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Abstract 

The effects of solvents on the singlet oxygen, photobleaching and fluorescence quantum yields for zinc 

phthalocyanine (ZnPc) and its derivatives; (pyridino)zinc phthalocyanine ((py)ZnPc), zinc 

octaphenoxyphthalocyanine (ZnOPPc) and zinc octaestronephthalocyanine (ZnOEPc), is presented. The 

effects of the solvents on the ground state spectra are also discussed. The largest red shift of the Q band 

was observed in aromatic solvents, the highest shift being observed for 1-chloronaphthalene. Higher 

singlet fluorescence quantum yields were observed in THF for ZnPc and ZnOPPC. Also in the same 

solvent phototransformation rather than photobleaching was observed for ZnOPPc. Split Q band in the 

emission and excitation spectra of ZnOPPc was observed in some solvents and this is explained in terms 

of the lowering of symmetry following excitation. 

1. Introduction 

Metallophthalocyanines (MPcs) have been a subject of extensive study because of their increasing diverse 

applications from industrial (catalysts, photoconductors, etc.) to biomedical (photodynamic therapy, PDT) 

[1]. Zinc (II) phthalocyanine (ZnPc), complexes have in particular been intensively studied with respect to 

their photosensitizing properties [2, 3, 4, 5, 6, 7, 8, 9 and 10]. Metallophthalocyanine complexes tend to 

aggregate in solution [11, 12 and 13] and aggregation diminishes the photosensitising ability of MPc 

complexes. Addition of groups to the peripheral positions of MPc complexes is known to influence the 

properties of the MPc to a large degree [14, 15, 16, 17 and 18]. For instance, the peripheral substituents 

increase the distance between the planar macrocycle rings carrying the π-electrons thereby making 

solvation easier. Solvents affect aggregation in phthalocyanine complexes. Organic solvents are known to 

reduce aggregation whereas aqueous solvents result in highly aggregated complexes. However, many 

phthalocyanine complexes remain aggregated even in non-aqueous solutions [10, 19 and 20]. Aromatic 

solvents such as benzene or toluene are known to give narrow Q bands in phthalocyanines whereas 

broadening is observed in other non-aromatic solvents [21]. Solvents also affect the photophysical and 

photochemical properties of MPc complexes [19, 20, 21 and 22].  

It is believed that during PDT, the photosensitiser is excited to its triplet state, and then transfers the 

energy to ground state oxygen, O2 (3Σg) generating excited state oxygen, 1O2 (1∆g) which is the chief 

cytotoxic species, through the so-called Type II mechanism [23]. Studies on the photostability of MPcs 
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during photosensitized reactions as well as their ability to generate the singlet oxygen are of immense 

importance.  

In this work we report on the effects of a series of solvents on the singlet oxygen, photobleaching and 

fluorescence quantum yields for zinc phthalocyanine (ZnPc) and its derivatives; (pyridino)zinc 

phthalocyanine ((py)ZnPc), zinc octaphenoxyphthalocyanine (ZnOPPc) and zinc 

octaestronephthalocyanine (ZnOEPc), Fig. 1. Peripheral or axial substitution of the zinc phthalocyanine 

complexes increases solubility. Also zinc phthalocyanine complexes peripherally substituted with estrone 

result in photosensitisers which may be selective towards certain tumour cells, the so called third 

generation type of photosensitisers.  

 
2. Experimental 
2.1. Materials 

Zinc phthalocyanine (ZnPc) was obtained from Aldrich. Zinc octaphenoxy-phthalocyanine (ZnOPPc) and 

zinc octaestronephthalocyanine (ZnOEPc) were synthesised as described before [10]. Axially ligated 

(pyridino)zinc phthalocyanine was synthesised using established procedures for the synthesis of axially 

ligated phthalocyanines by refluxing ZnPc in pyridine for 3 h. The solvent was then evaporated in air at 

60 °C. The resulting solid was washed with hexanes. The complex formed is represented as (py)ZnPc 

since ZnPc is known to form a five coordinate complex with pyridine [24]. 1,3-Diphenylisobenzofuran 



(DPBF) was purchased from Aldrich and used as received. N,N′-dimethylformamide (DMF, 

SAARCHEM) was freshly distilled. Dimethylsulphoxide (DMSO, SAARCHEM) was dried in alumina 

before use. All other solvents were obtained from SAARCHEM and used without further purification.  

2.2. Photobleaching and singlet oxygen quantum yields 

Photobleaching (Φp) and singlet oxygen (Φ∆) quantum yields determinations were carried out using the 

experimental set-up which has been described in detail elsewhere [10, 25 and 26]. Φ∆ was determined 

using DPBF as a singlet oxygen quencher. The relative method shown by Eq. (1) was employed for 

calculations of Φ∆ values 

 

 
(1)

 

 

where Φ∆
Std is the singlet oxygen quantum yield for the standards used in the various solvents. Table 1 

gives the literature [6, 27 and 28] values of Φ∆
Std in the various solvents used in this work. W and WStd are 

the DPBF photobleaching rates in the presence of ZnPc derivatives under investigation and the respective 

standard (chlorophyll a or ZnPc, Table 1). Iabs and Iabs
Std are the rates of light absorption by the ZnPc 

derivatives and the standard, respectively. The initial DPBF concentrations were kept the same for both 

the standards and the samples. Molar extinction coefficients (dm3 mol−1 cm−1) of DPBF at λ=417 nm were 

determined to be =23,000 (DMSO); =23,000 (DMF); =27,500 (pyridine); =18,000 (benzene); 

=18,000 (toluene). All the experiments were carried out at room temperature.  

Table 1. Singlet oxygen quantum yield (Φ∆
Std) standards employed in the various solvents  

 

The quantum yields for photobleaching were determined using the standard equation employed before 

[10, 25 and 26]. Fluorescence quantum yields were determined by the comparative method [29 and 30], 



using chlorophyll a in ether (ΦF=0.32) [31] as the reference standard. The refractive indexes of the 

solvents were employed in calculating the ΦF of the ZnPc derivatives.  

UV–Vis spectra were recorded on a Varian 500 UV/visible/NIR spectrophotometer. Fluorescence spectra 

were recorded with the Varian Eclipse spectrofluorimeter.  

3. Results and discussion 
3.1. Effects of solvents on the ground state electronic absorption spectra 

Table 2 shows that with the exception of chloroform, a larger red shift of the Q band was observed for 

ZnPc in aromatic solvents. The largest red shift was observed for 1-chloronaphthalene. The shift to longer 

wavelength could be due to either the destabilization of the highest occupied molecular orbital (HOMO) 

or the stabilization of the lowest unoccupied molecular orbital (LUMO). It has been suggested [19] that 

the interaction between coordinating solvents and the phthalocyanine molecule, stabilises the LUMO of 

the complexes. The observed red shift suggests that aromatic solvents stabilise the LUMO in MPc 

complexes, with the 1-chloronaphthalene containing a more extend π system stabilizing the LUMO to a 

larger extent. It is known [32] that the Q band shifts to longer wavelengths with enlargement of π 

conjugated system of the phthalocyanine ring. This work suggests that the presence of conjugation in 

solvents also shifts the Q band to the red.  

Table 2. Polarization red shifts of ZnPc in various solvents. λQband for ZnPc VAPOUR=660 nm [24]  

It has been reported before [19] that band positions in Ti(IV)Pc complexes were red shifted as the polarity 

of the solvent increased for non-coordinating solvents, with the magnitude of the red shift following the 



order hexane<toluene<chloroform<1-chloronaphthalene. The trend observed in Table 2 for these solvents 

is as follows: BENZENE=toluene˜chloroform<1-chloronaphthalane.  

Table 2 shows that in general, as the refractive index of the solvent increased, the red shift of the Q band 

increased. The electronic absorption spectra of ZnPc in the various solvents was analysed by using the 

method described originally by Bayliss [19 and 33]. The plot of (n2−1)/(2n2+1) (where n is the refractive 

index) versus the red shift in the Q band (the polarization red shift) is shown in Fig. 2. The linear nature of 

the plot suggests that the red shifts in the Q band are mainly a result of solvation rather than coordination. 

The relationship for the solvents evaluated can be expressed by Eq. (2): 

 
∆λQ=−7.298F−44.73 (2)

with R2=0.945.  

 

Fig. 2. Plot of polarization red shift vs. F (for ZnPc) where F=(n2−1)/(2n2+1), and n is the refractive index 

of the solvent: (a) 1-chloronaphthalene, (b) benzonitrile, (c) chlorobenzene, (d) benzene, (e) DMSO, (f) 

dichloromethane, (g) DMF, (h) THF, (i) triethylamine.  

There is no correlation in Table 2 between the coordinating strength of the solvent and the red shift. A 

coordinating solvent such as pyridine gives the same red shift as, for example, dichloromethane, 

confirming that coordination of the solvent does not play a significant role in the red shift. There was also 

no clear trend in the variation of the Q band with dipole moments considering all the solvents.  

Except for ZnOEPc in DMSO, the ground state absorption spectra of the complexes was typical of 

monomeric species. ZnOEPc was found to show aggregation in DMSO even at very low concentrations 

<1×10−6 mol dm−3, this was evidenced by broadening of the Q band and the appearance of the band 

associated with aggregates at the higher energy side (629 nm) of the Q band, Fig. 3a. But in all the other 



solvents investigated for ZnOEPc, such broadening was not observed, Fig. 3b. The ZnOPPc species 

showed the presence of an extra band at 698 nm in THF, Fig. 3c. Observation of two bands in the Q band 

region of MPc complexes is normally associated with the presence of monomeric and aggregated species. 

However, comparison with the spectra for systems where monomer/dimer equilibrium exists (e.g. Fig. 3a) 

shows that the main Q band at 674 nm in Fig. 3c is due to the monomer, there is no dimer peak evident to 

the higher energy side of this peak. The band at 698 nm needs some explanation. Charge transfer bands 

involving the central metal are not expected in ZnPc complexes. A similar band termed the ‘X’ band has 

been observed before in substituted ZnPc complexes [34]. This band was observed in non-polar or less 

polar solvents such as benzene and chloroform, but not in more polar solvents such as DMF, acetone and 

DMSO [34]. This band was observed more clearly only in THF in this work. The origin of the X band was 

explained in terms of the distortion of the Pc ring in substituted ZnPc complexes. Thus the presence of an 

extra band at 698 nm for the ZnOPPc complex in THF, suggests loss of symmetry in this molecule due to 

the distortion of the MPc molecule. Such departure from planarity is common in tetraphenyl porphyrins 

[35]. It is also known that the presence of eight phenyl groups on the peripheral positions of the 

phthalocyanine ring result in high distortion of the ring [36]. This distortion may be more pronounced in 

ZnOPPc due to the more flexible nature of the phenoxy rings compared to the estrone group. The reason 

why the 698 nm was clearly observable in THF may be due to the observation [34] that the presence of 

oxygen at the axial position of ZnPc complexes results in the distortion of the Pc ring. THF contains 

oxygen which may interact with the central Zn metal of the ZnOPPc molecule, enhancing the distortion. 

However solvents such as DMF and DMSO also contain oxygen, however the latter may be S-bonded in 

MPc complexes [37].  

 

Fig. 3. Electronic absorption spectra of ZnOEPc in (a) DMSO and (b) THF. (c) Electronic absorption 

spectra of ZnOPPc in THF. Concentration= 1×10−6 mol dm−3.  

 



3.2. Singlet oxygen quantum yields 

Table 3 shows singlet oxygen quantum yields (Φ∆) values for ZnPc, (py)ZnPc, ZnOPPc and ZnOEPc in a 

variety of solvents. Interaction between vibrational levels of the solvent molecules and the electronic or 

vibrational levels of singlet oxygen results in the deactivation of singlet oxygen in some solvents, 

especially protic ones such as water and methanol [28]. Table 3 shows that Φ∆ values for ZnPc do not vary 

much with changes in solvent, with values ranging from 0.56 (DMF) to 0.67 (DMSO). The (py)ZnPc 

complex was prepared as explained in the experimental section in order to improve solubility of the ZnPc 

species. Indeed this complex is more soluble than the ZnPc species without an axial pyridine ligand. It was 

expected that the Φ∆ values would be higher based on solubility alone. However, there is a general 

lowering of the Φ∆ values for (py)ZnPc in the various solvents (except DMF), compared to ZnPc. This can 

only be explained by the possible quenching of the singlet oxygen by the pyridine when attached to the 

ZnPc complex, in a similar manner to singlet oxygen quenching by other amines. However, pyridine as a 

solvent does not seem to quench singlet oxygen significantly since Φ∆ values in pyridine are not lower 

than in the other solvents listed in Table 3. A larger variation in Φ∆ values is observed for the octa 

substituted ZnPc derivatives, (ZnOPPc and ZnOEPc). For ZnOPPc, the Φ∆ ranged from 0.45 (toluene) to 

0.60 in DMSO, and for ZnOEPc Φ∆ ranged from 0.43 to 0.64. These complexes are known [10] to show 

aggregation at concentrations as low as 1×10−5 mol dm−3 in DMSO. The variation in Φ∆ values with 

solvent for each complex may reflect different extents of aggregation in this complex in the various 

solvents. The low Φ∆ for ZnOEPc in DMSO is due to its highly aggregated nature in this solvent as 

discussed above. Aggregation lowers Φ∆ values through dissipation of energy by the aggregates.  

Table 3. Singlet oxygen quantum yield values of ZnPc and derivatives in five different solvents. 

References shown in square brackets where literature values were employed 

 

3.3. Photobleaching quantum yields 

Table 4 gives photobleaching (photodegradation) quantum yields (Φp) for ZnPc, (py)ZnPc, ZnOEPc and 

ZnOPPc in the various solvents. Photobleaching is identified by a decrease in the spectra without 

formation of new peaks. The Φp value for ZnOEPc in DMSO has been reported before [10] and it is the 

highest in Table 4. Phthalocyanine molecules in general photodegrade oxidatively via attack by singlet 



oxygen generated by them. Reductive photodegradation has been reported [25] for phthalocyanines 

containing pyridine rings (porphyrazines). In general, Table 4 shows that photodegradation is more 

pronounced in pyridine, DMF and DMSO for all the ZnPc derivatives, with the exception of ZnPc in 

benzonitrile and (py)ZnPc in DMSO. Comparing the photobleaching quantum yields in DMSO and 

pyridine, the largest photobleaching is observed for the ZnOEPc, containing the biological ring 

substituents. It has been observed before [10] that phthalocyanine molecules containing biological 

molecules on the peripheral positions are more easily degraded compared to other octasubsitituted MPc 

complexes. For all the ZnPc derivatives, the lowest photobleaching quantum yields were observed when 

n-butylamine or THF were employed as solvents. N-butylamine is highly basic with Kb=4.8×10−4 [38], 

compared to Kb=2.3×10−9 for pyridine, hence the donor ability of n-butylamine may prevent oxidative 

degradation of MPc complexes. Pyridine, DMSO and DMF are less basic than n-butylamine, even though 

they have high donor numbers [39], Table 4. Thus pyridine, DMSO and DMF will be less efficient in 

stabilising the ring against oxidative attack than n-butylamine, resulting in higher photodegradation rates. 

THF has a low donor number, Table 4, compared to pyridine, DMSO and DMF, hence it would be 

expected to show high photodegradation quantum yield using the argument presented above, but this is 

not the case in Table 4. In THF, the ZnOPPc species underwent phototransformation rather than 

photobleaching, Fig. 4. The phototransformation process involved an increase in the low energy band at 

698 nm and a very slow decrease in the main Q band for ZnOPPc in THF. As discussed above, the 

observation of the band at 698 nm may reflect loss of symmetry by distortions of the MPc molecule as 

photolysis progressed.  

Table 4. Photobleaching quantum yield values of ZnPc derivatives in various solvents  

 



 
 

 

Fig. 4. Electronic absorption spectra observed during photolysis of ZnOPPc in THF. Photolysis 

wavelength (λExc)=670 nm.  

3.4. Fluorescence studies 

Fig. 5a shows the excitation and fluorescence spectra of ZnOEPc in DMSO. The absorption spectra of this 

complex shows that it is aggregated in DMSO (Fig. 3a), but Fig. 5a shows that it is the monomeric species 

which fluoresces. Fluorescence and excitation spectra of the ZnOEPc complex shown in Fig. 5a were also 

observed in the other solvents shown in Table 5, and confirmed that it is the monomeric species which 

fluoresces. ZnPc and (py)ZnPc showed monomeric emission and absorption spectra. The fluorescence 

excitation and emission spectra for the ZnOPPc complex showed two bands, Fig. 5b, associated with the 

loss of symmetry as discussed above. The presence of two peaks in the excitation and fluorescence spectra 

was observed not only in THF, but also in pyridine, benzene and toluene, but not in the more polar 

solvents such as DMF or DMSO. This observation suggests that in the former group of solvents, loss of 

symmetry occurs following excitation. This loss of symmetry was observed only for THF in the ground 

state of ZnOPPc as discussed above.  



 

Fig. 5. Fluorescence excitation (i) and emission (ii) spectra of (a) ZnOEPc in DMSO and (b) ZnOPPc in 

THF. Excitation wavelength (λExc)=630 nm.  

 

 



Table 5. Fluorescence data for ZnPc derivatives in various solvents  

 

Table 5 shows that the highest fluorescence quantum yield (ΦF) value was observed in THF solutions 

(except for ZnOEPc) followed in general by pyridine. The high ΦF values in THF could reflect (i) the slow 

degradation of MPc species in this solvent following excitation as mentioned above, and/or (ii) low 

quenching abilities of THF for the excited singlet states. Toluene consistently showed low ΦF values for 

all the complexes. Toluene has a low viscosity of 0.61 cp [40] compared to 1.1, 1.24 and 0.974 cp for 

DMSO, benzonitrile and pyridine, respectively. A decrease in viscosity of the solvent increases the 

possibility of deactivation of the excited state by external conversion. Comparing the same solvent (e.g. 

pyridine, DMF or DMSO), there is very little variation in the value of ΦF for the different ZnPc 

complexes, showing that the nature of the peripheral substituents does not affect fluorescence very much.  

In conclusion, this work has presented a comprehensive investigation of the effects of solvents on the 

singlet oxygen, fluorescence and photobleaching quantum yields. THF has proved to be a solvent which 



behaves quite differently from the rest of the solvents. For example higher ΦF values were obtained in this 

solvent for ZnPc and ZnOPPc and also phototransformation rather than photobleaching was observed for 

ZnOPPc in this solvent. It was also observed that the largest red shift of the Q band was observed in 

aromatic solvents, the highest shift being observed for 1-chloronaphthalene. Split Q band in the emission 

and excitation spectra of ZnOPPc was observed in some solvents and this is explained in terms of the 

lowering of symmetry following excitation.  
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