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Abstract

The distribution of the platinum group element (PGE), in the Merensky Reef was 

characterized by, first determining the occurrence of the platinum group minerals (PGM), 

then by establishing the PGE concentration in the base metal sulphides (BMS) associated 

with the PGE mineralization in the Merensky Reef from selected borehole intersections, at 

the Two Rivers (TRP) and Modikwa Platinum Mines in the Eastern Bushveld Complex. A 

mineral liberation analyser (MLA) was then used to identify the PGM phases; their silicate 

and base metal associations; and their grain size distribution. Electron microprobe 

quantitative analysis and mapping were then used to determine the compositional variation of 

the PGM and the PGE elemental distribution in the BMS, respectively. The study showed 

that the BMS including pyrrhotite, pentlandite, and chalcopyrite were the principal sulphides, 

where pyrrhotite was most prominent with minor quantities of pyrite. Orthopyroxene, 

clinopyroxene and plagioclase were the most abundant primary silicate minerals identified, 

while secondary silicates identified included talc, serpentine and amphibole. Platinum group 

minerals showed three distinct groups with respect to the mineralogical association with the 

PGE; (i) BMS association; (ii) chromite association; and (iii) silicate association. Of the 

BMS, chalcopyrite showed the most dominant association with the PGMs. All samples from 

both mines exhibited a wide range of PGMs, including maslovite, braggite, cooperate, laurite 

and PGE alloys such as ferroplatinum as well as other unidentified platinum and palladium 

sulphides, arsenides and bismuthides, while gold was present as electrum. The PGMs ranged 

in size from less than a micron to about 125 microns with an average of 20 microns. The 

close association of PGM with BMS along the margins of sulphides indicates that the PGMs 

were derived from the sulphide melt.

PGE distribution in the sulphides at Modikwa showed pentlandite contained the highest 

concentrations of palladium (up to 379 ppm) and chalcopyrite hosting the highest rhodium 

concentrations (up to 793 ppm). Samples from Two Rivers revealed pentlandite as the 

principal host to both palladium and rhodium, with concentrations reaching up to 695 and 

930 ppm, respectively. Magnetite at both Modikwa and Two Rivers showed significant 

rhodium content, reaching up to 982 and 930 ppm, respectively.
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The pyrrhotite compared to other sulphides contained all the elements found in the platinum 

group (PPGE), namely, platinum, palladium and rhodium, with all the platinum identified 

found in the pyrrhotite. The concentrations for the iridium group (IPGE) namely, iridium, 

osmium, and ruthenium were below the detection limit.

The PGE mineralization in the stratigraphy varied within each mine. The mineralization 

revealed top loading in the central sector (Modikwa) and bottom loading in the southern 

sector (Two Rivers). The sequence of the Merensky Reef at the two sectors of the Eastern 

Bushveld Complex showed a remarkable similarity in their mineralogy suggesting that these 

two sectors were formed from the same liquid or formed simultaneously within a single 

magma chamber; however the PGE distribution within the stratigraphy may have been 

controlled by the presence of cumulate sulphides.

Keywords: Platinum group elements (PGE), Platinum group minerals (PGM), Merensky 

Reef, Bushveld Complex, Modikwa, Two Rivers.
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1. Introduction and Literature Review

1.1 Background
The Bushveld Complex in the Republic of South Africa is the largest known intrusion on 

Earth, containing the world’s most important platinum group element (PGE) reserves (Rose 

et al. 2011; Cawthorn 1999; Hulbert and Von Gruenewaldt 1982; Misra 2000; Willemse et al. 

1969; Vermaak 1995; Von Gruenewaldt 1977, 1979). There are three PGE mineralised 

horizons currently mined for their PGE content in the Rustenburg Layered Suite of the 

Bushveld Complex specifically, the Upper Group-2 chromitite layer (UG-2), the Merensky 

Reef and the Platreef. The UG-2 and Merensky Reefs of the Critical Zone are in the Eastern 

and Western limbs of the Bushveld, while the Platreef is found in the Northern limb. 

Presently, there is no consensus as to whether the Platreef is of Critical or Main Zone affinity 

(McDonald et al. 2005). Each of these horizons has a distinctive associated ore mineralogy 

requiring differing approaches for metallurgical processing. For instance, the UG-2 ore has a 

high proportion of chromite and is low in nickel and copper sulphides relative to the 

Merensky Reef. The Platreef however, has a greater proportion of PGE sulphides than both 

the Merensky Reef and UG-2. In the Platreef, the platinum group mineralogy (PGM) differs 

and is more complex, as documented by Hutchinson and Kinnaird (2005), who identified 

secondary silicates along the margins of sulphides which rarely occurred within or enclosed 

in sulphides.

This study is based on the Modikwa and Two Rivers Platinum mines located in the Eastern 

limb of the Bushveld Complex. Both mines presently extract PGE from the UG-2 chromitite 

layer. Thus, the focus of the present study is on the Merensky Reef which is currently not 

being mined due to absence of an advanced geometallurgical model of the Merensky Reef. 

Studies of the Merensky Reef have concentrated primarily on the Western limb of the 

intrusion, where mining operations yield exposures over tens of kilometres along the strike 

(Crocket et al. 1976; Vermaak 1976; Kinloch and Peyerl 1990; Wilson et al. 1999; Barnes 

and Maier 2002; Wilson and Chunnett 2006). Several studies inclusive of Vermaak and 

Hendricks (1976), Mostert et al. (1982), Kinloch and Peyer (1990) and Schouwstra et al. 

(2000), have characterized the PGE mineralogy in the Merensky Reef. These studies have 

also rendered it possible to make quantitative comparisons of the PGE and PGM contents in 

the studied deposits, thus providing vital information to maximise beneficiation and 

extraction.
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The PGM sector provides a unique resource comparative advantage for South Africa, in the 

global minerals market. However, presently, very little (<12%) of South Africa’s primary 

PGM output is beneficiated annually to the final stage of the value chain, locally. 

Comprehensive mineralogical studies on PGM have provided a significant understanding of 

the distribution of the PGE in the sulphide ores and the geochemistry of their mineralization 

(Vermaak and Hendriks 1976; Cabri and Laflamme 1981). However continuous problems 

still arise regarding the importance of sulphide minerals in dissolving PGEs and the exact 

siting of these elements, due to difficulties associated with the direct determination of PGEs 

in sulphide minerals and the quantitative estimation of PGM. It is also not clear whether 

PGEs that occur primarily as PGM in the sulphide ores, are structurally bound or are 

nanoparticles in the major sulphides of nickel-copper-PGE deposits.

1.2 Purpose of the Study
South Africa faces increased competition in terms of attracting foreign direct investment to 

the minerals sector due to ore bodies becoming more complex in mineralogy and occurring 

deeper. These factors render the resulting ore more difficult to access and to process. The aim 

of this study is to characterize the PGE distribution in sulphide ores within the Merensky 

Reef at Modikwa and Two Rivers Platinum Mines of the Eastern Bushveld Complex in South 

Africa, to:

• Improve the knowledge of the genetic processes that formed the mineralization of the 

Merensky Reef and to understand the link between PGE distribution and sulphide 

mineralization;

• Provide information that can be used to predict and explain the behaviour of the ore 

mineralogy in the Merensky Reef to assist in modifying current mineral processing 

methods and plant design for improved recovery.

For this study, four drill cores from the Critical Zone of the Rustenburg Layered Suite (RLS) 

were logged and sampled. These four drill cores show the mineralised portion of the 

Merensky Reef in the Eastern Bushveld Complex. Two of these four drill cores were obtained 

from the central sector of the Eastern Bushveld Complex at Modikwa Platinum Mine (OV 

777, OV 778) and the other two drill cores originated from the southern sector of the Eastern 

Bushveld Complex at Two Rivers Platinum Mine (TRP 260, TRP 271).
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1.3 Overview of the Bushveld Complex
The Bushveld Complex was emplaced at approximately 2.05 Ga in an essentially intraplate 

setting and currently covers an area of ca. 65.000 km , with a thickness of 5-10 km 

(Walraven et al. 1990; Eales and Cawthorn 1996; Cawthorn et al. 2006b). The Complex is 

exposed in five locations referred to as limbs (Figure 1.1). These are known as the Western, 

Eastern, Far western southern and Potgietersrus and/or Northern limbs. There are four groups 

of rocks that are found here: (1) the Rusternburg Layered Suite (RLS) which is the largest 

mafic layered complex (2) the Lebowa Granite Suite (3) the Rashoop Granophyre Suite 

which overlays the RLS and (4) the siliceous rocks of the Rooiberg Group (SACS 1980; 

Hatton and Schweitzer 1995).

Figure 1.1: Simplified geological map of the Bushveld Complex (South Africa) and 
stratigraphy of the Rustenburg Layered Suite (Barnes 2015). Geological map is adapted from 
Von Gruenewaldt (1979) and stratigraphy for the Eastern and Western limbs is modified in 
accordance with Cawthorn et al. (2005). LZ Lower Zone; CZ Critical Zone; MZ Main Zone; UZ 
Upper Zone; Px pyroxenite; Hz harzburgite; No Norite; Gn gabbronorite; AD Apatite Diorite.

The Western limb extends from near Thabazimbi to the north of Pretoria. The Eastern limb 

outcrops from Stoffberg to Chuniespoort and is 200 km long (Eales and Cawthorn 1996).
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The eroded Far western limb, which is known to be less prominent when compared to the 

other limbs, extends to the border of Botswana. The Northern limb is partially hidden beneath 

younger rocks (Eales and Cawthorn 1996) and consists of a slightly different succession.

The South eastern or Bethal limb is only identified based on a high gravity, and is known 

only from bore core information (Eales and Cawthorn 1996).

1.4 The Rustenburg Layered Suite (RLS)
The RLS is segregated into five main zones, specifically, the Marginal Zone (MZ), the Main 

Zone (MZ), the Critical Zone (CZ), the Upper Zone (UZ) and the Lower Zone (LZ) (Kruger 

1990), dated at 2054.4 ± 2.8 Ma, uranium/lead zircon age (Harmer and Armstrong 2000).

The Upper Zone is well layered with a thickness of about 2000 to 2800 m of cyclic units of 

24 magnetite layers, gabbronorites, anorthosites and diorites (Barnes and Maier 2002).

The Main Zone is a thick sequence of norite and gabbronorite, with minor anorthosite and 

pyroxenite layers, even though there is a lack of olivine and chromitite (Cawthorn et al. 

2006b). The Main Zone is > 3000 m thick and does not show such spectacular layering as the 

Critical Zone, however modally layered rock packages can be identified (Molyneux 1974, 

Mitchell 1990, Nex et al. 1998 and 2002).

The Critical Zone is divided into a Lower and an Upper Critical Zone, containing vast 

deposits of chromite. The Upper Critical Zone at the base is defined by the appearance of 

cumulus plagioclase, except in the Eastern and more so in the Western limb (Teigler et al. 

1992). The UG-1 and UG-2 occur directly above the Critical Zone (the UG-3 is restricted to 

the Eastern limb of the Complex) underlain by the top two cyclic units which are the 

Merensky Reef and the Bastard Reef (Cawthorn et al. 2002b). The Lower Critical Zone 

comprises of up to seven chromitite layers known as the Lower Groups (LG1-LG7) and the 

Middle Groups contain four chromitite layers (MG1-MG4) located at the top of the Lower 

Critical Zone and at the base of the Upper Critical Zone. The Merensky Reef dips to the 

centre of the Complex at an angle of 9-27° (Du Plessis and Kleywecht 1987; Von 

Gruenewaldt et al. 1990). The PGE grade of the Merensky Reef is remarkably uniform and 

ranges from 5.6-9.2 g/t 4E in the Western limb to 4.9-5.9 g/t 4E in the Eastern limb 

(Cawthorn et al. 2002a) and the relative proportions of the different PGEs are virtually 

constant. The highest PGE grades tend to be found within the two thin chromitite layers of 

the Merensky Reef, with lower grades in between them (Cawthorn 1999).
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Grades in the Eastern limb are significantly lower than in the Western limb, at 2-3 g/t 

platinum, which is the reason the Merensky Reef, in the east, was considered uneconomical 

for 20 years (Naldrett et al. 2015).

The UG-3 occurs 10 m above the UG-2 chromitite seam. UG-3 unit, which occurs about 365 

m below the Merensky Reef, includes several thin chromitite layers and thin harzburgite 

layers (Eales and Cawthorn 1996). It forms part of the strata and therefore strikes and dips the 

same way as the UG-2 reef. The UG-3 seam has an average thickness of 22 cm. This 

chromitite seam only appears in the Eastern limb of the Bushveld Complex (Eales and 

Cawthorn 1996).

The UG-2 is considered as the largest PGE resource on Earth (Vermaak 1985; 1995). UG-2 

represents only one lithological unit and dips to the centre of the Complex at an angle of 

between 10-26 ° (Cawthorn et al. 2002b). The UG-2 has a PGE grade between 4.8-6.5 g/t and 

4.5-8.0 g/t PGE on average in the Western and Eastern Bushveld, respectively (Cawthorn et 

al. 2002a). The UG-2 chromitite ranges from 60-120 cm. Grades that are usually quoted by 

mining companies for platinum, palladium, rhodium and gold, 4E average 5 g/t, with some 

suggestion that the thinner the layer the higher the grade (Cawthorn 2015). The distribution 

of the grade within the layer is not uniform. Mining widths at the Atok, Marula and Modikwa 

mines are thinner than the mines in the south, namely Two Rivers (Cawthorn 2015). The 

Platreef is in the Northern limb of the Bushveld Complex and comprises of feldspathic 

pyroxenite with PGE and BMS mineralization (Van der Merwe 1976). The Platreef is 

associated with the Critical Zone (Wagner 1929; White 1994) however; Van der Merwe 

(1978) regarded the Platreef as the base of the Main Zone. It hosts significant PGE content 

but differs from the UG-2 and Merensky Reef concerning the PGE grade and the 

platinum/palladium ratio.

The Platreef typically contains 1-2 g/t over many meters while the platinum/palladium ratio 

is approximately 1:1 (Kinnaird et al. 2005). In some cases, as at the open pit operations of 

Sandsloot, higher grades occur at the base, whereas to the north (Overysel), mineralization 

may occur higher in the layer (White 1994). Copper and nickel, which are higher than in the 

Merensky Reef positively correlate with sulphur, but the PGEs do not (White 1994).

The Lower Zone is divided into the lower pyroxenite, harzburgite and upper pyroxenite 

subzones, all with less than 1 % chromite (Cawthorn et al. 2006b). The thickness of the 

Lower Zone reaches 1300 m (Cawthorn et al. 2002b).
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The Marginal Zone comprises medium-grained unlayered rocks, which are primarily norite 

with variable amounts of accessory clinopyroxene, quartz, biotite and hornblende (Cawthorn 

et al. 2006b). Quartz and biotite reveal the assimilation of shale (Cawthorn et al. 2002b). The 

rocks of the Marginal Zone may reach up to 800 m in thickness and may represent multiple 

magmatic intrusions of magma (Cawthorn et al. 2006b).

In all these deposits, PGM is extremely diverse and complicated (Cawthorn et al. 2002a). 

Such information is crucial for the efficient extraction of the ore minerals.

The Lebowa Granite Suite consists of different types of granites. It comprises a series of 

sheeted intrusions between 1.5-3.5 km in thickness (De Beer et al. 1987; Molyneux and 

Klinkert 1987; Klemann and Twist 1989). These granites underlay the mainly felsic volcanics 

of the Rooiberg Group and generally consist of alkali feldspar granites with iron-rich 

ferromagnesian minerals.

The Rooiberg Group occurs mainly above the Rustenburg Layered Suite (RLS) and can be 

divided into several formations. The bulk of the succession comprises siliceous volcanic 

rocks with sandstone and shale intercalations. The Rooiberg Group has been dated at 2057.3 

± 3.8 Ma, uranium/lead zircon age; (Harmer and Armstrong 2000).

The Rashoop Granophyre Suite represents the acid phase of the Bushveld Complex 

(Cawthorn et al. 2006b). The rocks of the Bushveld Complex intrude the sedimentary strata 

of the Transvaal Supergroup and at present are buried under a younger sedimentary cover, 

which is partly removed by erosion (Cheney and Twist 1991).

The RLS o f the Eastern limb is an arcuate body that is exposed on the surface for 220 km 

(Van der Merwe 2007). It is well exposed in the area between Stoffberg and Burgersfort 

(Sharpe and Hulbert 1985). The geological structures that occur in the Eastern limb subdivide 

the RLS into three sectors namely, (1) the Western sector (2) Central sector and (3) the 

Southern sector. These geological features include associations of domes and faults, which 

commonly occur in the floor rocks of the intrusion. In the south, the Steelpoort pericline 

along with the associated Steelpoort fault separates the Southern sector from the Central 

sector. In the north, the Katkloof anticline and the up-faulted Fortdraai fold structure, together 

with the associated Wonderkop fault system, separate the Central from the Western sector 

(Von Gruenewaldt et al. 1990; Rose et al. 2011).
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Mining operations along with detailed mapping, especially, of the Critical Zone have shown 

that there are changes in the lateral facies within a few km, which take place across the 

Steelpoort fault (Von Gruenewaldt et al. 1990).

The Rustenburg Layered Suite in the Western Bushveld is like the formerly described RLS in 

the Eastern limb, as it is also divided into sectors. The Western limb consists of a North­

western sector or segment and a South-western sector that are separated by the Pilanesberg 

Alkaline Intrusion (Naldrett et al. 2008).

1.4.1 The Merensky Reef in the Rustenburg Layered Suite

The Merensky Reef which was discovered in 1924 by Dr Hans Merensky is one of the PGE- 

rich layers of the Bushveld Complex and, after the UG-2 chromitite, the second largest PGE 

reserves in the world (Cawthorn, 1999). Although the Merensky Reef is generally regarded as 

a uniform reef type, large variations occur in reef thickness, reef composition and in the 

position of mineralization (Schouwstra et al. 2000). Variations in reef thickness, composition 

and mineralization are described by the term “Merensky Reef facies”. The Merensky Cyclic 

Unit (MCU) occurs in the upper layer of the Upper Critical Zone which is in turn overlain by 

the Bastard Cyclic Unit (BCU). Naldrett et al. (2009) regarded the BCU to be similar in 

several ways to the Merensky Cyclic Unit, but both units have less abundant sulphides and 

lower PGE tenors at their base (based on the work done in the Western limb). The BCU is in 

turn overlain with the Giant Mottled Anorthosite (GMA) of the lower subzone of the Main 

Zone, in the same way as the Eastern limb. The reef thickness varies from as thin as 4 cm to 

as thick as 4 m (Lee, 1996). Seismic surveys conducted by du Plessis and Kleywegt (1987) 

show that, reflectors that correlate the position of the Merensky Reef can be traced 

continuously up to 50 km down from the outcrop and up to 6 km deep below the surface (Lee 

1996).

1.4.2 Stratigraphy of the Merensky Reef

Generally, the Merensky Reef has a sheet-like geometry (Schwellnus et al. 1976) that is para- 

conformable to the underlying or footwall cumulates (Lee 1996). The Merensky Reef 

package is composed of a pegmatoidal feldspathic pyroxenite, which, in places is replaced by 

a pegmatoidal feldspathic harzburgite at the base. One or two (occasionally more) chromitite 

stringers, reaching up to 2 cm in thickness distinguish the upper and lower bounds of the reef. 

The hanging wall of the reef comprises of feldspathic pyroxenite or norite, as presented in 

Figure 1.2 below. The reef is usually 1.5-3.5 m thick (Osbahr et al. 2013).
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Mitchell and Scoon (2007) reported the stratigraphic succession for the interval between the 

base of the Merensky Reef and the top of the UG-2 to be 410 m, of which 80 % is composed 

of anorthosite, leuconorite and gabbronorite.

The Merensky Reef in the Eastern Bushveld has recently been documented by Wilson et al. 

(2005) and Mitchell and Scoon (2007) who show that it differs markedly from the Western 

Bushveld, and has defined a new facies type called “wide reef facies” for this area.

Figure 1.2: Schematic showing the distribution of rock units and mineralization in the 
Merensky Reef of the Western Bushveld (Rusternburg location) after Vermaak (1976), 
and in the Eastern Bushveld (Lebowa mine) after Schwellnus et al. (1976), modified 
after Naldrett (1989).

1.5 Platinum group Elements (PGE)
The PGE include six metals; platinum, palladium, rhodium, osmium, iridium, and ruthenium. 

They can be divided into light PGE, including ruthenium, rhodium and palladium and heavy 

PGE, including osmium, iridium and platinum. The light elements have only half of the 

density of the heavy PGE (Buchanan 1988).
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The PGE based on their coherent behaviour during magmatic processes, can further be 

divided into the Platinum Group (PPGE) consisting of palladium, platinum and rhodium and 

the Iridium Group (IPGE), consisting of osmium, iridium, and ruthenium (Mungall 2005; 

Barnes et al. 1985).

The elements of the two subgroups (i.e. PPGE and IPGE) have different melting points, 

ranging between 1552 and 1966 °C for the PPGE Group and between 2310 and 3045 °C for 

the IPGE Group (Osbahr et al. 2013). The PGE prefer to form metallic bonds with iron, 

copper and nickel. In addition, they share a tendency with copper and silver to favour the 

formation of covalent bonds with sulphur. This behaviour gives the PGE a siderophile and 

chalcophile character, respectively (Mungall 2005). Besides the high melting points, PGE are 

known for their chemical inertness and for their ability to catalyse chemical reactions (Brenan 

2008), thus, PGEs are in high industrial demand in the automotive industry.

1.6 Introduction to Magmatic Sulphide Ore Deposits
Certain aspects must be considered in view of the genesis of PGE bearing magmatic sulphide 

deposits; for example, how sulphide saturation is achieved in the host magma leading to the 

formation and separation of an immiscible sulphide liquid in which the chalcophile elements 

partition as documented by Naldrett (2010). The work of Naldrett (1989a) and (2004) 

documented four critical processes in the formation of magmatic nickel-copper (PGE) 

sulphide deposits; firstly, the partial melting of the mantle results into a metal bearing, mafic- 

ultramafic parental magma. It then separates from the solid residue, rises through the 

asthenospheric and lithospheric mantle, intruding into the crust and erupting on the surface. 

Secondly, as magma interacts with the wall rocks it loses heat, forming contaminated/hybrid 

magma, which incorporates crustal sulphur and resulting in the segregation of an immiscible 

sulphide liquid. Thirdly, the sulphide melt interacts with silicate magma, increasing the tenors 

of ore metals, extremely for chalcophile elements and lastly, the metal rich sulphide liquid 

accumulates in sufficient quantities to form an economic deposit.

Deposits were further divided into two major groups; (1) those that primarily are recognised 

for their nickel and copper and are mostly sulphide rich > 10 % and (2) those that are valued 

primarily for their PGE and tend to be sulphide poor (< 5 % sulphides) (Cabri 1981; Maier 

2005).
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Three important intrusions which are mostly known for their PGE resources in the world are; 

the Bushveld Complex, the Great Dyke and the Stillwater. These intrusions according to 

Naldrett (2010) crystallized from different types of magma, (i) an unusually high silicon 

dioxide (SiO2), magnesium oxide (MgO) and chromium (Cr) and low aluminium oxide 

(Al2O3) type known as the U-type, which were emplaced at an early phase and then (ii) a 

normal tholeiitic-type magma known as the T-type that is later emplaced.

The T-type magmas are all richer in olivine and feldspar than the U-type and are 

characterized by a much lower chromitite content. The PGE are concentrated in layers close 

to the level at which primary crystallization changes from one magma type to another. U-type 

magma is understood as a PGE-rich; komatitic magma that has interacted to variable degrees 

with the crust, becoming SiO2 enriched (Naldrett 2010).

Platinum group elements may possibly bond together as PGE alloys with base metals (e.g. 

Ni, Cu and Fe) and with semimetals (e.g. As, Bi, Sb, Se, and Te) to form a PGM (Knight 

2014). Platinum group elements may also occur as trace elements in solid solution in BMS 

(Naldrett 2004). Irrespective of which form they occur, common economic PGE occurrences 

are often linked to magmatic sulphide ore deposits. Hence, understanding the genesis of these 

types of deposits requires the knowledge of the physical and chemical processes involved. 

Pressure, temperature, composition and oxidation state of the magma are important factors 

controlling the solubility of iron sulphide in magmas and therefore potentially affecting the 

point at which sulphide saturation is achieved (Arndt et al. 2005). The sulphur content 

required for sulphide saturation (commonly known as sulphur content of silicate magma in 

equilibrium with sulphide-rich liquid at the point of sulphur saturation (SCSS) can vary 

according to changes in the factors previously mentioned. Cawthorn (2010) stated that 

oxygen fugacity changes may influence the oxide mineral stability. Processes that are likely 

to produce sudden fluctuations in oxidation state within large volumes of magma need to be 

recognized. Pressure changes create an appealing mechanism for producing laterally 

continuous layers as pressure would be transmitted throughout the entire chamber Cawthorn 

(2010). At this stage of the research it appears that for a deposit to form, mantle derived 

magma must comprise sufficient ore metals and essentially be capable of being directed to 

sulphide saturation.
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1.7 Sulphide Liquid Fractionation and Partitioning of PGE
Experimental investigations conducted by numerous authors (e.g. Mungall et al. 2005; 

Barnes and Pritchard 1993; Naldrett 2004; Barnes et al. 1997, 2001; Peregoedova et al. 2004; 

Li et al. 1996) revealed that sulphide liquid fractionation is mainly responsible for the 

distribution of the PGE. These studies indicated that at high temperatures, <1000 °C, a 

monosulphide solid solution (MSS) and a copper rich residual liquid were formed due to the 

separation of an iron-nickel-copper sulphide liquid from a silicate magma. The PGE partition 

into the (iron, nickel, and copper) sulphide liquid with a partition coefficient in the range of 

10 -10 , rather than into a basaltic melt (Bezmen et al. 1994). The sulphide liquid 

differentiates as they cool (Hawley, 1965; Naldrett et al. 1982).

The MSS occurring at an approximate temperature of 1000 °C, crystallises first from the 

sulphide liquid, leaving a copper rich residual liquid. This copper rich residual liquid 

crystallises to form an intermediate solid solution (ISS) at 900 °C.

As temperatures fall below 650 °C, MSS re-crystallizes to form pyrrhotite and pentlandite, 

whereas ISS re-crystallises to form chalcopyrite (Kullerud et al. 1969; Barnes et al. 1997; 

Holwell and McDonald 2010; Ballhaus et al. 2001). According to Barnes et al. (2008), after 

the rocks have cooled, the locations of the PGE and other chalcophile elements originally 

collected by the sulphide liquid are no longer apparent. Possible explanations include their 

presence in the BMS minerals in solid solution or their exsolution as PGM in BMS.

Fleet et al. (1993) used experiments to determine how PGE and gold behave in terms of 

partitioning between MSS and a sulphide liquid consisting of iron-nickel-copper at 

temperatures ranging from 1000-1040 °C. Bulk compositions and PGE concentrations of 

typical magmatic sulphides associated with mafic and ultramafic systems were used. They 

found that gold, platinum and palladium were incompatible with MSS and would therefore 

remain in the sulphide liquid during MSS crystallization whereas osmium, iridium, ruthenium 

(the IPGE) and rhodium are compatible with MSS (Knight 2014).

Ballhaus et al. (2001) showed that platinum and palladium are incompatible with MSS 

having partition coefficients of less than 0.1 (MSS/sulphide liquid) whereas iridium and 

ruthenium are compatible with MSS having partition coefficients between 3 and 10. Further 

experiments by Li et al. (1996) produced similar results as platinum, palladium and copper 

were incompatible with MSS whereas iridium and rhodium were compatible with MSS.
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Mungall et al. (2005) reported correlative results that copper, platinum, palladium and gold 

are all strongly incompatible with MSS whereas iridium and rhodium are strongly 

compatible.

The incompatibility of copper in MSS clarifies how after the crystallization of MSS, the 

residual sulphide liquid is copper rich and how chalcopyrite is the sulphide phase to re­

crystallize from ISS. Nickel partitions into MSS, but is not strongly compatible, having a 

partition coefficient of approximately 1 (Barnes et al. 1997), and during exsolution at lower 

temperatures forms pentlandite with iron and sulphur. Accordingly, pyrrhotite and pentlandite 

ought to be enriched in iridium, ruthenium, osmium, and rhodium and chalcopyrite in 

platinum, palladium, gold and silver, however, this effect was not observed in previous 

studies of different nickel-copper-PGE deposits (Godel et al. 2007; Dare et al. 2010; Barnes 

et al. 2006). There seem to be variations in precious metals and PGE in different sulphide 

phases due to fractionation of the sulphide liquid containing these elements. Additional 

studies by Peregoedova (1998) indicate that palladium and platinum are not only 

incompatible with MSS, but are also incompatible with ISS.

Furthermore, Helmy et al. (2007) studied the effects of tellurium on the partition coefficients 

of platinum and palladium in MSS, and found that platinum also revealed strong affinity with 

semimetals to form PGM than palladium.

Therefore, with limited semimetals available, excess palladium would be accommodated by 

pentlandite rather than competing with platinum to form a PGM with the semimetals (Helmy 

et al. 2007). Arsenic behaviour is more complex and dependant on the proportions of 

platinum and palladium present (Helmy 2010). If platinum is dominant, sperrylite may 

crystallise, whereas if palladium is dominant, an immiscible palladium-arsenic liquid may 

separate from the sulphide melt; both these processes occur early before the crystallisation of 

MSS.

On the other hand, Campbell and Naldrett (1979) suggested that sulphides that formed from 

very large volume of magma (Large R) would have low copper/platinum ratios, reflecting the 

effect of the high partition coefficient for platinum into sulphide. Therefore, with less volume 

of magma (Small R), the effect of depleting the magma in platinum becomes dominant and 

higher copper/platinum values are predicted (Campbell and Naldrett 1979). They defined the 

R factor as the ratio of the mass of the silicate magma over that of the sulphide liquid and 

assume that the sulphide liquid equilibrated in bulk with the magma and was later removed.
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Naldredtt et al. 2004 expressed the effect of ratio of magma to sulphide through the R factor 

approach:

Yi = [Di*Coi*(R+1)]/(R+Di),

Where Yi, is the final concentration of metal I in the sulphide melt; R is the ratio of the mass 

of silicate magma to the mass of sulphide, and Coi referes to the original concentration of 

metal I in the silicate magama before reaction with sulphides commenced.

It appears that the presence of different semimetals changes how different PGE behave which 

directly affects the type of PGM that may form.

1.8 Models for the origin of the Merensky Reef
Several models have been proposed to ascertain the origin of the Merensky Reef, these are 

summarised as follows:

Supporters of the “Downers” school of thought (e.g. Campbell et al. 1983; Campbell and 

Barnes 1984; Naldrett 1989) envisage PGE mineralization to have occurred via the collection 

of noble metals in the sulphide melt that segregated in response to the mixing of 

compositionally contrasting magmas (Maier and Barnes 1999). The sulphide melt is thought 

to have formed in the overlying magma pile and then settled to the floor of the chamber due 

to density differences (Mathez 1995).

Naldrett and Von Gruenewaldt (1989) demonstrated qualitatively how existing sulphur 

solubility data supports the magma mixing hypothesis, improving the availability of sulphur 

solubility data over time. Mixing of the two magmas, T and U-type compositions could 

produce sulphide immiscibility has been however been disputed extensively (Cawthorn 2002; 

Li et al. 2001).

Li and Ripley (2005; 2009) based on a modification of their prior 2001 for sulphur solubility 

demonstrated that, an extensive range of quantities in the mixing of these magma types can 

progress to sulphide immiscibility, given that both magmas are close to sulphide saturation 

during the period of mixing.
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Contradictions arising from this model include the association of PGE with “pegmatoids” and 

chomitites (Mathez 1995) along with the petrographic evidence that petrogenesis may have 

involved volatiles (Boudreau et al. 1986; Ballhaus and Stumpfl 1986; Scoon and de Klerk 

1987; Nicholson and Mathez 1991). This resulted in the proposal of the so named “Uppers” 

model which involved magmatic fluids.

Cawthorn et al. (2002) proposed that the PGE mineralization originated by the footwall 

successions. Supporters of the “Uppers” model believe that an upward infiltration process of 

volatile-rich fluid was responsible for the transport and precipitation of the PGE from the 

footwall (Vermaak 1976; Boudreau and Meurer 1999; Boudreau and McCallum 1992).

A third school of thought combines both the “Uppers” theory and the “Downers” theory by 

Wilmore et al. (2000). Models in this school of thought suggest that the PGE were scavenged 

from the footwall by a fluid that subsequently reacted with the magma at the crystal-magma 

interface to produce a primary sulphide precipitate.

Further, Cameron (1982) suggested that injection of new magma triggered the formation of 

the Merensky Reef. The new magma might have been enriched in sulphur or mixing with the 

residual magma and might have caused a change in the oxygen (/o2) and sulphur (/s2) 

fugacity. The decrease in the solubilty of sulphides in the melt is due to a change in total 

pressure. Cawthorn (2010) highlighted three events of magma emplacement in the Merensky 

Reef; (i) each of the events produced variable reactions with the erosion of the footwall; (ii) 

this then caused recrystillization of pyroxenite into pegmatitic pyroxenite and finally, (iii) the 

magma produced a chromitite layer followed by pyroxenite with each chromitite layer 

associated with mineralization of sulphide liquid carrying PGEs.

Furthermore, the Upper Critical zone contains cycles of chromitite, pyroxenite, norite and 

anorthosite. The Merensky Reef pyroxenite is where most of the mineralization is focused. 

Cyclic units were initially defined by Jackson (1970), where he suggested that chromite- 

olivine and olivine-orthopyroxene cycles are the product of differentiation. For both scientific 

and economic reasons, there have been numerous studies on the Merensky Reef, with most of 

these studies interpreting the Critical-Main zone boundary to invoke two separate magmas to 

distinguish between the zones, however, the PGE enrichment is generally poorly understood.
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Contrary to two magma mixing, Kruger (1992) and Hatton (1989) argue that the mineral 

assemblages were not in equilibrium therefore did not form from a mixed magma but rather 

crystals from both magma layers variably accumulated together at the base of the chamber to 

form a mixed cumulate.

Seabrook et al. (2005) proposed a model about the development of the Merensky and Bastard 

Units and suggested that the orthopyroxene in the Merensky and Bastard pyroxenite units 

originated from the Critical Zone magma and the interstitial plagioclase was derived from the 

Main Zone magma. Seabrook et al. (2005) elaborated further in this model that the Main 

Zone magma is intruded which elevates the residual Critical Zone magma. Orthopyroxene 

and plagioclase crystals settle from the Critical Zone magma to form the Merensky Reef. The 

Main Zone magma crystallises norite and then anorthosite of the Merensky Cyclic Unit.

The Critical Zone magma crystallises a second pulse of orthopyroxene, which forms the 

Bastard pyroxenite with either Main Zone interstitial plagioclase or cumulus plagioclase from 

the Critical Zone.

1.9 Geometallurgy
Geometallurgy is a multi-disciplinary, applied science integrating mining, geology and 

metallurgy to assess the processing needs of an ore body (Beniscelli 2011; Lotter 2011; 

Philander and Rozendaal 2011). It integrates the principles of material characterization and 

process mineralogy. Process mineralogy is the use of mineralogical techniques to 

understanding and solving problems experienced during the process of separating valuable 

minerals from gangue or waste (Petruk 2000). Different minerals hosting the same metal type 

may respond differently to various processing techniques. There have been several studies on 

the PGMs in various ore bodies, which are vital to maximise beneficiation and extraction.

While individual minerals can be documented, estimating relative abundances, their 

association and their liberation characteristics can be challenging due to their small sizes and 

scarcity (Cawthorn 2015). PGEs are known to occur as fine inclusions within BMS or as 

intergrowths between BMS and gangue contacts surface, which aid in liberation during the 

grinding process. Wiese et al. (2006) interpreted the role of reagents in the flotation of 

platinum bearing Merensky ores and concluded that the diverse BMS in the Merensky Reef 

react distinctively to the operating conditions and to various reagents and operating 

conditions. The PGEs are recovered by flotation and to maximise PGE recovery, the recovery 

of all the BMS needs to be optimised.
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Reagents are added to achieve distinct specific roles that that can influence the pulp 

chemistry and improve the differentiation in mineral surface hydrophobicity to promote and 

simplify the separation. Furthermore, Pillay et al. (2011) reported that the key mineralogical 

factors controlling the separation are the texture of the sulphides, grain size, particle density 

and particle shape.

Generally, in the Merensky Reef, the liberation size is coarse with most operations choosing a 

grind size between (P80) 75 and 150 microns. The presence of talc can cause significant 

process difficulties (SGS 2002). Hence geometallurgy seeks to provide mineralogical 

information of an ore to determine the causes of the different responses of minerals to various 

metallurgical processes to ensure the employment of appropriate metallurgical techniques for 

optimal mineral beneficiation. Mineralogical measurements involve the quantitative 

mineralogical characterization of the ore to determine mineral textures, mineral associations, 

mineral grain size distribution (Fandrich et al. 2007).
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2 Study Area

2.1 Location and History of the Mines

Figure 2.1: Map of the Bushveld Complex showing location of the Platinum mines in the 
Bushveld Complex (Adapted from CGS ATP Report, 2014).

2.1.1 The Modikwa Platinum Mine (MPM)

The Modikwa Platinum Mine is an independently managed 50:50 Joint Venture (JV), 
between African Rainbow Minerals (ARM) Mining Consortium Limited and Rustenburg 

Platinum Mines Limited. The mine is situated on the boundary of the Mpumalanga and 

Limpopo provinces approximately 25 km west of the town, Burgersfort, forming part of the 

Eastern limb of the Bushveld Complex. Modikwa Mine operates under a mining right 
covering a total area of 140 km . The mineral lease area covers the 28.4 km of strike length 

on the farms Driekop 253 KT, Maandagshoek 254 KT, Heindreksplaas 281 KT, Onverwacht 
292 KT and Winterveld 293 KT. Platiniferous reefs identified within the area are the 

Merensky Reef and the UG-2 Reef and the current study area is located within the farm, 

Onverwacht 292 KT.

The Modikwa Platinum Mine infrastructure consists of two major decline shafts, namely; the 

North Shaft and the South Shaft, three adits on the Onverwacht Hill and a concentrator. The 

mine operates as an underground mine and exploits UG-2 exclusively from the surface to 450 

m underground.
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The life of mine (LoM) at the current rate of production may extend to 2087. In September 

2011, the mine acquired the prospecting right for a portion of the Doornbosch, an adjoining 

property from Randgold and Exploration Company Limited (Mining-technology 2013). The 

Modikwa Plant was then commissioned in August 2002 and the borehole locations are 

tabulated below.

Table 2.1: Borehole coordinates for Modikwa

______ Coordinates______
X Y

OV 777 28257 89845
OV 778 27892 90068

2.1.2 Two Rivers Platinum Mine (TRP)

Two Rivers Platinum Mine is located approximately 25 km south west of the town of 
Steelpoort, Mpumalanga within the farm Dwarsriver 372 KT. Dwarsriver 372 KT is bordered 

by the farms Kalkfontein 367 KT in the west, Tweefontein 360 KT in the north, De 

Grootboom 373 KT in the east, with the farm Richmond 370 KT flanking the southern 

boundary while the farm Thorncliffe 374 KT flanks the south-eastern border (TRP Trial 

Mining Report, 2003). The main decline is approximated at a latitude of 25° 59' 00" S and a 

longitude of 30° 05' 00" E.

Dwarsriver 372 KT was successively acquired by Goldfields, South Africa from 1970 and 

prospecting was carried out on the Merensky Reef, the UG-2 and the LG-6 chromitite (TRP 

Trial Mining Report 2003). Associated Manganese Mines of South Africa Limited 

(ASSMANG) acquired the farm, Dwarsriver 372 KT, in 1998 and primarily targeted the LG- 
6 chromitite layer for its chromium content. In 2005, a JV was pronounced between ARM 

and Impala Platinum (ARM 2007). TRP is also an underground mine targeting UG-2 

chromitite for its PGE mineralization. At TRP, ARM has a 55 % stake in the JV while the 

remainder of the stake is held by Impala Platinum. The project is operated by ARM and the 

plant was officially commissioned in 2006 (ARM 2007). Early exploration records of 

development and production from the Eastern limb of the Bushveld Complex date to the early 

1920’s and borehole locations are tabulated below.
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Table 2.2: Borehole coordinates for Two Rivers

______ Coordinates______
X Y

TRP 260 93155 27628
TRP 271 92708 27592

Both the Modikwa and the TRP target the UG-2 chromitite for its PGE mineralization, with 

proposed plans are to exploit the Merensky Reef. The current metallurgical plant is designed 

to recover the PGE with UG-2 characteristics. Provided the ore deportment and mineralogy 

of the Merensky Reef differs from the UG-2 currently mined at the two mines under 

investigation, the findings of this study may be used to predict and remedy the problems with 

the current plant and before a new treatment plant is proposed or prematurely deployed.

2.2 The Geology of the Study Area

2.2 .1 The Merensky Reef in the Central Sector

The limits of the Central sector are demarcated by major faults and basement domes (Scoon 

and Mitchell 2004b) with the layered cumulates forming a sequence about 9 km thick (SACS 

1980). The Merensky Reef in the Central sector belongs to facies described as ‘wide reef 
facies’ (Mitchell and Scoon 2007a). In these facies, PGE mineralization is largely contained 

within a relatively thick succession of medium-grained non-pegmatoidal feldspathic 

pyroxenite, bounded top and bottom thin chromitite stringers (Mitchell and Scoon 2004a). 
The Lower Critical Zone is dominated by feldspathic orthopyroxenite with minor dunite and 

harzburgite (Cameron 1980) and contains only intercumulus plagioclase. The overlying 

Upper Critical Zone is dominated by norite and anorthosite (i.e. plagioclase cumulates) with 

subordinate feldspathic orthopyroxenite and minor amounts of feldspathic harzburgite 

(Cameron 1982). Chromitite layers are restricted to the Lower Critical and Upper Critical 
Zones (Hatton and von Gruenewaldt 1987). The two main PGE ore bodies (i.e. Merensky and 

UG-2 Reefs) occur in the Upper Critical Zone. The Merensky Reef Unit in the Central sector 

includes the Merensky Reef, which consists of a basal layer of medium-grained feldspathic 

orthopyroxenite (from 2-5 m) and a thick spotted-mottled anorthosite (from 5-8 m) thick. 
Although the occurrence of the Merensky Reef and the Dunite Pipes is known, insufficient 
data exists to quantify any resources contained therein.
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At other sites, especially in the Western Bushveld Complex, the Merensky Reef is found at 

the base of the orthopyroxenite layer that forms the lower most part of the Merensky Reef 

Unit (Mitchell and Scoon 2007a). Schwellnus et al. (1976) also documented the occurrence 

of the Merensky Reef in the Central sector of the Eastern Bushveld Complex particularly that 

of the Atok section which was the only active mine in the Eastern limb until recently.

The deep footwall consists of a pyroxenite overlain by a pegmatitic pyroxenite up to 1 m 

thick. Mitchell and Scoon (2007) described the Merensky Reef within the Winnaarshoek 

property, close to the south of the Atok Mine, as similar to other occurrences of the Merensky 

Reef in view of the PGE mineralization. The PGE mineralization occurs within an interval 

bounded by two chromitite stringers. A key difference of the Merensky Reef in the 

Winnaarshoek property, however, is that the chromitite stringers are separated by a medium­

grained (instead of the usual pegmatiodal) feldspathic orthopyroxenite (Mitchell and Scoon 

2007). At Marula mine, the Merensky Reef is yet to be exploited (Scoon and Mitchell 2004), 

but is similar in terms of thickness and PGE distribution to the western mine.

A significant feature of the Merensky Reef Unit and its associated rocks in the Central sector 

is the relative absence of the discordant, late-stage Iron Rich Ultramafic Pegmatite (IRUP) 

bodies that are common in the other parts of the Bushveld (Viljoen and Scoon 1985). IRUPs, 

as proposed by Viljoen and Scoon (1985), is a term used to describe replacement bodies 

believed to be post-cumulus in nature and being composed of iron-rich olivine, 

clinopyroxene, ilmenite and titanium-magnetite with accessory BMS and being barren of 

precious metal mineralization.

The richest mineralization constitutes an upper reef, a feature colloquially referred to as “top 

loaded” as most facies of the Merensky Reef contain the highest PGE grades in association 

with the upper chromitite stringer (Viljoen and Schurmann 1998). Minor PGE mineralization 

may extend into the underlying pegmatoid but most of the other pegmatoid are weakly 

mineralised. The Central sector differs from the Western limb, where the reef zone in many 

areas is dominated by pegmatoidal assemblages (Wilson and Chunnett 2006).

In contrast to the south of the Steelpoort Lineament, the Merensky Reef in the Central sector 

has similarities with that seen at the Rusternburg Platinum Mine (Wagner 1929), hence in 

each limb, there are considerable facies variations, but between the Eastern and the Western 

limbs, similarities can be recognised.
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The UG-2 chromitite exists at Modikwa Platinum Mine as a layer that is characterised by a 

regular thickness of 60 cm. The three thickest chromitite layers overlie the top of the main 

seam. The UG-2 comprises of pyroxenites, norites and anorthosites. Randomly distributed 

potholes of various sizes categorise the North shaft region while lesser potholes categorise 

the South shaft. The area is extremely disrupted by faulting. Several IRUPs and Replacement 
Pegmatoids have been observed particularly at the Onverwacht hill area.

2.2.2 The Merensky Reef in the Southern Sector

Fine-to-medium-grained dolerite dykes associated with the Steelpoort fault, trending sub­
parallel to the north, north east direction, are also present within the Dwarsriver 372 KT 

property. Based on a limited number of exploratory geological core logs, there are areas 

where the dolerite dykes partially or wholly replace the Merensky Reef or UG-2 chromitite. 
The Steelpoort fault also affects the lithology as the sequences found in the Southern sector 

are somewhat different to those of the Central sector (TRP Trial Mining Report 2003). PGE 

mineralization occurs within both the Merensky Reef and the UG-2 chromitite horizons.

The Merensky pyroxenite sub-crops occur along a north-south strike on the western slopes of 
small Dwarsriver valley. Previous studies of the Merensky Reef in the study area reveal that 
it is similar in many aspects to the western Platinum facies of the Western limb (TRP Trial 

Mining Report 2003). The Merensky Reef at TRP is classified into four facies types based on 

thickness of the Merensky pyroxenite and the PGE mineralization style (Rose et al. 2011). 
The reef facies are explained as follows:

Reef facies (1) is characterized by bimodal PGE mineralization, where the mineralization is 
directly associated with the upper and basal chromitite stringers. The Western Bushveld 

analogue of this reef facies is the “Western Platinum Facies”. Reef Facies (2) has no direct 
analogue in the Western Bushveld, with the closest possible analogue being the “Marikana 

facies” of the Western Platinum/Karee Mine Boundary. The PGE mineralization occurs 
throughout the “Merensky Pyroxenite” and is not intimately associated with the chromite 

mineralization. Reef facies (3) is also known as the “thick reef’, with the Merensky 

pyroxenite for this reef facies type being greater than 3 m but averaging 4.85 m. This reef is 

however, restricted to the southern portion of the TRP property.
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The mineralization of the PGE is localized at three distinct peaks, with the upper and lower 

mineralization peaks associated with the upper and basal chromites respectively, while the 

third peak is located within the Merensky pyroxenite and is not associated with chromite 

mineralization (TRP Trial Mining Report 2003). Reef facies (4) also known as the thin reef, 

the Merensky pyroxenite for this facies type is usually less than 1 m thick; with the average 

thickness being 0.9 m. The upper chromitite stringer and its associated mineralization are 

generally absent.

Usually the pegmatoidal feldspathic pyroxenite is restricted to the base of the normal 

pyroxenite, although in places the pegmatoidal feldspathic pyroxenite caps the normal 

pyroxenite and may also occur sandwiched between the normal pyroxenite. In the event the 

pegmatoidal feldspathic pyroxenite is sandwiched by the normal pyroxenite, it is usually 

restricted to either the upper or the lower reaches of the normal pyroxenite (Rose et al. 2011).

According to the limited information sourced from exploratory drill cores, the pegmatoidal 

feldspathic pyroxenite ranges in thickness from less than 10 cm to above 40 cm. Further, the 

Merensky Reef in this area is occasionally affected by circular replacements or IRUPs (Scoon 

and Mitchell 2004).

These replacement bodies are typically restricted to the Upper Critical and Main Zones and 

are rare in the Lower Critical and Lower Zones, with their distribution being controlled by 

structural features.

To be precise, they commonly occur in distributed areas marked by extensive faulting and 

post-Bushveld dykes (Viljoen and Scoon 1985). The limited borehole data sourced revealed 

there are occasions where the Merensky and UG-2 are partially or wholly replaced by dolerite 

dykes.

The UG-2

Three different types of reef are well-defined at Two Rivers. These are; the ‘normal reef 

with a leading chromitite layer; a ‘split reef’ characterised by an internal pyroxenite/norite 

lens within the leading chromitite layer; and lastly the ‘multiple split reef’ with several 

pyroxenite/norite lenses occurring within the leading chromitite layer. The southern portion 

of the mining area is mainly dominated by the multiple split reef.
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2.3 Previous Work

2.3.1 Platinum Group Minerals and Platinum Group Elements in the Merensky Reef 

The general aspects of the mining and beneficiation of South African PGE ores minerals, 
which include the Merensky Reef, were reviewed by Cramer (2001) and by Merkle and 

McKenzie (2002). Most of the work done on the Merensky Reef specifically the efforts of 

Vermaak and Hendricks (1976), Kinloch (1982) and Kingston and El-Dosuky (1982) 

focussed on the Western limb, due to better infrastructure; (primarily the availability of water 

and human resources) as opposed to the Eastern limb (Cawthorn et al. 2002). The seminal 
work of Vermaak and Hendricks (1976) on PGM within the Merensky Reef showed that the 

PGM are generally associated with three assemblages; (i) BMS associations (ii) chromite 

associations and (iii) silicate associations; with the majority of the commonly observed PGMs 
in the Bushveld Complex being: laurite, platinum-iron alloys, platinum-palladium sulphides 
and sperrylite with lesser rhodium sulphides (Lee 1996), as well as antimonides and tellurides 
(Maier and Barnes 1999).

The strong association of PGM with BMS has led some researchers like Osbahr et al. (2013), 

Ballhaus and Ryan (1995), Godel et al. (2007) and Ballhaus and Sylvester (2000) to establish 

the amount of PGE occurring in the BMS of the Merensky Reef. It was found that pentlandite 

contained the highest amount of PGE ranging from 500 to 1750 ppm PGE (Godel et al. 2007; 
Ballhaus and Ryan 1995; Osbahr et al. 2013).

Pyrrhotite contained 10 to 40 ppm PGE (Godel et al. 2007; Ballhaus and Sylvester 2000). 
Chalcopyrite contained the lowest amount of PGE in solid solution with 4 to 10 ppm PGE 

(Godel et al. 2007). Of the PGE, platinum was found to mostly occur as discrete PGM and 

does not partition into BMS, whereas palladium, rhodium, ruthenium, iridium and osmium 

were found to be present in more significant amounts in the BMS (Osbahr et al. 2013; 
Ballhaus and Sylvester 2000; Godel et al. 2007). The platinum:palladium ratio is up to 5 in 

the Merensky Reef (Cousins and Kinloch 1976; Hey 1999). Barnes and Maier (2002a) 

studied the PGE, sulphur, nickel and copper concentrations in the Merensky Reef at Impala 

Platinum Mines in the Western Bushveld and concluded that in addition to the collection of 
the PGE by sulphide liquid, some of the PGMs solidified and settled onto the chromitite layer 

before the BMS fluid infiltrated the cumulate pile.

23



Recently, the evaluation of PGM has been carried out using a technique known as automated 

scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) image-based 

analysis (e.g. Gu 2003; Hoal et al. 2009; Chetty et al. 2009).

Rose et al. (2011) documented the Merensky Reef and pointed out that the maximum PGM 

contents are usually associated with PGE in the Merensky Reef, and are closely associated 

with the chromitite stringers. The BMS including pentlandite, pyrrhotite, chalcopyrite and 

minor pyrite occur interstitially with the silicates and chromites (Lee 1996). The BMS and 

PGE correlate with each other in the mineralised portion of the reef (Lee 1983). In most of 

the Merensky Reef facies the economic PGE mineralization is concentrated in the 

pegmatoidal feldspathic pyroxenite with the highest concentrations in the range of the 

chromitite stringers (Lee 1996). Depending on the location of the maximum PGE 

concentration, the mineralization is referred to as “top loaded” if the maximum PGE 

concentration is in the range of the upper chromitite layer and as “bottom loaded” if the 

mineralization is in the range of the lower chromitite stringer (Osbarh et al. 2013). If not, 

then it exhibits a more complex distribution. The PGEs occur as sulphides, arsenides, 

tellurides, bismothotellurides and alloys.

The PGMs identified include sulphides: cooperite (PtS), braggite (PtNiPdS), and laurite 

(RuS); telluride: moncheite (PtTe2); bismuthotellurides: (PtBiTeFe); maslovite (PtTeBi); 

arsenides: sperrylite (PtAs2); antimonides: stibiopalladinite (PdSb) and geversite (PbSb) and 

ferroalloy (PtFe). Gold occurs as an electrum and as a rare compound, AuBiPdTe (Brynard et 

al. 1976; Viljoen et al. 2012). Sperrylite is the most abundant PGM in this area (Brynard et 

al. 1976). In general, it has been noted that the PGMs in the Merensky Reef show closer 

associations with BMS (Schwellnuss et al. 1976; Vermaak and Hendriks, 1976; Prichard et 

al. 2004).

However, PGMs also occur along the sulphide grain boundaries or included in primary and 

secondary silicates (Cawthorn et al. 2002). The primary mineral assemblage of the Merensky 

Reef is orthopyroxene, plagioclase feldspar, clinopyroxene and olivine, and localized 

concentrations of chromitite occurr in thin stringers (Schouwstra et al. 2000). A variety of 

secondary silicates and alteration minerals also occur in minimal to trace amounts such as 

amphibole, mica, chlorite, talc, serpentine, calcite and magnetite (Schouwstra et al. 2000; Li 

et al. 2004).
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2.3 .2 Platinum Group Minerals and Platinum Group Elements in the UG-2

McLaren and De Villiers (1982) state that the UG-2 Reef consists primarily of chromite (60­
90 %), orthopyroxene (5-25 %) and plagioclase (5-15 %), with secondary or accessory 

minerals also forming part of the UG-2 reef.

Based on the mineralogical investigation by Penberthy et al. (2000), the most commonly 

found PGM group in the UG-2 are PGE sulphide mineral chromitites such as laurite, 
cooperite, malanite and braggite. Other resources reveal non-sulphidic minerals, such as 
antimonides, arsenides, bismuthides, tellurides and alloys. Common substitutions are 

identified for some of the PGM minerals by Vermaak (1976). McLaren and De Villiers 

(1982) reported that PGMs occur as discrete grain sizes ranging between 1 and 4 microns and 

associated with BMS (33-85 %), along grain boundaries (6-57 %), in silicates (2-29 %) and 

in chromite (<12 %).

2.3.2.1 High PGE in Chromite

The model of sulphide control on PGE enrichment is problematic when applied to the 

chromitite layers because of the high PGE to sulphide ratio (Hiemstra 1985; 1986). It has 
been suggested that greater proportions of sulphide originally existed, but that the sulphide 

has been oxidised by reactions with chromite (Naldrett and Lehmann 1987). Scoon and 

Teigler (1994) suggested that the precipitation of chromite induces sulphide saturation within 

an evolving magma. Scoon and Mitchell (2007) also suggested that controls on PGE 

mineralization are essentially primary magmatic as they ascribed the presence of chromite to 

magma mixing due to repeated replenishment.

Determinations by Barnes and Maier (2002) on the PGE paradox were that; (1) the affinity of 
chromitites to bond with PGEs rather than silicate rocks could arise as the conditions 
favouring chromite crystallisation also favour PGM crystallisation (2) the PGE enrichment in 

chromitite layers is due to the interaction between trapped sulphides liquid and chromitite 

resulting in loss of sulphur from the sulphide liquid.

During reheating the sulphides may have reacted with chromites leading to low sulphur 

contents in the sulphide liquid while some of the fractionated liquid is compressed from the 

chromitite during the period of compaction.
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3 Methodology

3.1 Borehole Core Logging
Four boreholes intersections, two each from the Modikwa and TRP Mines were used for the 

study. Logging of cores from the boreholes was done in detail to identify the lithologies of 

the Merensky Reef, its immediate hanging wall and footwall. The logging involved a visual 

inspection of the core to ensure that a proper quantitative rock description is carried out. 

Observations of colour, grain size and texture, nature of contacts, primary mineralogy and the 

presence of structural features were noted. Examination of the hand specimens was done both 

visually and under hand lense magnification. The presence or absence of core losses was 

recorded as well. Four boreholes were drilled for the exploration of PGEs resident in the two 

farms Onverwacht 292 KT and Dwarsriver 372 KT and all intersected the Merensky Reef 

seam of the Critical Zone.

3.2 Sampling
Core samples were split into half and quarter cores (Figure 3.1) and then labelled and bagged. 

The samples were taken from the economically mineralised part of the reef (within the range 

of chromitite stringers) 20 cm above the top chromitite stringer and 30 cm below the bottom 

chromitite stringer and sulphidised zones. Details of the depths at which sampling took place 

were recorded. A total of 41 samples were sent to the Council for Geoscience (CGS) 

laboratory for the preparation of polished thin sections and stubs. The sample list attached as 

Appendix A.

Figure 3.1: Quarter core, corresponding thin section and stub.
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3.3 Laboratory Analyses

3.3.1 Conventional Optical Microscopy

A petrographic microscope, Olympus BX43 with a dedicated camera was utilized in 

conjunction with the Stream Essentials software package. Polished thin sections were viewed 

under transmitted light for the characterisation of mineral assemblages and phases, textural 

relations as well as gangue silicate associations to the ore minerals. The round polished stubs 

(approximately 24 mm in diameter) were observed under reflected light for oxides and 

opaque minerals such as associated sulphides. Image were taken using the camera attached to 

the microscope to produce photographic images (Figure 3.2). Aspects such as crystal habit, 

morphology and texture were noted in opaque minerals.

Figure 3.2: Zeiss Conventional Optical Microscopy used during the study.

3.3.2 Scanning Electron Microscopy-Energy Dispersive Spectrometry (SEM-EDS)

A secondary electron microscopy study was carried out on a Leica Stereoscan 440 SEM, 

linked to an OXFORD INCA (Energy Dispersive Spectrometry) EDS shown in Figure 3.3. 

The data acquisition was performed at the Council for Geoscience laboratory to characterize 

the PGM. All specimens were polished and coated with carbon to provide a conductive 

surface for optimum imaging and X-ray micro analysis. Mineral chemistry then was 

determined using spot analyses at a beam setting of 20 kV accelerating voltage.
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This technique was used to characterize the PGM phases and their preliminary elemental 
composition to confirm the homogeneity of the minerals prior to electron microprobe 

analyses. Results on the back scattered images with corresponding spectra of the PGM 

identified are attached in Appendix FI and Appendix FII.

Figure 3.3: Leica Stereoscan 440 SEM linked to an OXFORD INCA EDS. The system 
consists of digital scanning electron microscope and three major subsystems the Fisons 
Keyex energy dispersive X-ray analysis system, the Finson LT7400 Cryo Transfer 
System and the Oxford Monochromator Cathodoluminescent system.

3.3.3 Electron Probe Micro Analyzer (EPMA)

Quantitative analysis and mineral chemistry were carried out using a Jeol JXA 8230 

Superprobe machine equipped with four wavelength dispersive spectrometers (WDS) (Figure 

3.4) in the Department of Geology at Rhodes University. An acceleration voltage of 15 kV, a 

probe current of 20 nA and a counting time of 10 seconds on peak and a 5 second on 

background, and a beam size spot < 1 micron were employed for quantitative and PGE 

concentrations analysis. The ZAF matrix correction method was employed for quantification. 
The polished stubs were sputtered with a graphite layer to enable electrical conductivity. 
Natural standards were used for measuring the characteristic X-rays. PGM grains sizes and 

their association with BMS may result in mixed spectra which may possibly bring 

complications to the data, causing some of the results to be considered poor. Some results 
may be disregarded/ignored as these are unreliable.
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This is applicable to anything below 95 % in total, for the EPMA data and as a result only 

acceptable values are discussed in this study (for all totals see Table 3 in Appendix BII).

Figure 3.4: Photographic image of the Jeol JXA 8230 Superprobe Analyzer used for 
point analyses. The probe consists of a filament at the top, sample stage, deflecting 
crystal and detector (Jeolusa.com).

The EPMA was used to determine the distribution of PGE and other trace elements within 

sulphides by elemental mapping. Trace element analysis on sulphide ores was undertaken to 

determine the quantitative composition of the PGE (including platinum, palladium, rhodium, 

ruthenium, iridium and osmium) which are known to occur in trace amounts specifically on 

micron scale sizes, in the Bushveld Complex ores. During the quantification process, a beam 

was pointed toward bright appearing particles and the reflection thereof is captured by a 

detector which reports the quantity of the elements by comparing to the calibrated natural 

standards used. The quantities of the major elements in the specific particle are reported in 

mass percentages. An in-built camera is utilized to capture the images of the sample view. 

The counting time for PGEs (platinum, palladium, rhodium, ruthenium, iridium and osmium) 

was set to 100 seconds on peak and 50 seconds on each background. The overlap corrections 

were applied, and are shown in Table 3.1 below.
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Table 3.1:EPMA Overlap Corrections Applied

Element K-value
Os (Ma) -  Pt (Ma) 1.7355
Ru (La) -  Pt (Ma) 0.9524
Pt (Ma) - Ir (Ma) 0.3635
Os (Ma) -  Ir (Ma) 0.198
Ir (Ma) -  Os (Ma) 0.322
Pd (La) -  Ru (La) 0.287
Os (Ma) -  Ru (La) 0.258
Os (Ma) -  Fe (Ka) 0.675
Ru (La) -  Fe (Ka) 0.05
Rh (La) -  Ru (La) 0.212
Pd (La) -  Rh (La) 0.485
Os (Ma) -  Rh (La) 0.334
Ru (La) -  Ni (Ka) 0.236

Small backgrounds were chosen for platinum, palladium, rhodium, ruthenium, iridium and 

osmium to avoid overlaps between secondary peaks and backgrounds. Nickel, sulphur, iron 

and copper were analysed within the trace element runs (but with lower counting times) set at 
4 seconds per peak and 3 seconds on each background to optimize the effect of matrix 

correction (PRZ) on the trace elements. The standards used for quantification were: S 

(pyrite), Fe (pyrite), Cu (chalcopyrite), Ni (pentlandite), Rh (rhodium metal), Pd (palladium 

metal), Pt (platinum metal), Os (osmium metal), Ir (iridium metal), and Ru (ruthenium 

metal).

3.3.4 Mineral Liberation Analyser (MLA)

FEI’s electron microscope-based Mineral Liberation Analyzer (Figure 3.5), is designed to 

provide the quantitative analysis of mineral and material samples. It is used to examine fine 

grained mineral textures to determine the abundance of various mineral types and other 

parameters of metallurgical significance. The MLA incorporates the technologies of SEM 

and Energy Dispersive X-Ray Analysis. Similar to micro probe and SEM, MLA also uses 

back scattered electron intensity where minerals with a high density (high atomic mass), like 

the PGM and gold, appear as bright particles under the electron beam relative to lower 

density minerals like silicates. It is also possible to determine metallurgical parameters such 

as particle liberation, mineral association and grain size distribution which is critical to the 

efficient separation of ores and waste. The strength of the MLA is in its ability to detect and 

analyse tiny grains present which SEM and EPMA cannot detect.
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In MLA, minerals are considered to be associated with each other when they share grain 

boundaries. The higher the degree of grain boundary shared between two minerals, the 

greater the degree of association between them. It utilises a software which automatically 

determines this association. Free surface refers to the perimeter of the particle that is exposed 

and/or the perimeter that does not share a boundary with any other mineral.

Figure 3.5: Photographic image of the Mineral Liberation Analyzer (MLA). Product 
components include automated electron-beam analysis system based on FEI Quanta 
SEM (W or FEG source), Custom software combines BSE and EDS X-ray detection 
Multiple EDS detectors for accurate high-speed data acquisition (Adapted from MLA 
user guide provided at Mintek).

During MLA examination, a software sub-module (XBSE_Std) is used which is designed to 

aid in the recognition of all mineral species present, through the construction of a mineral 

reference library in which each entry is numbered successively (e.g. mineral1, mineral2). The 

operator allocates names to each mineral species encountered, or sub-grouping the minerals 

accordingly. A standard SPL-DZ measurement mode is performed where bright particles are 

located and mapped on a regular grid system. The resulting output includes a mineral map of 

each bright particle, as well as the surrounding associated phases. All analyses were 

conducted at 15 X magnifications and at a selected maximum particle size of 8 micron. Final 

data processing was performed using data view software (Gu 2003). For the present study, 

the MLA was used to determine the nature of minerals closely associated to the PGMs and 

the PGM grain size distribution.
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The smaller PGM sizes obtained and their close association with BMS brings complexity in 

the data that, causes the overlapping in the EDS spectrum obtained for that particular PGM. 
The mixture of spectrums brings confusion in data interpretation as experienced in other 

techniques, namely SEM and EPMA, used including the MLA. And so this led to the 

generation of PGE sulphide group as it becomes difficult to detect whether the phases were 

the PGM base metal sulphide phases or were as a consequence of the mixture in the EDS 

spectrum. For example, overlap of the electron beam interaction between the occurrences of 
michenerite (PdBiTe) in or close to pentlandite (Ni, Fe)9 S8 will result in a mixed spectrum of 

(PdBiTeNiFeS).

With the aid of all the techniques mentioned above and a better understanding of the 

mechanism of mineralization, this information can be incorporated developing a 

geometallurgical model. In examining the PGE associated with the Merensky Reef at the two 

mines, no geochemistry studies were undertaken for PGE in this study. Extensive work has 

previously been done on the PGE chemistry by several researchers namely Junge et al. 

(2014) Rose et al. (2011) and Osbahr (2013).

3.3.5 Fire Assay

Fire assay measurements were carried out at Mintek’s Analytical Services Division (ASD). 
Determination of the PGE suite was carried out using the nickel sulphide collection fire assay 

method. Two nickel sulphide fluxes were used, specifically, the Merensky Reef flux and UG- 

2 special flux to accommodate the varying chromite contents in the samples. The samples 
were then analysed for six PGEs (platinum, palladium, rhodium, ruthenium and iridium). The 

presence of osmium could not be analysed as the Mintek laboratory is unaccredited for the 

analysis for osmium. The method comprised of pulverizing the quarter drill cores which had 

a length of about 15-25 cm. Appropriate amounts of sample were weighed out on an 

analytical balance, mixed with a nickel sulphide flux to a homogeneous state and loaded into 

a fusion furnace at 1100 °C to 1200 °C for 50 minutes. The nickel sulphide serves as a 

collector for PGEs, by process called cuppelation. PGEs are separated from the collector in a 

cuppel. A cuppel is typically a ceramic porous shallow cup. The lead alloy is heated and as it 
melts the lead is oxidised and absorbed into the cuppel, this process continues until all the 

lead is drawn out, leaving a small bead containing only precious metals.
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To complete the separation from the collector the beads are weighed then subjected to 

leaching, precipitation and filtration processes to separate the PGEs which are then dissolved 

in an aqua regia and further analysed by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) to determine the concentrations of platinum, palladium, rhodium, iridium, 

ruthenium and gold in the solution. ICP-MS is a trace technique that analyses samples at a 

low part-per-billion (ppb) range. The instrumentation, ICP-MS, was optimized and calibrated 

using calibration standards ranging from 1 ppm to 50 ppm. The uniqueness of this technique 

lies in the fact that it utilises the naturally occurring isotopes of all analysable elements to 

correctly determine the concentration of an analyte. The technique is especially suited for 

environmental and water analyses, soils and ores for trace and ultra-trace elements. Figure 3.6 

shows the laboratory furnaces used for high temperature assays.

Figure 3.6: Fire assay-high temperature laboratory furnaces.

33



4 Sample Description and Petrography

4.1 General Summary of Rocks and Minerals Encountered in the Merensky 
Reef

Samples for this study were taken from only the economic, mineralised part of the reef, 

Merensky Reef pyroxenite, within the chromitite stringers; therefore, other rock lithologies 

such as norite, anorthosite, gabbronorite and harzburgite were not sampled, but are 

summarized below as they were encountered during core logging.

Pyroxenite: There are two types of pyroxenite that commonly appear in the Merensky Reef 

sequence; (1) normal feldspathic pyroxenite and (2) pegmatoidal feldspathic pyroxenite. 

Mineralogically, the two units are alike; but only differ in their grain sizes, where 

orthopyroxene grains vary between 3-5 mm in the feldspathic pyroxenite and up to a few cm 

in pegmatoidal feldspathic pyroxenite. In all four investigated drill cores, clinopyroxene 

commonly occurs as inclusions in orthopyroxene and rarely as a matrix mineral. Plagioclase 

normally occurs as an interstitial mineral. The base metal sulphides mostly occur in the 

feldspathic pyroxenite and pegmatoidal feldspathic pyroxenite. The chromite grains occur as 

disseminated grains and are commonly associated with micas, where visible they range 

between 2-3 mm in grain sizes.

Anorthosite: Anorthosite is well-defined by the size of the plagioclase present in the unit, 

with sizes ranging from 2 to 3 cm. In the anorthosite unit the plagioclase amount ranges 

between 80 to 100 vol % containing up to about 20 vol % of pyroxene, principally 

orthopyroxene.

Norite and Gabbronorite: Contains 60-67 vol % of orthopyroxene and to approximately 35 

vol % of plagioclase with comparable grain sizes as in the feldspathic pyroxenite. Minor 

constituents of biotite, rutile and olivine are commonly encountered. The primary phases 

present in gabbronorite are clinopyroxene, orthopyroxene and some plagioclase. In some 

cases plagioclase predominates over pyroxene in gabbronorite.

Harzburgite: The pyroxene content in this unit is up to 65 vol %, with the amount of olivine 

reaching up to 20 vol % and about 10 vol % of plagioclase. Grain sizes of olivine and 

plagioclase can reach up to 5 mm while pyroxene reaches up to 1 cm. The olivine grains are 

usually or partly replaced by serpentine minerals. Disseminated sulphides, chromite and 

biotite are common.
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Chromitite: Occur as thin layers, known as stringers, at the top and bottom of the Merensky 

Reef pyroxenite sequence.

It also occurs disseminated throughout the Merensky Reef units. The chromitite stringers 
consist of about 95 vol % chromite. Idiomorphic to hypidiomorphic chromite grains range 

between 100-200 microns in size. The chromite grains are embedded in a matrix of 
plagioclase with minor pyroxene and biotite. Magnetite, rutile and sulphides occasionally 

occur as inclusions in chromites.

4.1.1 Sample Description

The samples examined originate from four drill cores of the Merensky Reef in the Eastern 

Bushveld Complex; two of the four boreholes originated from Modikwa Platinum Mine in 

the central sector (OV 777 and OV 778) while the other two (TRP 260 and TRP 271) was 

obtained from TRP Mine in the southern sector. The Merensky Reef is typically made up of 
the normal pyroxenite, which is the dominant pyroxenite occurring within the Merensky. The 

normal pyroxenite at both Modikwa and Two Rivers is comparable to that described by 

Cawthorn and Boerst (2006) as consisting of up to 80 vol % orthopyroxene, occurring as a 

subhedral to polygonal grains with interstitial plagioclase. Clinopyroxene and orthopyroxene 

grains appeared medium-grained, ranging between 2 to 3 mm in the normal pyroxenite 

(Cawthorn and Boerst 2006).

The two drill cores from Two Rivers (TRP 260 and TRP 271) showed the most dominant 
lithology found in the immediate hanging wall of the Merensky Reef (i.e. the spotted 

anorthosite). The investigated cores also demonstrated a normal Merensky Reef profile which 

is generally considered as a 1 m feldspathic pyroxenite sequence underlain by an anorthosite 

and bounded by top and bottom chromitite stringers or bands (Brynard et al. 1976; Davey 

1992). The TRP drill cores showed high grade mineralization distributed around the 

chromitite stringers within the pyroxenite. The pyroxene grains appeared medium grained 

with average sizes of about 2 mm. The grain sizes of the orthopyroxene range between 2 and 

6 mm. The anorthosite in this unit showed colour variations of white to cream-white and light 
grey to pinkish grey. The core log profile displayed a sharp contact between the Merensky 

Reef pyroxenite and the hanging wall spotted anorthosite. A zone of transition between the 

two lithologies occurs over a few cm, comprised of norite. This norite also revealed colour 

variations of light to dark grey instantaneously revealing a greenish tint which is thought to 

be chlorite.
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In the Modikwa drill cores, the normal pyroxenite overlies the top chromitite stringer as seen 

in Figure 4.3. The top chromitite stringer either caps the Merensky Reef pyroxenite or is 

towards the upper parts of the normal pyroxenite within the Merensky Reef.

The top chromitite stringer is thinner than the bottom chromitite stringer (Figure 4.2). The 

lithological succession of the drilled core OV 778 from Modikwa showed leuconorite as the 

hanging wall succession underlain by a few cm of anorthosite, which then gradually 

transitioned into a chloritized norite showing a green tint (Figure 4.1). The chloritized norite 

showed orthopyroxene grains ranging from 2-3 mm in size. The anorthosite which is a 

regional marker, persistent throughout the Central sector was observed during field studies 

occurring at the base of the Merensky Reef and later grades into being pegmatoidal. 

Interstitial plagioclase and micas (such as biotite) were also present. The pyroxenite marked 

the footwall which later graded into a pegmatitic pyroxenite. Drill core OV 777 showed a 

pegmatoidal feldspathic pyroxenite that occurred directly between the basal chromitite 

stringer. This pegmatoidal feldspathic pyroxenite where developed it occurs sandwiched 

between the pyroxenite package and is not well developed (only about 3 cm thick) and is also 

barren.

Figure 4.1: Drilled borehole core from farm Onverwacht 292 KT, OV 778.

In the two mines (Modikwa and Two Rivers), the BMS typically pentlandite (Pn), pyrrhotite 

Po), chalcopyrite (Ccp), and minor pyrite (Py) occur within the pyroxenite unit. The norite 

and anorthosite units are almost barren of the base metal sulphides. Disseminated sulphides 

occur throughout the Merensky Reef sequence.
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The BMS occur as coarse-grained irregular granular aggregates. In places, pentlandite show 

exsolution flames in pyrrhotite, or as coarse-grained granular aggregates intimately 

intergrown only with pyrrhotite.

PGM occur as accessory minerals. In the Central sector of the Eastern limb, the section under 

investigation on the farm Onverwacht at the Modikwa showed the Merensky Reef has 

similarities with the Rustenburg wide reef facies in the Western limb of the Complex. In the 

Rustenburg wide reef facies, pegmatitic pyroxenite occurs usually in the footwall succession 

of the main mineralization, but is poorly mineralised as was the case at Modikwa. The 

mineralization at Lebowa mine (also known as Atok) together with that at Winnaarshoek has 

similarities to the mineralization at Modikwa in that, the main mineralization occurs in the 

pyroxenite between the two layers of chromitite that lie above the pegmatitic pyroxenite 

(footwall). In the Southern sector of the Eastern limb, the Merensky Reef in the farm 

Dwarsriver at Two Rivers display similar features corresponding to the Marikana facies of 

the Western limb of the Bushveld Complex, which also lacks the basal pegmatoidal 

pyroxenite (Rose et al. 2011). In all four drill core samples of this study, the Merensky Reef 

displays the most common mineralization pattern and is not disrupted by potholes, discordant 

bodies such as iron-rich-ultramafic pegmatoid, magnesian dunite pipe, faults and dykes. The 

highest PGE grades are intimately associated with the chromitite stringers.

4.2 Ore Microscopy and Petrography
The petrographic examination was undertaken in order to identify the textural variation and 

mineralogy associated with the ore. Ore microscopy and petrography are important tools for 

characterizing the ore mineralogy in terms of mineral association and textural relationships 

and variations. These powerful techniques are extensively utilised to provide parameters of 

exploration, production planning and for the improvement of process plant designs. 

Photomicrographs were taken from certain areas on the thin sections and on the ore mounts 

for description. These photomicrographs showed the Merensky Reef pyroxenite viewed 

under plane polarized light (PPL) and crossed polarized light (XPL). The work of MacKenzi 

et al. (1982) was used as a reference for mineral identification and the determination of 

igneous rocks and their textures, while the Table by Spry and Gedlinske (1987) was used as a 

reference for the determination of common opaque minerals.
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Figure 4.2: Photomicrographs of polished thin sections of selected samples taken from 
various boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL and 
XPL. (A and B) show interconnected medium to coarse grained sub-hedral to euherdal 
phenocrysts of orthopyroxene (Opx) and clinopyroxene (Cpx). Plagioclase (Plg) is 
characterized by its strong parallel sets of albite twins. (C and D) show interstitial Plg in 
the chromitite stringer, note fine sericitisation of plagioclase. (E and F) show elongated 
olivine phenocrysts encountered in the feldspathic pyroxenite unit, note blebby Cpx 
microcrysts in Plg. (Drill core OV 777, Modikwa).
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Figure 4.3: Photomicrographs of polished thin sections of selected samples from various 
boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL and XPL. (A 
and B) are showing coarse grained anherdal phenocrysts of orthopyroxene (Opx), 
clinopyroxene (Cpx) and plagioclase (Plg). (C and D) show intensely altered Opx and 
Cpx phenocrysts accompanied by sericite. Base metal sulphides (BMS) are filling up the 
interstitial spaces. (E and F) display Plg hosting disseminated chromite (Chr), the grains 
do not exhibits a preferred orientation but are scattered throughout the section (Drill 
core OV 777, Modikwa).
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Figure 4.4: Photomicrographs of polished thin sections of selected samples from various 
boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL and XPL. (A 
and B) are showing medium to coarse grained sub-herdal phenocrysts of orthopyroxene 
(Opx) in plagioclase (Plg) groundmass. (C and D) show chromite grains are scattered 
locally, exhibiting a round compact shape, sericite tend to fill up the microfractures. (E 
and F) display Cpx, Opx and Plg accompanied by anhedral crystals of base metal 
sulphides (BMS) and disseminated euherdal chromite grains. (Drill core OV 778, 
Modikwa).
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Figure 4.5: Photomicrographs taken from polished thin sections of selected samples 
from various boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL 
and XPL. (A and B) shows Euhedral and rounded chromite grains hosted in plagioclase 
(Plg) matrix. (C and D) show highly altered zone that appears to have undergone low- 
grade metamorphism with muscivite, chlorite, talc, glaucophane and secondary BMS 
and oxides. The zone also composes of secondary oxide and base metal sulphides (BMS) 
minerals. (E and F) show a large phonecryst of clinopyroxene (Cpx), plagioclase (Plg) 
and biotite (Bio) in association with base metal sulphides (BMS). (Drill core OV 778, 
Modikwa).

41



Figure 4.6: Photomicrographs taken from polished thin sections of selected samples 
from various boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL 
and XPL. (A and B) show intensely altered phenocrysts of both orthopyroxene (Opx) 
and clinopyroxene (Cpx) accompanied by anhedral granular crystal of base metal 
sulphides (BMS) with a fish-like structure. Note sericite as a result of alteration of 
plagioclase. (C and D) show disseminated euhedral chromite grains hosted sub- 
ophitically in both Cpx and Opx phenocrysts. (E and F) display elongated to tabular 
flake of biotite (Bio) (Drill core TRP 260, Two Rivers).
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Figure 4.7: Photomicrographs taken from polished thin sections of selected samples 
from various boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL 
and XPL. (A and B) show interstitial (Plg) hosting chromite (Chr) grains, inclusions of 
Plg inside Chr may suggest that the Chr is late in paragenetic sequence. (C and D) show 
medium to coarse grained sub-hedral to euhedral phenocrysts of clinopyroxene (Cpx) 
and orthopyroxene occurring interstitially with Plg. (E and F) display partially altered 
clinopyroxene phenocrysts, base metal sulphides display a well-developed triple point 
junction with Cpx (Drill core TRP 260, Two Rivers).
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Figure 4.8: Photomicrographs taken from polished thin sections of selected samples 
from various boreholes of the Merensky Reef pyroxenite. Images are viewed under PPL 
and XPL. (A and B) show widespread albite twinning in plagioclase (Plg) hosting 
chromite (Chr) grains, note biotite along Chr margins. (C and D) display Plg hosting 
disseminated chromite (Chr), the grains do not exhibit a preferred orientation but are 
scattered throughout the section. (E and F) display partially altered clinopyroxene 
(Cpx) phenocrysts with biotite (Bio) occurring associated with anhedral base metal 
sulphide (BMS) (Drill core TRP 271, Two Rivers).
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4.2.1 Petrography

Generally, in the four investigated drill cores, the BMS mineralization occur either distributed 

widely throughout the pyroxenite units (Figures 4.6 A and B; 4.3 C and D; 4.8 E and F) or 

within or adjacent to the chromitite stringers (Figures 4.4 E and F; 4.8 C and D). 

Orthopyroxene (Opx) crystals accumulate in loose sometimes tight mutual contact and an 

intercumulus liquid of plagioclase fills the interstices (Figures 4.2 A and B, 4.4 A and B). 
Poikilitic plagioclase grain appear enclosing euhedral or sometimes subhedral to elongated 

orthopyroxene grains (Figures 4.7 C and D; 4.4 A and B). In places orthopyroxene and 

clinopyroxene (Cpx) occur at irregular intervals exhibiting sub-rounded sometimes rounded 

to euhedral grains. Elongate grains of orthopyroxene are commonly noted, particularly at 
Modikwa (Figures 4.7 C and D; 4.4 A and B). The clinopyroxene occasionally occurs both as 
an intercumulus and cumulus phase while in places it occurs as a minor component (Figures 

4.7 E and F). Given that the pyroxenite unit had encountered persistent alteration, 
orthopyroxene grains are replaced along cracks by BMS and sometimes by amphibole and/or 

serpentine in places. Another type of alteration present includes sericitisation, where the 

interstitial plagioclase is replaced by fine grained sericite (Figures 4.2 C and D; 4.3 E and F). 

Clinopyroxene and orthopyroxene show similar morphology, particularly under plane 

polarized light (Figures 4.2 A and B and 4.7 C and D). However, clinopyroxene commonly 

shows exsolution lamellae of orthopyroxene (Figure 4.7 C and D). It was also encountered as 
inclusions and as blebs or exsolution lamellae within the orthopyroxene. Biotite was observed 

as tabular flakes at varying grain sizes and is commonly associated with BMS (Figures 4.7 E 

and F and 4.8 E and F) and relatively more abundant in samples from the TRP compared to 

Modikwa.

In the pegmatoidal feldspathic pyroxenite unit in samples from Modikwa, olivine occurs 
commonly elongated to amoeboid in crystal shape with orthopyroxene (Figure 4.2 E and F). 
In places olivine is observed exiting a rounded morphology and is commonly fractured. 

Pegmatoidal feldspathic pyroxenite occurs just below the top chromitite stringer in the 

normal pyroxenite, but is not well developed (Figure 4.2 E and F), note that the pegmatoidal 
is only present in Modikwa drill cores OV 777. The selected thin sections show olivine in the 

process of being replaced by serpentine with cracks filled in by secondary BMS. Chromite 

grains are disseminated within pyroxenes (Figures 4.6 C and D; 4.3 E and F) and the 

intercumulus plagioclase (Figures 4.5 A and B; 4.8 A, B, C and D). Disseminated chromite 

grains do not exhibit a preferred orientation but are scattered throughout the section.
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The chromite grains occur mostly as euhedral, rounded to sub-rounded morphology and 

commonly rimmed by mica, mostly biotite and/or muscovite (Figures 4.2 C and D; 4.8 C and 

D). Clusters of chromite grains exhibit a triple point junction in places, which is 

characteristic of the thicker layers according to Eales and Reynolds (1986). In a similar 

manner, the BMS display a well-developed triple point junction with clinopyroxene (Figure 

4.7 E and F). In most cases recrystallization causes the coalescing grain boundaries to form 

into triple point junction observed from these crystals. Inclusions of plagioclase in chromite 

were also noted and may suggest that chromite is late in paragenetic sequence. Increased 

plagioclase contents were observed in the range of chromitite stringers however decrease in 

plagioclase content below and above chromitite stringers (Figures 4.5 E and F; 4.8 E and F). 

The top chromitite stringers (approximately 4-5 mm thick with an average of 2 mm) are 

much thinner (Figures 4.5 C and D; 4.6 C and D) and not well developed compared to the 

bottom chromitite stringers (Figures 4.3 E and F; 4.8 C and D). Altered silicates observed 

include serpentine, talc, amphibole, and in places, a mixture of fine netted mass of randomly 

oriented muscovite and chlorite microphenocrysts. Quartz and magnetite were observed at 

minor amounts.

4.2.1.1 Comparison between Modikwa and Two Rivers

There are two types of pyroxenite units that occur in the Merensky Reef sequence; the normal 

pyroxenite and pegmatiodal feldspathic pyroxenite. Mineralogically, the two units are alike; 

but only differ in their grain sizes (e.g. orthopyroxene grains vary between 3-5 mm in the 

feldspathic pyroxenite and up to a few cm in pegmatoidal feldspathic pyroxenite).

The studied drill cores (TRP 260 and TRP 271) from Two Rivers reveal similar 

characteristics to the drill cores of Modikwa (OV 777 and OV 778) in regard to the texture 

and mineralogy of the Merensky Reef pyroxenite sequence. The two locations show some 

variation in silicate phases present. The orthopyroxene appear as a cumulus phase while 

plagioclase appear as intercumulus phases. Clinopyroxene mostly appear as blebs or 

inclusions within the orthopyroxene at both mines. In both mines, Modikwa and TRP, the 

two chromitite stringers, top and bottom, are present and located within the normal 

pyroxenite. Chromite grains are more often rimmed by mica, biotite and/or muscovite. 

However, sericite was observed along chromite grain boundaries while in places a mixture of 

fine netted mass of randomly oriented muscovite and chlorite microphenocrysts were 

identified pointing to alteration processes.
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In all four studied drill cores an occurrence of the interstial plagioclase is common. The 

association of chromite with plagioclase and pyroxene members occur in three main forms; 
(1) interstitial plagioclase occurring as inclusions in chromite (2) chromite occur as inclusions 
in the orthopyroxene and (3) chromite scattered though out the pyroxene unit and in 

association with BMS. The BMS often occur interstitial to the orthopyroxene grains and 

sometimes in association with chromite. In some places they were observed replacing 

plagioclase while in other places appeared filling up the cracks in the orthopyroxene but 
commonly disseminated throughout the Merensky pyroxenite. The olivine shows a 

noteworthy elongated amoeboidal texture and also showed a strong preference for the 

pegmatiodal pyroxenite unit which is only identified in drill core OV 777 from Modikwa and 

literally absent in drill cores from TRP.

Altered silicates were recorded occurring as minor to trace amounts and include serpentine, 
talc, amphibole, mica and chlorite. The two Reefs (Modikwa and TRP) generally appear to be 

highly affected by alteration of silicates. The Winnaarshoek facies occurring in the Central 
sector of the Eastern Bushveld suggest more passive formations and lower temperatures.

4.2.2 Ore Mineralogy

The BMS at Modikwa and Two Rivers Platinum mines include chalcopyrite (Ccp), 
pentlandite (Pn), pyrrhotite (Po) and minor pyrite (Py). They show a variety of grains sizes 
and occur as medium to coarse grained crystals. The petrographic results revealed that BMS 

occur in both the normal pyroxenite and pegmatoidal feldspathic pyroxenite units. The BMS 

occur in immediate contact with the interstitial silicates and often associated with mica and 

disseminated chromites, in places. Broadly, BMS appear as; large multi-mineralic sulphides 
with blebs (up to several mm), smaller mono-mineralic sulphides with blebs and also as 

disseminated sulphides. The sulphide blebs consist of minerals pyrrhotite, chalcopyrite and 

pentlandite and generally showing irregular shapes and variable complex patterns of 
replacement textures.

4.2.2.1 Textural relationship 

Silicates and BMS

It is observed that the only characteristic that the gangue minerals have in common is their 

association with sulphides. Features observed include extinction and deformation twins in
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the plagioclase and as well as indented faces between the orthopyroxene grain boundaries. 

These features are suggestive of the movement of grains and plastic deformation through the 

period of compaction. The association of plagioclase with biotite could be related to post 

compaction crystallization. The orthopyroxene is the most dominant silicate in the two Reefs, 

and reveals coarser grain sizes forming interconnected grain to grain boundaries in places. 

Orthopyroxene grains do not form interlocking crystals with BMS; therefore minerals are 

likely to show good liberation if milled finely enough. In places orthopyroxene shows 

alteration into fine grained talc aggregates. The replacement orientation occurs adjacent to the 

contacts between silicate and sulphides grains. The petrographic observations suggest that 

sulphides and associated PGM formed after primary silicates, where sulphides liquid would 

infiltrate into the silicate crystal slurry filling up the accessible interstial spaces. The textural 

relationship between the minerals exhibit a genetic relationship between BMS and PGMs was 

observed.

Base Metal Sulphides

Pentlandite (Ni, Fe)9 S8: Occurs as a fine to medium grained light yellow cream exhibiting 

various shapes of elongated, irregular to euhedral crystals. There are two types of pentlandite 

observed; (1) the coarse grained pentlandite, granular in texture, intimately intergrown with 

chalcopyrite and pyrrhotite, this main type is present in Figures 4.9; 4.10 C and D. (2) 

pentlandite occurs as exsolution flames in pyrrhotite and chalcopyrite, this type is 

occasionally observed in Figure 4.19 E and F. The pentlandite tends to occur as a multi- 

mineralic sulphide as observed in Figures 4.9 C; 4.10 A, B and C. Pentlandite also occurs as 

irregular; anhedral to euhedral sometimes rounded crystals (Figures 4.9; 4.10 A, B C), 

revealing textures of intergrowths, particularly in pyrrhotite (Figure 4.10 A, C) and 

marginally in chalcopyrite (Figure 4.10 B). In some places it has been observed to fill the 

interstices between chromite grain boundaries (Figures 4.9 D and E; 4.10 E). Pentlandite 

occurs as relatively granular crystals (Figure 4.9 A, B and D) with minor inclusions and 

microfractures. The abundance of pentlandite is more than that of chalcopyrite.

Chalcopyrite (Cu FeS2): Occurs mostly as fine to medium grained yellow anhedral crystals 

often intergrown with pentlandite (Figure 4.10 A, B, C and D) and pyrrhotite (Figure 4.9 A 

and B) or frequently as single residual grains associated with chromite grains (Figures 4.9 B 

and 4.10). The amount of iron content varies. Chalcopyrite often occurs as fine grained
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monomineral (Figure 4.10 F) or as multi-mineralic sulphide blebs and or overgrowths (Figure

4.10 A-D). It often exhibits complex textures of replacement preferentially along margins of 

either pyrrhotite or pentlandite (Figures 4.9 A and C).

Pyrrhotite (FeS-Fej-xS): Pyrrhotite occurs as coarse grained granular pinkish brown crystals 

oftenly associated with pentlandite and chalcopyrite. Pyrrhotite is the most abundant sulphide 

type within both Modikwa and TRP. It also shows successive replacement by pentlandite as 

shown in Figure 4.9 B. Pyrrhotite appears to host other sulphides however it also occur as 

blebs together with chalcopyrite in pentlandite. Silica inclusions are abundant in pyrrhotite 

grains indicating growth outward in all directions. Successive recrystallisation was noted 

where pentlandite grains occur included within pyrrhotite but mineral grain sizes are not the 

same.

Pyrite (FeS2): It occurs intimately with pentlandite, chalcopyrite and pyrrhotite. Pyrite is 

highly stoichiometric and forms a minor component of the sulphides.

Oxides

Magnetite

Magnetite is present in the pyroxenite unit in variably minor quantities as anhedral to skeletal 

crystals dispersed throughout and replacing BMS in places. A possibility for magnetite 

formation could involve processes such as oxidation and desulfurization of the primary 

sulphides.

Chromite

Chromite often occurs as dark grey euhedral and rounded to sub-rounded grains in aggregates 

associated with BMS, with pentlandite, commonly filling up the interstices in between grain 

boundaries (Figures 4.9 D and E; 4.10 E). Chromite occurs regularly as disseminated grains 

in various shapes (Figure 4.10 A). In some places the euhedral grains reveal annealed texture 

of recrystallization within the plagioclase matrix.
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Figure 4.9: Photomicrographs of the selected samples illustrating the important ore 
characteristics of the Merensky Reef pyroxenite. Images are viewed under reflected 
light (RL). Image (A) shows anhedral to euhedral derfomed granular grain of 
pyrrhotite (Po, darker grey to brownish pink) appearing invaded by chalcopyrite (Ccp, 
yellow). Image (B) show an intensely deformed aggregate of pyrrhotite with pentlandite 
(Pn, lighter yellow to creamish-white) phases and well-developed overgrowths of 
chalcopyrite. Image (C) shows an aggregate of coarse-grained pentlandite showing 
patterns of marginal replacement by chalcopyrite. Image (D) shows a top chromitite 
stringer in association pentlandite and chalcopyrite. Image (E) shows pentlandite 
exhibiting triple point junction. Image (F) show a coarse grained granular grain of 
pyrrhotite with blebs of chalcopyrite. Note the multiple inclusion of earlier formed silica 
in sulphides. It appears that the inclusions were incorporated and stretched as the 
pyrrhotite matrix flowed under pressure. (Drill core TRP 260 and 271, Two Rivers).
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Figure 4.10: Photomicrographs of the selected samples illustrating the important ore 
characteristics of the Merensky Reef pyroxenite. Images are viewed under reflected 
light (RL). Image (A) shows anhedral pentlandite (Pn, light yellow to creamish yellow) 
in the process of being replaced by pyrrhotite (Po, darker grey to brownish pink) and 
by chalcopyrite (Ccp, yellow). Image (B) shows pentlandite in the process of being 
reaplced by both ptrrhotite and chalcopyrite. Image (C) shows a medium grained 
intergrown of pyrrhotite and chalcopyrite with pentlandite. Image (D) shows 
pentilandite with flame-like exsolutions of chalcopyrite. Image (E) shows a bottom 
chromitite stringer in association with an aggregate of sulphides composing of 
pyrrhotite, pentlandite and chalcopyrite. Image (F) show an elongated grain of 
chalcopyrite multiple inclusions of which appear to have been incorporated during 
crystal growth. (Drill core OV 777 and 778, Modikwa).
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4.2.2.2 Comparison between BMS at Modikwa and Two Rivers

The petrography for both Modikwa and Two Rivers showed that the BMS occur in 

immediate contact with the silicates or closer to the disseminated chromite grains in places. 

Commonly they also occur associated with orthopyroxene, clinopyroxene and within the 

interstitial plagioclase or dispersed in the pyroxenite unit. In a few cases the sulphides appear 

to fill up the interstices between chromite grains pointing to injection of a later phase (Figures 

4.9 D and E; 4.10 E). Generally the two Reef types highlighted a broad range of sulphide 

textures and grain sizes and though not every case, pyrrhotite has been observed to be more 

abundant than pentlandite which is more abundant than chalcopyrite.

The principal difference between the four studied drilled cores is the grain size distribution of 

sulphide ores, which appeared coarser in the TRP samples relative to those taken from 

Modikwa. Craig (2001) suggested that the finer grain sizes tend to form under low 

temperature conditions while larger crystals form under higher temperature conditions. In 

places; samples showed magnetite association in minor proportions to the BMS at both 

Modikwa and TRP.

The type of intergrowth predicts liberation of particles after milling and crushing. For 

example in Figure 4.10 C, D and E grains appear locked in whereas in Figure 4.9 A and B 

pentlandite grains appear included within the pyrrhotite thus separation may be difficult to 

achieve. At Modikwa liberation is likely to be moderate to good as most minerals show 

straight common boundaries are commonly locked. At TRP the contact boundaries between 

grains appear more complicated with interpenetration. In cases where complex patterns of 

replacement textures like intergrowths and exsolutions of chalcopyrite in pyrrhotite, 

liberation will be extremely difficult unless fine milling is undertaken. Replacement textures 

appear to commonly progress along fractures and grain boundaries, and penetrating along 

these locations of weaknesses. In Figure 4.9 B, pyrrhotite is been coated by an intergranular 

rim/overgrowths of chalcopyrite, and in this case poor liberation is predicted. In some places 

there is no evidence of replacement textures between sulphide grain boundaries suggesting 

that grains crystallized most probably at the same time (mutual replacement).

In general at TRP pyrrhotite is coarser compared to other sulphides (pentlandite and 

chalcopyrite) while at Modikwa pentlandite appears to be the coarsest.
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The different sulphide grain sizes observed in this study could be related to the 

interconnectivity of interstitial spaces between pyroxene and plagioclase leading to different 

sulphide grain sizes. Multiple inclusions of other unknown opaque minerals and earlier 

formed silicates in BMS are abundant at TRP and slightly reduced at Modikwa.

It appears that the inclusions were incorporated and stretched during crystal growth. Most of

the sulphides occur as multi-mineralic crystals, with majority of the crystals appearing

invaded by further events that resulted in changing their crystal shape and dissolved the

crystals in places to form cavities. Additionally, grains also appear fractured while in places,

some grains were observed revealing textures of near complete replacement.

Table 4.1: Summary of the commonly occurring minerals in the Merensky Reef at Two 
Rivers and Modiwa Platinum Mines

M in e r a ls
T w o R iv e r s M o d ik w a

A b u n d a n c e C r y s t a l  s h a p e M o d e  o f  o c c u r r e n c e A b u n d a n c e C r y s t a l  s h a p e M o d e  o f  o c c u r r e n c e

O rth o p y ro x en e M ajor
Round, euhedral to  

subhedral

C losely packed  o r som etim es 

dispersed
M ajor

E longated , round, euhedral to  

subhedral

C losely packed  or som etim es 

dispersed

C linopyroxene M ajor A nhedral
C o n ta in  exso lu tion  lam ellae o f  

o rth o p y ro x e n e
M ajor A nhedral som etim es large

C o n ta in  exso lu tion  lam ellae o f  

o rth o p y ro x e n e

P lagioclase M ajor
E longated  to  irregular 

la th s
In te rs titia l M ajor E longated  to  irregular la ths In te rs titia l

O livine M inor

E longated  granular 

m asses o r rounded 

grains

F ractured  &  exhib iting  

rep la ce m e n t tex tu re s
M inor

G ranular m asses or rounded 

grains

Fractured and rev ealin g  rep lacem en t 

tex tu re s

S erpentine M inor-trace
Flat and tabular 

crysta ls

Iso la ted  o r as in  fillings in  

o rth o p y ro x e n e  cracks
M in o r-tra ce V eins and tabular

Iso la ted  o r as in  fillings in  

o rth o p y ro x e n e  cracks

A m phibole M inor-trace
subhedral to  anhedral 

m asses/ fibrous

C o m m only  rep lac ing  

o rth o p y ro x e n e
M in o r-tra ce subhedral to  anhedral/ fibrous C o m m only  rep lac ing  o rth o p y ro x e n e

C hlo rite M inor-trace T h in  n e tted
R andom ly  o rien ted  

m icro p h e n o cry s ts
M in o r-tra ce T h in  n e tted R andom ly o rien ted  m ic ro p h e n o cry s ts

M ica* M inor
F ine n e tted  

m ic ro p h e n o cry sts
T abular or flaky M in o r-tra ce

Fine n e tted  

m icro p h en o  cryst s
T abular or flak y

Sericite M inor Fine m icrocrysta lline

Fine m icro cry sta llin e  

c o m m o n ly  rep lacing  

plagioclase

M inor Fine m icrocrysta lline
Fine m icro c ry sta llin e  com m only  

rep lac in g  plagioclase

Clay (T alc) M inor-trace Fine p h en o c ry s ts
L o ca lly  sca tte red  &  appear 

sim ilar to  m ica
M inor Fine grained O ccur as aggregates

C hrom ite M inor
E uhedral, round  to  

subrounded
D issem inated  and M asive M inor

E uhedral, round  to  

subrounded
D issem inated  and M asive2

M agnetite M inor-trace anhedral to  euhedral A ssocia ted  w ith  sulphides M in o r-tra ce anhedral to  euhedral A ssocia ted  w ith  sulphides

P y rrh o tite M inor
anhedral to  euhedral 

&  granular

H o stin g  o th e r sulphides, w ith  

abundant silica inclusions
M inor anhedral to  euhedral granular

A  h o st o f  o th e r  sulphides, w ith 

abundant silica inclusions

P en tland ite M inor-trace
A nhedral, euhedral to  

subhedral

O ccurs as overgrow ths/ 

in terg ro w th s w ith in  p y rrh o ti te
M in o r-tra ce

A nhedral, euhedral to  

subhedral

O ccurs as b lebs/overgrow ths and 

o rin terg row ths w ith in  p y rrh o tite

C halcopyrite M inor-trace A nhedral to  subhedral
O ccurs as b lebs/overgrow ths in  

p y rrh o ti te  and p en tlan d ite
M in o r-tra ce A nhedral to  subhedral

O ccurs as b lebs/overgrow ths in  

p y rrh o ti te  and p en tlan d ite

P y rite T race Euhedral N o t co m m on T ra ce Euhedral N o t co m m on

1 Muscovite and biotite
2 Bottom Chromitite stringer

4.3 Paragenesis
Paragenesis is the successive order of formation of a group of associated minerals within a 

particular deposit in terms of when they formed. This is a principal feature associated with 

identification and textural characterization of minerals in ore deposits (Craig 1994).
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Ores such as BMS oxidise in situ, and therefore paragenesis in terms of degree of oxidation is 

relevant for mineral beneficiation and extraction. For example, if ores are oxidised, the oxide 

mineral may rim or coat the outer sulphide grain boundary, hindering flotation.

However, sulphide ores are amenable to floatation. Additionally, mixed ores require double 

treatment either using oxide float or sulphide float, or both leaching and flotation.

The ore microscopy studies revealed numerous complex textures at varying degrees of 

oxidation as a function of changing temperatures. It is also unlikely that only one texture 

observed can provide enough evidence about paragenesis, all the observed textures are 

therefore important particularly for liberation purposes. From the textural associations 

observed in the Merensky Reef at both Modikwa and TRP, it can be inferred that, 

orthopyroxene, olivine and plagioclase crystals formed earlier than BMS. Most descriptions 

of the Merensky Reef refer to orthopyroxene a cumulus mineral while plagioclase is 

intercumulus (commonly up to 30 %). This is supported by observations in Figures 4.2 A and 

B; 4.6 A and B where plagioclase and/or orthopyroxene crystals accumulate in loose mutual 

contact and an intercumulus liquid fills the interstices (plagioclase in this case). This would 

therefore suggest that the interstitial plagioclase observed in these studies indicates that 

orthopyroxene formed earlier than plagioclase. Additionally, othopyroxene crystals exhibit 

euhedral shapes and appear to have grown unobstructed due to early growth within magma. 

However, the textural observations alone are inconclusive as the extensive textural annealing 

occurred in these rocks. As observed in Figures 4.3 A and B; 4.5 A and B, where plagioclase 

appears cumulus, it could be possible that plagioclase grains originally existed. The sequence 

of deposition shown by these gangue minerals suggests that they formed during the period of 

crystallization of Merensky Reef. The orthopyroxene can be easily liberated since crystals 

habit does not reveal any interlocking patterns and mostly occur as single grains. Moreover, 

the work of Seabrook et al. (2005), documented that the presence of cumulus plagioclase 

with a Critical Zone signature in the pyroxenites suggests that plagioclase sank with 

orthopyroxene as composite mineral clusters.

Alteration of silicates was noted in this study, including minerals like serpentine, which is 

most likely an alteration product of olivine, although, could possibly be of orthopyroxene. 

Talc is common alteration product of orthopyroxene occurring mostly along the rims of 

orthopyroxenes and occur as talc-aggregate in selected samples from Modikwa.
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The presence of talc has been reported as the most problematic as it can cause significant 

process difficulties (Penberthy 1999).

Amphibole crystals where observed appear as medium subhedral crystals suggesting either to 

be an early secondary mineral or representing completely replaced orthopyroxene. 

Chloritisation of minerals such as biotite and clinopyroxene was noted and is thought to be as 

a result of metasomatism, forming in a variety of styles under different conditions. 

Chloritisation is commonly associated with low-temperature metamorphism, while formation 

of muscovite/sericite could be as result of hydrolysis of feldspars.

In most cases sulphides are rimmed and replaced by the alteration silicates and such 

replacements are thought to have formed by the reaction of sulphides with aqueous fluids 

which can be deuteric, which Li et al. (2004) and Crocket et al. (1976) suggested to be the 

result of interaction with hydrothermal fluids. The sulphide liquid appear to have infiltrated in 

the primary silicates and filled in the interstitial spaces accessible as observed in Figures 4.7 

E and F; 4.3 C and D and as result are thought to have crystallised in the order of:

pyrrhotite > pentlandite> chalcopyrite and > pyrite later.

From ore microscopy study (Figures 4.9; 4.10), the BMS commonly occur as two mutually 

interpenetrating grains and more likely indicate simultaneous crystallisation. Disseminated 

crystals of sulphides occur in some of the samples and would be difficult to liberate given the 

closely packed nature of the grains, in comparison to coarser particle grain easily liberated 

due sizes.

Chemical remobilization and reprecipitation of sulphides appear as a paragenetically late 

feature as indicated by the formation of secondary BMS veinlets that crosscut the pyroxenite 

(Figure 4.4 E and F) and/or talc in the zone of alteration (Figure 4.5 C and D). Minerals 

hosted in cross cutting veins are thought to have formed during post-magmatic 

hydrothermally-induced alteration (Smith et al. 2013).

In some of the selected samples from both Modikwa and Two Rivers, the presence of 

magnetite was observed in places associated with fluid ingress of which might suggest 

recrystalization.- No recrystallization maybe due to deformation, but fluid ingress will likely 

result in alteration. Hence magnetite may be due to alteration.
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The paragenetic relationship between magnetite and BMS is not clear, in some instances, 

magnetite appear to be replacing BMS while there is no evidence of replacement textures 

between the two grain boundaries, suggesting that grains crystallized most probably at the 

same time. This could most probably mean that there were two generations of magnetites, 

one later than the other.

Disseminated chromite grains occur throughout the Merensky Reef pyroxenite in all the four 

studied drilled cores as observed in Figures 4.4 C and D; 4.6 C and D; 4.8 C and D; 4.9 E and 

F. Top and bottom chromitite stringers occur interstially with plagioclase or sometimes 

orthopyroxene, these observations could suggest that chromite formed early and was 

subsequently enclosed in these minerals.

Cawthorn and Boerst (2006) proposed that the chromite in composite orthopyroxene could 

have grown by a reaction of primary orthopyroxene and superheated liquid, in which case the 

chromite would be a secondary mineral after the primary silicates.

However, if chromite was formed and later trapped within orthopyroxene during 

recrystallization, the timing of crystallisation of chromite relative to the orthopyroxene is 

difficult to determine. Some of the chromite grains are rimmed by biotite suggesting some 

reaction involving fluid at the contact between orthopyroxene and chromite.

The processes that bring about these replacement textures include oxidation, dissolution, 

subsequent precipitation and solid state diffusion of the magnetite that shows no replacement 

textures could be due to solid state diffusion. Most sulphide grains show early stages of 

replacement, where much of the original parent mineral is still evident (Figure 4.9 A and B;

4.10 A, B, C and D) but as the process advances the primary minerals appear corroded, 

forming floats within the particle. Advanced replacements were noted and tend to consume 

the original structure leaving rounded to corroded remains with fractures showing no parallel 

alignment and resulting in boundaries between the replaced and the replacing mineral 

commonly appearing sharp, irregular or diffused. Fracture infilling was recorded in this study 

and is thought to be as a result of precipitation or injection of later phase, often during 

metamorphism.

Exsolutions occurring in BMS are certainly not easy to interpret as they often appeared very 

similar to replacement textures. Most sulphides observed reveal a diagnostic pattern/shape 

and form in disseminations and dispersions.
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Cracks, inclusions and lamellae twins often showed preferred orientation of blebs either 

along the grain boundary or rather in the center of the grains. The sulphide ores revealed 

evidence of deformation textures due to minor pressure induced twinning. Deformation in 

BMS was identified by commonly observing linear features such as crystal faces, fractures, 

exsolution lamellae, veining and twinning. These features appeared to have been offset and as 

result are deformed (Figures 4.9; 4.10). Some of the selected samples, in places BMS appear 

to have subjected to intense deformation resulting in brecciation of the present ore mineral 

which in turn result in broken and shattered grains.

Recrystallisation of BMS was observed; where after initial formation, BMS could be 

subjected to repeated periods of slow cooling or prolonged periods of slow heating as a result 

of metamorphism. In cases such as in Figure 4.10 D, recrystallization causes the coalescing 

grain boundaries to form into triple point junctions.

These observations suggest that PGM occurring in sulphide would suggest that the PGE in 

the magma was collected by the sulphide liquid, whether in solution or later exsolving from 

the sulphide blebs, or as discrete PGM floating in the magma. PGM therefore formed either 

shortly before or concurrently with the sulphides (Li et al. 2004).
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5 Results and Discussion

5.1 PGM Mineralogy
This chapter discusses the quantitative analyses of the PGM based on the EPMA, the PGM 

phase association and their grain size distribution from the MLA. In particular, it focuses on 

the BMS and associated PGMs that occur within the Merensky Reef pyroxenite package. A 

sub section presenting the trace element analysis including PGEs in BMS follows below, and 

subsequently presents the grade profiles which were drawn based on the assay data. Scanning 

electron microscopy (SEM) was also utilized for the identification of PGMs in conjunction 

with MLA and EPMA. SEM images obtained for PGMs are attached as Appendix FI and FII. 

Only EPMA images are used for illustrations of the PGMs in this chapter. Naming of PGMs 

was done per the order given in Cabri (1981; 2002).

The EPMA analyses were carried out on 41 samples obtained from a total of four drill cores, 

two from Modikwa and two from TRP Mines. The PGMs identified, were classified into five 

groups namely; PGE-tellurides, PGE-arsenides and sulphoarsenides, PGE-sulphides, gold (in 

the form of native gold and electrum), and other PGE alloys, e.g. platinum and palladium 

alloys and palladium-lead alloys, presented in Tables 5.1 and 5.2 below. Gold and electrum 

even though are not part of the PGEs, they were considered in the PGMs classification in this 

study. In terms of PGM association with the sulphides, a strong association exist between 

PGM and sulphides with the association of chalcopyrite being the most remarkable. Relative 

proportions of dominant PGMs differ between the two mines, with PGE (platinum and 

palladium) telluride and bismuthotellurides being the most dominant PGE group at both TRP 

(97 %) and Modikwa (85 %).
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Table 5.1: PGM groups occurring in the Merensky Reef pyroxenite at Modikwa

PGE group Chemical
composition Mineral name Number of grains

Gold
OV 777 OV 778

AuAg Electrum 9 12

PGE arsenides
PtAs Sperrylite 4 71

PtAsS Platarsite 3 3

PGE
bismuthotelluride

and

tellurides

PdBiTe Michenerite 14 51

PtPdBiTe Unnamed 18 3

PdBiFeTe Michenerite 2 2

PtTeBi Maslovite 34 9

PtTe2 Monocheite 2 4

PGE base metal 
sulphides

PtPdSn Braggite 10 1

PtS Cooperite 28 2

RuS Laurite 2 4

PtPdS Braggite 10 3

PtRhCuS ? 1 1

Other PGE 
Alloys

PdSb Stibiopalladinite 2

PtSn ? 5

PtPdSn ? 8 1

PdSn ? 1

PtFe Isoferroplatinum 8 3

Total 160 170
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Table 5.2: PGM groups occurring in the Merensky Reef pyroxenite at Two Rivers

PGE group Chemical
composition Mineral name Number of grains

Gold
TRP 260 TRP

271

AuAg Electrum 11 25

PGE arsenides
PtAs Sperrylite 11 22

PtAsS Platarsite 3 1

PGE
bismuthotelluride

and

tellurides

PdBiTe Michenerite 9 27

PtTeBi Maslovite 32 71

PtTe2 Monocheite 4 4

PtPdBiTe ? 16 29

PGE base metal 
sulphides

PtPdS Braggite 52 12

PtS Cooperite 54 29

RuS Laurite 10 29

PtRhCuS ? 31 6

Other PGE Alloys

PtAu ? 1

PtFeTe ? 1

PtPdSn ? 1 10

PtSn ? 1 7

PtSb ? 2

Total 235 276

5.1.1 Platinum Group Mineral Association

Using MLA, minerals are considered as associated with each other when they share grain 

boundaries. The higher the degree of grain boundary shared between two minerals, the 

greater the degree of association between them.
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Sulphide association: The PGMs in the Merensky Reef at Modikwa and Two Rivers have 

strong associations with sulphides. Two modes of sulphide association with PGM occurrence 

were recognized with in this study; (1) PGM occurring enclosed in sulphides and (2) PGM 

occurring at the borders/margins of sulphides (this is the common occurrence observed for 

this study). Samples in drill core OV 777 from Modikwa showed dominant association of 

PGMs with chalcopyrite while samples in drill core OV 778 PGMs showed stronger 

association with pentlandite (Figure 5.1). In total, samples from the Modikwa boreholes 

exhibit stronger associations in decreasing order of pentlandite > chalcopyrite > pyrrhotite 

with pyrrhotite showing the least association with the PGMs at Modikwa (5.1 A and B). 

Samples from drill cores TRP 260 and TRP 271, showed similar trends as the Modikwa 

boreholes (Figure 5. 20 C and D), in terms of PGM association with sulphides. From the ore 

microscopy, SEM and MLA observations of sulphides, pyrrhotite is generally the coarsest, 

followed by pentlandite, chalcopyrite and pyrite. Coarser sulphides in this study were 

commonly associated with coarser PGM (these observations are discussed further in the 

following subsection on PGM distribution).

Silicate Association: The association of silicates was confirmed by petrography in Chapter 4. 

PGM in the Merensky Reef at both Modikwa and Two Rivers showed high association with 

pyroxene members (which includes both orthopyroxene and clinopyroxene). Plagioclase 

contents were decreased in drill cores OV 778 and TRP 260 while in drill cores OV 777 and 

TRP 271 the plagioclase contents showed an increase (Figure 5.1 A and D; B and C). From 

the two mines, the PGM association is more dominated by pyroxene followed by plagioclase.

The observations in this study revealed strong association of PGMs with primary silicates 

(pyroxene and plagioclase) which is hardly surprising, as these minerals occur in abundance 

within the Merensky Reef. The relationship of PGM with silicates could be related to the 

mechanical trapping of the PGM during the period of crystallisation of the silicates as 

suggested by Boissonnas and Omenetto (1998).
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Figure 5.1: PGM association with other minerals at Modikwa (boreholes OV 777 and 
OV 778) and Two Rivers (boreholes TRP 260 and TRP 271) Platinum Mines.

Secondary/Alteration Silicate Association: PGMs show association with alteration silicates. 

The identified secondary silicates include; mica, chlorite, amphibole, talc and serpentine. As 

documented in the petrography section the coarse - to medium-grained subhedral to euhedral 

orthopyroxene crystals has altered to talc aggregates and amphiboles along fractures. Mica 

(which includes biotite and muscovite) showed increased contents in drill core OV 777 

compared to the other three drill cores (OV 778, TRP 260 and 271). The occurrence of rims 

of secondary silicates around sulphides and PGMs is common as was also observed by Li et 

al. (2004). This predominance of alteration at the rims is most probably due to grain contacts 

between sulphides/PGM and silicates being pre-destined for fluid flow. The alteration of 

silicates with PGMS can also have significant influence on flotation performance as this 

could lead to poor floatability. However, talc-talc causes serious problem in flotations, please 

check from literature, amphibole and mica are the most floatable secondary products. After 

the milling process, the PGM recovery depends entirely on the associated mineral.

PGMs occurring along the sulphide rims in the alteration minerals which also in turn rimmed 

by sulphide, are probably due to higher resistance to alteration processes and will most 

probably be harder to recover. This could be related to their fine crystalline texture.
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Oxides Association: The PGM association with oxides is generally low at both Modikwa and 

Two Rivers. These observations are not surprising as oxide minerals such as chromite are 

only encountered with in the two thin chromitite contacts which define the Merensky Reef. 

An association of chromite with some of the PGMs, mostly with PGE-sulphides was 

observed. Magnetite phases were also encountered but no conclusions could be made of its 

occurrence with PGM due to its occurrence as fine grain disseminations.

Other association: Galena appeared to be associated mostly with PGE-alloys (the percentage 

associations were low).

5.2 Platinum Group Mineral Distribution within the Merensky Reef at 
Modikwa

5.2.1 PGE-tellurides and bismuthotellurides

This group forms the most dominant PGMs encountered from the two investigated drill cores 

of Modikwa. The PGE-tellurides comprises minerals such as maslovite (PtBiTe) and 

michenerite (PdBiTe), which forms about 85 modals % at Modikwa. The PGE-tellurides at 

Modikwa exhibits various shapes; elongated, sub to euhedral shapes and ranging from 10 to 

80 microns in grain sizes. This group occur in vein-like habit, which may possibly suggest 

that the PtTeBi has flowed/intruded into and filling up the silicate cracks following the same 

trend as that of the associated sulphides (Image 4 Appendix BI and Image 2-Sample OV 777­

2, Appendix F1). A PGM grain identified as maslovite at Modikwa is shown in Figure 5.2 A 

below. The PGM exhibit an elongated worm-like shape and occur predominantly between 

BMS and silicates. It ranges in size reaches up to about 20 microns in length. The cross­

cutting textural relationship between the maslovite and sulphides suggests possible 

displacement of the sulphides. The PGM composition varies widely as depicted in Table 5.3 

below. PGM maslovite ranges in composition from (37-38 %) Pt, (37-40 %) Te and (19-20 

%) Bi. The elemental qualitative map analysis revealed different sulphide phases associated 

with the PGM (Figure 5.2). The dominant sulphide assemblage in the sample is pyrrhotite. 

Rhodium and Bi in this PGM show irregular distribution along certain parts of the grain 

while platinum and tellurium distribution appear homogeneous (Figure 5.3).
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PtTeBi

Pyrrhotite

Interstitial Silicate

Pentlandite

Figure 5.2: Back Scattered Electron (BSE) image illustrating elongated PGM maslovite 
(PtTeBi) located within both the sulphides and interstitial silicates near the top 
chromitite stringer.

Table 5.3: PGM and sulphides quantitative results at OV 777

Point Sample no Pt % Ru % Rh % Os % Te % S % Bi % Fe % Cu % Ni % Total %
1
2

777-2
777-2

37.07
37.54

0
0.004

0.135
0.096

2.328
3.124

39.59
37.17

0.107
0.072

18.6
20.12

0.682
0.606

0.23
0.04

0.184
0.34

98.92
99.11
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Figure 5.3: EPMA map analysis of S, Fe, Cu, Ni and other trace elements including 
platinum group elements within sulphides. Sulphides are distinguished by the S, Ni, Fe 
and Cu contents. Chalcopyrite is distinguished by the high Cu content and pentlandite 
by high Ni contents. The colour coded bar indicates the relative concentration of each 
element in reducing order downwards. (Drill core OV 777, sample777-2, Modikwa).

5.I.2.2. PGE-arsenides and sulphoarsenides

These form the second most abundant PGM group at Modikwa, comprising minerals such as 

sperrylite (PtAs) and platarsite (PtAsS) and form about 47 % modal abundance at Modikwa. 

The arsenides show intermediate to fine grain size distributions, anhedral or subhedral shapes 

and range from 10 to 20 microns in length. These various shapes could be linked to their 

formation in different conditions during ore forming processes.
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Sperrylite at Modikwa was analysed by SEM and occurs in sulphide veins and is thought to 

form in the final stage of PGE mineralization as it appears to be associated with alteration 

associated with later stage fluids (SEM Image 6 Sample OV 778-3 attached as Appendix F1). 

Compositional variations are apparent, including variations of possible hollingworthite [(Rh, 

Pt) AsS)] and or (OsAsS) phases which are commonly associated with sperrylite.

5.I.2.3. PGE-sulphides

PGE sulphides are the third abundant PGM type at Modikwa, predominantly comprises 

cooperite (PtS), laurite (RuS) and braggite (PtPdS). They form about 38 % of the PGM modal 

occurrence at Modikwa, with cooperite being the most dominant. This PGM occurs in 

various shapes, anhedral to subhedral shapes and range from 5-80 microns in length. The 

PGM analysed at point 27 is identified as braggite (PtPdS) with grain size reaches up to 10 

microns in length. The anhedral braggite shows association to pyrrhotite, pentlandite and 

strongly with chalcopyrite phases (Figure 5.4). Table 5.4 displays the compositional variation 

of the PGM. The fact that the PGM grain appear bigger, anhedral and complex in texture, and 

shows preferential to sulphide boundaries, points to a distinct primary magmatic origin. The 

qualitative elemental map analysis of braggite show the grain to be more enriched in 

platinum, and appear homogeneously distributed along the grain while palladium is enriched 

only in certain parts of the PGM grain (Figure 5.5). Minor enrichments of tellurium and 

arsenic along PGM tips were noted, also some deceleration radiation with rhodium and 

bismuth were recorded.
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Figure 5.4: BSE image of PGM located within the sulphides (mainly chalcopyrite) and 
silicates. Sample lies just at the bottom chromitite stringer.

Table 5.4: PGM and sulphides quantitative results at OV 778

P o in t S a m p le  no P t% P d % R h % O s% S % F e % C u % N i% T o ta l%

27 7 7 8 -9 4 9 .8 4 2 4 .1 7 0 .2 0 5 2 .0 1 7 1 8 .6 6 0 .1 0 2 4 .1 8 1 0 .4 1 4 9 9 .5 9
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Figure 5.5: EPMA map analysis map of S, Fe, Cu, Ni and other trace elements including 
platinum group elements within sulphides. Sulphides are distinguished by the S, Ni, Fe 
and Cu contents. Chalcopyrite is distinguished by the high Cu content and pentlandite 
by high Ni contents. The colour coded bar indicates the relative concentration of each 
element in reducing order downwards. (Drill core OV 778, sample 778-9 Modikwa).
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51.2.4. Gold

Gold grains at Modikwa occur as electrum, showing strong association with silver (AuAg) 

compound and form about 13 % of the total PGM occurrence at Modikwa. It also revealed 

high associations with silicates and lower association with BMS suggesting that it might have 

been hydrothermally redistributed and does not occur enclosed with sulphides like the PGM 

does. Gold grain occur as fine, sub-angular to angular in shapes and ranging from about 5-20 

microns in length. See SEM images attached as Appendix FI Image 3 (Sample OV 777-8) 

and Image 5 (Sample OV 778-1).

5.2.1.1 PGE-alloys

This group includes palladium and platinum alloys and forms about 17 % of PGM modal 

abundance at Modikwa. They show greater association with secondary silicates and most 

likely are late or secondary in nature. Other rare combinations of platinum, palladium with 

bismuth, tin and lead are grouped also under “Other PGE-alloys”. The data for the grain 

distribution of PGE-alloys was limited but where observed they occur as fine, anhedral to 

subhedral grains, ranging from 5-30 microns in length. See SEM images attached as 

Appendix FI and FII (Image 4, Sample - OV 777-8).

5.2.2 Platinum Group Mineral Distribution within the Merensky Reef at Two Rivers

5.2.2.1 PGE Tellurides and Bismuthotellurides

As with Modikwa, this group forms the most dominant PGMs encountered forming about 97 

% of the PGM population at Two Rivers. These include PGM such as maslovite (PtBiTe) and 

michenerite (PdBiTe). The occurrence of the PGE-tellurides at Two Rivers exhibits various 

shapes, subhedral to euhedral shapes and ranging from 10 to 80 microns in grain sizes. There 

are variants of palladium present within this group comprising of michenerite (PdBiTe), 

unknown (PtPdTeBi) and merenskite (PdTe). All these occur in varying proportions of 

bismuth and tellurium, and the EDS-based classification presented in Table 5.5 provides a 

rough estimate of the composition. A PGM identified as michenerite (PdBiTe) is shown in 

Figure 5.6. Michenerite is anhedral to euhedral in crystal habit and reaching up to 10 microns 

in length. The PGM grain is large, well-developed along the sulphide boundaries/margins in 

between the interstitial silicate showing association with only one phase of sulphide, 

chalcopyrite.
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The elemental qualitative map analysis of the PGM show homogenous distribution in 

tellurium, bismuth and palladium, and trace concentration of rhodium in Figure 5.7.

Figure 5.6: BSE image of PGM attached to the sulphide margins (chalcopyrite) and to 
the silicate. This sample is located within the pyroxenite.

Table 5.5: PGM and sulphides quantitative results at TRP 260

Point Sample no Pt % Pd % Ru % Os % Au % Te % S % Bi % Fe % Cu % Total %
35 260-6-5 0.094 37.11 0.044 2.601 0.025 29.26 0.069 27.7 0.827 0.338 98.07
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Figure 5.7: EPMA map analysis of sulphur, iron, copper, nickel and other trace 
elements including platinum group elements within sulphides. Sulphides are 
distinguished by the sulphur, nickel, iron and copper contents. Chalcopyrite is 
distinguished by the high copper content and pentlandite by high nickel contents. The 
colour coded bar indicates the relative concentration of each element in reducing order 
downwards. (Drill core TRP 260, sample 260-6-5 Two Rivers).
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5.2.2.2 PGE-sulphides

This group is the second most abundant at two Rivers, with both cooperite (PtS) and braggite 

(PtPdS) being the most dominant PGMs. PGE-tellurides form about 90 % modal abundance 

at Two Rivers, occurring as anhedral to subhedral in shape and appearing as composite or 

free grains with sulphides and silicates. Grain sizes range from 5-100 microns in length. SEM 

images attached as Appendix FI Image 8 (Sample 260-4-4) and Image 13 (Sample 271-15B). 

A PGM grain analysed at point 29 is identified as cooperite (PtS). The PGM grain is anhedral 

in shape and reaching up to 10 microns in length. It shows association with only chalcopyrite 

phase (Figure 5.8). Cooperite composition varies as shown in Table 5.6 and containing about 

(83 %) Pt and (17 %) S and other minor and trace elements. The irregular shaped cooperite 

grain is located at the margins of chalcopyrite in between the interstitial silicate and appear 

attached to the chalcopyrite. The elemental qualitative map analysis revealed the PGM to be 

more enriched in platinum with minor traces of tellurium and palladium. Rhodium appearing 

enriched only in certain spots along the PGM tips (Figure 5.9).

Figure 5.8 A: BSE image of PGM located within the boundaries of chalcopyrite. This 
sample is in close proximity to the bottom chromitite stringer.

Table 5.6: PGM and sulphides quantitative results at TRP 271

Point Sam ple no Pt % Pd % Rh % O s % Te % S % Fe % Cu % Ni % Total %
29 27 1-15A 83.92 2.26 0.268 3.906 0.034 17.69 0.395 0.585 0.132 109.2
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Figure 5.9: EPMA map analysis of sulphur, iron, copper, nickel and other trace 
elements including platinum group elements within sulphides. Sulphides are 
distinguished by the sulphur, nickel, iron and copper contents. Chalcopyrite is 
distinguished by the high copper content and pentlandite by high nickel contents. The 
colour coded bar indicates the relative concentration of each element in reducing order 
downwards. (Drill core TRP 271, sample 271-15A_1 Two Rivers).
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Figure 5.10: BSE image of PGE-sulphide, laurite (RuS2) occurring in and at the 
margins of sulphide, sample located near the bottom chromitite stringer.

Table 5.7: PGM and sulphides quantitative results at TRP 271

Point Sa m p le  no Pt % Pd % Ru % Rh % O s % A u  % Te  % A s % S % Fe % Cu % Ni % Total %

31 271-15A 3.23 2.307 31.59 2.456 3.449 0.535 0.858 2.217 38.38 10.93 0.099 1.093 97.16

From the table above the composition of laurite shows a relatively wide elemental 

composition. The elemental qualitative map analysis shows the PGM to be homogeneous in 

platinum, arsenic, ruthenium and with rhodium enriched in certain spots and suggesting that 

the PGM shows a bimodal composition. The second phase appears to be platarsite (Pt, Rh, 

Ru) AsS or irarsite (Ir, Pt, Rh, Ru, Pt) AsS. Tellurium, bismuth and palladium appear as 

minor traces and enriched only in certain spots (Figure 5.11). It has been observed common 

of laurite to occur intergrown with sulphides and particularly at the margins of sulphides as 

seen in Sample TRP 271-15B attached as Image 13 on Appendix FI.
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Figure 5.11: EPMA map analysis of sulphur, iron, copper, nickel and other trace 
elements including platinum group elements within sulphides. Sulphides are 
distinguished by the sulphur, nickel, iron and copper contents. Chalcopyrite is 
distinguished by the high copper content and pentlandite by high nickel contents. The 
colour coded bar indicates the relative concentration of each element in reducing order 
downwards. (Drill core TRP 271, sample 271-15A_3, Two Rivers).
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5.2.2.3 PGE-arsenides and sulphoarsenides

This group is the third dominant type of PGMs occurring at Two Rivers and forms about 14 

% of the total PGMs. They occur in various shapes of subhedral to anhedral and ranging from 

10 to 20 microns in length. A PGM grain analysed with SEM and identified as sperrylite 

(PtAs), the reader is referred to the SEM images attached as Appendix FI Image 12 (Sample 

TRP 271-15A). Arsenides show intermediate grain size distributions, anhedral to subhedral 

shape and reach up to 100 microns in length. They occur interstitial with silicates and along 

sulphide margins.

5.2.2.4 Gold

Gold occurs in the form of native gold and forms about 13.17 % of the total PGM grains at 

Two Rivers. It shows close association with the silicates as shown in images in Appendix 

(SEM image attached as Appendix FI Image 11 (Sample TRP 271-4-2) and not with 

sulphides. The grains vary from about 5-50 microns in length with various shapes, angular to 

sub-angular shapes.

5.2.2.5 PGE-alloys

This group includes palladium and platinum alloys and indicated greater association with 

silicates forms about 8 % of the total PGM occurrence at Two Rivers. Other combinations 

that occur in this group include platinum, tin with iron. The grains show fine to intermediate 

grain size distributions, anhedral to subhedral in shape and reaching up to 20 microns in 

length. PGE alloys were analysed and are shown in the SEM images attached as Appendix FI 

Image 10 (Sample-TRP 271-3B). Pie charts illustrating the PGM types in the Merensky Reef 

at Modikwa and Two Rivers are shown in Figure 5.12 below.
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Figure 5.12: Pie chart showing the distribution of PGM at Modikwa (boreholes OV 777 
and OV 778) and Two Rivers (boreholes TRP 260 and 271) Platinum Mines.

5.2.2.6 Platinum Group Mineral Grain Size Distributions

In assessing the grain size distribution of PGMs in the two mines, there is relatively minimal 

difference in the grain size distribution (Figure 5.13). The grain sizes (microns) plotted versus 

the cumulative frequency (in wt %) demonstrate that PGMs at Two Rivers are coarser in 

grain size relative to those at Modikwa. The total mineral in the sample pass different grain 

sizes in microns, therefore, the higher percentage passing at a given grain size, the higher the 

grain sizes (referred to as maximum passing) and the lower percentage passing at a given 

grain size, the lower grain sizes (referred to as minimum passing). The grain size distributions 

are generally similar in the two mines with maximum passing of PGM grain size ranging 

between 16 and 125 microns at Modikwa and ranging between 53 and 125 microns at Two 

Rivers. It has been noted that samples from drill cores OV 777 and TRP 271 demonstrate 

similarities in their PGM grain size distribution. Samples from drill cores OV 778 and TRP 

260 also display a similar pattern.

77



Some PGMs occur as free grains or inclusions and attachments to sulphides and silicate 

minerals. Pillay et al. (2011) reported that the key mineralogical factors controlling the 

separation are the texture of the sulphides, grain size, particle density and particle shape. 

Generally, in the Merensky Reef the liberation size is coarse with most operations choosing a 

grind size between (P80) 75 and 150 microns. To liberate the PGMs in the two mines, a 

minimum grinding size of 0.73 microns and a maximum grinding size of 125 microns are 

required. The average of the PGM grain sizes in both mines is 20 microns.

According to Penberthy et al. 2000, the recovery of liberated PGM is entirely dependent on 

the milling size and an associated mineral. In view of this, if the grain size has a dominant 

control on liberation degree of flotation then the PGE-tellurides should be recovered faster, 

next should be the PGE-sulphides followed by the PGE-arsenides and then lastly will be the 

PGE- alloys and gold (these have finer grain sizes). Wiese et al. (2006) interpreted the role of 

reagents in the flotation of platinum bearing Merensky ores and stated that the different BMS 

in the Merensky Reef respond differently to different reagents and operating conditions. This 

essentially indicates that the degree at which a mineral is presented to various chemical 

environments will adhere viably to flotation processes. Sulphides and tellurides both have 

reasonable floatability without any collector, whereas the arsenides are not amenable to 

floating. Arsenide and telluride minerals can be recovered in significant quantities using 

xanthate as the collector but small particle sizes are probably the result of low recoveries. 

PGM telluride would not cooperate with collectors the same way as the PGM sulphide, due to 

their distinctive crystal structures.

At Two Rivers, the larger PGM grains occur close to both the top and bottom chromitite 

stringers while at Modikwa, the trend slightly differs as larger PGM grains are associated to 

the top chromitite stringer compared to the bottom chromitite stringer. In view of this, 

Hiemstra (1979) and Tredoux et al. (1995) proposed that PGM were scavenged in as solid 

micro-nuggets or clusters that settled with either sulphide liquid or chromitite to account for 

the extreme oversaturation of sulphide in PGE that would be required otherwise. This could 

also suggest that probably the larger sulphide blebs scavenged larger PGM micro-nuggets. 

Intermediate to small PGM grains occurred within the pyroxenite. These observations show 

that PGMs tend to vary stratigraphically thus, the PGM type, lithology and stratigraphy 

appear to have an influence on the vertical distribution of the PGM grain size.
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Figure 5.13: PGM grain size distribution at Modikwa (boreholes OV 777 and OV 778) 
and Two Rivers (boreholes TRP 260 and TRP 271) Platinum Mines.

5.2.3 Discussion and Summary of the Platinum Group Mineral Distribution in the 
Merensky Reef

The most prominent feature observed in the mineral association data of the PGMs at both 

Modikwa and Two Rivers Platinum Mines, is the strong association with sulphides. The 

PGMs found within the Merensky Reef pyroxenite sequence at Two Rivers and Modikwa are 

strongly associated with the BMS than with the chromite grains. The samples from both 

mines demonstrated that BMS including pyrrhotite, pentlandite, and chalcopyrite form the 

principal sulphides with pyrrhotite being the most dominant, and minor amounts of pyrite. Of 

the BMS association with PGMs, chalcopyrite revealed a strong association. These 

observations in the Merensky Reef agree with the work of Barnes et al. (2008) in the Western 

Bushveld Complex and the Great Dyke of Zimbabwe where it was noted that approximately 

30-60 % of the siderophile elements are present in chalcopyrite, pentlandite and pyrrhotite.

The PGM quantitative mineralogical observations show that the most common mode of PGM 

occurrence observed in this study occur along the border or margins of the sulphide 

aggregates.
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The preferred association of PGM with sulphides is well known, with other numerous studies 

of quantitative mineralogy in the Merensky Reef having observed the same by Vermaak and 

Hendriks (1976), Mostert et al. (1982), Schouwstra et al. (2000), Pritchard et al. (2004), 

Godel et al. (2007) and Rose et al. (2011). The higher affinity of PGM with chalcopyrite and 

pentlandite over pyrrhotite in the Merensky Reef is consistent with earlier studies by Rose et 

al. (2011). There is also an association of BMS with silicates as also confirmed by 

petrographic work in Chapter 4. The secondary/alteration silicates also revealed associations 

with the PGMs and this association is thought to represent redistribution of PGMs (Rose et 

al. 2011).

Similarly, to the study done by Junge et al. (2014), most of the PGMs identified in this study 

are primarily platinum bearing (see platinum element distribution maps attached as part of the 

Appendix). Platinum showed strong affinity with semimetals to form a PGM compared to 

palladium. The lesser amounts of palladium and rhodium within the PGMs presented may be 

since the PGEs are present as solid solution within sulphide minerals, pentlandite (Junge et 

al. 2014; Holwell and Macdonald 2010; Godel et al. 2007). This correlates to the trace 

element analysis findings conducted on the EPMA which revealed that, of the highest 

concentrations of palladium (ppm) measured are within pentlandite; these findings are 

reviewed and follow as a sub-section in this chapter.

There are PGMs that are extensively affected by alteration and therefore redistribution of 

PGMs by late magmatic fluids as suggested by Rose et al. (2011), is thus likely as shown in 

Figure 5.2 A and B, where maslovite had intruded as a vein into the silicate mush. The 

intruding of PGM into BMS directs to late magmatic processes.

The strong association of PGM with alteration silicates could be related to the two modes in 

which PGMs might have occurred from; (1) the occurrence of PGM at the border of 

sulphides where sulphides are commonly rimmed by a variety of alteration silicates that form 

at the edges of primary silicates (Pritchard et al. 2004); (2) the occurrence within the rim of 

secondary/alteration silicates surrounding sulphides (Figure 5.2 and Figure 5.3) and Image 3 

attached on Appendix BI; Li et al. 2004). PGM occurrences along the borders/margins of 

sulphides were the most common in this present study.

Some other authors have found that PGM occurring at the borders of sulphides are more 

common than PGM enclosed by sulphides (e.g. Vermaak and Hendriks 1976; Schwellnus et
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al. 1976; Mostert et al. 1982; Godel et al. 2007) while Penberthy and Merkle (1999) 

proposed that PGMs occurring with BMS at the grain boundaries or enclosed within BMS 

may be related to exsolution of PGMs from monosulphide solid solution. Furthermore, Yang 

et al. (1992) proposed that the PGMs occurring at the margins of sulphides could probably 

have been formed during the last crystallisation stage of the sulphide melt while PGMs that 

occur enclosed within sulphides represent primitive PGM formed during the sulphide 

crystallisation stage (Yang et al. 1992).

It has been observed that tellurides form the most abundant PGE group at both mines. 

Sperrylite is the abundant PGM in the Merensky Reef (based on the data sourced from the 

Western Platinum and Rusternburg Platinum Mines in the western limb) (Brynard et al. 

1976). However, in this study sperrylite is more enriched at Modikwa relative to Two Rivers. 

This could be due to the increased arsenic activity during the late stage of PGE mineralization 

resulting in formation of superimposed sperrylite mineralization. Fluid alteration could be the 

factor controlling the PGE-arsenides as they were observed occurring in sulphide veins at 

Modikwa. Laurite is present within both Modikwa and Two Rivers as was documented in the 

previous work of Kinloch (1982) and Lee (1986) in the Merensky Reef. Currently,

explanation of the PGM alteration processes by fluids is lacking. The Merensky Reef 

pyroxenite sequence revealed different PGM types with varying grain sizes distributions 

which may possibly influence the recovery of the PGE during flotation in situations where 

PGM are fully liberated. Coarser PGMs are associated with coarser sulphides suggesting a 

correlation between the grain size distribution of PGM and sulphides. BMS are strongly 

associated with PGM.

5.3 PGE Concentration Analyses in Sulphides

5.3.1 Platinum Group Element concentration in BMS at Modikwa and Two Rivers 

Trace elements including platinum group elements (platinum, palladium, rhodium, 

ruthenium, iridium and osmium) in the base metal sulphides were carried out to determine the 

distribution of these elements in the sulphides. A total of 17 sulphide-rich samples were 

carefully selected and analysed for PGE concentrations. Only the Platinum group (PPGE), 

which includes palladium, rhodium and platinum concentrations were detected.

The Iridium-group (IPGE), which includes iridium, ruthenium and osmium, concentrations 

were mostly below detection limits. The concentrations of all points analysed for PGE in 

BMS are outlined in the tables below. The lower limit of detection is <10 ppm for all PGE.
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Drill core OV 777
Pentlandite: Palladium in pentlandite shows lower concentrations ranging from a minimum 

of 3 to 67 ppm. Rhodium in pentlandite shows concentrations reaching up to 77 ppm. The 

high nickel concentrations are expected as they point to the presence of base metal sulphides, 

pentlandite. The results are depicted in Table 5.8 below.

Pyrrhotite: In sample OV 777-1, palladium concentrations in pyrrhotite range from 18 to 112 

ppm with an average of about 67 ppm. The palladium content in pyrrhotite is even higher 

than that of pentlandite in this sample (OV 777-1). Rhodium concentrations in pyrrhotite 

reaches up to 67 ppm, platinum reaches up to 14 ppm in pyrrhotite.

In sample OV 777-10, pyrrhotite shows both rhodium and palladium concentrations 

decreasing down to 17 and 15 ppm, respectively. Sample OV 777-10 is within the range of 

the Merensky Reef pyroxenite while sample OV 777-1 is near the top chromitite stringer.

Chalcopyrite: In sample OV 777-1, chalcopyrite shows high rhodium concentrations ranging 

from 85 ppm to a maximum of 793 ppm. Platinum concentrations in the chalcopyrite reach 

up to 4 ppm (Table 5.8).

Drill core OV 778

Pentlandite: Sample OV 778-2 is near the top chromitite stringer. It contains the highest 

palladium concentrations varying from 45 to a maximum of 379 ppm. However, low 

palladium concentrations are observed in pyrrhotite (up to112 ppm) compared to pentlandite 

and none detected in chalcopyrite. Rhodium concentrations in pentlandite range between 32 

and 122 ppm (Table 5.9 below).

In sample OV 778-4, also close to the top chromitite stringer, rhodium concentration ranges 

from 2 and 11 ppm in pentlandite. Palladium in pentlandite ranges between 44 and 122. 

Platinum reaches up to 53 ppm in pentlandite, increased concentrations were identified in 

chalcopyrite reaching up to 93 ppm.

Sample OV 778-9 (close to the bottom chromitite stringer), pentlandite contains varying 

palladium concentrations starting off at 33 and 49 ppm and then increasing up to 131 ppm at 

maximum. Rhodium contents in pentlandite in this sample reach up to 17 ppm.
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Magnetite concentrations detected in this sample (OV 778-9) revealed extremely higher 

varying rhodium concentrations ranging between 916 and 982 ppm.

Pyrrhotite: Concentrations of platinum and palladium in pyrrhotite reach up to 9 and 112 

ppm, respectively in sample OV 778-2, rhodium reaches up to 17 ppm in pyrrhotite while it 

reaches up to 122 ppm in pentlandite.

Pyrrhotite in sample 778-4 hardly contains any PGE. Analysis carried out on sample OV 778­

9 shows palladium concentrations in pyrrhotite reaching up to 106 ppm (sample occurs 

correctly within the bottom chromitite stringer).

Chalcopyrite: Sample OV 778-2 show high rhodium concentrations in chalcopyrite and 

reaching up to 181 ppm.

Sample OV 778-4 occcurs near the top chromitite stringer and show higher rhodium 

concentrations in chalcopyrite, ranging between 552 and 579 ppm at maximum.

Sample OV 778-9, which is also near the top chromitite stringer show palladium 

concentrations in chalcopyrite reaching up to 59 ppm. It is worth noting that concentrations 

of all the PPGE in the analysed samples from Modikwa increase rapidly within or closer to 

the top chromite stringers.
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Table 5.8: PGE concentration in base metal sulphides at Modikwa (All concentrations 
in ppm)

OV 777-1 OV 778-4
Mineral Ni Rh Pd Pt Mineral Ni Rh Pd Pt
Pyrrhotite 2717 n.d n.d n.d Pyrrhotite 1552 n.d n.d n.d
Pyrrhotite 3086 67 n.d n.d Pentlandite 319200 n.d 44 n.d
Pyrrhotite 2605 n.d 112 14 Pentlandite 312000 2 n.d n.d
Pyrrhotite 2674 n.d 18 n.d Pentlandite 314800 11 122 n.d
Pentlandite 312200 n.d 67 n.d Pentlandite 321300 n.d 78 53
Pentlandite 323400 77 3 n.d Chalcopyrite n.d 577 n.d n.d
Chalcopyrite n.d 85 n.d n.d Chalcopyrite n.d 359 n.d 93
Chalcopyrite n.d 793 n.d 4 Chalcopyrite n.d n.d 17 n.d
OV 777-10 Chalcopyrite n.d 579 n.d n.d
Pyrrhotite n.d n.d 15 n.d
Pyrrhotite n.d 17 n.d n.d
OV 778-2 OV 778-9 I I I I
Pyrrhotite 562 n.d 112 9 Chalcopyrite n.d 552 n.d n.d
Chalcopyrite n.d 181 n.d n.d Pyrrhotite 331 n.d 106 n.d
Pentlandite 257200 122 178 n.d Pentlandite 336800 17 33 n.d
Pentlandite 246000 n.d 379 n.d Pentlandite 339600 n.d 49 n.d
Pentlandite 288500 37 309 n.d Pentlandite 306900 n.d 131 n.d
Pentlandite 243900 32 45 n.d Pentlandite 310600 n.d n.d n.d
Pentlandite 218100 111 229 n.d Chalcopyrite 30 n.d 59 n.d

Magnetite* 676 916 n.d n.d
Magnetite* 1267 941 n.d n.d
Magnetite* 1097 982 n.d n.d

*Magnetite detected by microprobe with high Rh contents 
n.d - not detected

Drill core TRP 260

Pentlandite: Pentlandite contains high palladium concentrations of about 62 ppm in sample 

TRP 260-2-2, which occurs near the top chromitite stringer. Rhodium concentrations in 

pentlandite reach up to 19 ppm in this sample.

In sample TRP 260-4-4, palladium concentrations in pentlandite range between 30 and 79 

ppm. Rhodium concentrations range from 19 to 39 ppm.

Pyrrhotite: In sample TRP 260-2-2, pyrrhotite show significant concentrations of platinum 

varying between 8 and 283 ppm. Rhodium in pyrrhotite ranges from 35 to 49 ppm. Palladium 

concentrations reached up to 30 ppm.

In sample TRP 260-4-4, pyrrhotite shows rhodium concentrations reaching up to 30 ppm 

while palladium concentrations reach up to 46 ppm.
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Chalcopyrite: A chalcopyrite grain in sample TRP 260-4-4 indicated platinum concentrations 

reaching up to 52 ppm, while palladium concentrations range between 12 and 50 ppm in 

pentlandite.

Pyrite: Rhodium concentrations in pyrite range between of 9 and 76 ppm in sample TRP 260­

2-2.

Magnetite: Sample TRP 260-4-4 indicated rhodium concentrations reaching up to 930 ppm. 

Drill core TRP 271
Pentlandite: Samples TRP 271-15A and TRP 271-15B were taken close to the bottom 

chromitite stringer. Pentlandite shows palladium concentrations ranging from 207 and 300 

ppm in TRP 271-15A and relatively higher palladium concentration (from 257 to 695 ppm) in 

sample TRP 271-15B. Rhodium shows relatively high concentrations in pentlandite in this 

sample reaching up to 240 ppm in sample TRP 271-15A compared to TRP 271-15B (up to 17 

ppm).

Pyrrhotite: Platinum concentrations in pyrrhotite range between 24 ppm (Sample TRP 271- 

5A) and 159 ppm (Sample TRP 271-15B). Rhodium concentrations in pyrrhotite vary from 

41, 48 and up to 59 ppm. Palladium concentrations in pyrrhotite also vary between from 24, 

50 and 70 ppm.

Pentlandite: Sample TRP 271-15A shows palladium concentrations in pentlandite ranging 

between 207 and 300 ppm. Rhodium shows relatively high concentrations in pentlandite in 

this sample reaching up to 240 ppm. The sample is close to the bottom chromitite stringer.

Sample TRP 271-15B, is like the previous sample 271-15A, where pentlandite shows varying 

significant high concentrations of palladium, but the concentrations are slightly increased in 

TRP 271- 15B. Rhodium concentration in pentlandite reaches up to 17 ppm.

Pyrrhotite: Platinum concentrations are contained in pyrrhotite, ranging between 24 ppm (in 

sample TRP 271-5A) and 159 ppm (in sample TRP 271-15B). The rhodium concentrations 

are also contained in pyrrhotite varying between 41, 48 and reaching up to a maximum of 59
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ppm. Palladium concentrations contained in pyrrhotite also vary between from 24, 50 and 70 

ppm. All concentrations are presented in Table 5.13 below.

Table 5.9: PGE concentration in base metal sulphides at Two Rivers (All concentrations 
in ppm)

TRP 260-2-2 TRP 271-15A
Mineral Ni Rh Pd Pt Mineral Ni Rh Pd Pt
Pyrrhotite 4201 35 n.d 283 Pyrrhotite 4863 n.d n.d n.d
Pyrrhotite 1652 49 n.d n.d Pyrrhotite 5572 n.d 8 159
Pyrrhotite 2128 n.d n.d n.d Pyrrhotite 5592 n.d n.d n.d
Pyrrhotite 2118 n.d n.d n.d Pyrrhotite 6685 n.d n.d n.d
Pyrrhotite 4049 n.d n.d n.d Pyrrhotite 7119 n.d n.d n.d
Pentlandite 344200 n.d n.d n.d Pyrrhotite 331900 n.d n.d n.d
Pentlandite 347300 19 n.d n.d Pyrrhotite 6089 n.d 24 n.d
Pentlandite 346400 n.d n.d n.d Pentlandite 353200 n.d 207 n.d
Pyrite 1030 9 n.d n.d Pentlandite 353700 240 300 n.d
Pyrite 397 76 n.d n.d
TRP 260-4-4 TRP 271-15B
Pyrrhotite 1585 30 46 n.d Pyrrhotite 6057 59 n.d 24
Pyrrhotite 1778 n.d n.d n.d Pyrrhotite 5697 n.d 24 n.d
Pentlandite 345200 n.d n.d n.d Pyrrhotite 5409 n.d n.d n.d
Pentlandite 342000 39 79 n.d Pyrrhotite 5452 48 n.d n.d
Pentlandite 339100 19 30 n.d Pyrrhotite 6323 n.d 70 n.d
Pentlandite 344900 n.d 79 n.d Pyrrhotite 6386 n.d 23 n.d
Chalcopyrite n.d n.d 12 n.d Pyrrhotite 6687 41 n.d n.d
Chalcopyrite n.d n.d 50 n.d Pyrrhotite 6167 n.d 50 n.d
Pyrite 218 23 23 n.d Pentlandite 350500 17 695 n.d
Pyrite 9 n.d n.d n.d Pentlandite 331300 n.d 257 n.d
Magnetite* 614 930 n.d n.d
*Magnetite detected by microprobe with high Rh contents 
n.d - not detected

5.3.2 Discussion

The PGE concentrations in BMS showed similar distribution patterns (particularly the PPGE- 

group) in the Merensky Reef sequence at Modikwa and Two Rivers. Based on Knight (2014), 

the PGE may bond together as PGE alloys or with base metals (e.g. nickel and copper) and 

semimetals (arsenic, bismuth, antimony, selenium, and tellurium) forming PGM. 

Alternatively, PGE may occur as trace elements in solid solution in BMS (Naldrett 2004). 

The distribution of the PGE in BMS in both mines revealed highest palladium concentrations 

in pentlandite, with lesser amounts in pyrrhotite and barely any in chalcopyrite. Pentlandite is 

the principal host of palladium at both Modikwa and Two Rivers with palladium 

concentration reaching up to 379 ppm and 695 ppm respectively.
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In all the four studied drill cores (TRP 260; TRP 271; OV 777 and OV 778) it has been found 

out that palladium is enriched in pentlandite. Previous studies in the Merensky and Platreef 

on EPMA and LA-ICP-MS indicated higher concentrations of palladium and rhodium in 

pentlandite (e.g. Cabri 1984; Oberthur et al. 2003; Godel et al. 2007; Holwell and McDonald 

2010; Osbahr et al. 2013, 2014; Junge et al. 2014).

Other researchers (e.g. Ballhaus 2001; Fleet 1993; Mungall et al. 2005; Li et al. 1996) used 

experiments to determine how PGE and gold behave in terms of partitioning between MSS 

and a sulphide liquid and concluded that copper, platinum, palladium and gold are all 

strongly incompatible with MSS whereas iridium and rhodium are strongly compatible.

In this study, PGEs are mostly present in pyrrhotite and pentlandite with chalcopyrite hosting 

a larger amount of rhodium at Modikwa. This is the principal difference observed between 

the two mines where significant rhodium concentrations are contained in chalcopyrite at 

Modikwa with concentrations reaching up to a maximum of 793 ppm, while at Two Rivers 

rhodium concentrations are more enriched in pentlandite; reaching up to a maximum of 240 

ppm. The enrichment of rhodium in chalcopyrite might suggest that rhodium readily 

substitutes for copper. There is little research into the remobilisation of rhodium in 

chalcopyrite as most of the investigations concentrated on platinum and palladium. Other 

researchers (e.g. Ballhaus and Sylvester 2000; Barnes et al. 2008 and Godel et al. 2007) of 

the Merensky Reef have observed differently and found chalcopyrite containing the lowest 

PGE values including rhodium. At Two Rivers, rhodium values are contained in pentlandite 

which is consistent with the work of Rose et al. (2011) and Junge et al. (2014) who also 

reported high rhodium values in pentlandite in the same mine.

Two Rivers show high platinum concentrations (up to 283 ppm) relative to Modikwa (up to 

93 ppm) with platinum concentrations identified at both mines contained in pyrrhotite 

compared to other sulphides. This is somehow surprising as accordingly, pyrrhotite and 

pentlandite should be enriched in osmium, iridium, ruthenium and rhodium and chalcopyrite 

in palladium, platinum, silver and gold, however, this effect was not observed in previous 

studies of different nickel-copper-PGE deposits (Barnes et al. 2006; Dare et al. 2010; Godel 

et al. 2007). There seem to be variation in precious metals and PGE in different sulphide 

phases due to fractionation of the sulphide liquid containing these elements.
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Additional studies by Peregoedova (1998) indicated that platinum and palladium are not only 

incompatible with MSS, but also incompatible with ISS.

Individual PGE behaves differently, and this behaviour changes because of different magma 

compositions, cooling rates and post magmatic alteration. In this study, platinum show strong 

affinity with semimetals to form PGM than palladium.

Helmy et al. (2007) studied the effects of tellurium on the partition coefficients of platinum 

and palladium in MSS and found that platinum also showed strong affinity with semimetals 

to form PGM than palladium.

He concluded that with limited semimetals available, excess palladium would be 

accommodated by pentlandite rather than competing with platinum to form a PGM with the 

semimetals (Helmy et al. 2007). Further studies by Helmy et al. (2010) show arsenic 

behaving more complex and dependant on the proportions of platinum and palladium present. 

If platinum is dominant, sperrylite may crystallise, whereas if palladium is dominant, an 

immiscible palladium-arsenic liquid may separate from the sulphide melt; both these 

processes occur early before the crystallisation of MSS.

Campbell and Naldrett (1979) suggested that sulphides that formed from a very large volume 

of magma (large R) would have low copper/platinum ratios, reflecting the effect of the high 

partition coefficient for platinum into sulphide. Where there is less volume of magma (small 

R), the effect of depleting the magma in platinum becomes dominant and higher 

copper/platinum values are predicted Campbell and Naldrett (1979). The PGE are 

predominantly affected by variants in R due to their high partition coefficients into sulphide 

liquids.

Another noteworthy difference observed in this study is the high concentrations of rhodium 

in magnetite in both mines, with concentrations reaching up to 982 ppm at Modikwa and up 

to 930 ppm Two Rivers. Published information on the PGE distribution in magnetite is 

scarce. However, Barnes et al. (2004) and Page et al. (1982) investigated the PGE 

composition of magnetite layers in the Bushveld and concluded that magnetite contained very 

little PGEs (including rhodium) implying to a virtual absence of sulphide minerals 

presumably because of the unsaturation of sulphur in the magma. The high PGE 

concentrations in parts enriched by magnetite (while these zones do not contain sulphur) 

suggest desulphurisation and the formation of secondary magnetite.
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As magma cools, instabilities generated partial desulphurisation of the sulphides (Knight 

2014). It is a thought that fluids altered the BMS to secondary magnetite and deposited 

rhodium but a possible explanation for the processes involved in the deposition of rhodium in 

magnetite is lacking at present.

Generally, the PGE distribution patterns throughout the Merensky Reef pyroxenite in all the 

four studied drill cores show maximum PGE concentrations at the top and bottom chromitite 

stringers. These observations at Modikwa were also reported by Mitchell and Scoon (2007) at 

Winnaarshoek property in the central sector of the eastern Bushveld. They observed high 

PGE concentrations associated to the top chromitite stringer. Rose et al. (2011) observed high 

PGE concentrations in both the top and bottom chromitite stringers in the southern sector at 

Two Rivers.

Even though the processes involved in PGE collection remains indistinct, it has been 

observed that the PGE in the reefs are in many cases found associated with BMS or occur in 

PGM that are associated with these BMS (Kinloch, 1982; Ballhaus and Sylvester 2000; 

Zientek et al. 2002; Pritchard et al. 2004).

Naldrett and Lehmann (1988) suggested that the BMS that were initially in the chromitite 

layer had interacted with the chromite resulting in the loss of sulphur, copper and palladium 

from the chromitite layer. Sulphide saturation is most likely responsible for the formation of 

BMS and the scavenging of PGE in the Merensky Reef in both the Eastern limb and in the 

Western limb (Teigler and Eales 1993 and Rose et al. 2011). Maier (2005) reported that 

extensive degrees of partial melting are required to allow PGEs to separate from the mantle 

and become incorporated into the melt. The crystallization of these iron-rich minerals lowers 

the oxygen fugacity allowing for sulphur saturation (Maier 2005 and Cawthorn 2010). Then 

the interaction of sulphides with large volume of magma makes greater chance to scavenge 

the PGEs. However, sulphides maybe reworked as magma rises while pressure is reduced and 

allowing for more sulphide saturation (Maier 2005).

It is concluded that at Two Rivers the behaviour of the PGE during magmatic conditions 

causes rhodium to prefer pentlandite whereas at Modikwa rhodium tends to partition in 

chalcopyrite.

89



Therefore, high rhodium concentrations in the Merensky Reef at both Modikwa and Two 

Rivers cannot be generalized that pentlandite is the host 100 % of both palladium and 

rhodium, as observed in this study that significant rhodium contents are also contained in 

chalcopyrite at Modikwa.

The association of PGEs with sulphides generally points to the fact that PGEs were 

originally concentrated by an immiscible sulphide liquid (e.g. Naldrett et al. 1979; Naldrett 

2004).

Barnes and Maier (2002) specified that the partition coefficients between sulphide and 

silicate liquids for PGE, Au, Ni, and Cu are all high suggesting that the principal phase that 

collected the metals was a sulphide liquid. Furthermore Li et al. (2004) and Hutchison and 

McDonald, (2008) stated that if PGE are present in solid solution in BMS, hydrothermal 

fluids may liberate PGE from their BMS host resulting in the formation of PGM within and at 

the edges of sulphides. This sulphide liquid could have settled onto the cumulate pile along 

with other cumulate phases (Naldrett 1989; Campbell 1983).

5.4 Fire Assay-Analytical Results
The assay data for the two drill cores (TRP 260 and TRP 271) from Dwarsriver farm was 

provided by Two Rivers Platinum Mine (not all the assay data is attached to the appendix due 

to confidentiality). The data was unavailable for the other two drill cores from Onverwacht 

farm at Modikwa; hence the assay analysis was conducted at Mintek. The mineralization in 

the Merensky Reef show close relationship with the chromitite stringers. Highest PGE 

concentration is contained within the top chromitite stringer and bottom chromitite stringers 

and referred to as top and bottom loaded respectively. Grade profiles of the mineralization 

are attached in Appendix H, Images 26-29. These profiles are only reported based on the 

Platinum group (PPGE), which includes platinum, palladium and rhodium.

The grade profiles for drill cores OV 777 and OV 778 from Modikwa commonly show 

relatively higher platinum, palladium and rhodium concentration in the top chromitite stringer 

and decreasing within the pyroxenite then slightly increase again within the bottom 

chromitite stringer. Platinum shows a concentration of 6.8 ppm within the top chromitite 

stringer at OV 777, it increases and decreases within the pyroxenite to 0.2 ppm and then 

increases rapidly to 5.9 ppm in the bottom chromitite stringer.
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Palladium reaches up to 2.0 ppm in the top chromitite stringer and decreases to 0.24 ppm 

right through in the pyroxenite and then increase to 1.55 ppm in the bottom chromitite 

stringer. Rhodium reaches up to 0.39 in top chromitite stringer and then slightly decreases to 

0.29 in bottom chromitite stringer. The mineralization in this drill core is thus referred to as 

top loaded given the higher PPGE (platinum, palladium and rhodium) concentration within 

the top chromitite stringer (See appendix H, Image 26).

Platinum shows a high concentration of 6.6 ppm within the top chromitite stringer at OV 778, 

it then decreases within the pyroxenite to 2.4 ppm and then increases slightly to 3.2 ppm in 

the bottom chromitite stringer.

Palladium reaches up to 1.9 ppm in the top chromitite stringer and decreases right through in 

the pyroxenite and reaching up to 1.1 ppm in the bottom chromitite stringer. Rh reaches up to 

0.39 in top chromitite stringer and then slightly decreases to 0.29 in bottom chromitite 

stringer. The mineralization in this drill core is thus referred to as top loaded given the higher 

PPGE (platinum, palladium and rhodium) concentration within the top chromitite stringer 

(See Appendix H, Image 27).

The grade profiles of drill cores TRP 260 and TRP 271 from Two Rivers generally shows an 

increased PPGE along the bottom chromitite stringers compared to the top chromitite 

stringers with rapid decrease in the pyroxenite. Platinum shows a concentration of 5.1 ppm 

within the top chromitite stringer at TRP 260, it decreases within the pyroxenite and increases 

to 6.5 ppm in the bottom chromitite stringer.

Palladium starts off at 1.2 ppm in the top chromitite stringer and then remains constant in the 

pyroxenite and then increases rapidly to 4.3 ppm in the bottom chromitite stringer. Rhodium 

reaches up to 0.3 ppm in top chromitite stringer and then slightly decreases in the pyroxenite 

and then slightly increases again in the bottom chromitite stringer reaching a minimum of 

0.34 ppm. Platinum and rhodium reveal the same pattern. The mineralization in this drill core 

is thus indicated as bottom loaded given the higher PPGE (platinum, palladium and rhodium) 

concentration within the bottom chromitite stringer (See Appendix H, Image 28).

Platinum shows a concentration of 3.3 ppm within the top chromitite stringer at drill core 

TRP 271. It remains constant within the pyroxenite at 3.3 ppm and then later increases to a 

maximum of 5.3 ppm in the bottom chromitite stringer.
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Palladium reaches up to 0.10 ppm in the top chromitite stringer; it increases within the 

pyroxenite to 3 ppm and reaches up to 4.7 ppm in the bottom chromitite stringer. Rhodium 

reaches up to 0.26 ppm in the top chromitite stringer, remains constant in the pyroxenite and 

later increases to 0.39 ppm in the bottom chromitite stringer. Platinum, palladium and 

rhodium reveal the same pattern in the bottom chromitite stringer. The mineralization in this 

drill core exhibit complex patterns.

Platinum concentrations are higher in the top chromitite while palladium and rhodium only 

start off to increase within the pyroxenite but considering the higher PPGE (platinum, 

palladium and rhodium) concentration within the bottom chromitite stringer, this drill core 

referred to bottom loaded (See Appendix H, Image 29).

Barnes and Maier (2002) concluded three possibilities which can be considered regarding the 

PGE paradox; (1) the affinity of chromitites to bond with PGEs than silicate rocks could arise 

since the conditions favouring chromite crystallisation also favour PGM crystallisation or as 

chromitites nucleate on the PGM and then settle them out of the silicate liquid;

(2) PGEs are concentrated by the MSS that crystallised from a sulphide liquid but this does 

not address the enrichment of platinum in chromitites which has been observed in this study;

(3) the PGE enrichment in chromitite layers is due to the interaction between trapped 

sulphides liquid and chromitite resulting in loss of sulphur from the sulphide liquid. During 

reheating the sulphides may have reacted with chromites leading to low sulphur contents in 

the sulphide liquid and some of the fractionated liquid is squeezed out from the chromitite 

during compaction.

Tredoux et al. (1995) indicated that the relative proportion of the six PGEs in the magmas 

depends largely on the temperatures reached during the melting event and that they are 

carried in the magmas, not in true solution but as tiny clusters of 500-100 metal atoms. This 

would suggest that, magmas generated at lower temperatures are relatively enriched in the 

metals of lower melting points (platinum, palladium and rhodium), while magmas formed at 

higher temperatures would bear high proportions of the metals of higher melting points 

(ruthenium, iridium and osmium).
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Additionally, the PGE mineralization has also been observed in this study associated with 

compositional variations within the host pyroxenite, this relationship could suggest that 

controls on PGE mineralization are essentially primary magmatic as proposed by Scoon and 

Mitchell (2007). Scoon and Teigler (1994) interpreted height related trends in the PGE- 

bearing, sulphide poor, chromitites of the Bushveld Complex (LG-1 through UG-1) as 

differentiating magma chamber. The formation of both chromitite layers and PGE 

mineralization is ascribed to magma mixing due to repeated replenishment (Scoon and 

Mitchell 2007).

Summary

Contrary to what was documented by Lee (1996) that in most of the Merensky Reef facies the 

economic PGE mineralization is concentrated in the pegmatoidal feldspathic pyroxenite. It 

has been observed in all the four drill cores that, significant PPGE concentrations occur 

within the chromitite stringers however a slight decrease within the pyroxenite range was also 

recorded. The PGE distribution pattern observed in the two mines differ, exhibiting a top 

loaded PGE mineralization in drill cores from the central sector (Modikwa) while drill cores 

from the southern sector (Two Rivers) represent a bottom loaded PGE mineralization. The 

comparatively high PGE grades at Modikwa in the top chromitite stringer and high PGE 

grades in the bottom chromitite stringer at Two Rivers is probably reflecting sulphur 

saturation which resulted in high PGE grades.

This could suggest different injections of magma, each producing a chromitite and 

pyroxenite, the absence or lesser number of PGEs in the top/bottom chromitite stringers is 

presumably attributed to the unsaturation of sulphur in the magma. Cameron (1982) 

suggested that these different events of magma injections might have been enriched or 

depleted in sulphur or mixing with the residual magma and might have caused a change in the 

oxygen (/o2), sulphur (/s2) fugacity and a change in total pressure. These ideas imply that the 

processes that triggered the S removal and the platinum and/or palladium enrichment or 

remobilisation are complex and most likely distinct. However, after all these factual 

evidences there remain uncertainties about the precise deposition of these ore.
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5.5 Theories relating to the origin of the ore
As previously mentioned from Chapter 1 of this study, the boundary between the Main and 

Critical zones is of interest here, as the Merensky Reef occurs within this vicinity. From this 

study, two PGE peaks were observed in each of the four drill cores from the two mines. The 

PGE contents are analogous to a profile described by Rose et al. (2011) from Two Rivers and 

from near Atok by Scoon and Mitchell (2002), with both mines reaviling the lower and the 

upper peak associated with BMS within the chromitite stringers. This trend clearly suggests 

there are two separate mineralization events which appear to have contributed to the PGE 

content of the Merensky Reef, one associated with sulphide mineralization and the other 

associated with chromitite layer. As observed in this study, PGMs occur as microscopic 

inclusions within sulphide grains (Figures 4.2 - 4.4), at the margins of sulphide grains and to 

a lesser extent as inclusions in silicate minerals. A significant proportion of them occur as 

invisible solid solutions of PGEs within sulphide grains (as shown in section 5.2 under PGE 

concentration). There is no uniquely convincing answer as the facts are open and interpreted 

in different ways and include:

Sulphide as a collector

Several models based on the mixing of magmas in a stratified sequence of liquid layers and 

scavenging of PGEs have been formulated, one of them is that of Naldrett et al. (1987), 

where he theorised that turbulent plumes of hot, ultramafic liquid rose through a stratified 

sequence of liquids overlying the crystal line floor until they reached a level where their 

relatively required low density required them to spread laterally as a new, vigorously 

convecting, intrusive layer. As this layer, lost heat to the cooler environment, crystallisation 

of orthopyroxene and separation of sulphides liquid droplets would have begun within the 

layer.

In time, dense slurry of orthopyroxene plus sulphide plus entrained liquid would have broken 

through the interface with the underlying liquid layer and plunged downwards to the 

crystallisation floor which would have been the Meensky Reef. Viljoen (1999) attributed the 

Merensky Reef as regional unconformity. If this is the case, then how is it possible that the 

emplacement of slurry from which both orthopyroxene and sulphides were already separating 

would can erode the Merensky Reef footwall at depths of tens of meters.

94



Chromite as a collector

In contrast, it is not possible to explain the PGE content by considering only the model of 

collection of PGE by sulphide liquid stated above. Contradictions arose with this model since 

it does not address the association of chromitite with the PGE. Cawthorn (2010) suggested 

that a layer of chromitite was later deposited followed by pyroxenite, with each chromitite 

layer associated with mineralization of sulphide liquid carrying PGEs. Hiemstra (1979) at the 

South African National Institute for Metallurgy pointed out that PGEs in the Bushveld ores 

occur as such small particles that they could not have settled sufficiently rapidly to become 

concentrated together with the much larger chromite grains. He further highlighted that 

sulphide droplets are capable of wetting chromites crystals and thus adhering to, and sinking 

with them through the liquid.

The effects o f auxiliary or reactions

Other researchers have pointed out high degree of alteration of silicates minerals of the 

Merensky Reef by water-rich fluids. Ballhaus and Stumpfl (1986) at the Mining University, 

Leoben, Australia interpreted this to mean that when sulphur in the melt reacted to form 

sulphides, water was formed in the magma as a separate fluid. The PGEs were then 

concentrated in this fluid as complex chlorides and then precipitated around the sulphide 

grains. Other workers maintained that the separation of chromite depletes the magma in iron 

and that this causes the sulphur in the melt to become less soluble and thus to form sulphides 

with which the PGEs are associated.

Sulphide layers as traps

It has also been popularly documented that as unconsolidated crystal mushes became 

compacted, residual fluids were expelled from them and driven upwards through the crystal 

pile.

When they encountered the sulphide-rich Merensky Reef, the PGEs they carried were 

trapped. There are sulphide bearing layers beneath the Merensky Reef which are not 

economically mineralised, thus this view can be discounted.

Deposition by primary (orthomagmatic) processes

The nature of the Merensky Reef at Winnaarshoek property in the central sector of the 

Eastern limb has provided similar trends to what was observed in the current study.
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The PGE mineralization in this area is concentrated within the two chromitite layers hosted 

by a Merensky pyroxenite. Pegmatoidal units are developed but rather weakly mineralised 

and lie outside the mineralised zone.

Arguments based on chalcophile properties of the PGEs have led Naldrett (2008) to the view 

that mantle processes and the emplacement of mantle-derived magmas into one or more 

staging chambers beneath the presently exposed Bushveld, may have been more effective in 

yielding PGE-enriched magmas. Traditional views that have no more than ultra-trace levels 

of PGEs characterising basaltic liquids elsewhere are questioned, the view expressed that, 

levels approaching 200 ppb could have been generated in magmas specifically parental to the 

Merensky Reef. Emplacement of such magmas in more than a single pulse could imply an 

orthomagmatic origin for the ore. Additionally, it was suggested during the development of 

the concept of enrichment in PGEs with a staging chamber beneath the Bushveld that, 

sulphur unsaturated magma reacted with early-formed sulphide in the staging chamber by 

dissolving iron sulphide and thus enriching the remaining sulphide in PGEs (Naldrett et al. 

2009).

Studies by Seabrook et al. (2005) have shed a light on complexities that were not unravelled 

in the earlier years which could be considered. These studies were focused on the 

geochemical and isotopic differences between the Critical and Main zones and have shown 

that these two units are end-products of processes of mixing of gravitationally settled 

cumulus crystals of orthopyroxene and plagioclase, rather than of mixing of their parent 

liquids. The different geochemical and isotopic signatures of the two minerals present in the 

cumulus rock point to their derivation from different parent magmas where orthopyroxene 

grains have been derived from Critical zone magmas while plagioclase grains in the same 

layer were from Main zone.

Proposed model for the current study

It is well known and supported by the data of the current study that sulphide saturation was 

caused by magma mixing which led to the formation of the immiscible sulphide liquid into 

which PGE partitioned (Campbell and Naldrett 1979; Campbell et al. 1983; Naldrett 2010). 

The strong association observed in quantitative mineralogy between PGM and sulphides in 

this study is confirmed by other numerous studies (e.g. Vermaak and Hendriks 1976; 

Schwellnus et al. 1976; Mostert et al. 1982; Schouwstra et al. 2000; Pritchard et al. 2004; 

Godel et al. 2007; Rose et al. 2011).
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Thus, the sulphide liquid has been identified as the major collector of PGE in the genetic 

models proposed for the Merensky Reef. As this leaves little doubt that the PGE was 

emplaced in the Merensky Reef with a sulphide liquid.

In addition, Naldrett and Lehmann (1988) suggested that the iron sulphide could react with 

chromite producing an iron rich chromite and removing sulphur from the system, thereby 

triggering PGM crystallisation by lowering the fS2. This suggestion could explain the fact that 

BMS in the chromitite layers have high PGE/s ratios and are generally rich in copper and 

nickel.

The current study has revealed that PGEs may occur as trace elements in solid solution in 

BMS as documented by Naldrett (2004). This view would mean common economic PGE 

occurrences are often linked to magmatic sulphide ore deposits.

Hence, understanding the genesis of these types of deposits requires the knowledge of the 

physical and chemical processes involved. Pressure, temperature, composition and oxidation 

state of the magma are important factors controlling the solubility of iron sulphide in magmas 

and therefore potentially affecting the point at which sulphide saturation is achieved.

However, the view of Tredoux et al. (1995) is that the relative proportions of the six PGEs in 

the magma depend largely on the temperatures reached during the melting event, and that 

they are carried in the magma and not in the solution but as tiny clusters. This proposal would 

then suggest that magmas generated at lower temperatures are relatively enriched in the 

metals of lower melting points (platinum, palladium and rhodium), while magmas formed at 

higher temperatures would bear higher proportions of the metals of a lower melting point 

(ruthenium, iridium and osmium).

The briefly summarised ideas stated above reveal a lack of consensus in accounting for PGE 

as some models are suggest the association of PGM with chromite while some argue for 

sulphides as collectors. These ideas point to the necessity of continued detailed research to 

eventually uncover the convincing models.
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5.6 Summary and Conclusions
The sequence of the Merensky Reef at the two sectors of the Eastern Bushveld showed a 

remarkable similarity in their mineralogy suggesting that these two sectors (central and 

southern) might have formed from the same liquid or formed simultaneously within a single 

magma chamber. The mode of occurrence of the PGM is of importance, not only from a 

genetic point of view but also for the recovery of PGE values. Three mineralogical PGM 

occurrence are shown by the current study and these are with chromite, base metal sulphide 

and silicates. The association of PGM with the base metal sulphide is identified as a 

remarkable one (Rose et al. 2011). The close association of PGM with BMS and at the 

margins of sulphide indicate that the PGM were derived from the sulphide melt.

From the quantitative mineralogical data acquired the following conclusions at Modikwa and 

TRP Mines are drawn.

• At Two Rivers, the pegmatoidal feldspathic pyroxenite is literally absent while at 

Modikwa it is found sandwiched in between the normal pyroxenite close to the top 

chromitite stringer.

• In both Modikwa and Two Rivers, the most abundant silicate minerals include 

orthopyroxene, clinopyroxene and plagioclase.

• In both mines samples of the Merensky Reef, show pyrrhotite as the most abundant 

sulphide mineral followed by pentlandite, chalcopyrite and pyrite.

• Relative proportions of dominant PGMs differed between the two mines, with 

tellurides and bismuthotellurides being the most dominant PGE group. At Modikwa 

85 % of the PGMs were PGE-tellurides and bismuthotellurides while Two Rivers 

indicated 97 %. PGE-sulphides, tellurides and laurite are the earliest or primary PGM 

assemblage to form, whereas PGE-alloys, arsenides and sulpharsenides are related to 

late or post magmatic alteration effects.

• To maximise PGE recovery, the recovery of all the BMS needs to be optimised. 

Reagents are added to perform specific roles that manipulate the pulp chemistry and 

enhance the differences in mineral surface hydrophobicity to facilitate the separation. 

Due to the higher liberation and recovery potential of coarser PGMs, PGE-sulphides 

are recovered first, next will be PGE-tellurides and PGE-arsenides, and later PGE- 

alloys and gold (as these are usually finer in grain sizes).
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• Sulphides and tellurides are both sensibly floatable without any collector while the 

arsenides are not amendable to floating due to their distinctive crystal structures. 

Flotation is beyond the scope of this work.

• The PGMs grain size varies between the two mines ranging from less than a micron 

to about 125 microns with an average of 20 microns.

• In all the four investigated drill cores, the PGE concentrations occur within the top 

and bottom chromitite stringers.

• Most of the PGEs in the two mines are hosted by PGMs and lesser amounts of PGE 

occur in solid solution within BMS.

• PGE distribution in the sulphides at Modikwa showed pentlandite containing the 

highest concentrations of palladium (up to 379 ppm) while the highest rhodium 

concentrations (up to 793 ppm) were contained in chalcopyrite. Samples from Two 

Rivers indicated pentlandite to be the principal host of both palladium and rhodium, 

with concentrations reaching up to 695 and 930 ppm respectively.

• Magnetite contains major amounts of Rh reaching up to a maximum of 982 at 

Modikwa while increased Rh amounts reach up to 930 ppm at Two Rivers.

• At both Modikwa and Two Rivers, the pyrrhotite compared to other sulphides 

contained all the elements found in the Platinum group (PPGE), namely, platinum, 

palladium, and rhodium, with all the platinum identified found in the pyrrhotite. The 

PGE mineralization varies within each mine. The mineralization revealed top loaded 

in the central sector and bottom loaded in the southern sector.

• Commonly occurring alteration silicates associated with the PGMs at both Modikwa 

and Two Rivers include talc, amphibole and serpentine. The mode of occurrence of 

these alteration silicates is commonly along the rims of primary silicates and 

sulphides and makes it difficult to predict liberation of the PGMs.

• The PGM mineralogy of the Merensky Reef pointedly diverse to that of the UG-2, 

based on the mineralogical investigation by Penberthy et al. (2000), the most 

commonly found PGM group are PGE sulphide minerals (e.g. laurite, cooperate, and 

braggite) in the UG-2 chromitites while the Merensky contains more of PGE- 

tellurides (e.g. maslovite and michenerite) and PGE-arsenides (e.g. sperrylite and 

platarsite) therefore, the concentrator plant requires customization to accommodate 

the distinctive challenges of floating the PGE minerals concentrated within the 

Merensky Reef.
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Recommendations

The remobilisation of PGE requires much further research particularly the presence of PGE 

in magnetite and chalcopyrite to understand the behaviour of individual PGE and PGM as the 

chemistry classification of these minerals proved to be highly complex, based on the EDS 

analysis, and it is highly recommended that follow-up studies should be undertaken to 

challenge these aspects.
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