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THE CORONAL X-RAY SPECTRUM OF THE MULTIPLE WEAK-LINED T TAURI STAR SYSTEM HD 98800
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ABSTRACT

We present high-resolution X-ray spectra of the multiple (hierarchical quadruple) weak-lined T Tauri star system
HD 98800, obtained with the High Energy Transmission Grating Spectrograph (HETGS) on board theChandra
X-Ray Observatory. In the zeroth-orderChandra/HETGS X-ray image, both principle binary components of HD
98800 (A and B, separation 0�.8) are detected; component A was observed to flare during the observation. The
infrared excess (dust disk) component, HD 98800B, is a factor of∼4 fainter in X-rays than the apparently
“diskless” HD 98800A in quiescence. The line ratios of He-like species (e.g., Neix and Ovii) in the HD 98800A
spectrum indicate that the X-ray–emitting plasma around HD 98800 is in a typical coronal density regime
( ). We conclude that the dominant X-ray–emitting component(s) of HD 98800 is (are) coronally active.log n � 11
The sharp spectral differences between HD 98800 and the classical T Tauri star TW Hya demonstrate the potential
utility of high-resolution X-ray spectroscopy in providing diagnostics of pre–main-sequence accretion processes.

Subject headings: accretion, accretion disks — stars: coronae — stars: individual (HD 98800, TW Hydrae) —
stars: pre–main-sequence — X-rays: stars

On-line material: color figure

1. INTRODUCTION

The Einstein andROSAT missions established the ubiquity
of X-ray emission from low-mass pre–main-sequence (PMS)
stars. These early X-ray observations and subsequent obser-
vations by theASCA satellite X-ray observatory left unsolved
the fundamental problem of the physical origin of the X-ray
emission, which could be solar-type coronal activity, star-disk
interactions, or some combination of these mechanisms. Much
of the X-ray data pointed to the likely importance of magnetic
activity (Feigelson & Montmerle 1999). To make further pro-
gress, it is necessary to determine the temperature distributions,
densities, and elemental abundances of the X-ray–emitting
plasmas of PMS stars, so as to provide constraints on models
of X-ray emission from coronal and star-disk interactions and
to compare with, e.g., the physical conditions characterizing
well-established stellar coronal X-ray sources (such as RS CVn
systems and other close binaries).

With the advent of X-ray gratings spectrometers on board
theChandra X-Ray Observatory and theXMM-Newton satellite
observatory, astronomers are now beginning to explore the X-
ray spectral characteristics of PMS stars. In this regard, the
TW Hya Association (TWA) represents an especially useful
young PMS cluster. The TWA is a group of about 30 PMS
stars (Zuckerman et al. 2001 and references therein) located
only ∼50 pc from the Sun and far from the nearest star-forming
clouds (Kastner et al. 1997). Its age (∼5–10 Myr; e.g., Wein-
traub et al. 2000, Zuckerman et al. 2001) likely corresponds
to the epoch of Jovian planet formation in the early solar sys-
tem. The TWA’s proximity, relatively large ratio of X-ray to
bolometric luminosity [ , whereLX is measuredlog (L /L ) ∼ 3X ∗
within the ROSAT spectral bandpass of 0.1–2.4 keV; Kastner
et al. 1997], and lack of cloud absorption lead to uniformly
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high X-ray fluxes among its member stars. In terms ofROSAT
X-ray spectral properties, the TWA appears to represent a tran-
sition stage between cloud-embedded PMS stars and the zero-
age main sequence (Kastner et al. 2003).

The Chandra/High Energy Transmission Grating Spectro-
graph (HETGS) spectrum of TW Hya itself is perhaps the most
extreme and intriguing of the manyChandra/HETGS spectra
of X-ray active stars obtained to date, in several key respects
(Kastner et al. 2002): (1) Ne is highly overabundant and Fe
severely underabundant, even in comparison with stars exhib-
iting strong coronal abundance anomalies, (2) the temperature
distribution derived from fluxes of temperature-sensitive emis-
sion lines is sharply peaked, at , and (3) perhapslog T p 6.5
most significantly, density-sensitive line ratios of Neix and
O vii indicate plasma densities . This is more thanlog n ∼ 13
an order of magnitude larger than density estimates similarly
obtained for coronally active late-type stars.

TW Hya remains the TWA’s only unambiguous example of
an actively accreting (i.e., “classical”) T Tauri star (TTS). Given
the evidence that TW Hya likely is surrounded by a circum-
stellar disk from which it is still accreting (e.g., Muzerolle et
al. 2000), we used theChandra/HETGS results to explore the
hypothesis that X-ray emission from classical TTSs might orig-
inate from accretion streams that connect the circumstellar disk
to the star (Kastner et al. 2002). Both the density range and
the characteristic temperature of X-ray emission obtained from
modeling theChandra/HETGS spectrum are consistent with
recent models of magnetospheric accretion onto TTSs (Kuker,
Henning, & Rudiger 2003).

In this Letter, we report on the results ofChandra/HETGS
observations of a second well-studied TWA member, HD 98800
(TV Crt). HD 98800 is a hierarchical, quadruple weak-lined
TTS (WTTS) and is one of the best examples of a solar-mass
“Vega-type” (infrared excess) system (Zuckerman & Becklin
1993; Sylvester et al. 1996; Soderblom et al. 1996, 1998). HD
98800 is a visual double with a separation of∼0�.8. Each visual
component is itself a spectroscopic binary, and one of these
(HD 98800B) is double-lined (Soderblom et al. 1996). Al-
though the HD 98800B binary system harbors a dust disk, the
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Fig. 1.—Left: Keck Telescope mid-IR images of HD 98800 (Prato et al.
2001).Center and right: Chandra/HETGS zeroth-order X-ray images of HD
98800, before (center) and after (right) application of subpixel event relocation.
In each X-ray image, contour levels are 0.05, 0.1, 0.2, 0.4, and 0.7 of the
peak. The pixel size in these images is 0�.125. HD 98800A, the stronger X-
ray source but weaker mid-IR source, lies at offsets (0, 0) in all four panels. Fig. 2.—Top: Chandra/HETGS light curves of HD 98800 in “hard” (1.7–

7.0 ; black) and “soft” (15.0–25.0 ;gray) bands, for a bin size of 3200 s.˚ ˚A A
Counts in dispersed spectral orders 1–3 were combined to generate these plots.
The thin black and gray curves are the background count rates in the hard
and soft bands, respectively.Bottom: Ratio of hard to soft count rates.

system is apparently nonaccreting; models indicate that the dust
disk has an inner gap extending to∼2 AU (Prato et al. 2001).
The HD 98800 system displays an X-ray luminosity similar to
that of its fellow TWA member TW Hya (Kastner et al. 1997).
Given that HD 98800 does not appear to be accreting, it makes
an excellent target for further investigation into the origins of
X-ray emission from PMS stars withChandra/HETGS.

2. OBSERVATIONS

We observed HD 98800 withChandra/HETGS for 98.9 ks
on 2003 March 7 (observation identifier 3728) in the default
configuration (timed exposure, ACIS-S detector array) and un-
der nominal operating conditions. Data were reprocessed with
Chandra Interactive Analysis of Observations (CIAO, ver. 3)
software to apply updated calibrations, and events were cleaned
of the detector artifacts on CCD 8 (“streaks”). We applied
subpixel event position corrections to the zeroth-order events,
following an algorithm forChandra back-illuminated CCD
data described in Li et al. (2003). Spectral responses were
generated with CIAO; corrections were also made for ACIS
contamination. Lines were measured with the Interactive Spec-
tral Interpretation System (ISIS;4 Houck & DeNicola 2000) by
convolving Gaussian profiles with the instrumental response,
and emission measure and abundances were modeled with cus-
tom ISIS programs (see, e.g., Huenemoerder et al. 2003b for
a detailed description of the technique).

The resultingChandra/HETGS spectral image of the HD
98800A/B binary yielded 5163 zeroth-order counts, 4099 first-
order medium-energy grating (MEG) counts, and 1336 first-
order high-energy grating (HEG) counts. The integrated flux
(1.5–25 ) obtained from the first-order MEG and HEG dataÅ
is ( ),�12 �2 �1 �3 �2 �12.5# 10 ergs cm s 1.6# 10 photons cm s
corresponding to a luminosity at the29 �1L p 6.9# 10 ergs sX

distance to HD 98800 ( pc; Favata et al. 1998).D p 48

3. RESULTS

3.1. Zeroth-Order Image and Light Curve

Zeroth-orderChandra/HETGS images of HD 98800, before
and after applying subpixel event position corrections, are pre-
sented in Figure 1, alongside Keck Telescope images obtained
in the thermal infrared (Prato et al. 2001). The primary com-
ponents (HD 98800A and B) are well resolved in the zeroth-
order image, following event position correction. In addition,
light curves of the zeroth-order sources and nearby background

4 ISIS is available at http://space.mit.edu/CXC/ISIS.

demonstrate that component A flared during the course of the
observation (Fig. 2), while component B did not display mea-
surable variations in count rate. Prior to the onset of the flare,
the Chandra/HETGS count rate of HD 98800A was a factor
of ∼4 larger than that of HD 98800B. Figure 2 demonstrates
that the HD 98800A flare was seen predominantly in hard (less
than 7 ) X-rays.Å

3.2. First-Order (MEG�HEG) Spectrum

In Figure 3 we present the spectrum of HD 98800A�B5 from
2 to 25 . In the range from 12 to 25 , the spectrum is dom-˚ ˚A A
inated by emission lines from highly ionized Ne, O, and Fe.
Lines of O viii (16.0 and 19.0 ), Ovii (21.6 and 22.0 ),˚ ˚A A
Ne x (12.1 ), Neix (13.4 and 13.7 ), and Fexvii (15.0 and˚ ˚A A
17.1 ) are particularly prominent. Several weaker lines (e.g.,Å
Ne ix, Ne x, Mg xi, Mg xii, Si xiii, and Ar xvii) are clearly
detected shortward of 12 , as well.Å

In Figure 4, we display narrow spectral regions around the
13.4, 13.55, and 13.7 triplet (forbidden, intercombination,Å
and resonance lines, respectively; hereafterf, i, andr) of the
He-like ion Neix. In this triplet, as in the He-like Ovii and
Mg xi triplets (not shown), the intercombination line is the
weakest of the three lines, and thef : i ratio lies between∼0.5
and∼1.0 (see also Huenemoerder et al. 2003a). For the Neix
triplet, the (f : i) ratio is diagnostic of electron density over the
range , and in the case of HD 98800, the Neixlog n ∼ 11–13
f : i ratio suggests a density at the lower end of this range.

To better constrain the possible range ofn for HD 98800,
we used models, based on the Astrophysical Plasma Emission
Database (APED; Smith et al. 2001), in which the He-like
triplet line emissivities are calculated as functions of density
and temperature (N. S. Brickhouse 2003, private communi-
cation). For HD 98800, the comparison between the measured
Ne ix f : i ratio and the APED-based model calculations
indicates , with a rather firm upper limit oflog n ∼ 11.25

(Fig. 5). From the Ovii f : i ratio, which has alog n ! 12
useful diagnostic range of about , we derive anlog n ∼ 9.5–12
upper limit of . (These upper limits need not belog n ! 11.5

5 Our initial tests of a modified event repositioning technique—in which dif-
ferent position corrections are used for front-illuminated and back-illuminated
devices (Li et al. 2004)—were inconclusive as to potential improvements in the
spatial or spectral resolution of the dispersed spectra. Hence, we present here
the combined dispersed spectrum of components A and B.
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Fig. 3.—Combined HEG�MEG first-order spectrum of HD 98800. The inset shows the region from∼1.5 to ∼12 .Å

Fig. 4.—Spectral region that includes the triplet lines of Neix and several
lines of Fexvii. The solid line is HD 98800; the dashed line is TW Hya. [See
the electronic edition of the Journal for a color version of this figure.]

Fig. 5.—Line ratios vs. within the Neix triplet, forR p f /i G p ( f � i)/r
HD 98800p TV Crt (bottom contours) and TW Hya (top contours). The grid
overlaid on the plot ( vs. ), which is based on a density-dependentlog n log T
APED model (N. S. Brickhouse 2003, private communication), illustrates how
the ratioR serves as a diagnostic of the density of the gas at the temperature
indicated byG. The central, middle, and outer contours represent 68%, 90%,
and 99% confidence levels in the measured values ofR andG.

identical, since the lines are formed at different temperatures
and may not be spatially coincident.)

From emission measure and abundance modeling of HD
98800, we find O, Ne, and Fe abundances (relative to solar)
of ∼0.3,∼1.0, and∼0.2. Figure 4 serves as a qualitative com-
parison of the relative abundances of Ne and Fe for HD 98800
and TW Hya. Specifically, since Neix and Fexvii form at
similar temperatures, their ratio is primarily sensitive to relative
abundance; Figure 4 thus illustrates that the relative overabun-
dance of Ne with respect to Fe is not as extreme for HD 98800
as for TW Hya.

4. DISCUSSION

It is intriguing that the apparently “diskless” component of
the HD 98800 system, HD 98800A, appears to be the stronger
X-ray source (Fig. 1). Given the relatively small visual ex-
tinction toward the system [ ; Sylvester et al.E(B�V ) p 0.10
1996] and the inference that the HD 98800B binary is viewed
at an intermediate inclination angle (Prato et al. 2001), it seems

unlikely that this difference in apparent X-ray luminosities is
due to differential intervening absorption. Instead, it appears
that A is intrinsically brighter in X-rays than B, with a differ-
ence of between components (see §§ 2D [log (L /L )] ≈ 0.5X bol

and 3.1 and Prato et al. 2001). While this result appears con-
sistent with a recent study of Orion showing that disk-
enshrouded PMS stars are, in general, weaker X-ray sources
than diskless PMS stars (Flaccomio et al. 2003), one must first
demonstrate that the quiescent emission from both components
does not show long-term variability and that other binary TTSs
resolvable byChandra show X-ray flux ratios that are likewise
anticorrelated with their relative IR excesses.

In terms of thefir line ratios of He-like ions and its Ne-to-
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Fe line ratios, theChandra/HETG X-ray spectrum of HD
98800 resembles those of “classical” coronal sources, such as
II Peg, UX Ari, and HR 1099 (see, e.g., Fig. 6 in Kastner et
al. 2002). Hence—although it remains to determinefir line
ratios for additional WTTSs—the fir line ratio results for HD
98800 provide some of the strongest evidence to date that the
X-ray emission from such stars is coronal in origin.

There is a marked contrast between thefir ratios in the X-
ray spectra of HD 98800 and TW Hya, however (Fig. 4). For
the latter (classical T Tauri) star, the forbidden line is by far
the weakest of the Ovii and Neix triplets, and thei : r ratio
is near unity in each case (the Mgxi triplet is anomalously
weak in the TW Hya spectrum; Kastner et al. 2002). Figure 5
shows that, assuming the UV radiation field incident on the
X-ray–emitting plasma of TW Hya is not strong (see below),
the plausible density regimes of Neix line formation are non-
overlapping, for TW Hya and HD 98800; i.e., the Neix f : i
ratio in the spectrum of TW Hya requires .log n 1 12

Furthermore, whereas the differential emission measure
(DEM) distribution of TW Hya is sharply peaked atlog T ∼

(Kastner et al. 2002), the DEM distribution of HD 98800 is6.5
relatively flat over the temperature range –7.0. Thelog T ∼ 6.4
latter behavior is more like that of coronal sources (Huene-
moerder et al. 2003a, 2003b), although—unlike such sources—
HD 98800 evidently lacks strong emissivity aroundlog T p

. This may be an indication of the evolutionary status7.2–7.6
of the corona, in that the dynamo is not yet as strong as in the
coronally active binaries or that the flare frequency, which seems
to drive the hotter peak, is not as high.

The overall X-ray spectral similarity between HD 98800 and
coronally active stars makes theChandra/HETG X-ray spec-
trum of the classical TTS TW Hya that much more remarkable.
As argued by Kastner et al. (2002), both the plasma densities
implied by line ratios of He-like ions and its sharply peaked
(and rather low) X-ray temperature distribution point to accre-
tion as a likely source of some or all of its X-ray emission.
The modeling of Kuker et al. (2003) lends additional credence
to this argument. As TW Hya evidently is actively accreting
(based on its strong Ha emission and its UV and near-infrared
excesses) whereas HD 98800 is not (based on these same ac-

cretion indicators), the sharp distinction between their X-ray
spectral characteristics appears to further support the hypothesis
that the X-ray emission from TW Hya—and, by extension,
other classical TTSs—may be generated, at least in part, via
accretion.

On the other hand, these two TWA stars are similar in X-
rays, in certain respects. For example, TW Hya was also ob-
served to flare, with flare characteristics (e.g., rise time, decay
time, peak flare to quiescent count rates) similar to those of
HD 98800 (Kastner et al. 2002). In addition, although TW Hya
is by far the most extreme star thus measured by HETG in
terms of its Ne/Fe abundance ratio, the X-ray spectrum of HD
98800 shows similar abundance patterns overall (Huenemoer-
der et al. 2003b).

These similarities would appear to cast some doubt on the
accretion hypothesis for TW Hya. It is possible, for example,
that UV radiation, generated in accretion streams onto TW Hya,
depletes the populations of atomic levels responsible for the
forbidden line component of the He-like triplets, thereby driving
the line ratios to their high-density limits (e.g., Ness et al. 2002).
Although this phenomenon is reasonably well established in the
case of the intense UV fields of X-ray–luminous O stars, it is
less clear that it is a viable model in the case of accreting classical
TTSs. The relatively weak UV fields of such stars likely would
require that the X-ray–emitting plasma be in very close proximity
to the UV source—effectively placing the point of X-ray gen-
eration within (or very near) the accretion stream itself.

Whatever their origin, the contrasting results for the density-
sensitive line ratios of He-like ions in the X-ray spectra of TW
Hya and HD 98800 (Fig. 5) suggest that fundamentally dif-
ferent physical conditions characterize the X-ray–emitting plas-
mas of classical TTSs and WTTSs.Chandra/HETG obser-
vations of additional classical TTS and WTTS systems, as well
as detailed physical models of UV-irradiated coronal plasmas,
are now required to establish whether these He-like triplet line
ratios are probing X-ray–emitting plasma in accretion funnels
or are, instead, diagnostic of the intensity of accretion-powered
UV and its proximity to the corona of the accreting star.

Support for this research was provided by contracts SV3-
73016 (Chandra) and NAS8-01129 (HETG) to MIT.
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