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                 Abstract 

Magnetic nanoparticles comprising magnetite (Fe3O4) were functionalized with 3-aminopropyl-

triethoxysilane forming amino functionalized magnetite nanoparticles (AMNPs). The amino 

group allows for conjugation with zinc octacarboxyphthalocyanine (ZnOCPc) or zinc 

tetracarboxyphthalocyanine (ZnTCPc) via the carboxyl group to form an amide bond.  A reduced 

aggregation of ZnTCPc is observed after conjugation with AMNPs. The thermal stability, 

conjugation, morphology and the sizes of the nanoparticles and their conjugates were confirmed 

using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), 

transmission electron microscopy (TEM) and Powder X-ray diffractometry (PXRD), respectively. 

The covalent linkage of AMNPs to ZnOCPc or ZnTCPc resulted in improvement in the 

photophysical behavior of the phthalocyanines. Improvement in the triplet quantum yield (ΦT), 

singlet oxygen quantum yield (ΦΔ), triplet lifetime (τT) and singlet oxygen lifetime (τΔ) of the 

ZnOCPc or ZnTCPc were observed, hence improving the photosensitizers efficiency. The 

conjugates comprising of zinc octacarboxyphthalocyanine (ZnOCPc) and AMNPs were 

electrospun into fibers using polyamide-6 (PA-6). This was used for the photodegradation of 

Orange-G and compared with ZnOCPc-AMNPs in suspension. For ZnOCPc-AMNPs in 

suspension, it is noteworthy that the catalyst can be easily recovered using an external magnetic 

field. The singlet oxygen generation increases as we increase the fiber diameter by increasing the 

ZnOCPc concentration. The singlet oxygen quantum yield is higher for PA-6/ZnOCPc-AMNPs 

nanofibers when compared to PA-6/ZnOCPc. The rate of degradation of Orange-G increased with 

an increase in the singlet oxygen quantum yield. Moreover, the kinetic analysis showed that the 

photodecomposition of Orange-G is a first-order reaction according to the Langmuir-

Hinshelwood model. 
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Introduction 

The incorporation of nanocomponents into novel hybrid systems opens wide possibilities for 

design of new nanomaterials with unique properties. In this work, conjugates of magnetite 

nanoparticles (MNPs) with phthalocyanines (Pcs) are developed for applications in the 

degradation of an azo dye as a test pollutant. The degradation experiments are done when the 

conjugates are in solution and also when embedded in electrospun nanofibers. The use of MNPs 

is motivated by their easiness of recovering and reusing of Pcs bound on their surfaces using a 

magnet. Moreover Pcs bound to MNPs are less aggregated, thus increasing their photophysical 

effectivity. 

                                    

1.1 Magnetite nanoparticles (MNPs)  

 

A nanoparticle is a zero dimensional (0D) particle with all linear dimensions having the same 

order of magnitude of less than 100 nm. Magnetite nanoparticles have drawn considerable 

attention in science and engineering because of their non-toxicity, excellent magnetic properties, 

suspendability in water and their affordability [1, 2]. These properties endow them to be used in 

terabit data storage devices, sensors, catalysis, magnetic resonance imaging (MRI) and 

therapeutics [3-7]. Moreover, magnetite nanoparticles with sizes ranging from 2-20 nm exhibit 

superparamagnetic properties [8]. At this nanoscale, the magnetic moments are in a random 

motion and they respond quickly to the magnetic field to reach a magnetic saturation and move 

back to zero when the magnetic field is removed [9].  
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1.1.1 Applications of magnetite nanoparticle in catalysis 

 

By definition, a catalyst is a substance that speeds up the rate of the reaction without itself being 

consumed, while a support is a solid material with high surface area, to which a catalyst is 

affixed. Magnetite nanoparticles have been used both as catalysts and supports. Fischer-Tropsch 

synthesis (FTS) is well-known in the production of hydrocarbons from a syngas (CO + H2). For 

this reaction, MNPs supported on activated silicon wafers have been employed as catalysts [10]. 

Moreover, MNPs have been used as supports for Aspergillus niger (catalyse), diatomite, 

magnesiumtetrapyridylporphyrin (MnTPP) and palladium catalysts. These catalysts were 

designated for hydrogen peroxide decomposition, epoxidation of alkenes, and removal of 

hexavalent Cr (VI) in water and for the hydrodehalogenation of organic pollutants [11-17]. The 

aim of this work is to combine phthalocyanines with MNPs for use in photocatalysis when in 

solution or supported on fibers. More importantly, the magnetic properties of MNPs as supports 

allow facile recovery of the catalyst using a magnet for the catalyst recycling. 

1.1.2 Application of MNPs in magnetic resonance imaging (MRI) and hyperthermia (HPT) 

 

Magnetite nanoparticles can be specific to cancerous tissues [Figure 1.1 (I)] depending on the 

type of the targeting probe attached or by enhanced permeability and retention (EPR) [18]. 

Cancerous tissues retain molecules by EPR due to poor lymphatic drainage. The retention and 

accumulation of such molecules is much greater in cancer cells when compared to healthy 

normal cells [19, 20]. Magnetic resonance imaging (MRI) [21] can be used to view the affected 

area in the presence of a contrast agent, as depicted in Figure 1.1 (II).  In addition MNPs produce 

heat which damages tumor tissues; this is called hyperthermia (HPT), Figure 1.1 (III). This 

method takes the advantage of the fact that, tumor cells are more susceptible to elevated 
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temperatures in the range of 42-45°C than the normal cells [22]. HPT is based on the theory that, 

when exposed to an external alternating magnetic field (AMF), the  magnetic moments 

oscillates, during which process the electromagnetic energy is converted into heat [23].  

 

 

 

Figure 1.1: Scheme of representation showing drug delivery system (I), diagnosis (II) and 

therapy (III), using magnetite nanoparticles (MNPs) [21]. MRI=magnetic resonance 

imaging; MI=magneto impedance; AMF=alternating magnetic field.  

  

1.1.3 Synthesis, stabilization and surface functionalization of MNPs 

  

Various chemical methods such as: thermal decomposition, microemulsion [24], sol-gel [25], 

hydrothermal reactions [26], flow injection [27] and electrospray [28] can be used to synthesize 

magnetite nanoparticles. However, co-precipitation is a conventional method used for small scale 

and in commercial production [29]. This method entails mixing Fe
2+

 and Fe
3+

 (molar ratio of 1:2) 

AMF 
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salt solutions followed by the addition of a base for the precipitation of the nanoparticles Eq. 1.1 

[30].  

Fe
2+

 + 2Fe
3+

 + 8OH
- 
→ Fe3O4 + 4H2O……….. (1.1) 

It is important to stabilize or functionalize nanoparticles to prevent agglomeration, corrosion and 

intermolecular attraction between them [31]. Therefore, functional groups such as: amines, 

carboxylates, sulfates, phosphates or inorganic materials (Figure 1.2) like silica, gold and 

gadolinium are known to bind to the surface of MNPs through their surface hydroxyl groups [32-

34]. These functional groups allows for the dispersion in aqueous or organic media and also for 

the nanoparticles to be conjugated with biological molecules such as proteins, folic acid and 

fluorophores (e.g. quantum dots and phthalocyanines). In this work, the water dispersed 

magnetite nanoparticles were coated with silica and functionalized with 3-aminopropyltriethoxy 

silane (APTES). 

                                                                                                                                                                                                                                      

 

 

 

 

Figure 1.2:  Surface modification of MNPs (black), first by materials such as SiO2, Gd or 

Au and then by suitable functionalized ligands (red). 
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1.1.4 Characterization of magnetite nanoparticles 

 

The crystal structure and the size of MNPs can be determined using a powder X-ray 

diffractometry (PXRD). The MNPs are characterized by their face centered cubic (FCC) lattice 

crystal structure with hkl Miller indices at (220), (311), (400), (422), (511) and (440) 

corresponding to their 2  values at 30 
o
, 36 

o
, 43

 o
, 54 

o
, 57 

o
 and 63 

o
, respectively [35]. The 

crystal size is calculated from PXRD pattern (Figure 1.3) using Debye-Scherrer equation (Eq. 

1.2) focusing on the (311) peak.  

 

    
     

     
                                        (1.2) 

where D is the crystal size, λ is the wavelength of the X-ray using Cu-Kα radiation (λ= 1.541 Å, 

nickel filter), B is the full width at half maximum (FWHM) and θ is the diffraction angle [36].  

  

                           

 

 Figure 1.3: PXRD pattern of MNPs prepared by the co-precipitation method [35] 
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Further confirmation of the nanoparticles size can be done using transmission electron 

microscopy (TEM) [37]. This technique helps to visualize the shape of the nanoparticles, size 

distribution and their dispersion [38], as shown in Figure 1.4. 

    

             

 

Figure 1.4: The size distribution histogram of MNPs. Inset: TEM image of MNPs [38].      

                               

Other techniques including, thermogravimetric analysis (TGA), Fourier transform infrared 

spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS) and Breunner-Ermmet-Teller 

(BET) can be used to determine the thermal stability, functional groups on the surface, elemental 

composition and the surface area of the nanoparticles, respectively [39]. 
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1.2 Phthalocyanines (Pcs) 

 

Phthalocyanines are well-known as blue-green dyes which absorb light strongly in the visible 

region of the spectrum [40]. The history of Pcs dates back to 1907 when they were accidentally 

discovered but unrecognized, as an insoluble bluish by-product during the synthesis of o-

cyanobenzamide from phthalamide [41]. In 1928, iron Pc was also accidentally discovered at the 

Scottish Dyes Ltd and its structural identification was done by Linstead [42]. Seven years later, 

the structure was confirmed by X-ray crystallography, with the chemical formula C32H18N8 for 

the metal-free derivative [43, 44]. The name ‘phthalocyanine’ was invented from its precursor 

phthalic acid derivative ‘phthalo’ and ‘cyanine’ from the Greek word for blue. Phthalocyanines 

have a wide variety of applications because of their diverse chemical, structural, electronic and 

optical properties. Hence, they have been found useful in many technological applications such 

as photovoltaic cells [45], optical data storage [46, 47], fuel cells [48], chemical sensors [49], 

catalysis [50], non-linear optics [51] and recently in medical applications as photosensitizers for 

photodynamic therapy (PDT) [52] and photodynamic antimicrobial activity (PACT) [53]. 

 

1.2.1 Structure of phthalocyanines  

 

Phthalocyanines (Pcs) are aromatic macrocyclic compounds with conjugated system of 

18electrons. Their four isoindole groups are linked together by four nitrogen atoms resulting in 

a closed ring, Figure 1.5. The structure of the Pc ring (1) is comparable to that of naturally 

occurring porphyrins (Por) (2). The substitution of four meso carbon bridges by nitrogen atoms 

and the fusion of benzene ringson the pyrrole positions of (2) results in a phthalocyanine (1) 
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[54], Figure 1.5. It has been reported that over 70 metals or metalloids [55] can be coordinated in 

the central cavity of the metal free Pc (H2Pc) to form metallophthalocyanines (MPcs).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.5: The structure of a metallophthalocyanine (MPc) and a porphyrin (Por) 

 

1.2.2 Synthesis of water soluble symmetric phthalocyanines  

 

This work will only compare the well-known   metal tetracarboxyphthalocyanine (MTCPc) and 

octacarboxyphthalocyanine (MOCPc); as such their general syntheses protocols are discussed. 

MTCPc (5), Scheme 1.1, is obtained from tetracarboxy amido-substituted metallophthalocyanine 

(MTCAPc) (4) which is an intermediate formed from reacting trimellitic anhydride (3), urea, 

ammonium molybdate and a metal salt, followed by treatment with potassium hydroxide at 

elevated temperature [54-60]. The octacarboxylic acid-substituted metallophthalocyanines 

(MOCPc) (8) are obtained by reacting pyromellitic dianhydride (6), urea (as a solvent and a 
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source of nitrogen), 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) (as a catalyst) and a suitable 

metal salt,  Scheme 1.2 [54, 55].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1: Synthesis of metal-tetracarboxy metallophthalocyanine (MTCPc) [54].   
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Scheme 1.2: Synthesis of metal-octacarboxy phthalocyanine (MOCPc) [54]. 
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1.2.3 Electronic absorption spectra of Pcs  

 

A phthalocyanine is characterized by an intense and isolated absorption band in the red region of 

the electromagnetic spectrum [61] called the Q-band, with its vibrational bands (Q vib.), Figure 

1.6. The B-band appears between 300 - 400 nm and is a less intense band when compared to the 

Q-Band. The B-band is broad due to the overlapping of the B1 and B2 bands. Other absorption 

bands such as N, L, and C are also present and they appear at a lower energy [62, 63], only in 

transparent solvents such as chloroform.  

 

 

Figure 1.6: Ground state absorption spectra of metallated (i blue) and metal free (ii red) 

Pcs 

 

The bands in the absorption spectrum are due to π-π* electronic transitions in the Pc ligand and 

the assignment of the Q and B bands is based on Gouterman’s four-orbital model [64-67]. In this 

model, the top two highest occupied molecular orbitals (HOMO) and the degenerate lowest 
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absorption is due to a transition from the a1u of the HOMO to a doubly degenerate transition eg of 

the LUMO, while a transition from a2u or b2u to the eg of the LUMO results in the B-band 

absorption. 

 

 

 

 

 

 

 
 
 

 

Figure 1.7: Electronic transitions in MPcs showing the origin of Q and B absorption bands  

 

 

For the metal-free phthalocyanine (H2Pc), the Q band splits into a doublet (Figure 1.6). This 

splitting of the Q band is due to the low symmetry (D2h) of H2Pc in comparison with 

metallophthalocyanine (D4h). The LUMO orbital loses degeneracy due to the presence of the two 

core protons giving rise to a split Q- band. Other absorption bands present between the Q and B 

bands occur when the metal d-orbitals lie within the HOMO-LUMO gap (Figure 1.6) of the Pc 

ring, and these are assigned as charge-transfer transitions (CT) [68]. A charge transfer from an 

electron rich ligand to an electron poor metal is known as a ligand to metal charge transfer 

(LMCT) while a transfer from metal to ligand is a metal to ligand charge transfer (MLCT). 
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1.2.4 Aggregation of phthalocyanines  

 

Aggregation is described as a coplanar association of rings progressing from a monomer to a 

dimer and higher order complexes [69, 70]. Aggregation of MPcs depends on concentration, 

nature of the solvents and substituents, metal ions and temperature [71]. Water soluble 

octacarboxylated Pc derivatives show no aggregation, however tetracarboxylated derivatives are 

‘aggregated. According to Kasha’s molecular exciton theory [72], the absorption bands of 

aggregates will be blue shifted with respect to the monomer band when the polarization axes of 

the monomer and the line of the molecular center of the aggregate is larger than 54.7
 o

. The so 

called H-aggregation occurs when the angle is 90
 o

 whereby the molecules are face to face, 

Figure 1.8. When the angle is smaller than 54.7 
o
 the aggregated peak is red shifted and this is 

called J-type aggregation. The aggregation due to cofacial arrangement of Pc rings (H-type) is 

more common whereas the J-type is very rare [73, 74]. The nanoparticles moments could either 

be parallel or perpendicular to the Pc’s moments resulting in blue or red shifting. 

 

  

 

 

 

 

 

 

      

Figure 1.8: Energy levels showing the transition in aggregated MPc complexes [73]. 
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1.2.5 Photophysicochemical properties of phthalocyanines 

 

The photophysical processes that take place when an MPc molecule absorbs light are best 

illustrated by the Jablonski diagram [75], Figure 1.9. After absorption and population of the S1 

state, the molecule can relax back to its ground state by releasing a photon resulting in 

fluorescence (F) emission or it can undergo radiationless, vibrational relaxation (VR) and 

internal conversion (IC) back to the ground state, or inter-system crossing (ISC) to the first triplet 

state, T1. The latter may be followed by IC and phosphorescence (P) back to the S1 state. ISC is a 

spin-forbidden transition, but occurs through spin-orbit coupling, which relaxes the spin 

selection rule [76-78].  For this reason, the intensity of the spin-forbidden transitions increases 

with an increase in the atomic number of the metal atom in the complex, a phenomenon known 

as the ‘heavy-atom’ effect [76, 78], due to enhanced spin-orbit coupling. Heavy atoms or 

paramagnetic compounds such as MNPs (magnetite nanoparticles) increase ISC, improving 

triplet quantum yields and consequently the singlet oxygen yields. This falls under the main 

important aspects of this thesis, because singlet oxygen (the chief cytotoxic species) is needed 

for photocatalysis. Thus the aim of this thesis is to conjugate MNPs to Pcs in order to increase 

the singlet oxygen quantum yield due to the heavy atom effect. 
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Figure 1.9: Simplified Jablonski diagram for MPcs, showing the origin of the transitions. A 

= absorption, IC = internal conversion, F = fluorescence, VR = vibrational relaxation, ISC 

= inter-system crossing, P = phosphorescence, T-T absorption = triplet to triplet 

absorption. S0 = singlet ground state, S1 = first singlet excited state, T1 = first triplet excited 

state, T2 = second triplet excited state, ET= Electron Transfer [75]. 

 

1.2.5.1 Fluorescence quantum yield (ΦF) and fluorescence lifetime (τF) 

  

The fluorescence properties of MPcs for example: spectral shifts, fluorescence quantum yield 

and lifetime can be affected by aggregation, nature of solvent, pH, halogenation, electronic 

energy transfer and the nature of the central metal [71]. Fluorescence quantum yield (ΦF) is 

defined as the number of emitted photons relative to the number of absorbed photons. 

Fluorescence lifetime (τF) is the average time an excited fluorophore spends in the excited state 

before it decays back to its ground state [79]. Fluorescence quantum yield (ΦF) may be 

determined by comparison with a standard using Eq. 1.3 [80]: 
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where F and FStd are the areas under the fluorescence curves for sample and standard (e.g. ZnPc), 

respectively. A and AStd are the absorbances of the sample and reference at the excitation 

wavelength respectively, while n and nStd are the refractive indices of solvents in which the 

sample and reference were dissolved, respectively. 

1.2.5.2 Triplet quantum yield (ΦT) and lifetime (τT)  

A comparative method [81] using a standard may be employed for the calculations of the triplet 

quantum yield (ΦT), Eq. 1.4. 
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where TA  and 
Std

TA  are the changes in the triplet state absorbances of the Pc derivative and the 

standard respectively; 
T  and 

Std

T , the triplet state molar extinction coefficients for the Pc 

derivative and the standard respectively; 
Std

T , the triplet quantum yield for the standard e.g. 

ZnPc. T and 
Std

T  are determined from the molar extinction coefficients of their respective 

ground singlet state ( S  and 
Std

S  ), the changes in absorbances of the ground singlet states ( SA  

and
Std

SA ) and changes in the triplet state absorptions, ( TA  and 
Std

TA ) according to Eqs. 1.5a 

and 1.5b: 
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1.2.5.3 Singlet oxygen quantum yield (Φ∆) and lifetime (τ∆)  

 

MPc complexes are well known as photocatalysts (goal of this work) for many reactions such as: 

epoxidation of alkenes, transformation of alkanes and degradation of water pollutants [82-84]. 

Singlet state oxygen produced by triplet state molecules is the chief cytotoxic species in 

photocatalytic reactions through Type II mechanisms, Scheme 1.3. 
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Scheme 1.3: Type II reaction mechanism for  singlet oxygen (

1
O2) generation by irradiation 

of MPc. 

 

The excited triplet state of the MPc can also interact with the ground state molecular oxygen or 

the substrate molecules to generate superoxide and hydroperoxyl radicals, which subsequently 

oxidizes the substrate, Type I mechanism (Scheme 1.4).  
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Scheme 1.4: Type I reaction mechanism by free radical production. 

 
It is well known that Type II is more common in photoinitiated oxidation reactions; therefore the 

magnitude of singlet oxygen quantum yield (Φ∆) is determined.  The singlet oxygen quantum 

yield can be determined by a chemical method using anthracene-9, 10-bis-methylmalonate 

(ADMA) as a quencher in aqueous solvents.  By employing the comparative method, the singlet 

oxygen quantum yield of the phthalocyanine can be determined according to Eq. 1.6 [85, 86]: 
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                                                                                 (1.6) 

where 
std

ΔΦ
 

is the singlet oxygen quantum yield for the standard, W and 
StdW  are the ADMA 

photobleaching rates in the presence of MPc and the standard (e.g. AlPcSmix a mixture of 

sulphonated aluminium phthalocyanines), respectively. Std

AbsI   and AbsI  are   the rates of light 

absorption by the MPc derivative and standard, respectively.  
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Alternatively, singlet oxygen luminescene method (SOLM) can also be employed to determine 

the singlet oxygen quantum yield. In this method sodium azide is used as a singlet oxygen 

quencher. The time resolved phosphorescence decay curve of singlet oxygen at 1270 nm 

determines the singlet oxygen quantum yield [87].  The dynamic course of 
1
O2 concentration can 

be clearly recorded, following Eq. 1.7 as described theoretically in the literature [88]: 

][)(
// DT tt

DT

D eeBtI




 



                                                                  (1.7)     

where I(t) is the phosphorescence intensity of singlet oxygen (O2(
1
Δg)) at time t, D is the lifetime 

of O2(
1
Δg) phosphorescence decay, T is the triplet state lifetime and B is a coefficient involved 

in sensitizer concentration and singlet oxygen quantum yield. The
 
singlet oxygen

 
quantum yield, 

ΦΔ, of the phthalocyanine is then determined using Eq. 1.8 [88]: 

 

Std

Std

ΔΔ
B

B
ΦΦ                                                                                            (1.8)    

where 
Std

ΔΦ  is the singlet oxygen quantum yield for the standard, for example AlPcSmix in water, 

B and B
Std

  are the coefficients of the sample and standard, respectively. The singlet oxygen 

lifetime (τ∆) is determined by fitting the decay curves using Origin Pro 8 software. Only the 

SOLM method was used to determine the singlet oxygen quantum yield for Pc or Pc-AMNPs in 

solution.  

To determine the singlet oxygen quantum yield in a fiber, a direct method can also be used, 

where the quantum yields (ADMA) are calculated using Eq. (1.9) [89]. 

(      )   
(     )  

        
                           (1.9) 
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where C0 and Ct are the quencher concentrations prior to and after irradiation, respectively; VR is 

the solution volume; t is the irradiation time per cycle and Iabs is defined by Eq. (1.10). 

 

     
     

  
                                                                                                (1.10)   

   

where         ( )), A (λ) is the absorbance of the sensitizer at the irradiation wavelength, 

A is the irradiated area in cm
2
, I is the intensity of light and NA is the Avogadro’s constant. The 

absorbance used for Eq. 1.10 is that of the phthalocyanines in the fibers. The singlet oxygen 

quantum yields (Φ∆) were calculated using Eq. (1.11) [89]. 

 

 

     
  

 

  
 

 

  
 
  

  
 

 

      
                   (1.11) 

  

   
where kd is the decay constant of singlet oxygen and ka is the rate constant for the reaction 

quencher with 
1
O2 (

1
∆g). The intercept of the plot of 1/  ADMA versus 1/ [ADMA] gives 1/  . 

1.2.6 Photocatalytic behavior of Pcs 

Phthalocyanines have been used as photocatalysts for many pollutants including phenols, thiols 

etc. [71], but their use as photocatalyts for degradation of azo dyes is still limited, Table 1.1 [90-

94].  The conjugates of Pcs with MNPs are few (as shown in Table 1. 2) [95-100], hence they are 

explored in this work. The advantage of using MNPs as supports for Pc is that they allow for the 

facile recovery of the catalyst using a magnet. Tables 1.1 and 1.2 also show that ZnOCPc, 

ZnTCPc, ZnOCPc-MNPs and ZnTCPc-MNPs conjugates have never been used as a 

photocatalysts for degradation of an azo-dye. For this reason, we aim to explore these 
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compounds for the first time. The mechanism for degradation of an azo dye is shown by Scheme 

1.5 [101]. The singlet oxygen abstracts a hydrogen atom from the NH group of the hydrazine 

tautomer (II). The formed hydroperoxide radical combines with the resulting hydrazyl radical 

(III) to give (IV), which decomposes to yield product (V), a 1, 2-naphthaquinone and the 

diazonium ion (VI). The latter (VI) then breaks down to benzene and nitrogen. 

 

Table 1.1: Phthalocyanines as photocatalysts for azo dyes in solution and in supports 

 

 

 

 

 

 

 

Photocatalyst   Fiber 

Support 

Analyte Φ∆ Ref. 

Copper(II) phthalocyanine tetrasulfonate/ TiO2 

Iron (II) phthalocyanine tetrasulfonic acid 

Polymetha-

crylate 

 

Orange (II) 

 

  _ 

[90] 

[91] 

Iron(II)-tetranitrophthalocyanine/ TiO2 

 

 

Zinc(II)tetrakis[4(methylpyridyloxy)]phthalocya-

nine 

Polyvinyl-

pyrrolidone 

 

Polysulfone 

 

 

Methyl-

orange 

 

0.21 

[92] 

[93] 

Zinc-tetrakis-(β-benzylmercapto)-phthalocyanine Polystyrene Orange-G 0.13 [94] 
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Table 1.2: Phthalocyanines conjugated to magnetite nanoparticles and their applications 

 

Sub Aim:  

The aim is to synthesize the MNPs, then link them to ZnOCPc or ZnTCPc through an amide 

bond taking the advantage of carboxyl groups in the peripheral positions of the Pc and also the 

amino functionalized MNPs. The conjugates are used for degradation of an azo dye. The use of 

MNPs allows for easy separation of the catalyst using a magnet so that the catalyst can be reused. 

 

 

 

Conjugate Applications    Φ∆ 

 

Ref. 

Zinc-phthalocyanine-MNPs    

Potential use in PDT & 

HPT 

0.67 [95] 

Silicon-phthalocyanine-MNPs  0.24 [96] 

Aluminium-phthalocyanine-MNPs  

Aluminum-phthalocyaninetetrasulfonate-

MNPs  

0.28 [97] 

Iron-tetracarboxyphthalocyanine-MNPs Oxidation of hydrocarbons 

and sulfides 

 [98] 

Aluminium-tetracarboxyphthalocyanine-

folate-MNPs 

Imaging/ cell targeting/ 

drug delivery & PDT 

 [99] 

Copper-phthalocyaninetetrasulfonate-

MNPs 

Photodegradation of 

Rhodamine B and methyl 

orange 

 [100] 
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Scheme 1.5: Representative mechanism for photo-oxidation of 1-arylazo-2-naphthol (azo 

dye) via a singlet oxygen Type II mechanism [101]. 
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1.3 Background on azo dyes:  water pollution and degradation  

Azo dyes are diazotized amines coupled to an amine or phenol, with one or more azo bonds (–

N=N–). Almost all dyestuffs used by textile industries are azo dyes, and they are also used in 

printing, food, paper making and cosmetic industries. An estimate was made in the 1980’s, that 

280,000 tons of textile dyes were annually discharged into industrial effluents worldwide [102]. 

Azo dyes are toxic, carcinogenic and mutagenic [103]. They can also affect the aquatic 

ecosystem, decreasing the light penetration and gas dissolution in lakes, rivers and other bodies 

of water [104]. In recent years, advanced oxidation processes (AOPs) are a matter of growing 

interest for the destruction of these dyes [105]. AOPs are based on in situ generation of very 

powerful oxidizing agents such as hydroxyl radicals, which are highly effective for removing 

organic dyes from water. AOPs such as Fenton reaction [106], wet air oxidation [107], ozonation 

[108], electrolysis [109], photolysis [110], radiolysis [111] and their combinations [112, 113] are 

widely studied for the decomposition of various kinds of hazardous organic compounds. Among 

these processes photolysis is mostly used successfully, as it is comparatively cheap and uses easy 

to handle reagents, hence it is employed in this work.  

 

1.4 Electrospinning  

Electrospinning was first proposed in the 20 
th

 century. Zeleny [114] described the principles of 

electrospinning in 1914. Then, in 1969 Taylor brought the fundamental concepts of the Taylor 

cone, and the voltage values at which Taylor cones are formed [115].  Electrospinning is 

regarded as a simple and inexpensive method for making ultrafine fibers of a diameter ranging 

from 100 nm to 1µm. These ultrafine fibers have various characteristics such as small pore size, 
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large surface area and the possibility for surface functionalization [115]. Thus, the process has 

generated much interest among scientists and engineers. Electrospun fibers are finding 

widespread applications in the emerging areas of nanotechnology and biomedical research [116, 

117], drug encapsulation and delivery [118–120], tissue engineering [121–123] etc. 

1.4.1 Basics of electrospining 

 

In an ordinary electrospinning process, a high electrostatic potential from a high-voltage power 

supply is applied to the polymer solution across a finite distance between a conductive nozzle 

and a grounded collector [124]. The Coulombic repulsion forces existing in a polymer solution 

between the charges of similar polarity destabilizes a spherical droplet located at the tip of the 

nozzle to form a helical coil (i.e. Taylor cone) [124], Figure 1.10. When the voltage exceeds the 

critical value, a charged droplet overcomes its own surface tension to form a jet that undergoes a 

whipping instability to split into ultrafine fluids [124, 125]. For large scale production of fibers, 

multinozzle electrospinning setup maybe used; this method differs from the mononozzle setup by 

the number of nozzles, with the general methodology remaining the same. Another basic 

principle for a successful electrospinning is to obtain steady state conditions. Electrospinning is 

regarded to be in steady state if the amount of polymer that is transported through the needle per 

unit of time equals the amount of polymer that is deposited as nanofibres on the collector per unit 

of time [119]. This definition is two-fold. The first condition is that relative to time, the entire 

polymer that is spun from the needle capillary and then collected, is converted into fibers, 

without beads or drops in the structure; the second condition is a stable and time invariant Taylor 

cone [119, 120]. Steady state electrospinning allows for the long-term stability needed for 

reproducibly of samples of any desired size.  
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Figure 1.10: Schematic diagram showing (A) mononozzle and (B) multinozzle 

electrospinning setups [126].  

 

1.4.2 Factors affecting electrospinning  

 

Many factors can impact the electrospinning process, including the nature of the polymer itself 

(polymer length and its distribution), the properties of the polymer solutions (concentration, 

viscosity, conductivity and surface tension). The nature of the solvent or mixtures of solvents are 

also important in addition to the nature of the polymer [117]. The process parameters (applied 
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voltage, flow rate, distance between capillary tip and collection screen, temperature and humidity 

of the environment) also affect the electrospinning process [118].  

1.4.3 Phthalocyanines on electrospun nanofibers 

 

Many phthalocyanines have been electrospun into fibers with their photoactivity still maintained 

within the polymer fiber, and without separation of the phthalocyanine from the fiber during 

electrospinning [126]. Thus reproducible behavior in any application is expected. Numerous 

polymers have been used in fabricating phthalocyanine/ fibers (as shown in Table 1.3) [127-

132]. In our case we chose polyamide-6 (PA-6) because of its relative flexibility, significant 

stiffness and resistance to chemical degradation and heat. These properties allow us to use the 

fibers in any media or pH without the fiber being degraded. Phthalocyanines were also 

covalently linked to polymer fibers, but with a low singlet oxygen yield [123]. Phthalocyanine-

gold nanoparticles conjugates were electrospun using polystyrene [94], but no phthalocyanine-

magnetite nanoparticles conjugates have been electrospun so far, therefore this is done for the 

first time in this work. As stated above, the use of magnetite nanoparticles allows for ease of 

separation when using a magnet. In the following chapter the synthesis methods and materials 

used for the synthesis of AMNPs, ZnOCPc-AMNPs or ZnTCPc-AMNPs conjugates and fibers 

are outlined in more details. The specifications of the equipments used and the experimental 

conditions are also discussed.   
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Table 1.3:  Electrospun fibers functionalized with phthalocyanines and their applications 

 

Phthalocyanine Polymer  Application Ref. 

LuTPPc Polystyrene Photodegradation of 4-

nitrophenol 

[127] 

LuTAPc 

ZnTAPc 

Polyacrylic acid Optical detection of NO2 

gas 

[128] 

CuTAPc Poly(ethylene oxide) for optoelectronic devices  [129] 

ZnPc Polyurethane Antibacterial activity [130] 

CoTAPc Cellulose fiber Photoconversion of 

Reactive Red X-3B 

[131] 

HOAlPc(SO3H)4 

ZnPc(OC2H4N
+
CH3)4 

 

Polyurethane Gram-positive bacteria [132] 

    TPPc= tetraphenoxy phthalocyanine, TAPc= tetraamino phthalocyanine 
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1.5 Summary of aims 

 The aims of this thesis are summarized as follows: 

 Syntheses of magnetite nanoparticles (AMNPs), zinc octacarboxy phthalocyanine 

(ZnOCPc) and zinc tetracarboxy phthalocyanine (ZnTCPc). 

 Conjugation of AMNPs to ZnOCPc and ZnTCPc separately. 

 Characterization of the ZnOCPc-AMNPs and ZnTCPc-AMNPs conjugates using 

ultraviolet-visible spectroscopy (UV/Vis), Fourier transform infrared spectroscopy 

(FTIR), powder X-ray diffractometry (PXRD), energy dispersive x-ray spectroscopy 

(EDS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). 

 Study the fluorescence, photophysical and photochemical properties of the conjugates.  

 Optimization of elecrospinning parameters of polyamide-6 (PA-6). 

 The development of polyamide-6 (PA-6) electrospun fibers containing a phthalocyanine 

(ZnOCPc) and phthalocyanine-magnetite nanoparticles (ZnOCPc-AMNPs). 

 Characterization of the electrospun fibers using TGA, EDS and SEM. 

 Investigation of the photocatalytic degradation of Orange-G by phthalocyanine and 

phthalocyanine-magnetite nanoparticles in solution and in fibers . 

 

 

 

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDIQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFourier_transform_infrared_spectroscopy&ei=QrEdUvbEJeq57AapyIGABA&usg=AFQjCNGjtZiMOS4ehEw2Lkiz2JCTOTimaQ&bvm=bv.51156542,d.d2k
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Experimental 

2.1 Materials 

Anhydrous iron (III) chloride, anhydrous iron (II) sulphate, ethanol (EtOH) and toluene were 

purchased from SAARCHEM. Anthracene-9, 10-bis-methylmalonate (ADMA), ammonia (25%), 

dimethyl sulfoxide (DMSO), dimethylformamide (DMF), hydrochloric acid (32 %), sodium 

hydroxide pellets, sulphuric acid (98 %) and trisodium-citrate were purchased from Merck. 

Acetic acid (98 %), 3-aminopropyl-triethoxysilane (APTES), 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC), formic acid (99.8 %), lipophilic Sephadex LH-20 

microbeads, N-hydroxysuccinimide (NHS), Orange-G and tetraethoxysilane (TEOS) were 

purchased from Sigma Aldrich. Polyamide-6 Ultramid
®
 B grades, B24, B27 and B32, with 

average molecular weights in grams per mole: 70,000, 80,000 and 90,000 respectively, were 

supplied by BASF. Phosphate-buffered solutions of pH 7.4 and 9 were prepared using 

appropriate amounts of Na2HPO4, KH2PO4 and chloride salts, dissolved in ultra-pure water. 

AlPcSmix (containing a mixture of sulfonated derivatives) was synthesized according to the 

literature [133] and used as a standard for triplet and singlet oxygen quantum yields. 

2.2 Instrumentation 

Infrared spectra were recorded on a Perkin Elmer 100 ATR FT-IR spectrometer. 

Ground state electronic absorption spectra were performed on a Shimadzu UV-2550 

spectrophotometer. Quartz cells with 1 cm path-length were used. 

Powder X-ray analysis was performed on a Bruker D8 Discover diffractometer, equipped with a 

Lynx Eye detector,  under Cu-Kα radiation  ( λ= 1.541 Å). Data were collected in the range from 
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2θ = 5 to 75
 o

, scanning at 0.010 
o
 min

-1
 and 192 s per step. The samples were placed on a zero 

background silicon wafer slide. The x-ray diffraction data were processed using the Eva 

(evaluation curve fitting) software. Baseline correction was performed on each diffraction pattern 

by subtracting a spline fitted to the curved background. 

Transmission electron microscopy (TEM) images were obtained using a ZEISS LIBRA
®

 120 

transmission electron microscope. 

The morphology of the electrospun nanofibers was examined using a scanning electron 

microscope (Jeol Quanta 200 F FE-SEM) at an accelerating voltage of 20 kV. Before SEM 

analysis, the sample was coated with gold using a sputter coater (Balzers Union SKD 030). The 

average fiber diameter and their standard deviations were based on 50 measurements, using Cell 

D
 software from Olympus. 

Energy dispersive spectroscopy (EDS) was done on an INCA PENTA FET coupled to the 

VAGA TESCAM using 20 kV accelerating voltage.  

A Perkin Elmer TGA 7 Thermogravimetric analyser was used to study the thermal properties of 

the compounds under an inert N2 atmosphere (at 20 mL min
-1

) and heating at a rate of 10 
o 

C 

min
-1

.  

Fluorescence excitation and emission spectra were recorded on a Varian Eclipse fluorescence 

spectrofluorometer. 

Fluorescence lifetimes were measured using time correlated single photon counting setup 

(TCSPC) (PicoQuant FluoTime 200), as shown in Figure 2.1. The excitation source was a diode 

LDH-P-670 with PDL 800-B, 670 nm, 20 MHz repetition rate Picoquant GmbH. Fluorescence 

was detected under the magic angle with a peltier cooled photomultiplier tube (PMT) (PMA-C 

192-N-M, Picoquant) and integrated electronics (PicoHarp 300E, Picoquant GmbH). A 



34 
 

monochromator with a spectral width 4 nm was used to select the required emission wavelength. 

The response function of the system, which was measured with a scattering Ludox solution 

(DuPont), had a full width at half-maximum (FWHM) of 300 ps. The fluorescence lifetimes were 

obtained by deconvolution of the decay curves using the FluoFit Software program (PicoQuant 

GmbH, Germany).  

Figure 2.1: Schematic diagram of time-correlated single photon counting (TCSPC) setup. 

(MCP)-PMT = Monochromator photomultiplier tube, PC = Personal computer. 

 

Laser flash photolysis system (Figure 2.2) was used for the determination of triplet decay 

kinetics. The excitation pulses were produced by a tunable laser system consisting of an Nd: 

YAG laser (355 nm, 135 mJ/4-6 ns) pumping an optical parametric oscillator (OPO, 30 mJ/3-5 

ns) with a wavelength range of 420 - 2300 nm (NT-342B, Ekspla). The analyzing beam source 

was from a Thermo Oriel 66902 xenon arc lamp, and a Kratos Lis Projekte MLIS-X3 

photomultiplier tube was used as the detector. Signals were recorded with a dual channel, 300 

Laser

Beam splitter

Sample

Filter
Photodiode

Monochromator
(MCP)-PMT

Histogram 

electronic

PC
“Stop”

“Start”
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MHz digital real time oscilloscope (Tektronix TDS 3032C). The triplet lifetimes were 

determined by the exponential fitting of the kinetic curves using OriginPro 8 software.  

 

Figure 2.2: Schematic diagram for a laser flash photolysis setup. PMT= Photo Multiplier 

Tube                            

 

The time resolved singlet oxygen phosphorescence at 1270 nm (Figure 2.3) was used to 

determine the singlet oxygen quantum yields in aqueous solution. The dynamic phosphorescence 

decay of singlet oxygen (
1
O2) species was demonstrated using its phosphorescence at 1270 nm. 

For these studies, an ultra-sensitive germanium detector (Edinburgh Instruments, EI-P) combined 

with a 1000 nm long pass filter (Omega, RD 1000 CP) and a 1270 nm band-pass filter (Omega, 

C1275, BP50) was used to detect 
1
O2 phosphorescence under excitation using a Quanta-Ray 

Nd:YAG laser which provided a 400 mJ, 9 ns pulses of laser light at 10 Hz pumping a Lambda-

Physik FL3002 dye laser (Pyridin 1 dye in methanol), with a pulse period of 7 ns and repetition 

Ekspla Laser 

 
Ekspla 
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rate of 10 Hz. The near-infrared phosphorescence of the samples were focused onto the 

germanium detector using a lens (Edmund, NT 48-157) with the detection direction 

perpendicular to the excitation laser beam. The detected signals were averaged with a digital 

oscilloscope (Tektronics, TDS 360) to show the dynamic decay of 
1
O2. The data obtained was 

analysed using ORIGIN Pro 8 software.  

 

 

Figure 2.3: Schematic diagram for the singlet oxygen detection setup using its 

phosphorescence. 

  



37 
 

      

 

Figure 2.4: Schematic diagram of a photochemical setup.                    

Determination of the singlet oxygen quantum yield and the photodegradation of Orange-G (OG) 

were carried out using a Halogen lamp (300W), 600 nm glass (Schott) and water filters, to filter 

off ultra-violet and far infrared radiation respectively as shown in Figure 2.4. An interference 

filter (Intor, 670 nm with bandwidth of 40 nm) was placed in the light path just before the 

reaction vessel (which was a glass vial). The intensity of the light reaching the reaction vessel 

was measured with a power meter (POWER MAX 5100 Molelectron Detector Inc).  

 

For elecrospinning, polymer solution viscosity and conductivity were measured using a rotating 

Brookfield Viscometer LVDV-II and a CDM-210 conductivity meter (Radiometer Analytical). 

The electrospinning set-up consisted of an infusion pump KD Scientific Syringe Pump Series 

100 used to pump out a solution held in a 20 ml plastic syringe fitted with a needle (dimensions: 

1.024 mm × 15.24 cm). A high-voltage source (Glassman High Voltage Series EH) was used to 

generate an electric field between the needle tip and a grounded collector. 
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2.3 Syntheses  

The syntheses of ZnOCPc [134] and ZnTCPc [135] have been reported before.   

2.3.1 Synthesis of AMNPs  

2.3.1.1 Citrate stabilized magnetite (Fe3O4) nanoparticles (CMNPs), Scheme 3.1, Step 1 (p 45) 

 

The magnetite nanoparticles were obtained by the co-precipitation of Fe
3+

 and Fe
2+

 as in 

literature [136] with slight modification as follows: FeCl3 (0.65 g, 4.0 mmol) and  FeSO4 (0.32 g, 

2.0 mmol) were introduced into a three necked flask fitted with a thermometer and an inert gas 

inlet. Millipore water (42.5 ml) was added under a N2 atmosphere, while the third neck of the 

flask was closed with a rubber septum.  Ammonia solution (5 ml, 25 %) was added to the 

reaction mixture using a syringe with continuous stirring, also under nitrogen. After the addition 

of the NH3 solution, the mixture turned black, with stirring continued for a further 1 hr. 

Trisodium citrate (100 ml, 0.3 M) was then added and the mixture was stirred for a further 30 

min at 90 
0
C. The synthesized particles were collected using a magnet and washed with Millipore 

water. The CMNPs were again dispersed in Millipore water for further functionalization with 

silica in the next section. Yield: 0.61g, 63 % ` 

Silica coated magnetite nanoparticles (SMNPs), Scheme 3.1, Step 2 (p 45) 

  

To the CMNPs dispersed in Millipore water, CH3OH (160 ml) and 40 ml of H2O were added. To 

this reaction mixture, 3 ml of NH3 solution and 2 ml of tetraethylorthosilicate (TEOS) were 

added sequentially and the mixture allowed to stir for 24 hr followed by washing with two parts 

of 30 ml Millipore water as reported in literature [137].  Yield: 0.38 g, 62 %  
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2.3.1.3 Amino functionalized magnetite nanoparticles (AMNPs), Scheme 3.1, Step 3 (p 45) 

 

A sample of SMNPs (10 mg) was washed with anhydrous ethanol followed by toluene (3x) 

[137]. The SMNPs were then added to 12 ml of DMF and 8 ml of toluene and the mixture 

stirred.  APTES (1000 µL) was then added drop-wise using a syringe needle. The mixture was 

stirred for 24 hr at room temperature under Ar gas flow. The as-prepared amino functionalized 

MNPs (AMNPs) were washed four times with toluene and collected with the aid of a magnet 

upon decantation of the supernatant. Yield: 6.6 mg, 66 % 

2.3.1.4 ZnOCPc-AMNPs conjugate, Scheme 3.2 (p 47) 

 

The literature method used for linking silica functionalized quantum dots to a metallated 

phthalocyanine (MPc) was employed [138]. The carboxyl groups of ZnOCPc or ZnTCPc were 

activated by dissolving ZnOCPc (15 mg, 0.75 mmol) or ZnTCPc (15 mg, 0.61 mmol), in 5 ml of 

PBS, pH 7.4. EDC (0.23 g, 1.2 mmol) and NHS (0.12 g, 1.0 mmol) were added and the solution 

stirred for 3 hr. The amino functionalized MNPs (5 mg) were suspended in 5 ml PBS at pH 7.4, 

sonicated, and subsequently added to the activated ZnOCPc or ZnTCPc. The mixture was stirred 

for 12 hr at room temperature with a N2 gas flow. The product was precipitated by addition of 

ethanol, and washed with ethanol. Size exclusion chromatography (using an aqueous solution at 

pH 9 as the eluting solvent) was used to separate unreacted Pcs from the conjugate. A magnet 

was also used to separate the conjugate from unreacted Pcs. The linked conjugate is represented 

as ZnOCPc-AMNPs (linked) or ZnTCPc-AMNPs (linked). Similar experiments were also 

performed where ZnOCPc or ZnTCPc was simply mixed with AMNPs without coupling agents 

(EDC and NHS). Yield: 12 mg, 60 % 
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2.4 Photophysichemical methods  

2.4.1 Fluorescence quantum yields (ФF).  

   

Fluorescence quantum yields (ФF) of the MPcs and MPc-AMNPs conjugates were determined 

using a comparative method (Eq. 1.3) in pH 9 buffer or EtOH: NaOH (1:1). Unsubstituted ZnPc 

(ФF = 0.20) [139] in DMSO was employed as a standard. Both the samples and the standard were 

excited at the same wavelength. The absorbances of the solutions at the excitation wavelength 

were about 0.05 to avoid any inner filter effects.  

2.4.2 Triplet quantum yields (ФT) and lifetimes (
T ) 

The decay kinetics of the triplet absorption of the MPcs and MPc-AMNPs conjugates were 

recorded using laser flash photolysis setup, Figure. 2.2. The absorbance of sample solutions and 

that of the standard were adjusted to be nearly 1.5 at their Q-band maximum. All samples were 

introduced into a 1 cm quartz cell and then bubbled with argon for 10 min to remove dissolved 

oxygen before taking readings. The triplet quantum yields of the phthalocyanines alone or in the 

presence of magnetite nanoparticles were determined using Eq. 1.4. Mixed-sulfonated 

aluminium phthalocyanine (AlPcSmix) was employed as a standard {AlPcSmix in aqueous 

medium (   
   

  = 0.44 [71])}. Triplet lifetimes were determined from the kinetic data obtained, 

using ORIGIN Pro 8 software to fit the kinetics decay curves. 

2.4.3 Singlet oxygen quantum yield (Ф∆) 

The determination of Ф∆ was achieved by employing an optical and chemical method.  The 

optical method involves the observation of the fluorescence kinetic decay of the singlet oxygen 

generated at 1270 nm in air using equipment shown in Figure 2.3. The singlet oxygen quantum 

yield (∆) determinations for the MPcs and MPc-AMNPs in aqueous solution and in fibers were 
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carried out in unbuffered aqueous media. For MPc or MPc-AMNPs in aqueous solution, sodium 

azide (NaN3) was used as singlet oxygen quencher. The dynamic course of the singlet oxygen 

concentrations were clearly recorded following Eq.1.7. The Ф∆ values were then determined 

using Eq. 1.8, and employing AlPcSmix in aqueous solution (
Std

  = 0.42) [71]) as a standard.   

For singlet oxygen quantum yield (∆) determination in fibers, ADMA was used a singlet 

oxygen quencher and its degradation was monitored at 380 nm, Figure. 2.4. In each case 15 mg 

of the modified fibers was suspended in an aqueous solution of ADMA and irradiated using the 

photolysis set-up described above. The quantum yields (ADMA) were calculated using Eq. 1.11 

also using the molar extinction coefficient of ADMA in water, log (ε) = 4.1 [140]. The intensity 

of the light reaching the reaction vessel was measured with a power meter (POWER MAX 5100 

Molelectron Detector Inc) and found to be 1.3 х 10
19

 photons cm
-2

 s
-1

. 

2.4.4 Photodegradation of Orange-G  

 

Photocatalytic reactions were carried out in a batch reactor (glass vial). The irradiation 

experiments were carried out using the photolysis setup described above for singlet oxygen 

determination, Figure 2.4. The intensity of the light reaching the reaction vessel was measured 

with a power meter (POWER MAX 5100 Molelectron Detector Inc) and found to be 3.2 х 10
19

 

photons cm
-2

 s
-1

. 
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2.5. Electrospinning methods 

Electrospinning of polyamide-6 (PA-6) was carried out in air at room temperature with the 

relative humidity (RH) between 48-52 % at 25
 o

C. PA-6 (i.e., B24, B27 and B32) pellets were 

dissolved in formic acid/acetic acid (50/50 and 75/25 vol. %) solvent mixtures to produce a 

uniform polymer solution with concentrations in the range 10 to 16 wt. %, Table 2.1. The 

solutions were magnetically stirred at room temperature for 3 hr, followed by the measurement 

of their conductivity and viscosity. A high voltage in the range 9-30 kV was applied to the 

polymer solution, which is held in a plastic syringe equipped with a needle. The flow rate ranged 

between 0.2 and 1ml/h. The distance between the needle tip and the grounded collector was 6 

cm. Polymers containing different concentrations of Pcs were prepared as follows: ZnOCPc (2 

mg, 0.1 mmol), (10 mg, 0.5 mmol) or (20 mg, 1.0 mmol) were dissolved in PA-6 (B32 14 wt. %) 

polymer solution of formic acid/ acetic acid (50/50 and 75/25 vol. %) followed by 

electrospinning. The fabrication of ZnOCPc-AMNPs hybrid nanofibers was carried out by 

adding 30 mg of ZnOCPc-AMNPs conjugate into PA-6 solution, followed by electrospinning. 

The spectral characterization, morphology and the thermal stability of the as synthesized 

AMNPs, ZnOCPc-AMNPs and ZnTCPc-AMNPs are discussed in the following chapter. The 

photophysical and photochemical parameters of these two complexes i.e. ZnOCPc-AMNPs and 

ZnTCPc-AMNPs are also compared.  
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 Table 2.1: Operating parameters used for electrospinning of PA-6 nanofibers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter  

Polymer molecular weight  70 000, 80 000, 90 000 

Polymer concentration 10-16 wt.% 

Applied voltage 9-30 kV 

Flow rate 0.2- 1ml/h 

Humidity 48-52 % RH 

Solvent system FA/AA 

TCD (tip-to-collector distance) 6 cm 
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3.1 Synthesis of AMNPs and Pc-AMNPs conjugates 

The co-precipitation of Fe
2+

/ Fe
3+ 

was carried out in aqueous medium under inert conditions 

since MNPs are subject to oxidation in air. To allow monodispersity and stability, the magnetite 

nanoparticles (MNPs) were stabilized with trisodium citrate to yield CMNPs, Scheme 3.1, step 1. 

The nanoparticles obtained were black and exhibited strong magnetic response. The CMNPs 

were coated with silica to prevent corrosion of MNPs and to allow further functional group 

attachment, Scheme 3.1, step 2. The silica coated MNPs (SMNPs) were functionalized with 3-

aminopropyltriethoxy silane (APTES) to yield amino functionalized MNPs (AMNPs) (Scheme 

3.1, step 3). This facilitates linking to carboxylic phthalocyanines through an amide bond.  

 

H
2
N(CH

2
)

3
Si(OEt)

3

DMF, toluene, RT

    Si-OH

    Si-OH

Fe2+ , Fe3+

    Si-OH

Step 1
Step 2

Step 3

NH4OH, Na3C6H5O7

N2

Si (OEt)
4

NH3OH

o
o
o

si NH2

 

 

 

 

 

AMNP 

SMNP CMNP 

Scheme 3.1: Synthesis of amino functionalized magnetite nanoparticles (AMNPs). CMNP= 

citrate stabilized magnetite nanoparticles; SMNP= silica coated magnetite nanoparticles 
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The ZnOCPc and ZnTCPc were synthesized according to the method reported in literature [134, 

135]. The carboxylic acid groups on these molecules allow covalent linkage to the amino 

functionalized MNPs through an amide bond. The nanocomposites of ZnOCPc-AMNPs and 

ZnTCPc-AMNPs were formed by a covalent linkage of ZnOCPc or ZnTCPc with the amino 

functionalized magnetite nanoparticles (AMNPs). 1-Ethyl-3-(3-methylaminopropyl) 

carbodiimide (EDC) and N-hydroxy succinimide (NHS) were used to activate the carboxylic 

acid groups on the ZnOCPc or ZnTCPc before linking to the amino groups of the AMNPs, as 

shown for ZnOCPc in Scheme 3.2.  Studies have shown that with a mixture of EDC and NHS, 

about 60% of the carboxylic acid groups are NHS-activated, 30% are EDC activated, leaving 

only 10% not activated [141]. Therefore it is possible that more than one ZnOCPc or ZnTCPc 

can be linked to the MNPs.       
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Scheme 3.2: Covalent linking of AMNPs to ZnOCPc. NHS = N-hydroxy succinimide; 

EDC= 1-Ethyl-3-(3-methylaminopropyl) carbodiimide 
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Scheme 3.3 shows the use of EDC and NHS in the formation of the amide bond. The NHS is 

used to prepare amine-reactive esters of carboxylate groups for crosslinking. The carboxylates (-

COOH) of the Pcs are reacted with NHS in the presence of a carbodiimide (EDC), resulting in a 

semi-stable NHS ester, which may then be reacted with primary amines (-NH2) to form amide 

crosslinks (Scheme 3.3). The activation reaction with EDC and NHS is most efficient at pH 4.5-

7.4; hence these reactions were performed in buffer solution of pH 7.4. 

 

  

Scheme 3.3: Schematic representation showing the activation of carboxylic acid group of 

the phthalocyanine and the immobilization of AMNPs on activated carboxy-

phthalocyanine forming an amide bond. 
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3.2 Characterization of ZnOCPc-AMNPs and ZnTCPc-AMNPs conjugates  

3.2.1 FTIR spectra (p 50) 

 

The covalent link between ZnOCPc or ZnTCPc and AMNPs was confirmed by FTIR 

spectroscopy as shown in Figure 3.1. The characteristic peaks of the primary amino (-NH2) 

group of the AMNPs are observed at 1568 cm
-1

 and 1484 cm
-1

, Figure 3.1 (i) (A) and B. The 

intense peak at 1034 cm
-1

 is assigned to Si-O-Si and Fe-O-Si bonding stretch, as reported in 

literature [142]. The ZnOCPc shows the C=O vibration at 1709 cm
-1

 and broadened peak in the 

range 3100 cm
-1

 to 3600 cm
-1

 corresponding to the O-H of the carboxyl group, Figure 3.1 (ii) 

(A). The ZnOCPc-AMNPs (mixed) spectrum in Figure 3.1 (iii) (A), showed the C=O peak (at 

1710 cm
-1

) and the O-H of the carboxyl group of the ZnOCPc, showing no covalent bonding 

between the MNPs and ZnOCPc. With the ZnOCPc-AMNPs (linked) conjugate, the peaks 

attributed to the -COOH functional group disappeared. While the peaks assigned to the amide (-

NHCO-) group appeared i.e. C=O stretch (1631 cm
-1

), -NH- bend (1535 cm
-1

) and the -NH- 

stretch at 3283 cm
-1

, Figure 3.1(iv) (A). Similar IR spectral changes were observed for ZnTCPc, 

ZnTCPc-AMNPs (mixed) and ZnTCPc-AMNPs (linked), Figure 3.1 (B).  
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Figure 3.1: FT-IR spectra of (i) AMNPs (ii) ZnOCPc (iii) ZnOCPc-AMNPs (mixed) and 

(iv) ZnOCPc-AMNPs (linked) (A). (i) AMNPs, (ii) ZnTCPc, (iii) ZnTCPc-AMNPs (mixed) 

and (iv) ZnTCPc-AMNPs (linked) (B). Highlighted = amide bond region. 
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3.2.2 UV/ Vis absorption and fluorescence spectra  

Selected data from the absorption and fluorescence spectra of the MPcs and their conjugates are 

presented in Table 3.1. A mixture of solvents, EtOH: NaOH (1:1) was used for ZnTCPc in order 

to suppress its aggregation.  ZnOCPc is partially soluble in water and highly soluble in alkaline 

pH, hence pH 9 solution was used.  

Table 3. 1: Wavelength of strongest absorption (abs), emission (emm) and excitation (exc) 

of MPcs and their conjugates in the solvent media, EtOH: NaOH (1:1) and also in pH 9 

buffer. 

 

 

Complex 

 

Solvent 

 

λabs 

(nm) 

 

λ emm 

(nm) 

 

λ exc 

(nm) 

 

ZnOCPc 

 

pH 9 buffer 

 

691 

 

705 

 

691 

 

ZnOCPc-AMNPs (mixed) 

 

pH 9 buffer 

 

691 

 

706 

 

698 

 

ZnOCPc-AMNPs (linked) 

 

pH 9 buffer 

 

688 

 

701 

 

694 

 

ZnTCPc 

 

EtOH: NaOH (1:1) 

 

673 

 

708 

 

706 

 

ZnTCPc-AMNPs (mixed) 

 

EtOH: NaOH (1:1) 

 

673 

 

708 

 

704 

 

ZnTCPc-AMNPs (linked) 

 

EtOH: NaOH (1:1) 

 

673 

 

694 

 

692 

  

 

3.2.2.1 ZnOCPc-AMNPs conjugate  

 

The amino functionalized MNPs showed a broad absorption peak at 385 nm, Figure 3.2. The 

ground state electronic absorption spectra of ZnOCPc showed a monomeric behavior as 

evidenced by a single narrow Q-band, which is reported before [143]. The Q band of the 

ZnOCPc in pH 9 buffer solution is observed at 691 nm, Figure 3.2 (Table 3.1). The absorption 

spectrum of ZnOCPc-AMNPs is broad and shows the presence of both the ZnOCPc and 
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AMNPs. There was no change in the Q band maxima following mixing of ZnOCPc with AMNPs 

(without a chemical bond) as reported in literature for other MPc complexes mixed with MNPs 

[144]. The ZnOCPc-AMNPs (linked) showed a slight blue shift of the Q band compared to 

ZnOCPc alone due to covalent linking.  

For ZnOCPc the excitation was similar to absorption spectra and both were mirror images of the 

emission spectra, Figure 3.3A. For the ZnOCPc-AMNPs (mixed), the excitation and absorption 

spectra were observed at 698 nm and 691 nm, respectively, Table 3.1 (Figure 3.3B), suggesting 

red shifting by 7 nm upon excitation. For ZnOCPc-AMNPs (linked) the excitation was red 

shifted from absorption by 6 nm, Table 3.1 (Figure 3.3C). However, the mirror image rule still 

holds for both mixed and linked. The red shifting for linked and mixed ZnOCPc-AMNPs could 

be due to the antiparallel orientation of dipolar moments of both ZnOCPc and MNPs upon 

excitation; such kind of behavior is reported in literature [145].  

 

 

Figure 3.2: Ground state absorption spectra of AMNPs, ZnOCPc, ZnOCPc-AMNPs 

(mixed) and ZnOCPc-AMNPs (linked) using pH 9 buffer. Concentration ~ 2.5 × 10
-6

 M. 
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Figure 3.3: Ground state absorption, fluorescence emission and excitation spectra of (A) 

ZnOCPc, (B) ZnOCPc-AMNPs (mixed) and (C) ZnOCPc-AMNPs (linked) in pH 9 buffer 

solution, λ exc = 620 nm. 

 

3.2.2.2 ZnTCPc-AMNPs conjugate  

 

The ZnTCPc is known to be aggregated in aqueous media [146], hence it shows splitting of the 

Q-band, Figure 3.4 (i). The low energy peak is due to the monomer, while the high energy band 

is due to the aggregate. Aggregation persisted when ZnTCPc and AMNPs are mixed, Figure 3.4 

(ii), but upon linking, aggregation is reduced, Figure 3.4 (iii). The aggregation of ZnTCPc was 

also reduced by using a solvent mixture of EtOH and NaOH (1:1), Figure 3.5A. It is well known 

that organic solvents break up aggregation in phthalocyanines [68]. For ZnTCPc, ZnTCPc-

AMNPs (mixed) and ZnTCPc-AMNPs (linked), the Q-band of the excitation spectra were red 

shifted by 33 nm, 31 nm and 19 nm (the latter in Figure 3.5 B), respectively as compared to the 
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absorption spectra, Table 3.1. This could be related to the fact that ZnTCPc consists of a mixture 

of isomers, with some being more fluorescent.  

 

 

 

 

Figure 3.4: Ground state absorption spectra of ZnTCPc (i), ZnTCPc-AMNPs (mixed) (ii) 

and ZnTCPc-AMNPs (linked) (iii) in pH 9. Concentration ~10
-6
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Figure 3.5: Ground state absorption spectra of  (A) AMNPs, ZnTCPc, ZnTCPc-AMNPs 

(mixed) and ZnTCPc-AMNPs (linked); (B) Ground state absorption, fluorescence emission 

and excitation spectra of ZnTCPc-AMNPs (linked). Solvent EtOH: 0.5 M NaOH (1:1), λ 

exc = 620 nm. 
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3.2.3 PXRD patterns (p 58) 

 

The AMNPs PXRD pattern, Figure 3.6 (i) shows peaks characteristics of a face centered cubic 

structure of 2 values, 30 
o
, 36 

o
, 43 

o
, 54 

o
, 57 

o
 and 63 

o
, with the hkl Miller indices of (220), 

(311), (400), (422), (511) and (440), respectively. These characteristics correspond to what have 

been reported in literature before [147]. Moreover, the peak at 2θ~18
o
 is due to the amorphous 

silica [33]. ZnOCPc has sharp peaks which upon conjugation they overlap with those of AMNPs, 

Figure 3.6 (ii) and (iii). ZnTCPc-AMNPs (linked) show peaks matching those of the magnetite 

pattern, Figure 3.7. ZnTCPc shows one weak peak at 2θ = 26
o
, Figure 3.7 (inset), which is 

characteristic of Pcs [148].  These peaks overlap with the AMNPs pattern. The minimum 

crystalline sizes of the AMNPs and their conjugates were estimated using Debye-Scherrer 

equation and focusing on the 2 = 36
o
 (311) peak.  The calculated size of the amino 

functionalised MNPs is 11 nm. The size was found to be 12.5 nm for ZnTCPc-MNPs and 12.0 

nm for ZnOCPc-MNPs. The increase in size and the appearance of new peaks confirms the 

combination of AMNPs with ZnTCPc or ZnOCPc. 
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Figure 3.6: Powder X-ray diffraction patterns of (i) AMNPs, (ii) ZnOCPc, (iii) ZnOCPc-

AMNPs (linked). 

 

 

       

Figure 3.7: Powder X-ray diffraction patterns of (i) AMNPs and (ii) ZnTCPc-AMNPs 

(linked). Inset = PXRD pattern of ZnTCPc.  
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3.2.4 TEM (p 60, 61) 

 

The TEM images of the CMNPs, AMNPs, ZnTCPc-AMNPs (linked) and ZnOCPc-AMNPs 

(linked) are as shown in Figure 3.8. The CMNPs shown in Figure 3.8 (A) are spherical and not 

aggregated. Functionalizing them with APTES, Figure 3.8 (B) resulted in aggregation and the 

aggregation continues upon linking to the ZnTCPc and ZnOCPc, Figure 3.8 (C) and (D), 

respectively. This aggregation could be due to the drying of the nanoparticles on the TEM grid. 

The average size of the CMNPs, AMNPs, and ZnTCPc-AMNPs and ZnOCPc-AMNPs are 9 nm, 

11 nm, 12.5 nm and 12.98 nm, respectively. The sizes obtained from TEM, were determined by 

means of plotting the particle size distribution histograms and they are in close proximity with 

the minimum sizes obtained by PXRD above.  
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Figure 3.8: TEM images showing in (A) CMNPs, (B) AMNPs, (C) ZnTCPc-AMNPs 

(linked), (D) ZnOCPc-AMNPs (linked), and their corresponding size distribution 

histograms. 

 

3.2.5 Energy dispersive x-ray spectroscopy (EDS) 

Energy dispersive x-ray spectroscopy (EDS) was used to assess the elemental composition of 

AMNPs, Figure 3.9. The presence of Fe and O confirms the formation of the iron oxide 

nanoparticles, while the silicon (Si) and carbon (C) signals are due to the ethoxy silane groups on 

the surface of the AMNPs, Figure 3.9. 

                  

Figure 3.9: EDS profile of AMNPs 

Average= 12.98 nm 
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3.2.6 Thermogravimetric analysis (TGA) 

 

Thermogravimetric analysis (TGA) was used to examine the organic content of the surface of 

AMNPs. The TGA curve for AMNPs, Figure 3.10 (i), shows two weight loss steps i.e. an initial 

loss of 13.4 % (which is attributed to moisture) at ~100 
o
C and a slow decomposition step (17.6 

%) over ~400 
o
C which could  be due to the loss of 3-aminopropyl-triethoxysilane (APTES) 

groups. The curve for ZnOCPc-MNPs, Figure 3.10 (ii) shows a weight loss of 42.3 % over 450 

o
C, with a sharp decomposition step at ~280 

o
C. The weight loss may be due to the 

decomposition of the ZnOCPc and the amino-propyl silane groups on the MNPs surface. This 

would mean that the amount of ZnOCPc  MNPs is 11.3 %. Figure 3.10 (iii) shows the 

decomposition profile for the ZnOCPc which develops as a slow decomposition step followed by 

a sharp decrease at ~500 
o
C. 

Figure 3.10: TGA curves of  (i) AMNPs, (ii) ZnOCPc-MNPs and (iii) ZnOCPc 
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3.3 Photophysical and photochemical parameters  

The effect of AMNPs on the photophysicochemical parameters of ZnOCPc and ZnTCPc were 

studied, the data is shown in Table 3.2. 

Table 3. 2: The photophysical and photochemical parameters of ZnTCPc and ZnOCPc as 

well as their mixtures and conjugates with AMNPs. 

 

 

Complex 

 

Solvent 

    

  ΦF 

 

F (ns) 

 

  T 

 

 T  

(s) 

 

 

 

    τΔ 

    (s) 

 

ZnTCPc 

 

EtOH: NaOH 

(1:1) 

  

 0.01 

 

2.86 (92.4 %) 

 

0.79 (7.64 %) 

 

0.32 

 

118 

 

0.12 

 

0.8 (±0.01) 

 

ZnTCPc-AMNPs 

(mixed) 

 

EtOH: NaOH 

(1:1) 

 

<0.01 

 

0.01 (73.3 %) 

 

2.81 (26.3 %) 

 

0.30 

 

151 

 

0.17 

 

0.9 (±0.01) 

 

ZnTCPc-AMNPs 

(linked) 

 

EtOH: NaOH 

(1:1) 

  

<0.01 

 

3.16 (100 %) 

 

0.37 

 

192 

 

0.26 

 

2.3 (±0.2) 

 

ZnOCPc 

 

pH 9 buffer 

 

0.15 

 

2.90 (100%) 

 

0.34 

[71, 152] 
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0.21 

 

1.7 (±0.4) 

 

ZnOCPc-AMNPs 

(mixed) 

 

pH 9 buffer 

 

0.12 

 

2.91 (79%) 

 

0.01 (21%) 

 

0.32 

 

67 

 

0.24 

 

2.2 (±0.1) 

 

ZnOCPc-AMNPs 

(linked) 

 

pH 9 buffer 

 

0.09 

 

3.0 (100%) 

 

0.41 

 

147 

 

0.31 

 

8.5 (±0.3) 
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3.3.1 Fluorescence quantum yields and lifetimes  

 

The ΦF value for ZnOCPc-AMNPs (linked) or ZnTCPc-AMNPs (linked) were found to be much 

lower than that for Pc alone due to increased intersystem crossing in the presence of the heavy, 

paramagnetic AMNPs, Table 3.2. Time resolved fluorescence decay curves are shown in Figures 

3.11 and 3.12, the fluorescence lifetimes (τF) are listed in Table 3.2. One lifetime was observed 

for ZnOCPc alone, ZnOCPc-AMNPs (linked) or ZnTCPc-AMNPs (linked) while two lifetimes 

were found for ZnTCPc, ZnOCPc-AMNPs (mixed) or ZnTCPc-AMNPs (mixed). The presence 

of two lifetimes in the mixed compounds may suggest the presence of differently oriented, 

closely packed Pc molecules on the AMNP surface [149]. For ZnTCPc alone, two lifetimes may 

be due to quenched and unquenched fluorescence caused by aggregation [150]. 
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 Figure 3.11: Fluorescence decay curves of (i) ZnOCPc (ii) ZnOCPc-AMNPs (mixed) and 

(iii) ZnOCPc-AMNPs (linked) in pH 9 buffer. 

 

                   

 

Figure 3.12: Fluorescence decay curves of (i) ZnTCPc, (ii) ZnTCPc-AMNPs (mixed) and 

(iii) ZnTCPc-AMNPs (linked) in EtOH:NaOH (1:1). 
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3.3.2 Triplet quantum yields and lifetimes  

 

The triplet quantum yields and lifetimes are listed in Table 3.2. Figure 3.13 shows a 

representative triplet decay trend for ZnOCPc and ZnOCPc-AMNPs (both mixed and linked). 

The curves obeyed the first order kinetics for ZnTCPc or ZnOCPc together with their conjugates. 

The ΦT value was found to increase for the ZnTCPc-AMNPs (linked) or ZnOCPc-AMNPs 

(linked) when compared to either ZnTCPc or ZnOCPc alone, due to the heavy atom effect of 

AMNPs. Surprisingly, there is no increase in this value for the ZnTCPc-AMNPs (mixed) or 

ZnOCPc-AMNPs (mixed) samples when compared to ZnTCPc or ZnOCPc alone, even though 

the external heavy atom effect of the AMNPs could also play a role. This could be due to the 

distance between the Pc and AMNPs because there is no linkage. The higher ΦT value 

corresponds to the lower ΦF value for the ZnTCPc-AMNP (linked) or ZnOCPc-AMNPs (linked). 

Triplet state lifetimes of the ZnTCPc or ZnOCPc covalently linked with AMNPs are higher than 

those of the mixed samples and Pcs alone. It is expected that when triplet quantum yields 

increase, the triplet lifetimes should be shorter [151]. It was previously reported that MNPs 

increase the triplet lifetime of ZnPc [144].  In the presence of nanoparticles such as quantum 

dots, the increase in triplet lifetimes of the Pcs with increase in triplet quantum yield has been 

repeatedly observed [152, 153]. The long lifetimes for the ZnTCPc-AMNPs (linked) or ZnOCPc-

AMNPs (linked) could be as a result of the protection afforded by the AMNPs to the 

phthalocyanine from the environment.  
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Figure 3.13: Triplet decay profile of (i) ZnOCPc (ii) ZnOCPc-AMNPs (mixed) and (iii) 

ZnOCPc-AMNPs (linked) in pH 9 buffer, λexc = 687 nm. 

 

3.3.3 Singlet oxygen quantum yield (Φ∆) and lifetime (τ∆) 

 

A representative 
1
O2 phosphorescence decay curve is shown in Figure 3.14 and the Φ∆ values are 

listed in Table 3.2. By chemically linking the AMNP with ZnOCPc or ZnTCPc, the Φ∆ increased 

as compared to ZnOCPc-AMNPs (mixed), ZnOCPc and ZnTCPc alone, Table 3.2. This 

corresponds to the increased triplet quantum yields observed previously. An increase in Φ∆ was 

observed for ZnOCPc-AMNPs (mixed) and ZnTCPc-AMNPs (mixed) even though there was no 

increase in their ΦT. A longer singlet oxygen lifetime was observed for the ZnOCPc-AMNPs 

(linked) and ZnTCPc-AMNPs (linked) when compared to the ZnOCPc-AMNPs (mixed), 

ZnTCPc-AMNPs (mixed), ZnOCPc and ZnTCPc alone, Table 3.2.   
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Figure 3.14: Singlet oxygen phosphorescence decay profile of ZnOCPc in pH 9 buffer 

solution. 

 

In the subsequent chapter, the effects of elecrospinning parameters on the electropsun nanofibers 

are investigated. The thermal stability and the singlet oxygen generation ability of the fibers 

incorporated with Pc and Pc-AMNPs are also studied.  
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CHAPTER FOUR 
    Characterization of the fibers 
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4. Characterization of the electrospun fibers 

This work reports on the investigation of the effect of solution parameters on the fiber 

morphology and size. The best electrospun solution is chosen for the incorporation of the 

phthalocyanine and phthalocyanine-magnetite conjugate. Moreover, the modified and 

unmodified fibers were characterized and the singlet oxygen quantum yields are also determined. 

4.1 Electrospun PA-6 fibres  

4.1.1. Polymer viscosity/concentration/molecular weight  

 

The solution viscosity depends highly on the polymer concentration and has been found to have 

an effect on the fiber size and morphology [154, 155]. Fixing the polymer concentration and 

increasing the polymer molecular weight (B24 to B32) increases the solution viscosity, as shown 

in Table 4.1. Increasing the polymer concentration for the same polymer grade increases the 

viscosity and conductivity. The SEM images in Figure 4.1 also show that as we increase the 

polymer viscosity by increasing the concentration, the fiber diameter also increases, Table 4.2. 

However a similar trend was not observed for all polymer grades at different viscosities and 

concentrations. In order to obtain a small fiber diameter, the solution concentration should be as 

low as possible, which is useful in applications of fibers for filtering. However, at low polymer 

concentrations (i.e., lower viscosity); defects in the form of beading and droplets were observed 

(Figure 4.2 A). This is a characteristic of electrospraying instead of spinning. Additionally, the 

presence of junctions and bundles were observed, indicating that the fibers were still wet when 

reaching the collector. Increasing the solution viscosity by increasing the polymer concentration, 

uniform fibers with few beads and junctions were obtained, Figure 4.2 B. Figure 4.3 shows that 

as the polymer molecular weight increases the fiber diameter increases. 
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 Table 4.1: The viscosity and conductivity of various polymer solutions used during the 

experiment. FA=Formic Acid, AA=Acetic Acid 

                               

Polymer 

grade Polymer concentration 

(Wt. %) 

 

Viscosity 

(cP) Conductivity (mS/cm) 

FA/AA FA/AA 

50/50 vol.% 75/25 vol.% 50/50 vol.% 75/25 vol.% 

B24 

10 100  114 0.643  1.930 

12 183  206 0.678  2.036 

14 384  349 0.716  2.055 

16 690  778 0.739  2.096 

B27 

10 141  177 0.646  1.972 

12 208  344 0.691  2.029 

14 576  576 0.722  2.069 

16 885  952 0.739  2.022 

B32 

10 188  284 0.633  1.894 

12 389  547 0.686  1.963 

14 796  1233 0.699  1.986 

16 1802  1666 0.700  1.995 
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4.1.2 Solvent ratio 

 

Polyamide-6 dissolves in formic acid (FA) and not in acetic acid (AA) however, acetic acid acts 

as a stabilizer as stated by De Schoenmaker et al [156]. According to Pham et al. [157], the 

conductivity of a PA-6 can be increased by adding a highly polar solvent or MgCl2 without 

affecting the solution viscosity but having an impact on the fiber diameter.  With an increase in 

the amount of formic acid, the conductivity and viscosity increases (Table 4.1) and thus the fiber 

diameter increases, Figure 4.4 and Table 4.2. The main reason for this is the higher dielectric 

constant of formic acid (57.29 at 25 
0
C). The high dielectric constant of formic acid is due its 

high polarity and it determines the charge distribution in a jet. Acetic acid has a lower dielectric 

constant (6.6 at 25 
o 

C) than formic acid thus the higher the formic acid content, the higher the 

dielectric constant and the more the electric field pulls the polymer solution since the solution is 

more conductive. Most of the solutions with 75:25 volume ratios (FA/AA) were more 

electrospinnable than those of 50:50 volume ratios (FA/AA). Table 4.2 shows larger fiber 

diameter for high molecular weight and high polymer concentration. 
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                                                   81 nm                                                    96 nm                              

          

                                                   10 wt. %                                              12 wt. %     

 

                                            112 nm                                         127 nm 

                                     

                                                             14 wt. %                                         16 wt. % 

Figure 4.1: SEM images showing the effect of PA-6 concentration (bottom) on the fiber 

diameter (top). B27 (Mw=80000), 75:25 (FA/AA). Relative humidity= ±48 % at 25 
o
C  
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Figure 4.2: SEM images showing (A) beads and droplets at low viscosity 10 wt. % (B) no 

beads and droplets at higher viscosity. 16 wt. %, B27 (Mw=70000), 50:50 (FA/AA). Circled 

= bead. Relative humidity =49% at 22 
o
C 

 

                                      B24                                          B27                                   B32                                     

                        

                                 66 nm                                  81 nm                                   108 nm                             

Figure 4.3: SEM images showing the effect of PA-6 grades on fiber diameter and 

morphology. B24 (Mw= 70000), B27 (Mw=80000), B32 (Mw 90000); 75:25 (FA/AA). 

Relative humidity= ± 49 % at 22 
o
C 

                                        

 

                              

 

 

 

 

(A) (B) 
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                                       B 32 (50:50 FA/AA)                            B 32 (75:25 FA/AA) 

                                   

                                                       90 nm                                                          108 nm       

Figure 4.4: SEM images showing the effect of solvent ratio FA/AA) on the fiber diameter 

and morphology. PA-6 grade B32 (Mw= 90000), Relative humidity = ± 48 % at 26 
o
C            

 

Table 4.2: The effect of solvent ratio, polymer concentration and molecular weight on the 

fiber diameter (µm). FA/AA=50/50 and FA/AA=75/25 

 

Polymer 

concentration (wt. 

%) 

  

50:50 vol.% (FA/AA) 75/25 vol.% (FA/AA) 

B24 B27 B32 B24 B27 B32 

10 58 69 90 66 81 108 

12 65 107 131 86 96 141 

14 95 79 260 103 112 154 

16 101 160 229 113 127 230 
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4.2 Electrospun fibers containing ZnOCPc and ZnOCPc-AMNPs  

 

ZnOCPc has been used as an example representing ZnTCPc. It is reported before that anchoring 

a ZnPc into PA-6 solution could increase the conductivity and viscosity of the polymer solution 

[158]. The conductivity of the Pc central metal adds on the conductivity of the polymer solution. 

This is similar to the results we obtained when adding a ZnOCPc into polyamide solution. We 

first chose the best electrospun PA-6 grade and concentration (i.e., B 32 14 wt. %, 75:25 FA/AA) 

and thereafter different concentrations of ZnOCPc or ZnOCPc-AMNPs were added. B 32 14 wt. 

% was the best because there was no clogging and dripping of the polymer solution and 

furthermore the Taylor cone was stable. It is detailed in Table 4.3 that by fixing the polymer 

concentration and increasing the ZnOCPc concentration increases the solution viscosity, 

conductivity and thus the fiber diameter. A similar trend is expected when ZnOCPc-AMNPs is 

added. However, SEM images in Figure 4.1 did not show any change upon addition of ZnOCPc 

and ZnOCPc-AMNPs. Figure 4.5 shows the EDS spectrum of PA-6/ZnOCPc-AMNPs nanofiber. 

The appearance of the elements associated with the ZnOCPc-AMNPs conjugate on the EDS 

spectrum, confirms that the ZnOCPc-AMNPs was successfully embedded in the PA-6 

nanofibers. 
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Table 4.3: The effect of ZnOCPc concentration on solution viscosity, conductivity and fiber 

diameter (nm). The FA/AA (75/25) solvent also contained 14 wt. % PA-6 polymer (B 32). 

 

 

 

 

 

 

   

 

 

 

 

 

ZnOCPc 

concentration 

(mmol) 

Viscosity 

 

(Cp) 

Conductivity 

 

(mS/cm 

Fiber diameter 

 

(nm) 

0.1 1419 1.919 111 

0.5 1890 1.975 156 

1 2828 1.995 240 

Figure 4.5: EDS spectrum of PA-6/ ZnOCPc-AMNPs nanofibers, spun from 

B32 14 wt. % (FA/AA) 75/25 
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4.2.1 Thermogravimetric analysis (TGA) (p 79) 

 

The TGA thermograms in Figure 4.6 show a comparison between functionalized and 

unfunctionalized PA-6 nanofibers. In this study the thermal stability is regarded as a function of 

the relative amount of total mass loss                      . PA-6 nanofibers, Figure 4.6 (i), decomposed 

completely meaning no residuals were left. The first degradation stage for PA-6/ZnOCPc at 420 

o
 C is due to the PA-6 nanofibers and the second degradation at 550 

o 
C is due to the ZnOCPc in 

the nanofibers, Figure 4.6 (ii). In addition ZnOCPc alone not embedded in the fiber is thermally 

stable when compared to PA-6 alone, Figure 4.6 (iii). This would mean that the stability of PA-6 

(Figure 4.6 (i)) is increased in the presence of ZnOCPc. The PA-6/ZnOCPc-AMNPs nanofibers, 

shows the first onset decomposition temperature below 300 
o 
C, the second above 400 

o 
C and the 

third decomposition  above 500 
o 

C, Figure 4.6 (iv). The first and third decompositions could be 

due the loss of fragments of the ZnOCPc-AMNPs conjugate and the second degradation could be 

due to the PA-6 because the second degradation onset temperature is close to that of PA-6 alone. 

The increased thermal stability of PA-6/ZnOCPc-AMNPs nanofibers is due to the thermally 

stable magnetite nanoparticles (MNPs). This confirms that the thermal stability of PA-6 

nanofibers can be enhanced by functionalization with thermally stable nanoparticles.  
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Figure 4.6: TGA thermograms of electrospun nanofibers of PA-6 (i), PA-6/ZnOCPc (ii), 

ZnOCPc alone (iii) and PA-6/ZnOCPc-AMNPs (iv).  

 

4.2.2 Singlet oxygen generating ability of the functionalized fiber (p 80)  

 

As stated already, singlet oxygen is involved in photocatalytic reactions. Hence it is important to 

determine the singlet oxygen generating ability of the modified fiber in the aqueous medium 

which is to be used for photocatalysis.  The singlet oxygen quantum yield (∆) determinations 

for the ZnOCPc and ZnOCPc-AMNPs in fibers were carried out in unbuffered aqueous media 

using ADMA as a quencher and its degradation was monitored at 380 nm, Figure 4.7. In each 

case 15 mg of the modified fiber was suspended in an aqueous solution of ADMA and irradiated 

using the photolysis set-up described in chapter 2. The singlet oxygen quantum yield (∆) of the 

PA-6 fibers containing different amounts of ZnOCPc (hence different sizes) were 0.16 for the 

111 nm, 0.21 for 156 nm, 0.24 for 240 nm, Table 4.4. For PA-6/ZnOCPc-AMNPs fibers the ∆ 
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value is 0.37. The higher the ∆ value, the more effective is the fiber for degradation of Orange-

G, as discussed in the next chapter. 

 

 

 

Figure 4.7: UV/Vis spectral changes observed upon photolysis of 15 mg of PA-6/ZnOCPc-

AMNPs nanofibers in the presence of ADMA in unbuffered water for 30 min of photolysis. 

Starting ADMA concentration = 4.9 × 10
-5

 mol dm
-3

, irradiation interval = 5 min.    

       

Table 4.4: The effect of ZnOCPc concentration and ZnOCPc-AMNPs in fibers on the 

diameter and singlet oxygen quantum yields. Polymer formed from   PA-6 (B 32, 14 wt. %) 

75/25 (FA/AA).  
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      Photodegradation of Orange-G 
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5. Photodegradation of Orange-G (OG) 

Photodegradation of Orange-G was done using ZnOCPc or ZnOCPc-AMNPs in solution and 

when embeded in a fiber as examples. The kinetics for the photodegradation of OG (Figure 5.1 

inset) using catalysts in different forms  were studied.   

 

5.1. UV/ Vis studies  

 

Figure 5.1 shows the absorption spectral changes observed during the photolysis of Orange-G 

(OG) at 5 minutes intervals using ZnOCPc (A) and ZnOCPc-AMNPs (B) in solution. However, 

in solution, ZnOCPc is difficult to recovery without AMNPs. The OG absorption peak at 476 nm 

decreased upon light irradiation in the presence of the catalysts. When the photocatalysts were 

employed without irradiation and as well as in the absence of oxygen (viz. nitrogen purged 

solutions), no UV-Vis spectral changes were observed due to degradation of Orange-G (OG). 

The catalyst (ZnOCPc-AMNPs) could be reused following recovery with a magnet and rinsing 

with deionized water and methanol. PA-6/ZnOCPc-AMNPs nanofibers show a complete 

decomposition of OG (Figure 5.2) when compared to ZnOCPc-AMNPs in suspension. The 

absence of the Q-band of the phthalocyanine when using PA-6/ZnOCPc and PA-6/ZnOCPc-

AMNPs nanofibers, indicates that there was no leaching of the Pc into the water, Figure 5.2. 

Unmodified fiber on its own showed no activity towards degradation of OG.  

 

 

 

 



83 
 

 

 

 

 

Figure 5.1: Electronic absorption spectra changes of 0.88 х 10
-4

 mol L
-1

 Orange G during 

visible light photocatalysis in the presence of ZnOCPc (A) and ZnOCPc-AMNPs (B), at 5 

min intervals in unbuffered water. Inset= Orange-G structure. 
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Figure 5.2: Electronic absorption spectra changes of 0.44 х 10
-4

 mol L
-1

 Orange G during 

visible light photocatalysis using 15 mg of PA-6/ZnOCPc-AMNPs nanofiber, at 5 min 

intervals in unbuffered water. 

 

5.2 First order kinetics for the photodegradation of Orange-G (OG) 

 

5.2.1 Catalyst in solution 

 

Plots for the variation of OG concentration versus irradiation time are shown in Figure 5.3 using 

the data obtained from Figures, 5.1 and 5.2. The plots obtained for    (
  

 
)  versus time were 

linear indicating that the reaction follows first order reaction kinetics Figure 5.3. The observed 

rate constant (kobs) decreased with an increase in dye concentration as expected. The kobs values 

listed in Table 5.1 are larger for ZnOCPc-AMNPs when compared with ZnOCPc alone. This 

could be due to the improved singlet oxygen quantum yield for ZnOCPc-AMNPs. Thus 

ZnOCPc-AMNPs showed better catalytic behavior towards the photodegradation of OG than 
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ZnOCPc. Table 5.1 illustrates that the catalyst performance decreased slightly following reuse. 

This is shown by a decrease in the rate kobs values when compared to the fresh catalyst. This 

could mean that the singlet oxygen generating capacity decreases as the catalyst is reused. The 

half-lives are also lower for ZnOCPc-AMNPs (used or fresh) compared to ZnOCPc alone.  

Table 5.1:  Shows the rate, rate constant (kobs) and half-life (t1/2) of various initial 

concentrations of OG using ZnOCPc-AMNPs.  All studies in unbuffered water. 

[OG]/ 

 × 10
-4

 

mol L
-1

 

     kobs /min
-1

        Initial rate/ 

 × 10
-7

 mol L
-1

 min
-1

 

  Half-life/min 

ZnOCPc ZnOCPc-

AMNPs 

Reused 

ZnOCPc-

AMNPs 

ZnOCPc ZnOCPc-

AMNPs 

Reused 

ZnOCPc-

AMNPs 

ZnOCPc ZnOCPc

-AMNPs 

Reused 

ZnOCPc-

AMNPs 

0.44 

 

0.0044 

 

0.0053 

 

0.0049 
 

   1.93 

 

2.33 

 

2.16 

 

157 

 

131 141 

0.88 0.0026 0.0031 0.0027    2.28 2.72 2.38 267 224 257 

1.33 0.0018 0.0021 0.0019    2.39 2.79 2.53 385 330 365 

2.21 0.0011 0.0013 0.0012    2.43 2.87 2.65 630 553 577 

2.65 0.0001 0.0011 0.0010    2.54 2.91 2.70 693 630 577 
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Figure 5.3: First order kinetics plots for degradation of OG; (i) 1.33 × 10
-4

, (ii) 2.21 × 10
-4

 

and (iii) 2.65 × 10
-4

 mol L
-1

 using ZnOCPc-AMNPs as a catalyst. 

 

5.2.2 Catalysts on electrospun nanofibers 

The plots of the variation of OG concentration versus irradiation time for PA-6/ ZnOCPc-

AMNPs. are shown in Figure 5.4 and the kinetic data is listed in Table 5.2. First order reaction 

kinetics are also observed in this case. The kobs rate follows the order PA-6/ZnOCPc-AMNPs> 

PA-6/ZnOCPc> ZnOCPc-AMNPs nanofibers, Table 5.2. This could be due to the improved 

singlet oxygen quantum yield for PA-6/ZnOCPc-AMNPs nanofibers. Thus better catalytic 

performace was observed for PA-6/ZnOCPc-AMNPs towards photodegradation of OG. 

However, the PA-6/ZnOCPc nanofibers improved with an increase in fiber size. The reduced 

half-lives for PA-6/ZnOCPc-AMNPs nanofiber also confirms that the catalyst was efficient. 
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Table 5.2: The rate constant (kobs), initial rate and half-life (t1/2) of various initial 

concentrations of OG using PA-6/ ZnOCPc-AMNPs nanofibers. Values in round brackets 

are for PA-6/ZnOCPc nanofiber. Values in square brackets are for ZnOCPc-AMNPs in 

solution (not embedded in fiber). All studies in unbuffered water. FD= Fiber diameter 

 

 

 

  

[OG]/ 

× 10-4 mol L-1 

              kobs /min
-1

 Initial rate/ 

× 10
-6

 mol L
-1

 min
-1

 

 

 

Half life/min 

 FD 

111 

nm 

FD 

156  

nm 

FD 

240  

nm 

 FD 

111  

nm 

FD 

156  

nm 

FD 

240  

nm 

 

 

 

 

FD 

111 

nm 

FD 

156 

nm 

 FD 

240 

nm 

 

      

        0.44 
0.0490 

[0.0053] 

(0.031) (0.035) (0.041)                         

 

 2.16 

[0.23] 
(1.36) 

 

(1.54) (1.80) 14 

[131] 

(22) (20) (17) 

0.88 0.0444 

[0.0031] 

(0.026) (0.029) (0.032) 3.91 

[0.272]  

(2.29) (2.55) (2.82) 15   

[224] 

(27) (24) (22) 

1.33 0.0324 

[0.0021] 

(0.020) (0.022) (0.023) 4.31 

[0.279] 

(2.66) (2.93) (3.10) 21   

[330] 

(35) (32) (30) 

2.21 0.0201 

[0.0013] 

(0.013)  (0.015) (0.016) 4.44 

[0.287]  

(2.87) (3.32) (3.54) 35 

[553] 

(53) (46) (43) 

2.65 0.0175 

[0.0011] 

(0.011) (0.013) (0.014) 4.64 

[0.291] 

(2.99) (3.45) (3.71) 39  

[630] 

(61) (53) (50) 
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Figure 5.4: First order kinetics plots for degradation of OG; (i) 1.33 × 10
-4

, (ii) 2.21 × 10
-4

 

and (iii) 2.65 × 10
-4

 mol L
-1

 using PA-6/ZnOCPc-AMNPs nanofiber as a catalyst.  

 

5.3 Langmuir-Hinshelwood kinetics 

 

The Langmuir-Hinshelwood rate expression (Eq. 5.1) [159] may be used to describe the 

relationship between the initial rate of degradation of Orange G and the corresponding initial 

concentration. This model has successfully been applied to describe the kinetics of solid-liquid 

reactions, particularly heterogeneous photocatalytic degradation reactions. Since the ZnOCPc-

AMNPs conjugate exists as a colloidal suspension, the Langmuir-Hinshelwood kinetic model 

may be employed. This model was also used for ZnOCPc or ZnOCPc-AMNPs fibers.  
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where    is the initial photocatalytic degradation rate (mol L
-1

 min
-1

),    is the initial 

concentration of OG,   is the apparent reaction rate constant (mol L
-1

 min
-1

) and    is the 

adsorption coefficient. 1/   was plotted against 1/  , a linear fit with a non-zero intercept was 

obtained showing that the photodegradation of OG obeys the Langmuir-Hinshelwood kinetics 

model, Figure 5.5. The value of   can be obtained from the y-intercept, while    is obtained 

from the slope of the line, and they were estimated at 3.1 × 10
-7

 mol L
-1

 min
-1 

and 7.3 × 10
4
 mol

-1
 

L, respectively, for ZnOCPc-AMNPs.   and    for reused catalyst (ZnOCPc-AMNPs) were 

estimated to be 2.8 × 10
-7

 mol L
-1

 min
-1

 and 7.9 × 10 
4
 mol

-1 
L, showing only small changes in 

the catalyst activity, Table 5.3.    , the adsorption coefficient was slightly higher for the reused 

catalyst, suggesting that adsorption was more favored following reuse.  
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Figure 5.5: Plot of the reciprocal of initial reaction rate (1\r0) vs. the reciprocal of the initial 

concentration of OG for photo-oxidation, (i) for the fresh catalyst (ZnOCPc-AMNPs) and 

(ii) for reused catalyst. 

 

The results in Figure 5.6 also show that Langmuir-Hinshelwood kinetic model is a relevant 

model in describing the kinetics for the photodegradation following heterogeneous catalytic 

system based on the fiber supported phthalocyanine complexes. For the photocatalysts embedded 

in fibers, the Langmuir-Hinshelwood kinetics data is listed in Table 5.3. The value of   and    

were estimated at 4.3 × 10
-6

 mol. L
-1

 min
-1 

and 1.1 × 10
4
 mol

-1
 L, respectively, for PA-6/ZnOCPc 

nanofiber (111 nm).   and    for PA-6/ZnOCPc-AMNPs nanofiber ( were estimated to be 6.8 × 

10
-6

 mol L
-1

 min
-1

 and 1.1 × 10
5
 mol

-1 
L respectively.    was estimated at 3.1 × 10

-7
 mol L

-1
 min

-

1 
and k at 7.3 × 10

4
 mol

-1
 L for ZnOCPc-AMNPs in solution, showing better activity on the fiber 

than in solution.   , the adsorption coefficient is higher for PA-6/ZnOCPc-AMNPs nanofiber, 

suggesting that adsorption was more favored on the fiber.  
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Figure 5.6: Plot of the reciprocal of initial reaction rate (1/r0) vs. the reciprocal of the initial 

concentration (1/C0) for photodegradation of OG, using (i) PA-6/ ZnOCPc-AMNPs and (ii) 

PA-6/ ZnOCPc-AMNPs nanofibers as catalysts in water. 

 

Table 5.3: Langmuir-Hinshelwood parameters for photocatalysis of Orange-G using 

unbuffered water. 

 

  Catalyst k 

mol L
-1

 min
-1

 

KA 

mol
-1

 L 

R
2
 

ZnOCPc-AMNPs  (fresh) 3.1 × 10
-7

 7.3 × 10
4
 0.9829 

ZnOCPc-AMNPs  (reused) 2.8 × 10
-7

 7.9 × 10
4
 0.9690 

PA-6/ZnOCPc-AMNPs fiber 6.8 × 10
-6

 1.1 × 10
5
 0.9731 

PA-6/ZnOCPc (111 nm) fiber 4.3 × 10
-6
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4
 0.9333 

PA-6/ZnOCPc (156 nm) fiber 4.9 × 10
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 1.1 × 10
4
 0.9851 

PA-6/ZnOCPc (240 nm) fiber        4.8 × 10
-6
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4
 0.9874 
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CHAPTER SIX 
CONCLUSIONS 
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Conlusions 

ZnTCPc and ZnOCPc were chemically linked to AMNPs to form ZnTCPc-AMNPs and 

ZnOCPc-AMNPs conjugates. The FTIR spectra confirmed the linkage of the two systems by the 

presence of peaks attributed to an amide bond. TEM revealed that the nanoparticles synthesized 

are spherical but aggregated. The size of the MNPs (by TEM) increased upon functionalization 

and linkage to the Pcs, and that the sizes obtained agree with PXRD data. The increase in the 

background of the UV/Vis absorption spectra also shows the interaction of Pcs (ZnTCPc or 

ZnOCPc) with the AMNPs. The ground state absorption, fluorescence excitation and emission of 

ZnOCPc after mixing and linking with AMNPs did not alter significantly. The UV/Vis 

absorption spectra of ZnTCPc have shown a monomeric Q-band in EtOH:NaOH (1:1) and upon 

linking with MNPs. The fluorescence quantum yields decreased in the presence of AMNPs. ΦT, 

Φ∆,∆ and T of ZnTCPc or ZnOCPc increased upon linking with AMNPs. Zinc octacarboxy 

phthalocyanine (ZnOCPc), as well as conjugates of ZnOCPc with AMNPs, were electrospun into 

fibers using polyamide 6 (PA-6). The functionality of the ZnOCPc and ZnOCPc-AMNPs was 

maintained within a solid fiber core. Good singlet oxygen quantum yields were obtained within 

the fibers. Orange-G was easily degraded by ZnOCPc-AMNPs as well as these fibre 

photocatalysts with the highest rate of degradation found for PA-6/ZnOCPc-AMNPs fiber due to 

its improved singlet oxygen quantum yield. The rate also increased with the size of the ZnOCPc-

AMNPs fibers. The photodegradation of Orange-G is in agreement with both first order kinetics 

and Langmuir-Hinshelwood kinetics. We have found that MNPs induces the adsorption of 

Orange-G onto the catalyst surface, as shown by an increased adsorption coefficient (KA) when 

PA-6/ZnOCPc-AMNPs fiber is used.  
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Future work 

Hydrophobic magnetite nanoparticles synthesized via sol-gel method could also be conjugated to 

hydrophobic mono carboxyl phthalocyanines in which one linkage is used. The magnetic 

properties of iron platinum (FePt), iron palladium (FePd), and iron oxides (Fe2O3 and Fe3O4) 

need to be studied alone and also when conjugated with phthalocyanines. It would be of great 

interest to also compare different shapes of magnetic nanoparticles.  Photodegradation 

comparing mono, di and tri-azo dyes as test pollutants need to be studied further. The effects of 

pH, temperature and catalyst loading on photodegradation can also be investigated. Products 

obtained upon degradation should be qualitatively characterized.   
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