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ABSTRACT
We analyze the luminosity function of the globular clusters(GCs) belonging to the early-type galaxies ob-

served in the ACS Virgo Cluster Survey. We have obtained maximum likelihood estimates for a Gaussian
representation of the globular cluster luminosity function (GCLF) for 89 galaxies. We have also fit the lumi-
nosity functions with an “evolved Schechter function”, which is meant to reflect the preferential depletion of
low-mass GCs, primarily by evaporation due to two-body relaxation, from an initial Schechter mass function
similar to that of young massive clusters in local starbursts and mergers. We find a highly significant trend
of the GCLF dispersionσ with galaxy luminosity, in the sense that the GC systems in smaller galaxies have
narrower luminosity functions. The GCLF dispersions of ourGalaxy and M31 are quantitatively in keeping
with this trend, and thus the correlation betweenσ and galaxy luminosity would seem more fundamental than
older notions that the GCLF dispersion depends on Hubble type. We show that this narrowing of the GCLF
in a Gaussian description is driven by a steepening of the cluster mass function above the classic turnover
mass, as one moves to lower-luminosity host galaxies. In a Schechter-function description, this is reflected
by a steady decrease in the value of the exponential cut-off mass scale. We argue that this behavior at the
high-mass end of the GC mass function is most likely a consequence of systematic variations of the initial
cluster mass function rather than long-term dynamical evolution. The GCLF turnover massMTO is roughly
constant, atMTO ≃ (2.2± 0.4)×105 M⊙ in bright galaxies, but it decreases slightly (by∼35% on average,
with significant scatter) in dwarf galaxies withMB,gal & −18. It could be important to allow for this effect when
using the GCLF as a distance indicator. We show that part, though perhaps not all, of the variation could arise
from the shorter dynamical friction timescales in less massive galaxies. We probe the variation of the GCLF to
projected galactocentric radii of 20–35 kpc in the Virgo giants M49 and M87, finding that the turnover point is
essentially constant over these spatial scales. Our fits of evolved Schechter functions imply average dynamical
mass losses (∆) over a Hubble time that vary more thanMTO, and systematically but non-monotonically as a
function of galaxy luminosity. If the initial GC mass distributions rose steeply towards low masses as we as-
sume, then these losses fall in the range 2×105M⊙ . ∆ < 106 M⊙ per GC for all of our galaxies. The trends in
∆ are broadly consistent with observed, small variations of the mean GC half-light radius in ACSVCS galax-
ies, and with rough estimates of the expected scaling of average evaporation rates (galaxy densities) versus
total luminosity. We agree with previous suggestions that if the full GCLF is to be understood in more detail,
especially alongside other properties of GC systems, the next generation of GCLF models will have to include
self-consistent treatments of dynamical evolution insidetime-dependent galaxy potentials.
Subject headings: galaxies: elliptical and lenticular, cD — galaxies: star clusters — globular clusters: general

1. INTRODUCTION

One of the remarkable features of the systems of globu-
lar clusters (GCs) found around most galaxies is the shape
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of their luminosity function, or the relative number of GCs
with any given magnitude. Historically most important has
been the fact that these distributions always appear to peak, or
turn over, at a GC absolute magnitude aroundMV,TO ≈ −7.5
(e.g., Harris 2001), corresponding roughly to a mass ofMTO ∼
2× 105M⊙. The near universality of this magnitude/mass
scale for GCs has motivated the widespread use of the globu-
lar cluster luminosity function (GCLF) as a distance indicator
(see Harris 2001; also Ferrarese et al. 2000), and it has also
posed one of the longest-standing challenges to theories of
GC formation and evolution.

In recent years, some significant amount of attention has
also been paid to the way that GCs are distributed inmass
around the peak of the GCLF. Traditionally, the full GCLF
has most often been modeled as a Gaussian distribution in
magnitude, corresponding to a lognormal distribution of GC
masses. However, if one focuses only on the distribution of
GCs above the point where the magnitude distribution turns
over, it is found that the mass function can usually be de-
scribed by a power law (Harris & Pudritz 1994), or perhaps
a Schechter (1976) function (Burkert & Smith 2000), which

http://arXiv.org/abs/astro-ph/0702496v1
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is very similar to the mass distributions of giant molecular
clouds and the young massive star clusters forming in star-
bursts and galaxy mergers in the local universe (e.g., Zhang&
Fall 1999). The main difference between ancient GCs and the
present-day sites of star-cluster formation is then that the mass
functions of the latter rise steeply upwards towards masses
much less thanMTO ∼ 105 M⊙, far exceeding the observed
frequency of such low-mass GCs.

There are two main possibilities to explain this fundamen-
tal difference. The first is that the conditions of star cluster
formation in the early universe when GCs were assembling
may have favored the formation of objects with masses in a
fairly narrow range around∼105–106M⊙ (to the exclusion, in
particular, of much smaller masses). These conditions would
no longer prevail in the environments forming young clus-
ters in the nearby universe. Some theoretical models along
these lines invoke the∼106 M⊙ Jeans mass at the epoch of
recombination (Peebles & Dicke 1968), the detailed proper-
ties of ∼ 106 M⊙ cold clouds in a two-phase protogalactic
medium (Fall & Rees 1985), and reionization-driven com-
pression of the gas in subgalactic (.107M⊙) dark-matter ha-
los (Cen 2001).

The second possibility is that GCs were in fact born with
a wide spectrum of masses, like that observed for young star
clusters, extending from 106–107M⊙ down to∼103–104M⊙

or below. A subsequent transformation to the characteristic
mass function of GCs today could then be effected mainly
by dynamical processes (relaxation and tidal shocking) that
are particularly efficient at destroying low-mass clustersover
the lifetime of a GC system (e.g., Fall & Rees 1977; Ostriker
& Gnedin 1997; Fall & Zhang 2001). Some observational
evidence has been reported for such an evolution in the mass
functions of young and intermediate-age star clusters (e.g., de
Grijs, Bastian & Lamers 2003, Goudfrooij et al. 2004).

If we take the Occam’s-razor view that indeed GCs formed
through substantially the same processes as star clusters to-
day, then the picture offered by observations of old GCLFs is
unavoidably one of survivors. There has been some debate as
to whether it was in fact the long-term dynamical mechanisms
just mentioned that were mainly responsible for destroying
large numbers of low-mass globulars, or whether processes
more related to cluster formation strongly depleted many low-
mass protoclusters on shorter timescales (Fall & Zhang 2001;
Vesperini & Zepf 2003). Even the most massive Galactic GCs
have rather low binding energiesEb . 1052 erg (McLaughlin
2000), so that if conditions were not just right, very many
protoglobular clusters could have been easily destroyed inthe
earliest∼107 yr of their evolution, through the catastrophic
mass loss induced by massive-star winds and supernova ex-
plosions (see, e.g., Kroupa & Boily 2002; Fall, Chandar &
Whitmore 2005). Furthermore, any clusters that survive this
earliest mass-loss phase intact but with too low a concentra-
tion could potentially still dissolve within a relatively short
time of∼108–109 yr (Chernoff & Weinberg 1990). Homoge-
neous observations of large samples of old GCLFs can help
clarify the relative importance of such early evolution versus
longer-term dynamical mass loss in the lives of star clusters
generally.

The largest previous studies of GCLFs in early-type galax-
ies were performed with archival HST/WFPC2 data. Kundu
& Whitmore (2001a, b) studied the GCLF for 28 elliptical
and 29 S0 galaxies. They concluded that the turnover magni-
tude of the GCLF is an excellent distance indicator, and that
the difference in the turnover luminosity between theV and

I bands increases with the mean metallicity of the GCs es-
sentially as expected if the GC systems in most galaxies have
similar age and mass distributions. Larsen et al. (2001) stud-
ied the GCLF for 17 nearby early-type galaxies. They fitted
Student’st distributions separately to the subpopulations of
metal-rich and metal-poor GCs in each galaxy, and found that
any difference in the derived turnovers was consistent with
these subpopulations having similar mass and age distribu-
tions and the same GCLF turnovermass scale. Larsen et al.
also fitted power laws to the mass distributions of GCs in the
rangeM ≃ 105–106M⊙ and found they were well described
by power-law exponents similar to those that fit the mass func-
tions of young cluster systems.

In this paper, we study the GCLFs of 89 early-type galax-
ies observed by HST as part of the ACS Virgo Cluster Sur-
vey (Côté et al. 2004). This represents the most comprehen-
sive and homogeneous study of its kind to date. Some of the
results in this paper are also presented in a companion pa-
per (Jordán et al. 2006). In the next section, we briefly de-
scribe our data and present our observed GCLFs in a machine-
readable table available for download from the electronic edi-
tion of theAstrophysical Journal. In §3 we discuss two dif-
ferent models that we fit to the GCLFs, and in § 4 we de-
scribe our (maximum-likelihood) fitting methodology. Sec-
tion 5 presents the fits themselves, while §6 discusses a num-
ber of trends for various GCLF parameters as a function of
host galaxy luminosity and touches briefly on the issue of
GCLF variations within galaxies. In §7 we discuss some as-
pects of our results in the light of ideas about GC formation
and dynamical evolution, focusing in particular on the rela-
tion between our data and a model of evaporation-dominated
GCLF evolution. In §8 we conclude.

2. DATA

A sample of 100 early-type galaxies in the Virgo cluster
was observed for the ACS Virgo Cluster Survey (ACSVCS;
Côté et al. 2004). Each galaxy was imaged in the F475W (≃
Sloang) and F850LP (≃ Sloanz) bandpasses for a total of
750 s and 1210 s respectively, and reductions were performed
as described in Jordán et al. (2004a). These data have been
used previously to analyze the surface-brightness profilesof
the galaxies and their nuclei (Ferrarese et al. 2006ab, Côté
et al. 2006), their surface brightness fluctuations (Mei et al.
2005ab; 2007), and the properties of their populations of star
clusters, mainly GCs (Jordán et al. 2004b, Jordán et al. 2005,
Peng et al. 2006a) but also dwarf-globular transition objects
(or UCDs, Haşegan et al. 2005) and diffuse star clusters (Peng
et al. 2006b).

One of the main scientific objectives of the ACSVCS is the
study of the GC systems of the sample galaxies. We have de-
veloped a procedure by which we select GC candidates from
the totality of observed sources around each galaxy, discard-
ing the inevitable foreground stars and background galaxies
that are contaminants for our purposes. This GC selection
uses a statistical clustering method, described in detail in an-
other paper in this series (Jordán et al. 2007, in preparation),
in which each source in the field of view of each galaxy is
assigned a probabilitypGC that it is a GC. Our samples of GC
candidates are then constructed by selecting all sources that
havepGC ≥ 0.5. The results of our classification method are
illustrated in Figure 1 of Peng et al. (2006a). For every GC
candidate we record the background surface brightnessIb of
the host galaxy at the position of the candidate, and we mea-
surez- andg-band magnitudes and a half-light radiusRh by
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fitting PSF-convolved King (1966) models to the local light
distribution of the cluster (Jordán et al. 2005). Photomet-
ric zeropoints are taken from Sirianni et al. 2005 (see also
Jordán et al. 2004a), and aperture corrections are applied as
described by Jordán et al. (2007, in preparation).

Note that, as part of the ACSVCS we have measured the
distances to most of our target galaxies using the method
of surface brightness fluctuations (SBF; Tonry & Schneider
1988). The reduction procedures for SBF measurements, fea-
sibility simulations for our observing configuration, and cal-
ibration have been presented in Mei et al. (2005ab) and the
distance catalog is presented in another paper in this series
(Mei et al. 2007). We use these distances in this paper11 to
transform observed GC magnitudes into absolute ones on a
per galaxy basis whenever we wish to assess GCLF properties
in physical (i.e., mass-based) terms or need to compare the
GCLFs of two or more galaxies. While some galaxies have
larger distances, the average distance modulus that we employ
is (m−M)0 = 31.09±0.03(random)±0.15(systematic), corre-
sponding toD = 16.5±0.1(random)±1.1(systematic) Mpc.

2.1. GCLF Histograms

There are three main ingredients we need to construct a
GCLF for any galaxy. First, we have sets of magnitudes, in
both thez andg bands, for all GC candidates. As mentioned
above, we generally isolate GC candidates from a list of all
detected objects by requiring thatpGC ≥ 0.5. Note that here
and throughout, we useg as shorthand to refer to the F475W
filter, andz denotes F850LP. Also, all GC magnitudes in this
paper have already been de-reddened (see § 2.7 in Jordán et al.
2004a for details).

Second, we have the (in)completeness functions in both
bandpasses. Our candidate GCs are marginally resolved with
the ACS, and thus these completeness functions depend not
only on the GC apparent magnitudem and its position in its
parent galaxy (through the local background surface bright-
nessIb), but also on the GC projected half-light radiusRh.
Separatez- andg-band completeness functionsf (m,Rh, Ib) ≤
1 have therefore been calculated from simulations in which
we first added simulated GCs with sizesRh = 1,3,6,10 pc
and King (1966) concentration parameterc = 1.5 to actual im-
ages from the ACSVCS (making sure to avoid sources already
present), and then reduced the simulated images in an identi-
cal fashion to the survey data. We next found the fraction of
artificial sources that were recovered, as a function of input
magnitude and half-light radius, in each of ten separate bins
of background light intensity. The final product is a three-
dimensional look-up table on which we interpolate to obtain
f for any arbitrary values of (m,Rh, Ib).

Last, we have the expected density of contaminants as a
function of magnitude for each galaxy, obtained from analy-
sis of archival ACS images (unassociated with the Virgo Clus-
ter Survey) of 17 blank, high-latitude control fields, each ob-
served with bothg andz filters to depths greater than in the
ACSVCS. We “customized” these data to our survey galaxies
by performing object detections on every control field as if it
contained each galaxy in turn. This procedure is described in
more detail in Peng et al. (2006a, their §2.2). The net resultis
17 separate estimates of the number of foreground and back-
ground objects, as a function ofg andz magnitude, expected
to contaminate the list of candidate GCs in every ACSVCS

11 We use the distances obtained using the polynomial calibration pre-
sented in Mei et al. 2007.

field.
Of the 100 galaxies in the ACSVCS, we restrict our analysis

to those that have more than 5 probable GCs, as estimated by
subtracting the total number of expected contaminants from
the full list of GC candidates for each galaxy. We additionally
eliminated two galaxies for which we could not usefully con-
strain the GCLF parameters. This results in a final sample of
89 galaxies. The GCLF data for these are presented in Table
1.

The first column of Table 1 is the galaxy ID in the Virgo
Cluster Catalogue (VCC: Binggeli, Sandage & Tammann
1985; see Table 1 in Côté et al. 2004 for NGC and Messier
equivalents). Column (2) contains an apparentz-band mag-
nitude defining the midpoint of a bin with widthhz given in
column (3). This binwidth was chosen to be 0.4 for all galax-
ies. Columns (4)–(6) of the table then give the total number
Nz,tot of observed sources in this bin; the numberNz,cont of con-
taminants in the bin as estimated from the average of our 17
control fields; and the average completeness fractionfz in the
bin—all applying to the candidate-GC sample defined on the
basis of our GC probability threshold,pGC ≥ 0.5. Columns
(7)–(11) repeat this information for the galaxy’s GC candi-
dates identified in theg band. Columns (12)–(21) are the
correspondingz- andg-band data for an alternate GC sam-
ple defined strictly by magnitude cuts and an upper limit of
Rh < 0.′′064≃ 5 pc (which will include the large majority of
real GCs; Jordán et al. 2005), rather than by relying on our
pGC probabilities. This provides a way of checking that se-
lecting GC candidates bypGC does not introduce any subtle
biases into the GCLFs (see also §4 below).

The data in Table 1 can be converted to distributions of ab-
solute GC magnitude by applying the individual galaxy dis-
tances given in Mei et al. (2007). If they are used to fit model
GCLFs, it should be by comparing the observedNtot against
a predicted (f × Nmodel+ Ncont) as a function of magnitude.
This is essentially what we will do here, although we employ
maximum-likelihood techniques rather than using the binned
data. However, before describing our model-fitting methodol-
ogy, we pause first to discuss in some detail the models them-
selves. We work with two different distributions in this paper:
one completely standard, and one that is meant to elucidate
the connections between observed GC mass distributions and
plausible initial conditions and dynamical evolution histories.

3. TWO GCLF MODELS

The term “globular cluster luminosity function” is custom-
arily used to refer to a directly observed histogram of the
number of GCs per unit magnitude. We follow this stan-
dard useage here, and in addition whenever we refer simply
to a “luminosity function,” we in fact mean the GCLF, i.e.,
the distribution of magnitudes again. We denote the magni-
tude in any arbitrary bandpass by a lower-casem, and thus
the GCLF is essentially the probability distribution function
dN/dm. It is not equivalent to the distribution of true GC
luminosities, since of coursem ≡C − 2.5 logL for some con-
stantC, sodN/dL = (dN/dm)|∂m/∂L| has a functional form
different from that ofdN/dm.

In this paper, when we speak of GC masses, we denote them
by an upper-caseM and we almost always make the assump-
tion that they are related by a multiplicative constant to GC
luminosities, such thatm = C′ − 2.5 logM, with C′ another
constant including the logarithm of a mass-to-light ratio (gen-
erally taken to be the same for all GCs in any one system, as is
the case in the Milky Way; McLaughlin 2000). We refer to the
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number of GCs per unit mass,dN/dM, as a “mass function”
or a “mass distribution.” In the literature, it is sometimesalso
called a “mass spectrum.” Its relation to the GCLF is

dN
dM

∝ 1
M

dN
d log M

∝ 100.4m dN
dm

. (1)

As we have already mentioned, most observed GCLFs
show a “peak” or “turnover” at a cluster magnitude that is
generally rather similar from galaxy to galaxy. One impor-
tant consequence of equation (1) is that any such feature in
the GCLF doesnot correspond to a local maximum in the GC
mass distribution: if the first derivative ofdN/dm with re-
spect tom vanishes at some magnitudemTO, then the deriva-
tive of dN/dM with respect toM at the corresponding mass
scaleMTO is strictly negative, i.e., the mass function still rises
towards GC masses below the point where the GCLF turns
over. (More specifically, the logarithmic slope ofdN/dM
at the GCLF turnover pointMTO is always exactly−1; see
McLaughlin 1994 for further discussion.)

3.1. The Standard Model

The function most commonly taken to describe GCLFs is
a Gaussian, which is the easiest way to represent the peaked
appearance of most luminosity functions in terms of number
of clusters per unit magnitude. It is thus our first choice to fit
to each of the observed GCLFs in this paper. Denoting the
mean GC magnitudeµ ≡ 〈m〉 and the dispersionσm = 〈(m −
µ)2〉1/2, we have the usual

dN
dm

=
1√

2πσm

exp

[
−

(m − µ)2

2σ2
m

]
. (2)

In terms of GC masses,M, this standard distribution corre-
sponds to a mass functiondN/dM = (dN/dm)|∂m/∂M| or,
sincem = constant− 2.5 logM (assuming a single mass-to-
light ratio for all clusters in a sample),

dN
dM

=
1

(ln10)M
1√

2πσM

exp

[
−

(log M − 〈log M〉)2

2σ2
M

]
, (3)

with σM ≡ σm/2.5.
As will be evident in what follows, the GCLFs in a large

sample such as ours show a variety of detail that is unlikely
to be conveyed in full by a few-parameter family of distribu-
tions. But it is also clear that a Gaussian captures some of the
most basic information we are interested in investigating—
the mean and the standard deviation of the GC magnitudes
in a galaxy—with a minimal number of parameters. It is also
the historical function of choice for GCLF fitting, and in many
cases the fit is indeed remarkably good.

Nevertheless, the Gaussian does have some practical lim-
itations. Secker (1992) showed that the tails of the GCLF
in the Milky Way and M31 are heavier than a Gaussian al-
lows, and he argued that a Student’st distribution (with shape
parameterν ≃ 5) gives a better match to the data. More im-
portantly, the observed GCLFs in our Galaxy and in M31 are
asymmetric about their peak magnitude, a fact which has been
emphasized most recently by Fall & Zhang (2001). This was
implicit in the work of McLaughlin (1994), who advocated
using piecewise power laws to fit the number of GCs per unit
linear luminosity—or piecewise exponentials to describe the
usual number of GCs per unit magnitude. Baum et al. (1997)
used an asymmetric hyperbolic function to fit the strong peak
and asymmetry in the combined Galactic and M31 GCLF.

However, all of these alternative fitting functions still share
another shortcoming of the Gaussian, which is that there is no
theoretical underpinning to it. Moreover, with the exception
of the power laws in McLaughlin (1994), there is no obvious
connection with the mass distributions of the young massive
clusters that form in mergers and starbursts in the local uni-
verse. We therefore introduce an alternative fitting function—
based on existing, more detailed studies of initial clustermass
functions and their long-term dynamical evolution—to ad-
dress these issues.

3.2. An Evolved Schechter Function

3.2.1. Initial GC Mass Function

Observations of young star clusters indicate that the number
of clusters per unit mass is well described by a power law—
dN/dM ∝ M−β with β ≈ 2—or alternatively by a Schechter
(1976) function with an index of about 2 in its power-law part
and an exponential cut-off above some large mass scale that
might vary from galaxy to galaxy (e.g., Gieles et al. 2006a).
Perhaps the best-observed mass distribution for a young clus-
ter system is that in the Antennae galaxies, NGC 4038/4039
(Zhang & Fall 1999). In this specific case, a pure power-
law form suffices to describe the clusterdN/dM as it is cur-
rently known; but a Schechter function with an appropri-
ately high cut-off mass also fits perfectly well. Thus, as-
sumingdN/dM ∝ M−β exp(−M/Mc), we find from the data
plotted by Zhang & Fall (1999) thatβ = 2.00± 0.04 and
log(Mc/M⊙) = 6.3+0.7

−0.3 for their sample of clusters with ages
2.5–6.3 Myr; andβ = 1.92± 0.14 and log(M/Mc) = 5.9+0.45

−0.25
for ages 25–160 Myr.

The mass functions of old globular clusters in the Milky
Way and M31 can also be described by power laws withβ ≃ 2
for clusters more massive than the GCLF peak (McLaughlin
1994; McLaughlin & Pudritz 1996; Elmegreen & Efremov
1997). And the GC mass distributions in large ellipticals fol-
low power laws over restricted high-mass ranges, although
here the slopes are somewhat shallower (McLaughlin 1994;
Harris & Pudritz 1994) and there is clear evidence of cur-
vature indN/dM (McLaughlin & Pudritz 1996) that is bet-
ter described by the exponential cut-off at very high cluster
masses in a Schechter function (e.g., Burkert & Smith 2000).
Theoretical models for GC formation, which aim expressly to
explain these high-mass features of GCLFs and relate them
to the distributions of younger clusters and molecular clouds,
have been developed by McLaughlin & Pudritz (1996) and
Elmegreen & Efremov (1997).

The important difference between the mass functions of old
GCs and young massive clusters, then, is not the power-law
or Schechter-function form of the latterper se; it is the fact
that the frequency of young clusters continues to rise toward
the low-mass limits of observations, while the numbers of
GCs fall well below any extrapolated power-law behavior for
M . 2×105M⊙, i.e., for clusters fainter than the classic peak
magnitude of the GCLF. We therefore assume a Schechter
function,

dN
dM0

∝ M−2
0 exp(−M0/Mc) , (4)

as a description of the initial mass distribution of globular
clusters generally. We emphasize again that the fixed power
law of M−2

0 at low masses is chosen for compatibility with
current data on systems of young massive clusters. The vari-
able cut-off massMc is required to match the well observed
curvature present atM & 106M⊙ in the mass distributions of
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old GC systems in large galaxies. This feature is certainly
allowed by the young cluster data, even if it may not be ex-
plicitly required by them.

A strong possibility to explain the difference between such
an initial distribution and the present-daydN/dM is the pref-
erential destruction of low-mass globular clusters by a variety
of dynamical processes acting on Gyr timescales (see Fall &
Zhang 2001; Vesperini 2000, 2001; and references therein).

3.2.2. Evolution of the Mass Function

Fall & Zhang (2001) give a particularly clear recent
overview of the dynamical processes that act to destroy glob-
ular clusters on Gyr timescales as they orbit in a fixed galac-
tic potential. The main destruction mechanisms are dynami-
cal friction; shock-heating caused by passages through galaxy
bulges and/or disks; and evaporation as a result of two-body
relaxation. Only the latter two are important to the devel-
opment of the low-mass end of the GCLF, since dynamical-
friction timescales grow rapidly towards lowM, asτdf ∝ M−1.
(Cluster disruption due to stellar-evolution mass loss does not
change the shape of the GC mass function if the stellar IMF
is universal, unless a primordial correlation between cluster
concentration and mass is invoked; cf. Fall & Zhang 2001 and
Vesperini & Zepf 2003).

Tidal shocks drive mass loss on timescalesτsh ∝ ρhPcr,
whereρh ∝ M/R3

h is the mean density of a cluster inside its
half-mass radius, andPcr is the typical time between disk or
bulge crossings. Evaporation scales rather differently, roughly
asτev∝M/ρ

1/2
h . A completely general assessment of the rela-

tive importance of the two processes can therefore be compli-
cated. However, tidal shocks are rapidly self-limiting in most
realistic situations (Gnedin, Lee, & Ostriker 1999): clusters
with high enoughρh and on orbits that expose them only to
“slow” and well-separated shocks (i.e., with both the duration
of individual shocks and the intervalPcr longer than an in-
ternal dynamical time,tdyn ∝ ρ

−1/2
h ) will experience an early,

sharp increase inρh in response to the first few shocks. There-
afterτev ≪ τsh, and in the long term shock-heating presents a
second-order correction to the dominant mass loss caused by
evaporation. Most GCs today, at least in our Galaxy, appear
to be in this evaporation-driven evolutionary phase (Gnedin et
al. 1999; see also Figure 1 of Fall & Zhang 2001, and Prieto
& Gnedin 2006).

Fall & Zhang (2001) therefore develop a model for the evo-
lution of the Galactic GCLF that depends largely on evapo-
ration to erode an initially steepdN/dM0 (in fact, they adopt
a Schechter function, as in eq. [4], for one of their fiducial
cases). They assume—as is fairly standard; e.g., see Ves-
perini (2000, 2001)—that any cluster roughly conserves its
mean half-mass densityρh as it loses mass, at least after any
rapid initial adjustments due to stellar mass loss or the first
tidal shocks, and when the evolution is dominated by evapo-
ration. The mass-loss rate12 is then

µev ≡ −dM/dt ∝ M/trh ∝ (M/R3
h)1/2 ∼ constant, (5)

wheretrh ∼ ρ−1〈v2〉3/2 ∝M1/2R3/2
h is the relaxation time at the

half-mass radiusRh. Under this assumption, the mass of a GC
at any aget is just M(t) = M0 − µevt. For any collection of

12 Note that we useµev to denote the evaporation mass-loss rate in equa-
tion (5) in order to be consistent with the notation of Fall & Zhang (2001).
This should not be confused with our use of the symbolµ—with different
subscripts—to represent the mean magnitude in a Gaussian description of the
GCLF.

clusters with the same density (for example, those on similar
orbits, if ρh is set by tides at a well defined perigalacticon),
µev is independent of cluster mass as well as time, and if the
GCs are coeval in addition, thenµevt is a strict constant. The
mass function of such a cluster ensemble with any aget is
then related to the initial one as in equation (11) of Fall &
Zhang (2001):

dN
dM(t)

=
dN

dM0

∣∣∣∣
∂M0

∂M

∣∣∣∣ =
dN

dM0
. (6)

Thus, simply making the substitutionM0 = M + µevt in the
functional form of the original GC mass function gives the
evolved distribution. An initially steepdN/dM0 therefore al-
ways evolves to a flat mass function,dN/dM(t) ∼ constant,
at sufficiently low massesM ≪ µevt. As Fall & Zhang show
for the Milky Way, and as we shall also see for the early-type
ACSVCS galaxies, this gives a good fit to observed GCLFs if
the cumulative mass-loss termµevt > 105 M⊙ by t ≃ 13 Gyr.

The key physical element of this argument, as far as the
GCLF is concerned, is the linear decrease of cluster mass with
time. While the quickest way to arrive at such a conclusion is
to follow the logic of Fall & Zhang, as just outlined, there are
some caveats to be kept in mind.

Tidal shocks can be much more important than evapora-
tion for some globulars. In particular, clusters with low den-
sities and low concentrations (such that shocks significantly
disturb the cores as well as the halos), and/or those on ec-
centric orbits with very short intervals between successive
bulge or disk crossings, may never recover fully from even
one shock. Rather than re-adjusting quickly to a situation in
which τev ≪ τsh, such clusters may be kept out of dynamical
equilibrium for most of their lives, significantly overflowing
their nominal tidal radii. Their entire evolution could then be
strongly shock-driven. This appears to be the case, for exam-
ple, with the well known Galactic globular, Palomar 5; see
Dehnen et al. (2004). The extremely low mass and concen-
tration of Palomar 5 make it highly unusual in comparison to
the vast majority of known GCs in any galaxy currently, but
many more clusters like its progenitor may well have existed
in the past. This then raises the question of whether consider-
ing evaporation-dominated evolution alone gives a complete
view of the dynamical re-shaping of the GC mass function.
Here, however, it is important that theN-body simulations of
Dehnen et al. (2004) show that the late-time evolution of even
the most strongly shock-dominated clusters is still character-
ized by a closely linear decrease of mass with time: rather
thanρh being conserved in this case, the half-light radiusRh
is nearly constant in time, and for a given orbit the mass-loss
rate isM/τsh ∝ M/ρh ∝ R3

h. While the physical reasoning
changes, the end result for the GCLF of clusters in this phys-
ical regime is the same as equation (6).13

The importance of Fall & Zhang’s (2001) assumption of
a constantρh for evaporation-driven cluster evolution is its
implication that the mass-loss rate is constant in time. This
has some direct support from N-body simulations (e.g., Ves-
perini & Heggie 1997; Baumgardt & Makino 2003). (Note the
distinction in Baumgardt & Makino between the total cluster
mass loss and that due only to evaporation; see their Figure

13 Another process that may fall in this regime is impulsive shocking due to
encounters between GCs and massive concentrated objects like giant molec-
ular clouds; see Lamers & Gieles (2006) for a recent discussion of this. How-
ever, this is presumably most relevant to clusters orbitingin disks, where the
shocks can occur in fairly rapid succession. It is not important for the large
majority of GCs in galaxy halos.
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6 and related discussion.) But more than this, if evaporation
is to be primarily responsible for the strong depletion of a
GC mass function at scalesM < µevt, then after a Hubble
timeµevt must be roughly of order the current GCLF turnover
massMTO ∼ 2×105M⊙. Sinceµev ∝ ρ

1/2
h , this argument ul-

timately constrains the average density required of the glob-
ulars, which can of course be checked against data. In addi-
tion, satisfying observational limits on the (small) variation of
GCLFs between different subsets of GCs in any one system—
for example, as a function of galactocentric position—puts
constraints on the allowed distribution of initial (and final)
GC densities.

Fall & Zhang calculate in detail the evolution of the Milky
Way GCLF over a Hubble time under the combined influ-
ence of stellar evolution (which, as mentioned above, does
not change theshape of dN/dM except in special circum-
stances), evaporation, and tidal shocks (which, again, con-
tribute second-order corrections to the results of evaporation
in their treatment). They relateµev ∝ ρ

1/2
h to GC orbits, by

assuming thatρh is set by tides at the pericenter of a cluster
orbit in a logarithmic potential with a circular speed of 220
km s−1. They then find the GC orbital distribution that allows
both for an average cluster density high enough to give a good
fit to the GCLF of the Milky Way as a whole, and for a narrow
enough spread inρh to reproduce the observed weak variation
in MTO with Galactocentric radius (e.g., Harris 2001).

Ultimately, the GC distribution function found by Fall &
Zhang in this way is too strongly biased towards radial or-
bits with small pericenters to be compatible with the observed
kinematics andρh distributions of globulars in the Milky Way
and other galaxies—as both they and others (e.g., Vesperini
et al. 2003) have pointed out. However, Fall & Zhang also
note that the difficulties at this level of detail do not neces-
sarily disprove the basic idea that long-term dynamical evo-
lution is primarily responsible for the present-day shape of
the GCLF at low masses. The problem may lie instead in
the specific relation adopted to link the densities, and thusthe
disruption rates, of GCs to their orbital pericenters. In partic-
ular, Fall & Zhang—along with almost all other studies along
these lines—assume a spherical and time-independent Galac-
tic potential. Both assumptions obviously break down in a
realistic, hierarchical cosmology. Once time-variable galaxy
potentials are taken properly into account in more sophisti-
cated simulations, it could still be found that cluster disrup-
tion on Gyr timescales can both explain the low-mass side of
GC mass functions and be consistent with related data on the
present-day cluster orbital properties,ρh distributions, and so
on. Recent work in this vein by Prieto & Gnedin (2006) ap-
pears promising, though it is not yet decisive.

We will return to these issues in §7.1. First, however, we
describe an analytical form fordN/dM, which combines the
main idea in Fall & Zhang (2001)—that evaporation causes
cluster masses to decrease linearly with time—with a plausi-
ble, Schechter-function form for the initialdN/dM0. We fit
the evolved function to the GCLF of the Milky Way, to show
that it provides a good approximation to the fuller, numerical
models of Fall & Zhang; and then we fit it to our ACSVCS
data, to produce new empirical constraints for detailed mod-
eling of the formation and evolution of GC mass functions
under conditions not specific only to our Galaxy.

3.2.3. Fitting Functions for dN/dM and the GCLF

To summarize the discussion above, we assume that the
mass-loss rate of any globular cluster is constant in time. Fol-
lowing Fall & Zhang (2001), we expect that this will occur
naturally if the disruption process most relevant to the GCLF
in the long term is evaporation, which plausibly conserves the
average densitiesρh of individual clusters inside their half-
mass radii. Thus, we continue to denote the mass-loss rate
by µev. However, it should be recognized that tidal shocks
can contribute second-order corrections toµev and may even,
in some extreme cases, dominate evaporation (though the net
result arguably could still be a constant totaldM/dt).

For any set of clusters with similar agest and similar
ρh (and on similar orbits, if these significantly affectρh or
add tidal-shock contributions toµev), the cumulative mass
loss∆ ≡ µevt is a constant, so that each cluster hasM(t) =
M0 − ∆. Combining equation (4) for the initial mass distribu-
tion with equation (6) for its evolution then yields an “evolved
Schechter function”

dN
dM

∝ 1
(M + ∆)2

exp

(
−

M + ∆

Mc

)
, (7)

with Mc allowed to vary between galaxies. Once again,∆ in
this expression may vary between different sets of GCs, with
different densities or orbits, in the same galaxy. The detailed
modeling of Fall & Zhang (2001) takes this explicitly into
account. But in what follows, we fit equation (7) to GC data
taken from large areas over galaxies, which effectively returns
an estimate of the average mass loss per cluster over a Hubble
time. Sinceµev ∝ ρ

1/2
h when evaporation dominates shocks,

this implicit averaging is essentially done over the distribution
of GC mean half-mass densities.

To relate this evolved mass function to the standard obser-
vational definition of a GCLF—the number of GCs per unit
magnitude—we writem ≡ C − 2.5 logM, δ ≡ C − 2.5 log∆,
andmc ≡ C − 2.5 logMc, whereC is related to the solar ab-
solute magnitude and the typical cluster mass-to-light ratio in
an appropriate bandpass. The model then reads

dN
dm

∝ 10−0.4(m−mc)

[
10−0.4(m−mc) + 10−0.4(δ−mc)

]2 exp
[
−10−0.4(m−mc)

]
. (8)

In both of equations (7) and (8), the constants of proportion-
ality required to normalize the distributions can be evaluated
numerically.

Figure 1 illustrates the form of the evolved Schecter func-
tion, in terms of both the mass distributiondN/dM and the
GCLFdN/dm. (Note that massM increases to the right along
thex-axis in the upper panel, but—as usual—largerM corre-
sponds to brighter magnitudesm, at the left of the axis in the
lower panel.) From the equations above, it is clear that the
massMc or the magnitudemc sets the scale of the function,
while the ratio∆/Mc or the magnitude difference (δ − mc)
controls its overall shape. For very small∆ ≪ Mc (faint
δ ≫ mc), the function approaches an unmodified Schechter
(1976) function. This is drawn in Figure 1 as the bold, broken
curves that rise unabated toward low cluster masses or faint
magnitudes. The magnitudemTO at which the GCLF peaks
in general can be found by setting to zero the derivative of
equation (8) with respect tom. This yields

10−0.8(mTO−mc) +10−0.4(mTO−mc)
[
1+ 10−0.4(δ−mc)

]
−10−0.4(δ−mc) = 0 ,

(9)
the solution to which corresponds to a mass of

MTO =
−(Mc + ∆) +

√
(Mc + ∆)2 + 4∆Mc

2
. (10)
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FIG. 1.— Top: Evolved Schechter mass functionsdN/dM (eq. [7]), for
various values of the ratio∆/Mc, which fixes the shape of the distribution.
Curves are arbitrarily normalized. The uppermost, broken curve corresponds
to ∆ = 0, i.e., a regular Schechter (1976) function with a power-law exponent
of −2. For non-zero∆, dN/dM is flat at low masses.Bottom: GCLFsdN/dm
corresponding to the mass functions in the upper panel (see eq. [8]). Curves
are again arbitrarily normalized, and the parameter controlling the shape is
the magnitude difference (δ − mc) = −2.5 log(∆/Mc). For any finite (δ − mc),
the GCLF peaks and turns over at the magnitudemTO given by equation (9)
(corresponding to the mass in eq. [10]), and the faint side ofthe GCLF always
approaches the limiting shapedN/dm ∝ 10−0.4m. Arrows mark the turnover
points of the models shown here. In the limit (δ − mc) → +∞ (i.e. ∆ ≪ Mc),
we have thatmTO → δ, while in the limit (δ − mc) → −∞ (large∆ ≫ Mc),
the turnovermTO → mc. For∆/Mc & 10 or (δ − mc) . −2.5, the GCLF has
an essentially fixed shape.

From either of equations (9) or (10), or from the sequence
of curves in Figure 1, it can be seen that when∆ ≪ Mc,
the GCLF peaks at a magnitudemTO ≃ δ, i.e., the turnover
reasonably approximates the average cluster mass loss in the
model (althoughmTO is formally always fainter thanδ). As
the ratio∆/Mc increases, the GCLF turnover initially tracks
∆ but eventually approaches an upper limit set by the ex-
ponential cut-off scale in the mass function:mTO → mc as
(δ − mc) → −∞ (∆ ≫ Mc).

For any fixed value of∆/Mc, Figure 1 shows that in the
limit of low masses,M ≪ ∆, the mass function in equa-
tion (7) is essentially flat. As Fall & Zhang (2001) first
pointed out, this is a direct consequence of the assumption
of a mass-loss rate that is constant in time. It follows gener-
ically from equation (6) above, independently of the specific
initial GC mass function. At the other extreme, for very high
massesM ≫ ∆ the evolveddN/dM just approaches the as-
sumed underlying initial function with∆ = 0. In terms of the
GCLF, this means thatdN/dm tends (always) to an exponen-
tial, dN/dm ∝ 10−0.4m, at magnitudes much fainter than the
turnover; and (for initial Schechter function assumed here) to
the steeperdN/dm∝ 100.4m exp[−10−0.4 (m−mc)] for very bright
magnitudes. The faint half of the GCLF in this model is there-

fore significantly broader than the bright half.
Finally, it is worth considering the widths of the GCLFs

in the lower panel of Figure 1 in more detail. For∆ = 0,
the full width at half-maximum (FWHM) ofdN/dm is unde-
fined, since there is no turnover. As the ratio∆/Mc increases
and a well-defined peak appears in the GCLF, the distribution
clearly becomes narrower and narrower. As we have already
discussed, even though formally∆/Mc can increase with-
out limit, the turnover magnitude ultimately has a maximum
brightnessmTO → mc. Similarly, the FWHM of the GCLF
approaches a firmlower limit of FWHM ≃ 2.66 mag. This
includes a limiting half width at half-maximum of HWHM≃
1.59 mag on the faint side of the GCLF, and a smaller
HWHM ≃ 1.07 mag on the bright side. All of these num-
bers can be obtained from analysis of equation (8) by letting
(δ − mc) → −∞, i.e., ∆/Mc → +∞. In this limit, the GCLF
approaches a fixed shape and is free only to shift left or right
depending on the value ofmc ≃mTO. This limiting shape is al-
ready essentially achieved with∆/Mc = 10 or (δ − mc) = −2.5,
which is plotted in Figure 1 (even though the turnover is still
about 0.18 mag fainter thanmc in this case).

As we will see in §5.2 and §6.1.2, the GCLFs observed in
the ACSVCS are all best fit with∆/Mc & 0.1, or (δ − mc) .
2.5 mag. This is the case also in the Milky Way.

3.3. Comparison with the Milky Way GCLF

Figure 2 plots the GCLF and the corresponding GC mass
function in the Milky Way. The upper panel of this figure
shows the GCLFdN/dm, in terms of clusters per unit abso-
luteV magnitude, for 143 GCs in the online catalogue of Har-
ris (1996).14 (Note again that cluster luminosity and mass in-
crease to the left in this standard magnitude distribution.) The
bold, dashed line is the usual Gaussian representation (eq.[2])
with parameters given by Harris (2001):

µV = −7.4±0.1 mag ; σV = 1.15±0.10 mag. (11)

The bold solid curve is our fit of the evolved Schechter func-
tion in equation (8), with

δV = −8.0±0.3 mag ; mc,V = −9.3±0.3 mag. (12)

The lighter, broken line rising steeply towards faint magni-
tudes is a normal Schechter function withmc as in equation
(12) but no mass-loss parameter, i.e.,δ →∞ in equation (8).
The shape of this curve is therefore typical of the distribu-
tion of logarithmic mass for young massive clusters in nearby
galaxies.

The lower panel of Figure 2 contains a log-log represen-
tation of the Galactic GC mass function,dN/dM. To con-
struct this distribution, we converted the absoluteV magni-
tude of each GC into an equivalent mass by assuming a mass-
to-light ratio of ΥV = 2 M⊙ L−1

⊙ for all clusters (as implied
by population-synthesis models; see McLaughlin & van der
Marel 2005). The curves here are the mass equivalents of
those in the upper panel. Thus the bold, dashed curve traces
equation (3) with

〈log(M/M⊙)〉 = 5.2±0.04 ; σM = 0.46±0.04 (13)

while the solid curve is equation (7) with

log(∆/M⊙) = 5.4±0.1 ; log(Mc/M⊙) = 5.9±0.1 (14)

and the lighter broken curve is equation (7) with
log(Mc/M⊙) = 5.9 and ∆ = 0—again, representative of
young cluster mass functions.

14 http://physwww.mcmaster.ca/∼harris/mwgc.dat
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FIG. 2.— Top: Fits of a Gaussian (dashed curve) and an evolved Schechter
function (solid curve) to the Milky Way GCLF, expressed as the (normalized)
number of clusters per unit of absoluteV magnitude. The dot-dashed curve
is a Schechter function with the same value forMc as the solid curve but with
mass-loss parameter∆ set to zero. Bottom: Corresponding observed GC
mass functiondN/dM, and model fits, derived from the GCLF assuming a
V -band mass-to-light ratio of 2M⊙ L−1

V,⊙ for all clusters (McLaughlin & van
der Marel 2005).

Although both model fits to the GCLF are acceptable in
a statistical sense, the evolved Schechter function yieldsa
significantly lowerχ2 value. This is because of the clear
asymmetry in the observed GCLF, which appears as a faint-
ward skew in the top panel and as a failure of the mass
function dN/dM to decline toward low masses in the bot-
tom panel. This behavior is described well by the evolved
Schechter function but is necessarily missed by the Gaussian,
which systematically underestimates the number of clusters
with M . 3×104M⊙.

As a result of this, the best-fit evolved Schechter func-
tion yields a GCLF peak which is slightly brighter than the
Gaussian. From the parameters given just above and either
of equations (9) or (10), we find a turnover magnitude of
mTO = −7.5±0.1 in theV band, some 0.1 mag brighter than
the Gaussian turnover in equation (11). The turnover mass
implied by the evolved Schechter function is thusMTO ≃
(1.75±0.15)×105M⊙, just over 10% more massive than the
Gaussian fit returns. The intrinsically symmetric Gaussian
model is forced to a fainter or lower-mass turnover in order to
better fit the relatively stronger low-mass tail of the observed
GCLF. We find similar offsets in general between the GCLF
turnovers from the two model fits to our ACSVCS data (see
§5 and §6 below).

We reiterate that the parameter∆ in the evolved Schechter
function represents the average total mass loss per cluster
(presumably due mostly to evaporation) that is required to
transform an initial mass function like that of young clusters

in the local universe, into a typical old GCLF. Both quali-
tatively and quantitatively, our model fits in Figure 2 corre-
spond to the various similar plots in Fall & Zhang (2001). In
fact, the value∆ ≃ (2.5± 0.5)× 105M⊙ obtained here for
the Milky Way agrees well with the mass losses required by
Fall & Zhang for their successful models with the second-
order effects of tidal shocks included. The simple functionin
equation (7) is thus a good approximation to their much fuller
treatment of the GCLF.

It is also worth emphasizing just how close∆ is to the
GCLF turnover mass scale. This implies that essentiallyall
globulars currently found in the faint “half” of the GCLF are
remnants of substantially larger initial entities. Equivalently,
any clusters initially less massive than≃ 2–3× 105 M⊙ are
inferred to have disappeared completely from the GC system.

Despite any difficulties in detail (§3.2.2 and §7.1) that
might remain to be resolved in this evaporation-dominated
view of the GCLF, and of GC systems in general, it is im-
portant just to have at hand a fitting formula like the evolved
Schechter function. In purely phenomenological terms, it fits
the GCLF of the Milky Way—which is, after all, still the best
defined over the largest range of cluster masses—at least as
well as any other function yet tried in the literature. In particu-
lar, it captures the basic asymmetry of the distribution without
sacrificing the small number of parameters and the simplic-
ity of form that have always been the primary strengths of a
Gaussian description. But at the same time, it is grounded ina
detailed physical model with well specified input assumptions
(Fall & Zhang 2001). Fitting it to large datasets, such as that
afforded by the ACSVCS, thus offers the chance to directly,
quantitatively, and economically assess the viability of these
ideas, in much more general terms than has been possible to
date.

4. FITTING METHODOLOGY AND TECHNICAL
CONSIDERATIONS

4.1. Maximum-Likelihood Fitting

Given either of the models just discussed—or, of course,
any other—we wish to estimate a set of parameters for the in-
trinsic GCLF of a cluster sample using the method of max-
imum likelihood, following an approach similar to that of
Secker & Harris (1993). To do so, we make use of all the
observational material described in §2.1.

First, we denote the set of GC magnitudes and uncertainties
in any galaxy, in either thez or theg band, by{mi, ǫm,i}. Sec-
ond, we write the three-dimensional completeness function
discussed above asf (m,Rh, Ib), which again depends not only
on GC apparent magnitude but also on a cluster’s half-light ra-
dius and the background (“sky” and galaxy) light intensity at
the position of the cluster. Third, from our 17 control fieldswe
are able to estimate the luminosity function of contaminants in
the field of any ACSVCS galaxy. We call this functionb(m),
and we determine it by constructing a normal-kernel density
estimate, with bandwidth chosen using cross-validation (see
Silverman 1986, §§ 2.4, 3.4). Finally, this further allows us
to estimate the net fractional contamination in the GC sam-
ple of each galaxy:̂B = NC/N, whereNC ≡ (1/17)

∑17
i=1NC,i

with NC,i the total number of contaminants present in thei-th
customized control field, andN is the total number of all GC
candidates in the sample.

Now, given this observational input, we assume that an in-
trinsic GCLF is described by some functionG(m|Θ), where
Θ is the set of model parameters to be fitted. The choices
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for G that we explore in this paper were discussed in detail
in §3. Thus, for example, for the Gaussian model of equation
(2), Θ ≡ {µ,σm}, while for the evolved Schechter function of
equation (8),Θ ≡ {δ,mc}. We further assume that magnitude
measurement errors are Gaussian distributed, so that—in the
absence of contamination—the probability of finding an ap-
parent magnitudem for a GC with given effective radiusRh,
galaxy backgroundIb, and magnitude uncertaintyǫm would
be

GT (m|Θ,Rh, Ib, ǫm) = A [h(m|ǫm)⊗G(m|Θ)] f (m,Rh, Ib),
(15)

whereh(m|ǫm) = (2πǫ2
m)−1/2exp(−m2/2ǫ2

m); ⊗ denotes convo-
lution; and the normalizationA—a function of the GCLF pa-
rametersΘ and the GC propertiesRh, Ib, and ǫm—is fixed
by requiring that the integral ofGT over the entire magnitude
range covered by the observations be unity.15

If a fractionB of sources in a galaxy are contaminants, then
the probability of having a bona fide GC with magnitudem
(and givenRh, etc.) is reduced to (1−B)GT , and thus the like-
lihood that a set of GCLF model parametersΘ can account for
N total objects with observed magnitudes{mi} and properties
{Rh,i, Ib,i, ǫm,i} is

L(Θ,B) =
N∏

i=1

[
(1−B)GT(mi|Θ,Rh,i, Ib,i, ǫm,i) +Bb(mi)

]
(16)

in which it is assumed that the luminosity functionb(m) of
contaminants is also normalized.

For any chosen functional formG(m|Θ) of the intrinsic
GCLF, we specify some initial parameter valuesΘ, compute
GT andb for each observed object in a galaxy, and maximize
on Θ the product in equation (16). In principle, it is possi-
ble simultaneously to determine the contamination fraction in
this way, but in practice we found this to be a rather unstable
procedure (even small inadequacies in the chosen model for
G can lead to a maximum-likelihood solution that converges
to quite unreasonable values forB). Thus, we instead made
direct use of our prior information from the 17 control fields,
and fixed this fraction to the rather precise averageB̂ that we
have measured for each galaxy.

The uncertainties in the fitted parametersΘ are estimated
by using the covariance matrix calculated at the point of max-
imum likelihood (e.g., Lupton 1993). These uncertainties in-
clude the effects of possible correlation between the param-
eters, but they do not include the additional, unavoidable un-
certainty arising from cosmic variance in the form ofb(m) and
the expected number̂B of contaminants in any field. As such,
they constitute lower limits to the total uncertainty. Thisis not
a significant issue for GCLF fits to cluster samples combined
from several galaxies (see below), but it can be important for
fits to individual galaxies.

To deal with this, when we fit any individual GC system, we
re-run our maximum-likelihood algorithm 17 times, each time
using the background contamination fractionB as estimated
from a different one of our 17 control fields (versus usingB̂
from an average of all control fields to obtain the nominal best
fit). We record the different sets of best-fit GCLF parameters

15 In principle there should be another factor multiplyingGT proportional
to the marginalization overRh of the joint GC distribution inm andRh times
an indicator function which is 1 over the area that satisfiespGC ≥ 0.5. We
neglect this factor here, which is justifieda posteriori by the agreement of
results using GC samples constructed using different selection functions.

obtained in these trials and use the variance in them to evalu-
ate the additional uncertainty arising from cosmic variance of
the background contamination.

4.2. Bias Tests

Maximum-likelihood estimators are biased in general. It
is thus important when deriving conclusions to test the bias
properties of the estimator used, under circumstances similar
to the ones under study. We have done this specifically for
the benchmark case of Gaussian fits to the GCLF. After ob-
taining mean magnitudes and dispersions from our maximum-
likelihood routine for the 89 ACSVCS galaxies, we analyzed
20 simulated datasets per galaxy, using the following proce-
dure. First, we subtracted the number of contaminantsB̂N in
the galaxy from the total numberN of GC candidates there,
to estimate the expected populationNGC of bona fide GCs.
We then randomly drew a sample ofNGC magnitudes from
a Gaussian distribution with a meanµ taken to be the fitted
maximum-likelihood estimate for that galaxy, and a disper-
sion chosen fromσm = 0.4,0.7,1 or 1.3 mag. (We did 5 sim-
ulations for each of these dispersions, giving the total of 20
simulations per galaxy.) The randomly generated objects re-
placed theNGC objects in that galaxy’s sample with the high-
est pGC values. The values ofRh andIh of the latter objects
plus the simulated magnitude are used to determine the com-
pleteness valuef for each source. A uniform random deviate
is then computed and if that is larger than the value off the
source is discarded, a new magnitude drawn from the Gaus-
sian and the process repeated until the condition is met. In
this way the effects of completeness are taken into account.
The maximum-likelihood procedure was finally run on each
simulated sample and the output parameters compared to the
input ones.

The results of these simulations in thez band are summa-
rized in Figure 3. There may be slight biases in the recovered
parameters, with〈∆σm/σm〉 ≈−0.03 and〈∆µ/σm〉 ≈−0.03,
although there are no significant trends in these average off-
sets with galaxy luminosity (i.e., sample size). Moreover,the
statistical significance of these biases is not high (< 3σ), and
so we choose not to correct for them. As a result, it is possi-
ble that our output best-fit parameters are biased at the level
of 3% of the GCLF dispersion; but with the possible excep-
tion only of the most populous GC system (that of M87=VCC
1316), this turns out always to be smaller than the formal un-
certainties on the GCLF parameters (see §5.1). Note that the
scatter of the retrieved parameters compared with the input
ones increases towards fainter galaxy magnitudes because the
candidate-GC sample size is decreasing, and the variance in
the estimates of bothσ andµ scales as∼1/N.

4.3. Effects of Selection Procedure

As we mentioned in §2, the procedure we used to construct
a sample of GC candidates for each galaxy involved assigning
a probabilitypGC to each source and allowing into the sam-
ple only those objects withpGC ≥ 0.5. This may influence
the resulting observed luminosity function and consequently
affect the derived parameters of any fitted model. In order to
check that we do not unduly bias our GCLF fitting by this se-
lection technique, we also constructed alternate candidate-GC
samples that do not use the selection onpGC but only apply a
magnitude cut and an upper limit ofRh . 5 pc (cf. the second
half of Table 1 in §2.1). The magnitude distributions of such
samples are free of any selection effects arising from using
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FIG. 3.— Top: Fractional difference∆σz/σz between input and recovered
Gaussian dispersion for simulated GCSs with four differentGaussian disper-
sions assumed (σ = 0.4,0.7,1.0,1.3). Bottom: Difference∆µz/σz between
input and recovered Gaussian meanµ for the same simulated GCSs as in the
upper panel.

the pGC values and are useful for testing the robustness of any
result. Thus, when we fit GCLFs to any of our data, we have
verified that consistent conclusions are obtained using either
of our sample definitions.

4.4. Binned Samples

While we always perform GCLF fits to individual galaxies,
some of the fainter systems suffer from small-number statis-
tics and/or excessive contamination. We thus constructed still
more GC samples by combining all candidate clusters from as
many galaxies as required to reach a total sample size above
some minimum. Going down the list of our target galaxies
sorted by apparentB magnitude, we accumulate galaxies until
the expected number of bona fide GCs (i.e., the total number
of candidates minus the number of contaminants estimated
from our customized control fields) is& 200. Although many
of the brighter galaxies satisfy this condition by themselves,
we refer to the samples defined in this way as “binned” sam-
ples.16 There are 24 of them in all, and they are used in §6
particularly, to assess trends in GCLF parameters as a function
of galaxy luminosity without the significant scatter causedby
the small numbers of GCs in faint systems.

16 We excluded 5 galaxies when constructing the binned samples, namely
VCC 798, VCC 1192, VCC 1199, VCC 1297 and VCC 1327. The first was
excluded due to the presence of a strong excess of diffuse clusters (Peng et al.
2006b) and the rest because of their proximity to either M87 or M49, making
their GC systems dominated by those of their giant neighbour; see §6.3. We
additionally excluded all galaxies without available SBF distances.

Our SBF analysis has shown that some of the ACSVCS
galaxies have distance moduli significantly different fromthe
mean (m − M)0 = 31.09 mag for Virgo (Mei et al. 2007), and
thus simply combining the apparent magnitudes of GCs from
different galaxies with no correction could artificially inflate
the dispersion of any composite GCLF. To avoid this, we do
the binning by first using the SBF distances to transform all
candidate GC luminosities to the value they would have at a
distance of 31.1 mag (D = 16.5 Mpc).

5. MODEL FITS

In this section we present the results of our maximum-
likelihood fitting of Gaussians and evolved Schechter func-
tions to the GCLFs in the Virgo Cluster Survey. Recall that
any alternative model may be fit to the GCLF histograms in
Table 1, which can be downloaded from the electronic edition
of theAstrophysical Journal.

5.1. Gaussian Fits

The parameter estimates for an intrinsic Gaussian fitted to
our 89 individual GCLFs are given in Table 2. There we list
each galaxy’s ID number in the VCC and its total apparent
magnitudeBgal, both taken from Binggeli, Sandage & Tam-
mann (1985). Following this are the maximum-likelihood
values of the mean GC magnitude and dispersion and their
uncertainties in theg-band (µg,σg), the same quantities in the
z-band (µz,σz), the fractionB̂ of the sample that is expected
to be contamination, and the total numberN of all objects (in-
cluding contaminants and uncorrected for incompleteness)in
the galaxy’s candidate-GC sample. The last column of Ta-
ble 2 gives comments on a few galaxies with noteworthy as-
pects. Note that the uncertainties in the Gaussian parameters
include contributions from cosmic variance in the shape and
normalization of the contamination luminosity functionb(m)
(see §4.1).

In Figure 4 we present histograms of the observed GCLFs
along with the best fitting maximum-likelihood models. The
galaxies are arranged in order of decreasing apparentBgal
magnitude (i.e., the same order as in Table 2), and there are
two panels per galaxy: one presenting thez-band data and
model fits, and one for theg band. The bin width chosen for
display purposes here is not the same for all galaxies, but fol-
lows the ruleh = 2(IQR)N−1/3, where (IQR) is the interquartile
range of the magnitude distribution andN is the total number
of objects in each GC sample (Izenman 1991).

There are four curves drawn in every panel of Figure 4.
The long-dashed curve is the best-fit intrinsic Gaussian GCLF,
given by equation (2) with the parameters listed in Table 2.
The dotted curve is this intrinsic model multiplied by the com-
pleteness function,f (m,Rh, Ib), after marginalizing the latter
over the distribution ofRh and Ib for the observed sources
in each galaxy.17 The solid gray curve is our kernel-density
estimate of the expected contaminant luminosity function.Fi-
nally, the solid black curve is the sum of the solid gray and
dotted curves; it is the net distribution for which the likeli-
hood in equation (16) above is maximized.

17 In order to marginalizef (m,Rh, Ib) one needs to know the distributions
of Rh and Ib—information which is not availablea priori. Using the full
observed distributions ofRh andIb is not possible, because they are affected
by completeness (e.g., faint GCs with largeRh are less likely to be detected).
We therefore marginalizef assuming that the underlying distributions in of
Rh and Ib are given by the observed distributions for objects satisfying z <
22.5 andg < 23.7, which gives samples of objects that can be considered
complete with high confidence, anywhere in any of our galaxies.
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FIG. 4.— Histograms of the GCLFs for our sample galaxies. For each galaxy we present thez-band andg-band GCLFs side by side. The VCC name andB
magnitude of the galaxy are indicated in the upper left corner of the left panel, where we also indicate the total number ofsources in each histogram and the
bin-width h used to construct the histogram. Additionally we show the best-fit model (solid black curve), the intrinsic Gaussian component (dashed curve), the
Gaussian component multiplied by the expected completeness (dotted curve) and a kernel-density estimate of the expected contamination in the sample (solid
gray curve). The solid black curve is the sum of the solid grayand dotted curves. The galaxies are ordered by decreasing apparentB-band total luminosity,
reading down from the upper left-hand corner. The parameters of the fits are given in Table 2.
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Fig. 4. —Continued
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Fig. 4. —Continued



14 JORDÁN ET AL.

Fig. 4. —Continued
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Fig. 4. —Continued
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Fig. 4. —Continued
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Fig. 4. —Continued
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Fig. 4. —Continued
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Fig. 4. —Continued
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FIG. 5.— (Left) Estimate of Gaussian dispersion in thez-band,σz, versus
the same quantity in theg-band,σg, for the GCLFs of our sample galax-
ies. Uncertainties are 1σ. The line marks the one-to-one correspondence
between these two quantities. (Right) Difference between estimates of Gaus-
sian means in theg- andz-bands,µg −µz , versus the mean color〈g−z〉 of the
GC systems of our sample galaxies. Uncertainties are 1σ. The line marks the
one-to-one correspondence between these two quantities.

Since we have two realizations of the GCLF for every
galaxy—one in thez band and one in theg band—we are
able to check the internal consistency of our model parameter
estimates. Thus, in Figure 5 we compare the measured Gaus-
sian means and dispersions in the two bands. The left-hand
panel of this plot shows the scatter ofσz vs. σg about a line
of equality, while the right-hand panel shows the difference in
fitted means (µg − µz) vs. the average GC (g − z) color in each
galaxy (from Peng et al. 2006a), again compared to a line of
equality. Both cases show excellent agreement between the
maximum-likelihood results for the two bandpasses. We con-
clude that the measurements are internally consistent and that
our uncertainty estimates are reasonable.

Finally, we also fit Gaussians to our 24 “binned” GC sam-
ples, constructed by combining the candidates in as many
galaxies as necessary to reach net sample sizes of at least
200 (see §4.4). The IDs and total magnitudes of the galax-
ies going into each of these bins are summarized in Table
3, along with the best-fitz- and g-band Gaussian parame-
ters for each binned GCLF and the best-fit parameters for the
evolved Schechter function discussed in §3 (see just below).
In Figure 6 we display the binned GCLFs in histogram format,
along with a number of curves representing the maximum-
likelihood Gaussian fits. The curves in every panel have ex-
actly the same meaning as in the individual GCLF fits of Fig-
ure 4. We additionally show in this Figure (as the crosses in
each magnitude bin of each histogram) alternative GCLFs for
the binned-galaxy samples, obtained by defining GCs on the
basis of absolute magnitude and an upper limit on the half-
light radiusRh (§4.3).18

In §6 below, we will compare GCLF systematics as a func-
tion of galaxy properties for these binned samples vs. the fits
to individual galaxies. We also note here, without showing
further details, that repeating the exercises of this Section us-
ing the samples of GC candidates selected only by magnitude
andRh, rather than by apGC criterion, leads to results that are
consistent in all ways with those we present below.

5.2. Fits of Evolved Schechter Functions

We have performed fits of the evolved Schechter function
in equation (8)—or equivalently, the more transparent equa-
tion (7)—to the GCLFs of our individual galaxies and binned
samples. Here we discuss only the results of fitting the 24

18 Note that these alternative GCLFs do not have exactly the same numbers
of objects as the bar histograms corresponding to GC samplesdefined by
pGC ≥ 0.5.

binned GC samples, as the results from fitting to all 89 galax-
ies separately lead to similar conclusions.

In all these fits, we enforced the constraint that the fitted
(average) mass loss∆ be less than ten times the exponential
cut-off mass scaleMc: ∆/Mc < 10, or (δ −mc) > −2.5 in mag-
nitude terms. This was done because, as was discussed in §3.2
(see Figure 1), for such large ratios of∆ to Mc the evolved
Schechter function has essentially attained a universal limit-
ing shape. The likelihood surface then becomes very flat for
any greater∆/Mc, and the fitting procedure has difficulty con-
verging if this parameter is allowed to vary to arbitrarily high
values. The majority of our evolved Schechter function fits do
converge to∆/Mc values that satisfy our imposed constraint;
in only one case does the “best-fit” model have the limiting
∆/Mc = 10.

We show in Figure 7 the binned-sample GCLF histograms,
along with model curves analogous to those in Figure 6.
Again, then, the intrinsic evolved-Schechter model GCLF is
the long-dashed curve; this model multiplied by the marginal-
ized completeness function is the dotted curve; a kernel-
density estimate of the contaminant luminosty function is
shown as the solid gray curve; and the net best-fitting model
(sum of dotted and solid gray curves) is drawn as a solid black
curve. Also as in Figure 6, we use crosses in Figure 7 to show
the GCLFs inferred in every galaxy bin when we define GC
samples by simple magnitude cuts andRh limits, rather than
by using ourpGC probabilities.

Comparing Figure 7 with Figure 6, it is apparent that an
evolved Schechter function describes the GCLFs of bright
galaxies about as well as a Gaussian does. In some of the
fainter galaxies there is possibly a tendency for the Schechter
function to overestimate the relative number of faint GCs, but
it is difficult to assess how serious this might be. The worst
disagreements between the model fits and the data tend to oc-
cur in the very faintest extents of the histograms for the hand-
ful of the faintest galaxy bins at the end of Figure 7. Indeed,
the largest discrepancies appear at magnitudes where contam-
inants account for& 50% of the total observed population.
Any impression of success or failure forany model in these
extreme regimes of the GCLFs must be tempered by the real-
ization that the fitting itself is something of a challenge under
such conditions.

This is further illustrated by contrasting, in both Figures
7 and 6, the GCLFs for cluster samples selected by magni-
tude andRh only (crosses in the figures), to those for sam-
ples selected on the basis ofpGC probabilities (bars). The for-
mer samples generally tend to put more objects in the faintest
GCLF bins, an effect particularly apparent in the faintest
galaxies. The low-mass end of the GCLF for faint galaxies
is thus not tightly constrained by our observations; there is
a fundamental uncertainty, due to contamination, that cannot
be overcome by any selection procedure. (Note that some of
the more extreme discrepancies between the different GCLF
definitions—such as in the faintest magnitude bin of BG 20—
are due to the presence in some galaxies of a strong excess of
diffuse clusters that are classified as contaminants when using
pGC to construct the sample; see Peng et al. 2006b). But it is
still worth recalling, in this context, that the “overabundance”
of low-mass clusters in the evolved Schechter function, vs.a
Gaussian, is in fact a demonstrably better description of the
Milky Way GCLF; see Figure 2.

The fitted magnitude-equivalentsδ and mc of the mass
scales∆ andMc, in each of thez andg bands, are recorded
for each of our binned GCLFs in Table 3. In §6 we discuss
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FIG. 6.— Histograms and Gaussian fits to the GCLFs for our binned-galaxy samples. For each sample, named BGn with n = 0, . . . ,23, we present thez-band
andg-band GCLFs side by side. The identifier of the galaxy bin is indicated in the upper left corner of the left panel, where we also indicate the numberN of all
sources in the histogram (as chosen by requiringpGC ≥ 0.5) and the bin-widthh used when constructing the histograms. In each panel we showthe best fitting
model (solid black curve), the intrinsic Gaussian component (dashed curve), the Gaussian component multiplied by the completeness fraction (dotted curve) and
a kernel-density estimate of the expected contamination inthe sample (solid gray curve). The solid black curve is the sum of the solid gray and dotted curves.The
galaxy bins are ordered by decreasing mean apparentB-band luminosity of the galaxies that went into the sample construction. Crosses in all panels show the
histograms that result when GC candidates are selected on the basis of cuts in magnitude and half-light radius; see §4.3.The parameters of all fits are given in
Table 3.
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Fig. 6. —Continued
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FIG. 7.— Histograms and evolved Schechter function fits to the GCLFs for our binned-galaxy samples. For each sample, named BGn with n = 0, . . . ,23, we
present thez-band andg-band GCLFs side by side. The identifier of the galaxy bin is indicated in the upper left corner of the left panel, where we also indicate
the numberN of all sources in the histogram (as chosen by requiringpGC ≥ 0.5) and the bin-widthh used when constructing the histograms. In each panel we
show the best fitting model (solid black curve), the intrinsic evolved Schechter component (dashed curve), the evolved Schechter component multiplied by the
completeness fraction (dotted curve) and a kernel-densityestimate of the expected contamination in the sample (solidgray curve). The solid black curve is the
sum of the solid gray and dotted curves. The galaxy bins are ordered by decreasing mean apparentB-band luminosity of the galaxies that went into the sample
construction. Crosses in all panels show the histograms that result when GC candidates are selected on the basis of cuts in magnitude and half-light radius; see
§4.3. The parameters of all fits are given in Table 3.
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Fig. 7. —Continued
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FIG. 8.— Upper panel: Comparison of the absolutez-band magnitude
of the GCLF turnover, as inferred from the maximum-likelihood fitting of
intrinsic evolved Schechter functions versus that inferred from Gaussian fits.
Lower panel: Comparison of the FWHM of the intrinsicz-band GCLFs, as
returned by the Gaussian and evolved Schechter fits. Similarplots for the fits
to ourg-band GCLFs look the same as thesez-band results.

in detail the conversion of these to masses and also consider
dependences of∆ andMc on galaxy luminosity.

Just before looking at these issues, Figure 8 compares
the turnover magnitudes and full-widths at half maximum
(FWHM) for the binnedz-band GCLFs as returned by the fits
of evolved Schechter functions (see eq. [9]), against the same
quantities implied by our Gaussian fits. For the turnovers,
there is a slight offset, in that the fitted Schechter functions
tend to peak at slightly brighter magnitudes (typical differ-
ence.0.1 mag, corresponding to a turnover mass scale that
is < 10% larger than implied by the Gaussian fits). This is
very similar to the offset in the two fitted turnover magnitudes
for the Milky Way GCLF in §3.3. As we discussed there, the
discrepancy is a result of the intrinsic symmetry assumed in
the Gaussian model, vs. the faint-end asymmetry built into the
evolved Schechter function.

The FWHMs differ more substantially between the two
functional forms, with the evolved-Schechter fits being typ-
ically ≃0.5 mag broader (or about 0.2 dex in terms of mass)
than the Gaussian fits. But this is again only to be expected
from the asymmetry of the former function vs. the symmetry
of the Gaussian. As was noted at the end of §3.2, the shape
of the evolved Schechter function is universally flat in terms

of dN/dM for low GC masses, or universally∝ 10−0.4m in
terms ofdN/dm for magnitudes much fainter than the peak
of the GCLF. As a result, the faint side of the GCLF is always
broader than any Gaussian, and so if the two models give com-
parable descriptions of the bright halves of all GCLFs, the
FWHM of the evolved Schechter functions must always be
larger than those of the Gaussian fits. Moreover, for very nar-
row observed GCLFs, fit by small Gaussianσm (primarily to
reproduce the steepness of the bright side of the GCLF, as dis-
cussed below), the evolved Schechter function fits are limited
by a minimum FWHM of≃2.66 mag (§3.2), explaining the
tendency towards a plateau at the left side of the lower panel
of Figure 8.

6. TRENDS BETWEEN AND WITHIN GALAXIES

Having fitted two different GCLF models to each of our in-
dividual galaxies and binned samples, we now outline some
systematic variations in the properties of GC mass distribu-
tions indicated by this work. First, we examine the depen-
dence of GCLF parameters on host galaxy luminosity; then—
even though the ACSVCS data are not ideal for this purpose—
we look for any evidence of GCLF trends with radius inside
the two brightest Virgo galaxies, M49 (VCC 1226) and M87
(VCC 1316).

6.1. Variations with Galaxy Luminosity

6.1.1. Gaussian Parameters

Figure 9 shows one of the main results of this paper: GCLFs
are narrower in lower-luminosity galaxies (see also Jordánet
al. 2006).

The upper panel of this figure plots the Gaussian disper-
sion that best fits thez-band GCLF, as a function of absolute
galaxy magnitudeMB,gal for our 89 individual galaxies. Filled
circles represent galaxies with measured (SBF) distance mod-
uli, while open triangles correspond to galaxies for which
no distance modulus is available and for which we assume
(m − M)0 = 31.1 (consistent with the average Virgo distance
modulus of Mei et al. 2007) to computeMB,gal. The lower
panel shows the analogous result for ourg-band GC data. The
straight lines drawn in the panels are convenient linear char-
acterizations of theσm–MB,gal trends:

σz = (1.12±0.01)− (0.093±0.006)(MB,gal+ 20) (17)

and

σg = (1.14±0.01)− (0.100±0.007)(MB,gal+ 20). (18)

While it has been reported before that there is a tendency for
the GCLFs in lower luminosity galaxies to show somewhat
lower dispersions (e.g., Kundu & Whitmore 2001a), the ho-
mogeneity of our sample and analysis make this the most con-
vincing demonstration to date of the existence of a continous
trend over a factor of≈400 in galaxy luminosity. It is partic-
ularly noteworthy that the fainter galaxies in our sample—all
of which are early type—have very modestσm . 1, values
more usually associated with the GCLFs of late-type galax-
ies. In fact we have also plotted on Figure 9 theV -band
GCLF dispersions (Harris 2001) and absolute bulge luminosi-
ties of the Milky Way (large filled star atMB,gal = −18.8; de
Vaucouleurs & Pence 1978) and M31 (large filled triangle at
MB,gal = −19.2; from Kent 1989, but assuming a distance of
810 kpc). Clearly these fall well in the midst of our new data,
and thus the correlation ofσ with MB,gal would appear to be
more fundamental than the older view, that GCLF dispersions
depend on galaxy Hubble type (Harris 1991).
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FIG. 9.— Top: GCLF dispersionσz, inferred from Gaussian fits to the
z-band data, versus galaxyMB,gal. Filled symbols are galaxies for which
we have available SBF distances while open triangles represent galaxies for
which we do not and for which we have assumed a distance modulus of (m −
M)0 = 31.1. The dashed line is the linear relation betweenσz and MB,gal
in equation (17).Bottom: Same comparison, but for the intrinsic Gaussian
dispersion of theg-band GCLFs,σg. Dashed line is equation (18). In both
panels the star shows values for the MW and the triangle represents M31. The
outliers atMB,gal ≃ −21.2 andMB,gal ≃ −19.9 in both panels are VCC 798
and VCC 2095, galaxies which have an excess of faint, diffusestar clusters
(Peng et al. 2006b).

At this point it should be noted that the GCs in brighter
galaxies are known to have broader color distributions, and
hence larger dispersions in metallicity, than those in fainter
galaxies (e.g., Peng et al. 2006a). But cluster mass-to-light
ratios,Υ, are functions of [Fe/H] in general, so there will be
some galaxy-dependent spread in their values. Since the vari-
ance in an observed luminosity distribution is related to that
in the mass distribution, by the usualσ2(log L) = σ2(log M) +
σ2(log Υ), this then suggests the possibility that the trend we
see in the GCLFσz andσg vs. galaxy luminosity might re-
sult from systematics inσ(log Υ) vs. MB,gal on top of a more
nearly constantσ(log M). In fact, this idea was recently in-
voked by Waters et al. (2006) as a potential explanation for
the fact that theI-band GCLF of M87 is broader than that
of the Milky Way; and by Strader et al. (2006) as a possible
reason for the narrower composite GCLF of a subsample of

ACSVCS dwarfs versus the GCLFs of Virgo giants. How-
ever, neither of those works checked these claims quantita-
tively. We have done so here (see also Jordán et al. 2006), and
we find that the explanation is not tenable.

As we will discuss further in §6.1.2, GC mass-to-light ra-
tios in the longer-wavelengthz band vary by less than±10%
over the entire range−2 ≤ [Fe/H] ≤ 0, which includes the
large majority of clusters. Thusσ(log Υz) < 0.04 no mat-
ter what the details of the GC metallicity distribution are—
making for an utterly negligible “correction” to the observed
σ(log Lz) = σz/2.5 for all of our GCLFs. In the shorter-
wavelengthg band, mass-to-light ratios are more sensitive to
cluster colors. But here the close agreement of ourg- and
z-band GCLF dispersions shows immediately that the former
must be reflecting the properties of the GC mass functions just
as closely as the latter are. Indeed, more detailed calculations,
which include the observed specifics of the color distributions
in our galaxies (Peng et al. 2006a), confirm that the spread in
expected GCΥg values contributes∼ 0.02 mag to the total
observed GCLF dispersion—an amount well within the ob-
servational uncertainties onσg in the first place19. Thus, we
proceed knowing that the correlations between GCLF disper-
sion and galaxy luminosity that we are discussing here are
very accurate reflections of equivalent trends in the more fun-
damental GC mass distributions.

Because of the symmetry assumed in the model, the trend
of decreasing Gaussianσm in Figure 9 might appear to imply
a steepening of the GCLF on both sides of the turnover mass.
However, as we have already discussed, if we take the more
physically based, evolved-Schechter function of equation(8)
or (7) to describe the distribution of GC masses, thenall
GCLFs must have the same basic shape (and thus half-width)
for clusters fainter than about the turnover magnitude—in
which case the trends in Figure 9 can only be driven by sys-
tematics in the bright side of the GCLF. Indeed, as was men-
tioned in §3 above (and discussed at length by, e.g., McLaugh-
lin & Pudritz 1996), it has long been clear that power-law rep-
resentations of the GC mass function above the turnover mass
in the Milky Way and M31 are significantly steeper than those
in M87, M49, and other bright ellipticals; there is no “univer-
sal” power-law slope for present-day GC mass functions.

Given these points, we have also performed maximum-
likelihood fits of pure power-law mass distribu-
tions (dN/dM ∝ M−β ; or, in terms of magnitude,
dN/dm ∝ 100.4(β−1)m) to GCs between≃ 0.5–2.5 mag
brighter than the turnover magnitude in the cluster samples
of our individual galaxies. (Such subsamples are both
highly complete and essentially uncontaminated in all of
our galaxies). The best-fitβ for the 66 galaxies in which
we were able to measure it are presented in Table 4. The
results from fitting to thez- andg-band data are similar, and
thus we show only the former here, in the upper panel of
Figure 10. This confirms that the high-mass end of the GCLF
steepens systematically for decreasing galaxy luminosity,
independently of how the low-mass GC distribution behaves.
In Figure 10 we also plot a star and triangle showingβ
values for the Milky Way and M31 respectively, measured
in the same mass regime using the data from Harris (1996)
and Reed et al. (1994) assuming aV -band mass-to-light
ratio M/LV = 2. The lower panel of Figure 10 then plots the
fitted power-law exponent for high GC masses against the

19 We note that the median value of (σg − σz) for our sample galaxies is
0.02 mag.
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FIG. 10.—Upper panel shows the slopeβz of the power law that best fits
thez-band GCLF data for GC masses 3×105 . (M/M⊙) .2×106, against
host galaxy absoluteB magnitude. The star and triangle showβ values for
the Milky Way and M31 respectively, measured in the same massregime us-
ing the data from Harris (1996) and Reed et al. (1994) assuming aV -band
mass-to-light ratioM/LV = 2 M⊙ L−1

V,⊙. Lower panel shows the correlation
between this power-law index and the dispersionσz in a Gaussian represen-
tation of the GCLF. These graphs illustrate that the systematic “narrowing”
of the GCLF for decreasing galaxy luminosity, as seen in Figs. 9 and 12, is a
real phenomenon rather than an artifact of the Gaussian model: it shows up
clearly as a steepening of the (largely complete and relatively contamination-
free) high-mass end of observed GCLFs. Corresponding plotsfor theg-band
GCLFs are very similar to these.

Gaussian GCLF dispersion from Figure 9, showing that there
is indeed a clear correlation between these two parameters
in the sense that a narrower Gaussianσ reflects a steeper
high-mass power-lawβ.

The regularity and the high significance of the narrowing of
the GCLF as a function of galaxy luminosity—or the steepen-
ing of the mass distribution above the classic turnover point—
places a new and stringent constraint on theories of the for-
mation and evolution of the mass function of GCs. In one
sense, this is then on a par with the modest amount of varia-
tion seen in the turnover mass. An important difference may
be that the GCLF turnover could be imprinted to some large
extent by long-term dynamical evolution (Fall & Zhang 2001;
though see, e.g., Vesperini 2000, 2001, and Vesperini & Zepf
2003 for a differing view, and §7.1 below for a discussion
of caveats). By contrast, most analyses agree that the shape
of dN/dm above the turnover is largely resistant to change

by dynamical processes (§7.2)—in which case it seems most
likely that the systematic variations in Figures 9 and 10 arere-
flecting a fundamental tendency to form massive star clusters
in greaterrelative numbers in more massive galaxies.

Moving now to the GCLF turnover magnitude, in Figure 11
we show the absoluteµz andµg as functions of host galaxy ab-
solute magnitudeMB,gal. In both panels of this figure, horizon-
tal lines are drawn at the levels of the typical turnovers in large
ellipticals: excluding VCC 798, which has an anomalously
large excess of faint, diffuse star clusters (Peng et al. 2006b),
the average Gaussian turnovers for ACSVCS galaxies with
MB,gal < −18 are

〈µz〉 = −8.4±0.2
〈µg〉 = −7.2±0.2 .

(MB,gal < −18) (19)

The turnover in the Milky Way is shown as a large filled star
and that in M31 is represented by a large filled triangle, as in
Figure 9. We estimated these turnovers from theV -band val-
ues given in Table 13 of Harris (2001), by applying (g−V) and
(V −z) colors calculated for 13-Gyr old clusters with [Fe/H] =
−1.4 for the Milky Way (Harris 2001) and [Fe/H] = −1.2 for
M31 (Barmby et al. 2000) using the PEGASE population-
synthesis model (Fioc & Rocca-Volmerange 1997).

Thez-band turnovers in the upper panel of Figure 11 show
a tendency to scatter systematically above (fainter than) the
bright-galaxy value for systems withMB,gal & −18, but there
are no such systematics in theg-band turnovers in the lower
panel. Interpreting these results is most easily done in terms
of equivalent turnovermass scales, and thus we defer further
discussion to §6.1.2, where we use the PEGASE model to
convert all of our GCLF parameters to their mass equivalents.
We note here, however, that the near constancy ofµg in Figure
11 is equivalent to the well known “universality” of the GCLF
turnover in the more commonly usedV band (since ourg is
the HST F475W filter, which is close to standardV ).

Before discussing masses in detail, we plot in Figure 12 the
Gaussian means and dispersions of thez-band GCLFs in our
24 binned samples, vs. the average absolute magnitude of the
galaxies in each bin (see Table 3). The straight lines in each
panel are just those from the upper panels of Figs. 11 and 9,
characterizing the fits to all 89 individual galaxies. This com-
parison shows that the results from our single- and binned-
galaxy GC samples are completely consistent, so that our bin-
ning process has served—as intended—to decrease the scatter
in the observed behavior ofµ andσ at low galaxy luminosi-
ties. It also confirms the results of our simulations in §4.2
above, which showed that our maximum-likelihood model fit-
ting is not significantly biased by size-of-sample effects.A
plot like Figure 12, but using our Gaussian fits to the individ-
ual and binnedg-band GCLFs, leads to the same conclusions.

6.1.2. Mass Scales

To better understand the GCLF trends discussed above, and
to mesh the Gaussian-based results with those from fits of the
more physically motivated evolved-Schechter function, itis
advantageous to work in terms of GC mass, rather thanz and
g magnitudes. To make this switch, we rely on population-
synthesis model calculations of (g − z) colors andg- and z-
band mass-to-light ratios as functions of metallicity for “sim-
ple” (single-burst) stellar populations.

The model we use is version 2.0 of the PEGASE code (Fioc
& Rocca-Volmerange 1997), which we have run by inputting
the stellar initial mass function of Kennicutt (1983) to com-
pute cluster masses andg andz luminosities as functions of
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FIG. 11.— Top: Absolute magnitudeµz of the GCLF turnover, versus
MB,gal, inferred from Gaussian fits to thez-band GCLFs. Filled symbols are
galaxies for which we have available SBF distances while open triangles rep-
resent galaxies for which we do not and for which we have assumed a distance
modulus of (m − M)0 = 31.1. The dashed line is atµz = −8.4, the average for
galaxies brighter thanMB,gal = −18. Fainter galaxies have turnover magni-
tudes that tend to scatter fainter than this.Bottom: Same comparison, for
the g-band magnitude of the GCLF turnover. Horizontal line isµg = −7.2.
In both panels the star shows values for the MW and the triangle represents
M31. The outliers atMB,gal ≃ −21.2 andMB,gal ≃ −19.9 in both panels are
VCC 798 and VCC 2095, galaxies which have an excess of faint, diffuse star
clusters (Peng et al. 2006b).

age for several fixed values of [Fe/H]. The results, at an as-
sumed uniform GC age of 13 Gyr, are illustrated in Figure 13,
which plots the mass-to-light ratiosΥg andΥz in solar units
and the (g − z) color against [Fe/H]. Given the average (g − z)
of the GCs in any of our galaxies (from Peng et al. 2006a), we
interpolate on these PEGASE model curves to estimate aver-
ageg andz mass-to-light ratios. Table 5 lists the mean GC
color in each galaxy and theM/L values we have derived.

It is clear from Figure 13 and Table 5 that thez-band mass-
to-light ratio varies by only a modest amount for most GCs
in our samples: we generally have 0.8 . 〈(g − z)〉 . 1.2 in
these cluster systems, and thus 1.45 . Υz . 1.55 M⊙ L−1

⊙ .
A z-band luminosity is therefore a very good proxy for to-
tal cluster mass. By contrast, over the same range of GC color
or metallicity, theg-band mass-to-light ratio increases mono-

FIG. 12.—z-band GCLF turnover magnitude (upper panel) and dispersion
(lower panel) inferred from the Gaussian fits to the binned-galaxy samples
in Fig. 6. The horizontal line in the upper panel is the sameµz = −8.4 that
characterizes the bright galaxies in the upper panel of Fig.11. The line in the
lower panel is the fit of equation (17) to the Gaussian dispersions obtained
from fitting all 89 of our galaxies individually (cf. Fig. 9).In both panels
the star shows values for the MW and the triangle represents M31. Note that
VCC 798, the bright outlier galaxy in Figs. 9 and 11, has been excluded from
our “binned” samples due to its excess of faint, diffuse starclusters.

tonically from Υg ≃ 1.9 M⊙ L−1
⊙ to Υg ≃ 2.7 M⊙ L−1

⊙ . Note
that if any of our GCs were much younger than 13 Gyr, then
the numerical values of these mass-to-light ratios would all be
lower (by∼30%–40% at an age of 8 Gyr, for example), but
the basic constancy ofΥz and the systematic increase ofΥg
for redder/more metal-rich GC systems would remain.

This has immediate implications for our plots of the GCLF
turnover magnitudes in Figures 11 and 12 above. In partic-
ular, the GCs are systematically bluer, on average, in lower-
luminosity galaxies (e.g., Peng et al. 2006a; see also Table
5). Assuming that this reflects a correlation between aver-
age cluster metallicity and galaxy luminosity (rather thanone
between cluster age andMB,gal), the typicalΥg must be some-
what lower for GCs in faint galaxies than in bright galaxies,
while Υz is essentially the same. The fact that the Gaussian
GCµz scatters slightly faintward towards fainterMB,gal should
then reflect a modest downward scatter in the turnovermass
scale. But in theg band, this would be balanced to at least
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FIG. 13.— Predicted mass-to-light ratioΥ (upper Panel) in solar units in
thez (dotted line) andg (dashed line) bands, and (g−z) color (lower panel), all
as functions of metallicity for a 13-Gyr old simple stellar population accord-
ing to the PEGASE population-synthesis model (Fioc & Rocca-Volmerange
1997) assuming a Kennicutt (1983) stellar IMF. The arrows inboth panels
indicate the minimum and maximum average GC [Fe/H] in the ACSVCS
galaxies, as inferred from their mean (g − z) colors (see Table 5).

some extent by the decrease in mass-to-light ratio, andµg
should stay more steady as a function ofMB,gal.

This interpretation of the situation is confirmed in Figure
14, where in the upper panel we plot the Gaussian turnover
masses, derived from thez- and g-band GCLF fits as just
described, vs. parent galaxy absolute magnitude. The av-
erage turnover magnitudes in equation (19) and the typical
GC mass-to-light ratios in Table 5 together imply an average
turnover mass of

〈MTO〉 = (2.2±0.4)×105 M⊙ (20)

for the brightest ACSVCS galaxies withMB,gal < −18 (here
we have taken the absolute magnitude of the sun to be 4.51 in
the z-band and 5.10 ing). The consistency in most systems
between the turnover masses estimated from the two band-
passes shows that, indeed, forMB,gal & −18, there is an over-
all tendency to find more GC systems with turnover masses
somewhat below the average for giant ellipticals, by as much
as a factor of 2 in some cases. It also implies that the de-
pendence of GC〈(g − z)〉 on galaxy luminosity does primarily

FIG. 14.— Turnovermass MTO (upper panel) and dispersion of logarithmic
mass (lower panel) implied by our Gaussian fits to theg- andz-band GCLFs
of individual galaxies. The turnover masses are obtained from the magnitudes
µg andµz by applying the PEGASE model mass-to-light ratios summarized
in Fig. 13 and Table 5. The dispersion in logarithmic mass isσM = σg/2.5 or
σz/2.5. In both plots, results from theg-band data are represented by circles,
and results from thez-band by crosses. In the upper part of both panels we
show the typical behaviour of error bars as a function ofMB,gal. The outlying
points atMB ≃ −21.2 in both panels correspond to VCC 798, a galaxy which
has a strong excess of faint, diffuse star clusters (Peng et al. 2006b).

reflect metallicity variations, since if GCs had very similar
metallicities but much younger ages in fainter galaxies, the z-
andg-band estimates ofMTO would differ by as much as the
fitted turnover magnitudes in §6.1.1.

For completeness, in the lower panel of Figure 14, we show
theg- andz-band based estimates of the Gaussian dispersion
of logarithmic GC masses. SinceσM does not depend on the
cluster mass-to-light ratio, but is just the magnitude dispersion
divided by 2.5, this plot is completely equivalent to Figure9.
Thus we have also drawn in equation (17) above, multiplied
by 0.4.

An interesting corollary to all of this is that the reliabil-
ity of the GCLF as a distance indicator would appear to be
somewhat bandpass-dependent, at least when applied to sub-
L∗ galaxies withMB,gal & −19. We have just argued that the
near-universality of the turnover magnitude in theg-band—
and thus in the very closely relatedV band—is at some level
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FIG. 15.—Left: GCLF turnover massMTO, inferred from the maximum-likelihood estimate of Gaussian µ, as a function ofMB,gal for binned-galaxy samples.
MTO has been inferred fromµ using the PEGASE model, as summarized in Fig. 13 and Table 5. Crosses indicate values ofMTO obtained fromµg, while circles
are the values ofMTO obtained fromµz. (Right) GCLF turnover massMTO versus galaxy absolute magnitude, as inferred from the fits of evolved Schechter
function to the binned-galaxy samples (using eq. [9] and PEGASE model mass-to-light ratios). The trend of decreasingMTO with decreasing galaxy mass is as
in the left panel, showing again that the choice of functional form does not affect our results. Note that VCC 798, responsible for the outlying points at bright
MB,gal ≃ −21.2 in Fig. 14, has been excluded from our “binned” samples due to its excess of faint, diffuse star clusters.

the fortuitive consequence of quantitatively similar decreases
in both the turnover mass and the typical GC mass-to-light
ratio in smaller galaxies. At longer wavelengths, however,
mass-to-light ratios are not so sensitive to GC metallicity, and
variations in the turnover mass carry over more directly into
variations in turnover magnitude. We will explore this is-
sue in more detail in future work. However, any such prag-
matic concerns about the precision of the GCLF peak magni-
tude as a standard candle should not detract from the main
point of physical interest here: although the differences in
GCLF turnover mass that we find are real, they are never-
theless relatively modest. While the galaxies in the ACSVCS
range over a factor of≃ 400 in luminosity,MTO never falls
more than≃30%–40% away from the (Gaussian) average of
2.2×105M⊙ for the giant ellipticals.

In the left panel of Figure 15 we show the turnover masses
derived from the Gaussian GCLF means for our binned-
galaxy GC samples. This again highlights the tendency to
slightly less massive GCLF peaks, on average, in lower-
luminosity galaxies. In the right panel of this figure we also
showMTO as derived from our fits of an evolved Schechter
function to the same GCLFs (see eqs. [9] and [10]). The close
similarity of the two graphs in Figure 15 is entirely in keep-
ing with the slight average offset between the Gaussian and
extended-Schechter turnover magnitudes in Figure 8 above.
It also illustrates that our main results are not overly depen-
dent on the particular choice of model to fit the GCLFs.

Last, in Figure 16 we show the GC mass scalesMc (the
high-mass exponential cut-off) and∆ (interpreted as the av-
erage mass lost per GC by evaporation) for our fits of evolved
Schechter functions to the binned-galaxy GCLFs, as inferred
from their magnitude equivalentsmc andδ in Table 3. The
upper panel of the figure first plotsMc vs. MB,gal, using solid
points to represent fits to GC samples selected on the basis
of our probabilitiespGC and open symbols for fits to samples
defined only by cuts on magnitude and GC effective radius
(see §4.3). There is a clear, systematic decrease ofMc with

decreasing galaxy luminosity. In terms of the structure of the
mass function (eq. [7]), this corresponds to a steeper fall-off
in the frequency of GCs more massive than the turnover point.
It is therefore equivalent to our findings in Figures 9 and 10
that the Gaussianσ is narrower, and the high-mass power law
β steeper, for the GCLFs in fainter galaxies. As we discuss in
§7, features such as this likely reflect the initial condition of
the GC mass distribution. Thus, if GC systems were indeed
born with Schechter-like mass functions, it would seem that
the “truncation” mass scaleMc was higher in larger galaxies
right from the point of cluster formation.

The graph of∆ vs. galaxy luminosity in the lower panel of
Figure 16 shows, first, that it is roughly comparable to (though
slightly larger than) the GCLF turnover mass in general. This
is certainly not unexpected, given the characteristics of the
model itself (see the discussion in §3.2). In physical terms,
though, if the model is taken at face value, the correspondence
reflects the fundamental role that evaporation is assumed to
play in defining any turnover point at all (see our discussion
in §3, and the more detailed exposition of Fall & Zhang 2001).
Beyond this, our fits imply that there is a tendency for∆ to
increase as galaxy luminosity decreases, but this is not a par-
ticularly regular trend. All in all, there appears to be a fairly
narrow range of GC mass loss,∆≈ 2−10×105M⊙, required
to account for our GCLF observations over a large range of
galaxy luminosity.

Note that several of the faintest galaxy bins in Figure 16
have∆/Mc ≈ 2, to be compared with∆/Mc ∼ 0.1 for the
brightest systems. This reflects once again the systematic nar-
rowing of the GCLF, due to the steepening ofdN/dM for high
cluster masses, in fainter galaxies.

In §7 we will further discuss the variations ofMTO, MC, and
∆ with galaxy luminosity, and how they relate to questions of
GC formation and dynamical evolution.

6.2. GCLF Turnovers in the Faintest Galaxies
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FIG. 16.—Top: Cut-off mass scaleMc,z, inferred from our fits of evolved
Schechter functions to thez-band GCLFs of binned-galaxy cluster samples,
versusMB,gal. Bottom: Average mass loss per globular cluster,∆z, versus
MB,gal, from fits of evolved Schechter functions to thez-band GCLFs of the
binned-galaxy samples. In both panels, filled points are forfits to GC sam-
ples defined by the criterionpGC ≥ 0.5 while open symbols are for samples
constructed using only cuts in magnitude and half-light radius (see §4.3). It
is clear that selection effects can be safely ignored when investigating broad
trends inMc and∆. The stars in the two panels show the values ofMc and
∆ from fits to the Milky Way GCLF (eq. [14]). The dotted lines in the lower
panel show the rough expected scaling of∆ vs. MB,gal indicated by equa-
tions (25) and (26) in §7.1. In order to show the scaling we have arbitrarily
assumed that∆ = 2.5×105M⊙ at MB,gal = −21.

In all of our galaxies there is evidence for the presence of
a peak in the GCLF. Recently, van den Bergh (2006) claimed
that the combined GCLF for a sample of local dwarf galaxies
fainter thanMV,gal > −16 doesnot show a turnover, but con-
tinues to increase to GC masses as low as≈104 M⊙. These
galaxy luminosities translate toB-bandMB,gal & −15.2, which
is essentially the magnitude limit of our ACSVCS sample.

Even though we do not probe down to the galaxy luminosi-
ties where van den Bergh (2006) claims a drastically differ-
ent GCLF behavior, it is nonetheless worth noting that the
turnover mass in our faintest galaxies is still fairly closeto
the “canonical”MTO ∼ 2× 105M⊙. There is no hint of any
systematics that would causeMTO to fall to 104M⊙ or less
in galaxies just 1 mag fainter than the smallest systems ob-

served here (e.g., see Fig. 14). It is thus likely relevant that
the results of van den Bergh (2006) are based mostly on data
from Sharina et al. (2005), who do not account for any poten-
tial contamination in their lists of candidate GCs in the local
dwarfs. Any GCLF derived from these data must therefore be
regarded as quite uncertain, at the faint end especially. Spec-
troscopic confirmation of the Sharina et al. GC candidates is
required.

6.3. Variations with Galactocentric Radius

To achieve a fuller understanding of the GCLF, and in par-
ticular the competing influences of cluster formation and dy-
namical evolution on it, we would like to know how it might
vary in form as a function of position in its parent galaxy. It
has long been understood that the turnover of the Milky Way
GCLF is essentially invariant with Galactocentric radius (e.g.,
Harris 2001), and multiple studies of the M87 GCLF have
concluded that its overall shape is basically the same from the
center of the galaxy out to several effective radii (McLaughlin,
Harris, & Hanes 1994; Harris, Harris, & McLaughlin 1998;
Kundu et al. 1999). Beyond this, however, little is known
about the generic situation in most galaxies.

For the most part, our data are not well-suited to address this
question, due to the small field of view of the ACS. However,
we are afforded serendipitously long baselines of galactocen-
tric radius in M87 and M49, by the inclusion in the ACSVCS
of a number of low-luminosity galaxies that are projected
close to each of these large galaxies. We refer to these galax-
ies as “companions,” even though they might not be physi-
cally associated with their “hosts.” The majority of the GCs
observed in the fields of these smaller systems belong to the
giants. While each companion does have some GCs of its
own, their numbers will be reduced to negligible levels, com-
pared to the M87 or M49 globulars, outside some sufficiently
large radius in the low-luminosity galaxy. Thus, we take our
original GC samples for the companions present in the survey
and consider only those cluster candidates that are found more
than 6 effective radii from the companion centers.20 Since the
effective radii of the GC spatial distributions are generally ≈2
times larger than those of the underlying galaxy light (Peng
et al. 2006, in preparation), this corresponds to excluding
sources that are within about 3 GC-system scale radii from the
companion centers. This should effectively eliminate≈90%
of each companion’s native GCs, leaving us with fairly clean
samples of extra M49 and M87 globulars, located tens of kpc
away from the giant galaxy centers.

We restrict our analysis to companions that have more
than 50 GC candidates left after this selection. These
are VCC 1199 (companion to M49, projected 4.′5 away);
VCC 1192 (M49, 4.′2); VCC 1297 (M87, 7.′3); and VCC 1327
(M87, 7.′5). Note that 1′ = 4.8 kpc for an average distance of
D = 16.5 Mpc to Virgo.

In Figure 17 we show the luminosity functions and Gaus-
sian fits for the resulting GC samples in the four fields neigh-
bouring M87 and M49. In Table 6 we list the best-fit param-
eters and the mean (g − z) colors and mass-to-light ratios as-
sumed to convert the results to mass. The results are summa-
rized in Figure 18, where we show the GCLF turnovers and

20 Because the light profiles of the companion galaxies might have been
affected by an interaction with their giant host (in the casethey were physi-
cally associated), we use the median effective radius of allVCS galaxies with
magnitides within 0.5 mag of each companion galaxy, instead of their mea-
sured one (the effective radii of all ACSVCS galaxies have been measured by
Ferrarese et al. 2006a).
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dispersions as a function of galactocentric distance in M87
and M49 separately. Evidently, none of the Gaussian GCLF
parameters shows significant (> 3σ) variation over the 20–35
kpc baselines probed. Fits of evolved Schechter functions to
these GCLFs confirm thatMTO in particular does not change.
As we discuss further in §7.1, this lack of any significant ra-
dial trend inMTO with galactocentric distance is hard to recon-
cile with a picture in which the GCLF turnover is determined
solely by dynamical effects (primarily evaporation) acting on
a universal power-law like initial cluster mass function evolv-
ing in a fixed, time-independent galaxy potential. (In fact,if
it varies at all,MTO may even get slightly more massive with
increasing radius in Fig. 18. While we do not claim that any
such trend is in fact detected here, it would beopposite to
naive expectations.)

7. DISCUSSION

We have found interesting trends in three mass scales of
physical interest in connection with GC luminosity functions.

The GCLF turnover or peak mass takes a value ofMTO =
(2.2±0.4)×105M⊙ in most bright galaxies, but shows some
downward scatter in dwarfs fainter thanMB,gal & −18. In M87
and M49, the data are consistent with a more or less constant
MTO to projected galactocentric radii of 20–35 kpc.

The higher-mass scaleMc in an evolved Schechter func-
tion, which marks the onset of an exponential cut-off in the
number of clusters per unit mass, grows steadilysmaller in
fainter galaxies. This drives a systematic narrowing of the
dispersion in more traditional Gaussian fits to the GCLF, or
equivalently a steepening of pure power-law fits to the mass
functiondN/dM at cluster massesM & MTO.

And the mass∆ in the evolved Schechter function, which
controls the shape of the low-mass end of the GC mass distri-
bution and is instrumental in settingMTO, varies by factors of
a few—although not entirely monotonically—as a function of
galaxy luminosity.

We now discuss these results in terms of their implications
for GC formation and dynamical evolution. We begin by fo-
cusing on∆ in the evolved Schechter function, which, in the
context of Fall & Zhang’s (2001) dynamical theory for the
GCLF, is meant to measure the average amount of mass lost
per globular cluster in a galaxy, over a Hubble time of evolu-
tion. We then move on toMc andMTO, asking specifically to
what extent the observed variations in these high-mass char-
acteristics of the GCLF might be caused by dynamical friction
rather than initial conditions.

7.1. Evaporation and the Low-Mass Side of the GCLF

The defining feature of the evolved Schechter function in
equation (7)—which we have found to fit the GC mass distri-
butions of galaxies in the ACSVCS just as well as the tra-
ditional, but ad hoc, lognormal form—is the flat shape of
dN/dM in the limit of low masses. This asymptotic flat-
ness always follows naturally from a time-independent rate
of cluster mass loss, regardless of the assumed initial form
of dN/dM0 (Fall & Zhang 2001, and §3.2.2 above). The ex-
act values of the average cumulative mass losses per GC for
the galaxies in our sample are, however, more specific to the
assumption thatdN/dM0 ∝ M−2

0 exp(−M0/Mc)—a form cho-
sen to match the observed mass functions of young massive
clusters in local mergers and starbursts.

It is worth noting that, even though the average mass loss∆

in an evolved Schechter function is key to setting the GCLF

FIG. 17.— Histograms and Gaussian fits for the GCLFs of GCs in the field
of view of four companions of M87 (=VCC 1316) and M49 (=VCC 1226)
that lie farther away than 6Re from the companion galaxy, whereRe is the
effective radius of the companion and is determined as described in the text.
For each field we present thez-band andg-band GCLFs side by side. The
VCC name of the companion galaxy is indicated in the upper left corner of
the left panel, where we also indicate the total numberN of sources with
pGC ≥ 0.5 and the bin-widthh used when constructing the histograms. In
each panel we show the best fitting model (solid black curve),the intrinsic
Gaussian component (dashed curve), the Gaussian componentmultiplied by
the completeness fraction (dotted curve), and a kernel-density estimate of the
expected contamination in the sample (solid gray curve). The solid black
curve is the sum of the solid gray and dotted curves. Details of the fits are
given in Table 6.

turnover mass,MTO does not vary as much or as systemati-
cally as∆ does in the ACSVCS sample (cf. Figures 15 and
16). This is because the value of the upper-mass cut-offMc
also influencesMTO (see §3.2), andMc varies in such a way
as to largely counteract the variation of∆, keepingMTO more
steady as a function ofMB,gal.

SinceMTO is observed to be so nearly constant indepen-
dently of any functional fitting—at least in large galaxies—
this balance between variations in∆ andMc might be viewed
simply as a necessary condition to make evolved Schechter
functions match the data at all. But more interesting is that
if the physical arguments behind the fitting function are close
to correct, our results imply that the near-universality ofthe
GCLF turnover in bright galaxies (MB,gal . −18) is in some
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FIG. 18.— (Left) GCLF turnover massMTO as a function of projected galactocentric distanceRgc in M49=VCC 1226 (top) and M87=VCC 1316 (bottom).
Filled symbols refer toz-band measurements ofMTO while open symbols refer tog-band ones. (Right) Gaussian dispersion of logarithmic cluster masses,σM ,
as a function of projected galactocentric distanceRgc in M49=VCC1226 (top) and M87=VCC1316 (bottom). Filled symbols refer toz-band measurements while
open symbols refer tog-band ones. In the M49 panels, the leftmost pairs of points refer to the GCLF parameters derived from the central ACS pointings in the
main body of the galaxy; the next pair out correspond to the companion VCC 1192; and the rightmost pair correspond to the companion VCC 1199. In the
M87 panels, the leftmost pairs of points refer to the GCLF parameters derived from the central ACS pointings in the main body of the galaxy; the next pair out
correspond to the companion VCC 1297; and the rightmost paircorrespond to the companion VCC 1327.

sense a coincidence resulting from steeper initialdN/dM
(with lower Mc) in fainter systems being eroded by faster
mass-loss rates (yielding larger∆).

As we discussed in §3.2, some amount of cluster mass loss
may result from tidal shocks, but we expect that in general
the largest part comes from two-body relaxation and evapora-
tion, at a rate determined by the mean cluster density inside
its half-mass radius:µev ∝ ρ

1/2
h . This basic dependence holds

independently of any host galaxy properties, so if the cluster
evaporation rate varies systematically as a function ofMB,gal,
it presumably reflects systematics in the typicalρh of the clus-
ter systems. Then, if GCs are tidally limited, such that their
average densities are determined by the galaxy density inside
their orbits (e.g., King 1962), variations in their character-
istic ρh should correspond in some way to variations in the
host-galaxy densities. The easiest way to quantify any such
connection is to assume a spherical, time-independent galaxy
potential with a simple analytical form. Thus, in their mod-
els of the Milky Way GC system, Fall & Zhang (2001) relate
theρh of individual clusters to their orbital pericentersrp in
a logarithmic potential with a fixed circular speed,Vc, so that
ρh ∝ ρgal(rp) ∝V 2

c /r2
p. We address the validity of these partic-

ular (strong) assumptions about the host galaxy below; but for
the moment we follow Fall & Zhang and most other authors
(e.g., Vesperini 2000, 2001; Baumgardt & Makino 2003) in
making them. What do our fitted∆ values for the ACSVCS
galaxies then imply for the distribution of GC densities and
pericenters in these systems?

The evaporation rate of a cluster with observable,projected
half-mass radiusRh depends on the densityρh ≡ 3M/(8πR3

h)
roughly as

µev(theo)≃ 345M⊙ Gyr−1
(

ρh

M⊙ pc−3

)1/2

, (21)

which again is independent of any assumptions on the host-

galaxy potential.21 However, ifρh is taken to be set by a well
definedrp in a steady-state, singular isothermal sphere, then
we also have (from eqs. [4] and [15] of Fall & Zhang 2001)

µev(theo)≃2.9×104 M⊙ Gyr−1 (
rp/kpc

)−1(
Vc/220 km s−1)

×
[
1− ln(rp/rc)

]1/2
. (22)

In the last term on the right-hand side, which is derived by In-
nanen, Harris, & Webbink (1983),rc is the radius of a circular
orbit with the same energy as an arbitrary orbit withrp ≤ rc.

Now, for the Milky Way, recall from §3.3 (eq. [14]), that
we estimate

∆(MW) = (2.5±0.5)×105M⊙ (23)

from our fit of an evolved Schechter function to the GCLF. For
a GC age of 13 Gyr, this implies a mass-loss rate (averaged
over the distribution of clusterρh or, given the assumptions
behind eq. [22], over all cluster orbits) of

〈µev〉(fit) =
∆(MW)
13 Gyr

= (1.9±0.4)×104M⊙ Gyr−1 . (24)

Comparing equation (24) to equation (21) implies an average
〈ρh〉 ≃ (3000±600)M⊙ pc−3 for GCs in the Milky Way. This
average falls towards the upper end of the range of clusterρh
observed today, but it is within a factor of≃2–3 of the mean
(e.g., see the data in Harris 1996). Equation (22) further sug-
gests an average pericenter of〈rp〉 ≈ 2 kpc. This is roughly
the same answer found by Fall & Zhang (2001; see their Fig-
ure 13), which shows that an evolved Schechter function is

21 Equation (21) follows fromµev = 0.045M/trh (Hénon 1961; see also
Fall & Zhang 2001), where the half-mass relaxation timetrh is given by equa-
tion (8-72) of Binney & Tremaine (1987) with (1) an average stellar mass of
0.7M⊙ and a Coulomb logarithm lnΛ = 12 assumed constant in time, as in
Fall & Zhang, and (2) a generic proportionality,Rh ≃ 0.75rh, between the
projected half-mass radiusRh and its unprojected counterpartrh (e.g., Spitzer
1987).
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a reasonable analytical approximation to their full numerical
theory. While such an〈rp〉 is slightly small—just as〈ρh〉 is
slightly high—compared to more direct pericenter estimates
for Galactic globulars (cf. Innanen et al. 1983; van den Bergh
1995), it is again within the range of standard values.

It is not at all obvious a priori that average cluster densi-
ties and pericenters inferred strictly from fits to the Galac-
tic GC mass function should agree to within factors of 2
or 3 with values estimated by independent methods. The
fact that they do is an encouraging sign for the basic picture
of evaporation-dominated GCLF evolution. Some residual
corrections—downward in “predicted”〈ρh〉 and up in〈rp〉—
are evidently required, but at a level that plausibly could come
from straightforward refinements in the various steps lead-
ing to equations (21) and (22). For example, there is some
room for adjustment of the exact theoretical coefficients for
the evaporation rateµev ∝ M/trh ∝ ρ

1/2
h and the pericenter

rp ∝ ρ
−1/2
h (see, e.g., the discussions in Fall & Zhang 2001).

In addition, we have neglected here any additional mass loss
caused by tidal shocks, and we have adopted the idealization
of a spherical and time-invariant Galactic potential.

To bring the ACSVCS data into this discussion, we focus
on the basic pattern of variation in∆ as a function of galaxy
luminosity, shown in the lower panel of Figure 16. First,∆ in-
creases slightly from the brightestMB,gal≃ −21.5 to the fainter
MB,gal ≃ −18. The uncertainties and scatter in∆ are large,
but the mean increase is perhaps a factor of≈2–5. Then, at
fainterMB,gal & −18,∆ holds more constant or even decreases
again, possibly by as much as a factor of≈2–3 by the limiting
MB,gal ≃ −16 of the survey.

If evaporation is responsible for these variations, then we
should expect them to be mirrored in the behavior of the aver-
age GC half-mass radius as a function of galaxy luminosity:
from equation (21),〈µev〉 ∝ 〈ρh〉1/2 ∝ 〈Rh〉−3/2, and by defi-
nition ∆ ∝ 〈µev〉 for coeval clusters. Globulars in Virgo are
marginally resolved with the ACS, and Jordán et al. (2005)
have fit PSF-convolved King (1966) models to estimate in-
trinsic Rh values for individual sources (selected as described
in §2 of Jordán et al. 2005) in most of the galaxies that we
have dealt with here. The behavior of mean〈Rh〉 versusMB,gal
is shown in Figure 5 of Jordán et al.

A detailed comparison of〈Rh〉 and ∆ is not straightfor-
ward, since these quantities were estimated separately for
GC samples defined differently by Jordán et al. than in this
paper. Nevertheless, it is interesting that〈Rh〉 can be de-
scribed as decreasing towards brighter galaxy luminosity in
the range−21.5 . MB,gal . −18, where∆ increases, and then
turning around to increase somewhat at fainterMB,gal & −18,
where∆ decreases again. The changes in〈Rh〉 are—as we
would expect—smaller and less clear than those in∆, but it
is just plausible that there is a net decrease of≃ 35% from
MB,gal = −21.5 to MB,gal = −18 and a slightly larger increase
from MB,gal = −18 to MB,gal = −16. This would be consistent
with the shallowest trends able to fit∆ versusMB,gal in Figure
16.

We cannot use equation (22) to relate∆ to typical GC peri-
centers and average galaxy densities on a case-by-case basis
in the ACSVCS sample as in the Milky Way, sinceVc obser-
vations are not available for all systems. However, scaling
relations can be used to some effect here. Large early-type
galaxies withMB,gal . −18 generally obeyVc =

√
2σ ∝ L0.25

gal

(e.g., Faber & Jackson 1976), (M/L)gal ∝ L0.2−0.3
gal at optical

wavelengths (van der Marel 1991; Cappellari et al. 2006),
and thusReff ∝ L0.7−0.8

gal by the virial theorem (see also Haşe-
gan et al. 2005). Average mass densities therefore increase
towards lowerLgal, such that equation (22) implies

∆ ∝
(
Reff/〈rp〉

)
R−1

effVc ∝
(
Reff/〈rp〉

)
L−0.5±0.05

gal (25)

for bright galaxies. The situation is somewhat different for
fainter MB,gal & −18. For Coma Cluster galaxies in this
regime, Matkovíc & Guzmán (2005) findVc =

√
2σ ∝ L0.5±0.1

gal ,
while the data in Graham & Guzmán (2003) suggestReff ∝
L0.1−0.2

gal . If these systems are representative of those in Virgo,
then their average densities decrease towards lowerLgal, and
equation (22) leads to

∆ ∝
(
Reff/〈rp〉

)
L0.35±0.1

gal (26)

for faint dwarfs.
The major unknown in equations (25) and (26) is the ratio

of galaxyReff to GC〈rp〉, and how it might or might not vary
systematically as a function of galaxy luminosity. If the ratio
is constant for all systems, then the dotted lines drawn in the
lower panel of Figure 16 show the expected variation of the
mass loss∆ versusMB,gal. These lines are normalized to make
∆ = 2.5×105M⊙ atMB,gal = −21 and to make the bright- and
faint-galaxy scalings meet atMB,gal = −18. The net increase of
L−0.5

gal from MB,gal = −21.5 toMB,gal = −18 is a factor of about 5,
while the decrease ofL0.35

gal from MB,gal = −18 toMB,gal = −16
is a factor of approximately 2.

These changes may be somewhat greater than suggested by
the actual fitted estimates of∆. Moreover, an increase of∆ by
a factor of 5 betweenMB,gal = −21.5 andMB,gal = −18 would
imply a decrease in〈Rh〉 by a factor of 52/3 ≈ 3, which is
larger than the measurements of Jordán et al. (2005) support.
However, this is clearly not an order-of-magnitude problem.
It could easily be alleviated if the galaxy total mass distribu-
tions are not isothermal spheres, or ifReff/〈rp〉 depends even
weakly on galaxy luminosity, or if uncertainties and scatter in
the galaxy scalings result in small deviations from the nomi-
nal exponents onLgal in equations (25) and (26). Tidal shocks
may also contribute differently to the net∆ in different galax-
ies, a complication that we have entirely ignored. Again, then,
it is encouraging that these crude relations come as close as
they do to explaining the systematics in a cluster mass-loss
parameter inferred only from the GCLF—accounting in par-
ticular for the change in dependence of∆ on galaxy luminos-
ity aroundMB,gal ≃ −18.

Obviously, more rigorous and detailed analyses of individ-
ual galaxies are required to really make (or break) the case in
general that the overall form of an evolved Schechter function
for the GC mass function, and the parameter∆ especially, can
be interpreted physically and self-consistently as the result of
evolution from an initial GCdN/dM0 ∝ M−2

0 with individual
cluster mass-loss rates that are constant in time. From our dis-
cussion here, it does seem that this “literal” view of the simple
fits to the Milky Way and ACSVCS GCLFs is at least broadly
compatible with observations of the cluster densities or radii
in these galaxies and with the trends in∆ vs.Lgal, if evapora-
tion is the main disruptive process for clusters as massive as
MTO ∼ 2×105M⊙.

Difficulties do arise, however, when considering the addi-
tional constraint that the GCLF is invariant over wide ranges
of galactocentric radius and GC density in the Milky Way and
other large galaxies. As described above, application of equa-
tion (22) to the global Galactic GCLF ultimately implies an
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average GC pericenter of〈rp〉≃ 2 kpc, corresponding to about
half the effective radius of the bulge. Similarly, our normal-
ization of equation (25) in Figure 16 implies〈rp〉 < 0.5Reff
for the brightest early-type galaxies in Virgo. But observa-
tionally, the GCLF turnoverMTO (and thus∆) has the same,
global value for clusters currently found out to at least 10–
15 effective radii in the Milky Way (e.g., Harris 2001) and at
least≃ 4Reff in M87 and M49 (§6.3). This can only be consis-
tent with evaporation-dominated depletion of an intially steep
GC dN/dM0 ∝ M−2

0 at low masses, and with the additional
assumption that the mass loss∆ ∝ r−1

p , if cluster orbits are
systematically much more elongated at larger galactocentric
radius in all these systems.

In fact, for the Milky Way and M87 respectively, Fall &
Zhang (2001) and Vesperini et al. (2003) have shown that fol-
lowing this chain of logic leads to the conclusion that globu-
lars shouldinitially have been on predominantly radial orbits
outside about one effective radius in each galaxy. On the other
hand, thepresent GC velocity distributions in the Galaxy, in
M87, and in M49 are all essentially isotropic—implying or-
bits with typical axis ratios of onlyra/rp ≃ 3—out to the same
spatial scales of severalReff, over which the observed GCLF
is invariant (see, e.g., Dinescu, Girard, & van Altena 1999;
Côté et al. 2001, 2003). Fall & Zhang suggest that this dif-
ference between (presumed) initial and (observed) presentor-
bital properties might be explained by preferential depletion
of GCs on the most radial orbits. But while the idea remains
to be tested in detail for the Milky Way, Vesperini et al. (2003)
show that—again if the galaxy potential is spherical and time-
independent—it does not suffice to account quantitatively for
the combined GCLF and kinematics data in M87.

Related to this is the average density,〈ρh〉 ≃ 3000M⊙ pc−2,
implied by the more general equation (21) and the required to-
tal ∆ for Galactic globulars. A similar〈ρh〉 is also suggested
for GCs in the brightest Virgo galaxies by the∆ values in Fig-
ure 16. As we mentioned above, such densities are observed
for real clusters; but there is a broad distribution ofρh, with
an average slightly lower than 3000M⊙ pc−2 and a long tail
to much smaller values of< 100 M⊙ pc−2. More generally,
the GCs in most large galaxies have half-mass radii that are
largely uncorrelated with cluster mass (e.g., van den Bergh,
Morbey, & Pazder 1991; Jordán et al. 2005, and references
therein), so thatρh apparently always ranges over more than
two orders of magnitude. Whenρh < 100M⊙ pc−2, the total
evaporative mass loss per cluster over 13 Gyr is< 5×104M⊙,
well below the typical average∆ and globalMTO for entire
GC systems. In the Milky Way at least, the large majority of
such low-density GCs are found at Galactocentric distances
rgc & 10 kpc, so in a sense the problem is bound up with the
weak radial variation of the GCLF.

These points are important, and they need to be resolved,
but they should not be taken as disproof of the idea that
long-term dynamical evolution alone might explain the dif-
ference between the mass functions of old GCs and young
massive clusters. Ultimately, the near-flatness ofdN/dM at
low masses, which is clearly seen in the Milky Way and is en-
tirely consistent with all of our Virgo GCLFs, only demands
that cluster masses decrease linearly in time if the dynamical-
evolution hypothesis is correct at all (see Fall & Zhang 2001,
and §3.2 above). It is not absolutely necessary that evap-
oration account for the full mass-loss rate of every cluster,
even though our discussion here has focused on exploring this
possibility (and shown that it does come remarkably close,

to within factors of 2–3 for the most part). For example,
globulars in the extreme low-density tails ofρh distributions,
mentioned just above, might be much more strongly—and
differently—affected by tidal shocks than any previous GCLF
calculations have allowed. Such shock-dominated evolution
could still lead to a constant mass-loss rate of its own (see
Dehnen et al. 2004, and §3.2.2 above), which would add di-
rectly toµev without otherwise changing any of the main ar-
guments here.

In more specific terms, the radial invariance of the GCLF
might ultimately be explained by modifying a single ancillary
assumption in the current dynamical-evolution models rather
than discarding the idea altogether. It is the notion of spherical
and steady-state galaxy potentials that prompts Fall & Zhang
(2001), Vesperini et al. (2003), and almost all other authors to
use equations (21) and (22) to tie cluster densities to orbital
pericenters in these analyses. But, as Fall & Zhang them-
selves point out, this is of course an extreme simplification
for galaxies that grow through hierarchical merging.

Fall & Zhang suggest, for example, that a major merger
could obviate the need for extremely radial orbits to distribute
clusters with high mean densities, fixed at small and well de-
fined pericenters, over large volumes in a galaxy. Instead, a
merger may efficiently mix two globular cluster systems spa-
tially and isotropize their velocity distribution. This could
then work to weaken any radial gradients in the mass loss
∆ and the GCLF turnover mass, which might have resulted
from realistic orbital distributions andµev(rp) dependence like
equation (22) in the progenitor galaxies.

In addition to this, multiple minor mergers—which are per-
haps more relevant than major mergers for a galaxy like our
own—should steadily bring in globulars formed with densi-
ties and evaporation rates unrelated, at least initially, to their
new orbits in the main galaxy, making the use of equation (22)
less than straightforward. In fact, any use of it at all couldbe
questionable in this case, since all clusters would constantly
be sampling new pericenters in an evolving potential. Again,
then, weak spatial variations in∆ andMTO need not imply
highly radial GC orbits. Prieto & Gnedin (2006) have recently
simulated the evolution of the GCLF during the hierarchical
growth of a Milky Way-sized galaxy. Starting from an ini-
tial cluster mass functiondN/dM0 ∝ M−2

0 , which is re-shaped
primarily by evaporation—but abandoning equation (22) and
instead adopting evaporation rates from GC densities fixed in-
dependently of their orbits—they find that it is possible (even
without a recent major merger) to produce a final GC system
with an isotropic velocity distribution and a radially invariant
GCLF similar to the observed Galactic distribution.

A caveat is that the hierarchical-growth simulations most
favored by Prieto & Gnedin (2006) are ones in which they as-
sume that all globular clusters have a common mean density
insideRh (just one that is not set by any orbital pericenter).
This is still incompatible with the wide range ofρh observed
for the GCs in many galaxies, and it is furthermore not ob-
vious how the cumulative mass loss∆ ∝ 〈ρh〉1/2 should then
vary as a function of galaxy luminosity. On the other hand,
Prieto & Gnedin have also run some models allowing for an
initial spread of GC densities followed by evaporation at con-
stantρh. This is at least more reminiscent of realρh distribu-
tions, and it still produces a GCLF that is not too drastically
different from the Galactic one. Clearly, more work is re-
quired to clarify the dynamical evolution of initial power-law
GC mass functions in time-dependent galaxy potentials, with
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the totality of relevant observational constraints taken into ac-
count: a flatdN/dM at low masses; a weak or absent correla-
tion between GC radii and masses; radially invariant GCLFs;
currently isotropic velocity distributions; and mass losses∆

that vary with galaxy luminosity as in Figure 16.
Should all efforts along these lines fail to explain the com-

bined data, the only option left would seem to be that a peak
in the GCLF was established much earlier, by processes more
related to cluster formation. One possible scenario has been
proposed by Vesperini & Zepf (2003). They suggest that low-
mass globulars were initially less concentrated (with a larger
ratio of half-mass to tidal radius) than high-mass clusters. The
inevitable expansion of all clusters following mass loss driven
by stellar evolution would then cause many low-mass clus-
ters preferentially to overflow their tidal radii, leading ulti-
mately to fast disruption times of a few hundred Myr or less
(Chernoff & Weinberg 1990). This may turn an initial power-
law dN/dM0 at low masses into a roughly flat-topped or even
lognormal distribution, withMTO near its current value, very
early on. Weaker long-term evaporation (i.e., lower cluster
densities or larger and more variable pericenters) could then
suffice to explain the residual difference between the initial,
steep mass function and the final, observed one, even in a
static galaxy potential.

Observations of the young massive clusters in the Antennae
galaxies already imply that early disruption isindependent of
cluster mass, at least for clusters more massive than several
104M⊙ and younger than≃108 yr (Zhang & Fall 1999; Fall
et al. 2005). Thus, if the disruption mechanism of Vesperini
& Zepf (2003) is to work, the mass-selective aspect of it ap-
parently must be restricted to timescales of 108–109 yr or so.
In any case, the success of this or any similar picture further
relies on an appropriately tuned mass dependence in some key
GC property being built into cluster systems essentially asan
initial condition; but this still requires explanation in itself.

7.2. Dynamical Friction and the High-Mass Side of the
GCLF

At GC mass scalesM & ∆, dynamical friction can in some
cases become more important than evaporation or shocks as a
cluster destruction mechanism. A point massM originally on
a circular orbit of radiusr in a galaxy with a total-mass distri-
bution following a singular isothermal sphere will spiral in to
the galaxy center within a time (Binney & Tremaine 1987)

τdf ≃
5.9 Gyr

(lnΛ)/10

(
r

kpc

)2(
Vc

220 km s−1

)(
106 M⊙

M

)
, (27)

whereVc is the galaxy’s circular speed and lnΛ ∼ 10 is the
usual Coulomb logarithm.

It is clear from equation (27) that dynamical friction can-
not be a major factor in deciding the evolution of all but the
very most massive tip of the GCLF in∼L∗ and brighter galax-
ies withVc & 200 km s−1. However, the scalingτdf ∝ Vc im-
plies that the relevance of dynamical friction can increasesig-
nificantly for lower luminosity galaxies (e.g., Hernandéz &
Gilmore 1998; Lotz et al. 2001). It is then reasonable to ask
whether a stronger depletion of massive GCs in dwarf galax-
ies might be able to explain the systematic decrease ofMc ver-
susMB,gal in our fits of evolved Schechter functions for these
systems, and possibly even the slight decrease in averageMTO
towards the faintestMB,gal.

We do not attempt here to find a definitive answer to this
question, but only an indication of the ability of dynamical

FIG. 19.— A simple model for the effects of dynamical friction onthe GC
mass function, illustrated in terms of the distributiondN/d log M, which is
directly proportional to the GCLF. The solid curve shows this version of an
evolved Schechter function withMc = 3.0×106 M⊙ and∆ = 2.6×105 M⊙

(henceMTO = 2.2× 105 M⊙), appropriate for a giant elliptical. This is as-
sumed to be the mass function on which dynamical friction operates. The
monotonically decreasingdotted curve shows the functionS(M,t = 13 Gyr)
(eq. [30]), calculated for a galaxy withMB,gal = −21.75 as described in the
text. Thedotted bell-shaped curve is the product of thisS times the solid
curve; it illustrates the cumulative effect of dynamical friction on the GCLF
in very massive galaxies. The monotonically decreasingdashed curve shows
the functionS(M,t = 13 Gyr) as calculated for a galaxy withMB,gal = −15.75.
Thedashed bell-shaped curve is the product of thisS times the solid curve,
illustrating the net effect of dynamical friction on the GCLF in very faint
galaxies. The arrows indicate the position of the final turnover mass for each
of the resulting mass functions. There is a slight decrease in MTO for the low-
luminosity galaxy as a consequence of dynamical friction, but not enough to
account fully for the observed behavior in Fig. 15 or Fig. 12.

friction to produce the observed trends. One particular sub-
tlety is that the expression forτdf in equation (27) does not al-
low for clusters to evaporate. But a steadily decreasing cluster
mass will lead to a longer total dynamical-friction timescale.
We deal with this complication in the simplest way possible:
the timescaleτdf for a cluster with initial massM0 and present
massM = (M0 − ∆) is approximated by evaluating equation
(27) at theaverage mass, (M + ∆/2).

Let us denote bŷΨ(M,t) the GC mass function that would
be obtained after a timet of GC evolution in the absence of
any dynamical friction. The effects of dynamical friction are
easily accounted for by subtracting from̂Ψ all clusters with
instantaneous massesM such that

(M + ∆/2) > Mmin(r,t) , (28)

whereMmin follows from equation (27) by settingτdf < t:

Mmin(r,t)≃ 4.5×105M⊙

(lnΛ)/10

(
13 Gyr

t

)(
r

kpc

)2(
Vc

220km s−1

)
.

(29)
The net, “global” GC mass function (averaged over all GC
orbits, or galactocentric radii) at any timet is thusdN/dM =
S(M,t)× Ψ̂(M,t) where

S(M,t) =

∫ ∞

0 ρGC(r)H[Mmin(r,t) − (M + ∆/2)]4πr2dr
∫ ∞

0 ρGC(r)4πr2 dr
.

(30)
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HereρGC(r) is the space density of GCs (assumed to be inde-
pendent of cluster mass) andH is the Heaviside step function:
H(x) ≡ 1 for x > 0 andH(x) ≡ 0 for x < 0.

This raises further points to be dealt with in more care-
ful calculations along these lines. First, dynamical friction
will clearly affect also the spatial distribution of GCs, sothat
ρGC(r) will have a dependence on time, which we ignore. Sec-
ond, the effects of dynamical friction could introduce some
dependence on galactocentric position into the GC mass func-
tion, which in a complete treatment would be contrasted with
observational limits on any such variations. Third, changing
the assumed galaxy potential could significantly affect thede-
rivedτdf (e.g., Hernandez & Gilmore 1998; Read et al. 2006),
as could relaxing the unrealistic assumption of strictly circu-
lar orbits (e.g., Pesce, Capuzzo-Dolcetta, & Vietri 1992; van
den Bosch et al. 1999). Finally, we do not take into account
the fact that the ACS has a fixed field of view, and thus we
are not always observing truly globally averaged GCLFs—
although this point is relevant mainly for the most massive
galaxies, where the effects of dynamical friction are expected
to be negligible in any case.

These issues notwithstanding, we proceed to estimate the
effects of dynamical friction by evaluatingS(M,t) as writ-
ten in equation (30). We assume that the “friction-free”
Ψ̂(M,t) at the present day is well described by the GCLF of
bright ellipticals, where dynamical friction is negligible, and
is therefore given by equation (7) with∆ = 2.6×105M⊙ and
Mc = 3× 106M⊙ (see Figure 16 and Table 3). To obtain the
final dN/dM including dynamical friction, we then multiply
this by the functionS(M,t ≡ 13Gyr). In doing so, we always
take the slowly varying Coulomb logarithm in equation (29)
to be lnΛ = 10.

We assume that for giant galaxies withMB < −18 we have
Vc ∝ σ ∝ L0.25

gal (Faber & Jackson 1976), with a zeropoint cho-
sen to giveVc = 484 km s−1 at MB = −21.75, based on the ve-
locity dispersion of M87 (Bender, Saglia & Gerhard 1994).
We impose a change in this scaling atMB > −18, so that
dwarfs followVc ∝ σ ∝ L0.5±0.1

gal (Matković & Guzmán 2005;
cf. §7.1 above). We can then findMmin(r,t) from equation (29)
for any GC in any galaxy.

To specify the spatial distribution of GCs and calculate
S(M,t = 13 Gyr), we estimate the galaxy’s effective radiusReff
using the data from Ferrarese et al. (2006a); then we assume
that the effective radius of the GC system is just twiceReff
(Peng et al. 2006, in preparation). Finally, we assume that
ρGC(r) is given by the density profile of Prugniel & Simien
(1997; see also Terzić & Graham 2005), which is an analyti-
cal approximation to the deprojection of a Sersic profile (R1/n

law), and we let the Sersic indexn be determined byMB,gal as
per equation (25) of Ferrarese et al. (2006a).

The results of the calculations for two representative galaxy
magnitudes,MB,gal = −21.75 and MB,gal = −15.75, are il-
lustrated in Figure 19. The figure shows bothS(M,t =
13 Gyr) (the monotonically decreasing curves) and the func-
tion dN/d logM (proportional to the GCLF and given by the
peaked curves) that follows from dynamical friction acting
on the assumed evolved Schechter function. The resulting
turnover mass scales are indicated with arrows, which show
that the stronger dynamical friction in the fainter galaxy leads
to a slightly lower turnover mass scale.

We show the behavior ofMTO as a function ofMB,gal in gen-
eral, in the upper panel of Figure 20 (circles connected by a
solid line) and contrast it with the observed variation in our

FIG. 20.— (Upper panel) GCLF turnover massMTO,z, inferred from
evolved Schechter fits toz-band data for the binned-galaxy GC samples, ver-
susMB,gal (data are the same as the circles in Fig. 15). The open symbols
connected by a solid line are the predicted change inMTO due to the increas-
ing efficiency of dynamical friction in fainter galaxies; see text. Dynamical
friction might account for part of the observed trend, but probably not all of
it. (Lower panel) Evolved Schechter function cut-off massMc,z versusMB,gal
for binned-galaxyz-band samples. The open symbols connected by a solid
line are again our predictions for the change inMc due to stronger dynami-
cal friction in smaller galaxies. Dynamical friction is notable to explain the
observed behavior ofMc as a function of galaxy luminosity.

binned-galaxy GC samples (Figure 15). The predictedMTO
varies quite slowly withMB,gal, but it ultimately decreases by
∼ 10% from our assumed 2.2×105M⊙ in the brightest galax-
ies. This is comparable to the observed decrease of≈ 30%
in MTO. Thus, dynamical friction may be responsible for
some part of the the slow change in GCLF turnover mass with
galaxy magnitude.

In the lower panel of Figure 20 we show (again, as open
circles connected by a solid line) theMc values inferred by
fitting evolved Schechter functions to our model GC mass
functions after calculating the effects of dynamical friction.
Evidently, we can expect dynamical friction to cause perhaps
a ∼ 30%–40% decrease in the value ofMc from the bright-
est to the faintest galaxies; but this is altogether too little to
account for the factor of≃6–7 decrease we actually observe.
Similarly, if we fit power laws to our dynamical-friction mass
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functions in the range 3× 105 M⊙ ≤ M ≤ 2× 106 M⊙, we
obtain rather constant powersβ ≃ 1.7–1.8 for galaxy mag-
nitudes−21.75 < MB,gal < −15.75, which is far from being
able to explain the observational situation in Figure 10 above.
We conclude thatdynamical friction cannot account for more
than a small fraction of the observed steepening of the globu-
lar cluster mass function above the GCLF turnover.

These results are essentially in agreement with those of Ves-
perini (2000), who models the effects of evaporation and dy-
namical friction on the GCLF, and predicts only slight de-
creases in the mean〈log M〉 and the Gaussian dispersionσM
as galaxy luminosity decreases (see his Figure 6), at levels
much smaller than those seen in our data (e.g., Figure 14).
Thus, although we have emphasized the highly simplified na-
ture of our calculations, it nevertheless appears that galaxy-to-
galaxy systematics in the cluster formation processes, rather
than dynamical evolution, must be largely responsible for the
observed variation in the detailed form of the GCLF at high
masses.

7.2.1. Initial Conditions

It seems inevitable from the discussion above that the
observed steepening or narrowing of the GCLF above the
turnover point MTO ∼ 2 × 105 M⊙ in fainter galaxies—
whether this is expressed in terms of smaller Schechter-
function mass scalesMc or steeper power-law indicesβ
or narrower Gaussian dispersionsσM—must reflect non-
universal initial conditions in the cluster mass distribution,
and therefore some fundamental aspect of the star-formation
process.

Observationally, it is known that the luminosity of the
brightest young star cluster in a star-forming galaxy scales
with the global star formation rate (Billet, Hunter &
Elmegreen 2002; Larsen 2002). There has been some discus-
sion as to whether this is just a size-of-sample effect (if more
clusters are formed, it is statistically more likely to achieve
higher masses by random sampling of an underlying mass
distribution that might still be universal) or indicative of a
real, physical limit to the initial cluster mass function (Larsen
2002; Weidner, Kroupa & Larsen 2004).

Gieles et al. (2006a, b) argue that there is a physical upper
limit, Mmax, to cluster masses in each of NGC 6946, M51, and
the Antennae galaxies (though see Whitmore, Chandar & Fall
2006 for a differing view). The number of clusters found with
M > Mmax falls rapidly to zero in all three cases, but the value
of the upper limit is found by Gieles et al. to vary between
the galaxies, fromMmax ≃ 4–10× 105M⊙. Qualitatively, a
parameter likeMmax can be identified withMc in a Schechter-
function description of (initial) GC mass functions. Quanti-
tatively, the range ofMmax claimed by Gieles et al. for their
young systems is very similar indeed to our fittedMc values
for the old GCs in early-type Virgo galaxies (see Figure 16).

It will be interesting to explore this possible connection be-
tween globulars and young massive clusters in more detail.
Possibly one route to take is suggested by the theory of the
GCLF developed by Harris & Pudritz (1994), in which a dis-
tribution of cluster masses is built up by collisions between
gaseous protoclusters. McLaughlin & Pudritz (1996) suggest
that the total time required to produce very high-mass clus-
ters may be longer for galaxies in lower-density environments,
and this could perhaps be related to our finding of a cut-off
at lowerMc (in our current notation) for the initial GC mass
functions at fainterMB,gal. If these types of ideas can be gen-
eralized, then both our GCLF observations and the possible

existence of an upper mass “limit” in young cluster systems
could be reflecting a systematic variation in gas-dynamical
timescales as a function of galaxy mass and/or density.

In any case, the fact that dynamical friction is unable to
account for the steepening of an initially universal mass func-
tion as the mass of the host galaxy decreases, combined with
the possible existence in young, relatively unevolved cluster
systems of a mass scale similar toMc in our old GC systems,
leads us to favor the view that a significant part of the ob-
served morphologyat the highest-mass ends of GCLFs is due
to systematics in the initial distributions. The precise extent to
which this part of the initial mass function is still reflected in
the present-day one is still something of an open question, the
answer to which will be a crucial ingredient in our understand-
ing of GC formation and evolution. A detailed understanding
of the “microscopic” star-formation processes on rather short
timescales in very young clusters could well be key to making
much further progress in this direction.

8. SUMMARY AND CONCLUSIONS

We have presented the GCLFs of 89 early-type galaxies
in the Virgo cluster and determined maximum-likelihood es-
timates for model parameters using fits of Gaussians and a
simple “evolved Schechter function” described in §3.2. The
latter reflects the effects of GC disruption (at a constant rate
and presumably due mostly to two-body relaxation and evap-
oration) on an initial cluster mass distribution that followed a
Schechter function with a fixed power-law index of−2 at low
masses. The evolved mass function tends to a flat shape at
low M and is an accurate analytical approximation to the nu-
merical distributions produced in the theory of Fall & Zhang
(2001). We have tested the robustness of our results by sim-
ulations, by the construction of GCLFs for galaxies binned
together to contain a minimum number of clusters, and by us-
ing alternate schemes to select GC candidates from catalogues
of observed sources. Our main results and conclusions are the
following:

1. We find a remarkably regular decrease of the disper-
sion of the GCLF as the luminosity of the host galaxy
decreases (§6 and Jordán et al. 2006). Quantitatively,
the maximum-likelihood estimates of the dispersionσ
of Gaussian fits to thez- andg-band data are well de-
scribed by the linear relations presented in equations
(17) and (18). The dispersions for the GCLFs of the
Milky Way and M31 fall in the midst of our new data
and thus the correlation ofσ with MB,gal would appear
to be more fundamental than the older view, that GCLF
widths depend on galaxy Hubble type.

This trend reflects a systematic steepening of the GC
mass function formassive clusters in particular (M &
3× 105M⊙, above the peak of the GCLF) as the host
galaxy luminosity decreases. When fitting power-law
mass functions to this upper cluster mass regime, the
power-law exponents in a model of the formdN/dM ∝
M−β increase fromβ . 2 to β & 3 over the range of
galaxy masses in our sample. This steepening is in turn
equivalent to a systematic decrease of the cut-off mass
Mc in evolved-Schechter function fits to the GCLFs,
from Mc ≃ 2–3× 106 M⊙ in the brightest galaxies to
Mc ≃ 3–4×105M⊙ in the faintest systems.

2. The GCLF turnover massMTO is slightly smaller in
dwarf systems (MB & −18), relative to the same quan-
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tity in more massive galaxies. In the latter we have
MTO = (2.2±0.4)×105M⊙, decreasing toMTO ≃ 1.6–
1.7×105M⊙ on average for the faintest galaxies in our
sample—although individual dwarfs scatter between
1×105 M⊙ . MTO . 2×105 M⊙ (§6). We show that
this might be at least partly accounted for by the effects
of dynamical friction if all other processes shaping the
mass function were to lead to an invariantMTO (§7.2).

3. We explored radial variations of the GCLF over base-
lines of 20−35 kpc in M87 (VCC 1316) and M49 (VCC
1226) by studying GCs in the fields of dwarf galaxies
close in projection to these giant ellipticals (§6.3). We
find no evidence for a variation of the turnover mass
MTO with galactocentric distance in either galaxy, con-
sistent with previous studies of M87 in particular. This
reinforces the importance of the radial invariance of
GCLFs as a constraint on models of GCLF formation
and dynamical evolution.

4. Our success in fitting evolved Schechter functions to
our data (§5.2) means that the GC mass functions in
early-type Virgo galaxies are consistent with a univer-
sally flat shape,dN/dM ∼ constant, in the limit of low
masses—as is also found in the Milky Way (§3.3 and
Fall & Zhang 2001). If this feature is caused by dy-
namical evolution from a much steeper initial distri-
bution, it requires that cluster masses decrease linearly
in time. This can plausibly be expected if evaporation
dominates the cluster evolution, although tidal shocks
may also lead to similar behavior.

5. Fits of the evolved Schechter function imply that a nar-
row range of average mass losses per GC—∆ ≈ (2–
10)× 105M⊙ at the outside—is required in all galax-
ies to account for our observed GCLFs. Such a range
of ∆ across a factor of≈ 400 in galaxy luminosity is
in rough agreement with observed (small) variations in
the mean half-mass radii of GCs in the ACSVCS galax-
ies (Jordán et al. 2005), and with simple scalings of
evaporation rate as a function of host-galaxy luminos-
ity (§7.1). However, more work is required to reconcile
fully the main idea—that long-term dynamical evolu-
tion alone transformed initial Schechter cluster mass
functions into the presently observed distributions—
with the weak radial variation of GCLFs inside large
galaxies and with observations of the orbital distribu-

tions and range of mean cluster densities in the same
systems.

6. The clear decrease of the GC cut-off massMc with
galaxy luminosity in evolved-Schechter function de-
scriptions of the GCLF (§5.2) is too pronounced to be
explained by dynamical friction operating on a univer-
saldN/dM with an initially constantMc in all galaxies
(§7.2). It most likely reflects systematic variations at
the high-mass end of the initial GC mass function.

The present-day mass functions of GCs were likely shaped
by a variety of processes acting on different timescales, in-
cluding systematic variations in the initial (proto-)cluster
mass function at the high-mass end; long-term dynamical ero-
sion by evaporation, tidal shocks, and dynamical friction;and
global relaxation effects in time-varying galaxy potentials (hi-
erarchical merging). It is further possible, though not yeten-
tirely clear, that mass-selective early dissolution of clusters
due to stellar evolution may have played some role in defin-
ing the observed mass distributions. Future attempts to un-
derstand the whole of the GCLF will clearly have to consider
all of these processes, and their inevitable interplay, in quite
some detail. Such comprehensive modeling will also have to
acknowledge the increasingly complex and stringent empiri-
cal constraints that follow from combining direct GCLF ob-
servations with other GC systematics—such as their structural
correlations, and the dynamics of cluster systems—for which
data are continually accumulating and improving in quality.
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TABLE 1

LUMINOSITY FUNCTION HISTOGRAMS FORGCS AND EXPECTEDCONTAMINANTS1

Sample withpGC ≥ 0.5 Sample withmz < 25.15 ormg < 26.35, andRh < 0.′′064

VCC mz hz Nz,tot Nz,cont fz mg hg Ng,tot Ng,cont fg mz hz Nz,tot Nz,cont fz mg hg Ng,tot Ng,cont fg
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

1226 18.0 0.4 0 0.0 1.00 19.2 0.4 0 0.0 1.00 18.0 0.4 0 0.1 1.00 19.2 0.4 0 0.1 1.00
1226 18.4 0.4 0 0.1 1.00 19.6 0.4 0 0.1 1.00 18.4 0.4 0 0.2 1.00 19.6 0.4 0 0.2 1.00
1226 18.8 0.4 2 0.0 1.00 20.0 0.4 1 0.1 1.00 18.8 0.4 0 0.2 1.00 20.0 0.4 0 0.2 1.00
1226 19.2 0.4 5 0.2 1.00 20.4 0.4 3 0.1 1.00 19.2 0.4 5 0.2 1.00 20.4 0.4 2 0.1 1.00
1226 19.6 0.4 4 0.3 1.00 20.8 0.4 8 0.4 1.00 19.6 0.4 4 0.3 1.00 20.8 0.4 8 0.5 1.00
1226 20.0 0.4 12 0.2 1.00 21.2 0.4 11 0.3 1.00 20.0 0.4 12 0.2 1.00 21.2 0.4 10 0.4 1.00
1226 20.4 0.4 25 0.4 1.00 21.6 0.4 24 0.2 1.00 20.4 0.4 24 0.5 1.00 21.6 0.4 23 0.4 1.00
1226 20.8 0.4 32 0.2 1.00 22.0 0.4 33 0.3 1.00 20.8 0.4 31 0.4 1.00 22.0 0.4 33 0.3 1.00
1226 21.2 0.4 57 0.4 1.00 22.4 0.4 59 0.5 1.00 21.2 0.4 57 0.4 1.00 22.4 0.4 58 0.5 1.00
1226 21.6 0.4 66 0.6 1.00 22.8 0.4 60 0.4 1.00 21.6 0.4 62 0.6 1.00 22.8 0.4 57 0.4 1.00
1226 22.0 0.4 91 0.9 1.00 23.2 0.4 78 0.6 1.00 22.0 0.4 86 0.6 1.00 23.2 0.4 73 0.5 1.00
1226 22.4 0.4 98 0.8 0.99 23.6 0.4 101 1.3 0.98 22.4 0.4 94 0.5 0.99 23.6 0.4 99 0.8 0.98
1226 22.8 0.4 95 1.6 0.94 24.0 0.4 107 1.4 0.90 22.8 0.4 90 0.9 0.94 24.0 0.4 100 0.8 0.90
1226 23.2 0.4 88 1.4 0.83 24.4 0.4 74 1.8 0.80 23.2 0.4 83 1.2 0.83 24.4 0.4 71 1.4 0.80
1226 23.6 0.4 70 2.0 0.72 24.8 0.4 78 2.5 0.71 23.6 0.4 65 1.4 0.72 24.8 0.4 72 2.1 0.71
1226 24.0 0.4 61 3.4 0.62 25.2 0.4 56 2.9 0.62 24.0 0.4 60 2.8 0.62 25.2 0.4 56 2.5 0.62
1226 24.4 0.4 39 3.3 0.51 25.6 0.4 50 2.9 0.52 24.4 0.4 38 3.2 0.51 25.6 0.4 47 2.6 0.52
1226 24.8 0.4 16 1.6 0.37 26.0 0.4 18 1.8 0.37 24.8 0.4 16 1.6 0.37 26.0 0.4 18 1.7 0.37
1226 25.2 0.4 3 0.4 0.19 26.4 0.4 3 0.3 0.18 25.2 0.4 3 0.4 0.19 26.4 0.4 3 0.3 0.18
1316 18.0 0.4 0 0.0 1.00 19.2 0.4 0 0.0 1.00 18.0 0.4 0 0.1 1.00 19.2 0.4 0 0.1 1.00

NOTE. — Key to columns—(1) Galaxy VCC number; (2)–(3) Mean magnitude and width of bin in thez-band; (4) Total number of objects in bin with probabilitypGC≥ 0.5 of being a globular cluster; (5) Expected number of contaminants in bin; (6) GC completeness fraction in bin; (7)–(11) Same as (2)–(6) but for theg-band; (12)–(21)
Same as (2)–(11) but for GC samples constructed by applying cuts in magnitude and half-light radiusRh , rather than by selecting on the basis ofpGC.

a Table 1 is presented in its entirety in the electronic version of this paper. A portion is shown here for guidance regarding its form and content.
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TABLE 2
GAUSSIAN GCLF PARAMETERS FORINDIVIDUAL ACSVCS GALAXIES

VCC Bgal µg σg µz σz bB N Comments
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1226 9.31 24.105±0.086 1.366±0.061 22.789±0.077 1.321±0.053 0.023 764 · · ·
1316 9.58 24.018±0.049 1.312±0.035 22.689±0.041 1.242±0.030 0.014 1745 · · ·
1978 9.81 24.062±0.077 1.340±0.058 22.747±0.070 1.316±0.050 0.022 807 · · ·
881 10.06 23.950±0.097 1.274±0.075 22.834±0.093 1.238±0.071 0.034 367 · · ·
798 10.09 25.120±0.232 1.708±0.130 23.722±0.179 1.562±0.102 0.016 507 Faint excess
763 10.26 23.973±0.074 1.178±0.055 22.836±0.070 1.159±0.052 0.035 506 · · ·
731 10.51 24.403±0.061 1.207±0.046 23.211±0.059 1.199±0.044 0.021 907 · · ·

1535 10.61 23.685±0.097 1.079±0.076 22.512±0.092 1.063±0.067 0.042 244 · · ·
1903 10.76 23.446±0.089 1.192±0.071 22.255±0.089 1.215±0.073 0.046 308 · · ·
1632 10.78 23.951±0.103 1.423±0.077 22.717±0.095 1.390±0.071 0.038 456 · · ·
1231 11.10 23.715±0.090 1.103±0.072 22.592±0.089 1.106±0.069 0.058 254 · · ·
2095 11.18 24.429±0.296 1.564±0.226 23.503±0.333 1.615±0.209 0.076 134 Faint excess
1154 11.37 23.902±0.092 0.988±0.072 22.813±0.094 1.001±0.072 0.065 192 · · ·
1062 11.40 23.687±0.133 1.218±0.110 22.548±0.123 1.203±0.097 0.066 179 · · ·
2092 11.51 24.009±0.198 1.111±0.176 22.882±0.186 1.135±0.148 0.114 92 · · ·
369 11.80 23.622±0.117 1.102±0.102 22.447±0.108 1.077±0.091 0.068 179 Faint excess
759 11.80 23.805±0.121 1.120±0.098 22.689±0.114 1.084±0.090 0.067 172 · · ·

1692 11.82 23.872±0.146 1.073±0.123 22.831±0.153 1.120±0.117 0.096 136 · · ·
1030 11.84 23.737±0.098 0.980±0.078 22.621±0.098 1.021±0.076 0.072 176 · · ·
2000 11.94 23.482±0.119 1.183±0.100 22.471±0.109 1.159±0.087 0.071 197 · · ·
685 11.99 23.692±0.135 1.248±0.110 22.584±0.127 1.213±0.104 0.085 167 · · ·

1664 12.02 23.675±0.121 1.049±0.094 22.502±0.110 1.009±0.086 0.092 146 · · ·
654 12.03 23.981±0.200 0.911±0.192 23.053±0.207 0.930±0.166 0.194 48 · · ·
944 12.08 23.721±0.140 0.868±0.121 22.712±0.140 0.893±0.114 0.132 91 · · ·

1938 12.11 23.798±0.145 1.077±0.123 22.830±0.140 1.020±0.130 0.113 101 · · ·
1279 12.15 23.666±0.111 1.031±0.088 22.612±0.111 1.035±0.086 0.097 138 · · ·
1720 12.29 23.672±0.159 0.798±0.150 22.615±0.161 0.871±0.141 0.141 71 · · ·
355 12.41 24.618±0.364 1.221±0.250 23.406±0.239 1.036±0.168 0.167 62 · · ·

1619 12.50 24.255±0.238 1.050±0.207 23.178±0.235 1.061±0.175 0.165 66 · · ·
1883 12.57 24.135±0.217 1.106±0.175 23.066±0.184 1.064±0.144 0.124 83 · · ·
1242 12.60 23.741±0.130 0.919±0.115 22.624±0.126 0.963±0.101 0.105 116 · · ·
784 12.67 24.299±0.203 0.870±0.188 23.122±0.179 0.813±0.164 0.178 64 · · ·

1537 12.70 23.688±0.279 0.977±0.279 22.789±0.328 1.143±0.274 0.256 45 · · ·
778 12.72 24.197±0.215 1.081±0.166 23.120±0.204 1.043±0.147 0.163 74 · · ·

1321 12.84 24.025±0.275 0.831±0.276 23.057±0.255 0.849±0.223 0.198 50 · · ·
828 12.84 23.817±0.177 1.042±0.159 22.800±0.147 0.902±0.126 0.143 80 · · ·

1250 12.91 23.585±0.163 0.815±0.147 22.611±0.165 0.834±0.132 0.200 54 · · ·
1630 12.91 24.201±0.406 1.310±0.313 23.150±0.361 1.316±0.252 0.217 57 · · ·
1146 12.93 23.895±0.153 0.901±0.185 22.757±0.180 0.892±0.173 0.148 82 · · ·
1025 13.06 24.265±0.125 0.844±0.117 23.357±0.148 0.933±0.116 0.143 104 · · ·
1303 13.10 23.640±0.150 0.780±0.128 22.836±0.158 0.807±0.122 0.176 61 · · ·
1913 13.22 23.764±0.137 0.750±0.128 22.749±0.144 0.759±0.120 0.180 65 · · ·
1327 13.26 23.686±0.133 1.259±0.107 22.624±0.118 1.211±0.094 0.081 173 VCC1316 Companion
1125 13.30 23.701±0.144 0.791±0.144 22.650±0.146 0.783±0.123 0.179 62 · · ·
1475 13.36 24.094±0.159 0.999±0.155 23.239±0.190 1.112±0.146 0.138 85 · · ·
1178 13.37 23.621±0.148 1.002±0.114 22.574±0.129 0.953±0.093 0.124 90 · · ·
1283 13.45 24.058±0.172 0.880±0.155 23.062±0.179 0.930±0.139 0.170 66 · · ·
1261 13.56 24.038±0.350 1.146±0.342 23.058±0.358 1.246±0.263 0.217 46 · · ·
698 13.60 23.793±0.096 0.832±0.071 22.799±0.089 0.814±0.064 0.105 119 · · ·

1422 13.64 23.711±0.276 0.703±0.261 22.595±0.236 0.694±0.220 0.256 37 · · ·
2048 13.81 23.481±0.508 0.976±0.303 22.444±0.340 0.893±0.284 0.420 22 · · ·
1871 13.86 23.597±0.739 1.194±0.588 22.619±0.690 1.190±0.581 0.516 18 · · ·

9 13.93 23.863±0.547 1.023±0.378 22.833±0.371 0.897±0.236 0.246 34 · · ·
575 14.14 24.952±0.263 0.558±0.219 23.881±0.333 0.316±0.362 0.386 27 · · ·

1910 14.17 23.787±0.237 1.181±0.198 22.655±0.215 1.141±0.185 0.180 60 · · ·
1049 14.20 24.110±0.564 0.559±0.530 23.221±0.463 0.671±0.373 0.487 18 · · ·
856 14.25 23.886±0.263 0.922±0.189 22.797±0.193 0.870±0.139 0.211 50 · · ·
140 14.30 24.029±0.321 0.800±0.281 23.027±0.300 0.822±0.196 0.327 29 · · ·

1355 14.31 24.536±0.957 1.260±0.714 23.696±0.785 1.168±0.675 0.468 20 · · ·
1087 14.31 23.741±0.151 0.929±0.120 22.722±0.139 0.900±0.119 0.162 68 · · ·
1297 14.33 23.401±0.119 1.140±0.097 22.298±0.106 1.083±0.086 0.092 152 VCC1316 Companion
1861 14.37 23.688±0.293 1.042±0.243 22.603±0.225 0.953±0.187 0.233 49 · · ·
543 14.39 23.908±0.235 0.701±0.177 22.844±0.195 0.646±0.139 0.330 28 · · ·

1431 14.51 24.132±0.190 1.050±0.169 23.112±0.199 1.088±0.149 0.158 71 · · ·
1528 14.51 23.552±0.149 0.717±0.119 22.621±0.136 0.702±0.115 0.221 49 · · ·
1695 14.53 24.408±0.461 0.957±0.481 23.462±0.558 1.093±0.434 0.380 22 · · ·
1833 14.54 24.116±0.268 0.700±0.246 22.953±0.160 0.500±0.209 0.332 28 · · ·
437 14.54 23.942±0.198 0.782±0.169 23.063±0.179 0.845±0.140 0.229 50 · · ·

2019 14.55 23.543±0.255 0.858±0.258 22.612±0.236 0.849±0.213 0.303 34 · · ·
200 14.69 24.471±0.326 0.672±0.463 23.578±0.402 0.825±0.359 0.379 25 · · ·
571 14.74 24.362±0.684 0.938±0.822 24.366±1.728 1.460±0.956 0.478 17 · · ·
21 14.75 24.332±0.802 1.427±0.802 23.293±0.701 1.350±0.478 0.351 26 · · ·

1488 14.76 24.137±0.421 0.573±0.364 23.030±0.539 0.511±0.392 0.471 19 · · ·
1499 14.94 24.496±0.691 1.352±0.608 23.806±0.674 1.325±0.387 0.271 35 · · ·



TABLE 2 — Continued

VCC Bgal µg σg µz σz bB N Comments
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1545 14.96 24.079±0.178 0.884±0.175 23.148±0.178 0.894±0.152 0.189 63 · · ·
1192 15.04 23.777±0.091 1.070±0.072 22.660±0.086 1.049±0.067 0.064 213 VCC1226 Companion
1075 15.08 23.514±0.240 0.553±0.247 22.522±0.197 0.515±0.226 0.378 26 · · ·
1440 15.20 24.280±0.278 0.887±0.251 23.298±0.228 0.826±0.175 0.259 38 · · ·
230 15.20 23.957±0.218 0.545±0.198 23.099±0.336 0.581±0.319 0.274 38 · · ·

2050 15.20 23.900±0.436 0.281±0.536 22.964±0.389 0.304±0.370 0.459 20 · · ·
751 15.30 23.508±0.267 0.493±0.212 22.674±0.247 0.501±0.177 0.495 17 · · ·

1828 15.33 23.806±0.250 0.701±0.265 22.757±0.283 0.664±0.329 0.355 27 · · ·
1407 15.49 24.449±0.144 0.666±0.145 23.468±0.150 0.747±0.120 0.186 60 · · ·
1886 15.49 23.027±0.984 0.967±1.086 21.565±0.520 0.463±0.566 0.622 14 · · ·
1199 15.50 23.828±0.102 1.163±0.084 22.679±0.092 1.123±0.072 0.060 228 VCC1226 Companion
1539 15.68 23.810±0.213 0.826±0.214 22.821±0.207 0.901±0.163 0.275 43 · · ·
1185 15.68 23.840±0.197 0.691±0.137 22.910±0.159 0.639±0.113 0.292 33 · · ·
1489 15.89 23.977±0.439 0.378±0.260 23.156±0.381 0.482±0.526 0.417 22 · · ·
1661 15.97 24.177±0.154 0.225±0.201 23.059±0.417 0.615±0.336 0.477 19 · · ·

NOTE. — Key to columns—(1) Galaxy VCC number; (2) GalaxyB magnitude from Binggeli et al. (1995); (3)–(4) Maximum-likelihood estimates of
the Gaussian meanµ and dispersionσ of the g-band GCLF; (5)–(6) Same as (3)–(4) but for thez-band; (7) FractionbB of the sample that is expected to be
contamination; (8) Total numberN of all objects (including contaminants and uncorrected forincompleteness) withpGC ≥ 0.5; (9) Comments on individual
galaxies.
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TABLE 3
DEFINITION OF BINNED GC SAMPLES AND BEST-FIT GCLF PARAMETERS

Gaussian Fits Evolved Schechter Function Fits

Group Ngal 〈MB,gal〉 Mmin
B,gal Mmax

B,gal NGC µg σg µz σz δg mc,g δz mc,z

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

0 1 (1226) -21.8 -21.8 -21.8 746 −7.025±0.086 1.366±0.061 −8.341±0.077 1.321±0.053 −7.150±0.133 −10.045±0.362 −8.465±0.132 −11.257±0.360
1 1 (1316) -21.5 -21.5 -21.5 1721−7.104±0.049 1.312±0.035 −8.433±0.041 1.242±0.030 −7.287±0.089 −9.850±0.232 −8.690±0.092 −10.911±0.232
2 1 (1978) -21.3 -21.3 -21.3 789 −7.014±0.077 1.340±0.058 −8.329±0.070 1.316±0.050 −7.265±0.137 −9.750±0.356 −8.617±0.146 −10.928±0.381
3 1 (881) -21.2 -21.2 -21.2 355 −7.334±0.097 1.274±0.075 −8.450±0.093 1.238±0.071 −7.533±0.198 −9.877±0.525 −8.607±0.221 −11.043±0.647
4 1 (763) -21.1 -21.1 -21.1 488 −7.385±0.074 1.178±0.055 −8.522±0.070 1.159±0.052 −7.786±0.201 −9.371±0.460 −8.955±0.200 −10.499±0.457
5 1 (731) -21.3 -21.3 -21.3 888 −7.431±0.061 1.207±0.046 −8.623±0.059 1.199±0.044 −7.651±0.137 −9.789±0.339 −8.818±0.134 −11.011±0.337
6 1 (1903) -20.1 -20.1 -20.1 294 −7.434±0.089 1.192±0.071 −8.625±0.089 1.215±0.073 −7.641±0.209 −9.971±0.611 −8.776±0.188 −11.418±0.576
7 1 (1632) -20.3 -20.3 -20.3 439 −7.089±0.103 1.423±0.077 −8.323±0.095 1.390±0.071 −7.198±0.152 −10.393±0.474 −8.443±0.154 −11.516±0.469
8 1 (1231) -19.8 -19.8 -19.8 239 −7.221±0.090 1.103±0.072 −8.344±0.089 1.106±0.069 −7.841±0.311 −8.888±0.669 −9.013±0.319 −10.002±0.680
9 2 -19.6 -19.7 -19.5 347 −7.196±0.074 1.102±0.057 −8.308±0.076 1.103±0.057 −7.749±0.279 −8.909±0.635 −8.946±0.294 −9.957±0.647
10 2 -19.4 -19.5 -19.2 248 −7.282±0.088 1.111±0.069 −8.444±0.089 1.103±0.069 −8.276±0.424 −8.597±0.838 −9.726±0.557 −9.586±1.040
11 2 -19.4 -19.4 -19.4 283 −7.341±0.086 1.092±0.066 −8.426±0.089 1.096±0.068 −8.485±0.517 −8.478±0.974 −9.431±0.453 −9.696±0.879
12 2 -19.1 -19.3 -18.9 347 −7.380±0.072 1.091±0.055 −8.447±0.071 1.092±0.055 −8.262±0.323 −8.767±0.652 −9.410±0.336 −9.814±0.667
13 2 -19.0 -19.0 -19.0 212 −7.333±0.084 0.982±0.065 −8.446±0.083 0.968±0.066 −8.321±0.519 −8.467±1.013 −9.596±0.602 −9.482±1.131
14 2 -19.1 -19.1 -19.0 214 −7.459±0.084 1.051±0.065 −8.479±0.085 1.042±0.068 −8.028±0.335 −9.134±0.766 −9.212±0.443 −9.943±0.964
15 4 -18.5 -18.6 -18.3 283 −6.908±0.088 1.042±0.067 −7.996±0.086 1.032±0.066 −8.117±0.643 −7.887±1.186 −9.330±0.806 −8.931±1.463
16 5 -18.3 -18.5 -18.1 257 −7.081±0.089 1.012±0.070 −8.146±0.087 0.969±0.068 −8.399±0.648 −7.972±1.158 −9.413±0.642 −9.057±1.157
17 4 -18.2 -18.3 -18.0 208 −7.338±0.087 0.949±0.072 −8.330±0.087 0.945±0.068 −9.619±2.113 −7.835±6.880 −9.929±0.949 −9.095±1.615
18 3 -17.8 -18.0 -17.6 205 −7.263±0.082 0.951±0.062 −8.276±0.085 0.961±0.065 −8.610±0.675 −8.111±1.202 −9.882±0.802 −9.041±1.371
19 3 -17.7 -17.8 -17.7 197 −7.409±0.079 0.901±0.059 −8.421±0.081 0.905±0.060 −10.101±1.986 −7.839±7.800 −10.042±0.896 −9.133±1.512
20 8 -17.1 -17.5 -16.8 196 −7.149±0.099 0.953±0.080 −8.216±0.094 0.927±0.072 −8.247±0.680 −8.025±1.253 −9.371±0.630 −9.161±1.154
21 6 -16.6 -16.8 -16.5 222 −7.217±0.080 0.943±0.060 −8.240±0.080 0.916±0.060 −8.343±0.591 −8.166±1.103 −9.609±0.656 −9.079±1.155
22 9 -16.4 -16.7 -16.1 193 −7.072±0.086 0.875±0.068 −8.043±0.096 0.921±0.071 −9.383±1.795 −7.437±4.766 −8.974±0.505 −9.135±0.951
23 10 -15.7 -16.0 -15.4 201 −7.133±0.072 0.749±0.058 −8.090±0.077 0.762±0.062 −9.792±0.088 −7.292±1.956 −10.815±0.092 −8.315±5.536

NOTE. — Key to columns—(1) Identification number of binned group;(2) Number of galaxies that were used in the creation of this binned group. When only one galaxy present its VCC identifier is indicated; (3)–(5) Average, minimum, and maximumMB,gal of galaxies in this binned group; (6) Number of expected GCs;(7)–(10)

Best-fit Gaussian GCLF parametersµ andσ in theg- andz-bands; (11)–(14) Best-fit evolved Schechter GCLF parameters δ andmc , in theg- andz-bands.
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TABLE 4
BEST-FIT POWER LAW EXPONENTβ

VCC βz βg VCC βz βg VCC βz βg
(1) (2) (3) (1) (2) (3) (1) (2) (3)

1226 1.80±0.11 1.72±0.11 654 2.58±0.76 2.73±0.72 1178 2.42±0.40 1.82±0.38
1316 1.75±0.07 1.79±0.07 944 2.50±0.44 2.55±0.46 1283 2.85±0.61 2.90±0.61
1978 1.84±0.11 1.77±0.11 1938 2.65±0.45 2.83±0.45 1261 1.63±0.55 2.01±0.52
881 1.80±0.16 1.79±0.16 1279 1.87±0.28 1.85±0.28 698 2.42±0.35 2.38±0.33
798 2.15±0.15 1.95±0.15 1720 2.69±0.47 2.97±0.50 1422 2.95±0.94 4.07±1.17
763 1.85±0.14 1.87±0.14 355 3.50±0.97 2.75±0.79 2048 1.44±0.87 1.26±0.82
731 1.71±0.10 1.77±0.10 1619 2.46±0.72 2.25±0.71 9 2.42±0.82 2.20±0.77

1535 2.03±0.20 1.94±0.20 1883 3.18±0.60 2.85±0.56 1910 2.35±0.52 2.07±0.51
1903 1.87±0.18 2.03±0.18 1242 3.25±0.45 3.06±0.45 856 1.84±0.63 1.70±0.64
1632 1.89±0.16 1.83±0.16 784 3.77±1.14 3.23±1.01 140 3.55±1.31 2.51±1.21
1231 2.22±0.23 2.13±0.23 1537 2.13±0.62 2.48±0.67 1087 2.73±0.54 2.50±0.52
2095 1.79±0.34 1.85±0.33 778 2.07±0.48 2.00±0.48 1861 2.52±0.71 1.92±0.62
1154 1.81±0.28 2.02±0.28 1321 3.67±1.29 4.99±1.97 1431 2.55±0.57 2.69±0.59
1062 2.13±0.26 1.99±0.26 828 2.28±0.45 2.48±0.42 1528 2.19±0.70 2.56±0.67
2092 2.30±0.41 2.35±0.41 1250 1.92±0.52 2.09±0.49 437 3.55±0.91 4.04±1.10
369 2.14±0.25 2.13±0.25 1630 1.91±0.52 1.99±0.50 2019 2.22±0.70 3.17±0.81
759 2.32±0.27 2.19±0.27 1146 2.33±0.52 2.47±0.50 21 2.32±0.88 2.76±0.93

1692 1.93±0.29 2.40±0.29 1025 3.09±0.75 2.81±0.66 1499 2.75±0.90 2.69±0.88
1030 1.93±0.25 2.13±0.25 1303 2.55±0.59 2.48±0.54 1545 2.61±0.74 2.57±0.73
2000 2.07±0.25 2.16±0.24 1913 3.03±0.58 2.57±0.58 1075 3.94±1.31 3.85±1.28
685 1.71±0.25 1.71±0.24 1125 2.78±0.57 2.37±0.58 1539 3.14±0.92 2.69±0.85

1664 1.85±0.29 1.66±0.28 1475 2.37±0.54 2.55±0.55 1185 5.63±1.62 5.56±1.59

NOTE. — Key to columns—(1) Galaxy VCC number; (2) Best-fit power-law exponentβ for the mass function of GCs between≃0.5–2.5
mag brighter than the turnover magnitude in thez-band GCLF; (3) As (2) but for theg-band.
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TABLE 5
AVERAGE GC COLORS AND MASS-TO-L IGHT RATIOS

VCC 〈(g − z)〉 Υz Υg VCC 〈(g − z)〉 Υz Υg VCC 〈(g − z)〉 Υz Υg
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

1226 1.24 1.47 2.69 1242 1.11 1.49 2.44 1297 1.05 1.50 2.33
1316 1.23 1.47 2.67 784 1.14 1.48 2.50 1861 1.00 1.50 2.24
1978 1.25 1.47 2.72 1537 1.00 1.50 2.24 543 0.94 1.51 2.12
881 1.09 1.49 2.41 778 1.04 1.50 2.31 1431 1.00 1.50 2.24
798 1.14 1.48 2.50 1321 1.04 1.50 2.31 1528 0.95 1.51 2.14
763 1.11 1.49 2.44 828 1.00 1.50 2.24 1695 1.01 1.50 2.26
731 1.19 1.47 2.59 1250 0.98 1.51 2.20 1833 1.01 1.50 2.26

1535 1.18 1.48 2.57 1630 1.10 1.49 2.42 437 0.90 1.52 2.05
1903 1.18 1.48 2.57 1146 1.20 1.47 2.61 2019 0.90 1.52 2.05
1632 1.21 1.47 2.63 1025 0.97 1.51 2.18 200 0.82 1.54 1.91
1231 1.12 1.48 2.46 1303 0.94 1.51 2.12 571 0.92 1.52 2.09
2095 1.07 1.49 2.37 1913 1.02 1.50 2.27 21 0.88 1.52 2.01
1154 1.12 1.48 2.46 1327 1.06 1.49 2.35 1488 0.87 1.52 1.99
1062 1.14 1.48 2.50 1125 0.93 1.51 2.11 1499 0.93 1.51 2.11
2092 1.13 1.48 2.48 1475 0.94 1.51 2.12 1545 0.93 1.51 2.11
369 1.15 1.48 2.52 1178 1.06 1.49 2.35 1192 1.10 1.49 2.42
759 1.10 1.49 2.42 1283 1.03 1.50 2.29 1075 0.93 1.51 2.11

1692 1.08 1.49 2.39 1261 1.05 1.50 2.33 1440 0.98 1.51 2.20
1030 1.14 1.48 2.50 698 1.00 1.50 2.24 230 0.92 1.52 2.09
2000 1.05 1.50 2.33 1422 1.09 1.49 2.41 2050 0.89 1.52 2.03
685 1.07 1.49 2.37 2048 1.01 1.50 2.26 751 0.85 1.53 1.96

1664 1.18 1.48 2.57 1871 0.96 1.51 2.16 1828 0.88 1.52 2.01
654 0.99 1.50 2.22 9 1.01 1.50 2.26 1407 1.02 1.50 2.27
944 1.06 1.49 2.35 575 1.00 1.50 2.24 1886 0.80 1.55 1.90

1938 0.99 1.50 2.22 1910 1.06 1.49 2.35 1199 1.13 1.48 2.48
1279 1.04 1.50 2.31 1049 0.97 1.51 2.18 1539 0.97 1.51 2.18
1720 1.08 1.49 2.39 856 1.02 1.50 2.27 1185 0.92 1.52 2.09
355 1.09 1.49 2.41 140 1.00 1.50 2.24 1489 0.98 1.51 2.20

1619 1.06 1.49 2.35 1355 0.92 1.52 2.09 1661 0.95 1.51 2.14
1883 1.06 1.49 2.35 1087 0.94 1.51 2.12 · · · · · · · · · · · ·

NOTE. — Key to columns—(1) Galaxy VCC number; (2) Mean GC (g − z) color (from data in Peng et al. 2006a); (3)–(4) Average GC
mass-to-light ratio in thez andg bands, obtained as described in § 6.1.2.

TABLE 6
GAUSSIAN GCLF PARAMETERS FOROUTER GCS OFM87/M49 COMPANIONS1

VCC µg σg µz σz bB N Host 〈(g − z)〉 Υg Υz
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1327 23.886±0.182 1.288±0.144 22.777±0.164 1.224±0.129 0.070 93 VCC1316 1.104 2.43 1.49
1199 23.805±0.127 1.224±0.102 22.631±0.117 1.175±0.091 0.053 151 VCC1226 1.100 2.42 1.49
1192 23.643±0.102 1.013±0.080 22.540±0.099 1.011±0.076 0.064 144 VCC1226 1.155 2.54 1.48
1297 23.410±0.183 1.208±0.142 22.320±0.166 1.138±0.130 0.103 67 VCC1316 1.090 2.40 1.49

NOTE. — Key to columns—(1) Galaxy VCC number; (2)–(3) Maximum-likelihood estimates of the Gaussian meanµ and dispersionσ
of theg-band GCLF; (4)–(5) Same as (2)–(3) but for thez-band; (6) FractionbB of the sample that is expected to be contamination; (7) Total
numberN of all objects withpGC ≥ 0.5 (including contaminants and uncorrected for incompleteness); (8) VCC number of giant elliptical
galaxy close in projection; (9) Mean GC (g − z) color; (10)–(11) Average GC mass-to-light ratio in theg andz bands, obtained as described in
§ 6.1.2.

a All reported numbers referonly to those GC candidates that are more than 6〈Re〉 away from the centers of the galaxies indicated, where
〈Re〉 is the median effective radius of other VCS galaxies that have magnitudes within 0.5 mag of the target galaxy.
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