7.50 0.92 0.00 
3 83.37 4.44 0.05 0.00 
4 1098.92 346.17 0.32 0.01 
5 936.99 337.01 0.36 0.01 
6 879.90 285.83 0.32 0.00 
7 210.16 106.54 0.51 0.00 
8 878.86 54.91 0.06 0.00 
9 507.65 112.22 0.22 0.00 

10 2755.43 87.75 0.03 0.00 
11 51.74 36.72 0.71 0.00 
12 76.19 14.06 0.18 0.00 

Total 7518.93 1411.50 0.19 0.02 
 

 

Table 3.6: Summary of regression statistics and constituent variables of the habitat suitability 

model. Incorporated variables are listed in the order in which they entered into the model. 

F P r Incorporated variables Coefficients 
0.70 0.70 0.39 Constant -0.09 
   Moisture Status 0.10 
   Aerial cover of forbs and herbs 0.52 
   Percent of sand -0.06 
   Percent of boulders 0.33 
   Boscia albitrunca -0.60 
   Acacia mellifera 0.15 
   Percent of stones -0.27 
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Figure 3.2: The seven variables, and their response curves, that were included into a 

springbok habitat suitability model for Augrabies Falls National Park. 

HSI = (0.101 × Var. 1) + (0.516 × Var. 2) 
– (0.057 × Var. 3) + (0.327 × Var. 4) – 
(0.601 × Var.5) + (0.154 × Var.6) – 
(0.266 × Var. 7) – 0.086 
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Isodars 

Isodar regressions were analysed for habitats 5 and 7, and 6 and 7 (Table 3.7, Fig. 

3.3). Density-dependent habitat selection was not evident between habitats 5 and 7, or 

between habitat 6 and 7 (P > 0.05). However, the isodar between habitats 6 and 7 is 

marginally significant despite the small sample size.  The isodar analysis suggests that 

habitat 6 is quantitatively superior to habitat 7, but the two habitats are qualitatively 

similar. These isodars should however be interpreted with caution given that the data 

are so limited. 

 

 
Figure 3.3: The relationship (isodars) between springbok population size in habitats 5 and 7 

and habitats 6 and 7. 

 

Table 3.7: Results of linear correlation for isodars contrasting springbok density in adjacent 

habitats. 

Isodars Constant Slope R2 F P N 
Habitat 5 ?  Habitat 7 0.25 0.96 0.38 1.85 0.27 5 
Habitat 6 ?  Habitat 7 0.03 1.27 0.85 11.74 0.08 4 

 

Discussion 

Population distribution 

The results clearly supported the hypothesis that springbok preferred open habitats 

with density being greatest in habitats 4 and 5 and lowest in habitat 1. Habitats 4 and 

5 are open shrublands with limited shade and abundant forage provided by A. 

mellifera; whereas habitat 1 is short, closed woodland with abundant shade (Buk 

2004). These habitats also provide relatively high forage resources (Buk 2004). 

Numerous other studies have described springbok as preferring such habitat 

anecdotally (Shortridge 1934; Leistner 1967; Bigalke 1972; Davies & Skinner 1986; 
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Milton et al. 1992; Skinner 1996) but this is the first attempt to quantify springbok 

habitat preferences. The results, therefore, agree with the previously published data on 

the habitat preferences of springbok, and support the prediction that the maximum 

number of springbok would occur in areas of high food quality. 

 

All three habitats have sand and gravel in the substrate. The dominant substrate in 

habitat 4 is gravel strewn with rocks and pebbles interrupted by outcropping bedrock 

and sandy drainage lines, and that of habitat 5 is an almost equal mixture of sand and 

gravel (Buk 2004). The substrate of habitat 1 has a high percentage of sand mixed 

with some gravel (Buk 2004). This does not support the prediction that the minimum 

number of springbok would occur in rocky areas, as habitat 4 contains rocky areas 

while habitat 1 has none. Bigalke (1972) found that springbok would avoid rocky hills 

unless A. mellifera were growing there or they were stressed during a hunt. A. 

mellifera contributes more than double the browse in habitats 4 and 5 than in habitat 1 

(Buk 2004), it is therefore possible that the preference of springbok for habitats 4 and 

5 is related more to the presence of A mellifera than to the substrate. 

 

Habitats 4 and 5 occupy approximately 15% and 13% of the study area, respectively; 

while habitat 1 makes up only 0.4% of the study area (Buk 2004). There may be a 

lower size limit to the area of a habitat before springbok will occupy that habitat, 

related to body size (Dasmuth 1981a, 1981b; Calder 1983). The average estimated 

spatial requirement for springbok in the Nama Karoo has been calculated as 24 

ha/springbok (Boshoff et al. 2002). Since habitat 1 occurs in five discrete areas, the 

largest of which is only 11 ha (Buk 2004), one might suggest that the absence of 

springbok in habitat 1 is due to its small size (and hence low probability of sampling 

springbok present). However, on one occasion 10 springbok were seen in habitat 2, 

the smallest habitat occupying only 8.15 ha in one area (Buk 2004). Therefore the 

absence of springbok in habitat 1 must be due to factor(s) other than patch size. 

 

Habitat suitability model 

The habitat suitability model incorporates those variables that have the greatest 

influence on springbok density. Variables similar to those described in the vegetation 

community map were inputted into the model, as well as other habitat variables. None 



 

33 

of the variables displayed a linear relationship with habitat suitability. The feature of 

the habitat that most influenced habitat suitability was moisture status. Habitat 

suitability increased as the habitat went from seasonally moist to occasionally 

moist/mostly dry, and then decreased as the habitat got drier still. Springbok are able 

to survive indefinitely without water provided that that they can get it from their diet 

(Hofmeyr and Louw 1987; Nagy & Knight 1994). The next most influential variable 

was the percent cover of forbs and herbs - increasing cover of forbs and herbs 

increased the habitat suitability. Leistner (1967) found that herbs and forbs provide an 

excellent source of feed for springbok while they are green. The percent cover of sand 

and boulders had a more complex interaction with habitat suitability, although the 

general trend was a negative interaction for sand and a positive interaction for 

boulders. Springbok prefer soils with higher mineral concentrations since generally 

plants remain green for longer on these soils (Milton et al. 1992). Sandy soils have 

low mineral content while minerals and water may collect on boulders enabling the 

plants growing there to remain green for longer. Increasing canopy cover of B. 

albitrunca and A. mellifera, the fifth and sixth most important variables, respectively, 

had a positive interaction with habitat suitability. Leaves, shoots and fruits of most 

shrubs and trees are rich in protein and phosphate, and provide an important source of 

fodder during the driest months of the year (Leistner 1967; Bigalke 1972). 

Dicotyledonous plants form a large part of the diet of other species, such as Grant's 

gazelle and Thomson's gazelle (Stewart & Stewart 1971). Unlike springbok, however, 

grass remains an important component of their diet (Stewart & Stewart 1971). The 

final variable to be entered into the model is percentage of stones. This variable had 

an overall negative influence on habitat suitability and may relate to the ease with 

which springbok are able to move (Bigalke 1972; Bednekoff & Ritter1994). 

 

Henley (2001) attempted to develop a generic habitat suitability model for ungulates, 

including springbok, in the Eastern Cape Thicket vegetation. He took the principle 

constraints on growth, maintenance and survival of an ungulate to be food, water, 

climatic conditions, predation and parasites and as such developed five submodels 

relating to forage, water, thermoregulation, predator abundance and parasites (Henley 

2001). The most obvious limitation to his model was that the specific habitat 

requirements of some species were excluded from the model (Henley 2001). Another 



 

34 

limitation in the model was that the model had apparently conflicting predictions 

between forage and other submodels on the predicted habitat utilisation by springbok 

(Henley 2001). The forage submodel also failed to identify the importance of karoid 

shrubs in open areas in the diet of springbok (Henley 2001). 

 

Since habitat models are simplifications of reality and lack complete information, they 

can therefore be expected to have a degree of inherent unreliability (Farmer et al. 

1982). This limits their capacity to reflect reality (Henley 2001). Species-specific 

habitat models may be more reliable and suffer fewer limitations than more generic 

models. The fact that Henley’s (2001) model did not appear to describe springbok 

habitat suitability effectively precludes its application here. 

 

Isodars 

The slopes of the isodar regressions and their y-intercepts reveal information on the 

mechanisms underlying preference for habitats (Morris 1987a, 1988). If the isodar 

slope comparing the 2 habitats does not significantly differ from 1, the habitats are 

considered to differ only in the abundance of resources available in each 

(quantitatively). If the slope is significantly greater than 1 the habitats are considered 

to differ in the efficiency of the foraging individuals that are present in each 

(qualitatively). Y-intercepts significantly greater than 0 give an indication of the 

relative differences in habitat suitability perceived by consumers (Morris 1987a, 

1987b, 1988). 

 

Following the procedure for isodar analysis outlined by Morris (1987a, 1988), 

correlation analysis implied both habitats 5 and 6 were more preferred than habitat 7, 

based on the isodar values, since the y-intercepts (constant) were greater than 0. 

Habitat 5 was seven times more suitable than habitat 6. The slope between habitats 5 

and 7, and habitats 6 and 7 did not significantly differ from 1, therefore these habitats 

are considered to differ quantitatively. 

 

Quantitative differences in habitat typically reflect food availability and productivity, 

whereas qualitative differences typically reflect risk of predation. From the habitat 

suitability model the components of habitat suitability for springbok that reflect these 



 

35 

quantitative differences are the percent cover of forbs and herbs, B. albitrunca, and A. 

mellifera. 

 

Conclusion 

It is possible to show that springbok show preferences in their habitat use that can be 

described using habitat suitability models. Isodar analysis can be used in conjunction 

with habitat suitability models to further increase our understanding of qualitative and 

quantitative differences in habitat use. Analysing patterns of abundance in adjacent 

habitats can reduce the risk of being mislead by density estimates alone in assessing 

habitat suitability. 

 

This approach, which provides a useful way of furthering our understanding of the 

ecology of springbok, can be applied to other species. 
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Chapter 4 

Behaviour of springbok varies across the landscape 

 

Introduction 

Habitats and patches often vary both in terms of foraging profitability and predation 

risk (Lima & Dill 1990). The primary 'goal' of any optimal forager is to maximise its 

reproductive fitness, which means being able to respond to the relative costs and 

benefits associated with foraging in a particular habitat (Ramp & Coulson 2002). If 

the best areas for foraging have the highest predation risk, the forager trades off 

energy gain against predation risk in deciding where to feed (Lima & Dill 1990). 

Animals therefore trade off the needs for food and safety when under the risk of 

predation. Some studies emphasise predation risk as the prime determinant in habitat 

and patch use trade-offs (Stein & Magnuson 1976; Sih 1982; Mittelbach 1984; 

Caldwell 1986; Fraser & Huntingford 1986; Ferguson et al. 1988; Repasky 1996; 

Kotler & Brown 1999), while others report that habitat choice is determined by 

profitability of foraging in a specific area (Storch 1993). Optimal behaviour, however, 

lies on a continuum between energy maximisation, at the expense of predator 

avoidance, and risk minimisation, at the expense of feeding (Lima & Dill 1990). 

 

The ways in which individuals actively respond to the presence of predators include 

reducing activity or shifting activity to safer habitats (Sih 1980; Werner et al. 1983). 

Such non-lethal effects of predators on their prey may be more important than the 

actual killing of prey by predators (Kotler & Holt 1989). Other non-lethal effects of 

predators include influencing prey behaviour, intraspecific interactions, competitive 

interactions (Persson 1991), and interactions between the prey and its food (Abrams 

1984, 1989). 

 

Predator avoidance and food distribution patterns are the main forces that lead to 

sociality and the formation of groups (Hamilton 1971; Jennings & Evans 1980; Dehn 

1990). Predation has long been implicated as a major selective force in the evolution 

of many patterns of sociality, such as colonial breeding, social mating systems, social 

structures, flocking and roosting (Crook 1965; Pulliam & Caraco 1984; Pitcher 1986). 
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Vigilance for predators as a social phenomenon is one of the most studied aspects of 

behaviour under the risk of predation. This has been demonstrated in mammals 

(Lipetz & Bekoff 1982; Risenhoover & Bailey 1985; Dehn 1986) and birds (e.g. 

Kenward 1978; Creswell 1994). The common observation is that individuals in a 

foraging group spend less time being vigilant with an increase in group size (Lipetz & 

Bekoff 1982; Risenhoover & Bailey 1985; Dehn 1986). The trade-off commonly 

thought to underlie the “group size effect” is straightforward: the act of being vigilant 

detracts from energy intake; thus, a change in any factor that lessens the need to be 

vigilant should lead to a decrease in vigilance (Lima & Dill 1990). There is an 

intuitive appeal to greater safety in numbers, but the precise benefit of being in a 

larger group is not always clear (Lima & Dill 1990). The general effect of group size 

on vigilance could be due to a detection effect: with many animals, predators can be 

spotted even if each individual looks around less; a dilution effect: if a predator 

attacks, the probability that it will kill a particular individual is lower; or animals in a 

group may practice group defence; or a combination of these effects (see Dehn 1990). 

 

There are, however, some problems with being in a larger group, including 

competition for readily depletable food and the benefit of being the first to detect 

and/or respond to an attack (Lima & Dill 1990). Also, bigger groups are easier for the 

predator to detect, and the heightened rate of attacks by predators may more than 

offset the other benefits of being in a larger group (B.P. Kotler, pers. comm.1). Inglis 

& Lazarus (1981) suggest that the decrease in vigilance may be due to the fact that the 

highly vigilant individuals on the edge of the group comprise a smaller proportion of 

the group as its size increases. Dehn (1986) suggests that “false alarms” are a major 

factor in determining vigilance. Other problems with the group size effect include the 

object of vigilance (Knight & Knight 1986) and evolutionary stability in vigilance 

patterns. To make matters more complicated, some animals may reduce group size 

under an increased risk of predation (Caldwell 1986). 

 

Caraco (1979b) found that group size increases with a decrease in both temperature 

and food abundance. Group size also increases with the distance to cover and in the 

presence of a potential predator (Caraco et al. 1980a, 1980b). After explicitly 

                                                           
1 Prof. B.P. Kotler; Ben Gurion University of the Negev 
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considering several aspects of predation risk, Caraco (1979a) developed an argument 

that patterns reflect the outcome of energy and predation risk-dependent decisions 

made both by dominant individuals (attempting to control group size) and subordinate 

individuals (deciding whether to remain in a group given the behaviour of the more 

dominant individuals). 

 

Group composition has been shown to be an important factor in vigilance (Metcalfe 

1984; Hogstad 1988). In most ungulate species, the sexes form separate groups that 

are spatially segregated for most of the year and come together primarily to mate 

(Main & Coblentz 1990; Main et al. 1996). Sexual segregation is a basic component 

of the social organisation of ungulates (Ruckstuhl1988). Several hypotheses have 

been proposed to explain this phenomenon, although the evolution and adaptive 

advantages are poorly understood (Ruckstuhl 1988). 

Main et al. (1996) classified these hypotheses into three groups 

1) sexual differences in how reproductive strategies affect the risk of predation and 

consequently predator avoidance strategies (reproductive strategy hypothesis: 

Geist 1971; Festa-Bianchet 1988; Berger 1991; Young & Isbell 1991; Bleich et al. 

1997). 

2) social factors, such as interactions with a preference for same-sex peers, and 

learning fighting skills (social hypothesis: Clutton-Brock et al. 1987). 

3) sexual-specific differences in energy requirements and digestive characteristics of 

their guts and therefore foraging behaviour, choice of habitat types and diet 

(sexual dimorphism-body-size hypothesis: Shank 1982; Seip 1983; Clutton-Brock 

et al. 1987; Harris & Miller 1995; Main et al. 1996). 

 

Springbok behaviour 

Population size, food availability, and day length (Davies & Skinner 1986b) influence 

the daily activities of springbok. As high-quality food becomes scarcer springbok 

spend a greater proportion of their time feeding (Davies & Skinner 1986a). Springbok 

exhibit alternating peaks of feeding and ruminating throughout the day, with feeding 

peaks in the early morning and early evening (Davies & Skinner 1986b). A feeding 

peak at mid-day is indicative of environmental stress (Novellie, 1975). See Chapter 2 

for a detailed description of springbok behaviour. 
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It is hypothesised that springbok behaviour will not be random across the landscape, 

but rather will change according to the foraging and predation risk characteristics of 

the habitat, the magnitude and direction of which will depend on social and individual 

factors. Therefore, the objectives of this study were: 

1. to identify proximate environmental features to which springbok are responsive; 

2. to differentiate social factors which influence the response of springbok to 

environmental features; 

3. to distinguish age and sex related differences in response of springbok to 

environmental features; 

4. to develop behaviour models using MANOVA to account for the variation in 

springbok behaviour across habitats; and  

5. to relate the component variables of these models to the biology of springbok so as 

to develop our understanding of their ecology. 

 

Methods 

To evaluate the perception of the environment by springbok using behaviours that are 

easy to see, and thereby establish an indicator of habitat suitability for this species can 

be achieved using three observable tools; 

1. activity patterns 

2. habitat choice 

3. group size. 

This can be best achieved using focal animal sampling. 

 

Focal samples are best done on a single individual for a predetermined length of time 

(Altmann 1973). I performed continuous focal observations for a minimum of 2 

minutes and a maximum of 10 minutes on selected individuals. In order not to 

influence the behaviour of the animals, I performed the focals from a distance greater 

than 100 m using binoculars. I recorded the date and time of the observation, the age 

and sex of the selected focal individual, my GPS location and the distance and bearing 

to the animal. If the individual was in a group, I recorded the number of individuals 

present, divided into the following categories: adult males, adult females, subadults, 

and juveniles. I recorded the category of group the focal individual was in. These 

were: 
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1) territorial males - lone adult males, 

2) bachelor herds - groups consisting of adult and subadult males, 

3) mixed herds - groups consisting of females, subadults, juveniles, and one or more 

males, 

4) nursery herds - groups consisting of females, subadults, and juveniles (no adult 

males present). 

 

For the focal animal (selected a priori to satisfy the requirements for coverage of all 

sex and age classes), I noted the activity that the animal was engaged in at the start of 

the observation period and recorded the length of time spent in different activities. 

Activities were divided into five categories, defined as: 

Feeding - foraging in head down position or foraging with head in a bush, 

Vigilant - head up, neck erect, 

Moving - walking - trotting, running, ‘stotting’ or ‘pronking’, 

Grooming - apparent attempts by an individual to remove parasites from its body, 

Other - lying down, territorial marking, defecating or urinating. 

 

If the animal moved out of sight, I recorded the amount of time for which it could not 

be seen and deducted this from the total time for the focal observation. Using the total 

time for the focal observation and the time spent in each activity, I was able to 

determine the proportion of time the animal spent in each separate activity. I square-

root transformed the data for further analysis. These data were collected over the 

period of October 2002 - November 2003, and were only collected during daylight 

hours (hence these results refer only to the diurnal). 

 

I determined the location of the springbok for each focal observation using equations 

3.1 and 3.2. 

 

I captured these location data into a table and imported it into the geographical 

information system (GIS) program ArcView®. I overlayed these locations onto the 

recoded vegetation map of AFNP (obtained from South African National Parks) to 

reflect the habitat codes for the different vegetation communities (see Chapter 3). 
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I determined the habitat at the location of each springbok focal observation by 

performing a spatial join of the habitat data and the location data. I then exported this 

information into Excel for further analysis. For each focal observation, I included the 

habitat data for those variables included in the habitat suitability model, in the order 

they were entered into the model (moisture status, cover of forbs and herbs, percent 

cover of sand, percent cover of boulders, cover of Boscia albitrunca, cover of Acacia 

mellifera, and percent cover of stones; see Chapter 3). I entered the data collected at 

the focal observation and the square-root transformed data for the proportion of time 

spent feeding, moving, vigilant, and grooming. 

 

I used a Multivariate Analysis of Variance (MANOVA) to define the relationship 

between habitat variables and springbok behaviour. Because I had both fixed factors 

and covariates, I specified a model to include interactions between these terms.  I used 

a model with the general form: 

(Proportion of time feeding, vigilant, moving grooming) = HSI variables + 

group size + group type + proportion of adults + age (of focal individual) + 

sex (of focal individual) + substrate + vegetation type + (substrate × 

vegetation type) 

 

I did not include the proportion of time spent in other activities so that the dependent 

variables did not sum to 100% in order to preserve the degrees of freedom. I used 

Type IV Sum of Squares in the analysis since the data had missing cells. In order to 

determine differences among the levels of a factor, I used a difference contrast and 

Bonferroni confidence interval adjustment for each factor. I used Box’s and Levene’s 

tests to test the equality of covariance matrices and error variances respectively. I 

tested the dependent variables and the standardised residuals for normality using a 

Kolmogorov-Smirnov test. I performed a lack of fit test to determine if the model 

adequately accounted for the relationship among the dependent variables and the 

predictors. The model did not perform well due to multicollinearity of some of the 

variables. Removing the redundant variables resulted in a model that appropriately 

fitted the data. 
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I used linear regressions to generate response curves which defined the relationship 

among environmental parameters (HSI variables) and animal behaviour, box and 

whisker plots which defined the relationship between social (group size, group type, 

and proportion of adults) and individual (age and sex of focal individual) parameters 

and animal behaviour, and an equation which defined the relationship among the 

response curves and between response curves and animal behaviour. Although not 

represented in the box plots, outliers and extremes were used in the analysis as it was 

not obvious if these were the result of observer error, error in recording, 

miscalculation or atypical behaviour on the part of the study animal (Gutzwiller & 

Anderson 1986; Morrison et al. 1992). 

 

I determined the proportion of adult males and females by dividing the number of 

individuals of each sex category by the total number of adults at the focal observation. 

Because the data were not normally distributed, I used a Wilcoxon signed-rank test to 

determine if the adult sex ratio differed across habitats. 

 

Results 

Based on 117 focal observation periods, springbok spent most of the time feeding 

(38.8 ± 3.1%). The next most important activity was being vigilant, which occupied 

30.9 ± 2.8% of the time. They moved 23.0 ± 2.1% of the time and devoted 

significantly less (Chi Square: ?2
 0.05,116 = 109.54; P < 0.001) time to grooming (2.8 ± 

0.5%) and other activities (7.6 ± 2.1%) (Fig. 4.1). 

 

The regression model for the between-subject effects of the behaviour (Table 4.1) 

significantly accounts for the proportion of time feeding and vigilant, as seen by the 

low significance and high R Squared values. The models (Figs 4.2 - 4.5) account for 

only ˜ 20% of the variability in the proportion of time moving and vigilant. 

 

None of the variables considered had a significant influence on the behaviour of 

springbok, except the presence of breeding herds and subadults. Breeding herds 

significantly influenced the time spent feeding (MANOVA: F0.05,1 = 4.82; P = 0.03) as 

did subadults (MANOVA: F0.05,1 = 4.64; P = 0.04). 
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Figure 4.1: The proportion of time springbok spent in each activity (mean ± 95% confidence 

intervals). N = the number of individuals included in the analysis. Springbok spent 

approximately half of their time feeding. Blocks labelled with different letters differed 

significantly. 

 

Table 4.1: Summary of regression statistics for the between-subject effects of the springbok 

behaviour models. The model significantly accounts for the proportion of time feeding and 

vigilant but not for the proportion of time moving or grooming. 

Dependent Variable Type IV Sum of 
Squares 

df R Squared F Sig. 

Proportion of time feeding 3.06 12 0.42 2.84 0.01 
Proportion of time moving 0.84 12 0.21 1.04 0.43 
Proportion of time vigilant 1.92 12 0.36 2.25 0.02 
Proportion of time grooming 0.16 12 0.21 1.03 0.44 
 

 

The habitat variables do not appear to have as great an influence on the proportion of 

time feeding and vigilant as group size and the proportion of adults (Fig. 4.2 and Fig. 

4.3), as seen by the slope of the line in the response curves. However, the habitat 

variables appear to have a greater influence on the proportion of time moving than 

group size and the proportion of adults (Fig. 4.4). In contrast, the habitat variables, 

group size and the proportion of adults appear to influence the proportion of time 

spent grooming to the same extent (Fig. 4.5). Group size, age and sex appeared to 

have a greater influence on the proportion of time feeding and vigilant than on the 

proportion of time moving or grooming, as seen by the greater degree of overlap of 

the error bars for these variables for the latter two behaviours (Figs 4.2 - 4.5). 
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To further analyse this apparent trend in the data, I compared the influence of 

habitat, group type, and the interaction between habitat and group type on the 

activity of springbok using a MANOVA. I was looking for trends in the data 

and therefore I used the broader categories rather than more specific habitat and 

group variables. Habitat was found not to have an overall significant effect on 

springbok behaviour (MANOVA: F 0.05,20 = 1.28; P = 0.19). Multiple 

comparisons of behaviour across habitats using Tukey’s HSD showed that the 

only behaviour that was significantly influenced by habitat was the proportion 

of time moving. Table 4.2 shows the homogeneous subsets for the proportion of 

time moving in the different habitats. These results indicate that springbok 

spend significantly more time moving in habitat 9 than in habitats 10, 5, 6 and 

7.  The proportion of time moving in habitat 4 is not significantly different from 

either subset. 

 

Table 4.2: Homogeneous subsets for the proportion of time moving in different 

habitats. In the subset columns, the subsets of means not significantly different from 

one another are displayed in the same column. The groups are ordered by the size of 

their means. Springbok spend significantly more time moving in habitat 9 than in 

habitats 10, 5, 6 and 7. 

Habitat N Subset 1 Subset 2 
10 5 0.24  
5 28 0.36  
6 29 0.38  
7 36 0.41  
4 11 0.55 0.55 
9 4  0.76 

Sig.  0.06 0.33 
 

There was an interaction between habitat and group type (Fig. 4.6), however, 

this interaction did not significantly influence springbok behaviour 

(MANOVA: F 0.05,44 = 1.04; P = 0.41). Group type, on the other hand, did have 

a significant influence on springbok behaviour (MANOVA: F 0.05,12 = 1.94; P = 

0.03). Group type had a significant influence on both the proportion of time 

feeding (ANOVA: F 0.05,3 = 5.14; P = 0.002) and the proportion of time vigilant 

(ANOVA: F 0.05,3 = 4.52; P = 0.005). Multiple comparisons using Tukey’s HSD 

identified which group types differed in the proportion of time feeding and 



 

49 

vigilant. Table 4.3 shows the homogeneous subsets for these behaviours for the 

different group types. These results indicate that territorial males spend 

significantly more time vigilant and subsequently less time feeding than 

individuals in nursery herds. As the proportion of adult males in a group 

increases from nursery herds (where there are no males) to territorial males 

(only males), the proportion of time vigilant increases and time feeding 

decreases. The increased vigilance in territorial males may be directed toward 

other males as well as predators. Thus social factors (competition) may be an 

important additional vigilance cost to males.  

 

 
Figure 4.6: Profile plots showing the interaction between group type and habitat. None 

of the lines in the profile plots are parallel, indicating that there is an interaction 

between group type and habitat.  I show the estimated marginal means for the 

proportion of time a) feeding, b) vigilant, c) moving and d) grooming. Territorial male 

=  ; Bachelor herd =   ; Mixed herd = ; Nursery herd = . 
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Table 4.3: Homogeneous subsets for the proportion of time feeding and vigilant for 

the different group types. In the subset columns the subsets of means not significantly 

different from one another are displayed in the same column. The groups are ordered 

by the size of their means. Territorial males spend significantly more time vigilant and 

subsequently less time feeding than individuals in nursery herds. 

 Proportion of time feeding   Proportion of time vigilant 
Group Type N Subset 1 Subset 2  Group Type N Subset 1 Subset 2 

Territorial 
male 

15 0.31  
 

Nursery 
herd 

34 0.38  

Bachelor 
herd 

18 0.41 0.41 
 

Mixed  
herd 

46 0.47 0.47 

Mixed  
herd 

46 0.55 0.55 
 

Bachelor 
herd 

18 0.52 0.52 

Nursery 
herd 

34  0.66 
 

Territorial 
male 

15  0.67 

Sig.  0.07 0.06  Sig.  0.33 0.07 
 

The significant difference in behaviour between territorial males and nursery 

herds may be an artefact of group size since the territorial males only occur 

alone whereas the mean nursery herd size consisted of 15 (minimum: 2, 

maximum: 29) springbok. However, the proportion of time vigilant was not 

significantly different between territorial males and mixed herds (mean: 23.0, 

minimum: 2, maximum 48 springbok), whose group size was greater than that 

of nursery herds. The difference between nursery herds and mixed herds is that 

there are no adult males in nursery herds, whereas there may be one or more 

adult males associated with a mixed herd. Therefore sex appears to be the major 

factor influencing the proportion of time vigilant and feeding. 

 

I removed the subadults from the analysis and considered the effect of sex and 

group size and the interaction between sex and group size on the behaviour of 

only the adult springbok. Group size had no significant influence on behaviour 

(MANOVA: F 0.05,4 = 0.83; P = 0.51) and nor did the interaction of group size 

and sex (MANOVA: F 0.05,4 = 1.82; P = 0.13). Sex, however, did have a 

significant influence on behaviour (MANOVA: F 0.05,4 = 2.84; P = 0.03), with 

females feeding more than males (MANOVA: F 0.05,1 = 7.19; P = 0.01), and 

males more vigilant than females (MANOVA F 0.05,1 = 9.75; P = 0.002) (Fig. 

4.7). 
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Figure 4.7: Sex differences in the proportion of time spent in different activities (mean 

± 95% confidence intervals). N = the number of individuals included in the analysis. 

Males spent a) less time feeding and b) more time vigilant than females. 

 

The adult sex ratio differed among habitats (Wilcoxon signed ranks test; Z1,97 = 

-8.62; P < 0.001). Habitats 6 and 10 had a greater proportion of adult females 

than males while habitat 5 had a greater proportion of adult males (Fig. 4.8). 

Habitats 4 and 9 had almost equal proportions of adult males and adult females 

(Fig. 4.8). 

 

 
Figure 4.8: Sex ratio differences in habitat use. There was a significant difference in 

the adult sex ratio among habitats. The box plots showed the median, the first and third 

quartiles and the range of the data, excluding extremes and outliers. Shaded boxes 

represent the proportion of adult females while unshaded boxes represent the 

proportion of adult males in each habitat. N = the sample size. 
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Discussion 

As in other studies (Davies & Skinner 1986), springbok spent more time 

foraging than any other activity. This is not surprising since the survival of any 

individual depends on the acquisition of enough food to fuel metabolism 

(Calder 1983). A wide array of life-history characteristics such as territory, 

distribution, and population dynamics are directly or indirectly related to the 

ability of an individual to acquire adequate amounts of food (Calder 1983). 

 

As predicted, an increase in the aerial cover of forbs and herbs results in an 

increase in the proportion of time feeding. This is not surprising since forbs and 

herbs are an excellent source of feed for springbok while they are green 

(Leistner 1967). There is also an increase in the proportion of time moving 

which may be related to obtaining more food items or moving to non-depleted 

patches. In contrast to this, the proportion of time feeding decreased, while the 

proportion of time vigilant and moving increased with an increase in the cover 

of Boscia albitrunca, a highly palatable and nutritious plant species. Springbok 

have been found to be more vigilant when approaching tree clumps, related to 

an increase in the risk of predation in these areas (Bednekoff & Ritter 1994), 

such that the risk of predation may outweigh the nutritional advantages of 

feeding on such a plant species. Underwood (1982) also found that African 

antelopes avoid cover that might obscure or harbour predators; for these 

animals, cover is not a refuge but a source of risk. As predicted, increasing the 

percent of boulders resulted in less time feeding. Springbok may prefer open 

areas away from boulders in order to lower the risk of being taken by ambush 

predators such as leopards (Bednekoff & Ritter 1994) and the decreased feeding 

(and hence more time vigilant) may be due to increased risk of predation in 

areas with greater cover of boulders. As predicted, increasing percent of sand 

ground cover led to a reduction in the proportion of time vigilant and moving 

Escape substrate refers to the substrate within which a food patch is found and 

across which a forager must flee to escape or avoid predators (Kotler & Brown 

1999), and may influence the ability of a foraging animal to detect and/or evade 

predators (Kotler et al. 2001). This may influence where an animal feeds since 

the ability of an animal to escape predation is important in determining feeding-
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site selection (Schneider 1984; Eckman 1987). Sand may be a good escape 

substrate for springbok which may result in a decreased risk of predation due to 

an increase in their ability to avoid or detect predators, and which may account 

for more time spent feeding and grooming and less time spent moving or 

vigilant in sandy areas. 

 

As predicted, the proportion of time feeding increased as group size increased. 

Females spent a greater proportion of their time feeding than males. This can 

also be seen in the effect of group type - as increasingly more females are added 

to a group, from territorial males to nursery herds, the greater the proportion of 

time feeding and the less the proportion of time vigilant. Siegfried (1980) found 

that the percentage of springbok foraging with their heads down increased as 

group size increased, although in groups larger than 25 feeding time decreased. 

He concluded that group sizes of about 20 animals may be optimal for anti-

predator vigilance without negatively affecting feeding rates. These 

observations extended over only four days, and in the long term the factors 

influencing group size may involve more complex factors such as the 

availability of food and reproductive status of the animals (Skinner & Louw 

1996). In contrast to this, Bednekoff & Ritter (1994) found group size effects 

even in large springbok herds. 

 

Contrary to predictions, vigilance increased with increasing group size. Males 

spent a greater proportion of the time vigilant than females. The increased 

vigilance with group size may be due to males in the larger mixed herds being 

vigilant for other males rather than for predators, and therefore not gaining any 

benefit from being in a larger group. 

 

Also, in contrast to Bednekoff & Ritter (1994), territorial males spent 

significantly more time vigilant than females in nursery herds. Territorial rams 

do not respond as sensitively as females and non-territorial males to 

environmental change, and as a result are exposed to greater environmental 

risks (Crowe & Liversidge 1977; Jackson et al. 1993). They feed less efficiently 

than non-territorial animals, particularly during the rut when increased physical 
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activity aggravates this disadvantage (Jackson 1995). In addition to the 

nutritional stress imposed by territoriality, solitary males are more isolated and 

more vulnerable to predation, which may be a factor in the greater mortality 

among these males (Jackson 1995). 

 

Springbok moved more when in larger groups. This may be in order for 

mothers to find food to meet the nutritional requirements of juveniles and 

subadults. It may also be due to depletion of food stocks associated with large 

numbers of feeding animals, since the animals must spend more time on 

feeding which will favour an increase in group size, because of a reduction in 

time spent on vigilance (Siegfried 1980). Further depletion of food stocks will 

contribute to an increase in the distance travelled by animals in searching for 

food. This should lead to further increases in group size if springbok in large 

herds can avoid revisiting places where they have recently fed, whereas smaller 

groups foraging independently may expend energy and time covering ground 

denuded by previous foragers (Siegfried 1980). 

 

Age and sex also played a role in the behaviour of springbok. As predicted, 

adults were more vigilant than subadults. These results were similar to those of 

Bednekoff & Ritter (1994) who found juveniles slightly less vigilant than 

adults, although they concluded that this may reflect greater movement.  In 

contrast, adults spent more time moving than subadults. 

 

Apart from protection against predators (Duncan & Vigne 1979), and an 

enhanced feeding rate, there are certainly other benefits attending grouping 

such as courtship and mate selection (Siegfried 1980). In practice, there are 

many different and changing pressures, involving ecological factors and within-

group interactions, operating to modify a social species’ group size (Bertram 

1978). Environmental factors, group factors, and individual factors all interact 

to influence the behaviour of springbok. Group type had a greater influence on 

the two main activities of springbok - feeding and vigilance - than either 

environmental or other group factors. Since group type is primarily defined by 

the presence (and absence) of adult individuals of both sexes, the age and sex of 
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the individuals within a group are the most important factors in determining the 

behaviour of springbok. 

 

Habitat did not influence the feeding and vigilance behaviour of springbok. 

However, springbok spent significantly more time moving in habitat 9 than in 

the other habitats, except habitat 4. Habitat 9 also had an almost equal 

male:female ratio. This suggests, based on the data, that this habitat may 

provide a relatively safe corridor between habitats, that is utilised to the same 

extent by both sexes for movement into other habitats where foraging occurs. 

 

Conclusion 

It is possible to show that springbok behaviour is related to foraging 

opportunities and predation risk characteristics of the habitat which can be 

described by behaviour models. Social factors and age and sex related 

differences that influence this response can be built into the models, thus 

generating a more realistic output that reflects a range of factors influencing 

springbok behaviour. 

 

Springbok have been shown to display preferences in their habitat use that can 

be related to features of the environment (Chapter 3). The environmental 

factors influencing habitat suitability were built into the behaviour models. 

Using environmental factors it may be possible to identify the preferred habitat 

of springbok as being the place where opportunities are maximised and risks 

minimised based on a suite of environmental and behavioural factors acting 

together to influence the habitat choice of springbok. 
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Chapter 5 

Patch and time specific habitat use by springbok revealed through an 

assessment of giving-up densities 

 

Introduction 

The way in which an animal perceives and uses its environment is central to 

studies of animal ecology (Johnson 1980). Since the environment in which an 

animal lives contains habitats that vary in quality both in terms of the costs and 

the benefits, the use of these habitats can influence an individual’s ability to 

survive and reproduce (Melton 1987). The classification of habitats into 

discrete categories from which an animal chooses allows one to determine if the 

use of habitat is selective (Arthur, et al. 1996). This can include habitat use at 

various spatial scales. At a macro-habitat scale the selection of habitat may be 

influenced by factors such as substrate and vegetation type. At the smallest 

micro-habitat scale, factors such as the extent of cover within a patch may 

influence habitat selection. 

 

Patch use refers to those circumstances in which a foraging individual can 

detect spatial aggregations of resources and bias its effort towards these (Brown 

2000). At the macro-patch level the forager must alternate activities between 

searching for patches, harvesting resources from within patches and travelling 

between patches too poor in resources (Brown 2000). At the micro-patch scale, 

the forager must place bounds on aggregations of food and bias its effort toward 

the more favourable food patches (Brown & Mitchell 1989). 

 

It has been shown the optimal patch use strategy is dependent on the 

distribution of resources (Iwasa et al. 1981). Most foragers can assess the 

quality of a patch to some level of accuracy and bias their efforts to those 

patches of greater quality (Brown 2000). Once foraging in a patch, the forager 

must decide at which point to stop harvesting from that patch and seek another 

(Brown 2000). The marginal value theorem provides one possible solution for 

when a forager can only exploit its current patch or travel to a new one, faces 

diminishing returns while exploiting a patch, and depletes the patch, but never 
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the environment (Charnov 1976). It states that a forager should continue 

foraging in a depletable food patch until the harvest rate in that patch no longer 

exceeds the average harvest rate expected should the forager travel to and 

exploit another patch. Optimal patch use may be generalised to consider 

situations in which the forager may be exposed to predation, may perform other 

fitness enhancing activities, and where the quality of the environment may 

become depleted during foraging (Gilliam & Fraser 1987; Brown 1988). An 

animal’s fitness may increase with the energy gained from foraging and time 

spent in alternative activities, however, it may decline with exposure to 

predators while foraging (Brown 1988). An optimally foraging individual, 

therefore, should forage in a patch until its harvest rate (H) in the patch (i.e. 

benefits) is equal to the sum of the energetic costs of foraging (C), predation 

risk (P) and missed opportunity costs (MOC) (Brown 1988, 1992); i.e. until  

H = C + P + MOC        (5.1) 

 

In a heterogeneous environment, patches that are more risky should have a 

higher quitting harvest rate (i.e. the individual stops foraging in that patch 

sooner) than those that are safe (Sih 1980, Werner et al.1983; Abrahams & Dill 

1989; Nonacs & Dill 1990). The ability of the animal to escape predation is also 

important in determining feeding-site selection (Schneider 1984; Ekman 1987). 

Escape substrate refers to the substrate within which the food patch is found 

and across which the forager must flee to escape or avoid predation (Kotler & 

Brown 1999). It may influence the ability of the foraging animal to detect 

and/or evade predators (Kotler et al. 2001). Predation risk could promote 

habitat selection if a species differs in which habitats are safest (Repasky 1996). 

 

Using equation 5.1 and controlling for the harvest characteristics of the patch, 

the energetic costs of foraging and the missed opportunities cost (H, C and 

MOC respectively), it is possible to determine how a forager perceives its 

environment through the cost of predation. In order to control the harvest 

characteristics of the patch, the forager must be given access to a number of 

food patches of identical food quality and structure (Brown 1988). All patches 

must be placed in the same microclimate to control for the energetic costs of 
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foraging, and all foragers must have equal access to food patches in order to 

control for the missed opportunity cost (Brown 1988). This allows for the cost 

of predation to be revealed by variation in the quitting harvest rate between 

patches. 

 

In most depletable food patches in which the forager experiences diminishing 

returns, the food left behind by a forager (its giving-up density; GUD) can be 

used as a substitute for its quitting harvest rate - the more risky an environment, 

the higher the giving-up density should be (Brown 2000). This is because the 

harvest rate is a function of resource density (Brown 2000). The GUD can be 

used to provide insight into both the state of the forager and the state of its 

environment (Whelan 1989, Astrom et al. 1990; Shipley et al. 1999). GUDs 

have been used to assess changes in habitat characteristics in an ungulate 

species (mule deer - Odocoileus hemionus) by Altendorf et al. (2001). 

 

Springbok habitat use 

As a mixed forager, springbok are able to adjust their diet, microhabitat, and 

foraging time to the highly variable quality of the forage in arid areas and can 

vary their habitat use and diet selection from selective to opportunistic 

(Hofmann et al. 1996). Springbok forage selectively (Davies & Skinner 1986a; 

Fairall et al. 1990; Cooper 1993; Liversidge & Gubb 1994), usually selecting a 

mixed diet and avoiding high-fibre diets, and are able to increase their food 

intake two- to three-fold when forage is plentiful (Hofmann 1989). Although 

springbok do feed on grass, they avoid patches of tall grass and it has a negative 

influence on their ease of movement in these areas (Bigalke 1972). Springbok 

foraging peaks after dawn and before dusk (Davies & Skinner 1986). Springbok 

avoid areas that could harbour ambush predators such as leopards, and prefer to 

forage in the open away from cover (Bednekoff & Ritter 1994). 

 

It is hypothesised that springbok will alter temporal and spatial utilisation of 

their environment according to predation risk and foraging opportunities. 

Therefore, the objectives of this study were: 
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1. to use foraging theory and giving-up densities to reveal information on the 

temporal and spatial utilisation of habitat by springbok; 

2. to relate this information to the biology of springbok so as to develop our 

understanding of their ecology. 

 

Methods 

I conducted field experiments between May and November 2003. I measured 

giving-up densities (GUDs; the amount of food left behind by a forager when it 

leaves a resource patch (Brown 1988, 1992)) using artificial food patches 

consisting of plastic trays (0.5 x 0.4 x 0.1 m). I filled the trays with 4 l  of dried, 

husked corn cobs to act as an inedible substrate, and strung four wires across 

the top (two wires running down the length and two wires running across the 

width) to prevent the springbok from removing the cobs from the trays (Fig 

5.1). I provisioned the trays with 300 g of pellets comprised of alfalfa and corn 

(cylindrical in shape, 2 cm long and 0.5 cm in diameter, and weighing 

approximately 1 g each) which was mixed throughout the corn cob matrix (see 

Appendix 5 for the nutritional information of the pellets). The wires and the 

corn cob substrate ensured that springbok experience diminishing returns while 

exploiting the trays. 

 

 
Figure 5.1: Giving-up density tray was a grape tray filled with 300 g of pellets and 

dried corn cobs and wired across the top.
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I measured GUDs at 3 spatial scales relating to macro-, meso-, and micro-

habitat use, using four sites that offered either sandy or rocky substrate (two in 

sandy and two in rocky substrates) located approximately 1 km apart (macro-

habitat). These sites were randomly located throughout the study area. At each 

site, I located two stations, one in the drainage line (wash) and one on a nearby 

ridge (ridge). These stations were approximately 10 m apart (meso- habitat). At 

each station I placed two trays about 1 m apart, in the open (open) and under 

cover (bush) (micro- habitat). Note that these habitat scales are different to the 

habitats (vegetation types) used in Chapters 3 and 4. 

 

Since more than one species fed from the trays, I identified the species using 

each patch based on the spoor left in the sand around the tray. In the rocky 

habitats, I spread 2 l  of sand around the trays up to a distance of 0.5 m to 

facilitate the identification (from their tracks) of the species using the trays. I 

measured GUDs twice daily, checking the trays at sunrise and sunset. I 

attributed the GUD measured to the last species present at the patch (Brown et 

al. 1994). If the tray had been foraged, I sieved the remaining pellets from the 

tray and weighed them to determine the GUD. I then reprovisioned the tray 

with another 300g of pellets. I recorded the date, weight of the pellets 

remaining, time of day and species. If no foraging occurred, I also noted this. I 

used controls to determine if a species had been present, but did not feed out of 

the trays. These controls consisted of 300g of pellets placed in a tray with no 

corn cob substrate. Because the food was ‘free,’ I expected any herbivore 

species present at the patch to feed from them. When the control had been 

foraged, but not the food patch, I recorded the GUD of all the trays at the 

station as equalling 300g, and I identified the species from tracks in the sand 

around the control. Although GUDs were recorded from a range of species, 

including kudu (Tragelaphus strepsiceros), gemsbok (Oryx gazella), eland 

(Tragelaphus oryx), Hartmann’s mountain zebra (Equus zebra hartmannae), 

klipspringer (Oreotragus oreotragus) and porcupine (Hystrix africaeaustralis), 

I only included springbok GUDs in the analysis here. 
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As the GUD data were normally distributed (Kolmogorov-Smirnov test, P > 

0.05), I analysed the effect of time (night or day), substrate (sandy and rocky), 

position (ridge and wash) and cover (bush and open) and their interactions 

using an ANOVA. I made pairwise comparisons among the estimated marginal 

means of these factors and their interactions. 

 

I took the GPS location at each pair of trays. This I inputted into ArcView® 

and determined the habitat (as defined in Chapter 3) at each pair of trays using a 

spatial join of the tray locations and the habitat map of the park. I incorporated 

this with the GUD data and used an ANOVA to analyse the risk of predation 

across habitats and a post-hoc Tukey’s HSD test for the multiple comparisons 

of across habitats. 

 

Results 

The giving up density is significantly related to time of day, position, cover and 

the interaction of time and substrate, but not to the interaction of any of the 

factors except time and substrate (Table 5.1). The giving-up density was higher 

during the day (Fig. 5.2a), in the wash (Fig. 5.2b), and under the bush (Fig. 

5.2c). The interaction between substrate and time was significant, with giving 

up-density tending to be higher during the day on the rocky substrate than 

either during the night or during the day on the sandy substrate (Table 5.1; Fig. 

5.2d). 

 

For springbok, habitats 8, 4 and 9 had significantly lower giving up densities 

than habitats 5, 6 and 7 (Fig. 5.3). These results indicate that habitats 8, 5 and 6 

are significantly different from each other, with habitat 6 having the highest and 

habitat 8 having the lowest giving-up density. Habitats 4 and 9 are intermediate 

between habitats 8 and 5, and are not different from either of these habitats in 

their giving up density. The giving up-density in habitat 7 is intermediate 

between habitats 5 and 6 and does not differ significantly from either. 
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Table 5.1: The influence of spatial and temporal variation on the giving-up density, 

together with the outcomes of the ANOVA analysis of these various factors. 

Factor df Mean Square      F P 
Time 1 68952.83 10.75 0.00 
Substrate 1 15633.19 2.44 0.12 
Position 1 29661.61 4.62 0.03 
Cover 1 37957.11 5.92 0.02 
Time x Substrate 1 25165.98 3.92 0.05 
Time x Position 1 12621.73 1.97 0.16 
Time x Cover 1 5816.40 0.91 0.34 
Substrate x Position 1 132.96 0.02 0.89 
Substrate x Cover 1 20.65 0.00 0.96 
Position x Cover 1 89.26 0.01 0.91 
Time x Substrate x Position 1 1248.87 0.20 0.66 
Time x Substrate x Cover 1 187.76 0.03 0.86 
Time x Position x Cover 1 607.74 0.10 0.76 
Substrate x Position x Cover 1 660.95 0.10 0.75 
Time x Substrate x Position x Cover 1 4460.15 0.70 0.41 
Error 325 6415.78   

 

 
Figure 5.2: The effect of time, position, cover and the interaction of time and substrate 

on the giving up density (mean ± 95% confidence intervals). N = the sample size. The 

giving-up density was significantly higher a) during the day, b) in a wash, c) under the 

cover of a bush, and d) during the day on the rocky substrate (shaded boxes represent 

night while unshaded boxes represent day). 
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Figure 5.3: The giving up densities in the different habitats (mean ± 95% confidence 

intervals). N = the sample size. Means with different letters differ significantly 

according to a post-hoc Tukey’s HSD test for multiple comparisons of across habitats. 

 

Discussion 

Springbok preferred feeding from the trays in the open, away from cover. They 

also preferred feeding from the trays on ridges (which are generally more 

open), than in drainage lines (which are more vegetated). This is in agreement 

with the published literature for springbok (Shortridge 1934; Leistner 1967; 

Bigalke 1972; Davies & Skinner 1986; Ritter & Bednekoff 1994) and supports 

the results obtained earlier that springbok prefer open areas (Chapter 3) and are 

more vigilant (and consequently feed less) in areas of increasing canopy cover 

(Chapter 4) in response to increasing predation risk. The effect of cover on 

GUDs has also been shown for rodents (Brown et al. 1988; Hughes & Ward 

1993), crested larks (Kotler & Brown 1999), and mule deer (Altendorf et al. 

2001). 

 

Substrate interacted with time such that springbok fed less during the day than 

at night on the rocky substrate. Springbok also fed more on the sandy substrate, 

both during the day and at night, than on the rocky substrate during the day. 

This is in agreement with Bigalke (1972), who found that springbok avoid 

rocky areas, and supports the results obtained earlier that increasing cover of 

stones decreases the suitability of a habitat for springbok (Chapter 3), and 

increasing sand ground cover results in springbok spending less time vigilant 

and more time feeding (Chapter 4) in response to decreased predation risk on 
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sandy substrates. The effect of substrate on GUDs has also been shown for 

desert rodents (Hughes et al.1995; Kotler et al. 2001) 

 

The risk of predation as revealed by springbok foraging behaviour is therefore 

less in the open, in areas away from drainage lines, and on sandy substrates. 

The actual drivers of this perceived change in predation risk cannot be revealed 

by the present data. It may, however, be hypothesised that this may be a 

function of changes in group size and increased vigilance in open habitat. 

Predation effects on GUDs have also been shown on rodents (Hughes & Ward 

1993; Abramsky et al. 1996), porcupines (Brown & Alkon 1990), birds (Olsson 

et al. 2002), and deer (Altendorf et al. 2001).  

 

The results show that springbok are more willing to feed more at night than 

during the day. This result is the first clear demonstration that springbok 

actively feed at night (Davies 1985; Bigalke 1972) and shows that nocturnal 

foraging is important in this species. As the air temperature cools at night and 

condensation occurs (Louw & Seely 1982; Nagy & Knight 1994), the pellets 

used in this study (which are highly hygroscopic and therefore efficient in 

absorbing atmospheric moisture) would be expected to absorb atmospheric 

moisture (Louw & Seely 1982). Thus, by feeding at night, the springbok would 

increase their water intake. Water effects on GUDs have been shown in 

Australian Ravens (Kotler et al. 1998), crested larks (J.S. Brown & B.P. Kotler, 

unpublished data), and Nubian ibex (Hochman & B.P. Kotler unpublished data) 

but not on nocturnal gerbils (B.P. Kotler pers. comm.1). 

 

Differences among habitats may be due to different costs of predation, different 

energetic costs of foraging, different missed opportunity costs, and different 

marginal values of energy if foragers cannot easily pass from one habitat to the 

next (Kotler et al. 1994b). The giving up density is significantly lower in 

habitat 9 than habitats 5, 6 and 7. This is somewhat surprising since, based on 

the behavioural data, springbok spent significantly more time moving in habitat 

9 than in other habitats, therefore habitat 9 was thought to be a corridor for 

                                                           
1 Prof. B.P. Kotler; Ben Gurion University of the Negev 
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movement to other habitats where foraging occurs (Chapter 4). One cannot 

dispute the amount of foraging measured directly in this habitat by the GUDs, 

therefore the deduction made based on the behavioural data must be incorrect, 

and the large amount of time spent moving in habitat 9 may rather be due to 

individuals moving between food patches while foraging. GUDs have been 

used to determine habitat preferences in a range of animals, including small 

rodents (Brown et al. 1992; Brown et al. 1994; Ziv et al. 1995; Brown et al. 

1998; Kotler et al. 1998; Kotler & Brown 1999), birds (Olsson et al. 2002), 

squirrels (Schmidt et al. 1996), porcupine (Brown & Alkon 1990), and large 

herbivores such as mule deer and Nubian ibex (Kotler et al. 1994b; Altendorf et 

al. 2001). 

 

Conclusion 

GUD data uses one currency for patch preference assessment across space and 

time, and therefore provides an efficient and objective way to assess selective 

habitat use. From these results it can be seen that springbok vary their temporal 

and spatial utilisation so as to minimise their risk of predation and maximise 

their food intake. 
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Chapter 6 

Concluding discussion 

 

Habitat preferences 

Springbok showed clear preferences in their habitat use. The density of 

springbok was greatest in open habitats of high food quality (habitats 4 and 5), 

and lowest in closed habitats (habitat 1). These preferences in habitat use can be 

described using habitat suitability models. 

 

The habitat suitability model incorporates those variables that have the greatest 

correlation with springbok density in AFNP. Habitat suitability increased as the 

habitats varied from seasonally moist to occasionally moist/mostly dry, and 

then decreased as the habitats got drier still. Increases in the percent cover of 

forbs and herbs served to increase the habitat suitability. The percent cover of 

sand and boulders had a more complex interaction with habitat suitability, 

although the general trend was a negative interaction for sand and a positive 

interaction for boulders. Increasing canopy cover of B. albitrunca and A. 

mellifera had a positive interaction with habitat suitability. Finally, the percent 

of stones in the habitat had an overall negative influence on habitat suitability. 

 

This model can be used for the management of springbok populations in AFNP. 

Habitats can be sampled to develop estimates of springbok population size. A 

shift of springbok into unpreferred habitats can be used as an indicator of 

changing habitat quality and this model can therefore be used to monitor 

resource availability and detect possible overstocking. During the course of the 

study two reintroductions of springbok occurred in the southern part of AFNP 

where more land is being bought, and future introductions of springbok are 

possible. The habitat suitability model can be used to consider the suitability of 

the habitat for springbok before such reintroductions occur and can be used to 

estimate the number of springbok to be introduced given the range of habitats 

present. In addition to this, the model can be used to decide in which habitat 

(i.e. lowest GUDs and highest densities) springbok should be released into the 
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park, since this should occur in the areas most suitable for springbok to reduce 

the stress to the animals.  

 

This model, however, needs to be tested in order to assess its applicability and 

general value. This model has not been evaluated against an independent data 

set either from a different time series, or from another area and population. 

Models need to be validated using experimental testing with independent data 

(Cook & Irwin 1985; Johnson et al. 1989) to determine if they incorporate 

appropriate habitat variables, and to assess their predictive capabilities (Irwin & 

Cook 1985). To test this model, and to fully understand its behaviour, more 

long-term data in additional locations should be collected, covering a range of 

habitats and with a wider range of environmental conditions (Pearce & Ferrier 

2000). Regional rather than local data should be collected to improve the 

reliability of this model (Irwin & Cook 1985). This may require modification to 

perform adequately in other areas being evaluated (Cook & Irwin 1985l O’Neil 

et al. 1988). 

 

Isodar analysis revealed information on the mechanisms underlying preference 

for habitats, and can be used in conjunction with habitat suitability models to 

further increase our understanding of differences in habitat use. Isodar analysis 

implied both habitats 5 and 6 were quantitatively more suitable than habitat 7. 

Quantitative differences in habitat typically reflect food availability and 

productivity, whereas qualitative differences typically reflect risk of predation. 

From the habitat suitability model, the components of habitat suitability for 

springbok that reflect these quantitative differences between habitats 5 and 7 

and habitats 6 and 7 are the percent cover of forbs and herbs, B. albitrunca, and 

A. mellifera. 

 

Behaviour across the landscape 

Springbok spent the majority of their time foraging. Springbok devoted more 

time to being vigilant and moving than to either grooming or performing other 

activities. Habitat did not influence the feeding and vigilance behaviour of 
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springbok. However, springbok spent significantly more time moving in habitat 

9 than in the other habitats. This habitat had an almost equal male:female ratio. 

 

An increase in the aerial cover of forbs and herbs results in an increase in the 

proportion of time feeding and moving. In contrast to this, the proportion of 

time feeding decreased, while the proportion of time vigilant and moving 

increased with an increase in the cover of Boscia albitrunca. Increasing the 

percent of boulders resulted in less time feeding. Increasing percent of sand 

ground cover led to a reduction in the proportion of time vigilant and moving. 

Both the proportion of time feeding and vigilant increased as group size 

increased. Springbok also moved more when in larger groups. Females spent 

more time feeding than males and males spent more time vigilant than females. 

As increasingly more females are added to a group, from territorial males to 

nursery herds, the more time springbok spend feeding and the less time vigilant. 

Finally, adults were more vigilant and moved more than subadults. 

 

Building the environmental factors from the habitat suitability model into the 

behavioural model makes it possible to identify the preferred habitat of 

springbok as being the place where opportunities are maximised and risks 

minimised based on environmental and behavioural factors acting together to 

influence the habitat choice of springbok. 

 

This model can be used for the management of springbok populations in AFNP 

in that change in foraging and movement behaviours as well as group size can 

be used to monitor the condition of the vegetation. Changes in vigilance can be 

used to assess predator abundance and distribution, since and increase in the 

number of predators in an area would result in more vigilance in springbok 

while a decrease in predator numbers would have the opposite affect. 

 

This model, as with the habitat suitability model, requires validation in order to 

assess its predictive capabilities (Cook & Irwin 1985; Johnson et al. 1989. 

Also, long term data from additional locations covering a range of habitats 

should be collected (Pearce & Ferrier 2000), and may require modification 
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through experimental manipulation to perform adequately in other areas being 

evaluated (Cook & Irwin 1985l O’Neil et al. 1988). 

 

Patch and time specific habitat use 

Springbok vary their temporal and spatial utilisation so as to minimise their risk 

of predation and maximise their food intake. Springbok showed lower GUDs 

more in the open, and at night on ridges. Springbok showed lowest GUDs in 

habitat 9 which contradicts the conclusion drawn from the behavioural data, 

that habitat 9 was a safe corridor for movement to other habitats, and therefore 

more foraging would occur in these habitats. 

 

Changes in behaviour related to changes in the environment can be readily 

assessed as differences in the giving-up densities. Note, however, in the present 

study, that it was not possible to strictly control potential differences in missed 

opportunity costs (MOC) (these would be mating opportunities, distance to 

water, etc.). This assumption of constant MOCs needs to be further explored. 

The habitat characteristics around each set of foraging trays would need to be 

measured in order to more directly relate the giving-up density at that patch to 

the characteristics of the environment. It also facilitates understanding how 

GUDs change in relation to changes in the habitat.  

 

Comparison of approaches 

Habitat suitability model 

The measurement of the habitat variables and the estimation of springbok 

density were time consuming, costly, and subject to observer bias. Building the 

model was a lengthy and complicated process involving complex statistical 

techniques. There are many assumptions about the distribution of the data, such 

as that they are normally distributed, the error terms are independent, and there 

is no multicollinearity of the variables. If these assumptions are not met, 

transformation of the data becomes necessary. Also, habitat suitability models 

are based on the assumption that density is an indicator of habitat suitability, 

which does not always hold true, especially in systems with territorial 
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individuals that may result in increased density of non-territorial subordinates 

in sub-optimal habitats (Melton 1987).  

 

Behaviour model 

Measuring springbok behaviour using focal animal sampling required many 

hours in the field to locate the animals, and observe them for a sufficient length 

of time and a sufficient number of different individuals. While an attempt was 

made to standardise the definition of different behaviours, the interpretation of 

behaviour varies among individuals and is therefore subject to observer bias. 

The habitat variables that were incorporated into the model were identified 

from the habitat suitability model. The data used in generating the behaviour 

models required transformations in order to meet the assumptions of the 

statistical techniques used to analyse them. Analysing the behavioural data were 

less time consuming than building the habitat suitability model. 

 

Giving up densities 

Habituating springbok to the feeding trays required initial effort. It took many 

months of leaving trays with food in the field before the springbok would feed 

from the trays, however, once they began the springbok fed reliably from the 

trays. Obtaining data from the springbok then became a relatively simple task 

which required driving to the trays in the morning and evening to assess if 

foraging had occurred, and to sieve and collect the remaining food and 

replenish the trays with more food if they had been foraged. Generating sample 

sizes large enough for statistical analyses is not as time consuming as with 

other methods. Because paired comparisons are made, results are direct and 

easy to assess. Occasional transformations of the data may be required, but 

these are not as complex as for the other methods. 

  

Using foraging behaviour to detect differences in habitat use is based on the 

assumption that an individual is foraging optimally and has the ability to 

instantly assess patch quality (Kotler et al. 1994b). These assumptions can be 

tested by simultaneously presenting rich and poor patches to the animal (i.e. 

starting with different food densities - with more food in the rich patch and less 
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in the poor patch). An optimally foraging individual should leave the patches at 

the same quitting harvest rate, and therefore the patches should be depleted to 

the same giving-up density (Kotler et al. 1994b). This also suggests that the 

animal has a priori expectations of patch quality when starting to exploit a 

patch, with the estimate being updated as foraging continues (Kotler et al. 

1994b). Note that it was beyond the scope of this study to test these 

assumptions. 

 

Conclusion 

The estimation of springbok density, the measurement of the habitat variables, 

and the assessment of springbok behaviour incorporated into the models is time 

consuming and subject to bias. Also, these models are based on the assumption 

that density is an indicator of habitat quality, which does not always hold true, 

especially in systems with territorial individuals (Melton 1987). Finally, 

analysis of these models is a lengthy and complicated process involving 

complex data transformations and statistical techniques. Data collection for 

GUDs is relatively quick and not subject to observer bias, and data analysis and 

interpretation is not as complicated as for the habitat suitability and behaviour 

models. 

 

Opportunities for future research 

Habitat suitability models and behavioural models need to be developed in 

other areas at other times to validate the findings here, to assess their predictive 

capabilities and more fully understand the behaviour of the models. These 

models may require modification in order to apply in a range of habitats. GUDs 

can be applied in a range of habitats at different locations if the same 

experimental design is used. This would include a standardised set of artificial 

food patches. 

 

The ability to apply giving-up densities to springbok provides a range of 

opportunities for further research. The assumption that springbok are foraging 

optimally can be tested as outlined above. Also, the habitat variables at each 

patch can be measured in order to more directly assess the effect of habitat on 
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giving-up density. The functional response of springbok to changes in forage 

quality can be tested by adding toxins to the foraging trays or by altering the 

quality of food in the trays. The effect of water on the foraging behaviour of 

springbok can be assessed by comparing giving-up densities of springbok 

where water is present or absent. It may be possible to develop a ‘landscape of 

fear’ (Altendorf et al. 2001) for the springbok by placing a grid of trays across 

an area. Differences in GUDs can be plotted relative to habitat features and in 

this way generate a map outlining areas of equal risk.  

 

The different approaches used to assess the preferential use of habitats (GUDs, 

density, group size and composition) provided snapshots into various aspects of 

springbok habitat selection which, if considered together, may form a 

composite image of the factors interacting to influence springbok ecology. 

These approaches need to be combined to simultaneously assess the interaction 

between them within habitats in order to provide a unified habitat preference 

approach to habitat suitability. One of the challenges will be to integrate the 

different scales of habitat selection. In order to do this the GUD data would 

need to be collected at a landscape level (at the scale of km2 as opposed to m2), 

requiring a large number of replicates of GUD trays, in order to compare the 

vegetation type habitats. This has not been done here since it was no within the 

scope of this project, however further work on this is planned. 
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Appendix 1: Vegetation community description for AFNP as described by. 

Buk (2004). There are 11 vegetation communities with one community sub-

division. 

 
1. Schotia afra – Indigofera pechuelii low, open woodland (Habitat 10 in this 

study) occurs on red biotite granite gneiss, which is typically orange brown 

to reddish. The terrain varies from flat to almost vertical, but is typically 

rolling to mountainous. The dominant substrates are bedrock and large 

rocks. The diagnostic species of this community are primarily the tree 

Schotia afra and the herbs Indigofera pechuelii and Hibiscus englerii. The 

amount of available browse is below average, but its diversity is high. Of the 

available browse, Schotia afra contributes 28%, Indigofera pechuelii 

contributes 10%, and the succulent shrub Euphorbia rectirama contributes 

6%.This community makes up 36% of the study area. 

 

2. Adenolobus garipensis – Boscia albitrunca tall, open shrubland (Habitat 8 

in this study) occurs on grey granite. The terrain is rolling with crests, steep 

upper slopes, canyon walls and almost horizontal foot slopes. The dominant 

substrates are a mixture of gravel, bedrock, rocks and pebbles. The 

diagnostic species of this community are the shrub Adenolobus garipensis, 

the small tree Boscia albitrunca and the succulent shrub Ceraria 

namaquensis. Available shade is quite limited. The available browse is 

dominated by Adenolobus garipensis which contributes 23%, while Boscia 

albitrunca contributes 9%. The herbs Osteospermum microcarpum and 

Monechma spartiodes contribute 18% and 9% of the available browse, 

respectively. 

 

3. Euphorbia gregaria - Osteospermum microcarpum tall, open shrubland 

(Habitat 9 in this study) occurs exclusively on substrates with a high content 

of quartz in the form of bedrock and large rocks interspersed with gravel and 

sand. This community is typically found on the crests and slopes of the 

quartzitic outcrops that occur in any of the non-alluvial land types. This 

community is characterised by the consistently high presence of the 
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conspicuous succulent shrub Euphorbia gregaria. Shade is virtually absent 

in this community, and browse diversity is low, being strongly dominated by 

Euphorbia gregaria and Monechma spartioides which contribute 57% and 

7% of the available browse, respectively. 

 

4. Acacia mellifera – Euphorbia spp. tall, open shrubland (Habitat 4 in this 

study) mostly falls within the foot slopes and valley bottoms. The dominant 

substrate is gravel strewn with rocks and pebbles, and interrupted by 

outcropping bedrock and sandy drainage lines. The diagnostic species of this 

community are primarily the large shrub Acacia mellifera, the succulent 

shrubs Euphorbia rectirama and Euphorbia gregaria as well as the herbs 

Blepharis furcata, Indigofera pungens, Hermannia spinosa and Trianthema 

triquetra. Available shade is limited and browse availability is relatively 

low, but diverse. Acacia mellifera contributes 24%, Indigofera pechuelii 

contributes 11%, and Schotia afra contributes 10% of the available browse. 

 

5.1. Acacia mellifera – Zygophyllum dregeanum – Euphorbia rectirama tall, 

open shrubland (Habitat 6 in this study) occurs on foot slopes, on red 

biotite gneiss, mostly overlain with gravel and pebbles of the same material. 

The gravel in this community features a structure peculiar of arid areas 

where the top 1-2 mm forms a relatively hard, “polished” crust over more 

porous, compactable material, making this substrate unfavourable for plant 

establishment. Outcrops of red gneiss also occur, with vegetation affiliated 

with community 1. The Acacia mellifera – Zygophyllum dregeanum – 

Euphorbia rectirama sub-community is primarily characterised by the high 

occurrence of the diagnostic species in its name. Shade availability is very 

low, and the availability of browse only half of the average for the study 

area. Browse is dominated by Acacia mellifera which contributes 49% and 

Schotia afra which contributes11% of the browse. 
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5.2. Acacia mellifera – Zygophyllum dregeanum – Monechma spartioides 

tall, open shrubland (Habitat 7 in this study) differs from the previous sub-

community by being dominated by pebbles at the expense of gravel, bedrock 

and drainage lines. This results in higher total cover and browse availability as 

well as in the virtual absence of Euphorbia rectirama and much higher 

occurrence of Monechma spartioides. The sub-community is dominated by 

Acacia mellifera and Zygophyllum dregeanum which contribute 49% and 18% 

of the available browse, respectively. This sub-community makes up only 2.8 

% of the study area. 

 

6. Acacia mellifera – Stipagrostis hochstetteriana tall, open shrubland 

(Habitat 5 in this study) occurs on gentle slopes where the dominant substrate 

is an almost equal mixture of sand and gravel. This community is 

characterised by the combination of the species Acacia mellifera, Boscia 

albitrunca, Boscia foetida, the smallish shrub Rhigozum trichotomum, the 

shrub Lycium bosciifolium, and the herb Monechma spartioides in 

combination with the virtual absence other differential species. After good 

rains the otherwise sparse herbaceous layer becomes completely dominated by 

the grass Stipagrostis hochstetteriana. More shade is available in this than the 

previous communities. Browse availability is average for the study area to 

which Acacia mellifera contributes 44%, Monechma spartiodes contributes 

10%, Boscia spp. contributes 8% and Rhigozum trichotomum contributes 5%. 

 

7. Sisyndite spartea - Forskaolea candida tall, open shrubland (Habitat 11 in 

this study) occurs on wide drainage lines and plains occasionally subject to 

flooding. The substrate is 95% washed gravel. This community is 

characterised by one character species, the shrub Sisyndite spartea, plus by 

high availability of Acacia mellifera and Schotia afra. Browse is average in 

availability, but low in diversity, dominated by Sisyndite spartea (26%), 

Acacia mellifera (15%) and clumps of Schotia afra (45%). This community 

only covers 0.7% of the study area in one patch. 
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8. Acacia erioloba – Schmidtia kalahariensis short, closed woodland (Habitat 

1 in this study) is found on gently sloping terrain with a high percentage of sand 

mixed with some gravel. This community is characterised by the predominance 

of the species in its name. The herbaceous layer is poorly developed except for 

the ubiquitous, opportunistic creeper Tribulus cristatus and the annual grass 

Schmidtia kalahariensis, the preponderance of which is highly dependant on 

summer rainfall. Acacia erioloba provides abundant shade but only contributes 

about 20% of the browse available up to 2 metres. Acacia mellifera and 

Monechma spartiodes contribute significant amounts of browse (10% and 7% 

respectively). This community covers only 0.4% of the study area. 

 

9. Acacia erioloba – Zygophyllum microcarpum short, closed woodland 

(Habitat 2 in this study) occurs on pure gravel near large drainage lines. This 

community is characterised by the high availability of the species in its 

name. Acacia erioloba provides abundant shade but only contributes about 

24% to the available browse. Zygophyllum microcarpum contributes about 

20% and Acacia mellifera 11% of browse. The herbaceous layer is poorly 

developed. Only 0.1 % of the study area falls in this community. 

 

10. Tamarix usneoides - Gymnosporia linearis tall, open shrubland (Habitat 

12 in this study) occurs on floodplains with a dusty mixture of silt and clay. 

The diagnostic species of this community are the smallish tree Tamarix 

usneoides, the succulent herb Mesembryanthemum guerichianum and two 

succulent Psicaulon herbs. Gymnosporia linearis is also very conspicuous in 

this community. Browse availability is more than twice the average for the 

study area. Tamarix usneoides, and Sueda fruticosa, both make up 28% of 

the browse, while Gymnosporia linearis and Psilocaulon absimile contribute 

13% and 12% to the available browse; respectively.The community makes 

up 1.0% of the study area.  

 

11. Acacia karroo – Ziziphus mucronata short, riverine forest (Habitat 3 in 

this study) occupies a 5 – 30 m wide strip along the Orange River and a few 

tributaries, where terrain and hydrology allow soil to build up. The basic 
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substrate is alluvial silt-clay combination, highly enriched with humus. The 

diagnostic species for this community are the trees Acacia karroo and 

Ziziphus mucronata. Virtually the entire community is shaded. Browse 

availability is 13 times the average for the study area. Most abundant is 

climbing Asparagus spp (one or more species) which contributes 27% of the 

available browse. Acacia karroo and Salix mucronata contribute 25% and 

10% of the available browse, respectively. Ziziphus mucronata is heavily 

browsed yet only contributes 8% of available browse. The herbaceous layer 

contributes relatively little to browse due to the abundance of woody plants. 

This community makes up only 1.1% of the study area. 
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Appendix 2: Map of AFNP showing the geographical location of the different 

land types (Buk 2004). Table 2.1 (Chapter 2) describes the location and geology 

of the four land types represented in the study area (Land Type Survey Staff 1986). 
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Appendix 3: Maps of AFNP showing the different habitats (Buk 2004) and the 

area covered by the drive transects. a) Drive transect S1 was driven a total of 13 

times, b) Drive transect S2 was driven a total of 12 times, c) Drive transect M1 was 

driven a total of 4 times, and d) Drive transect L1 was driven in a clockwise direction a 

total of 19 times while Drive transect L2 (B) was driven in a counter-clockwise 

direction a total of 20 times. 
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Appendix 4: The non-categorical habitat variables and their components, 

(Table 1), and the categorical habitat variables and their codes (Tables 2-12), 

measured in determining the characteristics of the habitat for the habitat 

suitability model.  

 
 
Table 1: Non-categorical habitat variables, and their components, measured in 

determining the characteristics of the habitat for the habitat suitability model. 

Variable Component  

Slope   
   

Boulders:  (particles >100 cm diameter) 

Rocks: (particles 20 - 100 cm diameter) 

Stones: (particles 5 - 20 cm diameter) 

Pebbles: (particles 1 - 5 cm diameter) 

Grit: (particles 0.5 - 1 cm diameter) 

Sand: (particles 0.05 - .05 cm diameter) 

Ground 
cover (%) 

Clay  
   

Grass  

Herbs  

Forbs   

Aerial and 
Basal cover 
(%) 

Succulents  
 
 
Table 2: The codes, and their descriptions, used to define topographic position in 

determining the characteristics of the habitat for the habitat suitability model.  

 Code Description 
 1 Top of Escarpment 
 2 Cliff - Scarp 
 3 Scree Slope at Bottom of  Cliff 
 4 Plateau - Top of Hill 
 5 Upper Third of Slope 
 6 Middle Third of Slope 
 7 Lower Third of Slope 
 8 Bottomland 
 9 Upper Terrace of Alluvium 
 10 Lower Terrace of Alluvium 
 11 Edge of Drainage Line 
 12 Rock Outcrop 
 13 Dyke 
 14 Anthill 
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Table 3: The codes, and their descriptions, used to define aspect in determining the 

characteristics of the habitat for the habitat suitability model.  

 Code Description 
 1 N  
 2 NE 
 3 E 
 4 SE 
 5 S 
 6 SW 
 7 W 
 8 NW 

 
 
Table 4: The codes, and their descriptions, used to define soil texture in determining 

the characteristics of the habitat for the habitat suitability model.  

 Code Description 
 1 Clay 
 2 Clay Loam 
 3 Loam 
 4 Coarse Sandy Loam 
 5 Coarse Sandy Clay 
 6 Fine Sandy Loam 
 7 Fine Sandy Clay 
 8 Coarse Sand 
 9 Fine Sand 
 10 Loamy Sand 
 11 Silty Clay 
 12 Silty Clay Loam 
 13 Silt Loam 
 14 Silt 

 
 
Table 5: The codes, and their descriptions, used to define moisture status in 

determining the characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 Permanently Wet with Exposed Surface Water 
 2 Seasonally Flooded 
 3 Permanently Moist (Seep, Depression, Shaded Area, etc) 
 4 Seasonally Moist (Drainage Line or Seep) 
 5 Occasionally Moist - Mostly Dry (Depression or Bottom of Slope) 
 6 Dry (Top of Ridge or Mound) 
 7 Very Dry 
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Table 6: The codes, and their descriptions, used to define protection from wind in 

determining the characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 Fully Protected 
 2 Partially Protected 
 3 Exposed 

 
 
Table 7: The codes, and their descriptions, used to define shading in determining the 

characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 In Permanent Deep Shade 
 2 In Deep Shade for between 7 and 9.5 hrs in summer ( ½  - ¾ day ) 
 3 In Deep Shade for between 4.5 and 7 hrs in summer (1/3 - ½ day ) 
 4 In Deep Shade for between 4.5 and 3.5 hrs in summer ( 1/3 - ¼ day )  
 5 In Deep Shade for between 2.5 and 3.5 hrs in summer ( ¼ - 1/5 day ) 
 6 In Deep Shade for < 2.5 hrs ( 1/5 day ) 
 7 In Permanent Dappled Shade 
 8 In Dappled Shade for between 7 and 9.5 hrs in summer ( ½  - ¾ day ) 
 9 In Dappled Shade for between 4.5 and 7 hrs in summer (1/3 - ½ day ) 
 10 In Dappled Shade for between 4.5 and 3.5 hrs in summer ( 1/3 - ¼ day )  
 11 In Dappled Shade for between 2.5 and 3.5 hrs in summer ( ¼ - 1/5 day ) 
 12 In Dappled Shade for < 2.5 hrs ( 1/5 day ) 
 13 No Shading 
 

 

Table 8: The codes, and their descriptions, used to define erosion type in determining 

the characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 Sheet Erosion 
 2 Rill Erosion 
 3 Runnel Erosion 
 4 Gully Erosion 
 5 Wind Erosion 
 6 Trampling and Wash 

 
 
Table 9: The codes, and their descriptions, used to define deposition type in 

determining the characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 Wash in Depression 
 2 Wash on Levee 
 3 Obstacle 
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Table 10: The codes, and their descriptions, used to define herbivory type in 

determining the characteristics of the habitat for the habitat suitability model. 

 Code Description 
 1 Parts of Leaves Removed 
 2 Young Leaves and Leaf Buds Removed 
 3 Mature Leaves Removed 
 4 Senescent Leaves Removed 
 5 Leaves and Small Twigs Removed 
 6 Leaves, Small Twigs and Small branches Removed 
 7 Leaves, Twigs, Small Branches and Large Branches Removed 
 8 Stem Broken 
 9 Plant Uprooted 
 10 Bark Removed 
 11 Flowers Removed 
 12 Fruit Removed 

 
Table 11: The codes, and their descriptions, used to define the intensity of erosion, 

deposition and herbivory in determining the characteristics of the habitat for the habitat 

suitability model. 

 Code Description 
 1 Light 
 2 Moderate 
 3 Intense 

 
Table 12: The codes, and their descriptions, used to define the frequency of erosion, 

deposition and herbivory in determining the characteristics of the habitat for the habitat 

suitability model. 

 Code Description 
 1 Weekly 
 2 Monthly 
 3 Twice Yearly 
 4 Annually 
 5 Bi-annually 
 6 Tri-annually 
 7 Every Four Years 
 8 Every Five Years 
 9 > 5 yrs 
 10 very infrequent 
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Appendix 5: The nutritional information of the pellets used in determining 

patch and time specific habitat use by springbok, through an assessment of 

giving-up densities.  

 

Table 1 shows the nutritional information of the sheep pellets. The information 

is given in g/kg, and since each pellet weighed approximately 1 g, the 

nutritional information outlined in Table 1 may be used to represent the 

nutritional information for each pellet and therefore for the food patches too.  

 

Table 1: The nutritional information of sheep pellets used in determining the giving-

up density of springbok. All units are in g/kg unless otherwise stated. 

Compound g/kg 

Protein min 100 

(Protein ex NPN) max 8% 

Ammonia chloride max 5 

Moisture max 120 

Fat max 25 

Fibre max 200 

Calcium max 12 

Phosphorus max 0 

 

 
 


