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Abstract

It is a well documented fact that Geomagnetically Induced Currents (GIC’s) poses

a significant threat to ground-based electric conductor networks like oil pipelines,

railways and powerline networks. A study is undertaken to determine the feasibility

of using artificial neural network models to predict GIC occurrence in the Southern

African power grid. The magnitude of an induced current at a specific location on

the Earth’s surface is directly related to the temporal derivative of the geomagnetic

field (specifically its horizontal components) at that point. Hence, the focus of the

problem is on the prediction of the temporal variations in the horizontal geomag-

netic field (∂Bx/∂t and ∂By/∂t). Artificial neural networks are used to predict

∂Bx/∂t and ∂By/∂t measured at Hermanus, South Africa (34.27◦ S, 19.12◦ E) with

a 30 minute prediction lead time. As input parameters to the neural networks, in-

situ solar wind measurements made by the Advanced Composition Explorer (ACE)

satellite are used. The results presented here compare well with similar models de-

veloped at high-latitude locations (e.g. Sweden, Finland, Canada) where extensive

GIC research has been undertaken. It is concluded that it would indeed be feasible

to use a neural network model to predict GIC occurrence in the Southern African

power grid, provided that GIC measurements, powerline configuration and network

parameters are made available.
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Chapter 1

Introduction

The objective of this thesis is to study the predictability of geomagnetically induced cur-

rents (GIC’s) in Southern Africa, utilising a neural network (NN) model.

GIC’s are observed when disturbances in the ground level magnetic field around ground-

based conductor networks (e.g. power transmission grids, oil pipelines) induce geoelectric

fields, which in turn, produce an electric current in the conductor system. The induced

current causes spot heating due to half-cycle saturation of the transformers in the system,

permanently damaging the transformers and even causing widespread blackouts, e.g. fail-

ure of the Hydro-Québec power system in March 1989 (Bolduc, 2002).

Although GIC’s are more commonly observed at high-latitudes, due to the larger magni-

tude and higher frequency of geoeffective magnetic disturbances, they do occur at mid-

latitudes (e.g. Kappenman, 2005; Koen, 2002). Moreover, rapid variations in the ground

magnetic field, i.e. large ∂B/∂t, are often observed at lower latitudes (Pirjola et al., 2005).

Regarding the prediction of geomagnetic parameters, one method is to use solar wind data

from a spacecraft (e.g. Advanced Composition Explorer (ACE), Solar and Heliospheric

Observatory (SOHO), Wind) to infer its geomagnetic effect, utilising the time delay be-

tween the spacecraft and the Earth’s surface (e.g. Weigel et al., 2003; Lundstedt, 1997).

The processes leading to the rapid variations in the ground magnetic field are complex and

cover wide spatial and temporal scales: from the initial activity on the solar surface which

varies over a 22-year solar cycle, the 27-day solar rotation and the 24-hour rotation of the

Earth around the Sun, to the complex magnetosphere-ionosphere coupling that eventually

induces geomagnetic and geoelectric field variations on a 1-second timescale. The relation

between solar wind parameters (e.g. density, temperature, velocity) and ground magnetic

field measurements is complex and highly non-linear. It is due to the non-linearity and



2 CHAPTER 1. INTRODUCTION

complexity of the processes driving GIC’s that neural networks are considered for the

development of a prediction model for GIC occurrence.

Artificial neural networks are in essence a human attempt at reproducing and under-

standing the way a brain performs various tasks, e.g. pattern recognition. Haykin (1994)

defines a neural network as “a massively parallel distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use”.

Neural networks have been successfully used to solve a number of prediction problems

(McClary et al., 2008) and classification problems (De Silva et al., 2008) in different fields

of research.

Given the success of using neural networks in various applications, the objective of this

study is to determine whether using neural networks would yield a successful model for

predicting GIC occurrence in the Southern African power grid. It must be emphasised

that this is a feasibility study and the aim is not to predict GIC’s but to determine the

feasibility of using neural networks to eventually build a working prediction model for

GIC’s in the Southern African power grid.

Chapter 2 discusses the theoretical background of space weather and geomagnetically in-

duced currents. It also provides an example of the calculation of GIC values for a specific

conductor network configuration.

Chapter 3 treats the theoretical aspects of neural networks.

Chapter 4 describes the sources of the data sets used in the development of the neural

network model.

The fifth chapter deals with the development of the prediction model, including the choices

made regarding neural network configuration and parameters.

Chapter 6 discusses results, their implications in terms of project objectives, and possible

future work.



Chapter 2

Space Weather and GIC’s

This thesis considers one of the technological effects of space weather, namely geomagneti-

cally induced currents. These are electrical currents induced into ground-based conductor

systems as a result of rapid changes in the geomagnetic field caused by space weather

activity.

The chain of events causing GIC’s on the Earth’s surface has its origins on the surface

of the Sun. Activity on the solar surface is translated to the magnetosphere (and the

Earth’s surface) through the solar wind by a number of physical processes all contribut-

ing to the space weather phenomenon. Hence, in order to describe and understand the

formation of GIC’s, one must consider space weather and the physical processes driving it.

Space weather is defined by the American National Space Weather Program (NSWP,

1995) as “... conditions on the Sun and in the space environment that can influence the

performance and reliability of space-borne and ground-based technological systems, and can

endanger human life or health”.

Space weather has affected various technological systems since the 1800’s, most notably

electrical power systems and communication networks (wireless and landline). For exam-

ple, in 1847 “anomalous currents” were reported in telegraph wires (Lanzerotti, 2001).

During the last two centuries the development of large-scale ground-based power, com-

munication and pipeline networks has meant that the adverse effects of space weather

have been felt increasingly. In order to mitigate the harmful effects of space weather on

technological systems, the relevant physical processes driving these phenomena should be

well understood in order to predict them.

The rest of this section describes the aspects of space weather involved in the formation

of GIC’s.
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2.1 The Sun

The processes giving rise to space weather and GIC’s are driven by the Sun. The Sun is a

medium-sized star (radius ≈ 7×108 km, mass ≈ 2×1030 kg) consisting mostly of Hydrogen

(91%) and Helium (8%). It serves as the driver of space weather, in the sense that the

solar wind which pervades interplanetary space is just the outflow of plasma from the solar

atmosphere (corona). The solar wind parameters are governed by solar activity. Apart

from the normal outflow of plasma from the Sun, activity on the solar surface and within

the corona can cause rapid variations in the various solar wind parameters, e.g. particle

densities and velocities, interplanetary magnetic field (IMF) magnitude and orientation.

Violent expulsions of matter from the corona, known as coronal mass ejections (CME’s),

can hurl massive amounts of solar material (1012 – 1013kg) in the form of ionised gas away

from the Sun into interplanetary space at speeds ranging from under 50 km/s to over 1000

km/s (Gosling, 1997) at an average of around 500 km/s (Prölss, 2004). Various models

for CME formation exist (Prölss, 2004). One model described by Prölss (2004) considers

a magnetic flux rope forming due to a magnetic field configuration comprised of a poloidal

(Bp) and toroidal (Bt) component (Fig. 2.1). This causes a broken loop of magnetic field

and frozen-in plasma (from the “Frozen-in flux” condition of magneto-hydrodynamics) to

form a so-called magnetic cloud extending from the solar corona outwards as the poloidal

magnetic field component increases in strength.

Given a rapid and large enough increase in Bp, the flux rope can extend through the solar

wind, eventually reaching the earth. In this case a shockwave can form, accelerating down-

stream solar wind plasma to move rapidly towards the magnetosphere before interacting

with it.

Given the inclination of the magnetic cloud, the Bz component of the interplanetary mag-

netic field may exhibit a strong southward (negative) orientation, eventually causing an

increase of energetic particle influx into the magnetosphere through magnetic reconnection

(described in Section 2.3).

Coronal holes and coronal streamers are regions of the solar corona known for fast and

slow solar wind outflows, respectively. As the solar wind flows radially outward from the

rotating Sun, the difference in solar wind speed resulting from coronal holes and streamers

cause a compression of the solar wind plasma and the frozen-in magnetic field (see Fig-

ure 2.2). Given Bz < 0 , this compression amplifies the negative orientation of the IMF

interacting with the magnetosphere, causing geomagnetic storms through reconnection.

Due to the Sun’s 27-day rotation around its axis, these corotating regions can periodically
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Figure 2.1: Flux rope model of a magnetic cloud. Adapted from Prölss (2004).
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Figure 2.2: Fast (v) and slow (u) outflow regions in the solar corona causes compression
of solar wind plasma. Adapted from Prölss (2004).

cause geomagnetic storms.

Geomagnetic storms are disturbances in the Earth’s geomagnetic field characterised by

the formation of a ring current around the Earth caused by space weather phenomena.

The rest of this section highlights the physical processes driving the interaction and re-

connection processes which cause geomagnetic storms.

2.2 Solar Wind

Space weather is closely linked to the state of the solar wind. The solar wind is defined

by Hundhausen (1995) as “a flow of ionised solar plasma and a remnant of the solar mag-
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netic field that pervades interplanetary space”. It is driven from the surface of the Sun by

the pressure difference between the solar atmosphere (corona) and interplanetary space,

transporting charged particles (plasma) and the frozen-in magnetic field into interplane-

tary space.

This plasma serves as the medium through which perturbations on the surface of the

Sun are transmitted through interplanetary space, moving over and interacting with the

Earth’s magnetosphere and ionosphere.

2.3 Solar Wind – Magnetosphere Interaction

Eventually, the plasma (and frozen-in IMF) emanating from the solar atmosphere reaches

the magnetopause, where it interacts with the magnetosphere. The dipole nature of the

geomagnetic field is distorted by the solar wind, compressing it on the day-side of the

Earth, and stretching it into what is known as the magnetotail on the night-side.

The dominating process by which energy is transferred from the solar wind to the mag-

netosphere is through magnetic reconnection, whereby solar wind plasma particles are

injected into the magnetosphere. The process of magnetic reconnection will be discussed

very briefly. A more complete treatment of the subject is given by Hughes (1995).

The frozen-in flux condition states that any plasma particle is attached to a specific mag-

netic field line and that it cannot move to another field line; or, plasma can only mix

along flux tubes, not across them. When two plasmas originating from different sources

interact, they are separated by a current sheet. An example of such a current sheet sepa-

rating distinct plasmas is of course the magnetopause separating the magnetospheric and

interplanetary plasmas.

It is in the vicinity of such a current sheet where the frozen-in flux condition can break

down, allowing plasma to mix across field lines. Consider a predominantly southward in-

terplanetary magnetic field interacting with the magnetosphere at the magnetopause. At

this location the magnetospheric field direction is predominantly northward, due to Earth’s

dipole-like magnetic field. Having this configuration of two (approximately) antiparallel

magnetic fields separated by a current sheet results in a flow of magnetic flux from opposite

sides directed perpendicular to the current sheet. Enforcing the steady state condition

(∂/∂t = 0) upon this process results in a very thin (compared to interplanetary scale

lengths) current sheet of scale length l = 1/µ0σu, separating the two fields. Here, µ0 is

the permeability of free space, σ is the conductivity, and u is the rate of magnetic flux flow.
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~Epol

Plasma sheet inner edge~J2
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Figure 2.3: Polarisation and convection electric fields, and field-aligned currents near the
inner edge of the plasma sheet. Stippled curves denote contours of constant equatorial
magnetic field. Adapted from Wolf (1995).

In order for this process to be physically sound, an outflow of plasma must also be allowed.

This is achieved by allowing magnetic field lines from the IMF to break and reconnect

with field lines from the magnetosphere at the magnetopause. These open-ended field lines

are swept back by the solar wind flow toward the night side of the Earth, reconnecting

in the magnetotail, returning some of the magnetic field and plasma to the magnetosphere.

This influx of energy from the solar wind into the magnetosphere causes dynamic variations

in magnetospheric currents through the solar wind–magnetosphere coupling (Pulkkinen,

2003).

2.4 Magnetosphere – Ionosphere Interaction

Changes in magnetospheric dynamics caused by the influx of energy from the solar wind

during solar active times are coupled to ionospheric dynamics mostly through the field-

aligned currents between the two regions (Wolf, 1995). Deformation of the plasma sheet

inner boundary generate polarisation (~Epol) and convection ( ~Econ) electric fields either

side of the plasma sheet inner boundary; and field-aligned currents flowing into ( ~J1) and

out from ( ~J2) the ionosphere (Wolf, 1995). Figure 2.3 illustrates the electric fields and

currents generated.

2.5 Ground Magnetic Field Effects

Finally, these events have a measurable effect on terrestrial systems (e.g. power lines,

magnetometers). Ionospheric currents (J) instantaneously disturb the geomagnetic field
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(B) due to the Biot-Savart law

dB =
µ0

4π

(JdV ) × r

|r|3 , (2.1)

where r is the displacement vector from the current element to the point where the mag-

netic field is being computed, dV the volume element and µ0 the permeability of free space.

Temporal changes in the geomagnetic field alter the spatial derivatives of the geoelectric

field due to Faraday’s law

∇× E = −∂B

∂t
. (2.2)

This induced electric field generates a sub-surface current in the Earth.

2.6 GIC Calculation

Computing the exact electric field from the magnetic field time-derivative is time consum-

ing and not suitable for a prediction model (Pirjola, 2002). The horizontal components of

the geoelectric field generated due to temporal variations in B are rather approximated.

One method used by Pirjola (1989), among others, assumes that the electric field gener-

ated by ionospheric currents are plane waves propagating vertically downwards towards a

uniform Earth.

The relation between the time-derivative of horizontal B and E is approximated (Pirjola,

1989) by

Ex(t) =
1√

πµ0σ

∫ ∞

0

gy(t − u)√
u

du , and (2.3)

Ey(t) = − 1√
πµ0σ

∫ ∞

0

gx(t − u)√
u

du . (2.4)

Here, µ0 is the permeability of free space; σ is the ground conductivity of the Earth;

gx,y = ∂Bx,y/∂t are the temporal derivatives of the horizontal components (x or y) of the

ground magnetic field; t and u are times; x and y indicate the north-south and east-west

directions, respectively. It is important to note that the electric field depends on all pre-

vious values of ∂B/∂t. Of course, in practise measurements up to some finite time in the

past are considered, e.g. 29 hours (Pirjola, 1989) or 12 hours (Viljanen and Pirjola, 1989).

Given the time-dependent values of the horizontal ground electric field components, the

current induced into a ground-based network of conductors is computed (Koen, 2002)

using

GIC(t) = aEx(t) + bEy(t) . (2.5)
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Here a and b are coefficients, measured in A km/V , characteristic for each transformer and

power line configuration (Viljanen and Pirjola, 1994). Electric field components Ex,y are

measured in V/km. The configuration of the transformers and power line refers to the line

length, the orientation of the network (e.g. directed east-west or north-south), resistance

of the line, resistance between neutral and ground, and the number of transformers.

Thus, a and b are characteristic coefficients which depend on the geometry and resistance

of the system, and changes whenever the geometry and resistances are changed. This is

important to note since it implies that these network coefficients should be measured reg-

ularly in order to compute GIC’s accurately. Alternatively, coinciding GIC(t) and ∂B/∂t

measurements can be used to compute the network coefficients (Pulkkinen et al., 2007a).

Either way, measurements within the power network are required to compute GIC’s.

This is an important point since measured GIC and power grid configuration data from

power companies are critical to the study of GIC’s.

2.7 Conductor Network Simulation

In this section the magnitude of induced current in a conductor network is computed us-

ing horizontal geomagnetic field (Bx and By) values, measured at Hermanus, South Africa

(34.27◦ S, 19.12◦ E).

Firstly, equations 2.3 and 2.4 may be rewritten as

Ex(t) =
1√

πµ0σ

∫ t

t−M

gy(w)√
t − w

dw , (2.6)

Ey(t) = − 1√
πµ0σ

∫ t

t−M

gx(w)√
t − w

dw (2.7)

by substituting the argument to gx,y with w, i.e. t − u → w, and replacing the infinite

interval {0, ∞} with {0, M}, where M is finite. The notation gx,y refers to the shorthand

form of gx and gy.

Since the functions gx,y(w) and
√

t − w are practically realised as discrete sequences of

values, the integrals given above are replaced by summations from t−M to t. Furthermore,

the substitutions

gx(w) → ∆Bx(w) , (2.8)

gy(w) → ∆By(w) (2.9)



10 CHAPTER 2. SPACE WEATHER AND GIC’S

10/24 10/26 10/28 10/30 11/01 11/03 11/05
−0.2

0

0.2

0.4

0.6

E
x [V

/k
m

]

Date [month/day]

Hermanus, 2003

10/24 10/26 10/28 10/30 11/01 11/03 11/05
−0.4

−0.2

0

0.2

0.4

E
y [V

/k
m

]

Date [month/day]

Figure 2.4: Ex and Ey calculated by means of equations 2.11 and 2.12, with Bx and By

measurements from the same location. The interval depicted here includes the famous
“Halloween storm” from 29 October to 1 November 2003.

are made. The temporal variations in Bx and By are approximated by applying the

difference operator to a N -valued sequence of Bx,y measurements:

∂Bx,y/∂t ≈ ∆Bx,y = Bx,y(i + 1) − Bx,y(i) , ∀ i ∈ {1, . . . , N − 1} . (2.10)

Summation by parts, the discrete analogue to integration by parts, is used to simplify the

integrals (2.6, 2.7), yielding

Ex(t) =
2√

πµ0σ

[
Rt − Rt−1 −

√
M ∆By(t − M)

]
, with (2.11)

Rt =
t∑

n=t−M+1

∆By(n)
√

t − n + 1 (2.12)

for the north-south electric field component at a time t (Pirjola, 1989; Pulkkinen, 2003).

Exchanging x and y subscripts above yields the relation for Ey. The horizontal compo-

nents of the induced electric field are computed from equations 2.11 and 2.12, with ground

conductivity set to σ = 10−3 Ω−1m−1 (Koen, 2002) and the summation interval extending

12 hours in the past (i.e. M = 12 hours), as suggested by Viljanen and Pirjola (1989).

The time-dependent magnitude of the induced current can now be computed using equa-
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tion 2.5, if the network coefficients a and b are known. Network constants for the

Grassridge substation, near Port-Elizabeth, South Africa, are used. Their values are

a = −80 A km/V and b = 15A km/V , as obtained from Koen (2002). Now equation 2.5

yields a sequence of GIC magnitudes as induced by the temporal variations in the hori-

zontal geomagnetic field, ∆Bx and ∆By. Figure 2.4 depicts the Ex and Ey electric field

components at Hermanus due to the variations in the horizontal geomagnetic field. The

corresponding GIC magnitudes are computed from the Ex,y measurements (Fig. 2.4), by

means of equation 2.5.
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 [A
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Figure 2.5: GIC magnitude as computed from equation 2.5, utilising the electric field
components calculated by means of equations 2.11, 2.12 and depicted in figure 2.4. The
network constants a and b used in the GIC equation (2.5) were determined by Koen (2002)
for the Grassridge substation.

This section described the procedure for calculating GIC magnitudes from geomagnetic

field measurements. This is a critical step in modelling GIC-related behaviour since it

provides the link between the theory, i.e. the temporal geomagnetic fluctuations that

drive GIC’s, and the actual GIC magnitudes which are needed in practise.

In the next chapter neural networks are discussed. Enough information is provided such

that the development of a neural network based prediction model (Chapter 5) might be

followed.



Chapter 3

Neural Networks

In 1911 Santiago Ramón y Cajál introduced the notion of neurons being the elemental

constituents of the brain (Haykin, 1994, pg. 1) which send and receive information to and

from other neurons through synaptic connections.

Using this understanding of its structure, the brain can be viewed as a vast network of

interconnected neurons, hence the term neural network. It is by means of these neurons

and their connecting synapses that the brain has the capability to perform certain tasks

or calculations, e.g. pattern recognition (Haykin, 1994, pg. 2).

Artificial neural networks model the way in which the brain learns and executes tasks.

Since they are usually simulated through computer software, neural networks are utilised

in various fields of research and commerce to solve complicated problems.

Suppose a set of parameters Y = {~y1, ~y2, . . . , ~yN} are determined by another set of

parameters X = {~x1, ~x2, . . . , ~xM}, through some unknown function F :

Y = F(X) . (3.1)

In order to find ~y{1, ... , N}, given a set of values for ~x{1, ... , M}, the relation between X and

Y should be known, or at least approximated. Presenting a series of values for X and Y

to a neural network causes it to learn the relation between X and Y, through a process

known as neural network training. In neural network terminology, the dependent variables

(Y) are known as output parameters, whereas the independent variables (X) are known

as input parameters. Note that the number of input and output parameters need not be

equal, i.e. N 6= M is valid. Now, given previously unseen values of the input parameters,

an algorithm based on the trained network will estimate the output parameters utilising

the knowledge gained during training. The aim of neural network modelling is to set up

a sound training process and network configuration such that the network will be able to
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Input Layer
Output Layer

Hidden Layer

Figure 3.1: A 3-layer feedforward neural network with 3 input nodes, 4 hidden nodes and
2 output nodes.

generalise well, making accurate approximations of the output parameter.

The rest of this chapter is dedicated to the description of neural network structure and

training.

3.1 Structure of a Neural Network

Neural networks are structured so as to create a “flow” from the input nodes to the output

nodes. In the case of feedforward networks, the flow is strictly unidirectional. Input nodes

are the “neurons” of a network corresponding to the input parameters (X in the example

above). The series of input parameter values are represented by an input node; one input

node for each input parameter. Correspondingly, the series of known output parameter

values are represented by an output node; again, one output node for each output param-

eter. Multilayer networks include intermediary hidden nodes, constituting hidden layer(s)

situated between input and output layers (see Fig. 3.1). These layers are hidden in the

sense that the interconnections passing information into and out of the hidden nodes are

contained within the network with no input from, or output to, external elements. The

presence of hidden layers in the neural network enables the network to extract higher-order

statistics from the input data. This configuration is especially useful when a large number

of input nodes are present (Haykin, 1994, pg. 19).

Recurrent neural networks allow a feedback loop of information, i.e. the flow of information

is not unidirectional. Relaxing this restriction allows for an implicit representation of

temporal timeshifts in input data – a very useful characteristic under some circumstances.
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Elman networks (a type of recurrent network) are discussed further in Section 3.3.

3.1.1 Structure of a Node

The information passing into and out of a node is processed by a number of components

which ultimately constitute a node (see Fig. 3.2). The various inputs into a node forms

the input signal. Weights are applied to the inputs before adding all the weighted inputs.

The sum of the weighted inputs forms the argument to the activation function, usually

defined by a sigmoid function

f(x) =
1

1 + e−x
. (3.2)

The activation function imposes a limitation on the amplitude of the output value (Haykin,

1994, pg. 8). The result of the activation function forms the output of the node itself.

Other commonly used activation functions are threshold and piecewise linear functions.

A more detailed description of node structure and activation functions can be found in

Haykin (1994), Ch. 1.4.

.

.

.

.

.

.

Input
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Summation
Junction Activation

Function

Output
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~i1

~i2

~in

~w1

~w2

~wn
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∑ s

Figure 3.2: Structure of a node. Adapted from Haykin (1994), pg. 10.

3.2 Training and Testing

The process of training a network is critical to the success of the model as it determines

the state of the trained network. Training is an iterative process whereby a network is

repeatedly

• trained,

• its performance evaluated,
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• modifications made to the network and training setup.

The procedure is repeated until satisfactory performance is achieved. In order to realise

this procedure, the entire data set (of input and output parameter values) is divided into

three subsets. The training algorithm is applied to the training set whereby weights are

adapted to decrease the error. The class of training process described here is known

as supervised training. Other training processes include unsupervised and reinforcement

training. In a supervised training environment the validation data set is used in parallel to

the training algorithm to compute the output from the network and to calculate the error

between the response and targeted output values. Given the response – normally gauged by

the squared-difference between the target and response – weights are adapted accordingly.

Finally the testing set is used to judge the performance of the trained network. Here the

judge is an external observer, as opposed to the case of the validation set where the observer

is set within the training process itself. Upon completion of the training algorithm, the

trained network is processed and its performance evaluated by presenting it with unseen

input parameter values and comparing the response to the known output parameter values

contained in the testing set. In the case of a prediction model the testing set would be used

to compare the predicted and measured values of the output parameter(s). If the observer

is satisfied with the performance, the training process concludes – otherwise changes to

the network configuration and parameters, training algorithm, or the data sets are made

and the process (illustrated in Fig. 3.3) is repeated.

3.2.1 Error-Correction Training

Different types of training algorithms or rules exist, some aimed at specific training pro-

cesses (e.g. supervised, unsupervised). The algorithm described here is of the error-

correction class.

Error-correction training makes use of the validation set described above (Section 3.2) in

order to gauge the performance of the network within the training algorithm and to adapt

the free network parameters (i.e. connection weights) accordingly. Suppose the response

of an output node, n, is given by yn and the target response of that node is tn. Then the

error in the response of node n is

en = tn − rn . (3.3)

The goal of the error-correction training algorithm is to minimise the error en over all

the output nodes n = {1, . . . , N}, where N denotes the total number of output nodes.

Practically, this is achieved by minimising the sum of the squared error

E(i) =
1

2

∑

n

e2
n(i) (3.4)
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Figure 3.3: Overview of the neural network training procedure. A network is trained, using
the training data set and validated using the validation set, by the training algorithm. The
performance of the trained network is evaluated using the testing set. Depending on its
performance, the process stops or the network and/or training setup is adapted and the
process is repeated.

with respect to the connection weights. Here en(i) denotes the error of node n at iteration i.

Since the error function is dependent on many weights, it forms a multi-dimensional error

surface. This surface may contain multiple local minima. The minimisation method at-

tempts to find the global minimum of the error-surface by adjusting the connection weights

of the network at every iteration of the training algorithm. Minimisation is performed by

means of the gradient descent method. The specific technique used for applying gradi-

ent descent to neural networks is known as error back-propagation. The back-propagation

method works by efficiently determining the partial derivatives of the approximation func-

tion, F̃(~w |X), given by the network with respect to the weight vector, given the input

parameters X (Haykin, 1994, pg. 185). The details of this method will not be covered in

this study. It is discussed in detail by Haykin (1994) and others.

3.3 Elman Neural Networks

Recurrent networks differ from feedforward networks in that they contain at least one feed-

back loop (Haykin, 1994, pg. 20). The type of recurrent network considered in this study
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are Elman neural networks. Other types of recurrent neural networks include Jordan and

Hopfield networks. Elman networks were developed in order to represent time implicitly

within the realm of neural networks (Elman, 1990). These networks are structured such

that each of the h hidden layers are duplicated, forming h context layers. Information

is projected from each hidden layer to its corresponding context layer, and back to the

hidden layer at every iteration of the training algorithm (see Fig. 3.4).

The feedback loop between a hidden layer and its context layer results in the context layer

representing the state of the hidden layer one iteration in the past. This feedback loop is

known as a recurrent connection. Since the hidden layers receive input signals not only

from the input layer, but also from the context layer (which is just the previous instance

of the hidden layer), the training algorithm is guided by the temporal structure of the

input and output parameter vectors; and reacts to it through the subsequent modification

of connection weights. Hence, Elman networks are said to have “memory”.

Refer to Elman (1990) for a detailed description of the development of Elman networks.

Figure 3.4: An Elman neural network with 3 input nodes, 7 hidden nodes in two hidden
layers and 2 output nodes. The hidden layers are duplicated to form context layers.
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Table 3.1: Representation of the training file format containing 3 descriptive parameters,
p inputs and q output parameters. Every parameter comprises one column.

1 r1 t1 input11 · · · input
p
1 output11 · · · output

q
1

2 r2 t2 input12 · · · input
p
2 output12 · · · output

q
2

...
...

...
...

...
...

...
N rN tN input1N · · · input

p
N output1N · · · output

q
N

3.4 Training and Testing Procedure

The training data set is written to electronic file format in the form of a N × (p + q + 3)

matrix (see Table 3.1). The length of the training set is N ; p input parameters, q output

parameters and 3 descriptive parameters are included as columns. The three descriptive

parameters represent the index of each row, i.e. i = 1, 2, . . . , N ; a set of random numbers

R = r1, r2, . . . , rN ; and the time at which input and output parameters are measured,

T = t1, t2, . . . , tN .

The training set is shuffled by sorting all columns with respect to the random numbers in

the second column. All input and output parameter values are normalised to fall within

the (−1, 1) interval. A 30% fraction of the training data set is randomly selected and

identified as the validation set. Thus 70% and 30% of the original training data set is

written to two files, the training and validation files, respectively.

The testing data set is written to file in the same configuration as the training and val-

idation files, except that the output parameters are not included. After training, the

trained network is processed into an executable file. The “testfile” serves as input to the

executable, which predicts the output parameters.

The software package used to simulate neural networks is the Stuttgart Neural Net-

work Simulator (SNNS), version 4.2, developed at the University of Stuttgart and the

University of Tübingen. The reader is referred to the user manual (Zell et al., 1998) for

information on the simulator.

3.5 Summary

The short introduction to neural networks given in this chapter should provide enough clar-

ity in order to follow the rest of this thesis. Many useful texts examining neural networks

and their applications are available (Haykin, 1994; Bishop, 1995; Fausett, 1994). Chapter

5 describes the testing and configuration procedure which yields the neural network-based

model presented in this study. The sources of input and output data are outlined in

Chapter 4. Note that the norm is to not shuffle the training data set when working with
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recurrent neural networks. However, we’ve applied both methods (i.e. using shuffled and

ordered training sets) and found that shuffling yields slightly better results.



Chapter 4

Description of Data

As mentioned in the previous chapter, neural networks require a training data set in order

to observe and learn the complex relations between the input and output parameters of

the modelled system. Since the training data set is the only source of problem-specific

information available to the network, it is the most critical component in the setup of

a neural network model. Regardless of how well the network is optimised for learning,

without a data set reflecting the nature of the process to be modelled (and the relation

between the input and output parameters), training will not be successful. The goal of

the training and testing data sets is to provide a balanced representation of the system

under consideration, ideally including every possible scenario, so as not to create a bias

towards certain conditions.

Creating a data set which will enable the network training regime to perform well requires

careful consideration as to the choice of input and output parameters, length of the time

interval spanned by the set and the time resolution of the measurements made. These

choices are subject to constraints set by the type of network used, source of the measure-

ments, the goal of the model and the nature of the modelled system.

This chapter describes the measured physical quantities and their sources, which were

considered for the development of input and output spaces for the neural network model

presented in this study.

4.1 Input Parameter Data Set

The Sun, through the solar wind as medium, is the source of energy influx into the mag-

netosphere which is responsible for the perturbative geomagnetic effects relating to space

weather. Therefore solar wind parameters (e.g. particle densities and velocities measured

within the solar wind) are considered as possible inputs to a neural network model tasked
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with predicting the geomagnetic effects driving GIC’s.

Measurements of solar wind parameters are made by several spacecraft (e.g. SOHO, ACE,

Wind) located in near-Earth space. For this study the Advanced Composition Explorer

satellite (ACE) is used as the source of solar wind data due to the availability of historic

measured data, its (approximately constant) position relative to the Earth and the Sun,

and the fact that its measurements has been used by other authors who have conducted

similar studies (Wintoft, 2005; Weigel et al., 2003, for example).

ACE and SOHO both orbit the first Lagrangian point in the Earth-Sun system (see section

4.1.1), while Wind follows a complex orbit pattern, moving from one type of orbit to

another (Wind, 1999). The orbit radius of ACE is significantly smaller than that of

SOHO. This implies that there is less variation in the position of ACE, relative to the

Earth, compared to the location of SOHO (see next subsection and Figure 4.2).

4.1.1 Advanced Composition Explorer

According to Stone et al. (1998) ACE is tasked with determining the composition of the

solar corona, interplanetary and local interstellar medium (solar wind) and galactic matter

through a series of measurements on elemental and isotopic level; and transmitting mea-

surements in real time to NOAA (National Oceanic and Atmospheric Administration)

ground stations. The spacecraft, developed by the Johns Hopkins University (Applied

Physics Laboratory), was launched on 25 August 1997 from Cape Canaveral Air Station

aboard a Delta II rocket.

After a successful launch, ACE was delivered into a highly elliptical transfer orbit, eventu-

ally moving to a halo orbit around the first Sun-Earth libration point (L1), approximately

1.5 × 106 km from the Earth on the Sun-Earth line. Libration or Lagrangian points refer

to positions within a three-body system given by the equilibrium solutions. It is assumed

that the two larger bodies (the Sun and the Earth in this case) move in circular orbits

around their centre of mass and that the mass of the third body (ACE) is negligible with

respect to the other two. The equilibrium solutions are obtained by setting the velocity

and acceleration of the third body to zero, and fixing its position to the ecliptic plane

(Vallado, 1997, pg. 126). Thus, placing the third body of a three-body system at one

of these Lagrangian points causes it to remain stationary with respect to the other two

(larger) bodies. The positions of the five Lagrangian points in the Sun-Earth-satellite

system are depicted in Figure 4.1.

This effect yields significant advantages for observational satellite missions like ACE. The

advantages of ACE orbiting L1 are three-fold:
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Figure 4.1: The five Lagrangian points in the Sun-Earth-satellite three body system

• It ensures that solar wind measurements are made in the upstream solar wind, i.e.

before it reaches Earth;

• the position of the observer is kept (approximately) constant, avoiding the difficulties

related to accounting for a moving observer;

• and fixes its position outside the hostile magnetosphere, where strong magnetic field

variations could damage instruments (Stone et al., 1998).

Figure 4.2 depicts the locations of ACE and SOHO orbiting L1, and the magnetosphere

bow-shock nose, as measured by ACE during 2001 (GSFC, 2008). Positions are given in

Earth radii (RE) in the GSE x-y plane, with the Sun located beyond ACE and SOHO

on the y = 0 line. As stated in the third “advantage” mentioned above, the spacecraft

orbits L1 at about 230RE from Earth, well beyond the magnetosphere. As is evident

from Figure 4.2, the extent of the Earth’s magnetosphere varies with time. Violent solar

coronal activity cause increased particle densities and velocities within the solar wind.

The resultant increase in pressure exerted by the solar wind plasma on the magnetosphere

causes the magnetosphere to be compressed. Hence the variation in the position of the

magnetospheric bow-shock over the one year period illustrated in Figure 4.2. The position

of ACE, combined with its (near) real-time transmission ability, provides a natural lead

time on solar wind effects. The transmission time from ACE to Earth is negligible (Weigel

et al., 2002), while the solar wind takes an average of approximately 55 minutes to travel

from L1 to Earth. This is computed by dividing the approximate distance from L1 to

Earth (1.5 × 106 km) by the average solar wind speed of 450 km/s (Hundhausen, 1995).

During magnetic storms, however, solar wind speeds can reach up to 1000 km/s – resulting

in a propagation time of only 25 minutes.
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4.1.2 ACE Measurement Instruments

Nine instruments constitute the measurement capacity of ACE. They measure mass, en-

ergy, ionic and nuclear charge and magnetic field quantities in the solar wind plasma.

Measurements from two of these instruments (SWEPAM and MAG) are utilised in the

development of the neural network model presented in this study.

SWEPAM (Solar Wind Electron Proton Alpha Monitor) measures the proton (H, He)

and electron energy and charge distributions of the incoming solar wind plasma. From

these measurements, quantities like proton number density (Np) and solar wind velocity

are derived. These measurements are critical in the determination of the current state

of the solar wind. The MAG instrument consists of two triaxial fluxgate magnetometers

measuring the x, y and z geocentric solar magnetospheric (GSM) components of the

interplanetary magnetic field.

4.1.3 Sources of ACE Data

All ACE measurement data sets utilised in this study were downloaded in electronic

(.cdf) format from the Goddard Space Flight Centre (Space Physics Data Facility) web-
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Figure 4.2: Positions of the ACE and SOHO satellites, together with the bow shock nose
position in the ecliptic plane, as measured by the spacecraft during 2001. Coordinates are
GSE (geocentric solar ecliptic), measured in Earth radii (RE), with Earth at the origin.
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site (GSFC, 2008). Near real-time data is available at a 1-minute sampling rate via a

website maintained by the NOAA Space Weather Prediction Centre (SWPC, 2003).

4.1.4 Solar Wind Parameters

The actual parameters measured by these two instruments are listed in Table 4.1. These

are included in the testing and development of the presented model. The density, tem-

perature and velocity measurements are made by the SWEPAM instrument at 64-second

intervals, while the IMF parameters are measured by the magnetometers (MAG) every 16

seconds.

Table 4.1: Input parameters measured by ACE. Density, velocity and temperature mea-
surements are made by the SWEPAM instrument on board ACE at 64 second intervals,
while the IMF measurements are made by the MAG instruments at a cadence of 16 sec-
onds.

Symbol Description Units ∆t

Np Proton number density n.cm−3 64s
Vp Bulk solar wind speed km.s−1 64s
Tpr Radial component of proton temperature ◦K 64s
Nα Alpha to proton number density ratio - 64s

Vx, y, z Solar wind velocity components (GSM) km.s−1 64s
Bimf Interplanetary magnetic field magnitude nT 16s
Bimf

x,y,z IMF components (GSM) nT 16s

Bimf
rms

Root-mean-square of IMF magnitude nT 16s

Since the output parameter data set has a 1-minute resolution (see next section), the MAG

and SWEPAM sets are interpolated to 60-second intervals, so that the time resolution of

the respective measurements of input and output parameters coincide, as is required by

the neural network modelling software.

4.1.5 Input Parameters

A set of 30 quantities is derived from local time and the solar wind parameters listed in

Table 4.1. This forms the set of “candidate” input parameters, from which an optimal

subset is selected in the next chapter.

Table 4.1 lists the solar wind parameters measured by ACE. These are considered as input

parameters to the prediction model. As is the case for the output parameters, functions

of the measured solar wind quantities are used as inputs to the model. The running mean

and running standard deviations of the 12 parameters listed in Table 4.1 are considered

as possible input parameters.
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The running mean (rmn), sometimes referred to as a “boxcar average”, of a sequence

of measurements made N times, ~x = {x1, . . . , xN}, is computed by determining the

arithmetic mean of a n-valued subset of these values. The number n is known as the

“window-width” and denotes the size of the subset. The running mean of a N -valued

sequence ~x, written as rmn(~x), is calculated by applying the definition given below

rmn(~x) =
xt−(n−1) + xt−(n−2) + · · · + xt

n
∀ t ∈ {n, . . . , N} , (4.1)

with the window-width n determined independently. Thus, the running mean of some

sequence ~x at time t is just the arithmetic mean of the last n values of ~x, including xt.

Analogous to the running mean, the n-minute running standard deviation is defined as

rstdn(xt) = std
(
xt−(n−1), xt−(n−2), . . . , xt

)
, (4.2)

where std(·) is the standard deviation. In both cases the assignment n = 10min is made,

so that the 10-minute running mean (rm10) and 10-minute running standard deviation

(rstd10) of all 12 solar wind parameters are calculated and used as input parameters.

Solar wind electric field is defined by the velocity–magnetic field cross product ~E = −~V × ~B.

The cross-product of rm10(~V
sw) and rm10( ~Bimf ) is computed and the magnitude of the

result is taken as an input parameter:

Esw = rm10(~Vsw) × rm10( ~Bimf ) . (4.3)

According to Pulkkinen et al. (2007b) and references therein, the solar wind dynamic

pressure

pdyn
sw = mNV 2 , (4.4)

with m mass, N density of particles and V denoting solar wind speed, plays an important

role in the configuration and dynamics of the magnetosphere. Since the temporal derivative

of the geomagnetic field is of interest and noting that the pressure is proportional to NV 2,

the temporal derivative yields (Wintoft, 2005)

dpdyn
sw

dt
∝ V 2 dN

dt
+ 2NV

dV

dt
. (4.5)

The 10-minute running means of the solar wind bulk velocity Vp and particle density Np

are used to compute the parameter

D = ν2 dη

dt
+ 2ην

dν

dt
, (4.6)

with ν denoting rm10(Vp) and η denoting rm10(Np). The parameter D is included in the
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Table 4.2: List of all input parameters considered.
rm10(Np) rstd10(Np) LTS Esw

rm10(Vp) rstd10(Vp) LTC D
rm10(Tpr) rstd10(Tpr) DNS

rm10(Nα) rstd10(Nα) DNC

rm10(Vx) rstd10(Vx)

rm10(Vy) rstd10(Vy)

rm10(Vz) rstd10(Vz)

rm10(B
imf ) rstd10(B

imf )

rm10(B
imf
x ) rstd10(B

imf
x )

rm10(B
imf
y ) rstd10(B

imf
y )

rm10(B
imf
z ) rstd10(B

imf
z )

rm10(B
imf
rms) rstd10(B

imf
rms)

set of inputs.

In addition to the resulting 26 parameters, four time-related variables are considered

as possible input parameters. Since all the measured quantities mentioned above are

ultimately driven by solar processes, it is important to take the diurnal and seasonal

effects into account. These are realised as the sine and cosine of local time (LTS, LTC)

and day number of the year (DNS, DNC). The time-derived parameters are defined

below, with mins denoting the minute of the day, and dn the day number of the year.

LTS = sin

(
2π · mins

1440

)
(4.7)

LTC = cos

(
2π · mins

1440

)
(4.8)

DNS = sin

(
2π · dn

365.25

)
(4.9)

DNC = cos

(
2π · dn

365.25

)
(4.10)

4.2 Output Parameter Data Set

Chapter 2 described the various processes in the solar-terrestrial environment leading to

GIC’s. From equations 2.2 – 2.5 it is clear that the temporal derivatives of the horizontal

ground magnetic field components, ∂Bx/∂t and ∂By/∂t, drive GIC’s. In order to approx-

imate their temporal derivatives, the difference operator ∆ (·) is applied to both Bx and
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By:

∆Bx ≈ ∂Bx/∂t , (4.11)

∆By ≈ ∂By/∂t . (4.12)

The difference operator is defined by

∆α(i) = α(i + 1) − α(i) , i = {1, . . . , N − 1} (4.13)

for some N -valued sequence, α. Therefore, ∆Bx and ∆By are defined by

∆Bx = Bx(i + 1) − Bx(i) , (4.14)

∆By = By(i + 1) − By(i) ∀ i = {1, . . . , N − 1} (4.15)

for N -valued Bx and By vectors.

4.2.1 Output Parameters

It was established in Chapter 2 and Section 4.2 that the temporal variation in horizontal

geomagnetic field magnitudes drive GIC’s. Therefore, ∆Bx and ∆By (defined by equa-

tions 4.14 and 4.15) are considered as output parameters of the GIC occurrence prediction

model.

Weigel et al. (2002) studied the solar wind – magnetosphere coupling and predicted the

30-minute mean of |∆Bx|. Wintoft (2005) found that taking a temporal average of the

time-difference Bx component results in a loss of information and that the root-mean-

square (RMS) of ∆Bx,y conserves more of the signal than temporal averaging.

For this study a RMS-derived function, the running root mean square (RRMS) defined

by equation 4.16, is used. Here, the term “running” is used in the same sense as with a

running mean (Section 4.1.5, equation 4.1). It is used in this way: suppose a quantity (~x)

is measured at 1-minute intervals over a N -minute period, yielding an array

~xt = {x1, x2, . . . , xN} .

Now the n-minute running root-mean-square of ~x at time t is defined by

RRMSn(xt) = RMS
[
xt−(n−1), xt−(n−2), . . . , xt

]
, (4.16)
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Table 4.3: Variances (σ2) of ∆Bx,y, ψx,y and ωx,y are compared. The definitions of ψx,y

and ωx,y are given by equations 4.18 and 4.19. The percentages α and β are defined by
equations 4.20 and 4.21. They denote the fraction of variance preserved by ψx,y and ωx,y,
respectively.

i σ2(∆Bi) σ2(ψi) σ2(ωi) α% β%

x 0.3401 0.0999 0.2195 29.36 64.55

y 0.2131 0.0850 0.1150 39.88 53.95

with RMS defined by

RMS(~y) =

√∑n
i=1 y2

i

n
, (4.17)

for a n-valued ~y.

Setting n = 10min, this function (equation 4.16) is applied to ∆Bx,y, yielding two vari-

ables with 1-minute sampling resolution:

RRMS10(∆Bx) and RRMS10(∆By) .

The variances (σ2) of ∆Bx,y, RRMS10(∆Bx,y) and the 10-minute running mean RM10(∆Bx,y)

are computed and listed in Table 4.3. As a shorthand notation, the definitions

ψx,y = RM10(∆Bx,y) , and (4.18)

ωx,y = RRMS10(∆Bx,y) (4.19)

are made. The columns labelled α and β contain the percentage of total variance preserved

by RM10 and RRMS10:

α = σ2[ψi]/σ2[∆Bi] (4.20)

β = σ2[ωi]/σ2[∆Bi] , (4.21)

with i = (x, y). From the variances listed in Table 4.3 it is clear that, as suggested by

Wintoft (2005), the root mean square conserves more of the variation of the signal than

temporal averaging.

Thus the logarithm of RRMS10(∆Bx,y) is used in order to limit the range of the output

parameter amplitude. Figure 4.3 depicts the “development” from geomagnetic field to the

two output parameters log(ωx) and log(ωy), with ωx and ωy defined by equation 4.19 .

The chosen output parameters log(ωx,y) are to be used to predict mean-square GIC mag-

nitudes (Wintoft et al., 2005). In the next chapter these output parameters are predicted

using the input parameters described in Section 4.1.
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The horizontal ground magnetic field components, Bx and By, used to compute the output

parameters are measured at Hermanus by the Hermanus Magnetic Observatory. The data

set employed for the prediction model development (see Chapter 5) covers a seven year

period, from 1999 to 2005, measured at 1-minute intervals.

4.3 Summary

Twelve solar wind-related quantities measured with satellite based instruments at 16 and

64 second intervals over a seven year period (1999 – 2005) are considered for the develop-

ment of the input space, while two geomagnetic quantities are considered for the output

space. The sets of input and output parameters described in this chapter represent the

total set of measurements considered as possible inputs and outputs to the neural network

model. In the following chapter these parameters (and functions thereof) are tested and

adapted, along with neural network parameters and other constraints, so as to construct

an optimal prediction model.
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Figure 4.3: Development from measured geomagnetic field (Bx,y) to the output parame-
ters, ωx and ωy.



Chapter 5

Model Development

This chapter describes the development of a neural network-based prediction model us-

ing solar wind-based input parameters (Section 4.1.4) and predicting output parameters

derived from the geomagnetic quantities ∆Bx and ∆By (see Section 4.2). The chapter

is divided into 5 sections. Each section describes an aspect of the development process,

highlighting the choices made during development. In the first section below the choice of

neural network type is described and motivated.

5.1 Network Type Determination

Given the cause-effect structure of a neural network training data set – the input parameter

being the cause of the corresponding output – the input parameter values presented to the

network should be physically responsible for the corresponding output values in order for

the model to learn the underlying relation correctly. In the case of a feed-forward neural

network, this condition is rigid in the sense that the solar wind parameter at index i of the

input vector should correspond exactly to the output parameter value at the same index i.

However, an inherent and significant delay between the time of solar wind measurement

(by ACE at L1) and the time of its geomagnetic effect when it eventually interacts with

the magnetosphere, exists on account of the time it takes to travel from L1 to Earth. If

the said delay, td, were constant, this problem could be dealt with by shifting the output

parameter vector by td, such that a solar wind measurement at time t corresponds to the

geomagnetic parameter at time t + td, and training the network with this modified data

set.

From Figure 5.1, however, it is clear that the solar wind velocity, and hence the propagation

time from L1 to Earth is highly variable. Correcting for an inconsistent delay in the manual

manner mentioned above would be difficult at best. A more elegant and natural way of

solving this problem is to compensate for the delay by extracting the underlying structure
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Figure 5.1: Solar wind velocity measured by ACE during 2000 with the delay time td from
ACE to Earth. The delay time was computed by dividing the distance 1.5× 106 km from
L1 to Earth by the solar wind speed.

within the data set itself. This is achieved by employing a recurrent neural network,

specifically of the Elman type, instead of a simple feed-forward network. As described in

Chapter 3, Elman networks possess an internal memory of its previous states. Practically,

this results in the network correcting for the delay by virtue of its internal structure, i.e.

without externally applied modifications made to the data set.

5.2 Choice of Training and Testing Data Sets

As mentioned in Chapter 4 the training data set should include as much information as

possible about the modelled system, the ideal being to include data representing every

possible state. The ability of a neural network model to generalise – accurately respond-

ing to events not included in training – is dependent on the selection of data presented to

the network training algorithm. Two Elman neural networks are trained to illustrate this

statement.

The two networks are trained to form two prediction models, predicting the same geomag-

netic field parameter. The output parameter for both networks is the absolute temporal

difference of the horizontal geomagnetic field, |∆BH |, measured during May 2005. The
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Table 5.1: The setup of two networks used to predict the horizontal geomagnetic field
variation |∆BH |. Configurations are identical, while the training sets differ.
Model Network architecture Training set Testing set

α [10:20:15:1] Elman 2000.03.15 – 2000.05.15 2005.05.15 – 2005.05.17

β [10:20:15:1] Elman 2000.01.01 – 2001.01.01 2005.05.15 – 2005.05.17

horizontal geomagnetic field is defined by

BH ≡
∣∣∣
√

B2
x + B2

y

∣∣∣ , (5.1)

and ∆(·) denotes the difference operator as defined by equation 4.13, to form |∆BH |.
The difference operator serves as an approximation of the temporal derivative (see equa-

tions 4.11 and 4.12). Both networks employ the same input parameter set of solar wind

parameters, as defined in Table 4.1:

Bimf , Bimf
x,y,z , Vx,y,z , Vp, Np, Nα .

However, the two training sets span different intervals: a two-month set and a one-year

set. The configurations of the two models are listed in Table 5.1. The aim is to observe

the difference in performance between employing a large (1 year) and small (2 month)

training set. The two-month period stretches from 15 March to 15 May 2000, containing

the geomagnetic storm of 6-7 April 2000; the one-year training set covers the year 2000,

from day 1 to day 365.

A prediction based on training with two months’ worth of one-minute sampled data

(model α) yields the green curve in Figure 5.2. Training with a one-year data set (model

β), predicting the same 2005 event, yields the red curve. The blue curve denotes the

measured, or targeted, values of |∆BH |.

The difference in prediction performance between the two models is clearly observed in

Figure 5.2. Although the prediction resulting from model β is far from perfect, the im-

provement over the performance of model α is significant. From this result it is clear that

the smaller training set is not sufficient. It is not necessarily the relatively small size of

its training data set that causes model α to fail, but the inadequate representation of the

modelled system in the training set.

Consider model β, where the training data set includes all measurements from the year

2000. During this period the bulk of measurements were made during solar-quiet times.

Due to the statistical nature of the neural network training algorithm, rarely occurring

phenomena are perceived as outliers or anomalies; and since GIC’s are directly related to
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Figure 5.2: The performance of two identical Elman neural networks is compared. The
green curve represents the network trained on a data set spanning two months, while the
red curve depicts an identical network trained using a one-year data set. Also see Table
5.1.

solar-active periods, this is less than ideal. Thus, using indiscriminately selected data as

the training data set, as in Figure 5.2, results in an underestimation of storm-time output

response.

Solar activity, and hence the structure of the solar wind and its processes, changes over

the course of a solar cycle. Hence, it is important to include in the data set measurements

taken throughout the evolution of the (last) solar cycle. Solar wind and geomagnetic mea-

surements were gathered respectively from ACE and HMO, for the seven-year period from

1999 to 2005. As mentioned in Chapter 4, the solar wind measurements from ACE are

interpolated to one-minute samples so as to coincide with the geomagnetic field measure-

ments. Utilising the entire set as training input to a neural network model would result

in the underestimation of the predicted outputs during a solar-active period, due to the

relative rarity of active periods compared to quiet periods. A process for selecting relevant

sequences within the master data set (1999 – 2005) is derived from the method followed
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by Wintoft (2005). The aim is to identify instances in the master set (1999 – 2005) where

the magnitude of the relevant output parameter exceeds some threshold; and to extract

sequences of all input and output parameters around the identified instances. This results

in a subset of the master data set which excludes much of the solar-quiet measurements.

The selection process is described below.

Consider the master data set (M) as a collection of p input (ini) and q output parameter

(outi) vectors, each comprising N one-minute samples stretching from 1999 to 2005:

M =




in1(1) in2(1) · · · inp(1) out1(1) · · · outq(1)

in1(2) in2(2) · · · inp(2) out1(2) · · · outq(2)
...

...
...

...
...

in1(N) in2(N) · · · inp(N) out1(N) · · · outq(N)




(5.2)

The sequences are identified by means of the following algorithm.

1. Select relevant output parameter f from M: f = outk

2. Define threshold z for output parameter f , where f is a vector of length N

3. Identify all W instances j of f , such that f(j) ≥ z

4. For each j: let gj ≡ {j − 48 hrs , . . . , j + 48hrs}

5. Merge overlapping gj sequences, such that Q ≤ W sequences of indices exist

Thus sequences gi, with i = {1, . . . , Q}, exist, each at least 96 hours in length. These

sequences of indices are applied to M in order to find the relevant values for each input

and output parameter, forming the combined training and testing data set, T :

T =




in1(g1) in2(g1) · · · inp(g1) out1(g1) · · · outq(g1)

in1(g2) in2(g2) · · · inp(g2) out1(g2) · · · outq(g2)
...

...
...

...
...

in1(gQ) in2(gQ) · · · inp(gQ) out1(gQ) · · · outq(gQ)




(5.3)

Thus, T is a subset of M, containing those values of each input and output parameter

considered as relevant to the modelling process.

The set T includes all data to be used for training and testing purposes. From T a number

of the sequences are set apart to be used as a testing data set. Subsequent development

is based on the ability of a network to predict the testing data set sufficiently.
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Table 5.2: Details of training and testing data sets. Six sequences are chosen from both
the ωx and ωy training sets to be used as the testing data sets.

Output Data Training Testing Total

parameter points sequences sequences sequences

ωx 429688 49 6 55

ωy 234182 25 6 31

The procedure above is followed to yield the training and testing data sets upon which all

subsequent network training is based. Since two parameters (ωx,y) are predicted (Section

4.2), two separate selection procedures are followed, resulting in separate training and

testing data sets for log(ωx) and log(ωy) predictions. For both selection procedures the

threshold is set to z = 5nT/min. Details of the resulting data sets are summarised in

Table 5.2.

5.3 Prediction Lead Time

The inherent prediction lead time due to the propagation time of solar wind plasma from

L1 to the Earth provides an average of 55 minutes of prediction lead time. However,

this natural lead is not constant as is seen in Figure 5.1, and therefore unreliable to a

forecasting service. An additional lead time τ is manually inserted by shifting the input

and output parameter vectors with respect to each other (Wintoft, 2005). This results in

the prediction function F , based on a trained neural network, approximating the output

parameter a further τ minutes in the future:

out(t + τ min) ≈ F(in(t)) . (5.4)

An inserted lead time of τ = 30 minutes is employed throughout, resulting in a total lead

time of τ + d, with d the response time of the local geomagnetic field to solar wind and

IMF structures.

5.4 Input Parameter Selection

Thirty variables are presented as possible input parameters to the prediction model. Many

neural networks are trained to predict log(ωx,y) and ωx,y, each with a different set of input

parameters. Other free parameters (type of network and learning function, for example)

are kept constant. In this way, each trained network is representative of its corresponding

set of input parameters. The trained networks are all used to predict the same testing

data set, and their prediction performance calculated. Prediction performance is gauged
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by the correlation coefficient

cc(θ, θ̃) =
cov(θ, θ̃)√

cov(θ, θ) × cov(θ̃, θ̃)
. (5.5)

The measured output parameter is denoted by θ, while θ̃ denotes the predicted quantity

and cov(· , ·) denotes the covariance of two variables. The output parameters log(ωx) and

log(ωy) are used to judge the performance of the predictions, in the sense that the net-

works resulting in the highest correlation between measured and predicted log(ωx,y) are

identified and their corresponding sets of input parameters are selected as the optimal sets.

The parameters ωx and ωy are only included in the output layer to serve as a comparison

between the predictions of ωx,y and log(ωx,y).

All networks trained are [n : n + 2 : 4] Elman neural networks, with

• n input nodes,

• n + 2 hidden nodes in one hidden layer,

• and 4 output nodes.

The networks are all trained for 1000 cycles of the training algorithm, using the back-

propagation learning function (with learning parameter 0.05), adapted for Elman net-

works. All networks are trained and tested using the instances of the output and relevant

input parameters, as identified by the process described in Section 5.2.

Firstly, 30 networks are trained, each with one input parameter selected from the set of

inputs. The trained networks are processed and test predictions are made, yielding 30

correlation coefficients. The input parameter resulting in the largest correlation coeffi-

cient is selected. In the next round of training, 29 networks are trained (each with 2 input

parameters) varying the remaining 29 inputs in addition to the parameter selected after

the first round. The process continues: train 28 networks, each with 3 input parameters

– the 2 selected in the previous two rounds, varying the remaining 28 parameters with

each network trained, and so on. The process is repeated in this manner until the increase

in correlation magnitude (as is expected, due to the increasing number of input sources)

becomes negligible.

The process is generally described by the pseudo-code algorithm below.
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Define: A is the set of all N input parameters

S is the set containing the selected inputs, i.e. S ⊆ A
R is the set of remaining inputs, i.e. R = A \ S

Let A ← [input1, input2, . . . , inputN]

Let S ← ∅ (the empty set)

Let R ← A

While increase in correlation > ǫ:

for all i ∈ R:

Train network with input parameters I ← S ∪Ri

Process network, make test prediction, compute correlation coefficient:

cci = cc(measured, predicted)

Identify input parameter corresponding to k, where cck > cci6=k

Add input k to S: S ← S + k

Remove input k from R: R ← (R − k)

Upon completion of this algorithm, the set S yields the optimal set of input parameters.

The process is executed for the prediction of log(ωx) and log(ωy) separately, such that

individual input parameter sets are identified for the prediction of each output. The pro-

gressive improvement in prediction performance is illustrated in Figure 5.3 and listed in

Tables 5.3(a) and 5.3(b) below. The top and bottom panels depict the progression of

log(ωx) and log(ωy) prediction, respectively.

Table 5.3: Correlations for the prediction of (a) log(ωx) and (b) log(ωy), as input param-
eters are added. Also see Figure 5.3.

(a) Correlation coefficients of measured and predicted log(ωx).

No. of Inputs Chosen Inputs cc(log ωx, glog ωx)

1 rm10(B
imf ) 0.5453

2 rm10(B
imf ), rm10(Vp) 0.6807

3 rm10(B
imf ), rm10(Vp), rm10(Np) 0.7210

4 rm10(B
imf ), rm10(Vp), rm10(Np), LTC 0.7359

5 rm10(B
imf ), rm10(Vp), rm10(Np), LTC, rstd10(Nα) 0.7440

(b) Correlation coefficients of measured and predicted log(ωy).

No. of Inputs Chosen Inputs cc(log ωy , glog ωy)

1 rm10(B
imf ) 0.5719

2 rm10(B
imf ), rm10(Vp) 0.6592

3 rm10(B
imf ), rm10(Vp), rstd10(Np) 0.6876

4 rm10(B
imf ), rm10(Vp), rstd10(Np), LTC 0.7150

5 rm10(B
imf ), rm10(Vp), rstd10(Np), LTC, LTS 0.7309
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Figure 5.3: Correlation between measured and predicted values of log(ωx) (top panel) and
log(ωy) (bottom panel), as input parameters are varied and added. The “winner” of each
round is labelled and denoted by a red circle. The progressive performances in predicting
ωx and ωy are also included (green curves).
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Two sets of “optimal” input parameters are identified and listed in the last rows of Tables

5.3(a) and 5.3(b).

An inherent measure of uncertainty is present in the training of neural networks and the

subsequent test predictions made. Since the selection of networks trained and tested in

this section all utilise different sets of input parameters, every network is inevitably trained

with different training and validation data sets. Apart from the difference in input pa-

rameters, different validation sets may also introduce a further measure of uncertainty in

prediction results. Due to this fact, the correlation coefficients calculated in this section,

and the differences between them, are only meaningful above a certain threshold. When

the differences between corresponding correlation values are smaller than this threshold,

choices based on these correlations are ambiguous.

To test this, 10 identical networks are trained using the same training set and predicting

the same testing set, but the distribution of validation data is randomly chosen for each

network. Input parameters

rm10(B
imf ), rm10(Vp), rm10(Np), LTC, rstd10(Nα)

are included and log(ωx) is predicted, and

rm10(B
imf ), rm10(Vp), rstd10(Np), LTC, LTS

is used to predict log(ωy). Each independently trained network employs the same input

and output parameters. The correlations between the measured and predicted outputs

for each of the 10 networks are presented in Table 5.4. From Table 5.4 the maximum

and minimum correlations are identified for each output parameter. These are printed in

boldface in rows 1, 8, 2 and 4 of Table 5.4. The difference between the maximum and

minimum values are

ǫx = 0.7457 − 0.7404 = 0.0053

for log(ωx) prediction and

ǫy = 0.7334 − 0.7236 = 0.0098

for log(ωy) prediction. Thus the selection of LTC and rstd10(Nα) for log(ωx) prediction

is ambiguous because correlations resulting from the selection of other inputs fall within

ǫx of the maximum correlation yielded in Table 5.3(a) and Figure 5.3 (top panel).

This is illustrated in Figure 5.4 which displays the correlations yielded when using 4 and 5

input parameters, i.e. the correlations also found in Figure 5.3 (top panel) for networks 87
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Prediction of log(ωx) using 4 and 5 input parameters

Figure 5.4: Correlations attained when predicting log(ωx) using 4 and 5 input parameters.
The deviation (ǫx) from each maximum is denoted with dashed lines. Green circles denote
the “second placed” input parameters. Note that both the winners (red circles) and second
placed inputs (green circles) are related: LTS – LTC and rm10(Nα) – rstd10(Nα). Also
see Figure 5.3 (top panel).

to 140. Dashed lines denote deviations of magnitude ǫx from each maximum (red circles).

Green circles mark “second placed” correlations, from which the ambiguity arises. Since

both “second placed” inputs fall within ǫx of the two maximum correlations, it is uncertain

whether LTC or LTS should be selected as the fourth input and whether rm10(Nα) or

rstd10(Nα) should be selected as the fifth input. Note that the two ambiguous inputs in

each pair are derived from the same measurements; i.e. LTC and LTS are both derived

from the local time, and rm10(Nα) and rstd10(Nα) are both derived from the α to proton

number density ratio, Nα. Thus, although the choice of fourth and fifth input parameters

are somewhat ambiguous, we know that a weak dependence of ωx on local time and Nα

exists.

5.5 Neural Network Configuration

The previous section described the selection of input parameters from a larger set in order

to optimally predict the output parameters. In the log(ωx) case the neural network com-

prises 5 input parameters, 7 hidden nodes in one hidden layer, and 4 output parameters

(since ωx,y predictions are also made). Generally, and specifically in the case of Section
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Table 5.4: The best performing networks from Section 5.4 are retrained 10 times each,
in order to find the variation in prediction performance (correlation) due to the natural
uncertainties within the network training algorithm. The minimum and maximum values
are highlighted for each case.

Repetition cc(log ωx, glog ωx) cc(log ωy , glog ωy)

1 0.7404 0.7241

2 0.7451 0.7334

3 0.7439 0.7320

4 0.7430 0.7236

5 0.7448 0.7260

6 0.7443 0.7319

7 0.7428 0.7319

8 0.7457 0.7307

9 0.7432 0.7290

10 0.7430 0.7321

5.4, the number of input and output parameters are determined by problem-specific con-

straints, i.e. the constraints set by the modelled system and the goals of the modelling

process. This leaves the topology of the hidden layer(s) to be adapted.

Section 5.4 used a simple number of hidden nodes = 2 + number of inputs formula for de-

termining the number of hidden nodes used (in one hidden layer). According to Hagan

et al. (1996), no general algorithm for determining the optimal number of hidden nodes

exist.

In order to find the optimal hidden layer topology, the number of hidden nodes are varied

from 1 to 14 in one hidden layer, and from 2 to 28 in two hidden layers. A maximum of

two hidden layers is used, considering the statement made by Hagan et al. (1996), namely

that one or two hidden layers are sufficient for most problems. The optimal set of input

parameters selected in Section 5.4

[
rm10(B

imf ), rm10(Vp), rm10(Np), LTC, rstd10(Nα)
]

is used to predict ωx,y and log(ωx,y) . Thus, the same testing and training data sets as

defined in Section 5.2 are used. The network configuration is kept constant, except for

the number of hidden nodes which are varied. As is the case in the previous section, the

correlation coefficient (equation 5.5) is used as the measure of performance. Figure 5.5

and Table 5.5 illustrate the results.

As the number of hidden nodes are increased from 1 to 5 (in one hidden layer), the correla-

tion between measured and predicted measurements increases steadily from approximately
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0.71 to 0.7480. With 6 to 14 hidden nodes in one layer, the performance remains approx-

imately constant around 0.74. In the double hidden layer configuration the prediction

performance rises from approximately 0.71 to 0.744 for 2 to 10 hidden nodes. As the

number of hidden nodes is increased from 14 to 26 (7:7 to 13:13), the correlation remains

approximately constant around 0.73. At 12 and 28 hidden nodes, the correlations are low

(0.7202 and 0.7181) compared to other configurations. The reason for this is not clear.

Overall, one hidden layer seems to yield slightly better prediction results. Specifically,

the use of 5 hidden nodes proves successful. Based on these results, one hidden layer

containing more than 3 nodes is sufficient.
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Figure 5.5: Prediction performance versus increasing number of hidden nodes. One (blue
squares) and two (red circles) hidden layers are used. The correlation coefficients are listed
in Table 5.5.
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Table 5.5: Predictive performance for different numbers of hidden nodes in one (first and
second columns) and two (third and fourth columns) hidden layers. The coefficients listed
here are illustrated in Figure 5.5.

Hidden Nodes (1 layer) cc(log ωx, glog ωx) Hidden Nodes (2 layers) cc(log ωx, glog ωx)

1 0.7127 1:1 0.7126

2 0.7243 2:2 0.7333

3 0.7373 3:3 0.7430

4 0.7438 4:4 0.7436

5 0.7480 5:5 0.7441

6 0.7446 6:6 0.7202

7 0.7441 7:7 0.7341

8 0.7440 8:8 0.7331

9 0.7425 9:9 0.7382

10 0.7416 10:10 0.7290

11 0.7441 11:11 0.7314

12 0.7323 12:12 0.7361

13 0.7382 13:13 0.7375

14 0.7408 14:14 0.7181

5.6 Prediction Results

To summarise, this chapter described the development of a neural network prediction

model. The geomagnetic quantities log(ωx) and log(ωy), defined in Section 4.2.1 are pre-

dicted with a 30-minute lead time from a subset of the input parameters listed in Section

4.1.5. Choices regarding the type of network employed, construction of testing and train-

ing data sets, input parameters and network configuration were made.

In the prediction of log(ωx), a [5:7:4] Elman neural network, with input parameters

rm10(B
imf ), rm10(Vp), rm10(Np), LTC and rstd10(Nα)

achieved 0.74 prediction accuracy (Fig. 5.6), where prediction accuracy refers to the

correlation coefficient between measured and predicted output parameter values. Corre-

spondingly, a [5:7:4] Elman network with input parameters

rm10(B
imf ), rm10(Vp), rstd10(Np), LTC, LTS

achieved 0.73 accuracy in predicting log(ωy) with a 30-minute lead (Fig. 5.7).

Recalling from Section 5.2, six sequences of input and output parameter measurements

are used as the testing data sets for the predictions of log(ωx) and log(ωy), respectively.
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The best predictions of log(ωx) and log(ωy), according to Section 5.4, are plotted with

their corresponding measured values in Figures 5.6 and 5.7. The predictions are made

with a 30-minute prediction lead (described in Section 5.3).

The general structure of the target data set is predicted with reasonable accuracy, but

the finer structures within the output variable are not modelled very well. Other authors

(Wintoft, 2005; Koskela et al., 1996), employing recurrent neural networks for time series

prediction have found the same behaviour. The inability of the model to predict the highly

variable components may be due to the statistical nature of the training process, in which

more rapid variations are smoothed out and inevitably lost.
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Figure 5.6: Measured and predicted values of log(ωx) for six sequences of testing data
recorded at the Hermanus Magnetic Observatory. The overall prediction performance is
0.74.
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Figure 5.7: Measured and predicted values of log(ωy) for six sequences of testing data
recorded at the Hermanus Magnetic Observatory. The overall prediction performance is
0.73.



48 CHAPTER 5. MODEL DEVELOPMENT

5.7 Discussion of Selected Input Parameters

Section 5.4 describes a process of input parameter selection with regards to the prediction

of log(ωx,y) = log [RRMS10(∆Bx,y)]. Two sets of “optimal” input parameters have been

determined (see previous section). According to this process, the total IMF magnitude

(Bimf ), the particle number density (Np) and the solar wind bulk speed (Vp) are the most

important solar wind parameters in the prediction of the geomagnetic field output param-

eters. These three parameters are related to two pressure terms. The IMF magnitude

(Bimf ) defines the magnetic pressure

pB = B2/2µ0 (5.6)

in the solar wind, and the solar wind dynamic pressure, pdyn
sw (equation 4.4), is related to

the velocity (Vp) and density (Np) parameters. The latter of these terms, pdyn
sw , is related to

the compression of the magnetosphere by the incoming solar wind (Wintoft, 2005; Russel

et al., 1999).

The emergence of Bimf as an influential input parameter could be due to the coupling

between charged particle density in the solar wind, and the magnetic field strength within

the solar wind. The relation is understood through the frozen-in flux condition from

magneto-hydrodynamics. Firstly, it is assumed that the frozen-in flux condition holds,

i.e. each plasma particle is attached to a magnetic field line and remains attached to that

field line. Now, an increase in particle density will result in a magnetic field line density

increase. Although magnetic field lines are theoretical constructions, it is understood that

field lines converge when approaching regions of strong magnetic field and diverge as a

region of weak field is approached (Purcell, 1965, pg. 19). Hence, as the particle density

within the solar wind plasma increases, the magnitude of the frozen-in magnetic field also

increases.

A similar study conducted by Wintoft (2005) found a 0.79 correlation between measured

and predicted RMS(∆Bx,y) and listed Bimf
z , Vp and the standard deviation of the den-

sity std(Np) as the most important input variables. Some differences between the Wintoft

model and the one presented here exist. Our study is based on lower-middle latitude

(34.27◦ S) geomagnetic field measurements, whereas the Wintoft model is exclusively based

on high-latitude measurements (55.63◦ N and 59.90◦ N). The number of “candidate” in-

put parameters considered in this study outnumbers the selection considered by Wintoft

(2005). Most notably, Wintoft did not consider the total IMF magnitude as a possible

input, which proved the most influential parameter in our study. The different IMF com-

ponents listed as influential parameters in this investigation and in the Wintoft (2005)

model suggests that high latitude termporal geomagnetic field variations are due to sub-
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storm activity (driven by reconnection which is dependent on Bimf
z ) and lower-middle

latitude variations are driven by the ring current effect, which is dependent on the total

IMF strength, Bimf .

The selection criterion used in the selection of training and testing data sets is based

on the variations in horizontal geomagnetic field with time, measured at Hermanus (see

Section 5.2). In other words, no distinction with respect to the severity or source of the

geomagnetic storms responsible for the temporal variations in Bx,y is made. This could

explain why Bimf
z , as a driver of substorm activity, is not identified by the input parameter

selection process as a critical input to the prediction model.

Given the prediction results, it is argued that the selected sets of input parameters, espe-

cially

rm10(B
imf ), rm10(Vp), rm10(Np) and rstd10(Np)

could be considered as good precursors of horizontal field variation at middle-latitudes.



Chapter 6

Discussion and Concluding

Remarks

6.1 Project Overview and Conclusion

The objective of this study is to determine if neural networks would provide a suitable

tool for constructing a model capable of predicting GIC occurrence. The processes driv-

ing GIC’s, through solar wind-magnetosphere-ionosphere interactions, are complex and

highly non-linear. Due to the complexity and non-linearity of the modelled system, neural

networks are identified as a viable basis for the prediction model.

Elman networks, a type of recurrent neural network, are employed due to their ability

to correct for the inherent delay between input parameters (solar wind-based quantities

measured at L1) and output parameters, which are based on ground magnetic field mea-

surements. This is an example of how certain types of networks are better suited to a

specific application. In this case the use of a simple feed-forward network would have

demanded a manual correction for the delay in solar wind propagation time from L1 to

the Earth’s surface.

In order to develop the neural network-based model, input and output parameters are

identified. The (predicted) output parameters selected are the 10-minute running root-

mean-square of ∆Bx and ∆By, respectively. Predicting log [RRMS10(∆Bx,y)] would en-

able the mean-square GIC magnitude to be known in advance, given that the coefficients

which characterise the conductor network, a and b from equation 2.5, are accurate and

available.

Input parameters are selected from a large set of “candidate” inputs, derived from in-situ

solar wind measurements made by the ACE satellite. A robust and objective parame-
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ter selection algorithm is used to identify the solar wind parameters bearing the most

influence on the output parameters. The criteria for parameter selection are based on

the magnitude of the correlation coefficient of measured and predicted output parame-

ters yielded by using a particular set of inputs to make the prediction. The process is

conducted separately for each output parameter, yielding two sets of “optimal” input pa-

rameters. The predictions resulting from the optimal input parameter selections result in

a correlation between measured and predicted outputs of 0.74 for the log [RRMS10(∆Bx)]

prediction and 0.73 for the log [RRMS10(∆By)] prediction. All predictions are made with

a 30-minute prediction lead time.

Given the results presented here, it is reasonable to conclude that further investigation

would yield a working neural network-based prediction model, capable of predicting GIC

occurrence at least 30 minutes in advance, given the availability of suitable information

regarding the configuration of the conductor network.

6.2 Future Work

Since the nature of this project is merely a feasibility study, it is clear that much needs

to be done in order to construct a working GIC prediction model fit for integration into a

regional space weather warning centre. A short discussion of possible future investigation

follows.

A significant shortcoming in the development of this prediction model is the lack of avail-

able GIC measurements within the South African powerline network. Currently, measure-

ments taken over a 3-day period, spanning the severe geomagnetic storm of October 2003,

is the only available data set of South African GIC measurements. Clearly, a much larger

data set is required to compare the predictions made with actual GIC occurrences. Nego-

tiations are currently underway with the South African power utility (Eskom) regarding

the availability of future measured GIC data.

It would be logical to expand the model to include more magnetometer stations. This

study only considers measurements made at Hermanus, South Africa. Expansion entails

collecting and processing geomagnetic field measurement data obtained from other stations

over the last solar cycle, and repeating the modelling process for both output parameters.

Depending on the data made available by Eskom, the additional magnetometer stations

should ideally be situated near the relevant Eskom transformer substations, where GIC’s

are measured. Expanding the model to include more locations and comparing results with

GIC measurements would provide more information as to the physical processes driving

GIC’s at mid-latitudes. It would also be worthwhile to use the same method to develop
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a simple prediction model based on high-latitude geomagnetic data. That should yield

valuable information as to the differences between high-latitude and mid-latitude occur-

rence of GIC’s, especially in terms of the solar wind-bound drivers.

A significant shortcoming in the results presented in Section 5.6 is the inability of the

model to predict the highly variable component of the output parameters. In wavelet

analysis techniques exist that would allow the signal represented by the output parameter

measurements to be decomposed into “resolution levels”. Having decomposed the origi-

nal signal, an attempt to predict the various resolution levels separately could be made.

Since only solar wind-based inputs were considered in this model, the inclusion of internal

magnetospheric parameters may also help resolve this problem.

In this investigation only a 30-minute prediction lead time is considered. It would be

possible to make use of various prediction lead times. For example, a 60-minute lead pre-

diction could be made. Acknowledging that longer lead times would probably result in less

accurate predictions, 45- and 30-minute predictions would subsequently be made. In this

manner, longer, albeit less accurate, foresights would complement 30-minute predictions.

Although we believe the input parameter selection procedure to be objective, it might be

worthwhile to commence the selection process with the z-component of the IMF. Since

we expected magnetic reconnection to have an influence on the predicted parameters, the

explicit selection of Bimf
z and the subsequently selected inputs would yield insight into the

role of magnetic reconnection in the formation of temporal geomagnetic field variations at

middle latitudes.

6.3 Possible Model Layout

This thesis concludes with a schematic diagram depicting the possible layout of a working

prediction model, illustrated in Figure 6.1 below. It depicts how data from measurements

made by ACE, ground-based magnetometer stations and GIC measurement sites could be

processed and incorporated into a working prediction model.

Measurements of solar wind parameters are made by the ACE spacecraft and transmitted

in real-time to NOAA ground stations. From NOAA the data is uploaded to the Goddard

Space Flight Centre (GSFC, 2008) and NOAA Space Weather Prediction Centre (SWPC,

2003) websites.

Historic solar wind data downloaded from the GSFC (2008) website and geomagnetic

field measurements obtained from magnetometer stations are collected and processed into
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training and testing data sets. The training and testing sets are used to train the neural

networks upon which the prediction algorithm is based. As more knowledge regarding the

physical processes driving GIC’s is gained (e.g. the suggestions mentioned in Section 6.2),

more neural networks will be trained in order to incorporate the new information into the

prediction model.

Solar wind data (say from K minutes in the past to the current time t) is taken in near

real-time from the SWPC (2003) website, processed and used as input to the prediction

algorithm. The prediction algorithm is used to predict the output parameters τ = 30

minutes in advance, i.e. from t − K + τ to t + τ , where τ is the prediction lead time.

The predictions are regularly monitored and compared with the measurements made at

magnetometer stations. After a GIC event the measured GIC magnitudes (obtained from

Eskom substations) are compared to GIC values computed from predicted geomagnetic

output parameters.

Obviously, this is only a prototype layout. As more time is spent developing such a model,

other practical constraints will be encountered and (hopefully) dealt with.
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Figure 6.1: Schematic diagram depicting the possible layout of a working prediction model.
Dashed lines denote flows that are meant to be executed in near real-time, as the timing of
predictions directly depend on these steps. Input parameter data from K minutes in the
past to the current time t is denoted by in(t − K, . . . , t), and out(t − K + τ, . . . , t + τ)
denotes the predicted output, with a τ -minute prediction lead.
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