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Abstract

In this thesis we define and study the existence of an equilibrium situation in which

producers maximize their profits relative to the production vectors in their produc-

tion sets, consumers satisfy their preferences in their consumption sets under certain

budget constraint, and for every commodity total demand equals total supply. This

competitive equilibrium situation is referred to as the Walrasian equilibrium. The

existence of this equilibrium is investigated from a various mathematical points of

view. These include microeconomic theory, simplicial spaces, global analysis and lat-

tice theory.
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Statistics at Rhodes University for allowing me to take part in his MATLAB software

based courses.

The financial assistance of the National Research Fund (NRF) and the Deutscher

Akademischer Austausch Dienst (DAAD) towards this study is hereby acknowledged.

Finally, I am indebted to my family, in particular my parents for the supportive

role they have played throughout my studies and to those who directly or indirectly

contributed to the success of this study. Your inputs are gratefully appreciated.

iv



PREFACE

The founders of the mathematical theory of general economic equilibriumare Pareto [42]

and Walras [56]. The aims of the mathematical theory in Walras [56] is to explain

the price vector and the actions of the various economic agents observed in an econ-

omy in terms of an equilibrium resulting from the interaction of those agents through

markets for commodities. This theory has been looked at extensively by a number

of researchers, namely, Arrow( [1], [2]), Debreu( [17], [18]), D.Gale and A. Mas-

Colell( [23], [33]) and Smale [46]. They have developed the theory by making use

of diverse fields of Mathematics and in doing so this has lead to a more rigorous

mathematical approach to microeconomic theory. The main objective of this thesis

is to investigate the existence of equilibrium in microeconomics from different fields

in mathematics. We now give detailed description of the contents of the thesis.

In Chapter 1 we investigate the existence of equilibrium from a microeconomy theo-

retic point of view, which entails the study of preference relations. The existence of

equilibrium is brought about by making use of [25] Kakutani’s fixed point theorem.

In section 1.6, We explore the relationship between welfare economics and equilibrium.

Chapter 2 introduces simplicial spaces which are spaces equipped with a simplicial

structure and special nonnegative bivariate functions called signatures. In section

2.2 a result based on signatures and multivalued limit maps is central to this chap-

ter. The subsequent sections pay attention to the applications of simplicial spaces

and signatures to Kakutani [25] related fixed point theorems and the existence of

equilibrium. A number of the results established with the use of signatures spans

through different fields like genetic biology, game theory, mathematical analysis and

economics.

Chapter 3 captures the existence of equilibrium from the notion of supply and de-

mand of commodities. The argument is that there is a price vector such that the

equality of supply and demand is achieved as demonstrated in [4], [22] and [46]. In

contrast to the preceding chapters, this chapter makes use of purely mathematical

v



results on solutions of systems of equations to solve the existence of equilibrium in

mathematical economics. In section 3.1 these results are proved by making use of

concepts from global analysis. This means that in this chapter there is no appeal

made to fixed point theorems.

We introduce the concepts of a partially ordered set and lattices as done in Birkhoff [10],

together with the functions that act between these structures in Chapter 4. In [36], [37]

and [52] these functions on partially ordered sets and lattices are studied in detail as

done in section 4.1 and section 4.2. Section 4.3 discusses the relationship between

lattice theory and fixed point theory. The results in [13], [21], [51] and [58] establish

the fact that fixed points are elements of complete lattices.

Throughout this thesis, acknowledgements to various authors are given where they

are due. As far as we know the following are our own results:

Proposition 2.1.6, Proposition 2.1.8, Proposition 2.3.4 and Proposition 2.3.5.

vi



Chapter 1

A Microeconomic Theoretic
Approach To The Existence of
Walrasian Equilibrium

1.1 Introduction

The main objective in this chapter is to look at a microeconomic theoretic ap-

proach to the existence of Walrasian equilibrium. A majority of this work is covered

in [3], [6], [33], [41] and [50] with the use of various concepts from microeconomic

theory. The principal outcomes of this microeconomic theory entail the qualitative

implications on observed demand of changes in the parameters which determine the

decision of the economic agents involved. The study of this theory is very important

in order to understand a more complicated and to an extent a more realistic microe-

conomic situation.

We consider an economy which consists of two kinds of economic agents or members,

namely, producers and consumers. A finite number and a behavioral rule are assumed

for each economic agent. It is usually assumed that each consumer maximizes the

level of satisfaction and each producer maximizes profit. An integral part of microe-

conomics is to focus on each individual economic agent’s behaviour and formulate

mathematical models which assist in better understanding each economic agent in

the economy.

These economic agents are concerned with the consumption and production of com-

modities which can be divided into goods and services. Each of these commodities is

1



defined by the specification of all its physical characteristics, its availability date and

location.

The concept of a consumption set is among the fundamental concepts in a branch

of microeconomic theory called consumer theory. We define it here as discussed

in [3], [33] and [50] in the following definition.

Definition 1.1.1 The consumption set X for a consumer is a nonempty subset of the

L-dimensional Euclidean space RL, with the list of different commodities x1, . . . , xL

forming a commodity (consumption) bundle, x = (x1, x2, . . . , xL) ∈ X.

Let p` be the unit price for commodity `, where ` = 1, 2, 3, . . . , L and p` ≥ 0.

If the consumer buys a bundle x = (x1, . . . , xL), then the consumer pays

p · x = p1x1 + · · · + pLxL

=

L∑

`=1

p`x` .

Let w be the consumer’s wealth level.

The above setup enables us to define the notions of an affordable commodity bundle,

the budget set and that of the demand function.

Definitions 1.1.2 A commodity bundle x = (x1, . . . , xL) is affordable, given the price

vector p = (p1, . . . , pL) and the wealth level w, if

p · x = p1x1 + · · · + pLxL ≤ w.

The set of all affordable commodity bundles x satisfying p · x ≤ w is said to be the

budget set and is defined by

Bp,w = {x ∈ X : p · x ≤ w}.

The demand function x`(p,w) is the amount of commodity ` demanded, given the

prices p and wealth level w.

Hence,

x(p,w) = (x1(p,w), x2(p,w), . . . , xL(p,w))

is the demand function of the consumption bundle x = (x1, . . . , xL).
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1.1.1 Preference Relations

The notion of a preference relation is the more basic concept of consumer theory,

which can be accepted as a starting point for analyzing consumer behavior. The

following definition given in [6], [33], [41] and [50] of a preference relation assists in

observing the satisfaction a consumer obtains after consuming a certain number of

bundles.

Definition 1.1.3 A preference relation � which is a binary relation on the consump-

tion set X, is said to be rational, that is, it defines a rational consumer if it possesses

the following properties:

(PR1) Reflexive: ∀ x ∈ X, x � x.

(PR2) Complete: ∀ x, y ∈ X, either x � y or y � x.

(PR3) Transitive: ∀ x, y, z ∈ X, if x � y and y � z then x � z.

The preference relation x � y for x, y ∈ X means that the bundle x “is at least as

preferable (good) as” the bundle y. From a mathematical point of view (PR1) is an

immediate consequence of (PR2).

The relation of a strict preference relation � can be derive from the above preference

relation � in the following manner.

Definition 1.1.4 The strict preference relation � is defined on the consumption set

X such that for any x, y ∈ X, the bundle x is said to be strictly preferred to the bundle

y (x � y) if x � y and not y � x.

The next result in Nikaido [41] gives a characterization for the strict preference rela-

tion �.

Lemma 1.1.5 The strict preference relation � on the consumption set X satisfies

(SPR1) For x /∈ X, x � x.

(SPR2) For any x, y ∈ X, either x � y or y � x.

(SPR3) For any x, y, z ∈ X, if x � y, y � z and either x � y or y � z then x � z.

This means that for any x, y, z ∈ X, if x � y and y � z then x � z.
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Proof [see Nikaido [41]].

The indifference relation ∼ is another binary relation on the consumption set X,

which can be derived from the preference relation � as demonstrated in the following

definition.

Definition 1.1.6 The indifference relation ∼ on the consumption set X is defined

for any x, y ∈ X by,

x ∼ y ⇐⇒ x � y and y � x

and satisfies the following properties of an equivalence relation on X.

(IR1) Reflexive: ∀ x ∈ X, x ∼ x.

(IR2) Symmetric: ∀ x, y ∈ X, x ∼ y ⇐⇒ y ∼ x.

(IR3) Transitive: ∀ x, y, z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

The indifference relation ∼ induces a classification of the elements of X to equivalence

classes called the indifference classes. This means the x ∼ y for any x, y ∈ X if and

only if they belong to the same indifference class.

Now as done in [33], [50] and [54] we define a continuous preference relation as

follows:

Definition 1.1.7 A preference relation � on a consumption set X ⊆ RL is said to

be continuous if for every x ∈ X, the upper contour set {y ∈ X : y � x} and the

lower contour set {y ∈ X : x � y} are closed sets.

Remark 1.1.8 The following two sequential continuity conditions give an equivalent

way of looking at the above definition of continuity.

(SC1) If {xn} is a sequence in X with xn � x (respectively, x � xn), then xn → x̄

implies x̄ � x (respectively, x � x̄).

(SC2) Let {xn} and {x̄n} be two sequences in X such that xn → x and x̄n → x̄.

Suppose x̄n � xn (respectively, xn � x̄n) then x̄ � x (respectively, x � x̄).
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We can also define strict convexity and convexity of a preference relation � on the

consumption set X.

Definitions 1.1.9 A preference relation � on a consumption set X is said to be

convex (respectively, strictly convex) if for all x ∈ X, the set {x′ ∈ X : x′ � x} is

convex (respectively, strictly convex).

The set C = {x′ ∈ X : x′ � x} is said to be convex, if αx′ + (1 − α)y′ � x whenever

x′, y′ ∈ C and α ∈ [0, 1].

The set C = {x′ ∈ X : x′ � x} is said to be strictly convex, if αx′ + (1 − α)y′ � x

whenever x′, y′ ∈ C and α ∈ (0, 1).

The following definitions of a monotone, strongly monotone and locally nonsatiated

preference relation � on the consumption set X are presented in [33], [50] and [54].

In this definition the norm refers to the standard Euclidean norm and “>” refers to

the componentwise inequality in the Euclidean space.

Definitions 1.1.10 A preference relation � on X is monotone if x ∈ X and y > x

implies y � x. It is strongly monotone if y ≥ x and y 6= x imply that y � x.

The preference relation � on X ⊆ RL is locally nonsatiated if for every x ∈ X and

every ε > 0, there is y ∈ X such that ‖y − x‖ ≤ ε and y � x.

Remarks 1.1.11

(i) Strong monotonicity says that if y is larger than x for some commodity and is no

less for any other, then y is strictly preferred to x.

(ii) Local nonsatiation says that for any consumption bundle x and any arbitrary

small distance away from x, denoted by ε > 0, there is another bundle y within

this distance from x that is preferred to x.

5



1.2 The Utility Function and Production

1.2.1 The Utility Function

The representation of a preference relation by a numerical function has been given a

comprehensive attention in [12], [14], [15], [16] and [44]. This concept expresses each

consumer’s satisfaction and well-being by an index which is a real number. The rela-

tionship between the concepts of preference relation and utility function constitutes

a major element of the foundations of consumer theory and behavior.

The next definition of a utility function captures the monotonic relationship between

the preference relation � on the consumption set X and the corresponding utility

function.

Definition 1.2.1 Let X be a consumption set. A real-valued function u : X → R is

called a utility function for the preference relation � on X, if

∀ x, y ∈ X, x � y if and only if u(x) ≥ u(y).

Remark 1.2.2 It can be shown, with the use of the above definition, that for the

indifference relation ∼ on X,

x ∼ y ⇐⇒ u(x) = u(y).

Clearly from the definition of a utility function it follows that

x ∼ y ⇐⇒ x � y and y � x (1.1)

⇐⇒ u(x) ≥ u(y) and u(y) ≥ u(x) (1.2)

⇐⇒ u(x) ≥ u(y) ≥ u(x) (1.3)

⇐⇒ u(x) = u(y). (1.4)

The problem about the existence of a utility function that can represent a preference

relation � was first solved by Debreu [14] and later generalized by Rader [44]. We

need the following concept of a connected space as defined in Engelking [20] and

Willard [57] before we state the result by Debreu.

Definition 1.2.3 Let X be a topological space. Then X is said to be a connected

space if it cannot be represented as the union of two disjoint, nonempty, open sets.
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Theorem 1.2.4 Let X be a connected subset of RL and a continuous preference

relation � be defined on X. Then there exists a continuous utility function on X for

the given preference relation �.

Proof [see [14] and [44]].

The following result in [33] follows naturally from the order properties of the reals.

Theorem 1.2.5 If a preference relation � on X has a utility function u : X → R
then � is rational.

Proof.

(i) The reflexivity of � is clear.

(ii) For the completeness of �, let x, y ∈ X. Then u(x), u(y) ∈ R and u(x) ≥ u(y)

or u(y) ≥ u(x) if and only if x � y or y � x. Thus, the relation � is complete.

(iii) For the transitivity of �, for any x, y, z ∈ X with x � y and y � z we have that

u(x) ≥ u(y) and u(y) ≥ u(z). Now from the transitivity of ≥ on R, u(x) ≥ u(z)

if and only if x � y. Thus � is transitive, which completes the proof. 2

1.2.2 Production

The main idea behind production is to investigate the supply side of an economy,

with the intention to study the mechanisms by which commodities consumed by indi-

vidual consumers are produced. An economy can equivalently be a firm, a collection

of firms, the entire national economy or the whole world. In [33], [41] and [50] the

production process is composed of a number of production units or firms, which are

able to transform some quantities of goods as inputs into some amounts of products

as outputs under certain given conditions in the production process.

The study of the production process makes use of set theory and other branches of

mathematics. This is evident in [41] and [50] through the following definition of a

production technology set or production set.

7



Definition 1.2.6 A production set Y ⊆ RL is a set consisting of production vec-

tors y = (−z, q) ∈ Y where the L − M components z = (z1, . . . , zL−M) form in-

puts and the M components q = (q1, . . . , qM) form outputs of the production vector

y = (−z1 . . . ,−zL−M , q1, . . . , qM) where the components of z and q are non-negative.

The production set Y can also satisfy the following properties:

(PS1) Y is nonempty

(PS2) Y is closed , i.e., if {yn} is a sequence in Y and yn → y then y ∈ Y .

(PS3) Y is convex , i.e. if y, y′ ∈ Y and λ ∈ [0, 1] then λy + (1 − λ)y′ ∈ Y .

(PS4) No free lunch , i.e., if y ∈ Y and y ≥ 0 then y = 0.

(PS5) Free disposal , i.e., if y ∈ Y and y′ ≤ y then y′ ∈ Y .

(PS6) Irreversibility , i.e., if y ∈ Y and y 6= 0 then −y /∈ Y .

(PS7) Proportionality (Constant returns to scale) , i.e., if y ∈ Y and

α ≥ 0, α ∈ R then αy ∈ Y .

(PS8) Additivity (Free-entry) , i.e., if y ∈ Y and y′ ∈ Y then y + y′ ∈ Y .

We can define the concepts of a profit, profit maximizing production vector and an

efficient production vector.

Definitions 1.2.7 Let Y ⊆ RL be a production set and the nonnegative orthant of

RL be denoted by RL
+ = {x ∈ RL : x` ≥ 0 for ` = 1, 2, 3, . . . , L}.

Given a price vector p = (p1, . . . , pL) ∈ RL
+ and a production vector y = (−z, q) ∈ Y ,

the profit generated from implementing y = (−z1, . . . ,−zL−M , q1, . . . , qM) is

p · y = p · q − p · z, that is, profit = total revenue - total cost.

A production vector ȳ ∈ Y is said to be a profit maximizing production vector if for

any production vector y ∈ Y , p · ȳ ≥ p · y.
A production vector y ∈ Y is said to be an efficient production vector if there is no

other y′ ∈ Y such that y′ ≥ y and y′ 6= y.

Remark 1.2.8 From the above definition the non-negative orthant

Py = y + RL
+ = {y′ ∈ RL : y′ ≥ y} with vertex at y satisfies Py ∩ Y = {y}.

8



The next result is important and fundamental in the study of production processes.

Theorem 1.2.9 If the production vector y ∈ Y is profit maximizing for some price

vector p ∈ RL
+, then y is efficient.

Proof [see [33] and [50]]. Suppose not. Then there exist y′ ∈ Y such that

y′ 6= y and y′ ≥ y. Thus p · y′ > p · y, contradicting the assumption that y is profit

maximizing.

2

In [33] and [50] the converse to the previous result is shown to hold with the added

assumption of convexity on the production set. The proof makes use of separating

hyperplane theorem for convex sets.

Lemma 1.2.10 [Separating Hyperplane Theorem]. Suppose that B ⊂ RN is

convex and closed, and that x /∈ B. Then there is p ∈ RN with p 6= 0, and a value

c ∈ R such that p · x > c and p · y < c for every y ∈ B.

More generally, suppose that the convex sets A,B ⊂ RN are disjoint. Then there is

p ∈ RN with p 6= 0 and a value c ∈ R, such that p ·x ≥ c for every x ∈ A and p ·y ≤ c

for every y ∈ B. That is, there is a hyperplane that separates A and B on different

sides of it.

Proof [see [33] and [50]].

Theorem 1.2.11 Let Y be a convex production set in RL. Then every efficient

production vector y ∈ Y is a profit maximizing production vector for some nonnegative

price vector p ≥ 0.

Proof [see [33] and [50]]. Suppose that y ∈ Y is efficient. Let the convex set

P+
y = {y′ ∈ RL : y′ > y}. From Remark 1.2.8 it follows that Y ∩ P+

y = ∅.
By applying Lemma 1.2.10 on the convex sets Y and P+

y , there is some p 6= 0 such

that p · y′ ≥ p · y′′ for every y′ ∈ P+
y and y′′ ∈ Y .

From the definition of the set P+
y , it follows that p ·y′ ≥ p ·y for every y′ > y. Clearly

p ≥ 0 because if p` < 0 for some ` = 1, 2, 3, . . . , L, then p · y′ < p · y for some y′ > y

with y′` − y` > 0.

Indeed, we choose y′ such that y′` > y` and y′k > yk, k 6= ` with y′k close enough to yk.

9



By taking any y′′ ∈ Y , we have that p · y′ ≥ p · y′′ for every y′ ∈ P+
y . Because y′

can be chosen to be arbitrarily close to y, we can conclude that p · y ≥ p · y′′ for any

y′′ ∈ Y .

Hence, y is profit maximizing for price vector p. 2
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1.3 The Basic Model and Allocations

The main objective of this section is to formulate a basic model of an economy

involving a finite number of economic agents, that is, the consumers and producers

or firms. The basic model assumes a situation where we have,

I > 0, consumers

J > 0, firms

L > 0, commodities (goods)

where,

• Each consumer i = 1, 2, 3, . . . , I is characterized by

1. A consumption set Xi ⊂ RL.

2. A preference relation �i on Xi such that,

Reflexive xi �i xi ∀ xi ∈ Xi.

Complete xi �i x̄i or x̄i �i xi ∀ xi, x̄i ∈ Xi.

Transitive xi �i x̄i and x̄i �i x
∗
i =⇒ xi �i x

∗
i ∀ xi, x̄i, x∗i ∈ Xi.

• Each firm j = 1, 2, 3, . . . , J is characterised by

1. A Production set Yj ⊂ RL.

2. Every Yj is nonempty and closed.

• The initial resources of commodities, that is, the initial endowments in the

economy are given by

A vector ē = (ē1, . . . , ēL) ∈ RL with ē =
I∑

i=1

ei where, ei ∈ RL is the initial

resource bundle of commodities held by the ith consumer.

Thus, ē` is the initial amount of `th commodity available in the economy.

Remarks 1.3.1

(i) In the above mentioned model it is assumed that each of the consumers maximize

their satisfaction over the set of commodity bundles they can afford with their

income and that each of the producers can maximize their profit with the use

of production processes available in their production sets.
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(ii) The basic data on preferences, production sets and resources for the economy

are given by

({(Xi,�i)}Ii=1, {Yj}Jj=1, ē).

The principal working of the economy is to allocate production and the resulting

products among consumers. In [33] and [50] the concepts of an allocation and a

feasible allocation are defined as follows:

Definitions 1.3.2 An allocation (x, y) = (x1, . . . , xI , y1, . . . , yJ) is a specification of

a consumption vector xi ∈ Xi for each consumer i = 1, 2, 3, . . . , I and production

vector yj ∈ Yj for each firm j = 1, 2, 3, . . . , J .

An allocation (x, y) is said to be feasible if for every commodity ` = 1, 2, 3, . . . , L

I∑

i=1

x` i = ē` +
J∑

j=1

y`j

i.e.
I∑

i=1

xi = ē+
J∑

j=1

yj .

Having defined the concept of a feasible allocation, the next definition introduces

a special feasible allocation, namely, a Pareto [42] optimal feasible allocation in an

economy.

Definition 1.3.3 A feasible allocation (x, y) is Pareto optimal if there is no other

feasible allocation (x′, y′) that Pareto dominates it, that is,

if there is no feasible allocation (x′, y′) such that x′i �i xi for all i and x′i �i xi for

some i.

Given a utility function ui : Xi → R representing the preference relation �i on Xi,

a feasible allocation (x, y) is said to be Pareto optimal if there is no other feasible

allocation (x′, y′) such that ui(x
′
i) ≥ ui(xi) for all i and ui(x

′
i) > ui(xi) for some i.
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1.4 Economies and Equilibrium

In the basic model introduced in the preceding section, the behavior and interaction

amongst the economic agents, that is, the consumers and firms can lead to different

economic situations. This means that the manner in which consumers maximize their

satisfaction and producers maximize their profit gives rise to a competitive equilib-

rium situation in an economy, which is referred to as a Walrasian equilibrium. This

Walrasian equilibrium as proposed by Walras [56] is determined by the relationship

between the demand and supply of commodities.

The following three subsections define and explore the concept of a competitive equi-

librium under various economic situations that result from the interactions amongst

the consumers and producers.

1.4.1 Private Ownership Economies

The concept of a private ownership economy is described in the following manner:

• The wealth of consumers is derived from individual endowments of commodities

and from ownership shares to profits of the firms. These firms are thought of

as being owned by consumers.

• Formally consumer i has

1. an initial endowment vector of commodities ei ∈ RL.

2. a claim to a share θij ∈ [0, 1] of the profits of firm j, where
I∑

i=1

θij = 1 for

every firm j.

Having described a private ownership economy, the following is the definition of a

Walrasian equilibrium under such an economy.

Definition 1.4.1 Given a private ownership economy specified by

({Xi,�i}Ii=1, {Yj}Jj=1, {ei, θi1, . . . , θiJ}Ii=1),

an allocation (x∗, y∗) and a price vector p = (p1, . . . , pL) ∈ RL
+ constitute a Walrasian

equilibrium of the private ownership economy (W.E.P.O.E) if,

13



(POE1) For every j, y∗j = (−z∗1, . . . ,−z∗L−M , q∗1, . . . , q∗M) maximizes profits in Yj ;

that is,

p · yj ≤ p · y∗j for all yj ∈ Yj .

(POE2) For every i, x∗i is maximal for �i in the budget set
{
xi ∈ Xi : p · xi ≤ p · ei +

J∑

j=1

θijp · y∗j

}
.

(POE3)
I∑

i=1

x∗i = ē+
J∑

j=1

y∗j .

1.4.2 General Economies

We introduce the notion of a general economy that

• allows for a more general determination of a consumer’s wealth levels than that

in a private ownership economy.

• allows for an arbitrary distribution of wealth among consumers.

The definition of a Walrasian equilibrium for the general economy is given in the

following manner:

Definition 1.4.2 Given a general economy specified by

({Xi,�i}Ii=1, {Yj}Jj=1, ē),

an allocation (x∗, y∗) and a price vector p = (p1, . . . , pL) ∈ RL
+ constitute a Walrasian

equilibrium of a general economy (W.E.G.E) if there is an assignment of wealth

levels (w1,. . .,wI) with
I∑

i=1

wi = p · ē+
J∑

j=1

p · y∗j such that,

(GE1) For every j, y∗j maximizes profits in Yj ; that is,

p · yj ≤ p · y∗j for all yj ∈ Yj .

(GE2) For every i, x∗i is maximal for �i in the budget set

{xi ∈ Xi : p · xi ≤ wi} .

(GE3)

I∑

i=1

x∗i = ē+

J∑

j=1

y∗j .
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1.4.3 Pure Exchange Economies

A pure exchange economy is one in which the only possible production activities are

those of free disposal and no production.

• Formally, we

1. let J = 1, that is, we have one firm.

2. let Y1 = −RL
+, that is, there is no production.

3. take Xi = RL
+.

4. assume that each consumer’s preferences are continuous,

strictly convex, locally nonsatiated and
I∑

i=1

ei > 0.

Lemma 1.4.3 If the above conditions 1, 2, 3 and 4 are satisfied then the optimal

bundle x∗i = xi(p, p · ei) is the Walrasian demand function over the Walrasian budget

set Bp,wi = {xi : p · xi ≤ wi}.

Proof.

We show that there is a unique optimal bundle x∗i ∈ Bp,wi and it satisfies Walras

law, that is, p · x∗i = wi. From the continuity of preference relations and the result

Theorem 1.2.4 each �i is given by a utility function. Since the budget set Bp,wi is

compact there is an optimal x∗i in Bp,wi.

For the uniqueness, suppose we have another optimal bundle x̃i ∈ Bp,wi. By the strict

convexity of the relation �i the bundle x̂i = αx∗i + (1 − α)x̃i ∈ Bp,wi for α ∈ (0, 1)

and x̂i �i x
∗
i , a contradiction.

Now we prove Walras law. If p · x∗i < wi then by the local nonsatiation of �i there

is x̄i ∈ Bp,wi such that p · x̄i < wi and x̄i �i x
∗
i , a contradiction. This completes the

proof. 2

Remark 1.4.4 For pure exchange economies the conditions (POE1), (POE2) and

(POE3) of Definition 1.4.1 become:

(POE1’) The production vector y∗1 maximizes profit in Y1; that is,

p · y1 ≤ p · y∗1 = 0 for all y1 ∈ Y1, p ≥ 0.

This condition means that if there is no output then there is no profit.
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(POE2’) Since p · y∗1 = 0 and θi1 = 1. For every i, x∗i ∈ RL
+ is maximal for �i in the

budget set

{xi ∈ Xi : p · xi ≤ p · ei = wi} .

(POE3’)

I∑

i=1

x∗i =

I∑

i=1

ei + y∗1 = ē+ y∗1.

The Definition 1.4.1 and Lemma 1.4.3 applied to pure exchange economies yields

the following definition.

Definition 1.4.5 Given a pure exchange economy specified by

({Xi,�i}Ii=1, {Y1}, ē),

an allocation (x∗, y∗) = (x∗1, . . . , x
∗
I , y

∗
1) and a price vector p = (p1, . . . , pL) ∈ RL

+

constitute a Walrasian equilibrium for the pure exchange economy (W.E.P.E.E) if,

(PEE1) y∗1 ≤ 0, p · y∗1 = 0 and p ≥ 0.

(PEE2) x∗i = xi(p, p · ei) for all i [where xi(·) is consumer i’s Walrasian demand

function, that is, p · xi(p, p · ei)=wi].

(PEE3)

I∑

i=1

x∗i −
I∑

i=1

ei = y∗1

Remarks 1.4.6

(i) Clearly an economy that has a (W.E.P.O.E) is (W.E.G.E).

This can be done by endowing consumer i with the initial resource of commodity

ei = x∗i − (1/I)

J∑

j=1

y∗j , the share θij = 1/I and wi = p · ei +
J∑

j=1

θijp · y∗j .

(ii) The terminology “xi is maximal for �i in the set B” means that xi is the ith

consumer preference maximizing choice in the set B, that is, xi ∈ B and xi �i x
′
i

for all x′i ∈ B.

(iii) The feasibility condition (POE3), (GE3), (PEE3)

I∑

i=1

x∗i = ē +

J∑

j=1

y∗j is

often replaced by its inequality counterpart

I∑

i=1

x∗i ≤ ē +

J∑

j=1

y∗j to allow an

excess supply of commodities at equilibrium.
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The next result follows from the conditions (PEE1), (PEE2) and (PEE3).

Theorem 1.4.7 In a pure exchange economy in which consumer preferences are con-

tinuous, strictly convex and locally nonsatiated, p ∈ RL
+ is a Walrasian equilibrium

price vector if and only if,

I∑

i=1

(xi(p, p · ei) − ei) ≤ 0 . (1.5)

Proof. The fact that equation (1.5) holds in any Walrasian equilibrium of a pure

exchange economy follows from conditions (PEE1) to (PEE3).

Suppose

I∑

i=1

(xi(p, p · ei) − ei) > 0.

Multiplying the above by p ≥ 0 we get,

I∑

i=1

xi(p, p · ei) · p−
I∑

i=1

ei · p > 0.

By (PEE3) and (PEE1) the left hand side of this inequality yields y∗1 · p = 0, a

contradiction.

Conversely, suppose that equation (1.5) holds.

If we let y∗1 =
I∑

i=1

(xi(p, p · ei) − ei) and x∗i = xi(p, p · ei), then the allocation (x∗, y∗1)

and the price vector p satisfy the conditions (PEE1) to (PEE3).

Now, p · y∗1 = p ·
I∑

i=1

(xi(p, p · ei) − ei) =
I∑

i=1

(p · xi(p, p · ei) − p · ei) = 0, this is true

because with local nonsatiation we have p ·xi(p, p · ei) = p · ei for all i, as in the proof

of Lemma 1.4.3 . 2
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1.5 The Existence of Walrasian Equilibrium

In this section, we will examine the existence of a Walrasian equilibrium for the eco-

nomic model where all the economic agents are consumers. This is the pure exchange

economy concept discussed in the preceding section, where we had I consumers each

described by their preferences and goods that they possess. The consumers trade

commodities among themselves in an attempt to maximize their satisfaction, that is,

to make themselves better off.

From equation (1.5), we can define the excess demand function for each consumer as

well as the aggregate excess demand function of the pure exchange economy.

Definitions 1.5.1 The excess demand function of consumer i is

zi(p) = xi(p, p · ei) − ei (1.6)

where xi(p, p · ei) is consumer i’s Walrasian demand function.

The aggregate excess demand function of the economy is

z(p) =
I∑

i=1

zi(p) . (1.7)

The domain of this function is the set of nonnegative price vectors that includes all

strictly positive vectors.

Remarks 1.5.2 From equations (1.5) ,(1.6) and (1.7) we obtain the following con-

ditions:

(i) The nonnegative price vector p ∈ RL
+ is an equilibrium price vector in a pure

exchange economy with locally nonsatiated preferences if and only if z(p) ≤ 0

if and only if

I∑

i=1

xi(p, p · ei) ≤
I∑

i=1

ei.

(ii) Free goods : if p ∈ RL
+ is a Walrasian equilibrium price vector and z`(p) < 0

then p` = 0.

(iii) Desirability : if p` = 0 then z`(p) > 0 for ` = 1, 2, 3, . . . , L.
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(iv) Having strongly monotone preferences, means that any Walrasian equilibrium

price vector p ∈ RL
+\{0} must be strictly positive p = (p1, . . . , pL) > 0; otherwise

consumers would demand an unboundedly large amount of all the free goods.

(v) Equality of demand and supply (clearing of all markets) : if all goods

are desirable and p∗ is a Walrasian equilibrium price vector, then z(p∗) = 0.

(vi) For strongly monotone preferences, a price vector p = (p1, . . . , pL) ∈ RL
+ \ {0}

is a Walrasian equilibrium price vector if and only if it clears all markets if and

only if it solves the system of L equations in L unknowns,

z`(p) = 0 for all ` = 1, 2, 3, . . . , L . (1.8)

OR

z(p) = 0 . (1.9)

The next result in [33] provides the essential properties of the aggregate excess demand

function in pure exchange economies with strongly monotone preferences.

Lemma 1.5.3 Suppose that for every consumer i, the preference relation �i on the

consumption set Xi = RL
+ is continuous, strictly convex and strongly monotone. Sup-

pose also that
I∑

i=1

ei > 0. Then the aggregate excess demand function z(p), defined

for all price vectors p ∈ RL
+ \ {0} satisfies the following properties:

(AED1) Continuity: z(·) is continuous.

(AED2) Homogeneity: z(·) is homogeneous of degree zero, that is, z(αp) = z(p)

for α > 0.

(AED3) Walras’ law: p · z(p) = 0 for all p > 0.

(AED4) Lower bound: There is an s > 0 such that z`(p) > −s for every commod-

ity ` and all p.

(AED5) Desirability: If pn → p, p 6= 0 and p` = 0 for some l, then

max{z1(p
n), . . . , zL(p

n)} → ∞ . (1.10)
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Proof [see [33]].

Note 1.5.4 It is important to note that the requirement for equilibrium is that there

is no excess demand for any good. The work covered so far indicates that if some

good is in excess supply in equilibrium then its price must be zero. Hence, if each

good is desirable then equilibrium will be characterized by the equality of demand

and supply in the economy.

Now, we are in the appropriate position to provide the result of the existence of

Walrasian equilibrium for the pure exchange economy.

Theorem 1.5.5 Suppose that z(p) is a function defined for all strictly positive price

vectors p ∈ RL
+ \ {0} and satisfying the conditions (AED1) to (AED5) of

Lemma 1.5.3, then the system of equations z(p) = 0 has a solution. Hence a

Walrasian equilibrium exists in any pure exchange economy in which
I∑

i=1

ei > 0 and

every consumer has continuous, strictly convex and strongly monotone preferences.

Proof [see [33]].

We normalize each price vector by dividing each component by the sum of the com-

ponents. As a result we get

∆1 =

{
p ∈ RL

+ :
L∑

`=1

p` = 1

}

the unit simplex in RL. This means that we are restricted to the unit simplex as

the domain for the aggregate excess demand function z(·). Because the function z(·)
is homogeneous of degree zero according to condition (AED2), this allows us to

restrict our search for an equilibrium to price vectors in the unit simplex ∆1. It is

worth noting that the function z(·) is well defined for price vectors in the set

Interior∆1 = {p ∈ ∆1 : p` > 0 for all ` = 1, 2, 3, . . . , L}

the interior of the unit simplex ∆1.

The boundary of the unit simplex is the set denoted by ∂∆1 and is given by,

∂∆1 = {p ∈ ∆1 : p` = 0 for some ` = 1, 2, 3, . . . , L}.

The proof follows the next four steps:
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Step 1: We construct a fixed point correspondence f(·) from ∆1 to ∆1.

We define a correspondence

f : ∆1 −→ 2∆1 .

Thus for p ∈ ∆1, f(p) ⊆ ∆1 and for clarity the vectors that are elements of f(p) are

denoted by the symbol q.

Case 1: we construct f(·) for p ∈ Interior∆1.

f(p) = {q ∈ ∆1 : z(p) · q ≥ z(p) · q′ for all q′ ∈ ∆1} . (1.11)

This condition (1.11) means that given a price vector p ∈ Interior∆1, the price vector

assigned by f(·) is any price vector q that, among the permissible price vectors,

maximizes the value of the excess demand vector z(p).

Equivalently the correspondence f(·) for p ∈ Interior∆1 can be expressed as follows:

f(p) = {q ∈ ∆1 : q` = 0 if z`(p) < max{z1(p), . . . , zL(p)}}. (1.12)

The maximum of the linear form L(q) = z(p)·q happens on the face ∆(pi1 , pi2 , pi3, . . . , pis)

of ∆1, and the value is zi(p) where i ∈ {i1, i2, i3, . . . , is}. So if q ∈ ∆(pi1 , pi2 , pi3, . . . , pis)

then q` = 0 for ` /∈ {i1, i2, i3, . . . , is}. This shows that optimal q satisfies condition

(1.12). The converse is obvious.

Clearly if z(p) 6= 0 for p > 0, then by Walras’ law we have that z`(p) < 0 for some `

and z`′(p) > 0 for some `′ 6= `. Thus, for such a p, any q ∈ f(p) has q` = 0 for some

`. Therefore, if z(p) 6= 0 then f(p) ⊂ ∂∆1 = ∆1\Interior∆1. In contrary, if z(p) = 0

then f(p) = ∆1.

Case 2: we construct f(·) for p ∈ ∂∆1.

For p ∈ ∂∆1, we let

f(p) = {q ∈ ∆1 : p · q = 0} (1.13)

= {q ∈ ∆1 : q` = 0 if p` > 0} . (1.14)

Since p` = 0 for some `, we have that f(p) 6= ∅. If p ∈ ∂∆1 then p /∈ f(p) because

p · p > 0 while p · q = 0 for all q ∈ f(p). This means that f(·) has no fixed point for
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any p ∈ ∂∆1.

Step 2: We argue that a fixed point of f(·) is an equilibrium price vector.

Suppose that p∗ ∈ f(p∗). Then it follows from Case 2 in Step 1 that p∗ /∈ ∂∆1,

which implies that p∗ > 0. If z(p∗) 6= 0, then it follows from Case 1 in Step 1 that

f(p∗) ⊂ ∂∆1, which is incompatible with p∗ ∈ f(p∗) and p∗ > 0. Hence, if p∗ ∈ f(p∗)

we must have z(p∗)=0.

Step 3: The fixed point correspondence f(·) is upper semicontinuous and con-

vex valued.

Note that, f(·) is said to be upper semicontinuous in ∆1, if for any two sequences

pn → p, qn → q of points in ∆1 with qn ∈ f(pn) for all n then q ∈ f(p).

Case 1: We show upper semicontinuity of f(·) for p ∈ Interior∆1.

Since p = (p1, . . . , pL) > 0 then pn > 0 for n sufficiently large.

Since qn ∈ f(pn),

qn · z(pn) ≥ q′ · z(pn) for all q′ ∈ ∆1 .

From the continuity of z(·) and qn → q for all n = 1, 2, . . . we get,

q · z(p) ≥ q′ · z(p) for all q′ ∈ ∆1 .

By the definition of f(p) for p ∈ Interior∆1 we have that,

q ∈ f(p) .

Case 2: We show upper semicontinuity of f(·) for p ∈ ∂∆1.

Take any ` with p` > 0. We shall argue that for n sufficiently large we have qn` = 0

and therefore we get q` = 0; from this it follows that q ∈ f(p).

Because p` > 0, there is an ε > 0 such that pn` > ε for n sufficiently large.

If, in addition, pn ∈ ∂∆1 then qn` = 0 by the definition of f(pn).

If, instead pn > 0 using properties (AED4) and (AED5) of z(·), we can show that

z`(p
n) < max{z1(p

n), . . . , zL(p
n)} (1.15)
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and therefore again qn` = 0 by (1.12). So each time lim
n→∞

qn` = q` = 0 if p` = 0 and

hence q ∈ f(p), by (1.14).

It remains to show the above equation (1.15).

From (AED5) p 6= 0, p` = 0 for some ` implies

max{z1(p
n), . . . , zL(p

n)} −→ ∞ as n −→ ∞

Since pn` > ε, and for n sufficiently large we have that,

z`(p
n) ≤ 1

ε
pn` z`(p

n) (1.16)

= −1

ε

∑

`′ 6=`

pn
`
′ z`′ (p

n) (Walras law) (1.17)

<
s

ε

∑

`′ 6=`

pn
`′
<
s

ε
(AED4). (1.18)

Thus z`(p
n) is bounded. Since

max{z1(p
n), . . . , zL(p

n)} −→ ∞ as n −→ ∞

we must have

z`(p
n) < max{z1(p

n, . . . , zL(p
n)}

for sufficiently large n.

From pn > 0 and the condition (1.12)

f(p) = {q ∈ ∆1 : q` = 0 if z`(p) < max{z1(p), . . . , zL(p)}}

we get that,

f(pn) = {qn ∈ ∆1 : qn` = 0 if z`(p
n) < max{z1(p

n), . . . , zL(p
n)}}

such that

qn ∈ f(pn) implies qn` = 0

for sufficiently large n, and this implies p · q = 0 and so q ∈ f(p).

Case 3: Convexity of f(·) is clear.

Clearly for both cases p ∈ Interior∆1 and p ∈ ∂∆1, the subset f(p) ⊂ ∆1 is a convex
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set.

Step 4: We show that a fixed point exists.

Kakutani’s fixed point theorem says that a convex-valued, upper semicontinuous cor-

respondence from a nonempty, compact, convex set into itself has a fixed point.

Since ∆1 is a nonempty, compact, and convex set, and since f(·) is a convex-valued upper

semicontinuous correspondence from ∆1 to ∆1, we conclude that there is a p∗ ∈ ∆1 with

p∗ ∈ f(p∗) , by Step 2 this means we have that z(p∗) = 0. Hence this completes the

proof.

2

Having proved the preceding result with use of the Kakutani [25] fixed point theorem,

we state Brouwer’s fixed point theorem which is a fixed point result for functions.

Theorem 1.5.6 [Brouwer’s Fixed Point Theorem].

Suppose that A ⊆ RL is a nonempty, compact, convex set, and that f : A → A is a

continuous function from A into itself. Then f(·) has a fixed point, that is, there is

an x ∈ A such that x = f(x).

Proof [see [19] and [33]].

We can consider a result in which the boundary conditions (AED4) and (AED5)

are eliminated for the aggregate excess demand function z(p) by studying its continu-

ity (AED1), homogeneity (AED2) satisfying Walras’ law (AED3) and defined for

nonnegative, nonzero price vectors. This aggregate excess demand function is com-

patible with locally nonsatiated, continuous and strictly convex preferences. Remark

1.5.2 says that p ∈ RL
+ is an equilibrium price vector in a pure exchange economy

with locally nonsatiated preferences if and only if z(p) ≤ 0, leads to the next result.

Theorem 1.5.7 Suppose that z(p) is a function defined for all positive price vectors

p ∈ RL
+ and satisfying conditions (AED1) → (AED3) of Lemma (1.5.3). Then

there is a price vector p∗ such that z(p∗) ≤ 0.

Proof [see [33] and [54]]. Because of homogeneity of degree zero we can restrict our

search for an equilibrium to the unit simplex ∆1 =

{
p = (p1, p2, . . . , pL) ∈ RL

+ :

L∑

`=1

p` = 1

}
.
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Define on ∆1 the function z+(·) by z+
` (p) = max{z`(p), 0}. Clearly z+(·) is continuous

and that z+(p) · z(p) = 0 implies z(p) ≤ 0.

We denote α(p) =
L∑

`=1

[p` + z+
` (p)] = 1 +

L∑

`=1

z+
` (p). We have α(p) ≥ 1 for all p.

Define a continuous function f(·) from the closed, convex set ∆1 into itself by

f(p) = [1/α(p)](p + z+(p))

and component wise,

f`(p) =
p` + z+

` (p)

1 +
L∑

`=1

z+
` (p)

for all ` = 1, 2, 3, . . . , L .

By Theorem 1.5.6 there is a p∗ ∈ ∆1 such that p∗ = f(p∗).

By Walras’ law (AED3),

0 = p∗ · z(p∗) = f(p∗) · z(p∗) = [1/α(p∗)]z+(p∗) · z(p∗).

Therefore, z+(p∗) · z(p∗) = 0, this implies z(p∗) ≤ 0.

2

The general model was first formulated by Walras [56]. The first proof of existence

was due to Wald [55]. A general approach (programming approach) to the existence

of equilibrium was provided in [32]. A game theoretic approach to the existence of

Walrasian equilibrium was taken in the classic paper of Arrow K. and Debreu G. [1]

and later on improved by Gale D. and Mas-Colell A. [23].
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1.6 Equilibrium and Welfare Economics

In this section we look at the relationship between Walrasian equilibrium concepts

and Pareto optimality. The concept of Pareto optimality as defined in section 1.3

and in [33], [50] and [54] is the state in which nobody can be better off without making

others worse off. The phrases “better off” or “worse off” refer to the welfare of each

consumer with respect to the consumer’s preferences.

1.6.1 The First Fundamental Theorem of Welfare Economics

The first fundamental theorem of welfare economics addresses conditions when a Wal-

rasian equilibrium realizes a Pareto optimum. The local nonsatiation of preferences

is all that is required for the result.

Theorem 1.6.1 (First Fundamental Theorem of Welfare Economics) .

If preferences are locally nonsatiated and if (x∗, y∗, p) constitute a Walrasian equilib-

rium of a general economy, then the allocation (x∗, y∗) is Pareto optimal. In partic-

ular, any Walrasian equilibrium allocation is Pareto optimal.

Proof [see [33] and [50]]. Suppose that (x∗, y∗, p) constitute a Walrasian equilib-

rium of a general economy and that the associated wealth levels are (w1,. . .,wI).

Recall that
I∑

i=1

wi = p · ē+
J∑

j=1

p · y∗j .

The preference maximization part of the definition of a Walrasian equilibrium of a

general economy [(GE2) of Definition 1.4.2] implies that

If xi �i x
∗
i then p · xi > wi. (1.19)

That is, anything that is strictly preferred by consumer i to x∗i must be unaffordable

to the particular consumer. The significance of the local nonsatiation condition is

that with it (1.19) implies that

If xi �i x
∗
i then p · xi ≥ wi. (1.20)

Clearly (1.20) is true because from local nonsatiation in any neighbourhood of xi

there is x̄i such that x̄i �i xi �i x
∗
i or x̄i �i x

∗
i . Now (1.19) implies that p · x̄i > wi.
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If we let x̄i → xi then p · xi ≥ wi.

That is, anything that is at least as good as x∗i is at best just affordable.

Now, we consider an allocation (x, y) that Pareto dominates (x∗, y∗). That is, xi �i x
∗
i

for all i and xi �i x
∗
i for some i. By (1.20), we must have p · xi ≥wi for all i, and by

(1.19) p · x >wi for some i. Hence,

I∑

i=1

p · xi >
I∑

i=1

wi = p · ē+
J∑

j=1

p · y∗j .

Moreover, because y∗j is profit maximizing for firm j at price vector p, we have

p · ē+
J∑

j=1

p · y∗j ≥ p · ē+
J∑

j=1

p · yj .

Thus

I∑

i=1

p · xi > p · ē+
J∑

j=1

p · yj . (1.21)

But this means that (x, y) cannot be feasible. Indeed,
I∑

i=1

xi = ē +
J∑

j=1

yj implies

I∑

i=1

p ·xi = p · ē+
J∑

j=1

p ·yj, which contradicts (1.21). We conclude that the equilibrium

allocation (x∗, y∗) must be Pareto optimal.

2

The above result illustrates the fact that at any feasible allocation (x, y), the total

cost of the consumption bundles (x1, . . . , xI), evaluated at prices p, must be equal to

the social wealth at those prices, p · ē+
J∑

j=1

p · yj.

1.6.2 The Second Fundamental Theorem of Welfare Economics

The second fundamental theorem of welfare economics gives conditions under which

given the fact that an economy is in a Pareto optimal state, we want to know whether

or not there exists a price vector such that it can be supported as a Walrasian equi-

librium for a general economy with this price vector.

This is done by defining a weakened of version of the Walrasian equilibrium for a gen-

eral economy which is called the quasi-Walrasian equilibrium for a general economy.
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Definition 1.6.2 Given a general economy specified by

({Xi,�i}Ii=1, {Yj}Jj=1, ē),

an allocation (x∗, y∗) and a price vector p = (p1, . . . , pL) constitute a quasi-Walrasian

equilibrium of a general economy (Q.W.E.G.E) if there is an assignment of wealth

levels (w1,. . .,wI) with

I∑

i=1

wi = p · ē+

J∑

j=1

p · y∗j such that

(QGE1) For every j, y∗j maximizes profits in Yj ; that is,

p · yj ≤ p · y∗j for all yj ∈ Yj .

(QGE2) For every i, if xi �i x
∗
i then p · xi ≥wi.

(QGE3)
I∑

i=1

x∗i = ē+
J∑

j=1

y∗j .

Remark 1.6.3 In the above definition the preference maximization condition (GE2)

of Definition 1.4.2 that anything preferred to x∗i must cost more than wi

(that is, if xi �i x
∗
i then p · x > wi) is replaced by the weaker condition (QGE2)

that anything preferred to x∗i cannot cost less than wi (that is, if xi �i x
∗
i , then

p · xi ≥ wi).

The next result shows that if all preferences and production sets are convex, any

Pareto optimal allocation can be achieved as a quasi-Walrasian equilibrium for a

general economy supported with a price vector.

Theorem 1.6.4 (Second Fundamental Theorem of Welfare Economics) .

Consider an economy specified by

({Xi,�i}Ii=1, {Yj}Jj=1, w̄)

and suppose that every Yj is convex, every preference relation �i is convex and locally

nonsatiated. Then, for every Pareto optimal allocation (x∗, y∗) there is a price vector

p = (p1, . . . , pL) 6= 0 such that (x∗, y∗, p) constitute a quasi-Walrasian equilibrium for

a general economy.
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Proof [see [33] and [50]].

We define, for every i, the set Vi of consumption bundles preferred to x∗i , that is,

Vi = {xi ∈ Xi : xi �i x
∗
i} ⊂ RL. Then we define

V =
I∑

i=1

Vi =

{
I∑

i=1

xi ∈ RL : x1 ∈ V1, . . . , xI ∈ VI

}

and

Y =

J∑

j=1

Yj =

{
J∑

j=1

yj ∈ RL : y1 ∈ Y1, . . . , yJ ∈ YJ

}
.

The set V is the set of aggregate consumption bundles that could be split into I

individual consumption bundles, each preferred by its corresponding consumer to x∗i .

The set Y is simply the aggregate production set. The set Y + ē, which geometrically

is the aggregate production set with its origin shifted to ē, is the set of aggregate

bundles producible with the given production vectors and endowments and usable in

principle, for consumption.

The proof follows the next steps,

Step 1: Every set Vi is convex.

Let xi, x
′
i ∈ Vi and α ∈ [0, 1]. Then xi �i x

∗
i and x′i �i x

∗
i . We have to show

that αxi + (1 − α)x′i �i x
∗
i . Because the preferences are complete, we can assume

without loss of generality that xi �i x
′
i. Therefore, by the convexity of preferences,

we have that αxi + (1 − α)x′i �i x
′
i, which by transitivity yields the desired result,

αxi + (1 − α)x′i �i x
∗
i .

Step 2: The sets V and Y + ē are convex.

The sum of any finite number of convex set is convex.

Step 3: V ∩ (Y + ē) = ∅.
This is a consequence of the Pareto optimality of (x∗, y∗). If there were a vector

in both V and Y + ē, then this would mean that, with the given endowments and

production vectors, it would be possible to produce an aggregate vector that could

be used to give every consumer i a consumption bundle that is preferred to x∗i . This

contradicts Pareto optimality and hence the sets are disjoint.
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Step 4: There is p = (p1, . . . , pL) and a number r such that p · z ≥ r for every

z ∈ V and p · z ≤ r for every for every z ∈ Y + ē.

This follows directly from Lemma 1.2.10 .

Step 5: If xi �i x
∗
i for every i, then p ·

(
I∑

i=1

xi

)
≥ r.

Suppose that xi �i x
∗
i for every i. By local nonsatiation, for each consumer i there

is a consumption bundle x̂i arbitrarily close to xi such that x̂i �i xi and therefore by

transitivity x̂i ∈ Vi. Hence,

I∑

i=1

x̂i ∈ V , and so p ·
(

I∑

i=1

x̂i

)
≥ r, which, by taking

the limit as x̂i → xi, equivalently by local nonsatiation, gives the desired conclusion,

p ·
(

I∑

i=1

xi

)
≥ r.

Step 6: p ·
(

I∑

i=1

x∗i

)
= p ·

(
ē+

J∑

j=1

y∗j

)
= r.

From Step 5 we have p ·
(

I∑

i=1

x∗i

)
≥ r. On the other hand,

(
I∑

i=1

x∗i

)
= ē+

J∑

j=1

y∗j ∈ Y +ē, and therefore p·
(

I∑

i=1

x∗i

)
≤ r. Thus p·

(
I∑

i=1

x∗i

)
= r.

Since

(
I∑

i=1

x∗i

)
= ē+

J∑

j=1

y∗j , we also have p ·
(
ē+

J∑

j=1

y∗j

)
= r.

Step 7: For every j,we have p · yj ≤ p · y∗j for all yj ∈ Yj .

For any firm j and yj ∈ Yj , we have yj +
∑

h 6=j

y∗h ∈ Y . Therefore,

p · (ē+ yj +
∑

h 6=j

y∗h) ≤ r = p · (ē+ y∗j +
∑

h 6=j

y∗h).

Hence, p · yj ≤ p · y∗j .

Step 8: For every consumer i, if xi �i x
∗
i , then p · xi ≥ p · x∗i .

Consider any xi �i x
∗
i . Because of Steps 5 and 6, we have

p · (xi +
∑

k 6=i

x∗k) ≥ r = p · (x∗i +
∑

k 6=i

x∗k).

Hence, p · xi ≤ p · x∗i .
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Step 9: The wealth levels wi = p · x∗i for i = 1, . . . , I support (x∗, y∗, p) is a

quasi-Walrasian equilibrium for a general economy.

Conditions (QGE1) and (QGE2) of Definition 1.6.3 follow from Steps 7 and

8; condition (QGE3) follows from the feasibility of the Pareto optimal allocation

(x∗, y∗).

Hence Step 9 completes the proof.

2

Having proved the above result, we pay attention to the next theorem which gives

sufficient conditions for the notion of a quasi-equilibrium to be a full equilibrium.

Theorem 1.6.5 Let the preference relation �i be continuous on the convex consump-

tion set Xi. Suppose also that the consumption vector xi ∈ Xi, the price vector p,

and the wealth level wi are such that xi �i x
∗
i implies p · xi ≥wi. Then, if there is a

consumption vector x′i ∈ Xi such that p · x′i <wi [a cheaper consumption for (p,wi)],

then xi �i x
∗
i implies p · xi > wi.

Proof [see [33] and [50]]. Suppose xi �i x
∗
i does not imply p·xi > wi, meaning that

there is an xi �i x
∗
i with p · xi = wi. By the cheaper consumption assumption, there

exists an x′i ∈ X such that p·x′i <wi. Then for α ∈ [0, 1), we have αxi+(1−α)x′i ∈ Xi

and p · (αxi + (1 − α)x′i) <wi. But if α is close enough to 1, continuity of �i implies

that αxi + (1 − α)x′i �i x
∗
i , which constitutes a contradiction because we have then

found a consumption bundle that is preferred to x∗i and cost less wi.

2

Remarks 1.6.6 Having the above results Theorem 1.6.4 and Theorem 1.6.5 in

hand, we can say that

(i) Theorem 1.6.5 provides sufficient conditions under which condition (QGE2)

“xi �i x
∗
i implies p · xi ≥wi ” in Definition 1.6.2 is equivalent to the profit

maximization condition (GE2) “xi �i x
∗
i implies p · xi >wi” in Definition

1.4.2.

(ii) Thus, Theorem 1.6.5 says that a quasi-Walrasian equilibrium is a Walrasian

equilibrium.
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Chapter 2

Signatures and The Existence of
Equilibrium

2.1 Simplicial structure, space and convexity

2.1.1 Introduction

In this chapter, we introduce a class of spaces called simplicial spaces which are topo-

logical spaces with an additional structure called a simplicial structure. We also look

at the result “theorem on signatures” and the relationship between this result and

fixed point theorems, together with the existence of equilibrium in mathematical eco-

nomics.

Suppose n ≤ m where n and m are positive integers. Let {p0, . . . , pn} ⊆ Rm be a col-

lection of linearly independent points of them - dimensional Euclidean space Rm. This

is equivalent to saying that if t0, . . . , tn ∈ R and

n∑

i=0

tipi = 0, then t0 = · · · = tn = 0.

We define as in [27] the concept of an n-dimensional simplex spanned by the vertices

p0, . . . , pn and the k-dimensional face of the n-dimensional simplex.

Definition 2.1.1 The n-simplex [p0, p1, . . . , pn] with vertices p0, . . . , pn is the set

given by

{
x ∈ Rm : x =

n∑

i=0

tipi, ti ≥ 0 ∀i = 0, . . . , n and

n∑

i=0

ti = 1

}
.
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Definition 2.1.2 If {pi0 , . . . , pik} ⊆ {p0, . . . , pn} the simplex [pi0 , . . . , pik ] is said to

be a k-face of the n-simplex [p0, . . . , pn].

We are in a position to define the concepts of an affine continuous map from a sim-

plex to a linear topological space, a singular simplex and a simplicial structure on a

topological space.

Definition 2.1.3 Let E be a linear topological space and [p0, p1, . . . , pn] an n-simplex

. A continuous map

f : [p0, . . . , pn] −→ E

is said to be affine if

f

(
n∑

i=0

tipi

)
=

n∑

i=0

tif(pi),

where ti ≥ 0 and
n∑

i=0

ti = 1.

Definition 2.1.4 A singular simplex in a topological space X is a continuous map

σ : [p0, . . . , pn] −→ X

such that

vert σ = {σ(p0), . . . , σ(pn)}

and

im σ = σ([p0, . . . , pn]).

Definition 2.1.5 A family S of singular simplices in X is a simplicial structure on

X if

1. for any finite collection x0, . . . , xn of points in X there exists a σ ∈ S such that

σ(p0) = x0, . . . , σ(pn) = xn .
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2. if σ ∈ S, then any restriction of σ to any face of [p0, . . . , pn] is in S.

3. if l : [q0, . . . , qn] −→ [p0, . . . , pn], with l(qi) = pi, i = 0, . . . , n is an affine map

then for each

σ : [p0, . . . , pn] −→ X, such that σ ∈ S

the composition map

σ ◦ l ∈ S .

The pair (X,S) is referred to as a simplicial space. The next result seems to follow

naturally from the above definition.

Proposition 2.1.6 Let (X,S) be a simplicial space, Y a topological space and

h : X → Y be a homeomorphism. Then h(S) is a simplicial structure.

Proof. We have to show that there is a singular simplex which satisfies conditions

of Definition 2.1.5.

(1) Let y0, . . . , yn be a finite collection of points in Y and h−1(y0), . . . , h
−1(yn) be a

finite collection of points in X. Then there exists a singular simplex σ ∈ S such that

h ◦ σ(pi) = h(σ(pi)) = h(h−1(yi)) = yi, for each i = 0 . . . , n .

Thus, (h ◦ σ)(p0) = y0, . . . , (h ◦ σ)(pn) = yn.

(2) If σ ∈ S, we have that h◦σ ∈ h(S) and since σ|[pi0 ,...,pik
] ∈ S,then h ◦ σ|[pi0 ,...,pik

] ∈ h(S).

(3) If l : [q0, . . . , qn] −→ [p0, . . . , pn], with l(qi) = pi, i = 0, . . . , n is an affine map,

then for each

h ◦ σ : [p0, . . . , pn] −→ Y

where

σ ∈ S and the composition map σ ◦ l ∈ S .

This implies that the composition map

(h ◦ σ) ◦ l = h ◦ (σ ◦ l)

belongs to the set h(S) . Thus, h(S) = {h ◦ σ}σ∈S is a family of singular simplices in

Y and also a simplicial structure on Y .

This completes the proof that (Y, h(S)) is a simplicial space. 2
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Note 2.1.7 .

(i) If X is a topological space then (X,S) is a topological simplicial space.

(ii) If X is a metric space then (X,S) is a metric simplicial space.

(iii) If X is a normed space the (X,S) is a normed simplicial space.

In the next proposition we prove that a product of simplicial spaces is a simplicial

space.

Proposition 2.1.8 If {(Xi,Si)}ni=0 is a finite family of simplicial spaces, then the

product
n∏

i=0

Xi = X0 × · · · ×Xn is a simplicial space with
n∏

i=0

Si = S0 × · · · × Si as a

simplicial structure, induced by the collection of singular simplices

σ = (σ0, . . . , σn).

Proof. We have to show that there is a singular simplex which satisfies conditions

of Definition 2.1.5.

(1) Let x0, . . . , xr be a finite collection of points in

n∏

i=0

Xi with xj = (x0j, . . . , xnj) for

j = 0, 1, 2, . . . , r. Then there is a singular simplex σi ∈ Si such that

σi(p0) = x0j, . . . , σi(pn) = xnj where i = 0, 1, 2, . . . , n. Thus,

σ(pi) = (σ0(pi), . . . , σn(pi)) = (x0j, . . . , xnj) = xj for each i = 0, 1, 2, . . . , n.

Hence, σ(p0) = x0, . . . , σ(pn) = xr.

(2) If σi ∈ Si for each i = 0, 1, 2, . . . , n, we have that σ = (σ0, . . . , σn) ∈
n∏

i=0

Si and

σi|[pi0 ,...,pik
] ∈ Si

implies

σ|[pi0 ,...,pik
] = (σ0|[pi0 ,...,pik

], . . . , σn|[pi0 ,...,pik
]) ∈

n∏

i=0

Si .

(3) Let, l = {li}ni=0 denote a family of affine maps such that for each i = 0, 1, 2, . . . , n,

li : [q0, . . . , qn] → [p0, . . . , pn] we have that li(qi) = pi
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and for each singular simplex

σi ∈ Si

the composition map

σi ◦ li ∈ Si .

Hence, it follows that the collection σ ◦ l = (σ0 ◦ l0, . . . , σn ◦ ln) ∈
n∏

i=0

Si.

Thus,
n∏

i=0

Si is a family of singular simplices in
n∏

i=0

Xi = X0 × · · · × Xn and also a

simplicial structure on
n∏

i=0

Xi.

This proves that

(
n∏

i=0

Xi,
n∏

i=0

Si

)
is a simplicial space.

2

We provide the following examples of simplicial structures which generate simplicial

spaces.

Examples 2.1.9 .

1. Any convex subset of a linear topological space has a simplicial structure defined

by a family of affine maps defined above.

2. In his paper Kulpa [27] proves that any sphere Sn−1 ⊂ Rn has a simplicial

structure, even though the sphere Sn−1 is not convex.

The notion of simplicial convexity is introduced in the papers by Bielawski [9] and

Komiya [26] as a generalization of convexity in questions of topology and analysis.

The next definition according to [27] and [29] gives the notion of simplicial convexity.

Definition 2.1.10 A subset A ⊂ X of a simplicial space (X,S) is said to be simpli-

cially convex if for each simplex σ ∈ S, vertσ ⊂ A implies imσ ⊂ A.
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Having defined simplicial convexity, the next important result as observed in [27], [28]

and [29] plays a crucial role in solving fixed point related results. We also supply the

proof of the result.

Theorem 2.1.11 [Theorem on Indexed Families].

Let X be a topological space and σ : [p0, . . . , pn] −→ X be a continuous mapping.

For any open covering {U0, . . . , Un} of the compact set σ([p0, . . . , pn]) by non-empty

subsets of X, there exists a non-empty subset of indices {i0, . . . , ik} ⊆ {0, . . . , n}
such that σ([pi0, . . . , pik ]) ∩ Ui0 ∩ · · · ∩ Uik 6= ∅.

Proof. For each i = 0, 1, 2, . . . , n define a function di on the n-simplex by

di(x) = dist(x, [p0, . . . , pn] \ σ−1(Ui)), for each x ∈ [p0, . . . , pn],

where dist(x, Y ) = inf{‖x− y‖ : y ∈ Y }, Y ⊆ Rn.

By continuity of σ the sets σ−1(Ui) are open and hence [p0, . . . , pn] \ σ−1(Ui) is com-

pact as a closed subset of [p0, . . . , pn].

We know that for a closed subset Y in a metric space, x 7→ dist(x, Y ) is continu-

ous and dist(x, Y ) = 0 ⇐⇒ x ∈ Y .

Thus the functions di are continuous on [p0, . . . , pn] and

di(x) = 0 ⇐⇒ x /∈ σ−1(Ui)

Note that if di(x) = 0 for i = 0, . . . , n then x /∈ σ−1(Ui) or x /∈
n⋃

i=1

σ−1(Ui), which

contradicts the fact that {U0, · · · , Un} is a covering of σ([p0, · · · , pn]).

This clearly indicates that for any x ∈ [p0, . . . , pn] not all di(x) for

i = 0, · · · , n vanish and hence
n∑

j=0

dj(x) > 0 for x ∈ [p0, . . . , pn].

The function f given by

f(x) =
n∑

i=0




di(x)
n∑

j=0

dj(x)



pi,
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is a continuous function defined on the n-simplex [p0, . . . , pn] into itself.

According to Theorem 1.5.6, there is a ∈ [p0, . . . , pn] such that f(a) = a. Thus

a = f(a) =

n∑

i=0




di(a)
n∑

j=0

dj(a)



pi . (2.1)

Let {i0, . . . , ik} be the set of all indices i such that

di(a) 6= 0 . (2.2)

From equation (2.1), a ∈ [pi0, . . . , pik ]. From equation (2.2),

i ∈ {i0, . . . , ik} ⇐⇒ di(a) 6= 0 ⇐⇒ a ∈ σ−1(Ui) .

Hence,

σ(a) ∈ σ([pi0, . . . , pik ]) ∩ Ui0 ∩ · · · ∩ Uik .

This completes the proof.

2

Remark 2.1.12 .

In [28] σ([pi0, . . . , pik ]) is the convex hull conv(pi0 , . . . , pik), that is, the smallest convex

set containing the points pi0 , . . . , pik .
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2.2 Signatures and Multivalued limit maps

The results obtained from the preceding section will be crucial in this section. We

shall according to [29] introduce the concept of a signature and that of multivalued

limit map.

Definition 2.2.1 Let X be a simplicial space and Y a topological space. A continuous

function µ : X × Y −→ R is said to be quasi-simplicially convex with respect to the

variable x ∈ X if for each y ∈ Y and ε > 0 the pseudoball

A(y, ε) = {x ∈ X : µ(x, y) < ε} is simplicially convex in X.

Moreover, if µ(x, y) ≥ 0 for each (x, y) ∈ X × Y then it is called a signature.

Definition 2.2.2 A multivalued map

H : X −→ 2Y

is called a multivalued limit map if there exists a sequence

hn : X → Y, n = 1, 2, . . .

of continuous maps such that for each subsequence {xnk
} of a sequence {xn} in X,

if

lim
k→∞

xnk
= x and lim

k→∞
hnk

(xnk
) = y

then

y ∈ H(x) .

Note 2.2.3 . The sequence {hn : n ∈ N} is said to be a base for H.

Finally in [11] and [33] the definition of an upper semicontinuous map is given in the

following manner.

Definition 2.2.4 A multivalued map H : X −→ 2Y is said to be an upper semicon-

tinuous map if the set

H−1(V ) = {x ∈ X : H(x) ⊂ V }

is open in X provided that V is open in Y .
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When X and Y are metric spaces the concept of an upper semicontinuous set valued

map can be characterized in a sequential manner [ [8], [11], [33]].

Definition 2.2.5 Let X and Y be metric spaces. The set valued map H : X → 2Y

is said to be upper semicontinuous if for any two convergent sequences xn → x, and

yn → y in X and Y respectively with

yn ∈ H(xn) then y ∈ H(x).

The following result in [29] shows that under certain conditions there is a relationship

between upper semicontinuity and multivalued limit maps and the above Definition

2.2.5 plays a crucial role in the proof.

Theorem 2.2.6 [29] Let X be a compact metric space and Y convex compact set in

a normed linear space. If H : X → 2Y is upper semicontinuous and H(x) 6= ∅ is a

convex compact set for each x ∈ X, then H is a multivalued limit map.

Proof. We need to define a sequence {hn} satisfying Definition 2.2.2.

Let {U(x) : x ∈ X} be an open covering of X given by

U(x) = B(x, 1/n) ∩ {y ∈ X : H(y) ⊂ B(H(x), 1/n)} ,

where B(x, 1/n) is the ball centered at x of radius 1/n, B(H(x), 1/n) is a 1/n-

neighbourhood of the convex compact set H(x) and hence B(H(x), 1/n) is convex.

By compactness of X, the open covering {U(x) : x ∈ X} has a finite star-refinement

{V0, . . . , Vm}, that is, for each x ∈ X there exists x̄ ∈ X such that
⋃
{Vi : x ∈ Vi} ⊂ U(x̄). Indeed, a compact space X is paracompact hence the

above open covering {U(x) : x ∈ X} has a star-refinement covering and from this

star-refinement covering we choose a finite subcovering to get {V0, . . . , Vm}. For each

i = 0, 1, 2, . . . ,m, let pi be an arbitrary point of the set H(Vi) =
⋃
{H(x) : x ∈ Vi}.

We define the continuous map hn : X −→ Y by

hn(x) =
m∑

i=0




di(x)
m∑

j=0

dj(x)



pi,
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where di(x) = d(x,X \ Vi) for each x ∈ X.

For each x ∈ X, let us take x̄ ∈ X such that by the star-refinement condition
⋃
{Vi : x ∈ Vi} ⊂ U(x̄), then pi ∈ B(H(x̄), 1/n) whenever x ∈ Vi. Clearly x ∈ Vi if

and only if di(x) 6= 0, this means that, pi ∈ B(H(x̄), 1/n) whenever di(x) 6= 0. Since

B(H(x̄), 1/n) is convex, the convex combination

hn(x) =
m∑

i=0




di(x)
m∑

j=0

dj(x)



pi ∈ B(H(x̄), 1/n).

Thus we have proved that for each x ∈ X there is x̄ ∈ X such that

d(x, x̄) <
1

n
and d(hn(x),H(x̄)) <

1

n
.

We show that the sequence {hn : n = 1, 2, . . .} is a base for H.

Assume that lim
k→∞

(xnk
, hnk

(xnk
)) = (x, y). From the construction of {hn},

it follows that for each xnk
there is x̄nk

such that d(xnk
, x̄nk

) < 1
nk

and

d(hnk
(xnk

),H(xnk
)) < 1

nk
. The latter means that there exists ȳnk

∈ H(x̄nk
) such that

d(hnk
(xnk

), ȳnk
) = ‖hnk

(xnk
) − ȳnk

‖ < 1
nk

. Hence lim
k→∞

(x̄nk
, ȳnk

) = (x, y). Since H is

upper semicontinuous, y ∈ H. Thus the sequence {hn : n = 1, 2, . . .} is indeed a base

for H. 2

We are in a position to state and prove the main result of the chapter, that is, the

“Theorem on Signatures”.

Theorem 2.2.7 [Theorem on Signatures]. Let M be a family of signatures, that

is M is a family of continuous nonnegative functions µ : X × Y −→ [0,∞), from a

product of a compact metric simplicial space (X,S) and a compact metric space Y

such that for each finite subset M0 ⊂M , ε > 0 and y ∈ Y the set

{x ∈ X : µ(x, y) < ε for each µ ∈M0}

is nonempty and simplicially convex.

Then, for each multivalued limit map H : X → 2Y there is a point a ∈ X and

b ∈ H(a) such that

µ(a, b) = 0 for each µ ∈M.
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Proof [see [29]]. Firstly we prove the theorem for a continuous map h : X → Y.

(I) Fix ε > 0 and assume that M is finite.

Let for each y ∈ Y, the set

A(y) = {x ∈ X : µ(x, y) < ε for each µ ∈M}

is nonempty and simplicially convex.

From the continuity of the µ’s, the “dual sets”

B(x) = {y ∈ Y : µ(x, y) < ε for each µ ∈M}

are open for each x ∈ X. Moreover

x ∈ A(y) if and only if µ(x, y) < ε for each µ ∈M if and only if y ∈ B(x).

Since each set A(y) 6= ∅, let

Y =
⋃

{B(x) : x ∈ X}.

Then the family {B(x) : x ∈ X} is an open covering of Y . Then for each y ∈ Y

there is x ∈ X such that y ∈ B(x); and y ∈ B(x) if and only if µ(x, y) < ε for

all µ ∈ M = M0. Hence given y the set {x ∈ X : µ(x, y) < ε, µ ∈ M} is not

empty, so such x ∈ X does exist.

Compactness of h(X) implies that there is a finite set of points x0, . . . , xn ∈ X

such that

h(X) ⊂ B(x0) ∪ · · · ∪B(xn).

We take a singular simplex σ ∈ S, σ : [p0, . . . , pn] → X, such that

σ(p0) = x0, . . . , σ(pn) = xn. From Theorem 2.1.11 there is a point a ∈ X and

0 ≤ i0 ≤ · · · ≤ ik ≤ n such that

a ∈ σ([pi0, . . . , pik ]) ∩ h−1(B(xi0)) ∩ · · · ∩ h−1(B(xik)).

Then η = σ |[pi0 ,...,pik
]∈ S, a ∈ im η, h(a) ∈ B(xi0) ∩ · · · ∩B(xik) and hence

vert η = {xi0, . . . , xik} ⊂ A(h(a)). Since A(h(a)) is simplicially convex, we have

that

a ∈ A(h(a))
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and this means that

µ(a, h(a)) < ε for each µ ∈M.

(II) From the above result, we have that for each ε > 0 the set

K(ε) = {x ∈ X : µ(x, h(x)) ≤ ε for each µ ∈M}

is nonempty and compact. Therefore there is a point

a ∈
⋂

{K(ε) : ε > 0}

and this implies

µ(a, h(a)) = 0 for each µ ∈M.

(III) We assume that M is infinite.

For each finite set M0 ⊂M , let

L(M0) = {x ∈ X : µ(x, h(x)) = 0 for each µ ∈M0}.

SinceX is compact and with L(M0) being closed we have that L(M0) is compact.

From the finite intersection property, the intersection

⋂
{L(M0) : M0 is a finite subset ofM}

is nonempty. Clearly, each point a ∈ X in the intersection satisfies the equation

µ(a, h(a)) = 0 for each µ ∈M .

(IV) We assume that the sequence {hn : n ∈ N} is a base for the multivalued limit

map H : X → 2Y .

For each n ∈ N choose a point an ∈ X satisfying

µ(an, hn(an)) = 0 for each µ ∈M.
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Now, from the compactness of X and Y there are two points a ∈ X and b ∈ Y

and a subsequence {ank
} such that

lim
k→∞

ank
= a and lim

k→∞
hnk

(ank
) = b.

From the definition of the multivalued limit map,

b ∈ H(a).

Continuity of the function µ ∈M implies that

µ(a, b) = 0 for each µ ∈M.

2

Remark 2.2.8 . When H : X → Y is just a mapping the requirement for X and Y

to be metric spaces in Theorem 2.2.7 is not necessary.

2.3 Applications to Fixed Point Theorems and The

Existence of Walrasian Equilibrium

In this section we look at the applications of the theorem on signatures, with special

attention on fixed point theorems and the existence of Walrasian equilibrium. To be

near classical results we mostly state the theorems in terms of convex sets in normed

vector spaces and continuous maps.

Let M = {µ}, where µ(x, y) = ‖x− y‖ is the metric induced by a norm, we obtain

the following fixed point results.

Theorem 2.3.1 [Brouwer-Schauder-Kakutani Theorem].

Let H : X → 2X be a multivalued limit map from a convex compact subset X of

a normed space. Then H has a fixed point, that is, there exists a ∈ X such that

a ∈ H(a).

Proof. Let M be given by the singleton

M = {µ},
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where

µ(x, y) = ‖x− y‖, x, y ∈ X

is the metric induced by a norm.

With X being a convex compact subset of a normed space, it does admit a simplicial

structure which is induced by affine maps.

Indeed Theorem 2.2.7, implies that for each multivalued limit map H : X → 2X

there are points a ∈ X and b ∈ H(a) such that

µ(a, b) = ‖a− b‖ = 0, for each µ ∈M .

That is,

a = b for each µ ∈M .

Thus, a = b ∈ H(a) implies that a ∈ H(a). We can conclude that there exists a fixed

point a ∈ X such that a ∈ H(a).

2

The above result can be extended to the next result.

Theorem 2.3.2 [Schauder-Tichonov-Kakutani Theorem]. Let X be a compact

metric simplicial space and M be a singleton set of a continuous function µ : X ×X → [0,∞)

quasi-simplicially convex with respect to the first variable such that

1. for each µ ∈M and for each x ∈ X, µ(x, x) = 0,

2. for each two distinct points x, y ∈ X there is µ ∈M with µ(x, y) > 0.

Then any multivalued limit map H : X → 2X has a fixed point.

Proof. Let M be the singleton set given by

M = {µ},

where

µ(x, y) = ‖x− y‖, x, y ∈ X .
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From the two conditions, it is clear that the continuous function µ : X ×X → [0,∞)

is non-negative and also satisfies the conditions of Theorem 2.2.7.

This means that µ ∈M is a signature.

Indeed, for each ε > 0 and y ∈ X where x 6= y, the set

{x ∈ X : µ(x, y) < ε for each µ ∈M}

is non-empty and simplicially convex.

Moreover, by appealing to Theorem 2.2.7, we have that for each multivalued limit

map H : X → 2X there are points x ∈ X and y ∈ H(x) such that

µ(x, y) = 0 for each µ ∈M .

From the hypothesis µ(x, y) = 0 implies that x = y.

This shows that x ∈ H(x) and any multivalued limit map H : X → 2X has a fixed

point.

2

Having the two fixed point theorems and Theorem 2.2.7 in the next result we prove

the existence of a Pareto optimal point. Firstly we provide the definition of the utility

characterization of a local nonsatiation point just for convenience.

Definition 2.3.3 Let Xi ⊆ RL be a consumption set for i = 1, 2, 3, . . . , I. A contin-

uous utility function ui : Xi → R that represents a preference relation �i on Xi is

said to be locally nonsatiated if for every xi ∈ Xi and every ε > 0, there exists yi ∈ Xi

such that ‖yi − xi‖ ≤ ε and ui(yi) > ui(xi).

Now, we state and prove the existence of a Pareto optimal point.

Proposition 2.3.4 [Pareto Optimal Theorem]. Let Xi be a compact consump-

tion set with a metric induced by the standard Euclidean norm ‖ · ‖ and a simplicial

structure. If ui : Xi → R is continuous and locally nonsatiated, then for every x′i ∈ Xi

there exists a point xi ∈ Xi such that

ui(xi) ≥ ui(x
′
i) for all i

and

ui(xi) > ui(x
′
i) for some i .
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Proof. Let M be the singleton set M = {µ}, where

µ : Xi ×Xi → [0,∞)

such that

µ(xi, yi) = ‖xi − yi‖ for xi, yi ∈ Xi

is a continuous metric induced by a norm. Clearly for each yi ∈ Xi and ε > 0 the set,

{xi ∈ Xi : µ(xi, yi) ≤ ε for each µ ∈M}

is simplicially convex because it is convex and it is nonempty because of the

compactness of Xi. This means that µ is quasi-simplicially convex. Applying Theo-

rem 2.2.7 and Theorem 2.3.2 on the multivalued limit map

H : Xi → 2Xi there is a fixed point xi ∈ H(xi) ⊂ Xi.

Hence, by the local nonsatiation of the continuous utility function we have that for

every x′i ∈ Xi and every ε > 0 there exists xi ∈ H(xi) ⊂ Xi such that

µ(xi, x
′
i) = ‖xi − x′i‖ ≤ ε

and

ui(xi) > ui(x
′
i) for some i.

Thus, it follows that

ui(xi) ≥ ui(x
′
i) for all i.

2

Now, we are in a position to prove the existence of equilibrium with the use of

Theorem 2.3.1 or Theorem 2.3.2. This will be done in the following manner:

• define the excess demand map as done in [33], [54] and also in the first chapter.

• endow the unit simplex with a simplicial structure and

• use the metric induced by a norm in the n-Euclidean space Rn as signature

• define a fixed point multivalued map in terms of the excess demand map.

• and finally use either of the two fixed point results discussed in this section to

prove the existence of equilibrium.
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The above setup will enable us to prove Theorem 1.5.5, the result on the existence

of equilibrium for a pure exchange economy, which we now restate as a proposition.

Proposition 2.3.5 Suppose that z(p) is a function defined for all strictly positive

price vectors p ∈ RL
+\{0} and satisfying conditions of Lemma 1.5.3. Then the

system of equations z(p) = 0 has a solution. Hence a Walrasian equilibrium exists in

any pure exchange economy in which
I∑

i=1

ei > 0 and every consumer has continuous,

strictly convex and strongly monotone preferences.

Proof. We begin by normalizing prices in a convenient way. Denote by

∆1 = {p ∈ RL
+ :

L∑

`=1

p` = 1}

the unit simplex in RL. This means that we are restricted to the unit simplex as

the domain for the aggregate excess demand function z(·). Because the function z(·)
is homogeneous of degree zero, according to condition (AED2), this allows us to

restrict our search for an equilibrium to price vectors in the unit simplex ∆1. It is

worth noting that the function z(·) is well defined for price vectors in the set

Interior∆1 = {p ∈ ∆1 : p` > 0 for all ` = 1, 2, 3, . . . , L} ,

the interior of the unit simplex ∆1.

The boundary of the unit simplex is the set denoted by ∂∆1 and is defined as

∂∆1 = {p ∈ ∆1 : p` = 0 for some ` = 1, 2, 3, . . . , L}.

The proof follows the next steps:

Step 1: We construct a fixed point multivalued map H(·) from ∆1 to the power

set 2∆1 .

We define a multivalued map,

H : ∆1 −→ 2∆1 .

Thus for p ∈ ∆1, H(p) ⊆ ∆1 and for clarity the vectors that are elements of H(p) are

denoted by the symbol q.
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Case 1: We construct H(·) for p ∈ Interior∆1.

H(p) = {q ∈ ∆1 : z(p) · q ≥ z(p) · q′ for all q′ ∈ ∆1 .} (2.3)

This condition (2.3) means that given a price vector p ∈ Interior∆1, the price vector

assigned by H(·) is any price vector q that, among the permissible price vectors,

maximizes the value of the excess demand vector z(p).

Equivalently the multivalued map H(·) for p ∈ Interior∆1 can be expressed as follows:

H(p) = {q ∈ ∆1 : q` = 0 if z`(p) < max{z1(p), . . . , zL(p)}}. (2.4)

Clearly if z(p) 6= 0 for p > 0, then by Walras’ law we have z`(p) < 0 for some ` and

z`′(p) > 0 for some `′ 6= `. Thus, for such a p, any q ∈ H(p) has q` = 0 for some `.

Therefore, if z(p) 6= 0 then H(p) ⊂ ∂∆1 = ∆1\Interior∆1. In contrary, if z(p) = 0

then H(p) = ∆1.

Case 2: We construct H(·) for p ∈ ∂∆1.

Then for p ∈ ∂∆1, we let

H(p) = {q ∈ ∆1 : p · q = 0} (2.5)

= {q ∈ ∆1 : q` = 0 if p` > 0}. (2.6)

Since p` = 0 for some `, we have that H(p) 6= ∅. If p ∈ ∂∆1 then p /∈ H(p) because

p · p > 0 while p · q = 0 for all q ∈ H(p). This means that H(·) has no fixed point for

any p ∈ ∂∆1.

Step 2: We argue that a fixed point of H(·) is an equilibrium.

Suppose that p∗ ∈ H(p∗). Then it follows from Case 2 in Step 1 that p∗ /∈ ∂∆1,

which implies that p∗ > 0. If z(p∗) 6= 0, then it follows from Case 1 in Step 1

that H(p∗) ⊂ ∂∆1, which is incompatible with p∗ ∈ H(p∗) and p∗ > 0. Hence, if

p∗ ∈ H(p∗) we must have z(p∗)=0.

Step 3: We show that the fixed point multivalued map H(·) is a multivalued

limit map and that the fixed point exists.

It is a known fact that the unit simplex ∆1 ⊂ RL is convex and compact, that is,

closed and bounded. The convexity condition means that the unit simplex ∆1 has a
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simplicial structure induced by a family of affine maps.

Let M be given by the singleton set M = {µ}, where the continuous function

µ : ∆1 × ∆1 → [0,∞)

is the Euclidean metric induced by the Euclidean norm,

µ(p∗, p′) = ‖p∗ − p′‖ =

√√√√
L∑

`=1

(p∗` − p′`) for p∗ = (p∗1, . . . , p
∗
L), p

′ = (p′1, . . . , p
′
L) ∈ ∆1.

Clearly for each p′ ∈ ∆1 and ε > 0 the set

{p∗ ∈ ∆1 : µ(p∗, p′) < ε for each µ ∈M}

is nonempty and simplicially convex, which means that the function

µ : ∆1 × ∆1 → [0,∞) is quasi-simplicially convex.

Applying Theorem 2.2.7 and Theorem 2.3.2, any multivalued map H : ∆1 → 2∆1

is a multivalued limit map which has a fixed point p∗ ∈ H(p∗). By Step 2 this implies

that z(p∗) = 0. This completes the proof.

2

2.4 Further Applications of The Theorem on Sig-

natures

Now, we are in a position to look at other far reaching consequences of the Theorem

2.2.7 in solving the other classical known results.

Definition 2.4.1 Let (X,S) be a simplicial space. A function f : X → R is said

to be quasi-concave if the set {x ∈ X : f(x) > r} is simplicially convex for each r ∈ R.

A function f : X → R is said to be quasi-convex if the set {x ∈ X : f(x) < r} is

simplicially convex for each r ∈ R.

The concept of evolutionary stable strategy (ESS) defined below, was introduced by

Maynard Smith and Price [35], which is a fundamental notion of modern evolutionarily

and genetic biology.
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Definition 2.4.2 A point a ∈ X is said to be an ESS point for a function

f : X ×X → R if f(x, a) ≤ f(a, a) for each x ∈ X.

According to Maynard Smith [34] and [35] ESS is a strategy such that, if all members

of a population adopt it, then no mutant strategy can invade the population under

the influence of natural selection.

The following theorem is an attempt to investigate ESS from a topological point of

view, with the use of the Theorem 2.2.7.

Theorem 2.4.3 [Maynard Smith Theorem].

Let X be a compact simplicial space and f : X ×X → R a continuous function which

is quasi-concave with respect to the first variable. Then f has an ESS point.

Proof. Let µ(x, y) = −f(x, y) + sup
z∈X

f(z, y). Fix y ∈ X and r > 0.

Let s = sup
z∈X

f(z, y) and u = s− r.

Clearly the pseudoball B(y, r) = {x ∈ X : µ(x, y) < r}is simplicially convex because

of the quasi-concavity assumption of the function f . The set

B(y, r) = {x ∈ X : µ(x, y) < r} (2.7)

= {x ∈ X : s− r < f(x, y)} (2.8)

is simplicially convex. The pseudoball B(y, r) is nonempty due to the continuity of

f and the compactness of X. This means that for each point y ∈ X there is a point

x ∈ X such that sup
x∈X

f(x, y) = f(x, y) and consequently µ(x, y) = 0.

Applying Theorem 2.2.7 to the identity map h : X → X,h(x) = x, we can establish

that there is a point a ∈ X such that µ(a, a) = 0.

Therefore we get f(a, a) = sup
x∈X

f(x, a) which implies that f(x, a) ≤ f(a, a). Hence,

we have that f has an ESS point.

2

Theorem 2.4.4 [Nash Equilibrium Theorem].

Let X1, . . . ,Xn be compact simplicial spaces and X = X1×· · ·×Xn be their product. If

fi : X → R is a family of continuous functions and each function fi is quasi-concave
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with respect to the variable xi ∈ Xi for each i = 1, 2, 3, . . . , n, then there exists a point

a ∈ X such that

fi(a) = sup
x∈Xi

fi(a1, . . . , ai−1, x, ai+1, . . . , an)

for each i = 1, 2, 3, . . . , n.

Proof.

Define for each i = 1, . . . , n;

µi(x, y) = −fi(Ni(x, y)) + sup
z∈X

fi(Ni(z, y)),

where Ni : X ×X → X represents the Nash projection,

Ni(x, y) = (y1, . . . , yi−1, xi, yi+1, . . . , yn)

for each x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X.

Fix i = 1, 2, 3, . . . , n, y = (y1, . . . , yn) ∈ X and r > 0. Let s = sup
x∈X

fi(Ni(x, y)) and

u = s− r.

SinceBi(y, r) = {x ∈ X : µi(x, y) < r} = {x ∈ X : s−r < fi(y1, . . . , yi−1, xi, yi+1, . . . , yn)}.
By the quasi-concavity of fi we have that each pseudoball Bi(y, r) is simplicially con-

vex and therefore the set

A(y, r) =

n⋂

i=1

{x ∈ X : µi(x, y) < r for each i = 1, 2, 3, . . . , n} is simplicially convex.

It remains to show that the set A(y, r) is nonempty. By the compactness for each

i ≤ n there is a point ai ∈ X such that µi(a
i, y) = 0. Let a = (a1, . . . , an) ∈ X be a

unique point such that ai = aii for each i ≤ n. Since Ni(a
i, y) = Ni(a, y) it is clear

that µi(a, y) = 0 for each i ≤ n, and this implies a ∈ A(y, r).

Applying Theorem 2.2.7 to the identity map h : X → X, h(x) = x, we infer that

there is a point a ∈ X such that

µi(a, a) = 0 for each i = 1, 2, 3, . . . , n.

But Ni(a, a) = (a1, . . . , ai−1, ai, . . . , an) = a and therefore we get,

fi(a) = sup
x∈X

fi(Ni(x, a)) = supx∈Xi
fi(a1, . . . , ai−1, x, ai+1, . . . , an)

for each i = 1, 2, 3, . . . , n.

2
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From the above result we can say that a point a ∈ X = X1 × · · · ×Xn,

a = (a1, . . . , an), is said to be Nash’s Equilibrium Point for the family of functions

fi : X → R for each i = 1, . . . , n, if

fi(a1, . . . , ai−1, xi, ai−1, . . . , an) ≤ fi(a) for each i ≤ n and xi ∈ Xi.

According to [5], [24], [39] and [53] the equilibrium point a ∈ X is a feasible joint

strategy, X is a set of feasible joint strategies and the functions fi are payoff functions

{fi : i ≤ n} such that the payoff function fi(x) is defined on X for each player i ≤ n.

It is important to note that given an equilibrium point, there is no feasible way for

any player to strictly improve its utility if the strategies of all the other players remain

unchanged.

It can be easily verified that if a ∈ X = X1×· · ·×Xn is an ESS point for the function

f : X ×X → R, given by

f(x, y) =
n∑

i=0

fi(y1, . . . , yi−1, xi, yi+1, . . . , yn),

then the point a ∈ X is Nash’s equilibrium point.

Clearly

f(x, a) =
n∑

i=0

fi(a1, . . . , ai−1, xi, ai+1, . . . , an) (2.9)

≤
n∑

1=0

fi(a) (2.10)

= f(a, a). (2.11)

Hence, a ∈ X is Nash equilibrium point.

The next result as in [28] is called the Infimum Principle and it is a general result

that helps to derive some classical theorems. We apply the Theorem 2.2.7 to prove

this result.
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Theorem 2.4.5 [Infimum Principle].

Let G be a family of continuous quasi-simplicially convex functions g : X × Y → R
with respect to the first variable x ∈ X, from a product of a compact metric simplicial

space X and a compact metric space Y , such that for each finite subcollection G0 ⊂ G

and for each point y ∈ Y there is a point a ∈ X with

g(a, y) = inf
x∈X

g(x, y) for each g ∈ G0,

then for each multivalued limit map H : X → 2Y there are points a ∈ X and b ∈ H(a)

such that

g(a, b) = inf
x∈X

g(x, b) for each g ∈ G.

Proof. Define µg(x, y) = g(x, y) − inf
x∈X

g(x, y) and let M = {µg : g ∈ G} be a family

of signatures.

Fix y ∈ Y and r > 0. The pseudoball

B(y, r) = {x ∈ X : µg(x, y) < r} (2.12)

= {x ∈ X : g(x, y)− inf
x∈X

g(x, y) < r} (2.13)

= {x ∈ X : g(x, y) < r + inf
x∈X

g(x, y)} (2.14)

is simplicially convex due to the quasi-convexity assumption of the functions

g : X × Y → R. By compactness there is a point a ∈ X such that µg(a, y) = 0 and

this implies that a ∈ B(y, r).

Now, applying Theorem 2.2.7 to the multivalued limit map H : X → 2Y there are

points a ∈ X and b ∈ H(a) such that

µg(a, b) = 0 for each µg ∈M.

Hence, we have that g(a, b) = inf
x∈X

g(x, b) and this completes the proof.

2

Let ∆n = [e1, . . . , en], where ei = (0, . . . , 0, 1, 0, . . . , 0), ei(j) = 0 for i 6= j and

ei(i) = 1, denote the (n − 1)-dimensional standard simplex in the space Rn. The

following theorem plays an important role in a proof of the existence of equilibrium

points in economic models in the Walras sense as done by Nikaido [41].
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Theorem 2.4.6 [Gale-Nikaido Theorem].

Let H : ∆n → 2C be an upper semicontinuous map from the standard simplex ∆n

such that for each x ∈ ∆n, H(x) is nonempty compact convex subset of a compact

convex set C ⊂ Rn. Suppose further that the Walras law in general holds;

x · y =

n∑

i=1

xiyi ≥ 0 for each x ∈ ∆n and y ∈ H(x).

Then there exist a ∈ ∆n and b ∈ H(a) such that bi ≥ 0 for each i = 1, . . . , n.

Proof.

We apply Theorem 2.4.5 to X = ∆n, Y = C, the given set valued map H, the

function g given by g(x, y) = x ·y, there is a point (a, b) ∈ ∆n×C such that b ∈ H(a)

and a·b = inf{x·b : x ∈ ∆n}. By Walras law a·b ≥ 0 and in consequence 0 ≤ a·b ≤ x·b
for each x ∈ ∆n. Since ei ∈ ∆n, 0 ≤ ei · b = bi for each i = 1, 2, 3, . . . , n.

2
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Chapter 3

Global Analysis and The Existence
of Equilibrium

3.1 Global Analysis in Economics

3.1.1 Introduction

In this chapter we look at global analysis and calculus foundations such as Sard’s

Theorem and the Inverse Mapping Theorem to show the existence proof for equilib-

rium, rather than fixed points techniques as we have done in the preceding chapters.

Furthermore there are more classical equilibrium related concepts that can be proved

through these calculus foundations together with the global analysis.

The Euclidean n-space is the set Rn together with the Euclidean distance between

the points x = (x1, · · · , xn) and y = (y1, · · · , yn) given by

d(x, y) = ‖x− y‖ =

√√√√
n∑

i=1

(xi − yi)2 .

The usual basis of Rn is e1, · · · , en, where

ei = (0, · · · , 1, · · · , 0)

with 1 in the ith place.

If T : Rn → Rm is a linear transformation, the matrix of T with respect to the usual

basis of Rn and Rm is the m× n matrix A = (aij) where T (ei) =
∑n

i=1 ajiej with the

coefficients of T (ei) appear in the ith column of the matrix.
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Now, we are in a position to introduce the concept of a manifold and other concepts

which are basic in Global Analysis, that is, Differential Geometry and Differential

Topology.

In the book A Comprehensive Introduction to DIFFERENTIAL GEOMETRY,Volume

I by Michael Spivak [48] these concepts are defined as follows:

Definition 3.1.1 A manifold M is a metric space with the following property:

If x ∈M , then there is some neighbourhood U of x and some integer n ≥ 0 such that

U is homeomorphic to Rn.

That is a manifold is supposed to be locally like a certain metric space Rn. We give

some simple examples of a manifold.

Examples 3.1.2 .

1. The metric space Rn is a manifold because for each x ∈ Rn we can treat U as

all of Rn.

2. Clearly from the above definition, anything homeomorphic to a manifold is also

a manifold.

3. An open ball in Rn is a manifold.

4. Any open subset V of Rn is a manifold.

The manifold Rn is appropriate for the application of global analysis to economics.

Since we work in the manifold Rn we only require submanifolds of Rn.

A definition on the differentiability of the maps f : Rn → Rm is given by Spivak,

M [47] in the book Calculus on Manifolds, but for our purpose as mentioned above

the following definition of a Cr-differentiable map by Lee [30] in the book Introduction

to Smooth Manifolds, suffices.
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Definitions 3.1.3 Let f be a mapping defined in an open subset U ⊆ Rn valued in

Rm, with f(x) = (f1(x), . . . , fm(x)) is said to be Cr-differentiable on U if each fi has

continuous partial derivatives up to the rth order.

A mapping f : A ⊆ Rn → Rmwhere A is a closed set is said to be Cr-differentiable

if there is an open neighbourhood V of A and a Cr function F on V such that

f(x) = F (x) for x ∈ A.

Denote by

Df(x) =

[
∂fi
∂xj

(x)

]
for i = 1, · · · ,m and j = 1, · · · , n

the matrix of partial derivatives at x ∈ U .We say f has rank M at x if the rank of the

matrix Df(x) is equal to M .

We say that the map f : U ⊆ Rn → Rm is C∞, that is, each component map fi pos-

sesses continuous partial derivatives of all orders. The terms differentiable or smooth

can be used interchangeably to mean C∞.

It is also important to note that Df(x) : Rn → Rm with respect to the usual bases

of Rn and Rm is a m× n matrix called the Jacobian matrix of f at x.

Note 3.1.4 . A map f is said to be differentiable on an open (closed) set U in Rn if

f is differentiable at x for each x ∈ U .

Now, we introduce the concept of a singular point and that of a differentiable map as

follows:

Definitions 3.1.5 Let f : U → Rm be a differentiable map where U is an open set

in Rn. The point x ∈ U is said to be a singular point if the Jacobian matrix Df(x)

has rank less than m.

The singular values are the images under f of all the singular points.

A point y ∈ Rm is said to be a regular value of f if f−1(y) is empty or for each

x ∈ f−1(y), rankDf(x) = m, otherwise y is singular.
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We obtain the definition of a set with measure zero in the book Calculus on Manifolds

by Spivak,M [47].

Definition 3.1.6 A set A ⊂ Rn has measure zero if for every ε > 0 there is a

sequence B1, B2, B3, . . . of closed (open) rectangles with

A ⊂
∞⋃

`=1

B`

and ∞∑

`=1

υ(B`) < ε,

where υ(B`) is the volume of B`.

In the following definition we introduce the concept of an embedded submanifold of

Rn. We achieve this with the aid of the book Introduction to Smooth Manifolds by

Lee [30].

Definition 3.1.7 The set B is a submanifold of an open set U ⊂ Rn of dimension

k if given x ∈ B,one can find a differentiable map h : N(x) → O with the following

properties:

(a) h has a differentiable inverse.

(b) N(x) is an open neighbourhood of x in U .

(c) O is an open set containing 0 in Rn.

(d) h(N(x) ∩ B) = O ∩ C where C is a coordinate subspace of Rn of dimension k,

given by C = {x ∈ Rn : xk+1 = 0, . . . , xn = 0}.

We say B is a Cr submanifold if each map h : N(x) → O is a Cr map. It is also

important to note that an embedded submanifold B has a topology induced from Rn.

We state the Inverse Mapping Theorem (IMT) and Sard’s theorem respec-

tively as done in [49].
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Theorem 3.1.8 [IMT].

If y ∈ Rm is a regular value of a Cr map f : U → Rm, U open in Rn, then either

f−1(y) is empty or it is an embedded submanifold B of U of dimension n−m.

Proof [see Sternberg,S [49]].

Theorem 3.1.9 [Sard’s theorem].

If f : A→ Rm with A open in Rn, f is sufficiently differentiable of class Cr where

r > n−m > 0, then the set of singular values has measure zero.

Proof [see Sternberg,S [49]].

Remark 3.1.10 . The set of regular values has full measure, that is, the complement

of the set of regular values has measure zero.

The next results according to [46] are general, purely mathematical theorems about

solutions of systems of equations.

Lemma 3.1.11 Let Bn = {x ∈ Rn : ‖x‖ ≤ 1} denote a closed unit ball in Rn and its

boundary ∂Bn = Sn−1 = {x ∈ Bn : ‖x‖ = 1} is a unit sphere.

Suppose that the map f : Bn → Rn is C2 and satisfies the strong boundary condition:

f(x) = −x for all x ∈ ∂Bn = Sn−1 . (3.1)

Then there is x∗ ∈ IntBn with f(x∗) = 0.

Proof [see Smale [46]]. According to Definition 3.1.3 f extends to a C2 map F

on some open neighbourhood U of Bn and consider an auxiliary map g : U \ E → Sn−1

defined by g(x) = F (x)/‖F (x)‖ where E = {x ∈ U : F (x) = 0} is the solution set,

that is, the set of zeros of F . Since g is C2, Theorem 3.1.9 implies that the set of

regular values of g has full measure in Sn−1, hence it is not empty.

Let y ∈ Sn−1 be such a regular value. Then, by Theorem 3.1.8, the preimage

g−1(y) is a 1-dimensional C2 submanifold or a regular smooth embedded curve. The

boundary condition (3.1) implies that −y is the only point on Sn−1 mapped on y,

hence −y ∈ g−1(y).

Let V be the connected component of g−1(y) containing −y. Since g restricted to the

sphere Sn−1 is an antipodal map according to condition (3.1) and since g is constant
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along V , the tangent vector to V at −y is transversal to Sn−1 or not tangent to the

unit sphere. The 1 - dimensional submanifold V is a non-singular (simple) arc start-

ing from −y and open at the opposite end.

Let t ∈ [α, β) → x(t) with x(α) = −y, be an onto parametrization of V . Consider

the convergent sequence tk → β as k → ∞. By the compactness of Bn, we suppose

that x(tk) → x0 ∈ Bn as k → ∞.

Suppose that E is empty.

This is illustrated in the following three cases.

Case I: If x0 ∈ IntBn and g(x0) = y, then by the Implicit Function Theorem the

curve V extends further beyond β or parametrization t→ x(t) is defined for β ′ > β,

which is a contradiction.

Case II: If x0 ∈ ∂Bn and x0 6= −y, with g an antipodal map on the boundary

∂Bn this gives us g(x0) 6= y. This is impossible.

Case III: Let x0 = −y. Then, by the fact that g−1(y) is a submanifold, V is a

closed regular curve and V ∩ ∂Bn = {−y}. Therefore, the tangent vector to V at

−y is also tangent to ∂Bn. This leads us to a contradiction due to the fact that this

vector is transversal to the sphere ∂Bn.

Thus E is not empty and hence for some x∗ ∈ IntBn, f(x∗) = 0 or simply put the

open end of V must have a limit in IntBn and hence E 6= ∅.
This gives a geometrically constructive proof of the existence of x∗ ∈ IntBn with

f(x∗) = 0.

2

We generalize the above result into a case of continuous maps in the following result.

Lemma 3.1.12 Suppose that the map f : Bn → Rn is continuous and satisfies the

condition (3.1):

f(x) = −x for all x ∈ ∂Bn .

Then f(x∗) = 0 for some x∗ ∈ Bn.

Proof [see Smale [46]]. We define a new continuous map f0 : Bn
2 → Rn by

f0(x) =

{
f(x) for ‖x‖ ≤ 1
−x for ‖x‖ ≥ 1,
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where Bn
2 = {x ∈ Rn : ‖x‖ ≤ 2}. Clearly f0(x) is continuous on Rn.

We shall construct a sequence of C∞ functions {fi} on Rn such that given εi → 0,

(a)fi(x) = −x for x ∈ ∂Bn
2 .

(b)‖fi(x) − f0(x)‖ < εi for x ∈ Bn
2 .

Consider a real valued C∞ function ϕr(x) = ϕr(‖x‖) ≥ 0 [see Narasimhan [38]]

on Rn such that

ϕr(x) = 0 if ‖x‖ ≥ r

and ∫

Rn

ϕr(x)dx =

∫
ϕr(x)dx = 1 .

We choose r < 1/2 that depends on εi as will be shown later and define

fi(y) =

∫
f0(y − x)ϕr(x)dx .

In this formula we integrate each component of f0. It is known, from the property of

convolution that

fi(y) =

∫
f0(x)ϕr(y − x)dx .

Since we can differentiate on y under the integral sign, any number of times, the

function fi is C∞ on Rn.

Let ‖y‖ = 2 or y ∈ ∂Bn
2 . Then for ‖x‖ ≤ r ≤ 1/2 we have that

‖y − x‖ ≥ |‖y‖ − ‖x‖| = |2 − ‖x‖| ≥ 1 .

So,

f0(y − x) = −(y − x) = −y + x

and

fi(y) =

∫

‖x‖≤r
f0(y − x)ϕr(x)dx

=

∫

‖x‖≤r
(−y + x)ϕr(x)dx

= −y
∫

‖x‖≤r
ϕr(x)dx+

∫

‖x‖≤r
xϕr(x)dx .

Now,
∫
ϕr(x)dx = 1 and

∫
xkϕr(x)dx = 0 for all k = 1, 2, 3, . . . , n, due to the fact

that ϕr(x) is even, that is, ϕr(x) = ϕr(−x).
This shows that

fi(y) = −y for y ∈ ∂Bn
2 .
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Finally we show that

‖fi(y)− f0(y)‖ ≤ εi for all y ∈ Bn
2 .

Indeed,

‖fi(y) − f0(y)‖ =

∥∥∥∥
∫
f0(y − x)ϕr(x)dx− f0(x)

∫
ϕr(x)dx

∥∥∥∥

=

∥∥∥∥
∫

[f0(y − x)− f0(y)]ϕr(x)dx

∥∥∥∥ .

Given εi > 0, we choose a small r such that

‖f0(y − x) − f0(y)‖ < εi

whenever

‖(y − x) − y‖ = ‖x‖ < r

by uniform continuity of f0 on the compact ball Bn
r .

Thus,

‖fi(y)− f0(y)‖ ≤
∫

‖f0(y − x) − f0(y)‖ϕr(x)dx

≤ εi

∫
ϕr(x)dx

= εi, since

∫
ϕr(x)dx = 1 .

This means that

‖fi(y) − f0(y)‖ ≤ εi if y ∈ Bn
2 .

Therefore fi satisfies the assumptions of Lemma 3.1.11 and has zeros in Bn
2 , that

is, there exists xi ∈ Bn
2 with fi(xi) = 0.

We need to show that xi ∈ Bn.

Indeed,

‖fi(xi) − f0(xi)‖ < εi for xi ∈ Bn
2 .

In particular since fi(xi) = 0, we have that

‖fi(xi) − f0(xi)‖ = ‖f0(xi)‖ < εi .

Moreover from the strong boundary condition (3.1), we have that

‖x‖ ≥ 1 implies f0(xi) = −xi
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and from the definition of f0, we have that

‖fi(xi) − f0(xi)‖ = ‖xi‖ > 1 .

This contradicts the fact that ‖fi(xi)− f0(xi)‖ < εi. Hence this shows that ‖xi‖ ≤ 1

and from the definition of f0, we have that ‖f(xi)‖ = ‖f0(xi)‖ < εi. Thus we have a

sequence {xi} in Bn such that ‖f(xi)‖ < εi, for every εi > 0 as i→ ∞.

By compactness of Bn we choose a convergent subsequence denoted by {xi} again

such that xi → x0 as i→ ∞, x0 ∈ Bn. Since f is continuous,

lim
i→∞

‖f(xi)‖ = ‖f(x0)‖ ≤ lim
i→∞

εi = 0 .

This means that f(x0) = 0.

2

Theorem 3.1.13 If the continuous mapping f : Bn → Rn satisfies the following

boundary condition:

if x ∈ ∂Bn, then f(x) 6= µx for any µ > 0 , (3.2)

then there is x∗ ∈ Bn with f(x∗) = 0,

where Bn = {x ∈ Rn : ‖x‖ ≤ 1} is a closed unit ball in Rn and its boundary

∂Bn = {x ∈ Bn : ‖x‖ = 1} is a unit sphere.

Proof [see Smale [46]].

Suppose that the map f : Bn → Rn is continuous and satisfies (3.2).

We define a continuous map f̂ : Bn
2 → Rn such that f̂(x) = −x for x ∈ ∂Bn

2 as follows:

f̂(x) =

{
f(x) for ‖x‖ ≤ 1
(2 − ‖x‖)f(x/‖x‖) + (‖x‖ − 1)(−x) for ‖x‖ ≥ 1 .

It is clear that f̂(x) = f(x) for ‖x‖ = 1 and f̂ (x) = −x for ‖x‖ = 2. So f is

continuous on Bn
2 . Now by Lemma 3.1.12 there is x∗ ∈ Bn

2 and x∗ /∈ ∂Bn
2 such that

f̂(x∗) = 0.

We claim that ‖x∗‖ ≤ 1 or x∗ ∈ Bn.

Assume it is not or 1 < ‖x∗‖ < 2 then we have that,

f̂ (x∗) = (2 − ‖x∗‖)f(x∗/‖x∗‖) + (‖x∗‖ − 1)(−x∗)

= 0
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or

f(x∗/‖x∗‖) =
‖x∗‖ − 1

2 − ‖x∗‖ x∗

=
‖x∗‖(‖x∗‖ − 1)

2 − ‖x∗‖ (x∗/‖x∗‖),

where the scalar factor ‖x∗‖(‖x∗‖−1)
2−‖x∗‖ is positive and hence the boundary condition (3.2)

is violated.

We conclude that,

‖x∗‖ ≤ 1 and f(x∗) = f̂(x∗) = 0 .

This completes the proof.

2

In an attempt to move from disks to simplices, the following concepts are important.

Definition 3.1.14 The vector pc = (1/n, . . . , 1/n) is said to be the center of the unit

simplex ∆1, where

∆1 =

{
p = (p1, p2, . . . , pn) ∈ Rn

+ :
n∑

i=1

pi = 1

}

and the boundary of ∆1 is given by,

∂∆1 = {p ∈ ∆1 : some pi = 0} .

Definition 3.1.15 The hyperplane denoted by ∆0 is defined as

∆0 = {p ∈ Rn :
n∑

i=1

pi = 0} .

Definition 3.1.16 .

A ray R through x 6= 0 is the set {t x : t ≥ 0 and x ∈ Rn}.

A map φ : Rn → Rn preserves rays if for any ray R, x ∈ R then φ(x) ∈ R.

The next result deals with continuous maps φ : ∆1 → ∆0 which satisfy the following

boundary condition:

φ(p) 6= µ(p − pc), µ > 0 for all p ∈ ∂∆1 . (3.3)
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Theorem 3.1.17 If the continuous map φ : ∆1 → ∆0 satisfies the boundary condi-

tion (3.3), then there is p∗ ∈ ∆1 with φ(p∗) = 0.

Proof.

We will construct a ray preserving homeomorphism into the form of the result

Theorem 3.1.13 with the aim of applying the result. Define the map

h : ∆1 → ∆0, p 7→ h(p) = p− pc .

Clearly p − pc ∈ ∆0 since
∑n

i=1(pi − pci) = 1 − 1 = 0 .

Now let

λ : ∆0 \ {0} → R+, p 7→ λ(p) = −(1/l)(1/minipi) .

From the above definition of λ, it is clear that p ∈ ∆0 \ {0} if and only if minipi < 0.

We denote the intersection B = Bn ∩ ∆0. The map

ψ : B → h(∆1), p 7→ ψ(p) =

{
λ(p/‖p‖)p for p 6= 0
0 for p = 0

is a ray preserving homeomorphism.

We show that the map ψ is continuous.

Observe that the continuous function p→ minipi = 0 for p ∈ ∆0 if and only if p = 0.

This shows that ψ is continuous at each p ∈ B, for p 6= 0. Since p/‖p‖ lies on the

unit sphere in ∆0 the function λ(p/‖p‖) is bounded. This shows that the product

ψ(p) = λ(p/‖p‖)p has a limit 0 as p → 0.

We show that the map ψ is a ray preserving homeomorphism.

Let p̄ = ᾱp for ᾱ > 0. Then

ψ(p̄) = λ(p̄/‖p̄‖)p̄

= λ(ᾱp/‖ᾱp‖)ᾱp

= ᾱλ(p/‖p‖)p

= βp , where β = ᾱλ(p/‖p‖) > 0 .

Now, we let ψ(p̃) = ψ(p̄) with p̃ = α̃p and p̄ = ᾱp on the same ray through p.

So

ψ(p̃) = α̃λ(p/‖p‖)p = ᾱλ(p/‖p‖)p = ψ(p̄) .

This means that α̃ = ᾱ and p̃ = p̄.

This shows that ψ is ray preserving and one to one.

66



We have to show that ψ is onto. This is done by establishing the set equality

ψ(B) = h(∆1).

Firstly we show that the set inclusion ψ(B) ⊆ h(∆1) holds.

If q ∈ ψ(B) then q = ψ(p) = λ(p/‖p‖)p ∈ h(∆1) for some p ∈ B. This shows that

ψ(B) ⊆ h(∆1).

Secondly we show the reverse set inclusion ψ(B) ⊇ h(∆1) holds.

If q ∈ h(∆1) then q = h(r) = r − pc for some r ∈ ∆1. So for a p ∈ B, it is clear that

q = r − pc = ψ(p) = λ(p/‖p‖)p ∈ ψ(B). This shows that ψ(B) ⊇ h(∆1).

We have established the set equality ψ(B) = h(∆1) and this means that ψ is onto.

Lastly it remains to show that ψ−1 is continuous.

Indeed, B and h(∆1) are compact sets and the map ψ : B → h(∆1) is bijective and

continuous, and hence the inverse map ψ−1 of ψ is continuous.

Thus we can conclude that ψ is a ray preserving homeomorphism.

Consider the composition

α : B 7→ ∆0, p 7→ α(p) = φ(h−1(ψ(p)))

where

B ψ→ h(∆1)
h−1

→ ∆1
φ→ ∆0 .

We show that the composition α = φ ◦ h−1 ◦ ψ satisfies the boundary condition (3.2)

of Theorem 3.1.13.

Consider q ∈ ∂B and let p = ψ(q) + pc = h−1(ψ(q)). Now by the boundary condition

(3.3) and the fact that p− pc, q ∈ ∆0 there is no µ > 0 with φ(p) = µ(p− pc) or with

µ(p − pc) = α(q). Equivalently this means that there is no µ > 0 with α(q) = µq,

and since ψ is ray preserving that means

α(q) 6= µq, µ > 0 .

This shows that α satisfies the boundary condition (3.2) of Theorem 3.1.13.

Hence there is q∗ ∈ B with α(q∗) = 0; or if p∗ = ψ(q∗) + pc then φ(p∗) = 0. This

completes the proof. 2
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3.2 Demand and Supply

The notions of demand and supply have been one of the central concepts of microe-

conomic theory as can be seen in [22], [33], [54] and in the first chapter. The basic

idea of equilibrium theory is to study solutions of the equation S(p) = D(p), that is,

“demand equals supply”.

In his paper, Gale [22] investigates the relationship between demand and supply for

a certain good in an economy where the economic agent cannot affect the prices

which prevail in the economy. This relationship is such that if for a given price

vector the demand for a particular commodity exceeds the available supply then its

price undergoes an increase which causes the demand to decrease. On the contrary

if supply exceeds demand the price decreases and the demand experiences an increase.

In this way it is assumed that prices regulate themselves to values at which supply

and demand balance, and this balance of supply and demand is what the concept of

economic equilibrium is based on.

Let us suppose we treat this problem in the context of an economy with L - com-

modities.

The non-negative orthant RL
+ = {(x1, · · · , xL) ∈ RL;xl ≥ 0,∀l = 1, · · · , L} yields the

following two concepts:

Definition 3.2.1 The space RL
+ is said to be a commodity space with x ∈ RL

+ called

a commodity bundle, where x = (x1, · · · , xL) with x1 measuring the units of the first

commodity.

Definition 3.2.2 The complement space RL
+\{0} is said to be the space of price sys-

tems with p = (p1, · · · , pL) ∈ RL
+\{0}, the set of prices of the L- commodities.

Note 3.2.3 The first component p1 of the L-tuple p = (p1, . . . , pL) is the price of one

unit of the first commodity.
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We assume that in the economy dealt with, the demand and supply functions are

given in the following manner:

Definition 3.2.4 Let

D : RL
+\{0} → RL

+, p 7→ D(p)

and

S : RL
+\{0} → RL

+, p 7→ S(p)

be the demand and supply functions respectively, from the space of price systems to

the commodity space.

Remarks 3.2.5

1. The commodity bundle demanded by the consumers and other agents at price

p = (p1, . . . , pL) is denoted by D(p).

2. The vector of commodities that would be purchased at price p = (p1, . . . , pL) is

represented by D(p).

3. The commodity bundle supplied by the economy at price p = (p1, . . . , pL) is

given by S(p).

3.3 The Existence of Equilibrium

The equilibrium problem is to find under suitable conditions on the demand and

supply functions

D : RL
+\{0} → RL

+, p 7→ D(p)

S : RL
+\{0} → RL

+, p 7→ S(p)

a price system p∗ ∈ RL
+\{0} such that

D(p∗) = S(p∗)

The following definition of the excess demand brings us closer to the main objective

of the problem of the existence of equilibrium.
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Definition 3.3.1 The excess demand is the mapping given by

Z : RL
+\{0} −→ RL, p 7→ Z(p) = D(p) − S(p)

from the space of price systems to the L - dimensional Euclidean space, satisfying the

following conditions:

(EDM1) Continuity: Z : RL
+\{0} −→ RL is continuous.

(EDM2) Homogeneity: Z(λp) = Z(p) for all λ > 0.

(EDM3) Walras’ law: p · Z(p) =
L∑

`=1

p`Z`(p) = 0.

(EDM4) Lower bound: Z(p) is bounded below.

(EDM5) Desirability: Z`(p) ≥ 0 if p` = 0.

Remarks 3.3.2

(i) The condition (EDM2) means that Z(·) is homogeneous of degree zero, that is,

we are only restricted to the same space of price systems for our price search.

(ii) The Walras’ law condition (EDM3) says that the value of the excess demand

is zero, that is, the total value demanded is equal to the total value of the supply.

(iii) The condition (EDM5) is a simplified version of the condition (AED5) in

Lemma 1.5.3.

Note 3.3.3 The equilibrium problem is reduced to a search for a price system

p∗ ∈ RL
+\{0} a solution of the equation Z(p∗) = 0.
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Theorem 3.3.4 If an excess demand Z : RL
+ \ {0} → RL satisfies the conditions of

Definition 3.3.1, then there exist a price system p∗ ∈ RL
+\{0} such that

Z(p∗) = 0 .

This price system p∗ is given constructively.

Proof.

Let,

Z : RL
+\{0} → RL, p 7→ Z(p) = D(p) − S(p)

be the excess demand map.

Define a map φ from the excess demand as

φ : ∆1 → ∆0, p 7→ φ(p) = Z(p) −
(

L∑

`=1

Z`(p)

)
p .

Component wise, we have that

φj(p) = Zj(p) −
(

L∑

`=1

Z`(p)

)
pj . (3.4)

We take a sum on both sides of (3.4) and make use of the fact that for any p ∈ ∆1,
L∑

j=1

pj = 1.

L∑

j=1

φj(p) =

L∑

j=1

Zj(p) −
(

L∑

`=1

Z`(p)

)
L∑

j=1

pj (3.5)

=
L∑

j=1

Zj(p) −
L∑

`=1

Z`(p) (3.6)

= 0 . (3.7)

Hence, the map φ is well defined.

71



The map φ is continuous because it is a difference of two continuous maps, Z(p) and(
L∑

`=1

Z`(p)

)
p.

Also from the definition of ∂∆1 if p ∈ ∂∆1, p` = 0 for some ` = (1, 2, 3, . . . , L) and

from the condition (EDM5) of the excess demand map, it follows that

φ`(p) = Z`(p) ≥ 0.

Thus the desirability condition (EDM5) of the excess demand map is equivalent to

the boundary condition (3.3) for φ. Now, by the result Theorem 3.1.17 there is

p∗ ∈ ∆1, with φ(p∗) = 0, that is, Z(p∗) =
L∑

`=1

Z`(p
∗)p∗. By taking the dot product on

both sides of Z(p∗) =

L∑

`=1

Z`(p
∗)p∗ by Z(p∗) yields,

Z(p∗) =

L∑

`=1

Z`(p
∗)p∗ (3.8)

Z(p∗) · Z(p∗) =
L∑

`=1

Z`(p
∗)p∗ · Z(p∗) . (3.9)

Walras’ Law, that is, p∗ · Z(p∗) = 0 yields

‖Z(p∗)‖2 = 0 (3.10)

Z(p∗) = 0 . (3.11)

This completes the proof of our existence theorem.

2

There are cases where equilibrium occurs naturally when for an excess demand map

Z : RL
+ \ {0} → Rn, D(p) 6= S(p) that is “supply does not equal demand”. This

leads us to the following definition of a free disposal equilibrium.

Definition 3.3.5 Let Z : RL
+ \ {0} → RL be an excess demand map. Then any price

system p∗ ∈ RL
+ \ {0} with Z(p∗) ≤ 0, D(p∗) ≤ S(p∗) is said to be a free disposal

equilibrium.
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Note 3.3.6 ([46])

1. This equilibrium is said to be a free disposal equilibrium due to the fact that

after eliminating excess supplies, we can establish an equilibrium with Z(p) = 0.

2. If Z : RL
+ \ {0} → RL satisfies Walras law, p · Z(p) = 0 and Z(p∗) ≤ 0 then for

each ` either Z`(p
∗) = 0 or p∗` = 0. Otherwise for some `, Z`(p

∗) > 0 and p∗` > 0

and for all ` ,
L∑

`=1

p∗`Z`(p
∗) ≤ 0, which contradicts Walras law.

3. The free disposal equilibrium price system satisfies the following weak form of

Walras law, p · Z(p) ≤ 0.

The next result gives existence of a free disposal equilibrium with some relaxed hy-

pothesis of Theorem 3.3.4.

Theorem 3.3.7 [Debreu-Gale-Nikaido Theorem].

Let the excess demand map Z : RL
+\{0} → RL be continuous and satisfy p ·Z(p) ≤ 0.

Then there is p∗ ∈ RL
+\{0} with Z(p∗) ≤ 0.

Proof. Let the function β : R → R be defined as

β(t) =

{
0 for t ≤ 0
t for t ≥ 0 .

Define the mappings

Z̄ : RL
+\{0} → RL

+, p 7→ Z̄`(p) = β(Z`(p)) (3.12)

and

φ : ∆1 → ∆0, p 7→ φ(p) = Z̄(p) −
(

L∑

`=1

Z`(p)

)
· p . (3.13)

Indeed, by Theorem 3.1.17 there is p∗ ∈ ∆1 with φ(p∗) = 0, that is, Z̄(p∗) =
L∑

`=1

Z`(p
∗) · p∗.
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Moreover, by taking inner products on both sides by Z(p∗) =

L∑

`=1

Z`(p
∗) ·p∗ and using

the weak form of Walras law, p∗ · Z(p∗) ≤ 0 yields

Z̄(p∗) · Z(p∗) =

L∑

`=1

Z`(p
∗)Z̄`(p

∗) (3.14)

=
L∑

`=1

Z`(p
∗)β (Z`(p

∗)) (3.15)

≤ 0 . (3.16)

So, we have that
L∑

`=1

Z`(p
∗)β (Z`(p

∗)) ≤ 0 and the definition of the function β yields,

tβ(t) =

{
0 for t ≤ 0
t2 for t ≥ 0.

Hence, Z`(p
∗) ≤ 0 for all ` = 1, 2, 3, . . . , L.

2

We are in a position to generalize the two preceding results, for the case where

Z`(p) → ∞ as p` → 0. The following result gives the conditions which the excess

demand has to satisfy to have a generalized existence of equilibrium.

Theorem 3.3.8 Let B ⊆ RL
+\{0}, B = InteriorRL

+ and the excess demand map

Z : B → RL satisfy the following conditions:

1. Z : B → RL is continuous.

2. Z(λp) = Z(p), for all p ∈ B, λ > 0.

3. p · Z(p) =

L∑

`=1

p`Z`(p) ≤ 0 for all p ∈ B.

4.
L∑

`=1

Z`(pk) → ∞ if pk → p̄ /∈ B.

Then there is an equilibrium point p∗ ∈ B with Z(p∗) ≤ 0.
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Proof.

Let the function β : R → R be defined as

β(t) =

{
0 for t ≤ 0
t for t ≥ 0 .

Let the function α : R → R for a fixed constant c > 0 be defined as

α(t) =





0 for t ≤ 0
1 for t ≥ c
t/c elsewhere.

Define the map Z̄ : RL
+ → RL

+ by

Z̄`(p) =





1 for p /∈ B(
1 − α

(
L∑

j=1

Zj(p)

))
β (Z`(p)) + α

(
L∑

j=1

Zj(p)

)
for p ∈ B.

We assert that Z̄ is a continuous map.

Let p̄ ∈ ∂B and pk → p̄. If pk ∈ B then by the hypothesis
L∑

`=1

Z`(pk) → ∞, there is

an integer N such that for k > N ,
L∑

`=1

Z`(pk) > c. Hence, from the function α we

have that α

(
L∑

`=1

Z`(pk)

)
= 1. This shows that lim

k→∞
Z̄`(pk) = 1. Clearly if pk /∈ B,

pk → p̄ we have the limit 1.

This proves our assertion that Z̄`(p) is continuous for each ` = 1, 2, 3, · · · , L.

Again as done in the two preceding results, we define the mapping

φ : ∆1 → ∆0, p 7→ φ(p) = Z̄(p) −
(

L∑

`=1

Z`(p)

)
· p . (3.17)

Indeed, since φ satisfies the hypothesis of the result Theorem 3.1.17 there is p∗ ∈ ∆1

with φ(p∗) = 0, that is, Z̄(p∗) =
L∑

`=1

Z̄`(p
∗)p∗.

We suppose that p∗ ∈ B. By taking inner products on both sides by Z(p∗) and using

the weak form of Walras law, p∗ · Z(p∗) ≤ 0 to obtain, Z̄(p∗) · Z(p∗) ≤ 0, which can

be simplified into the form

(
1 − α

(
L∑

j=1

Zj(p
∗)

))
L∑

`=1

Z`(p
∗)β(Z`(p

∗)) + α

(
L∑

`=1

Z`(p
∗)

)
L∑

`=1

Z`(p
∗) ≤ 0 .
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With tα(t) ≥ 0 for any t ≥ 0 implies that α

(
L∑

`=1

Z`(p
∗)

)
L∑

`=1

Z`(p
∗) ≥ 0. We have

that
(

1 − α

(
L∑

j=1

Zj(p
∗)

))
L∑

`=1

Z`(p
∗)β(Z`(p

∗)) ≤ 0, (3.18)

and since

(
1 − α

(
L∑

j=1

Zj(p
∗)

))
≥ 0,

L∑

`=1

Z`(p
∗)β(Z`(p

∗)) ≤ 0.

Therefore Z`(p
∗) ≤ 0 for all ` = 1, 2, 3, · · · , L.

When p∗ /∈ B, it follows from the equation Z̄(p∗) =

L∑

`=1

Z̄`(p
∗)p∗ that

p∗ = (1/L, . . . , 1/L) which is in B. This contradiction shows that p∗ cannot be outside

B. This proves the result. 2
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Chapter 4

Lattice Theory and Fixed Point
Theory

4.1 Basic Concepts in Lattice Theory

4.1.1 Introduction

The main objective in this chapter compared to the preceding chapters is to approach

fixed point theory from the point of view of lattice theory as done in Birkhoff [10],

Tarski [51], Topkis [53] and Zhou [58]. This kind of a relationship between lattice

theory and fixed point theory proves to be useful in establishing some existence prob-

lems in game theory. In this section we look at some well known basic concepts in

lattice theory.

We introduce some basic concepts in lattice theory. In his book on Lattice Theory

Birkhoff [10] introduces the concept of a poset in the following manner.

Definition 4.1.1 A partially ordered set (poset) P is a set on which a binary relation

or ordering denoted by the symbol ≤ defined on P satisfies the following conditions,

(i) Reflexive: x ≤ x for all x ∈ P .

(ii) Antisymmetric: x ≤ y and y ≤ x implies x = y for x, y ∈ P .

(iii) Transitive: x ≤ y and y ≤ z implies x ≤ z for x, y, z ∈ P .

A poset is denoted by (P,≤).

A binary relation ≤ that is reflexive, antisymmetric and transitive is said to be a

partial ordering on the set P . The symbol ≤ is usually read “included in”, “contained

in” or “is less than or equal to”.
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Note 4.1.2 A partially ordered set is a chain if it does not contain an unordered pair

of elements.

We give a few examples of partially ordered sets.

Examples 4.1.3 .

1. The usual ≤ ordering among the real numbers R, and the extension of ≤ to Rn

by (x1, x2, · · · , xn) ≤ (y1, y2, · · · , yn) if and only if xi ≤ yi for i = 1, · · · , n, is a

partial ordering on both R and Rn. Thus making them partially ordered sets.

2. The set inclusion in the power set P(X) of a set X, defined A ⊆ B for A,B ∈
P(X) is a partial ordering on P(X). Hence, the power set with the set inclusion

ordering is a partially ordered set.

3. The divisibility (|) among the natural numbers N is a partial ordering in N. The

set of natural numbers N with divisibility is a partially ordered set.

4. The lexicographic ordering relation ≤lex on Rn is such that x ≤lex x
′ in Rn if

either x = x′ or if there is some i′ with 1 ≤ i′ ≤ n such that xi = x′i for each

1 ≤ i < i′, and xi′ < x′i′. The set Rn with the lexicographic ordering relation

≤lex is a partially ordered set.

We are in a position to define some mappings on a partially ordered set.

Definition 4.1.4 Let (P1,≤) and (P2,≤) be any two partially ordered sets.

A mapping θ : P1 −→ P2 is called an isotone mapping from the poset (P1,≤) to

(P2,≤)

if

x1 ≤ x2 =⇒ θ(x1) ≤ θ(x2)

for x1, x2 ∈ P1.

In the literature isotone and monotone are used interchangeably.

Definition 4.1.5 The mapping θ : P1 −→ P2 is called antitone

if

x1 ≤ x2 =⇒ θ(x2) ≤ θ(x1)
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for x1, x2 ∈ P1.

A bijective mapping θ : P1 −→ P2 is called an isomorphism if θ and θ−1, the inverse

of θ, are both isotone mappings.

4.2 Lattices and Functions on Lattices

Suppose that (L,≤) is a poset and S is a nonempty subset of L. Then an element

u ∈ L (respectively, ` ∈ L) is said to be an upper bound (respectively, a lower bound)

for S in L if s ≤ u (respectively, s ≥ `) ∀ s ∈ S. The set of all upper bounds for S

is denoted by Us. The least element of U is called the least upper bound for S. The

least upper bound of S is denoted by
∨
S and is called the join of S.

Similarly the greatest lower bound of S is denoted by
∧
S and is called the meet of

S.

Remarks 4.2.1

(i) If S is a finite subset of L then

∨
S = ∨S = x1 ∨ x2 ∨ x3 ∨ · · · ∨ xn

for some natural number n. In particular if S = {x, y} is a two element set we

write ∨S = x ∨ y.

(ii) Similarly ∧
S = ∧S = x1 ∧ x2 ∧ · · · ∧ xn

∧{x, y} = x ∧ y for x, y ∈ S.

(iii) 1. x ≤ x ∨ y and y ≤ x ∨ y

2. If x ≤ u and y ≤ u for some u ∈ L then x ∨ y ≤ u

(1) & (2) are the characterizing properties of x ∨ y

In Birkhoff [10] and Topkis [53] the concept of a lattice is defined in the following

way.
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Definition 4.2.2 A partially ordered set (L,≤) is said to be a lattice if every pair of

elements x, y ∈ L has a g.l.b and l.u.b with

l.u.b{x, y} = x ∨ y

and

g.l.b{x, y} = x ∧ y

where ∨ is called the join and ∧ is called the meet.

We give some examples of lattices.

Examples 4.2.3

1. Any chain is a lattice.

2. The real line R is a lattice with x ∨ x′ = max{x, x′} and

x ∧ x′ = min{x, x′} for x, x′ ∈ R.

3. For any positive integer n, Rn is a lattice with

x∨ x′ = (x1 ∨ x′1, . . . , xn ∨ x′n) and x∧ x′ = (x1 ∧ x′1, . . . , xn ∧ x′n) for x, x′ ∈ Rn.

4. For any set X, the power set P(X) with the set inclusion ordering relation ⊆
is lattice with A ∧B = A ∩B and A ∨B = A ∪B for A,B ∈ P(X). Thus, the

meet of the two subsets of X is their intersection and the join of the two subset

of X is their union.

In his paper Topkis [52] gives the next definition of sublattice of a lattice.

Definition 4.2.4 If N is a subset of a lattice (L,≤) and N contains the join and

meet with respect to (L,≤) of each pair of elements of N , then N is a sublattice of

(L,≤).

Note 4.2.5

1. A sublattice N of a lattice (L,≤) is a lattice with respect to the partial ordering

≤.

2. The symbols L and (L,≤) will be used interchangeably for denoting a lattice.
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3. The lattice L′ = (L,≥) is the dual lattice of (L,≤), where “≥” is a partial

ordering on L.

4. A sublattice N of L is closed if for any subset M ⊂ N , both
∧
M and

∨
M

belong to N .

Given the definition of a lattice, one can define a complete lattice as follows:

Definition 4.2.6 A lattice L = (L,≤) is said to be a complete lattice if every non-

empty subset S ⊂ L has a least upper bound
∨
S and a greatest lower bound

∧
S in

L = (L,≤). A complete lattice has in particular two elements 0 and 1 defined by

0 =
∧
S and 1 =

∨
S .

We are in a position to define and explore as in Quah [43] and Topkis [52] the effects

of real valued functions, that is, submodular and supermodular functions on lattices.

Definition 4.2.7 Let f : (L,≤) −→ R be a real valued function on a lattice (L,≤)

with the property

f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y)

for all x, y ∈ L. Then f is said to be a submodular function on L.

If L is a chain, then equality holds for all functions f on L. Therefore every function

on a chain L is submodular.

Definition 4.2.8 Let f : (L,≤) −→ R be a real valued function on a lattice (L,≤)

with the property

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y)

for all x, y ∈ L. Then f is said to be a supermodular function on L.

Note 4.2.9 (Quah [43],Topkis [52])

1. The function f is submodular if and only if the function −f is supermodular.

2. When L = Rn and f ∈ C2, the submodularity of f is equivalent to ∂2f
∂xi∂xj

≤ 0

for all i 6= j where 1 ≤ i, j ≤ n.

3. When L = Rn and f ∈ C2, the supermodularity of f is equivalent to ∂2f
∂xi∂xj

≥ 0

for all i 6= j where 1 ≤ i, j ≤ n.

4. The lattice (Rn,≤) is defined x, y ∈ Rn, x ≤ y if and only if xi ≤ yi for

i = 1, 2, · · · , n.
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4.3 Lattice Theory and Fixed Points

In this section our focus is on the relationship between lattice theory and fixed point

theory. In the book Supermodularity and Complementarity by Topkis [53] this rela-

tionship is dealt with comprehensively. The known concept of a fixed point is given

in the following manner. If f is a function from a set X into X and if x′ ∈ X satisfies

f(x′) = x′ then x′ is a fixed point of f . If f is a set valued map from a set X into

the power set P(X) and if x′ in X is in f(x′) then x′ is a fixed point of f .

Having defined a complete lattice, the next fixed point result from Birkhoff [10] on a

complete lattice is the lattice theoretic counterpart of Theorem 1.5.6.

Theorem 4.3.1 Let y = f(x) be any isotone function from a complete lattice L to

itself. Then a = f(a) for some a ∈ L.

Proof [see Birkhoff [10]]. Define a as the least upper bound of the set S of elements

x ∈ L such that x ≤ f(x). Since 0 ≤ f(0), S is nonempty. Since f(x) is isotone,

and a ≥ x for all x ∈ S, f(a) ≥ f(x) ≥ x for all x ∈ S; hence, f(a) ≥ supS = a. It

follows, since f(x) is isotone, that f(f(a)) ≥ f(a), thus f(a) ∈ S. But this implies

f(a) ≤ a, since a =supS. We conclude that a = f(a). 2

Definition 4.3.2 Let L = (L,≤) be a complete lattice. Given any two elements

x, y ∈ L with x ≤ y, the interval [x, y] is the set {z ∈ L : x ≤ z ≤ y}.

The next result by Tarski [51] shows that the collection of fixed points of an isotone

mapping from a nonempty complete lattice into itself is a nonempty complete lattice.

Theorem 4.3.3 [Tarski’s Lattice Theoretic Fixed Point Theorem].

Let

1. L = (L,≤) be a complete lattice,

2. f be an isotone mapping from L to L,

3. R be the set of all fixed points of f .

Then the set R is not empty and (R,≤) is a complete lattice, in particular we have

∨
R =

∨
{x ∈ L : f(x) ≥ x} ∈ R
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and ∧
R =

∧
{x ∈ L : f(x) ≤ x} ∈ R .

Proof [see Tarski [51]].

Let

u =
∨

{x ∈ L : f(x) ≥ x}. (4.1)

We clearly have x ≤ u for every element x with f(x) ≥ x; hence, the function f being

increasing,

x ≤ f(x) ≤ f(u) and x ≤ f(u) .

By (4.1) we conclude that

u ≤ f(u). (4.2)

Therefore

f(u) ≤ f(f(u)),

so that f(u) belongs to the set {x ∈ L : f(x) ≥ x}; consequently, by (4.1),

f(u) ≥ u. (4.3)

Equations (4.2) and (4.3) imply that u is a fixed point of f ; hence we conclude by

(4.1) that u is the join of all fixed points of f , so that

∧
R =

∧
{x ∈ L : f(x) ≤ x} ∈ R . (4.4)

Consider the dual complete lattice L′ = (L,≥) and the isotone mapping f from L′ to

L′. The join of any elements in L′ obviously coincides with the meet of these elements

in L. Hence, by applying to L′ the result established for L in (4.4), we conclude that

∨
R =

∨
{x ∈ L : f(x) ≥ x} ∈ R . (4.5)

Now let Y be any subset of R and [
∨
Y, 1] = {x ∈ L :

∨
Y ≤ x ≤ 1} be the interval

with endpoints
∨
Y and 1. The system

K = ([∨Y, 1],≤)
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is a complete lattice. For any x ∈ Y we have x ≤
∨
Y and hence

x = f(x) ≤ f(∨Y );

therefore
∨
Y ≤ f(

∨
Y ). Consequently,

∨
Y ≤ z implies

∨Y ≤ f(∨Y ) ≤ f(z).

Thus, by restricting the domain of f to the interval [
∨
Y, 1], we obtain an isotone

function f ′ on [
∨
Y, 1] to [

∨
Y, 1]. By applying formula (4.5) to the complete lattice

K and to f ′, we conclude that the greatest lower bound v of all fixed points of f ′ is

itself a fixed point of f ′. Obviously, v is a fixed point of f , and infact the least fixed

point of f which is an upper bound of all elements of Y in the system (R,≤). Hence,

by passing to the dual complete lattices L′ and K′, we see that there exists also a

greatest lower bound of Y in (R,≤). Since Y is an arbitrary subset of R, we finally

conclude that the system

(R,≤) (4.6)

is a complete lattice. The proof is completed.

2

The above result is generalized in Tarski [51], by the introduction of a commutative

set of mappings.

Definition 4.3.4 A set F of functions is said to be commutative if,

1. all the functions of F have a common domain D and the ranges of all functions

of F are subsets of D,

2. for any f, g ∈ F we have fg=gf, that is,

f(g(x)) = g(f(x)) for every x ∈ D.

This commutative definition leads to the following generalized form of Theorem

4.3.3.
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Theorem 4.3.5 [Tarski’s Generalized Lattice Theoretic Fixed Point Theo-

rem]

Let

1. L = (L,≤) be a complete lattice,

2. F be any commutative set of isotone mappings from L to L,

3. R be the set of all common fixed points of all the functions f ∈ F .

Then the set R is not empty and (R,≤) is a complete lattice, in particular we have

∨
R =

∨
{x ∈ L : f(x) ≥ x for every f ∈ F} ∈ R

and ∧
R =

∧
{x ∈ L : f(x) ≤ x for every f ∈ F} ∈ R .

Proof [see Tarski [51]].

Clearly Theorem 4.3.3 is a special case of Theorem 4.3.5, given the fact that

every singleton commutative set F is obviously commutative.

In her paper Davis [13] gives the characterization of a complete lattice with the use

of a fixed point theorem from a complete lattice to itself. We state the result now.

Theorem 4.3.6 For a lattice L = (L,≤) to be complete it is necessary and sufficient

that every isotone mapping from L to L have a fixed point.

Proof [see Anne C. Davis [13]].

Definition 4.3.7 Let P(L) be the power set of the complete lattice L. A correspon-

dence f from L to L is a set valued map from L to P(L). An element ` ∈ L is a

fixed point of a correspondence f if ` ∈ f(`).

A correspondence f is isotone if for any x ≤ y, any s ∈ f(x), and any t ∈ f(y), it is

true that s ∧ t ∈ f(x) and s ∨ t ∈ f(y).
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The next remark follows from the above definition.

Remark 4.3.8 If f is an isotone correspondence, then for any x ≤ y and any s ∈ f(x)

there is t ∈ f(y) with s ≤ t. Similarly for any b ∈ f(y) there is a ∈ f(x) with a ≤ b.

In his paper Lin Zhou [58] extends Theorem 4.3.3 to correspondences in the same

way that the Kakutani [25] fixed point theorem generalized Theorem 1.5.6.

Theorem 4.3.9 [Zhou’s Lattice Theoretic Fixed Point Theorem].

Let

1. L = (L,≤) be a complete lattice,

2. f(·) a correspondence from L to L,

3. R be the set of fixed points of f .

If f(`) is a nonempty closed sublattice of L for every ` ∈ L, and f is isotone in `,

then R is a nonempty complete lattice.

Proof [see Lin Zhou [58]].

We follow the argument in Theorem 4.3.3.

(i) Let us first show that ∧R = ∧L
r∈Rr ∈ R. Consider the set

C = {c ∈ L : ∃xc ∈ f(c) such that xc ≤ c}.

C is nonempty since 1 ∈ C, where 1 is the greatest element of L.

Let a = ∧C = ∧L
c∈Cc. It is clear that R ⊂ C. Hence, if a ∈ R then

a = ∧L
r∈Rr ∈ R. We now prove that a ∈ R is indeed true.

For any c ∈ C, there is xc ∈ f(c) such that xc ≤ c. Since the correspon-

dence f is isotone and a ≤ c, there is yc ∈ f(a) such that yc ≤ xc ≤ c. Let

y = ∧L
c∈Cyc. Because f(a) is a closed sublattice of L, y ∈ f(a). Clearly y ≤ a

since y = ∧L
c∈Cyc ≤ ∧L

c∈Cc = a.

Then since f is isotone, there is z ∈ f(y) such that z ≤ y ∈ f(a). Hence, y ∈ C.

So we also have a ≤ y by the definition of a. Therefore, a = y ∈ f(a), that is,

a ∈ R.
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(ii) Similarly, we can show that ∨R = ∨L
r∈Rr ∈ R.

(iii) It is already established in (i) that R is nonempty.

To show that R is a complete lattice, we have to show that ∨U = ∨R
r∈Ur and

∧U = ∧R
r∈Ur exists for any U ⊂ R. It is important to note that ∨R

r∈Ur and

∧R
r∈Ur are respectively the greatest and the least elements of U in R instead of

L.

Let us take b = ∨L
r∈Ur, the greatest element of U in L. For any r ∈ U ⊂ L,

since r ∈ f(r) and f is isotone, there is xr ∈ f(b) such that xr ≥ r. Let

x = ∨L
r∈Uxr. Clearly x ≥ b since x = ∨L

r∈Uxr ≥ ∨L
r∈Ur = b, and x ∈ f(b) since

f(b) is a closed sublattice of L. Because f is isotone, there is xr ∈ f(`) with

xr ≥ b for every ` ≥ b. Hence, if we let L′ = [b, 1], and g from L′ to L′ defined

by g(`) = f(`) ∩ [b, 1] for all ` ∈ L′, then g(`) is nonempty for every ` ∈ L′.

Since both f(`) and [b, 1] are closed sublattices of L for every ` ∈ L′, g(`)

must be a closed sublattice of L′. Also, since both f and h, which assigns each

` ∈ L′ = [b, 1], are isotone on L, g = f ∩ h is isotone on L′. Hence, L′ and

g satisfy the assumptions of the theorem. Therefore, if we let b′ = ∨L′

r∈R′r, in

which R′ is the set of fixed points of g on L′, then b′ ∈ L′ according to (i). Since

R′ = R ∩ [b, 1], b′ is indeed the least fixed point that is greater than or equal

to b, that is, b′ = ∨R
r∈Ur.

The existence of ∧R
r∈Ur can be proved in a similar manner.

2

The preceding result Theorem 4.3.9 is useful in establishing the existence of pure

equilibrium points in certain noncooperative games.
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