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As a sign of ambivalence in the regulatory definition of capital adequacy for credit risk
and the quest for more efficient refinancing sources collateral loan obligations (CLOs)
have become a prominent securitisation mechanism. This paper presents a loss-based
asset pricing model for the valuation of constituent tranches within a CLO-style security
design. The model specifically examines how tranche subordination translates
securitised credit risk into investment risk of issued tranches as beneficial interests on a
designated loan pool typically underlying a CLO transaction. We obtain a tranche-
specific term structure from an intensity-based simulation of defaults under both robust
statistical analysis and extreme value theory (EVT). Loss sharing between issuers and
investors according to a simplified subordination mechanism allows issuers to
decompose securitised credit risk exposures into a collection of default sensitive debt
securities with divergent risk profiles and expected investor returns. Our estimation
results suggest a dichotomous effect of loss cascading, with the default term structure of
the most junior tranche of CLO transactions (“first loss position”) being distinctly
different from that of the remaining, more senior “investor tranches”. The first loss
position carries large expected loss (with high investor return) and low leverage, whereas
all other tranches mainly suffer from loss volatility (unexpected loss). These findings
might explain why issuers retain the most junior tranche as credit enhancement to
attenuate asymmetric information between issuers and investors. At the same time, the
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systemic shocks.
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1 INTRODUCTION

1.1 The nature of loan securitisation

Over the recent past asset securitisation – the substitution of market-based finance for credit-based finance

– has developed into a versatile funding and capital management alternative for financial institutions and

corporations. Conceptually, issuers of a typical asset-backed securitisation (ABS) structure achieve gains by

converting classifiable cash flows from a diversified portfolio of illiquid existing or future receivables

(liquidity transformation and asset diversification process) of varying maturity and quality (integration and

differentiation process) into stratified positions (“tranches”) of varying investment risk, which are sold as

negotiable capital market paper a different seniority and funding level.1 The ambivalence in the regulatory

definition of capital adequacy for credit risk and the quest for more cost-efficient risk-adjusted refinancing

urged banks to securitise loan exposures through collateral loan obligations (CLOs) to manage their economic

and regulatory cost of capital more effectively.2 While ABS transactions typically involve large reference

portfolios of fairly homogenous obligations, CLO transactions allow issuers to refinance large notional

pools of limited number of highly concentrated and heterogeneous credit risk exposures, they have either

originated themselves (balance sheet CLO) or bought specifically for the purpose of profitable re-packaging

of investment exposures (arbitrage CLO). Issuers also value loan securitisation not only as an alternative3

financing tool but also as an expedient structure of credit risk transfer4 for reasons mainly to be found in

economic capital and liquidity benefits through alternative market-based financing (financial objectives),

improved diversification capabilities (hedging and risk management objectives), enhanced balance sheet

management and restructuring opportunities (accounting objectives), optimisation of regulatory capital required

bank regulators (regulatory objectives) and mitigation of agency costs of asymmetric information between

issuers and external financiers (capital structure choice). Especially financial objectives (including tax optimisation,

efficient refinancing cost and rating arbitrage) and risk management objectives (such as the diversification of

default risk, liquidity risk, interest rate risk and currency risk) are probably the most prominent motives that

sustain the premier status of loan securitisation in structured finance markets. By subjecting securitised

asset exposures to the disciplining effect and fair asset pricing of market scrutiny loan securitisation also

facilitates prudent risk management as an effective method of redistributing credit risks to investors

through issued debt securities by installing capital markets as external sources of funds.5
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Since loan securitisation blends asset pricing features of securitised exposures (“credit risk component”)

and liquidity enhancing security design features of fixed income securities issued as contingent claims

thereon (“security component”), private information from lending relationship might compromise the fair

asset pricing due to the agency cost associated with adverse selection and moral hazard on the part of asset

originators and issuers.6 Depending on the security design and the kind of securitised asset type, rating

agencies commonly require issuers to provide credit enhancement through first loss provisions and/or other

forms of credit support (e.g. default loss subordination) to cushion investor against ex ante moral hazard of

poorly performing loans issuers might include in the transaction in absence of full investor information

about securitised loans.7 Hence, the economic assessment of loan securitisation primarily depends on how

the transaction structure translates the performance of securitised credit risk into the default term structure of issued asset-

backed securities. Since issuers can choose from a vast variety of transaction structures to subdivide and

redirect cash flows and losses from the repayment of securitised assets, the transmission mechanism between the

securitised asset performance and investor returns as contingent claims is acutely relevant for the valuation of

CLOs.

1.2 Research objective

The main objective of this paper is to estimate the default term structure and the fair pricing of default

sensitive contingent (debt) claims (tranches) held by risk-neutral investors in a typical CLO-style loan

securitisation transaction on a pooled multi-asset reference portfolio of defaultable exposures. On the basis

of a common CLO security design we evaluate how the loss sharing effects between issuers and investors

caused by tranche subordination transposes credit risk of securitised assets into investment risk of

contingent debt.8 For this approach to be viable, we equally privilege both methodological accuracy in

estimating portfolio credit risk and the distinctive characteristics of securitisation. Tranche subordination

creates leveraged investment, which makes the risk-return profile of CLO investment different from direct

investment in the underlying portfolio. Hence, the seniority and thickness of tranches according to a

specific security design imply varying degrees of credit risk leverage of each constituent tranche. Since

subordination renders leveraged securitised debt highly sensitive to value changes of a precisely defined

reference, it is essential to evaluate securitised debt claims at higher confidence levels (i.e. extreme

quantiles) of expected loss. At the same time, efforts to diversify as much idiosyncratic risk as possible

within a reference portfolio of securitised exposures make CLO tranches (with substantial systematic risk

exposure) highly vulnerable to extreme event scenarios associated with systemic shocks. Consequently, the

analysis of extreme loss quantiles registers as a vital step towards the accurate estimation of investment risk

in loan securitisation. We postulate extreme value analysis as an appropriate complementary to the normality
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paradigm of loan default to gauge credit losses at very high levels of confidence (like in stress testing) based

on precise information about the tail behaviour. General limit loss distributions in many existing credit risk

models rely on imprecise information about tail properties and fail to capture the empirically stylised fact

of heavy-tailed loss distributions. Hence, the approximation of the probability density for very low tail

probabilities requires the specification of a limit law that incorporates the occurrence of extreme values.

Extreme value theory (EVT) focuses exclusively on the asymptotic tail shape of loss distributions as a

canonical theory of deriving parametric estimates as limit laws for standardised (ordered statistics) maxima

of loss generating asset value processes. Moreover, in keeping with the diversified nature of securitised

credit risk we marry extreme value analysis with the recent literature on credit risk models with a portfolio

view, i.e. the portfolio-based estimation of loss quantiles. Our loss function is derived from parametric

bootstrapping through EVT based on an infinitely granular loan portfolio, where systematic risk impacts

on aggregate (uniform) default at constant between-asset correlation.

Our loss-based asset pricing model of CLO tranches as contingent claims held by risk-neutral investors on

securitised credit exposures breaks down into three methodological steps. First, in keeping with the

diversified nature of securitised debt and current credit risk portfolio models we specify the loss function

of securitised loans on the assumption of an infinitely granular reference portfolio of defaultable debt,

where systematic risk impacts on aggregate (uniform) default at constant between-asset correlation.

Second, we subject Monte Carlo simulated random default losses to a simplified subordination mechanism

commonly found in CLO transactions, which yields the tranche-specific default term structure of expected

and unexpected losses over the specified lifetime (i.e. maturity) of the transaction. This approach allows the

decomposition of a CLO transaction into a collection of simpler securities with divergent risk profiles due

to subordination. Since we derive the default term structure from intensity-based simulations of default

under both robust statistics and extreme value analysis, our model produces more reliable approximations

of investment risk of asset-backed securities compared to previous studies. Third, the accumulated loss

severity of each constituent tranche discounted by some stochastic risk-free interest rate determines the

return risk-neutral investors would expect from the estimated default term structure. Since we do not

control for the market risk premium of defaultable debt under the risk-neutral measure, we compute “quasi

risk-neutral” returns as physical discount for expected periodic credit loss. Since the size and the seniority of

tranches constitutes the subordination routine of loss allocation, the estimated default term structure and

the pricing of individual tranches reflects the transmission mechanism implied by the chosen security

design of securitisation. Our findings suggests a dichotomous effect of loss cascading on investment risk in

loan securitisation as the most junior tranche of CLO transactions exhibits a distinctly different default

tolerance compared to the remaining tranches, which might explain why issuers generally retain the most
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junior tranche as credit enhancement. In advent of imminent changes to the Basle Accord on the

regulatory treatment asset securitisation according to the so-called Securitisation Framework (Jobst, 2005;

Basle Committee, 2004a and 2004b),9 our methodology might be instructive in how to derive a reasonable

benchmark of investment risk in loan securitisation. Moreover, our model delivers a plausible rationale as

to why financial institutions draw comfort by providing credit enhancement in the form of first loss

coverage. So far none of the existing models has been able to explain this phenomenon on the basis of

intensity-based default simulation.

2 LITERATURE REVIEW

Although there is not a single theory that exhaustively explains the economic nature of loan securitisation,

research in asset securitisation has so far entertained a diverse range of corporate finance-based arguments for

securitisation as an efficient means of external finance: (i) issuers exploit private information about

securitised assets as a way to mitigate the regulatory capital charge and achieve greater specialisation in

areas of comparative advantage (Greenbaum and Thakor, 1987); (ii) issuers avoid asset substitution and

underinvestment as they appropriate partial debtholder wealth by carving out a defined portion of pooled

assets to satisfy securitised debt (James, 1988; Benveniste and Berger, 1987; Stulz and Johnson, 1985); and

(iii) issuers reduce the agency cost of asymmetric information if securitised debt constitutes a safer claim

than other forms of external finance (Barnea et al., 1981; Myers and Majluf, 1984). However, it has not

been until recently that the joint effect of the security design and the characteristics of securitised credit

exposures on investment risk has sparked academic interest. Although a large number of prescriptive

approaches lack comprehensive appeal and ease of implementation, it appears as if a comprehensive asset

pricing methodology in this area would need to transcend models in three major areas of finance research::

(i) estimation and pricing of (portfolio) credit risk (Lo and Davis, 2001; Jarrow et al., 1997; Jarrow, 1996),10 (ii)

security design and asset liquidity (Bhasin and Carey, 1999; DeMarzo and Duffie, 1997 and 1999),11 and (iii)

information economics in asset securitisation (Jobst, 2003b; Duffie and Gârleanu, 2001 and 1999; Riddiough,

1997). DeMarzo and Duffie (1999 and 1997) assert that issuers of securitised debt can overcome the

“lemons problem” (Akerlof, 1970) of asymmetric information associated with the sale of illiquid assets by

bundling and re-packaging payment claims from asset exposures into a basket of different classes of

subordinated tranches as collateralised contingent claims (Jobst, 2003a). Riddiough (1997) finds

information benefits from subordinated security if it allows issuers to internalise some or all of the adverse

selection risk and appropriate economic rents from their information advantage if they retain an equity

claim on the performance of securitised assets. Childs et al. (1996) propose a structural model for pricing
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commercial mortgage-backed securities (CMBS) through Monte Carlo simulation of a portfolio of

individually correlated mortgages in order to derive an optimal security with asset retention by the issuer.

More recently the default-based valuation of securitised debt has benefited from the emergence of credit

risk portfolio models, which assume a stochastic process of asset value change and default-correlated credit

risk exposure. Past research in this area has generated a wide range of different approaches (Black and Cox,

1976; Brennan and Schwarz, 1978; Leland, 1994 and 1998), which can be broadly classified into three

categories (by mathematical technique used): (i) standard intensity-based models (Egami and Esteghamat, 2003;

Zhou, 2001; Lucas et al., 2001; Duffie and Singleton, 1999; Lando, 1998; Zhou, 1997), (ii) copula models

(Embrechts et al., 2001a and 2001b; Li, 2001; Schönbucher and Schubert, 2001; Schönbucher and

Schubert, 2001; Nelsen, 1999) and (iii) Markov chain and contagion models (Kijima et al., 2002; Davis and Lo,

2001; Jarrow et al., 1997). Industrial applications have simplified these approaches into endogenous models

(e.g. credit migration approach and structural approach), actuarial models and econometric models.12 Many of

these models have been used to derive a default-based valuation of asset securitisation transactions, such as

an intensity-based approximation of defaults within a jump-diffusion process of a securitised loan pool

(Egami and Esteghamat, 2003) or with default correlation from Moody’s diversity score (Duffie and

Gârleanu, 2001). Egami and Esteghamat (2003) approximate the value of a basket of default-correlated

debt assets in collateralised debt obligations (CDOs) by means of calibrating a pricing model to a pure intensity-

based simulation of defaults. However, many straightforward loss-based pricing methodologies of

collateralised debt obligations (CDOs) and alternative asset pricing techniques13 are scarce or at least

contentious (Fidler and Boland, 2002), mainly because the valuation of contingent claims on the

performance of multi-asset portfolios defies a closed-form solution in most cases. While analytically

tractable pricing models with common risk factors (Gibson, 2004) tend to be overly simplistic, simulative

robust statistical analysis (of standard intensity-based models) attributes little probability to extreme loss

scenarios. In this paper we tender a default-based asset pricing methodology for loan securitisation (e.g.

CLOs) as one of the most recent fixed income instruments in structured finance. We offer a new and

original contribution to traditional pricing models of asset-backed securities by introducing extreme events

in the default profile of securitised assets to account for the high risk sensitivity of leveraged investment in

subordinated debt structures.14 Although we deliberately forgo the analytical reliability of a static closed

form pricing (Gibson, 2004), the richness of our methodology more than compensates for the

shortcomings of a simulative approach as grants much needed analytical latitude to estimate the variation

of investment leverage over time of different default scenarios (increasing and decreasing) under

competing limit distributions. Assuming general dependencies of credit risk factors we simulate the

intensity-based default term structure of an infinitely granular multi-asset portfolio with uniform asset
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correlation to compute the compensatory return of risk-neutral investors for tranche-specific expected

losses by reversing Jarrow and Turnbull (1995) and Leland and Toft (1996), who back out an arbitrage free

pseudo-probability of default from the term structure of credit spreads of corporate bonds.15 In this way

we decompose subordinated claims into a collection of simpler securities with divergent risk profiles and

return expectations on the basis of fixed and stochastic16 risk-free discount rates.17

The rest of the paper is organised in six sections. We present the model specification of a loss-based

valuation of subordinated CLO tranches as a phased integration of three essential components. First, we

simulate intensity-based aggregate default losses under extreme value analysis and robust statistical analysis

at constant and time-varying periodic default probability. Subsequently, we allocate estimated default losses

to constituent tranches according to the subordinated security design. Finally, we derive a tranche-specific

default term structure, which implies the compensatory return risk-neutral investors would expect from

holding these securities. Finally, we complete a robustness check of our estimation results by analysing the

relationship of expected and unexpected losses as well as the leverage of investment returns across

tranches with different seniority. In our post-simulation assessment we discuss the incentive of both

issuers and investors to acquire certain tranches on the theory of information asymmetries. In conclusion,

we revisit important findings and propose to possible extensions.18

3 MODEL

3.1 Loss distribution of a uniform reference portfolio

As the first component of the CLO pricing model we specify the distribution function of default losses in

the securitised reference portfolio. For this purpose we resort to a normal inverse distribution and a quasi-

Pareto distribution from extreme value theory to simulate the loss profile of a perfectly diversified

reference portfolio of credit exposures. In keeping with past attempts to simulate credit risk of standard

(bank) loan portfolios we assume individual risk to be perfectly diversified in an infinitely granular

portfolio, so that we can consider the reference portfolio to be of uniform credit risk with equal pairwise

asset correlation. Once we have computed expected and unexpected losses, we determine the periodic

default losses for the transaction and the constituent tranches by means of a certain loss allocation routine.

3.1.1 Normal inverse distribution (NID)
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As the number of loans grows to infinity the notion of a uniform portfolio with homogenous asset

exposures has been the basis for credit portfolio models with normality assumptions. Vasicek (1987),

Finger (1999) as well as Overbeck and Wagner (2001) derive default losses from a normal inverse

distribution function ( )ρ,NID p  with default probability > 0p  as mean and equal pairwise asset

correlation ρ < 1  for a portfolio of h loans with equal exposure 1 h  for →+∞h  and portfolio losses

≤ ≤0 1x  is denoted by

( )( )1 1( , , ) 1 ( ) ( )NID x p N N x N p pρ ρ − −= − − (1)

with density function

( ) ( )( ) ( )( )11 1 1( , , ) 1 ( ) 1 ( ) ( )x p n N x n N x N pφ ρ ρ ρ ρ ρ
−

− − −= − × × − − , (2)

where the standard deviation ( )σ ρ− −= −1 1 2
2 ( ), ( );N N p N p p  is derived from the bivariate normal

distribution 2( , ; )N x y ρ  with a zero expectation vector.19 However, since the occurrence of extreme

events takes a pivotal role in the accurate approximation of credit portfolio losses, we need to extend this

approach to take account of the extreme tail behaviour of credit events. Alternatively to the normal inverse

distribution of random variables on a uniform space, in the next section we propose extreme value theory

(EVT) to model the loss distribution function of credit portfolios.

3.1.2 Extreme value theory (EVT)

Merton-based credit risk models rely on distributional assumptions that imply an underlying stochastic

process of reasonable asset volatility around some mean expectation, where the frequency and the size of

random observations 1 ...n nS X X= + +  define quantiles as multiples of standard deviations around  the

mean of some probability distribution. For loss of precise information about the true probability density

associated with extreme events, these general assumptions about asymptotic tail behaviour (“dependent tail

behaviour”) generate limit distributions (Login, 1996). However, if one was to efficiently approximate the

probability density for very high confidence levels, i.e. very low tail probabilities (Lucas et al., 2002), in

stress test scenarios, one needs to specify a limit law that incorporates the occurrence of extreme values.

Extreme value theory (EVT) helps translate random phenomena into a tail shape irrespective of the
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distribution function by solving the right or left limit results of normalised maxima of i.i.d. events

( )1max ,...,n nM X X=  or ( )1min ,...,n nM X X= . Hence, the objectives of extreme value analysis and

robust statistical analysis are apparently contradictory. While extreme data (outliers) are underestimated in

robust statistics, these very observations receive most attention in EVT, where parametric models are fitted

to exceedances over large thresholds to characterise the tail behaviour of extreme order statistics

(Vandewalle et al., 2004).20 Empirical evidence about the actual loss profile of credit exposures suggests a

higher likelihood of extreme portfolio losses than what would be expected if credit loss was a normally

distributed random variable. For an adequate parametric description of thicker tails we resort to EVT,

which attributes higher probability to extreme (credit loss) quantiles and EVT claims methodological

attractiveness due to its flexibility in model calibration. In the remainder of this section we derive a loss

distribution with polynomial tail decay as a specialised form of a Pareto function within the domain of

attraction of the generalised extreme value distribution (GEV), where the scaled maxima are bounded by the

maximum portfolio size of securitised loans in place. In this way we improve on the normal inverse

distribution (NID) as a basis for the estimation of extreme quantiles consistent with Lucas et al. (2001).21

We define EVT as a general statistical concept of deriving a limit law for sample maxima xR ∈ℜ  (Fisher

and Tippett, 1928), where the generalised extreme value distribution (GEV) (Jenkinson, 1955) establishes the

domain of attraction for limit distributions of normalised maxima or minima drawn from random variables

with an upper bound. Let 1 2, , ..., nX X X  be a sequence of i.i.d. random variables with a common unknown

distribution function ( ).F  and the corresponding ascending order statistics 1, ,...n n nX X≤ ≤  with

normalised sample maxima { }, 1 2max , , ...,n n nX X X X=  converging to a non-degenerate limit distribution

( ) ,lim n n n
x xn n

X b
H R P R

aξ →∞

− 
= ≤ 

 
(3)

for a sequence of constants 0>na , ℜ∈nb  and ∞→n . If ( ).F  satisfies this expression, it falls within the

maximum domain of attraction of ( )xRHξ , so that ( )ξHDF ∈ . Assuming stationarity and ergodicity22

the limit distribution above transforms to the GEV distribution

( ) ( )[ ]
( )[ ]





=ℜ∈−−
>>++−=

−−

0,expexp
0,011exp

1

ξ
ξξξ ξ

ξ
xx

xx
x

RR
RRRH , (4)
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where the location parameter (“tail index”) ξ  specifies the size and frequency of extreme events of

asymptotic tail behaviour with a peak at ξ=x , where ξ ≥ 0  and ξ < 0  indicate heavy and light tails

respectively. The heavier the tail the slower the speed at which the tail approaches its peak x at y-value of 0

and the smaller the absolute value of the tail index parameter.23 We define the loss distribution as a

generalised Pareto distribution function (GPD)24,25 within the maximum domain of attraction ( )ξHDF ∈ ,

with the tail behaviour of standardised maxima capped at the asset portfolio size, so that

( )
( )

1

1 1 for 0( , , )
1 exp for 0

xG x
x

ξξ β ξξ β
β ξ

−− − + ≠= 
− − =

, (5)

with ( ) βξ−−≡ xRx , scale parameter 0>β  as well as ≥ 0x  for ξ ≥ 0  and 0 x β ξ≤ ≤ −  for

ξ < 0 .26 In order to model the loss profile of finite portfolio size we expand the support of GPD to ℜ , so

that

( ) ( )( )
( )( )( )

1

2 2

( , , , , ) 1 1
2 1 exp

x x s
L x s

x

ξ

ξ ρ ρ
ξ β ρ

β δ ρ β

−−
 × − + − + 

= − + 
× + − −  

 

. (6)

Besides the scale parameter 0s >  we also introduce the adjustment factor ℜ∈ρ  for re-parameterisation

in the subsequent mapping procedure of ( )L x  with portfolio losses 0 1x≤ ≤ . Mapping the loss

distribution function L(x) above onto the inverse uniform distribution ( )1
dU u−  with random variable

[ ]0,1u∈  and [ ];x d d∈ −  as upper and lower bounds ( )min , maxd d= − =  of ( )1
dU u−  yields

( ) ( ) ( )
( ) ( )

( )uUx
dLdL
dLxLxL dd

1~for −

−−
−−

= .27 (7)

ρ ρ−= 1( )u dU  is obtained through re-parameterisation, where both β and s  depend on the level of d .28,29

3.2 Simulation model and loss allocation
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Based the above loss distribution function we now run a Monte Carlo simulation of uniformly distributed

random defaults to estimate expected and unexpected losses of the securitised loans along two dimension

– time and security design. We derive periodic losses by “time slicing” estimated total default loss at maturity

(i.e. investment horizon). This approach allows us to determine the residual value of the securitised

reference portfolio (and the principal value of issued tranches) after periodic loan default, which is

assumed to occur in arrears at the end of each period. These periodic losses are then allocated to the

different tranches in order of seniority, where the “tranche thickness” implies the level of loss absorption

of each tranche. This subordination mechanism of “loss cascading” is frequently found in CLO transactions as

credit enhancement.

3.2.1 Monte Carlo simulation

Even though the respective density function φ ρ( , , )x p  of the NID could be calculated by product

folding, a closed form display of the results does not seem to be possible and warrants numerical

computation (Overbeck and Wagner, 2001). In absence of reliable historical data for securitised credit

losses, we generate uniformly distributed random variables x  for the Monte Carlo simulation of both

NID- and EVT-distributed credit losses. For instance, in the case of NID this approach requires the

computation of uniformly distributed random variables Z~U(0,1) and their subsequent transformation to

periodic losses for each time step j with

( )( )1 1 1( , , ) ( ) ( ) 1j j jx NID z p N N p N z pρ ρ− − −= = − − (8)

by choosing the parameters of the loss distribution function such that the first two moments match the

ones obtained from the NID. For EVT the transformation and mapping procedure in section 3.1.2 applies

analogously. We ignore the effects prepayments and amortisation on the notional amount of portfolio

value. The timing of defaults is assumed to take place at the end of each period j to ensure consistency in

the approximation of relative portfolio losses per period against the background of a declining principal

balance. We let the default probability (PD)30 for each period be either constant or time-varying (increasing

vs. declining). The latter assumption of time-dependent risk exposure is fundamental to a dynamic

estimation of the default term structure and its attendant effect on periodic loss cascading over life of the

securitisation transaction. The PD equates to expected loss given default with initial notional portfolio size

set to unity.
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3.2.2 Time slicing

Assuming a discrete time grid −< < < < <0 1 1...j n nt t t t t  , the accumulated  estimated loss L  over the time

horizon n (with portfolio losses accounted for at the end of each time period j n∈ ) can be quantified as

( )1

1 0
1

jn
i jj i

L X X
−

= =
= −∑ ∏ , (9)

with ~ ( , , )jX NID x p ρ  or ~ ( , , , , )jX L x sξ β ρ  for j n∈ , where Xj  denotes the relative portfolio loss

(on the residual exposure 1 iX−  from the previous period 1i j= − ) at time period j n∈  for either

distribution of an uniform reference portfolio, whose notional value is set to unity at time 0j = . The

absolute losses per period are determined based on a periodic random draft of uniform default loss in the

remaining portfolio value each period after it has been reduced by the default loss of the previous period.

Aggregating these estimated periodic losses yields the absolute losses over the entire investment horizon

n.31

3.2.3 Loss cascading

Based on these aggregated losses we allocate periodic default losses to the different constituent tranches in

order of seniority. This subordination mechanism of “loss cascading” is frequently found as one form of credit

enhancement in CLO transactions and resembles the waterfall mechanism of damage claims in a sequence

of default-correlated reinsurance contracts. In our model subordination means that portfolio losses L  are

allocated successively to the constituent tranches according to the level of seniority, so that tranches more

senior than the lowest (i.e. most junior) tranche only bear losses once the all tranches more junior have

been fully wiped out by default losses.32 In our specification investors in tranche mk∈  have to bear

aggregate losses up to %kα  of the total default losses on outstanding notional value of the transaction,

where kα  signifies the notional amount of the tranche k (“tranche thickness”). Any remaining losses

allocated to the more senior tranche 1k +  up to the amount of 1%kα + . So if one tranche k has been fully

exhausted (denoted by the interval α α −− 1k k  as the loss bearing capacity of tranche k), further losses are

allocated to the subsequent, more senior tranche. This bottom-up cascading process perpetuates until all

losses for a certain period are allotted to the relevant tranches. The tranche sizes α α α α−≤ < < <0 1 10 ... m m

as the boundaries (i.e. attachment points) of loss allocation are time-invariant and have been chosen on the
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historical basis from a weighted-average market benchmark of the typical security design of CLO

transactions since 1997. The “first loss position” has been set to the interval of [0-2.4%] (Tranche 1) of

notional transaction value, while “investor tranches” are represented by [2.4-3.9%], [3.9-6.5%], [6.5-9.0%],

[9.0-10.5%] and [10.5-100%] (Tranches 2-6). These boundaries are time-invariant and lack the notation j

for the time period. This allocative routine determines the expected credit loss per tranche in time period j,

( ) ( )1 1

11 1

( )
n n

j k k kk k
j

k kj j

x
L L f x dx

α α α

α α

+

− −

−= =

− ∧ −
= =

−∑ ∑∫ , (10)

where the meet ( ) ( )1 1j k k kx α α α
+

− −− ∧ −  denotes the periodic default loss in time step j as the

proportional default loss of the reference portfolio borne by tranche k. kL  and k
jL  for the loss density

function f(x) denote the relative loss borne by each tranche on aggregate (over life of the transaction with

maturity n) and at the end of each period. The issuer commonly retains the lowest, most junior tranche

(commonly termed the “equity piece”) with a default loss tolerance of α α−0 1  as “first loss position” as a

commitment to bear part of the losses due to expected non-performance of the reference portfolio. This

prioritisation of structured claims reduces (increases) the default tolerance (investment leverage) of the

successive tranches, which will be discussed later in this paper.

4 ESTIMATION RESULTS

4.1 Default term structure of tranches

We derive the term structure of expected losses from a Monte Carlo simulation with one million iterations

of relative portfolio losses for 1,...,jX j n=  on the basis of two loss distribution functions – a normal

inverse distribution (NID) (see section 3.1.1) and a GEV distribution from extreme value analysis (see

section 3.1.2). Tabs. 4 and 7 (Appendix 1) exhibit how the subordinated transaction structure affects the

development of the principal balance of a securitised reference loan portfolio over time, as periodic default

losses are allocated to tranches according to seniority and loss bearing capacity. The first column denotes

the year, the second the respective (forward) default rate p and the third and fourth columns list the mean

and the standard deviation of the cumulative and periodic default loss of all tranches (i.e. estimated

expected loss jL  and unexpected loss 
jLσ ). The remaining columns report relative and proportional
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expected default loss k
jL  for each of the six different tranches with respect to their notional value and total

periodic losses. We also provide the same breakdown for unexpected losses σ k
jL .

Both loss functions yield similar approximations of periodic portfolio losses (expected loss k
jL  and

unexpected loss σ k
jL ). The first moment of estimated expected loss k

jL  per tranche (slope of estimated

losses) increases under both loss functions, albeit the periodic loss of the first loss piece [0-2.4%] flattens

from the fifth year onwards as accumulated losses begin to exhaust the notional amount of the most junior

tranche (see section 3.2.3). As tranches gain in seniority the default term structures under the chosen loss

distributions deviate from each other at an increasing rate, especially in the mezzanine tranche [6.5-9.0%].

Although the cumulative tranche-based loss allocation increases monotonously, we observe a distinctive

dichotomy of default tolerance between the most junior (equity) tranche (reflected in the first tranche [0-

2.4%] 1
jL ) and the remaining “investor tranches” (see Appendix 2, Fig. 1 for EVT and Fig. 2 for NID).

While the expected loss for the first tranche follows a linear function, expected losses of more senior

tranches increase in an exponential fashion over time The disparate loss profiles of tranches are

attributable to the gradual erosion of the loss absorbing capacity of the most junior tranche, which in turn

is caused by the security design of subordination and, to a lesser degree, by the distribution of default

losses. Since the cumulative incidence of credit losses is skewed towards the extreme end of the

distribution, an EVT-based loss function seems to reflect the “loss reality” more truthfully than the

Gaussian assumptions of generalised asymptotic tail behaviour in standard limit distribution functions.33,34

The proposed specialised form of a generalised extreme value distribution emphasizes extreme loss

scenarios, which increase the default rates for more senior “investor tranches”. The first loss position

under EVT is almost entirely exhausted by estimated default losses, while more moderate loss events under

NID leave a good part of the most junior tranche untouched.

4.2 Variable portfolio quality – default losses of all tranches

In cognisance of time-dependent variation of default risk we also consider variable portfolio quality at a

sequential upward and downward drift of one-year default probabilities under both distribution functions.

These scenarios of impetuously improving and decreasing portfolio quality have been modelled in a way

that the weighted-average default probability matches the periodic default probability for the case of a
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constant rate of portfolio losses over the life of the transaction. For a deteriorating (improving) portfolio

quality the initial default probability is lower (higher) than in the case of a constant default probability. In

the following section we investigate the (tranche-specific) default term structure for a strictly deteriorating

asset portfolio (“back loaded”) and a strictly improving portfolio (“front loaded”) as two extreme cases of

how changes in securitised asset risk translate into expected and unexpected losses. Tabs. 5-6 (EVT) and

Tabs. 8-9 (NID) in Appendix 1 and Figs. 10-13 in Appendix 2 display our estimation results and the

corresponding plots of a deteriorating and improving portfolio.

In section 4.1 we saw that periodic expected losses subside asymptotically for a constant default rate under

both EVT and NID loss distributions, mainly because accumulated losses almost fully exhaust the notional

amount of the most junior tranche before subsequent tranches bear any losses. This property is reflected in

the concave shape of the default term structure curve for cumulative default losses. We find that a gradual

increase of the periodic default rate partially reverses the term structure of the most junior (equity) tranche

during the first three periods in the case of NID, but finally follows the term structure for a constant

default probability. Under EVT periodic expected losses allocated to the equity tranche [0-2.4%] and the

investor tranche [2.4-3.9%] are positively concave (but remain constant under NID) for an overall

deteriorating portfolio quality. The main investor tranches [3.9-6.5%], [6.5-9%], [9-10.5%] and [10.5-100%]

maintain an almost constant periodic default profile under both EVT and NID. In contrast, improving

portfolio quality induces a negatively convex term structure of periodic losses for the most junior (equity)

tranche [0-2.4%] under both loss distributions. The periodic default term structure of the subsequent

tranche [2.4-3.9%] changes from being positively convex to positively concave after three periods for NID,

while it remains negatively convex for EVT throughout all periods of the simulation. We observe a

constant periodic default loss of more senior investor tranches [3.9-6.5%], [6.5-9%], [9-10.5%] and [10.5-

100%] for a decreasing portfolio default rate, too. These periodic loss profiles of constituent tranches for

time-varying default rates translate into a default term structure of cumulative losses, which differs

significantly from our findings in the case of a constant annual default rate (see Appendix 2, Figs. 1-3).

While the first moment of cumulative losses borne by the first tranche gradually builds up over time, the

more senior [2.4-3.9%] and [3.9-6.5%] tranches have to shoulder a disproportionately higher degree of

default loss under both EVT and NID. Especially the rapid increase of expected losses carried by the [3.9-

6.5%] tranche compared to the next senior [6.5-9%] tranche (particularly for NID-distributed losses, less

so for EVT) warrants particular attention as to the implications of a varying default rate on the simulated

term structure. At a continuously decreasing loan default rate high initial cumulative loss burden by the

first loss tranche precludes high loss allocation during later periods, so that the default term structure

begins to flatten half way through the life of the transaction. At the same time, especially the [2.4-3.9%]
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tranche picks up most of the loss exposure, leaving less expected losses to more senior [3.9-6.5%] and [6.5-

9%] tranches.

Generally, relatively high (low) levels of early (late) loss absorption for a “front loaded” (“back loaded”)

default profile of improving (deteriorating) and deteriorating time-varying portfolio quality induces

negative second moments of cumulative expected loss allocated to the most junior (equity) tranche. In

both cases of varying portfolio quality we discern a stark contrast between the lowest tranche and more

senior investor tranches, which is explained by rapid exhaustion of limited loss absorbing capacity of the

former. Although varying periodic default drives a wedge between the loss tolerance of the issuer and

investors, nonetheless, it is less pronounced in the case of a varying periodic default rate compared to a

constant default rate over the life of the transaction (see section 4).

4.3 Leverage effect

The estimated default term structure testifies to the structural risk sharing arrangement of loss allocation

through the subordination of tranches in CLOs and other types of ABS transactions, which concentrates

expected losses in a small first loss position, which bears the majority of the credit exposure, shifting most

unexpected risk to larger, more senior tranches. Most importantly, however, this security design-induced

leverage effect imposes on the most junior tranches higher relative (expected and unexpected) losses than

relative portfolio losses, which also implies higher exposure to unexpected risk of more senior tranches.

Such a leverage effect assumes a typical three-tier securitisation structure of junior, mezzanine and senior

tranches, where senior tranches represent about 80-90% of the entire notional amount of securitised debt

(tranches). In Tabs. 10-15 (Appendix 1) we illustrate the leveraged exposure by tranche seniority as the

ratio of relative expected and unexpected losses to relative portfolio losses for each period. As opposed to

the static closed form, CDO pricing model (with one common risk factor-based default) in Gibson (2004)

our approach is not limited to a one-period loss scenario of expected and unexpected losses. We can also

analyse the time dimension of leveraged exposure for a both a cumulative and periodic default term structure

based on two different intensity-based simulations (EVT and NID) of time-varying default (increasing and

decreasing). Since most of the investment in the loan securitisation is “buy and hold” especially the time

variation of leverage to portfolio losses is highly relevant to investors and regulators alike.

We find that tranche leverage decreases (increases) by absolute measure the higher (lower) the level of

seniority, with all tranches but the most junior tranche exhibiting higher multiples for unexpected losses

than for expected losses. These different degrees of leverage support our previous claim of extreme value
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analysis to be most amenable for modelling the highly risk sensitive nature of securitised debt as leveraged

investment. The computation of investment risk in securitised debt becomes even more intricate at lower

(higher) loss sensitivity (leverage) of more senior tranches to expected losses if we take into account that

the ratio of unexpected to expected losses for each tranche increases with seniority. As the volatility of

expected loss contributes the lion’s share to total investment risk in more senior tranches, investors in

these tranches also experience higher leveraged exposure from unexpected losses than they would on

expected losses. We find that if the default probability is kept constant the leverage ratio of unexpected and

expected losses increases over time across all tranches but the most senior and the most junior tranche.

The multiples of unexpected and expected losses decrease in the case of the lowest tranche and remain

nearly constant through time for the most senior tranche. If we let the default probability vary over time all

“investor tranches” but the most senior tranche gain appreciably in expected loss leverage (and less so for

unexpected losses leverage). The expected loss leverage of the most junior and the most senior tranche are

close to invariant to either a deteriorating or improving portfolio quality. This also applies to unexpected

loss leverage of the most senior tranche but not to the most junior tranche. So mezzanine investors seem

to bear the brunt of adverse effects on investment leverage from varying portfolio quality. Interestingly,

“investor tranches” exhibit a higher first moment of leverage for periodic expected losses than periodic

unexpected losses. So the time dimension of periodic loss leverage qualifies our earlier observation of

highly leveraged unexpected loss exposure in more senior tranches. An optimal low leverage strategy over

the short holding period would prescribe short-term investment in more junior tranches (due to low

leverage on expected losses during the initial periods and a higher portion of expected losses than

unexpected losses) until a higher first moment of expected loss leverage warrants switching the investment

to more senior tranches, were unexpected losses claim a greater share of investment risk and their leverage

is subject to lower periodic changes over time.

5 PRICING OF CLO TRANCHES FOR RISK-NEUTRAL INVESTORS

Based on the simulated default term structures under different default scenarios we propose a simple

pricing method to value CLO tranches at a riskless term structure in order to foster informed investment

about this structured finance technology. In keeping with Jarrow et al. (1997) we compute the hypothetical

spread over the risk-free rate risk-neutral investors would normally expect as compensation for expected

default losses allocated periodically to each tranche according to the designated subordination mechanism.

The expected loss associated with a time-varying, physical default probability reduces the notional tranche

amount (i.e. expected cash flows) over time. The risk premium of each individual tranche solves for the

rate of return that offsets periodic losses of a certain default term structure so that the net present value of
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the residual principal portfolio balance discounted at a (fixed and stochastic) risk-free rate yields the

riskless term structure35 that satisfies
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where 
=∑ 1

m k
jj

L  denotes the accumulated expected loss in the tranche k up to year 7j =  and risk-free

forward rate fr  (fixed or stochastic). Note that our calculated return for risk-neutral investors is not

inclusive of a market risk premium and only represents the fair rate of return as compensation for the

physical default term structure of securitised tranches. Since our tranche returns are not derived as risk

premia under the risk-neutral measure, we will use the term “quasi risk-neutral returns” for the remainder

of the paper. Tab. 1 below reports tranche-specific risk-adjusted returns under both NID- and EVT-based

loan default at a constant, a increasing and decreasing periodic default rate according to our estimated

default term structures in Tabs. 4-9 (see Appendix 1) and constant risk-free rate = = 5.0%
lf fr r . The most

junior [0-2.4%] tranche absorbs most of the periodic losses over the life of the transaction and commands

a quasi risk-neutral return of 21.35% (EVT) and 20.56% (NID) for cumulative average annual losses with

constant periodic default probability. Successive tranches claim lower investment returns as their

decreasing default tolerance of accumulated credit loss induces quasi risk-neutral returns ranging from

6.29% (EVT) and 6.79% (NID) for the [2.4-3.9%] tranche to almost the risk-free rate of return for the

most senior [10.5-100%] tranche.36

We find that the estimated investor returns vary significantly by the type of loss function. Since extreme

value theory assigns higher probability to rare events with high loss severity (“thick tail”), EVT-simulated

losses yield higher quasi risk-neutral returns than NID-based credit losses at a constant forward rate of

default in the most senior “investor tranches” [6.5-9.0%], [9.0-10.5%] and [10.5-100%]. Conversely, the

equity tranche [0-2.4%] and the mezzanine “investor tranches” [2.4-3.9%] and [3.9-6.5%] exhibit lower

returns under the EVT approach than under the NID approach due to high initial loss absorption of the

most junior tranches. However, we cannot infer a higher degree of estimated default for the first loss

position under the EVT approach than under the NID approach unless we extend the exposition of

expected quasi risk-neutral returns per tranche to the case of deteriorating and improving portfolio quality.
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Distribution and collateral performance
Quasi risk-neutral returns per tranche

(constant discount rate)
Allocated
tranche
losses

Reference
portfolio
quality

Loss
distribution

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%
EVT 21.34747% 6.28610% 5.25952% 5.06849% 5.03009% 5.00145%constant NID 20.56017% 6.79431% 5.33870% 5.05067% 5.01109% 5.00011%
EVT 37.49613% 10.81930% 5.69241% 5.11364% 5.03974% 5.00167%deteriorating NID 30.43862% 11.19511% 6.78903% 5.39333% 5.10093% 5.00127%
EVT 49.12123% 9.87893% 5.60218% 5.10820% 5.03821% 5.00157%

cumulative
k
jL

improving NID 42.75610% 10.94419% 6.00440% 5.06577% 5.00648% 5.00004%

Tab. 1. Quasi risk-neutral returns for the various tranches under two different default distributions (EVT and NID) at
cumulative constant, increasing and decreasing forward rates of loan default.

The stark contrast between quasi risk-neutral returns of the most junior tranche retained by issuers and

mezzanine and senior tranches held by outside investors persists also for varying portfolio quality. A

varying periodic forward rate of defaults entails higher returns for almost all tranches, irrespective of

whether the first moment of the terms structure is positive or negative, and decreases in the seniority of a

tranche. The equity tranche commands quasi risk-neutral returns well beyond 30% (40%) per period for a

deteriorating (improving) portfolio quality, which reduces the yield associated with lower default exposure

by mezzanine and senior tranches accordingly. For mezzanine and senior tranches returns are lower under

improving rather than deteriorating portfolio quality (under both EVT and NID) as expected.

Although the level of quasi risk-neutral returns (especially the equity tranche) is mainly driven by the

security design of the securitisation transaction (i.e. the relative thickness and seniority of constituent

tranches), the specification of the loss profile for varying portfolio quality explains the plausibility of this

counterintuitive result. As opposed to a constant portfolio quality, our simulated default term structure of

an improving portfolio involves a higher than average default probability (and higher quasi risk-neutral

returns) during the initial periods. This relationship gradually reverses as the transaction matures. The same

logic applies to deteriorating portfolio quality. Since the high initial default rate of an improving portfolio is

not discounted less heavy during the initial periods, the early exhaustion of most junior tranche translates

into higher quasi risk-neutral returns in all junior and mezzanine tranches up to the [6.5-9.0%] tranche.

Conversely, a low initial default rate in case of a deteriorating default term structure should result in quasi

risk-neutral returns similar to the returns observed in the case of a constant default rate, mainly because

increased default loss goes hand in hand with higher periodic discounting. Since higher back-loaded default

losses for a deteriorating portfolio are subject to higher discount rates than front-loaded default losses of

similar degree for an improving portfolio, a deteriorating portfolio produces lower compensation for

default losses over time and, thus, should display lower quasi risk-neutral returns than an improving

portfolio. Nonetheless, both cases induce higher quasi risk-neutral premium than a constant rate of decline
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in portfolio quality according to our model set-up. According to these specifications a deteriorating

portfolio quality is more favourable for bearers of most junior tranche, which requires a lower default

tolerance (and lower quasi risk-neutral returns per period) for a deteriorating than for an improving

portfolio. This effect is pronounced by the tail behaviour of the EVT-based loss function, which attributes

higher probability to extreme losses and increases the chances of the equity tranche becoming fully

exhausted by default loss early on. Overall the returns of the small equity tranche are most sensitive to

changes in the portfolio quality and stochastic interest rates, whereas the largest nominal share of the

transaction held by the most senior [10.5-100%] tranche is hardly sensitive to varying levels of periodic

default loss.

We further refine our findings be introducing a varying risk-free interest rate per period to the above

pricing formula. We distinguish between two cases: (i) a stochastic risk-free interest rate and (ii) a constant

risk-free rate as a stochastic average (level) of a fitted distribution of observed daily 12-month LIBOR rates

over an eight-year period, which have been transformed to end-of-the week quotes. We adapt the interest

rate model proposed by Hull and White (1995) for logarithmic interest rates at weak level stationarity

(Yule-Walker estimator). On the basis of a maximum likelihood (ML) estimation of the probability

distribution for AR(1) we simulate one million paths of estimated over seven years, i.e. 350 time

increments. Subsequently, we estimate the quasi risk-neutral returns per tranche (see Tabs. 2-3 below) for a

stochastic risk-free interest rate for both loss distributions (EVT and NID) at varying portfolio quality.

As opposed to the case of a fixed risk-free rate 
lfr  per period (see section 5), now introduce stochastic

interest rates. Although the summation of stochastic interest rates equates to the summation of constant

risk-free interest rates due to mean reversion for →∞t  in general and →∞m  in our model, the variation

of stochastic interest rates over time results in 
+

≠
1l lf fr r . If we substitute stochastic periodic interest rates

for constant risk-free interest rates 
lfr , the discount factor ( )=

+∏ 1
1

l

m
fl

r  is generally smaller for stochastic

interest rates and yields lower quasi risk-neutral investor returns. The effect of a lower periodic discount

rate will also become more pronounced as the CLO transaction matures. This has a significant bearing on

the distinctive term structures of tranches, where the first loss position displays constant expected losses

per period as opposed to “investor tranches”, which exhibit a non-linear increase of expected losses per

period. In the case of stochastic interest rates returns for the first loss position will decline more than for

mezzanine and senior tranches. Consequently, a stochastic interest rate, be it periodic or average-weighted,

would lead to a marginal increase of the periodic discount rate and higher calculated returns of tranches

than in the case of constant interest rates.
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Distribution and collateral performance
Quasi risk-neutral returns per tranche

(at average stochastic risk-free rate as discount rate)
Allocated
tranche
losses

Reference
portfolio
quality

Loss
distribution

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%
EVT 22.39463% 7.30974% 6.29268% 6.10283% 6.06451% 6.03589%constant NID 21.62188% 7.81517% 6.37059% 6.08477% 6.04547% 6.03454%
EVT 38.26656% 11.74418% 6.71721% 6.14718% 6.07401% 6.03609%deteriorating NID 31.38123% 12.15254% 7.79993% 6.42232% 6.13398% 6.03570%
EVT 50.15165% 10.84695% 6.63082% 6.14206% 6.07255% 6.03599%

cumulative
k
jL

improving NID 43.89018% 11.92903% 6.92431% 6.09964% 6.04086% 6.03446%

Tab. 2. Expected quasi risk-neutral returns per tranche based on the average variable (stochastic) risk-free rate as
constant discount rate.

Distribution and collateral performance
Quasi risk-neutral returns per tranche

(at stochastic risk-free rate as discount rate)
Allocated
tranche
losses

Reference
portfolio
quality

Loss
distribution

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%
EVT 22.62031% 7.45478% 6.43406% 6.24347% 6.20499% 6.17623%constant NID 21.84458% 7.96229% 6.51219% 6.22531% 6.18585% 6.17488%
EVT 38.56835% 11.90002% 6.85962% 6.28793% 6.21451% 6.17644%deteriorating NID 31.65209% 12.31435% 7.94590% 6.56384% 6.27462% 6.17605%
EVT 50.54813% 11.00315% 6.77326% 6.28283% 6.21305% 6.17634%

cumulative
k
jL

improving NID 44.25293% 12.09255% 7.06783% 6.24022% 6.18122% 6.17480%

Tab. 3. Expected quasi risk-neutral returns per tranche based on the periodically variable (stochastic) risk-free rate.

6 ROBUSTNESS CHECK: RATIO OF ESTIMATED AND UNEXPECTED LOSSES

Empirical evidence indicates that CLO tranches actually offer investors higher returns (Batchvarov et al.,

2000) and defy the above assumption of a risk-free term structure of CLO tranches. This observation is

not all too surprising given the inherent complexity of securitisation structures and the degree of

simplification used in the proposed pricing model. For instance, investors might command higher returns

for CLO tranches as liquidity premium or as premium for the leveraged exposure of tranches to changes in

underlying portfolio quality as the degree of unexpected loss increases at a higher rate relative to expected

loss (see section 4.3). In this section we investigate the relationship between unexpected and expected loss

as a margin of error in the estimation of default losses to check the robustness of quasi risk-neutral returns.

EVT estimates of expected losses seem to reduce their margin of error much faster than estimates based

on NID (see Appendix 2, Fig. 4). The different results for EVT and NID in Tabs. 16-18 (Appendix 1)

stem from the EVT-based emphasis on the limiting behaviour of normalised maxima, which assigns more

weight to credit losses of extreme events to be absorbed by the most junior tranche, which reduces the

default risk of more senior “investor tranches”. The asymptotic development of unexpected losses borne
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by the most junior tranche complements a strong decrease of unexpected losses relative to expected losses

and a flattening of the default term structure. All k
j

k
jL Lσ  ratios decrease over time but differ

considerably in orders of magnitude of decline. In contrast to the whole portfolio and the first loss

position [0-2.4%], which yield a balanced ratio on the basis of cumulative losses, the second tranche [2.4-

3.9%] exhibits a k
j

k
jL Lσ  ratio in the order of 10, while in the remaining, more senior tranches σ k

jL

grows roughly twice as fast as k
jL  over time. In general, we find that the impact of  σ k

jL  on the default

term structure declines as the CLO transaction matures, whereas the variation of unexpected losses around

the expected value increases with seniority. The term structure of unexpected losses vis-à-vis expected

losses has critical implications for the analysis of the security design of securitisation transactions. Our

results support the notion that issuers, who usually retain the most junior tranche as a first loss position in

the transaction, are only exposed to a constant first moment of expected losses, while investors holding

mezzanine (and senior) claims on the reference portfolio might face the prospect of a non-linear increase

of losses over time due to an “implicit transfer” of unexpected losses by issuers.

7 CONCLUSION

The main objective of this paper was the estimation of the default term structure and the pricing of

subordinated, default sensitive debt claims (tranches) in CLO-style securitisation with loss cascading. In a

general valuation model we investigated how loss sharing between issuers and investors through

subordination effects the way securitisation translates securitised credit risk exposure into leveraged

investment risk of issued tranches as an attractive investment and refinancing instrument. We first

completed an intensity-based (parametric) simulation of periodic random default losses of an uniform loan

portfolio based on two types of loss distribution functions (extreme value theory (EVT) and normal

inverse distribution (NID)). Subsequently, we modelled the loss cascading mechanism to derive the

periodic and cumulative default term structure of each tranche as well as the corresponding quasi risk-

neutral rates of return.

Our results clearly flag a dichotomy of expected losses per tranche (and quasi risk-neutral returns) between

the first loss position (equity tranche) and more senior “investor tranches”, mainly because the subordination

of tranches concentrates expected losses in the small first loss position, shifting most unexpected risk to

the larger, more senior tranches. The default term structure of cumulative loan loss allocated to the first

tranche increases linearly and appears to be more sensitive to varying default rates of the underlying
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reference portfolio than the more senior “investor tranches”, which exhibit a non-linear increase of default

losses over time. Also relative loss volatility increases exponentially for tranches beyond the first loss

position, where lower unexpected losses (i.e. the loss volatility of modelled periodic credit losses) engender

a more accurate quasi risk-neutral calculation of tranche returns. Considering the potential agency

problems between issuers and investors in securitisation structures, our results plausibly explain that issuers

commonly retain the most junior tranche as first loss position as an effort choice to mitigate agency costs

of asymmetric information about securitised assets. The retention of the lowest tranche is tantamount to

the acceptance of a calculable “sure loss”, which allows issuers to implicitly transfer most of the loss

volatility associated with securitised loans to investor tranches.

Since empirical evidence suggests higher stochastic weight associated with extreme events in corporate and

retail loan portfolios (“thick tails”), the gulf between the default term structures of the most junior tranche

and the remaining tranches is expected to widen in stress scenarios. Hence, the precise knowledge about

the tail behaviour of default losses makes an EVT-based approach superior to other limit distributions,

which merely assume moderate deviations around expected losses. Irrespective of the specific loss

distribution function the effect of subordination remains most distinctive for the most junior tranche; yet,

the EVT-based approach concentrates more expected cumulative losses on the most junior tranche

(especially for a changing default rate to reflect time-varying reference portfolio quality) than a normal

distribution function, with marginal periodic losses declining asymptotically. So if issuers properly account

for expected losses by providing optimal first loss protection at a certain projected default profile, they

benefit from an almost complete removal of unexpected losses from securitised loans. Since between 60%

to 98% of expected losses are concentrated in the most junior tranche according to our simulation results,

issuers offload most unexpected losses to investors.

The implications of the presented security design on the cumulative/periodic loss burden for extreme

quantiles and the associated quasi risk-neutral return expectation per tranche underscore the significance of

the transaction structure for the marketability of credit risk via loan securitisation. The retention of first

losses from securitised loans seems to be largely motivated by incentives that extend beyond an effort

choice to mitigate the agency cost of asymmetric information associated with the “credit component” of

loan securitisation (e.g. information constraints of lending relationships). The subordinated tranching

supports an efficient placement of debt securities within a security design, which enables issuers to

subdivide and redirect cash flows from securitised loans into new investment instruments at an essential

level of liquidity similar to “ordinary” fixed income securities as the “security component” of loan

securitisation. At the same time, the significant decline of marginal unexpected losses over time in the first
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loss position affords issuers more predictable investment risk than capital market investors, who hold the

mezzanine and senior tranches (investor tranches). However, issuers have to be carefully manage

unexpected risk in the selection of the credit risk of securitised loans as it influences their structural

discretion to devise loss tolerance of each tranche within a particular security design. As unexpected risk

becomes a more important component of investment risk than expected losses more senior investors also

experience higher leveraged exposure from unexpected losses than they would on expected losses. We find

that the lower the level of seniority (i) the higher the leverage of relative expected and unexpected losses

per tranche to relative portfolio losses, (ii) the lower the ratio of unexpected to expected losses, and (ii) the

higher the share of expected losses out of overall portfolio losses carried by the respective tranche.

Given the inherent ambiguity of securitised asset quality in CLO markets (especially in bank-based

financial systems with relationship lending characteristics), our analysis highlights the importance of a

careful review of how loss sharing provisions governing the allocation of beneficial interest and security

design impact on the risk assessment and pricing of securitised loans. Our approach presents a first

straightforward attempt at an instructive loss-based pricing methodology for CLO tranches based on the

estimation of the default term structure of securitised loans. In extension to our model more

comprehensive asset pricing models might allow for a flexible security design of CLO transactions, which

would certainly further enhance investor understanding of loss sharing in structured finance products and

promote informed investment in the bid to sustain a sufficiently liquid market for securitised loans.
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9 APPENDIX

9.1 Appendix 1: Tables

Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009
periodic 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009
cumulative 2 0.0026 0.005299 0.006512 0.207327 0.007653 0.002229 0.000797 0.000402 0.000023 0.004976 0.000115 0.000058 0.000020 0.000010 0.000020
periodic 0.002701 0.001931 0.103042 0.004558 0.001242 0.000422 0.000214 0.000013 0.002473 0.000068 0.000032 0.000011 0.000005 0.000012
cumulative 3 0.0026 0.007799 0.007978 0.308168 0.014546 0.003940 0.001332 0.000648 0.000037 0.007396 0.000218 0.000102 0.000033 0.000016 0.000033
periodic 0.002500 0.001466 0.100841 0.006893 0.001711 0.000535 0.000246 0.000014 0.002420 0.000103 0.000044 0.000013 0.000006 0.000012
cumulative 4 0.0026 0.010397 0.009228 0.406098 0.024665 0.006204 0.001994 0.000952 0.000051 0.009746 0.000370 0.000161 0.000050 0.000024 0.000045
periodic 0.002598 0.001250 0.097930 0.010119 0.002264 0.000662 0.000304 0.000014 0.002350 0.000152 0.000059 0.000017 0.000008 0.000012
cumulative 5 0.0026 0.012990 0.010317 0.500079 0.039278 0.009131 0.002777 0.001292 0.000067 0.012002 0.000589 0.000237 0.000069 0.000032 0.000059
periodic 0.002593 0.001089 0.093981 0.014613 0.002927 0.000783 0.000340 0.000016 0.002256 0.000219 0.000076 0.000020 0.000009 0.000014
cumulative 6 0.0026 0.015581 0.011252 0.589083 0.060005 0.012995 0.003645 0.001649 0.000082 0.014138 0.000900 0.000338 0.000091 0.000041 0.000073
periodic 0.002591 0.000935 0.089004 0.020727 0.003864 0.000868 0.000357 0.000015 0.002136 0.000311 0.000100 0.000022 0.000009 0.000013
cumulative 7 0.0026 0.018168 0.012104 0.671323 0.088676 0.018083 0.004711 0.002052 0.000098 0.016112 0.001330 0.000470 0.000118 0.000051 0.000087
periodic   0.002587 0.000852 0.082240 0.028671 0.005088 0.001066 0.000403 0.000016 0.001974 0.000430 0.000132 0.000027 0.000010 0.000014

Expected and
unexpected losses

σ k
jL  per tranche (in % of tranche volume) σ k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351
periodic 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351
cumulative 2 0.0026 0.005299 0.006512 0.178268 0.078295 0.041886 0.026340 0.019017 0.002261 0.004278 0.001174 0.001089 0.000659 0.000475 0.002001
periodic 0.002701 0.001931 0.047327 0.027958 0.013639 0.008308 0.006004 0.000735 0.001136 0.000419 0.000355 0.000208 0.000150 0.000650
cumulative 3 0.0026 0.007799 0.007978 0.208257 0.106408 0.055182 0.033976 0.024088 0.002737 0.004998 0.001596 0.001435 0.000849 0.000602 0.002422
periodic 0.002500 0.001466 0.029989 0.028113 0.013296 0.007636 0.005071 0.000476 0.000720 0.000422 0.000346 0.000191 0.000127 0.000421
cumulative 4 0.0026 0.010397 0.009228 0.226551 0.136470 0.068699 0.041584 0.029081 0.003191 0.005437 0.002047 0.001786 0.001040 0.000727 0.002824
periodic 0.002598 0.001250 0.018294 0.030062 0.013517 0.007608 0.004993 0.000454 0.000439 0.000451 0.000351 0.000190 0.000125 0.000402
cumulative 5 0.0026 0.012990 0.010317 0.235359 0.169272 0.082556 0.048863 0.033732 0.003616 0.005649 0.002539 0.002146 0.001222 0.000843 0.003200
periodic 0.002593 0.001089 0.008808 0.032802 0.013857 0.007279 0.004651 0.000425 0.000211 0.000492 0.000360 0.000182 0.000116 0.000376
cumulative 6 0.0026 0.015581 0.011252 0.235536 0.205001 0.097288 0.055601 0.038068 0.003977 0.005653 0.003075 0.002529 0.001390 0.000952 0.003520
periodic 0.002591 0.000935 0.000177 0.035729 0.014732 0.006738 0.004336 0.000361 0.000004 0.000536 0.000383 0.000168 0.000108 0.000319
cumulative 7 0.0026 0.018168 0.012104 0.227853 0.243130 0.113521 0.062720 0.042430 0.004301 0.005468 0.003647 0.002952 0.001568 0.001061 0.003806
periodic   0.002587 0.000852 -0.007683 0.038129 0.016233 0.007119 0.004362 0.000324 -0.000184 0.000572 0.000422 0.000178 0.000109 0.000287

Tab. 4. Simulation of constant forward probability rates (EVT loss function as distribution of portfolio losses) of default losses on a cumulative and periodic basis – losses per tranche with
either the tranche % or the absolute value of losses per period as reference base.
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Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.00010 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009
periodic 0.002598 0.004581 0.104285 0.003095 0.000987 0.000375 0.000188 0.000010 0.002503 0.000046 0.000026 0.000009 0.000005 0.000009
cumulative 2 0.00123 0.006191 0.006508 0.248098 0.008190 0.002382 0.000833 0.000413 0.000023 0.005954 0.000123 0.000062 0.000021 0.000010 0.000020
periodic 0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 0.003452 0.000076 0.000036 0.000011 0.000006 0.000012
cumulative 3 0.00195 0.010473 0.007834 0.416846 0.018131 0.004431 0.001373 0.000653 0.000034 0.010004 0.000272 0.000115 0.000034 0.000016 0.000030
periodic 0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 0.004050 0.000149 0.000053 0.000014 0.000006 0.000010
cumulative 4 0.00247 0.015278 0.009016 0.598044 0.039707 0.007968 0.002189 0.000976 0.000049 0.014353 0.000596 0.000207 0.000055 0.000024 0.000043
periodic 0.004805 0.004461 0.196124 0.003444 0.000979 0.000336 0.000171 0.000010 0.004349 0.000324 0.000092 0.000020 0.000008 0.000013
cumulative 5 0.00277 0.020389 0.010101 0.770975 0.088717 0.014413 0.003391 0.001416 0.000068 0.018503 0.001331 0.000375 0.000085 0.000035 0.000060
periodic 0.005111 0.004540 0.208625 0.003570 0.001030 0.000365 0.000192 0.000011 0.004150 0.000735 0.000168 0.000030 0.000011 0.000017
cumulative 6 0.00295 0.025679 0.011100 0.908023 0.195662 0.026506 0.005249 0.002007 0.000091 0.021793 0.002935 0.000689 0.000131 0.000050 0.000081
periodic 0.005289 0.004583 0.215965 0.003606 0.001061 0.000374 0.000194 0.000012 0.003289 0.001604 0.000314 0.000046 0.000015 0.000020
cumulative 7 0.00306 0.031064 0.011904 0.981059 0.389878 0.049962 0.008072 0.002774 0.000114 0.023545 0.005848 0.001299 0.000202 0.000069 0.000101
periodic   0.005386 0.004303 0.220174 0.003614 0.001051 0.000347 0.000173 0.000008 0.001753 0.002913 0.000610 0.000071 0.000019 0.000020

Expected and
unexpected losses

σ k
jL  per tranche (in % of tranche volume) σ k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.00010 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351
periodic 0.002598 0.004581 0.130941 0.050337 0.028247 0.018032 0.013013 0.001526 0.003143 0.000755 0.000734 0.000451 0.000325 0.001351
cumulative 2 0.00123 0.006191 0.006508 0.174874 0.080581 0.043399 0.026735 0.019296 0.002297 0.004197 0.001209 0.001128 0.000668 0.000482 0.002033
periodic 0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 0.001054 0.000454 0.000394 0.000218 0.000157 0.000682
cumulative 3 0.00195 0.010473 0.007834 0.196178 0.116936 0.058216 0.034156 0.024201 0.002717 0.004708 0.001754 0.001514 0.000854 0.000605 0.002405
periodic 0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 0.000511 0.000545 0.000385 0.000186 0.000123 0.000372
cumulative 4 0.00247 0.015278 0.009016 0.195799 0.166620 0.076333 0.042914 0.029468 0.003226 0.004699 0.002499 0.001985 0.001073 0.000737 0.002855
periodic 0.004805 0.004461 0.126626 0.052496 0.027589 0.017024 0.012409 0.001539 -0.000009 0.000745 0.000471 0.000219 0.000132 0.000450
cumulative 5 0.00277 0.020389 0.010101 0.168668 0.234645 0.100094 0.052945 0.035368 0.003746 0.004048 0.003520 0.002602 0.001324 0.000884 0.003315
periodic 0.005111 0.004540 0.126135 0.053353 0.028524 0.017735 0.013319 0.001588 -0.000651 0.001020 0.000618 0.000251 0.000148 0.000460
cumulative 6 0.00295 0.025679 0.011100 0.113185 0.312582 0.131249 0.065124 0.041864 0.004305 0.002716 0.004689 0.003412 0.001628 0.001047 0.003810
periodic 0.005289 0.004583 0.125604 0.053776 0.028916 0.018047 0.013306 0.001701 -0.001332 0.001169 0.000810 0.000304 0.000162 0.000495
cumulative 7 0.00306 0.031064 0.011904 0.048280 0.358264 0.172091 0.079550 0.048750 0.004631 0.001159 0.005374 0.004474 0.001989 0.001219 0.004098
periodic   0.005386 0.004303 0.125246 0.053700 0.028669 0.017346 0.012474 0.001050 -0.001558 0.000685 0.001062 0.000361 0.000172 0.000289

Tab. 5. Simulation of increasing forward probability rates (EVT loss function as distribution of portfolio losses) of default losses on a cumulative and periodic basis – losses per tranche with
either the tranche % or the absolute value of losses per period as reference base.
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Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.00367 0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 0.005896 0.000058 0.000028 0.000009 0.000005 0.000008
periodic 0.006005 0.004523 0.245673 0.003844 0.001091 0.000378 0.000182 0.000009 0.005896 0.000058 0.000028 0.000009 0.000005 0.000008
cumulative 2 0.00267 0.011014 0.006328 0.445650 0.012637 0.003011 0.000892 0.000419 0.000020 0.010696 0.000190 0.000078 0.000022 0.000010 0.000018
periodic 0.005009 0.004429 0.204375 0.003659 0.001085 0.000360 0.000178 0.000009 0.004799 0.000132 0.000050 0.000013 0.000006 0.000010
cumulative 3 0.00195 0.015296 0.007696 0.608457 0.030299 0.005900 0.001564 0.000693 0.000032 0.014603 0.000454 0.000153 0.000039 0.000017 0.000028
periodic 0.004282 0.004366 0.174498 0.003318 0.000946 0.000311 0.000158 0.000009 0.003907 0.000265 0.000075 0.000017 0.000007 0.000011
cumulative 4 0.00154 0.019189 0.008889 0.742734 0.063996 0.010507 0.002531 0.001046 0.000047 0.017826 0.000960 0.000273 0.000063 0.000026 0.000042
periodic 0.003894 0.004440 0.158171 0.003325 0.001020 0.000345 0.000169 0.000009 0.003223 0.000505 0.000120 0.000024 0.000009 0.000013
cumulative 5 0.00123 0.022782 0.010016 0.846424 0.121583 0.017450 0.003799 0.001493 0.000066 0.020314 0.001824 0.000454 0.000095 0.000037 0.000058
periodic 0.003593 0.004626 0.145561 0.003188 0.001032 0.000366 0.000197 0.000012 0.002489 0.000864 0.000181 0.000032 0.000011 0.000017
cumulative 6 0.00094 0.026099 0.011032 0.917378 0.206659 0.027686 0.005460 0.002017 0.000086 0.022017 0.003100 0.000720 0.000137 0.000050 0.000076
periodic 0.003317 0.004623 0.134103 0.003262 0.001042 0.000364 0.000176 0.000010 0.001703 0.001276 0.000266 0.000042 0.000013 0.000018
cumulative 7 0.00083 0.029309 0.011953 0.961671 0.318082 0.042558 0.007584 0.002645 0.000107 0.023080 0.004771 0.001107 0.000190 0.000066 0.000095
periodic   0.003209 0.004607 0.129703 0.003157 0.000987 0.000365 0.000195 0.000011 0.001063 0.001671 0.000387 0.000053 0.000016 0.000019

Expected and
unexpected losses

σ k
jL  per tranche (in % of tranche volume) σ k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr uρ jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.00367 0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 0.002987 0.000828 0.000761 0.000452 0.000316 0.001518
periodic 0.006005 0.004523 0.124453 0.055172 0.029266 0.018088 0.012631 0.001715 0.002987 0.000828 0.000761 0.000452 0.000316 0.001518
cumulative 2 0.00267 0.011014 0.006328 0.159532 0.097505 0.047893 0.027566 0.019229 0.002198 0.003829 0.001463 0.001245 0.000689 0.000481 0.001945
periodic 0.005009 0.004429 0.126442 0.054316 0.029122 0.017752 0.012535 0.001253 0.000842 0.000635 0.000484 0.000237 0.000165 0.000427
cumulative 3 0.00195 0.015296 0.007696 0.170597 0.145666 0.065797 0.036069 0.024743 0.002656 0.004094 0.002185 0.001711 0.000902 0.000619 0.002351
periodic 0.004282 0.004366 0.127236 0.051448 0.027190 0.016506 0.011817 0.001324 0.000266 0.000722 0.000466 0.000213 0.000138 0.000405
cumulative 4 0.00154 0.019189 0.008889 0.162596 0.202429 0.086183 0.045515 0.030438 0.003059 0.003902 0.003036 0.002241 0.001138 0.000761 0.002707
periodic 0.003894 0.004440 0.128220 0.051941 0.028494 0.017093 0.012322 0.001283 -0.000192 0.000851 0.000530 0.000236 0.000142 0.000357
cumulative 5 0.00123 0.022782 0.010016 0.138867 0.262821 0.108775 0.055492 0.036301 0.003628 0.003333 0.003942 0.002828 0.001387 0.000908 0.003211
periodic 0.003593 0.004626 0.128459 0.050898 0.028846 0.017801 0.013353 0.001674 -0.000569 0.000906 0.000587 0.000249 0.000147 0.000504
cumulative 6 0.00094 0.026099 0.011032 0.106689 0.317039 0.133944 0.066194 0.041936 0.004178 0.002561 0.004756 0.003483 0.001655 0.001048 0.003698
periodic 0.003317 0.004623 0.129227 0.051637 0.028862 0.017647 0.012598 0.001760 -0.000772 0.000813 0.000654 0.000268 0.000141 0.000487
cumulative 7 0.00083 0.029309 0.011953 0.072741 0.354321 0.161875 0.077491 0.047751 0.004688 0.001746 0.005315 0.004209 0.001937 0.001194 0.004149
periodic   0.003209 0.004607 0.128773 0.050739 0.028080 0.017886 0.013405 0.001735 -0.000815 0.000559 0.000726 0.000282 0.000145 0.000451

Tab. 6. Simulation of decreasing forward probability rates (EVT loss function as distribution of portfolio losses) of default losses on a cumulative and periodic basis – losses per tranche with
either the tranche % or the absolute value of losses per period as reference base.
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Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr p jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 0.002504 0.000062 0.000022 0.000004 0.000001 0.000001
periodic 0.002593 0.004588 0.104352 0.004135 0.000830 0.000157 0.000041 0.000001 0.002504 0.000062 0.000022 0.000004 0.000001 0.000001
cumulative 2 0.0026 0.005186 0.006491 0.206350 0.010987 0.002129 0.000389 0.000110 0.000001 0.004952 0.000165 0.000055 0.000010 0.000003 0.000001
periodic 0.002593 0.001903 0.101998 0.006852 0.001299 0.000232 0.000069 0.000000 0.002448 0.000103 0.000034 0.000006 0.000002 0.000000
cumulative 3 0.0026 0.007771 0.007921 0.304995 0.021439 0.004068 0.000683 0.000177 0.000002 0.007320 0.000322 0.000106 0.000017 0.000004 0.000002
periodic 0.002585 0.001430 0.098645 0.010452 0.001939 0.000294 0.000067 0.000001 0.002367 0.000157 0.000050 0.000007 0.000002 0.000001
cumulative 4 0.0026 0.010356 0.009126 0.399452 0.036819 0.006922 0.001108 0.000261 0.000003 0.009587 0.000552 0.000180 0.000028 0.000007 0.000003
periodic 0.002585 0.001205 0.094457 0.015380 0.002854 0.000425 0.000084 0.000001 0.002267 0.000231 0.000074 0.000011 0.000002 0.000001
cumulative 5 0.0026 0.012934 0.010181 0.488493 0.058068 0.010884 0.001691 0.000392 0.000004 0.011724 0.000871 0.000283 0.000042 0.000010 0.000004
periodic 0.002578 0.001055 0.089041 0.021249 0.003962 0.000583 0.000131 0.000001 0.002137 0.000319 0.000103 0.000015 0.000003 0.000001
cumulative 6 0.0026 0.015500 0.011127 0.570866 0.086047 0.016401 0.002502 0.000559 0.000006 0.013701 0.001291 0.000426 0.000063 0.000014 0.000005
periodic 0.002566 0.000946 0.082373 0.027979 0.005517 0.000811 0.000167 0.000002 0.001977 0.000420 0.000143 0.000020 0.000004 0.000002
cumulative 7 0.0026 0.018059 0.011991 0.645940 0.121363 0.023847 0.003575 0.000777 0.000008 0.015503 0.001820 0.000620 0.000089 0.000019 0.000007
periodic   0.002559 0.000864 0.075074 0.035316 0.007446 0.001073 0.000218 0.000002 0.001802 0.000530 0.000194 0.000027 0.000005 0.000002

Tab. 7. Simulation of constant forward probability rates (NID) of default losses on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of losses
per period as reference base.

Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr p jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 0.002505 0.000062 0.000022 0.000004 0.000001 0.000001
periodic 0.002593 0.004579 0.104369 0.004101 0.000831 0.000147 0.000039 0.000001 0.002505 0.000062 0.000022 0.000004 0.000001 0.000001
cumulative 2 0.0026 0.006178 0.007552 0.241895 0.016947 0.003589 0.000685 0.000200 0.000004 0.005805 0.000254 0.000093 0.000017 0.000005 0.000004
periodic 0.003585 0.002973 0.137526 0.012846 0.002758 0.000538 0.000161 0.000003 0.003301 0.000193 0.000072 0.000013 0.000004 0.000003
cumulative 3 0.0026 0.010451 0.010198 0.393470 0.045190 0.010055 0.001928 0.000516 0.000008 0.009443 0.000678 0.000261 0.000048 0.000013 0.000007
periodic 0.004273 0.002646 0.151575 0.028243 0.006466 0.001243 0.000316 0.000004 0.003638 0.000424 0.000168 0.000031 0.000008 0.000004
cumulative 4 0.0026 0.015207 0.012650 0.542116 0.096050 0.023047 0.004522 0.001182 0.000016 0.013011 0.001441 0.000599 0.000113 0.000030 0.000014
periodic 0.004756 0.002452 0.148646 0.050860 0.012992 0.002594 0.000666 0.000008 0.003568 0.000763 0.000338 0.000065 0.000017 0.000007
cumulative 5 0.0026 0.020238 0.014826 0.673930 0.172279 0.044946 0.009036 0.002325 0.000030 0.016174 0.002584 0.001169 0.000226 0.000058 0.000027
periodic 0.005031 0.002176 0.131814 0.076229 0.021899 0.004514 0.001143 0.000014 0.003164 0.001143 0.000569 0.000113 0.000029 0.000012
cumulative 6 0.0026 0.025426 0.016816 0.780726 0.271508 0.078663 0.016656 0.004250 0.000054 0.018737 0.004073 0.002045 0.000416 0.000106 0.000048
periodic 0.005188 0.001990 0.106796 0.099229 0.033717 0.007620 0.001925 0.000024 0.002563 0.001488 0.000877 0.000191 0.000048 0.000021
cumulative 7 0.0026 0.030681 0.018618 0.860469 0.386342 0.125166 0.028539 0.007366 0.000094 0.020651 0.005795 0.003254 0.000713 0.000184 0.000083
periodic   0.005255 0.001802 0.079743 0.114834 0.046503 0.011883 0.003116 0.000040 0.001914 0.001723 0.001209 0.000297 0.000078 0.000035

Tab. 8. Simulation of increasing forward probability rates (NID) of default losses on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of
losses per period as reference base.
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Expected and
unexpected losses

k
jL  per tranche (in % of tranche volume) k

jL  per tranche (abs. share of total exp. losses per period)

cum./per. Yr p jL jLσ
0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100% 0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 0.005799 0.000153 0.000036 0.000004 0.000001 0.000000
periodic 0.005992 0.006269 0.241622 0.010208 0.001379 0.000144 0.000023 0.000000 0.005799 0.000153 0.000036 0.000004 0.000001 0.000000
cumulative 2 0.0026 0.010961 0.008220 0.431596 0.032250 0.004144 0.000389 0.000061 0.000000 0.010358 0.000484 0.000108 0.000010 0.000002 0.000000
periodic 0.004969 0.001951 0.189974 0.022042 0.002765 0.000245 0.000037 0.000000 0.004559 0.000331 0.000072 0.000006 0.000001 0.000000
cumulative 3 0.0026 0.015214 0.009431 0.580569 0.068669 0.008830 0.000719 0.000097 0.000001 0.013934 0.001030 0.000230 0.000018 0.000002 0.000000
periodic 0.004253 0.001211 0.148973 0.036419 0.004686 0.000330 0.000037 0.000000 0.003575 0.000546 0.000122 0.000008 0.000001 0.000000
cumulative 4 0.0026 0.019060 0.010333 0.698890 0.121829 0.016286 0.001245 0.000147 0.000001 0.016773 0.001827 0.000423 0.000031 0.000004 0.000001
periodic 0.003846 0.000902 0.118321 0.053160 0.007456 0.000526 0.000050 0.000000 0.002840 0.000797 0.000194 0.000013 0.000001 0.000000
cumulative 5 0.0026 0.022595 0.011046 0.790304 0.190679 0.027340 0.002020 0.000225 0.000001 0.018967 0.002860 0.000711 0.000051 0.000006 0.000001
periodic 0.003535 0.000713 0.091414 0.068850 0.011054 0.000775 0.000078 0.000000 0.002194 0.001033 0.000287 0.000019 0.000002 0.000000
cumulative 6 0.0026 0.025819 0.011616 0.857477 0.270135 0.042336 0.003105 0.000323 0.000001 0.020579 0.004052 0.001101 0.000078 0.000008 0.000001
periodic 0.003224 0.000570 0.067173 0.079456 0.014996 0.001085 0.000098 0.000000 0.001612 0.001192 0.000390 0.000027 0.000002 0.000000
cumulative 7 0.0026 0.028936 0.012125 0.907148 0.359962 0.062859 0.004687 0.000454 0.000002 0.021772 0.005399 0.001634 0.000117 0.000011 0.000002
periodic   0.003117 0.000509 0.049671 0.089827 0.020523 0.001582 0.000131 0.000000 0.001192 0.001347 0.000534 0.000040 0.000003 0.000000

Tab. 9. Simulation of decreasing forward probability rates (NID) of default losses on a cumulative and periodic basis – losses per tranche with either the tranche % or the absolute value of
losses per period as reference base.
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Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

UL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~ σσ  multiple

cum./per. Yr uρ jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.0026 0.002598 0.004581 40.140 1.191 0.380 0.144 0.072 0.004 28.583 10.988 6.166 3.936 2.841 0.333
periodic 0.002598 0.004581 40.140 1.191 0.380 0.144 0.072 0.004 28.583 10.988 6.166 3.936 2.841 0.333
cumulative 2 0.0026 0.005299 0.006512 39.126 1.444 0.421 0.150 0.076 0.004 27.375 12.023 6.432 4.045 2.920 0.347
periodic 0.002701 0.001931 38.150 1.688 0.460 0.156 0.079 0.005 24.509 14.479 7.063 4.302 3.109 0.381
cumulative 3 0.0026 0.007799 0.007978 39.514 1.865 0.505 0.171 0.083 0.005 26.104 13.338 6.917 4.259 3.019 0.343
periodic 0.002500 0.001466 40.336 2.757 0.684 0.214 0.098 0.006 20.456 19.177 9.070 5.209 3.459 0.325
cumulative 4 0.0026 0.010397 0.009228 39.059 2.372 0.597 0.192 0.092 0.005 24.550 14.789 7.445 4.506 3.151 0.346
periodic 0.002598 0.001250 37.694 3.895 0.871 0.255 0.117 0.005 14.635 24.050 10.814 6.086 3.994 0.363
cumulative 5 0.0026 0.012990 0.010317 38.497 3.024 0.703 0.214 0.099 0.005 22.813 16.407 8.002 4.736 3.270 0.350
periodic 0.002593 0.001089 36.244 5.636 1.129 0.302 0.131 0.006 8.088 30.121 12.725 6.684 4.271 0.390
cumulative 6 0.0026 0.015581 0.011252 37.808 3.851 0.834 0.234 0.106 0.005 20.933 18.219 8.646 4.941 3.383 0.353
periodic 0.002591 0.000935 34.351 8.000 1.491 0.335 0.138 0.006 0.189 38.213 15.756 7.206 4.637 0.386
cumulative 7 0.0026 0.018168 0.012104 36.951 4.881 0.995 0.259 0.113 0.005 18.825 20.087 9.379 5.182 3.505 0.355
periodic   0.002587 0.000852 31.790 11.083 1.967 0.412 0.156 0.006 -9.018 44.752 19.053 8.356 5.120 0.380

Tab. 10. Leveraged expected and unexpected loss exposure of constituent tranches through time for constant forward probability rates (EVT loss function of
default losses on a cumulative and periodic basis, see Tab. 4).
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Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

UL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~ σσ  multiple

cum./per. Yr uρ jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.00010 0.002598 0.004581 40.140 1.191 0.380 0.144 0.072 0.004 28.583 10.988 6.166 3.936 2.841 0.333
periodic 0.002598 0.004581 40.140 1.191 0.380 0.144 0.072 0.004 28.583 10.988 6.166 3.936 2.841 0.333
cumulative 2 0.00123 0.006191 0.006508 40.074 1.323 0.385 0.135 0.067 0.004 26.871 12.382 6.669 4.108 2.965 0.353
periodic 0.003593 0.004626 40.512 0.887 0.287 0.102 0.055 0.003 27.769 11.003 6.236 3.848 2.887 0.362
cumulative 3 0.00195 0.010473 0.007834 39.802 1.731 0.423 0.131 0.062 0.003 25.042 14.927 7.431 4.360 3.089 0.347
periodic 0.004282 0.004366 40.752 0.775 0.221 0.073 0.037 0.002 29.142 11.784 6.228 3.781 2.707 0.303
cumulative 4 0.00247 0.015278 0.009016 39.144 2.599 0.522 0.143 0.064 0.003 21.717 18.480 8.466 4.760 3.268 0.358
periodic 0.004805 0.004461 40.817 0.717 0.204 0.070 0.036 0.002 28.385 11.768 6.184 3.816 2.782 0.345
cumulative 5 0.00277 0.020389 0.010101 37.813 4.351 0.707 0.166 0.069 0.003 16.698 23.230 9.909 5.242 3.501 0.371
periodic 0.005111 0.004540 40.819 0.698 0.202 0.071 0.038 0.002 27.783 11.752 6.283 3.906 2.934 0.350
cumulative 6 0.00295 0.025679 0.011100 35.361 7.620 1.032 0.204 0.078 0.004 10.197 28.161 11.824 5.867 3.772 0.388
periodic 0.005289 0.004583 40.833 0.682 0.201 0.071 0.037 0.002 27.407 11.734 6.309 3.938 2.903 0.371
cumulative 7 0.00306 0.031064 0.011904 31.582 12.551 1.608 0.260 0.089 0.004 4.056 30.096 14.457 6.683 4.095 0.389
periodic   0.005386 0.004303 40.879 0.671 0.195 0.064 0.032 0.001 29.107 12.480 6.663 4.031 2.899 0.244

Tab. 11. Leveraged expected and unexpected loss exposure of constituent tranches through time for increasing forward probability rates (EVT loss function of
default losses on a cumulative and periodic basis, see Tab. 5).



37

Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

UL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~ σσ  multiple

cum./per. Yr uρ jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.00367 0.006005 0.004523 40.911 0.640 0.182 0.063 0.030 0.001 27.516 12.198 6.470 3.999 2.793 0.379
periodic 0.006005 0.004523 40.911 0.640 0.182 0.063 0.030 0.001 27.516 12.198 6.470 3.999 2.793 0.379
cumulative 2 0.00267 0.011014 0.006328 40.462 1.147 0.273 0.081 0.038 0.002 25.210 15.409 7.568 4.356 3.039 0.347
periodic 0.005009 0.004429 40.802 0.730 0.217 0.072 0.036 0.002 28.549 12.264 6.575 4.008 2.830 0.283
cumulative 3 0.00195 0.015296 0.007696 39.779 1.981 0.386 0.102 0.045 0.002 22.167 18.927 8.550 4.687 3.215 0.345
periodic 0.004282 0.004366 40.752 0.775 0.221 0.073 0.037 0.002 29.142 11.784 6.228 3.781 2.707 0.303
cumulative 4 0.00154 0.019189 0.008889 38.706 3.335 0.548 0.132 0.055 0.002 18.292 22.773 9.695 5.120 3.424 0.344
periodic 0.003894 0.004440 40.619 0.854 0.262 0.089 0.043 0.002 28.878 11.698 6.418 3.850 2.775 0.289
cumulative 5 0.00123 0.022782 0.010016 37.153 5.337 0.766 0.167 0.066 0.003 13.865 26.240 10.860 5.540 3.624 0.362
periodic 0.003593 0.004626 40.512 0.887 0.287 0.102 0.055 0.003 27.769 11.003 6.236 3.848 2.887 0.362
cumulative 6 0.00094 0.026099 0.011032 35.150 7.918 1.061 0.209 0.077 0.003 9.671 28.738 12.141 6.000 3.801 0.379
periodic 0.003317 0.004623 40.429 0.983 0.314 0.110 0.053 0.003 27.953 11.170 6.243 3.817 2.725 0.381
cumulative 7 0.00083 0.029309 0.011953 32.811 10.853 1.452 0.259 0.090 0.004 6.086 29.643 13.543 6.483 3.995 0.392
periodic   0.003209 0.004607 40.419 0.984 0.308 0.114 0.061 0.003 27.952 11.013 6.095 3.882 2.910 0.377

Tab. 12. Leveraged expected and unexpected loss exposure of constituent tranches through time for decreasing forward probability rates (EVT loss function of
default losses on a cumulative and periodic basis, see Tab. 6).
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Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

cum./per. Yr p jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.0026 0.002598 0.004581 40.244 1.595 0.320 0.061 0.016 0.000
periodic 0.002598 0.004581 40.244 1.595 0.320 0.061 0.016 0.000
cumulative 2 0.0026 0.005299 0.006512 39.790 2.119 0.411 0.075 0.021 0.000
periodic 0.002701 0.001931 39.336 2.642 0.501 0.089 0.027 0.000
cumulative 3 0.0026 0.007799 0.007978 39.248 2.759 0.523 0.088 0.023 0.000
periodic 0.002500 0.001466 38.161 4.043 0.750 0.114 0.026 0.000
cumulative 4 0.0026 0.010397 0.009228 38.572 3.555 0.668 0.107 0.025 0.000
periodic 0.002598 0.001250 36.540 5.950 1.104 0.164 0.032 0.000
cumulative 5 0.0026 0.012990 0.010317 37.768 4.490 0.842 0.131 0.030 0.000
periodic 0.002593 0.001089 34.539 8.242 1.537 0.226 0.051 0.000
cumulative 6 0.0026 0.015581 0.011252 36.830 5.551 1.058 0.161 0.036 0.000
periodic 0.002591 0.000935 32.102 10.904 2.150 0.316 0.065 0.001
cumulative 7 0.0026 0.018168 0.012104 35.768 6.720 1.321 0.198 0.043 0.000
periodic   0.002587 0.000852 29.337 13.801 2.910 0.419 0.085 0.001

Tab. 13. Leveraged expected loss exposure of constituent tranches through time for constant forward
probability rates (NID loss function of default losses on a cumulative and periodic basis, see Tab. 7).

Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

cum./per. Yr p jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.0026 0.002598 0.004581 40.250 1.582 0.320 0.057 0.015 0.000
periodic 0.002598 0.004581 40.250 1.582 0.320 0.057 0.015 0.000
cumulative 2 0.0026 0.005299 0.006512 39.154 2.743 0.581 0.111 0.032 0.001
periodic 0.002701 0.001931 38.362 3.583 0.769 0.150 0.045 0.001
cumulative 3 0.0026 0.007799 0.007978 37.649 4.324 0.962 0.184 0.049 0.001
periodic 0.002500 0.001466 35.473 6.610 1.513 0.291 0.074 0.001
cumulative 4 0.0026 0.010397 0.009228 35.649 6.316 1.516 0.297 0.078 0.001
periodic 0.002598 0.001250 31.254 10.694 2.732 0.545 0.140 0.002
cumulative 5 0.0026 0.012990 0.010317 33.300 8.513 2.221 0.446 0.115 0.001
periodic 0.002593 0.001089 26.200 15.152 4.353 0.897 0.227 0.003
cumulative 6 0.0026 0.015581 0.011252 30.706 10.678 3.094 0.655 0.167 0.002
periodic 0.002591 0.000935 20.585 19.127 6.499 1.469 0.371 0.005
cumulative 7 0.0026 0.018168 0.012104 28.046 12.592 4.080 0.930 0.240 0.003
periodic   0.002587 0.000852 15.175 21.852 8.849 2.261 0.593 0.008

Tab. 14. Leveraged expected loss exposure of constituent tranches through time for increasing forward
probability rates (NID loss function of default losses on a cumulative and periodic basis, see Tab. 8).
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Expected and
unexpected losses

 EL leverage: relative tranche loss to relative portfolio

j
k
j LL ~~

 multiple

cum./per. Yr p jL jLσ 0-2.4%
2.4-
3.9%

3.9-
6.5%

6.5-
9.0%

9.0-
10.5%

10.5-
100%

cumulative 1 0.0026 0.002598 0.004581 40.324 1.704 0.230 0.024 0.004 0.000
periodic 0.002598 0.004581 40.324 1.704 0.230 0.024 0.004 0.000
cumulative 2 0.0026 0.005299 0.006512 39.376 2.942 0.378 0.035 0.006 0.000
periodic 0.002701 0.001931 38.232 4.436 0.556 0.049 0.007 0.000
cumulative 3 0.0026 0.007799 0.007978 38.160 4.514 0.580 0.047 0.006 0.000
periodic 0.002500 0.001466 35.028 8.563 1.102 0.078 0.009 0.000
cumulative 4 0.0026 0.010397 0.009228 36.668 6.392 0.854 0.065 0.008 0.000
periodic 0.002598 0.001250 30.765 13.822 1.939 0.137 0.013 0.000
cumulative 5 0.0026 0.012990 0.010317 34.977 8.439 1.210 0.089 0.010 0.000
periodic 0.002593 0.001089 25.860 19.477 3.127 0.219 0.022 0.000
cumulative 6 0.0026 0.015581 0.011252 33.211 10.463 1.640 0.120 0.013 0.000
periodic 0.002591 0.000935 20.835 24.645 4.651 0.337 0.030 0.000
cumulative 7 0.0026 0.018168 0.012104 31.350 12.440 2.172 0.162 0.016 0.000
periodic   0.002587 0.000852 15.936 28.818 6.584 0.508 0.042 0.000

Tab. 15. Leveraged expected loss exposure of constituent tranches through time for decreasing forward
probability rates (NID loss function of default losses on a cumulative and periodic basis, see Tab. 9).

unexpect./

expect. losses

σ k
jL

k
jL

 per tranche

cum./per. Yr uρ
jL

jL

σ

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.0026 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000

periodic 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000

cumulative 2 0.0026 0.228911 0.859840 10.230629 18.791386 33.048934 47.305970 98.304348

periodic 0.714920 0.459298 6.133831 10.981481 19.687204 28.056075 56.538462

cumulative 3 0.0026 0.022952 0.675790 7.315276 14.005584 25.507508 37.172840 73.972973

periodic 0.586400 0.297389 4.078485 7.770894 14.272897 20.613821 34.000000

cumulative 4 0.0026 0.887564 0.557873 5.532941 10.073340 20.854564 30.547269 62.568627

periodic 0.481139 0.186807 2.970847 5.970406 10.492447 16.424342 32.428571

cumulative 5 0.0026 0.794226 0.470644 4.309588 9.041288 17.595607 26.108359 53.970149

periodic 0.419977 0.093721 2.244714 4.734199 9.296296 13.679412 26.562500

cumulative 6 0.0026 0.722162 0.399835 3.416399 7.486572 15.254047 23.085506 48.500000

periodic 0.360865 0.001989 0.723790 3.812629 7.762673 12.145658 24.066667

cumulative 7 0.0026 0.666226 0.339409 2.741779 6.277775 13.313522 20.677388 43.887755

periodic  0.329339 -0.093422 0.329880 3.190448 6.678236 10.823821 20.250000

Tab. 16. k
j

k
jL Lσ  ratio for each tranche based on simulated constant forward probability rates (EVT distribution of

portfolio losses).
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unexpect./ex

pect. losses

σ k
jL

k
jL

 per tranche

cum./per. Yr uρ
jL

jL

σ

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.000100 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000

periodic 0.763279 0.255607 16.263974 28.619048 48.085333 69.218085 152.600000

cumulative 2 0.001231 0.051203 0.704859 9.838950 18.219563 32.094838 46.721550 99.869565

periodic 0.287503 0.882510 15.965496 27.951550 48.636612 67.781726 139.500000

cumulative 3 0.001945 0.748019 0.470625 6.449506 13.138343 24.876912 37.061256 79.911765

periodic 0.019617 0.729154 15.505726 28.742072 53.073955 74.791139 147.111111

cumulative 4 0.002469 0.590130 0.327399 4.196237 9.579945 19.604386 30.192623 65.836735

periodic 0.928408 0.645643 15.242741 28.180797 50.666667 72.567251 153.900000

cumulative 5 0.002771 0.495414 0.218772 2.644871 6.944703 15.613388 24.977401 55.088235

periodic 0.888280 0.604602 14.944818 27.693204 48.589041 69.369792 144.363636

cumulative 6 0.002954 0.432260 0.124650 0.597561 4.951671 12.406935 20.858994 47.307692

periodic 0.866515 0.581594 14.912923 27.253534 48.254011 68.587629 140.750000

cumulative 7 0.003055 0.383209 0.049212 0.918913 3.444438 9.855055 17.573901 40.622807

periodic  0.798923 0.568850 14.858882 27.277831 49.988473 72.104046 130.250000

Tab. 17. k
j

k
jL Lσ ratio for each tranche based on simulated increasing forward probability rates of a deteriorating

portfolio (EVT distribution of portfolio losses).

unexpect./

expect. losses

σ k
jL

k
jL

 per tranche

cum./per. Yr uρ
jL

jL

σ

0-2.4% 2.4-3.9% 3.9-6.5% 6.5-9% 9-10.5% 10.5-100%

cumulative 1 0.003673 0.753206 0.506580 14.352758 26.824931 47.851852 69.401099 190.555556

periodic 0.753206 0.506580 14.352758 26.824931 47.851852 69.401099 190.555556

cumulative 2 0.002669 0.574541 0.357976 7.715834 15.906011 30.903587 45.892601 109.900000

periodic 0.884208 0.618676 14.844493 26.840553 49.311111 70.421348 139.222222

cumulative 3 0.001945 0.503138 0.280376 4.807617 10.152034 23.062020 35.704185 83.000000

periodic 0.019617 0.729154 15.505726 28.742072 53.073955 74.791139 147.111111

cumulative 4 0.001538 0.463234 0.218916 3.163151 8.202436 17.983011 29.099426 65.085106

periodic 0.140216 0.810642 15.621353 27.935294 49.544928 72.911243 142.555556

cumulative 5 0.001231 0.439645 0.164063 2.161659 6.233524 14.607002 24.314133 54.969697

periodic 0.287503 0.882510 15.965496 27.951550 48.636612 67.781726 139.500000

cumulative 6 0.000940 0.422698 0.116298 0.534117 4.837969 12.123443 20.791274 48.581395

periodic 0.393729 0.963640 15.829859 27.698656 48.480769 70.579545 176.000000

cumulative 7 0.000834 0.407827 0.075640 0.113930 3.803633 10.217695 18.053308 43.813084

periodic  0.435650 0.992830 16.071904 28.449848 49.002740 68.743590 157.727273

Tab. 18. k
j

k
jL Lσ  ratio for each tranche based on simulated decreasing forward probability rates of an improving

portfolio (EVT distribution of portfolio losses).
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9.2 Appendix 2: Figures

Fig. 1. Default term structure of cumulative and periodic expected losses (EVT). The first tranche [0-2.4%] scales with
the right axis.
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Fig. 2. Default term structure of cumulative and periodic expected losses (NID). The first tranche [0-2.4%] scales with
the right axis. The most senior tranche has been excluded for the logarithmic case due to negative values.
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Fig. 3. Expected loss in tranches for a deteriorating portfolio (i.e. increasing forward rate of default) with EVT-based
loss function, where the first loss position [0-2.4%] is scaled to the right axis.
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Fig. 4. Term structure of the σ k
j

k
jL L  ratio for a uniform reference portfolio (on the basis of EVT- and NID-based

loss functions) at a constant, increasing and decreasing forward rate of default (cumulative and periodic loss).
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1 These positions may take the form of fully/partially funded asset-backed securities or unfunded derivatives.
2 See Herrmann and Tierney (1999) as well as Howard and Merritt (1997) as regards the origins of the growing
popularity of CLO transactions.
3 See also Telpner (2003), Zweig (2002), Altrock and Rieso (1999), Everling (1999), Bär (1998), Eck (1998),
Kohler (1998), Kravit (1997), Cumming (1987), Kendall (1996) and Frankel (1991).
4 See Bank of England (1989) for an early assessment of risk transfer in asset securitisation and derivative
transactions. See also Edwards (2001) and Bund (2000a and 2000b).
5 See Morris and Shin (2001) on the concept of market discipline.
6 Akerlof (1970) first applied the economic concept of optimal decision-making under asymmetric information in
his analysis of the effects of adverse selection he ascribed to the “lemons market” of used cars.
7 The Basle Committee on Banking Supervision (2002) defines credit enhancement as a contractual arrangement
in which the bank retains or assumes a securitisation exposure and, in substance, provides some degree of added
protection to other parties to the transaction. [...].” See also Basle Committee (2001, 2004a and 2004b). If credit
enhancement is achieved through subordination, issuers retain the most junior tranche as “equity tranche”, which
bears all first losses of the transaction.
8 Asset pricing of securitised debt could be approached either from the perspective of (i) cash flows generated
from the reference portfolio or (ii) expected losses from creditor default. Most models in the literature
concentrate on the upside of loan securitisation, i.e. the cash flow modelling of distributable interest and principal
proceeds to be had from the securitised loan pool (Childs et al., 1996). However, we choose to analyse the default
term structure and the value of loan securitisation transactions from the perspective of credit risk by modelling
the loss side. By extending accepted principles of asset pricing we derive a default term structure of expected
losses, which entail certain credit spreads for the various tranches of a securitisation transaction as investment
risk premium.
9 See also Basle Committee (2003, 2002a, 2002b, 2001a and 2001b).
10 see Caouette et al. (1998) for an overview. See also Allen and Gale (1995)
11 see also Clemenz (1986), Bolton and Scharfstein (1990), Rajan (1992), Holmström and Tirole (1998), Park
(2000) and Wolfe (2000) in this regard.
12 See also Hamerle and Rösch (2004) for an interesting approach in how these industrial applications of
structural credit risk models could be reconciled in new parametric credit risk model with maximum likelihood
estimation.
13 Fidler and Boland (2002) issue critical comments on existing asset pricing methodologies of asset securitisation.
14 The reason for extreme value theory (EVT) as a methodology is straightforward. In the course of proper asset
pricing of leveraged contingent claims on a defined loan pool with a defined credit event extreme value analysis
enters very naturally in order to examine how security design provisions impact on investment risk.
15 This approach is similar to, though econometrically different from, Jarrow et al. (1997), who introduce a
univariate Markov model for the term structure of credit risk returns, where rating agencies’ default rates and
bond prices serve as input variables, so that investors’ risk premium can explicitly estimated for static and
variable risk-free interest rates. See also Arvanitis et al. (1999) as well as Madan and Unal (1998).
16 Das and Tufano (1996) price credit-sensitive debt on the basis of stochastic interest rates, credit ratings and
credit spreads. See also Ramaswamy and Sundaresan (1986). In pricing contingent claims on default-correlated
assets, we also incorporate specific considerations, which have emerged in discussions of credit risk modelling in
Cossin (1997), Madan (1998) as well as Madan and Unal (1994). For further information in context of gauging
the impact of credit risk on structured finance instruments, we refer readers to Hull and White (1995) as well as
Cooper and Martin (1996), who make several important observations about credit risk and how it affects the
price of over-the-counter derivatives. With respect to credit risk hedging, readers might find it worthwhile to
consider Sorensen and Bollier (1994) for a practical explanation of pricing the credit risk in an over-the-counter
swap.
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17 Additionally, we rely on other research along the lines of the so-called “yield spread approach” by Litterman
and Iben (1991), Das and Tufano (1996), Artzner and Delbaen (1994), Nielsen and Ronn (1996) as well as
Duffee (1996).
18 See also Barnhill and Maxwell (2002).
19 The bivariate normal distribution has a symmetric covariance matrix displaying the correlation factor ρ off and
covariances on the diagonal.
20 For further references on the application of EVT in the estimation of heavy tailed financial returns and market
risk see also Longin and Solnik (2001), Longin (2000), Embrechts, et al. (1999a, 1999b and 1999c), McNeil
(1999), McNeil and Frey (1999), Adler et al. (1998), Diebold et al. (1998), Danielsson and de Vries (1997a and
1997b), Embrechts et al. (1997), Resnik (1992), Longin (1996) and Leadbetter et al. (1983).
21 i.e. they decline polynomially to zero and not at an exponential rate as a normal distribution tail would imply.
22 Ergodicity is an attribute of a stochastic system, which has a unique stationary distribution to which it will
converge from any initial state; i.e. an ergodic system tends in probability to a limiting form (steady state)
independent of the initial conditions, so that there is some time after which, whatever the initial state was, one
has a non-zero possibility of being in any state.
23 The tail index parameter also indicates the number of moments of the distribution, e.g. if 2=ξ , the first
moment (mean) and the second moment (variance) exist, but higher moments have a finite value.
24 See Resnick (1992) for a formal proof of the theorem. See also Resnick (1998) and Gnedenko (1943).
25 Note that we derive GPD on the basis of the one-dimensional Pareto-like distribution

( ) ( ) 1
11,,

−−+−= ξβξβξ xxG for 0≠ξ  and 0≥x , with density function ( ) ( ) ( ) 1,, +== ξββξβξ xxgxPar
1+⇔ ξξξβ x , and +∞≤≤ xβ , where 0>β , 0>ξ  and distribution function ( ) ( )ξβ xxG −= 1 .

26 For the treatment of 0ξ ≤  see Junker and Szimayer (2001).
27 For the remainder of the paper the EVT loss function carries no special marker indicating the mapping
procedure.
28 e.g. for ′d  we obtain d dβ β′ ′= ×  and s s d d′ ′= ×  respectively.
29 Our parameterisation, which will be used for the simulation in the next section, results in ( ) 71061 −×=− dL ,
which has the desired property of leaving the loss tail shape unaffected by the truncation. The following

parameters have been chosen: 4.0=ξ , 26=β , 5.7=s , 
410=uρ  and 

410=d .
30 In accordance with the weighted-average rating of the most recent CLO transactions by European issuers and
default correlation in industrial application of intensity-based portfolio credit risk models we chose the portfolio

parameters 0026.0=p  and 17.0=ρ  in NID and the analogous representation through the size and shape
parameters under EVT.
31 This approach is in line with the determination of the so-called conditional default rate (CDR) used by
commercial banks to calculate the loss scenarios of particular loan portfolios. They define periodic default loss as
the product of a certain default probability (according to some portfolio credit risk function) and the loss severity
percentage (i.e. loss severity assumptions of projected loan claims) that is incurred with respect to aggregate
outstanding principal balance of the securitised portfolio at the time of default.
32 The notional amount of all tranches junior to a certain tranche is commonly termed “enhancement level”
(Basle Committee, 2004a and 2004b).
33 See also Altman and Saunders (1998).
34 In Overbeck and Wagner (2001) the q-q-plot of the beta distribution versus the negative binomial distribution
tends to indicate a high degree of similarity on the basis of matched first two moments, with cumulative
probabilities reaching levels in the tune of 99.995%, after discrete losses obtained from the negative-binomial
distribution have been adjusted by the some large number s (e.g. 1, 000s =  generated the parameter values

0.323278α =  and 80.4258 β =  (Overbeck and Wagner, 2001). Note that the observations tend to fall slightly
below the diagonal in the q-q-plot due to the cut-off value of s.
35 This approach reverses the methodologies in Jarrow and Turnbull (1995) as well as Leland and Toft (1996),
who derive an arbitrage free pseudo-probability of default from a given the term structure of credit spreads.
36 According to Burghardt (2001) especially senior tranches of CLOs are regarded as virtually risk-free.


