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Abstract

We consider the metric perturbations around a stationary rotating Nambu-Goto string in

Minkowski spacetime. By solving the linearized Einstein equations, we study the effects of az-

imuthal frame dragging around the rotation axis and linear frame dragging along the rotation axis,

the Newtonian logarithmic potential, and the angular deficit around the string as the potential

mode. We also investigate gravitational waves propagating off the string and propagating along

the string, and show that the stationary rotating string emits gravitational waves toward the di-

rections specified by discrete angles from the rotation axis. Waveforms, polarizations, amplitudes

which depend on the direction are shown explicitly.

∗ Present address: Observatory Division, Fukuoka District Meteorological Observatory, Fukuoka
† E-mail:ishihara@sci.osaka-cu.ac.jp

1

http://arXiv.org/abs/0811.2846v1


I. INTRODUCTION

The phase transition of vacuum in the early universe is one of the most important topics of

the cosmology and the elementary particle physics. It is well known that topological defects

are necessarily created due to the spontaneous symmetry breaking of vacuum states[1] (See

also [2, 3, 4]). Among the several types of topological defects, cosmic strings are possible to

survive till the present stage of the universe and to be observed by the gravitational effects.

Alternatively, it is pointed out that fundamental strings and/or D-strings can play a role of

cosmic strings[5, 6, 7, 8, 9]. There is no doubt that detection of cosmic strings in the present

stage of the Universe is an important and challenging work.

The gravitational waves from cosmic strings is one of the targets of ongoing experi-

ments for searching gravitational waves due to the recent technological advance, e.g., LIGO,

LISA, VIRGO, TAMA300, GEO600 and so on[10, 11, 12, 13, 14], and then theoretical re-

searches have been established. For example, there are many works on the gravitational

waves produced by oscillating loop cosmic strings[15, 16], by an infinitely long string with a

helicoidal standing wave[17], and by colliding wiggles on a straight string[18, 19]. Damour

and Vilenkin[20, 21] discussed the gravitational wave bursts from cusps of the cosmic string.

A conical spacetime generated around a straight string makes undistorted double im-

ages of a distant source. The gravitational lensing caused by the cosmic strings is studied

extensively[22]. Recently, a variety of gravitational lensing: weak lensing[23], lensing by

string loops[24], and lensing by strings with small-scale structure[25] are studied.

It is known that reconnection probability for gauge theory strings is essentially one[26].

Such the strings evolve in a scale invariant way (see [3] and references therein). In contrast,

the cosmic strings in the framework of the superstring theory, the reconnection probability

is suppressed sufficiently less than one [6, 7, 8, 9]. Evolution of such strings may differ from

that of gauge strings. If the strings are practically stable, we could expect that they survive

finally in the stationary states in the present stage of the universe.

Starting from the pioneering work by Burden and Tassie[27], there are many works on the

stationary rotating strings[28, 29]. In our previous study [30], we reformulate the stationary

rotating strings as an example of the cohomogeneity-one strings[31, 32]. Because of the

geometrical symmetry of the strings, it is easy to treat them as gravitational sources in the

frame work of general relativity. In this paper, we investigate the gravitational fields around
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a stationary rotating string by solving the linearized Einstein equations toward detection

of the strings in the universe. The Newtonian logarithmic potential and angular deficit are

obtained as the potential mode. Furthermore it is shown two effects of frame dragging:

azimuthal dragging around the rotation axis, and linear dragging along the rotation axis.

We also study the gravitational waves propagating off the strings and propagating along

the strings (traveling waves). Characteristic properties of waveforms, polarization, and

directions of emission are discussed.

This paper is organized as follows. In Sec. II, we briefly review the stationary rotating

strings following to Ref.[30]. In Sec.III, we formulate linear perturbations of the metric

around a stationary rotating string. We obtain solutions to the linearized Einstein equations

explicitly, then, discuss potential mode in Sec.IV, and the gravitational wave modes in Sec.V,

and the traveling wave modes in Sec.VI. Finally, we summarize this paper in Sec.VII. In this

paper, we use the sign convention − + + + for the metric, and units in which c = G = 1.

II. SOLUTIONS OF STATIONARY ROTATING STRINGS

A. Stationary rotating Nambu-Goto strings in Minkowski spacetime

We consider cosmic strings which are described by the Nambu-Goto action,

SNG = −µ
∫

Σ

d2ζ
√
−γ, (2.1)

where Σ is a timelike two-dimensional world surface embedded in a target spacetime M
with the metric gµν , ζ

a (ζ0 = τ, ζ1 = σ) are coordinates on Σ, γ is the determinant of the

induced metric γab on Σ, and a constant µ denotes the string tension. Varying the action

(2.1) by the coordinates of M, xµ (µ = 0, 1, 2, 3), we obtain the Nambu-Goto equations:

1√−γ ∂a

(√
−γγab∂bx

µ
)

+ Γµ
νλγ

ab∂ax
ν∂bx

λ = 0, (2.2)

where Γµ
νλ is the Christoffel symbol associated with gµν .

When the world surface of a string Σ is tangent to a Killing vector field in a target

spacetime M, i.e., cohomogeneity-one string, the Nambu-Goto equation (2.2) can be reduced

to a geodesic equation in an appropriate three-dimensional metric[28, 30, 31]. Here, we

concentrate on stationary rotating strings, which belong to a class of the cohomogeneity-one
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strings. We briefly review the solutions of stationary rotating strings in Minkowski spacetime

according to [30].

In Minkowski spacetime with the metric by the cylindrical coordinate system,

ds2 = gµνdx
µdxν = −dt2 + dρ2 + ρ2dϕ2 + dz2, (2.3)

the Killing vector field ξ which describes the stationary rotation around z-axis with a con-

stant angular velocity Ω is

ξ = ∂t + Ω∂ϕ. (2.4)

We consider a world surface Σ of a stationary rotating string which is tangent to ξ. The

solutions are characterized by two dimensionless parameters l and q, and explicit forms are

given by

t(τ) = τ,

ρ(σ)2 =
1

2

{

(ρ2
max + ρ2

min) − (ρ2
max − ρ2

min) cos (2Ωσ)
}

,

ϕ(τ, σ) = Ωτ + ϕ̄(σ),

z(σ) = qσ,

(2.5)

where ϕ̄(σ) is implicitly given by

2l

Ω2
tan (ϕ̄(σ) − ϕ0 + l|Ω|σ) = (ρ2

max + ρ2
min) tan

(

|Ω|σ +
π

4

)

− (ρ2
max − ρ2

min), (2.6)

and ρmin, ρmax are defined by

ρ2
min =

1

2Ω2

(

1 + l2 − q2 −
√

(1 + l + q)(1 + l − q)(1 − l + q)(1 − l − q)
)

,

ρ2
max =

1

2Ω2

(

1 + l2 − q2 +
√

(1 + l + q)(1 + l − q)(1 − l + q)(1 − l − q)
)

.
(2.7)

The constant ϕ0 has been fixed for convenience as

tanϕ0 = −Ω2ρ2
min

l
, (2.8)

in order that ϕ̄ = 0 when σ = 0.

The range of l and q are limited for the stationary rotating strings as

|l| + |q| ≤ 1. (2.9)

We do not consider the case q = 0 in which the Killing vector ξ becomes null at the end

points of the stationary string. Changes of sign of parameters l, q and Ω can be interpreted

as reflection of the space and time. Then, we consider, hereafter, the case

l ≥ 0, q > 0, Ω > 0, and l + q ≤ 1. (2.10)
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We show, here, typical shapes of stationary rotating strings. First, we consider the case

l + q = 1 (q 6= 0). The solutions are given by

ρ =

√
l

Ω
, ϕ = Ω(t+ z). (2.11)

In this case, a snapshot of string becomes a helix as shown in Fig. 1. Then, we call these

‘helical strings’.

FIG. 1: Helical strings: l + q = 1 (q 6= 0). The three-dimensional snapshots are

given in the left panel, and the projection of strings to the x-y plane are given in the

middle. The dashed circle in the middle figure represents the light cylinder ρ = 1/Ω.

The parameters on the l-q plane are plotted in the right panel.

Second, we consider the case l = 0, q 6= 0. The solution can be described by

x =

√

1 − q2

Ω
sin

(

Ωz

q

)

cos Ωt, y =

√

1 − q2

Ω
sin

(

Ωz

q

)

sin Ωt, (2.12)

where x := ρ cosϕ, y := ρ sinϕ. The strings, we call ‘planar’, are confined in a rotating

plane. Snapshots of the planar strings are shown in the first row of Fig.2.

Thirdly, we consider the case l + q ≤ 1 (l 6= 0, q 6= 0). We show the shapes of strings in

Fig.2 for l = 1/5, 1/3, and 1/2, respectively.

If l is a rational number, projection of the string on the x-y plane becomes a closed curve.

For l = a/b(a, b are relatively prime integer), the closed curve consists of Nl elements, where

Nl is defined by

Nl =
2b

GCD[2b, (b− a)]
. (2.13)

Here, GCD[a, b] denotes the greatest common divisor of a, b. The curve wraps around the

center in the x-y plane Ml times till the curve returns to the starting point, where Ml is

given by

Ml =
1 − l

2
Nl, (2.14)
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that is,

ϕ̄(σ +Nlσp) = ϕ̄(σ) + 2πMl, (2.15)

where σp := π/Ω is the periodicity of ρ given by (2.5). The strings with rational l are

periodic in z with the period

Zp = πNlq/Ω. (2.16)

FIG. 2: Three dimensional snapshots and projections of string are shown in the

case l = 0, 1/5, 1/3, and 1/2 as the same as Fig.1.

6



B. Energy, Momentum, and Angular Momentum

The string energy-momentum tensor T µν is given by[3]

√−gT µν(xλ) = −µ
∫

d2ζΘµν(ζc)δ(4)
(

xλ − xλ(ζc)
)

, (2.17)

Θµν =
√−γγab∂ax

µ∂bx
ν , (2.18)

where xλ(ζc) is the solution of Σ. In the inertial reference system (2.3), explicit form of

Θµν(ζc), which depend only on σ, are shown in Appendix A.

We define the string energy E, the angular momentum J , and the momentum along the

rotation axis P . We consider infinitely long strings with periodic structure, i.e., l is assumed

to be a rational number, then we define E, J and P for one period, z ∼ z + Zp as

E :=

∫ ρmax

ρmin

dρ

∫ 2π

0

dϕ

∫ Zp

0

dz
√−g T t

ν(−∂t)
ν = µ

∫ Nlσp

0

dσ Θt
t(σ), (2.19)

J :=

∫ ρmax

ρmin

dρ

∫ 2π

0

dϕ

∫ Zp

0

dz
√−g T t

ν(∂ϕ)ν = −µ
∫ Nlσp

0

dσ Θt
ϕ(σ), (2.20)

P :=

∫ ρmax

ρmin

dρ

∫ 2π

0

dϕ

∫ Zp

0

dz
√
−g T t

ν(∂z)
ν = −µ

∫ Nlσp

0

dσ Θt
z(σ). (2.21)

We calculate these quantities as

E =
πµ

|Ω|Nl(1 − l2), (2.22)

J =
πµ

2Ω|Ω|Nl(1 − l2 − q2), (2.23)

P = −πµ
Ω
Nllq. (2.24)

Here, we take care of the sign of Ω, l and q in (2.22)-(2.24). We can also define the averaged

values of these quantities per unit length of z as

〈E〉 := E/Zp = µ
1 − l2

|q| , (2.25)

〈J〉 := J/Zp =
µ

Ω

1 − l2 − q2

2|q| , (2.26)

〈P 〉 := P/Zp = −µlsign(Ωq). (2.27)

These quantities are applicable also for the strings with irrational l.

The effective line density µ̃, and effective tension T̃ for the stationary rotating strings

are defined[3] in the reference system where the averaged value of momentum 〈P 〉 vanishes.
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We obtain these quantities explicitly as

µ̃ =
µ

2|q|
[

1 − l2 + q2 +
√

(1 − q − l)(1 − q + l)(1 + q − l)(1 + q + l)
]

,

T̃ =
µ

2|q|
[

1 − l2 + q2 −
√

(1 − q − l)(1 − q + l)(1 + q − l)(1 + q + l)
]

.
(2.28)

In general, it holds that µ̃T̃ = µ2 and µ̃ ≥ T̃ . In the case of helical strings, there exists

no inertial reference system such that 〈P 〉 vanishes because a single wave moves with the

velocity of light along the rotation axis.

III. GRAVITATIONAL PERTURBATIONS

A. Mode decomposition

We consider metric perturbations hµν produced by a stationary rotating string in the

Minkowski spacetime with the metric ηµν . We solve the linearized Einstein equations

�ψµν = −16πTµν , (3.1)

where Tµν are given by (2.17), and ψµν is defined by

ψµν = hµν −
1

2
ηµνh

α
α. (3.2)

We have used the Lorenz gauge condition ∂µψµν = 0 in (3.1).

We assume, here and henceforth, the parameter l to be a rational number. In this case,

the stationary rotating string solutions (2.5) have periodicity in z with the period Zp given

by (2.16). Then, Tµν in (2.17) have the following periodicities:

Tµν(t, ρ, ϕ, z) = Tµν(t+ 2π/Ω, ρ, ϕ, z), (3.3)

Tµν(t, ρ, ϕ, z) = Tµν(t, ρ, ϕ+ 2π, z), (3.4)

Tµν(t, ρ, ϕ, z) = Tµν(t, ρ, ϕ, z + Zp). (3.5)

Thus, we can expand Tµν in a Fourier series as

Tµν(t, ρ, ϕ, z) =
∞
∑

n=−∞

∞
∑

m=−∞

∞
∑

s=−∞

e−iωnt eimϕ eikszT̃ (n,m,s)
µν (ρ), (3.6)

where

ωn := Ωn, ks :=
2π

Zp
s =

2

Nl

Ω

q
s, (3.7)
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and n,m, s are integers.

By using (2.17), we obtain the Fourier coefficients as

T̃ (n,m,s)
µν (ρ) =

Ω

(2π)2Zp

∫ 2π/Ω

0

dt

∫ 2π

0

dϕ

∫ Zp

0

dzeiωnt e−imϕ e−ikszTµν(t, ρ, ϕ, z) (3.8)

= −µδnm

2πZp

∫ Nlσp

0

dσe−i(ksqσ+mϕ̄(σ)) 1

ρ
Θµν(σ)δ(ρ− ρst(σ)), (3.9)

where ρst(σ) is the string solution given by (2.5). Because of δnm in (3.9), nonvanishing

coefficients are specified by (n,m) = (n, s), then we introduce T̃
(n,s)
µν := T̃

(n,n,s)
µν .

We can also expand the metric perturbations ψµν related to (3.6) in a Fourier series as

ψµν(t, ρ, ϕ, z) =

∞
∑

n=−∞

∞
∑

s=−∞

e−iωnt einϕ eikszψ̃(n,s)
µν (ρ). (3.10)

Using (3.6) and (3.10), we can reduce (3.1) to a set of the ordinary differential equations

with respect to ρ for each Fourier mode labeled by (n, s).

Ten components of linearized Einstein equations (3.1) are classified into three types:

scalar type (m = n), vector type (m = n± 1), and tensor type (m = n± 2). Equations for

these types have the following form:

Scalar type : L(n,s)
n ψ̃

(n,s)
S (ρ) + 16 π T̃

(n,s)
S (ρ) = 0, (3.11)

Vector type : L(n,s)
n±1 ψ̃

(n,s)
V± (ρ) + 16 π T̃

(n,s)
V± (ρ) = 0, (3.12)

Tensor type : L(n,s)
n±2 ψ̃

(n,s)
T± (ρ) + 16 π T̃

(n,s)
T± (ρ) = 0, (3.13)

where the differential operator L(n,s)
m with respect to ρ is defined by

L(n,s)
m =

1

ρ

d

dρ

(

ρ
d

dρ

)

+

(

κ2
ns −

m2

ρ2

)

(3.14)

with

κ2
ns := ω2

n − k2
s . (3.15)

The members of
(

ψ̃
(n,s)
S , ψ̃

(n,s)
V± , ψ̃

(n,s)
T±

)

and
(

T̃
(n,s)
S , T̃

(n,s)
V± , T̃

(n,s)
T±

)

are defined by

ψ̃
(n,s)
S =

{

ψ̃
(n,s)
tt , ψ̃(n,s)

zz , ψ̃
(n,s)
tz ,

(

ψ̃(n,s)
ρρ + ψ̃(n,s)

ϕϕ /ρ2
)}

,

ψ̃
(n,s)
V± =

{(

ψ̃
(n,s)
tρ ± iψ̃

(n,s)
tϕ /ρ

)

,
(

ψ̃(n,s)
ρz ± iψ̃(n,s)

ϕz /ρ
)}

,

ψ̃
(n,s)
T± =

{(

ψ̃(n,s)
ρρ − ψ̃(n,s)

ϕϕ /ρ2 ± 2 i ψ̃(n,s)
ρϕ /ρ

)}

,

(3.16)
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and

T̃
(n,s)
S =

{

T̃
(n,s)
tt , T̃ (n,s)

zz , T̃
(n,s)
tz ,

(

T̃ (n,s)
ρρ + T̃ (n,s)

ϕϕ /ρ2
)}

,

T̃
(n,s)
V± =

{(

T̃
(n,s)
tρ ± i T̃

(n,s)
tϕ /ρ

)

,
(

T̃ (n,s)
ρz ± i T̃ (n,s)

ϕz /ρ
)}

,

T̃
(n,s)
T± =

{(

T̃ (n,s)
ρρ − T̃ (n,s)

ϕϕ /ρ2 ± 2 i T̃ (n,s)
ρϕ /ρ

)}

,

(3.17)

respectively.

At the infinity, because m2/ρ2 → 0, (3.15) means the dispersion relation of the gravita-

tional waves, where κns and ks can be regarded as the radial and the z-axis components of

the wave vector, respectively.

B. Green’s function method

All of equations (3.11)-(3.13) have the same form of

L(n,s)
m ψ̃(n,s)(ρ) + 16πT̃ (n,s)(ρ) = 0, (3.18)

where the indices S,V±,T± are suppressed. The ordinary differential equations (3.18) of

the Sturm-Liouville type are formally solvable by using Green’s function method. (See [33],

for example.)

Introducing Green’s function Gns
m (ρ, ρ′) which satisfies

L(n,s)
m Gns

m (ρ, ρ′) = −1

ρ
δ(ρ− ρ′) , (3.19)

we can express the solutions ψ̃(n,s) of (3.18) as

ψ̃(n,s)(ρ) =

∫ ∞

0

dρ′Gns
m (ρ, ρ′)16πρ′T̃ (n,s)(ρ′). (3.20)

Using (3.9) for the scalar, vector, and tensor types of T̃ (n,s), we can write ψ̃(n,s) as

ψ̃(n,s)(ρ) = − 8µ

qNlσp

∫ Nlσp

0

dσ Gns
m (ρ, ρst(σ)) Θ(σ) exp (−iksqσ − inϕ̄(σ)) , (3.21)

where Θ := {ΘS,ΘV±,ΘT±} in the right hand side takes the same combination of Θµν as

(3.17). The coefficients ψ̃(n,s) should satisfy

ψ̃(−n,−s)(ρ) =
(

ψ̃(n,s)(ρ)
)∗

, (3.22)

so that the metric perturbations hµν are real, where ∗ means the complex conjugate.
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C. Nonvanishing (n, s)-modes

For the stationary rotating strings with rational l, the product Gns
m (ρ, ρst(σ))Θ(σ) in

(3.21) is periodic in σ with the period σp as

Gns
m (ρ, ρst(σ + σp))Θ(σ + σp) = Gns

m (ρ, ρst(σ))Θ(σ), (3.23)

because of the periodicity of ρst(σ) in (2.5). At the same time, from (2.15) the exponential

factor in (3.21) varies as

exp (−iksq(σ +Nlσp) − inϕ̄(σ +Nlσp)) (3.24)

= exp (−iksqσ − inϕ̄(σ)) exp (−2πi (s+ nMl)) . (3.25)

Here, we introduce a function Φ(σ) by

Φ(σ) = (ksqσ + nϕ̄(σ)) /Lns, (3.26)

where

Lns := s+ nMl (3.27)

is an integer specified by mode indices n and s for a stationary rotating string. The function

Φ(σ) is monotonic in σ and varies as

Φ(σ +Nlσp) = Φ(σ) + 2π. (3.28)

Then, equation (3.21) leads to

ψ̃(n,s)(ρ) ∝
∫ Nlσp

0

dσ Gns
m (ρ, ρst(σ)) Θ(σ) exp (−iLnsΦ(σ))

=

∫ 2π

0

dΦ
dσ

dΦ
Gns

m (ρ, ρst(σ(Φ)))Θ(σ(Φ)) exp (−iLnsΦ) , (3.29)

where we have changed the integration variable σ by Φ. Since dϕ̄/dσ is periodic with the

period σp, dΦ/dσ is also periodic in σ with the same period. Therefore, we can see that

dσ/dΦ, ρst(σ(Φ)), and Θ(σ(Φ)) have a periodicity in Φ with the period 2π/Nl, and then, we

can obtain a Fourier series

dσ

dΦ
Gns

m (ρ, ρst(σ(Φ)))Θ(σ(Φ)) =
∑

j

aj exp (i jNlΦ) , (3.30)

11



where aj are Fourier coefficients labeled by an integer j. Inserting this into (3.29) we have

ψ̃(n,s)(ρ) ∝
∫ 2π

0

dΦ
∑

j

aj exp (i(jNl − Lns)Φ) . (3.31)

Therefore, for the combination (n, s) of nonvanishing ψ̃(n,s)(ρ), there should exist an integer

j which satisfies

Lns = s+ nMl = jNl. (3.32)

Especially, in the case of helical strings, l + q = 1, q 6= 0, because Gns
m (ρ, ρst(σ))Θ(ρst(σ))

in (3.21) is constant with respect to σ, the nonvanishing (n, s)-modes is specified by the

condition

Lns = s + nMl = 0. (3.33)

D. Explicit forms of Green’s functions

We obtain the explicit form of Green’s functions Gns
m , here. We consider three cases with

respect to the sign of κ2
ns defined by (3.15).

First, we consider the case κ2
ns < 0. If we require the regularity both at the center and at

the infinity, the operator (3.14) with negative κ2
ns allows damping solutions to (3.18) with

the length scale |κ−1
ns |. Green’s functions in this case have the form

Gns
m (ρ, ρ′) = Im(|κns|ρ)Km(|κns|ρ′)θ(ρ′ − ρ) +Km(|κns|ρ)Im(|κns|ρ′)θ(ρ− ρ′), (3.34)

where the functions θ(x) is the Heviside step function, and Im(x) andKm(x) are the modified

Bessel functions,

Im(x) = i−mJm(ix), Km(x) = (π/2) im+1H(1)
m (ix), (3.35)

and Jm and H
(1)
m are the Bessel function and the Hankel function of the first kind, respec-

tively.

Next, in the case κ2
ns = 0, because the scale vanishes in the operator (3.14), the solutions

to (3.18) have long tails. Green’s functions are

Gns
m (ρ, ρ′) =











−{ln(ρ′/ρ0) θ(ρ
′ − ρ) + ln(ρ/ρ0) θ(ρ− ρ′)} for m = 0,

1
2|m|

{

(ρ/ρ′)|m| θ(ρ′ − ρ) + (ρ′/ρ)|m| θ(ρ− ρ′)
}

for m 6= 0.
(3.36)
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In the case of m = 0, we have introduced a constant ρ0 as the boundary instead of the

infinity such that Gns
0 → 0 in the limit ρ→ ρ0.

Finally, in the case κ2
ns > 0, the operator (3.14) allows wave solutions to (3.18). The scale

κ−1
ns gives the wave length of the solutions. Green’s functions take the form of

Gns
m (ρ, ρ′) =

π

2
i {Jm(κnsρ)Hm(κnsρ

′)θ(ρ′ − ρ) +Hm(κnsρ)Jm(κnsρ
′)θ(ρ− ρ′)} . (3.37)

Here, Hm are defined by

Hm(x) =







H
(1)
m (x) for ωn > 0,

−H(2)
m (x) for ωn < 0,

(3.38)

where H
(1)
m and H

(2)
m denote the Hankel functions of first and second kind, respectively. This

definition guarantees that the solutions describe the out-going waves at the infinity in any

case of ωn.

E. Potential mode and wave modes

In the previous subsection, Green’s functions are constructed in three different cases:

κ2
ns < 0, κ2

ns = 0, and κ2
ns > 0, respectively. These three cases correspond to the regions on

the n-s plane as

|s| >
∣

∣

∣

∣

qNl

2
n

∣

∣

∣

∣

for κ2
ns < 0, (3.39)

|s| =

∣

∣

∣

∣

qNl

2
n

∣

∣

∣

∣

for κ2
ns = 0, (3.40)

|s| <
∣

∣

∣

∣

qNl

2
n

∣

∣

∣

∣

for κ2
ns > 0, (3.41)

which are shown in Fig.3.

The two lines which denote κ2
ns = 0 in the n-s plane are given by

s = ±qNl

2
n. (3.42)

The inclinations of the lines, which depend on l and q, have the maximum absolute value

Ml when q = 1 − l for given l.

Here, we divide the metric perturbation into four parts, namely short range force modes

hShort
µν , stationary potential mode hPot

µν , traveling wave modes hTW
µν , and gravitational wave

modes hGW
µν as

hµν = hShort
µν + hPot

µν + hTW
µν + hGW

µν , (3.43)

13



FIG. 3: Three cases of κ2
ns in the n-s plane.

where

hShort
µν (t, ρ, ϕ, z) :=

∑

n>0
|s|>(qNl/2)n

[

exp (−iωnt+ inϕ + iksz) h̃
(n,s)
µν (ρ) + (c.c.)

]

, (3.44)

hPot
µν (t, ρ, ϕ, z) := h̃(0,0)

µν (ρ), (3.45)

hTW
µν (t, ρ, ϕ, z) :=

∑

n>0
|s|=(qNl/2)n

[

exp (−iωnt+ inϕ + iksz) h̃
(n,s)
µν (ρ) + (c.c.)

]

, (3.46)

hGW
µν (t, ρ, ϕ, z) :=

∑

n>0
|s|<(qNl/2)n

[

exp (−iωnt+ inϕ+ iksz) h̃
(n,s)
µν (ρ) + (c.c.)

]

, (3.47)

((c.c.) denotes complex conjugate).

The summations in (3.44), (3.46) and (3.47) are taken over pairs (n, s) which satisfy the

condition (3.32) or (3.33). These (n, s) are shown in Fig.4 as dots in n-s plane.

The modes in κ2
ns < 0 (|s| > (qNl/2)n), given by Green’s function (3.34), describe

gravitational field in a short range around the string, and exponentially decrease in the

region ρ ≫ 1/|Ω|. Then, we name these ‘short-range modes’. Since a distant observer

hardly access the short-range modes, we do not discuss these further.

The mode of (n, s) = (0, 0) is clearly time independent. The metric components of

this mode represents the Newtonian potential, the angular deficit, and the effects of frame

dragging. The modes in κ2
ns = 0 describe waves propagating along the z-axis, i.e., along the

rotating string. These waves are named ‘traveling waves’ following Ref.[34]. The modes in

κ2
ns > 0 are gravitational waves propagating toward distant observers from the string. The

facts noted above will be in successive sections.
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FIG. 4: The pairs (n, s) of nonvanishing modes specified by (3.32) are shown by

dots for l = 0 and l = 1/3 cases, as examples. The dots in the shadowed regions are

short-range modes, while the dots in the unshaded region represent the gravitational

wave modes. The dots on the border, thick broken lines, are traveling wave modes,

and (n, s) = (0, 0) is the gravitational potential mode.

IV. POTENTIAL MODE

The mode (n, s) = (0, 0) describes time-independent long range potential. The compo-

nents ψ̃
(0,0)
µν given by (3.21) have the following form:

ψ̃
(0,0)
S (ρ) = − 8µ

qNlσp

∫ Nlσp

0

dσG00
0 (ρ, ρst(σ))ΘS(σ),

ψ̃
(0,0)
V± (ρ) = − 8µ

qNlσp

∫ Nlσp

0

dσG00
±1(ρ, ρst(σ))ΘV±(σ),

ψ̃
(0,0)
T± (ρ) = − 8µ

qNlσp

∫ Nlσp

0

dσG00
±2(ρ, ρst(σ))ΘT±(σ),

(4.1)

where Green’s functions are given by (3.36). After some calculations, explicit forms of

hPot
µν (ρ) = h

(0,0)
µν (ρ) in the far region are given as

hPot
tt = hPot

zz = −4µ

q
(1 − l2 − q2) ln

(

ρ

ρ0

)

, (4.2)

hPot
tz = −8µl ln

(

ρ

ρ0

)

, (4.3)

hPot
ρρ = −4µ

q
(1 − l2 + q2) ln

(

ρ

ρ0

)

− µ

q

(

(1 − l2 − q2)2 − 4l2q2
) 1

(Ωρ)2
, (4.4)

hPot
ϕϕ

ρ2
= −4µ

q
(1 − l2 + q2) ln

(

ρ

ρ0

)

+
µ

q

(

(1 − l2 − q2)2 − 4l2q2
) 1

(Ωρ)2
, (4.5)

hPot
tϕ

ρ
=

2µ

q
(1 − l2 − q2)

1

Ωρ
, (4.6)

hPot
zϕ

ρ
= 4µl

1

Ωρ
, (4.7)

hPot
tρ = hPot

zρ = hPot
ρϕ /ρ = 0. (4.8)
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Although we assume l to be a rational number, the expressions of hPot
µν given above are also

valid for irrational l.

It is found that hPot
tϕ denotes the azimuthal frame dragging caused by the angular momen-

tum of the string, and hPot
tz does dragging along the z-axis caused by the linear momentum

along the rotation axis of the string. In the case of planar strings, l = 0, we see that 〈P 〉 = 0

from (2.27) and that there is no dragging along the z-axis from (4.3). If we transform the

inertial reference frame (t, ρ, ϕ, z) → (t̃, ρ̃, ϕ̃, z̃) by the Lorentz boost such that 〈P 〉 = 0 as

shown in Ref.[30], the dragging along z-axis disappears. In this frame, the logarithmic terms

of hPot
µν give the metric in the form:

ds2 = −
(

1 + 4(µ̃− T̃ ) ln(ρ̃/ρ0)
)

dt̃2 +
(

1 − 4(µ̃− T̃ ) ln(ρ̃/ρ0)
)

dz̃2

+
(

1 − 4(µ̃+ T̃ ) ln(ρ̃/ρ0)
)

(dρ̃2 + ρ̃2dϕ̃2). (4.9)

Using the coordinate transformation,

r =
(

1 + 2(µ̃+ T̃ )(1 − ln(ρ̃/ρ0)
)

ρ̃, φ =
(

1 − 2(µ̃+ T̃ )
)

ϕ̃, (4.10)

and ignoring O
(

(µ̃+ T̃ )2
)

terms, the metric of t̃ = const. and z̃ = const. surface becomes

flat metric

ds2 = dr2 + r2dφ2. (4.11)

Since the range of φ is 0 ≤ φ < 2π(1 − 2(µ̃+ T̃ )), the flat surface is the conical space with

angular deficit 4π(µ̃+ T̃ ) [3].

Alternatively, using the coordinate

r̄ =
(

1 + 4T̃ (1 − ln(ρ̃/ρ0)
)

ρ̃, φ̄ = (1 − 4T̃ )ϕ̃, (4.12)

we rewrite the metric (4.9) as

ds2 = − (1 + 2Ψ(ρ̃)) dt̃2 + (1 − 2Ψ(ρ̃))
(

dr̄2 + r̄2dφ̄2 + dz̃2
)

(4.13)

where

Ψ(ρ̃) = 2(µ̃− T̃ ) ln(ρ̃/ρ0). (4.14)

This metric means that the stationary rotating string produces the Newtonian logarithmic

potential Ψ around it [3].
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In general, the stationary rotating string in the frame of 〈P 〉 = 0 yields the logarithmic

potential, the angular deficit, and the azimuthal frame-dragging in ϕ. It should be noted, as

an exceptional case, that the dragging along the rotation axis, the z-axis, can not be erased

for the helical strings because there is no reference frame such that 〈P 〉 = 0. In addition,

the Newtonian potential vanishes, and the angular deficit, 8πµ, is the same value as the

straight string.

V. GRAVITATIONAL WAVE MODES

In this section, we consider the metric perturbations propagating away from a string

to a distant observer, i.e., the gravitational wave modes hGW
µν given in (3.47), where the

summation is taken over all (n, s) satisfying (3.32) and (3.41). Fourier components of metric

perturbations h̃
(n,s)
µν (ρ), equivalently ψ̃

(n,s)
µν (ρ), are given by (3.21) where Green’s functions

are (3.37).

First, we define the physical modes of polarization, plus-modes and cross-modes. Next,

we show that the gravitational waves can be emitted to several discrete directions. Finally,

we present waveforms of the gravitational waves emitted to the possible directions by using

numerical calculations.

A. Plus-modes and cross-modes

Here, we fix the gauge freedom of propagating modes in the vacuum. We use the trans-

verse traceless (TT) gauge conditions:

hTT
tµ = 0, ∂ihTT

ij = 0, hTT i

i = 0. (5.1)

The metric perturbations satisfying TT-conditions, hTT
ij , are invariant under gauge transfor-

mations. Using the fact that the Riemann tensor, which is gauge invariant, is expressed by

hTT
ij in the linear order, we can obtain the TT-modes by integration of

∂2
t h

TT
ij = −2Ritjt = − (∂t∂jhit + ∂i∂thtj − ∂i∂jhtt − ∂t∂thij) , (5.2)

where hµν in the right hand side are solutions of the wave equation. (See the section 35.4 of

[35].)
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In the cylindrical coordinate, h̃
(n,s)TT
ij can be obtained as

h̃(n,s)TT
ρρ =

1

2

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ − ψ̃
(n,s)
ϕϕ

ρ2
− ψ̃(n,s)

zz

)

− 2i

ωn
∂ρψ̃

(n,s)
tρ

− 1

2ω2
n

∂2
ρ

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)

,

h̃
(n,s)TT
ρϕ

ρ
=
ψ̃

(n,s)
ρϕ

ρ
− i

ωn

(

∂ρ −
1

ρ

)

(

ψ̃
(n,s)
tϕ

ρ

)

+
1

Ωρ

{

ψ̃
(n,s)
tρ − i

2ωn

(

∂ρ −
1

ρ

)

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)}

,

h̃(n,s)TT
ρz = ψ̃(n,s)

ρz − i

ωn
∂ρψ̃

(n,s)
tz +

ks

ωn

{

ψ̃
(n,s)
tρ − i

2ωn
∂ρ

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)}

,

h̃
(n,s)TT
ϕϕ

ρ2
=

1

2

(

ψ̃
(n,s)
tt − ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
− ψ̃(n,s)

zz

)

+
2

Ωρ

{

ψ̃
(n,s)
tϕ

ρ
− i

n
ψ̃

(n,s)
tρ

}

+
1

2(Ωρ)2

(

1 − ρ

n2
∂ρ

)

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)

,

h̃
(n,s)TT
ϕz

ρ
=
ψ̃

(n,s)
ϕz

ρ
+
ks

ωn

(

ψ̃
(n,s)
tϕ

ρ

)

+
1

Ωρ

{

ψ̃
(n,s)
tz +

ks

2ωn

(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)}

,

h̃(n,s)TT
zz =

1

2

(

ψ̃
(n,s)
tt − ψ̃(n,s)

ρρ − ψ̃
(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)

+
2ks

ωn

ψ̃
(n,s)
tz

+
1

2

(

ks

ωn

)2
(

ψ̃
(n,s)
tt + ψ̃(n,s)

ρρ +
ψ̃

(n,s)
ϕϕ

ρ2
+ ψ̃(n,s)

zz

)

. (5.3)

In the large distance limit, the wave vector of a (n, s)-mode in the normalized orthogonal

frame (t̂, ρ̂, ϕ̂, ẑ) is expressed as

k̂
(n,s)
µ̂ = (−ωn, κns, 0, ks) , (5.4)

because the ϕ̂-component of the wave vector becomes small as 1/ρ in the far region. Then,

the (n, s)-mode propagates in the direction specified by the angle θs/n from the rotation axis

which is defined by

cos θs/n =
ks

ωn
=

2

Nlq

s

n
. (5.5)

The direction θs/n = π/2 is perpendicular to the z-axis, i.e., perpendicular to the string.

Here, we introduce a new normal frame (t̂, η̂, ϕ̂, ζ̂) at the observer, such that the direction

of wave vector coincides with η̂, i.e.,

− k̂
(n,s)

t̂
= k̂

(n,s)
η̂ = ωn. (5.6)
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The new basis is defined for each (n, s) explicitly as

η̂ = sin θs/nρ̂+ cos θs/nẑ, (5.7)

ζ̂ = − cos θs/nρ̂+ sin θs/nẑ. (5.8)

By the use of this frame the components of metric perturbations (5.3) are given by

h̃
(n,s)TT
η̂η̂ =

(

κns

ωn

)2

h̃(n,s)TT
ρρ + 2

(

ksκns

ω2
n

)

h̃(n,s)TT
ρz +

(

ks

ωn

)2

h̃(n,s)TT
zz ,

h̃
(n,s)TT

ζ̂ ζ̂
=

(

ks

ωn

)2

h̃(n,s)TT
ρρ − 2

(

ksκns

ω2
n

)

h̃(n,s)TT
ρz +

(

κns

ωn

)2

h̃(n,s)TT
zz ,

h̃
(n,s)TT
ϕ̂ϕ̂ =

h̃
(n,s)TT
ϕϕ

ρ2
,

h̃
(n,s)TT

η̂ζ̂
=

{

1 − 2

(

ks

ωn

)2
}

h̃(n,s)TT
ρz −

(

ksκns

ω2
n

)

(

h̃(n,s)TT
ρρ − h̃(n,s)TT

zz

)

,

h̃
(n,s)TT
η̂ϕ̂ =

(

κns

ωn

)

h̃
(n,s)TT
ρϕ

ρ
+

(

ks

ωn

)

h̃
(n,s)TT
ϕz

ρ
,

h̃
(n,s)TT

ϕ̂ζ̂
= −

(

ks

ωn

)

h̃
(n,s)TT
ρϕ

ρ
+

(

κns

ωn

)

h̃
(n,s)TT
ϕz

ρ
. (5.9)

It can be shown that h̃
(n,s)TT
η̂η̂ , h̃

(n,s)TT
η̂ϕ̂ , and h̃

(n,s)TT

η̂ζ̂
are vanishing by using the wave equation,

i.e., (3.15), and TT-gauge condition (5.1). For convenience, we define the two modes of

polarizations: the plus-mode h̃
(n,s)
+ , and the cross-mode h̃

(n,s)
× , as

h̃
(n,s)
+ (ρ) = h̃

(n,s)TT
ϕ̂ϕ̂ (ρ) = −h̃(n,s)TT

ζ̂ ζ̂
(ρ), (5.10)

h̃
(n,s)
× (ρ) = h̃

(n,s)TT

ϕ̂ζ̂
(ρ). (5.11)

B. Directions of Gravitational wave emission

Let us consider a set of pairs (n, s) which give the same ratio s/n under the conditions

(3.32) and (3.41). For a stationary rotating string with fixed l and q, all (n, s)-modes in

the set are emitted in the same direction θs/n defined by (5.5) [38]. The lowest number of n

and corresponding s in the set, say (n0, s0) , is the fundamental mode of gravitational wave

emitted to the direction θs/n. The overtone modes are specified by the indices which are

multiplications of (n0, s0) by positive integers larger than 1. For example, mode indices of

the fundamental mode and the overtone modes for each direction are shown in the following

table in the cases of string with (l, q) = (0, 1/2) and (1/3, 1/2).
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(l, q) = (0, 1/2) case:

cos θs/n fundamental mode (n0, s0) overtone modes (n, s)

0 (2, 0) (4, 0), (6, 0) · · ·
±2/3 (3,±1) (6,±2), (9,±3) · · ·
±2/5 (5,±1) (10,±2), (15,±3) · · ·
±2/7 (7,±1) (14,±2), (21,±3) · · ·
±6/7 (7,±3) (14,±6), (21,±9) · · ·

...
...

...

(l, q) = (1/3, 1/2) case:

cos θs/n fundamental mode (n0, s0) overtone modes (n, s)

2/3 (2, 1) (4, 2), (6, 3) · · ·
0 (3, 0) (6, 0), (9, 0) · · ·

−1/3 (4,−1) (8,−2), (12,−3) · · ·
4/15 (5, 1) (10, 2), (15, 3) · · ·

−8/15 (5,−2) (10,−4), (15,−6) · · ·
−2/3 (6,−3) (12,−6), (18,−9) · · ·
−4/21 (7,−1) (14,−2), (21,−3) · · ·

...
...

...

If the direction θs/n is fixed, the gravitational wave is given by superposition as

h
(s/n)
+,× (t, ρ, ϕ, z) =

∑

′

[

exp
(

−in{Ω(t − cos θs/nz) − ϕ}
)

h̃
(n,s)
+,× (ρ) + (c.c.)

]

, (5.12)

where the summation Σ′ is taken over the fundamental mode with frequency n0Ω and over-

tone modes for given θs/n. As will be shown later, the amplitude of the mode with large n is

highly suppressed, then only several discrete directions are effective for gravitational wave

emission. The discreteness of the directions is analogous to the diffraction by gratings. This

effect comes from the periodic structures of strings. Because the stationary rotating strings

considered here have infinite length along the rotation axis, then a distant observer detects

gravitational waves coming from discrete directions specified by θs/n.

In case of the helical strings Ml = qNl/2 then nonvanishing (n, s) modes specified by

(3.33) leads κ2
ns = 0. Therefore, the helical strings do not emit gravitational wave away

from the strings.
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C. Waveforms

The amplitude of gravitational waves behave 1/
√
ρ at the far region because the source

string is assumed to be infinitely long. Then, it is convenient to factorize a non-dimensional

quantity µ/
√

Ωρ as

h
(s/n)
+,× (t, ρ, ϕ, z) =

(

µ√
Ωρ

)

ĥ
(s/n)
+,× (t, ρ, ϕ, z), (5.13)

equivalently,

h̃
(n,s)
+,× (ρ) =

(

µ√
Ωρ

)

ˆ̃h
(n,s)
+,× (ρ). (5.14)

By this rescaling, the amplitudes of ĥ
(s/n)
+,× are independent of µ,Ω and ρ in the far region.

In Figs. 5 and 6, we show the waveforms of ĥ
(s/n)
+,× emitted to the direction θs/n by the

stationary rotating string with (l, q) = (0, 1/2) (planar string), and (l, q) = (1/3, 1/2),

respectively. The solid lines and dashed lines in the right figures denote the waveform of the

plus and cross modes, respectively.

We can see some characteristic features of the waveforms from the Figs. 5 and 6. First,

the waveforms of plus and cross-modes are deformed from the sine curves of fundamental

modes by the overtone modes. This is because the magnitudes of the overtone-modes are

not negligible. ‘Saw-teeth’-like shapes appear in the waveforms. Secondly, the amplitude of

plus-modes in each direction, ĥ
(s/n)
+ , is determined basically by n0 of the fundamental mode.

The small n0 gives the large amplitude and the large n0 does the small amplitude. Thirdly,

the amplitude of cross-modes, in contrast, depends on the direction θs/n. The superposition

of plus-modes and cross-modes makes ‘almost elliptically polarized waves’. The gravitational

waves are not exact elliptically polarized because the waves are deformed from the sinusoidal

form. The ‘ellipticity’ which is given by the amplitude ratio of plus and cross-modes depend

on the direction θs/n.

In the case of planar strings (l = 0), purely plus-modes are emitted in the direction

θs/n = 0, and the cross-modes grow as |θs/n| becomes large. When | cos θs/n| approaches to

1, the amplitudes of both modes become almost the same, i.e., the waves become the circular

polarization. In the case of string with (l, q) = (1/3, 1/2), the amplitude of cross-mode is

quite small in the direction cos θs/n = −4/21, and the amplitudes of both modes becomes

almost the same again as | cos θs/n| approaches to 1.
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FIG. 5: Waveforms of gravitational waves emitted to cos θs/n = 0, 2/3, 2/5, 2/7, and 6/7 from a

planar string (l, q) = (0, 1/2). In each row, the left panel shows the (n, s) for nonvanishing modes.

The dots on the solid lines correspond to the modes which propagate in the direction of θs/n, i.e.,

fundamental mode and overtone modes for θs/n. The amplitudes |ˆ̃h(n,s)
+,× | of the fundamental mode

and the overtone modes are shown in the middle two panels. The right panel shows the waveforms

of the plus-mode (solid line) and cross-modes (broken line).
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FIG. 6: Waveforms of gravitational waves emitted to the directions cos θs/n = 2/3, 0, −1/3, 4/15,

−8/15, −2/3, and −4/21 from the string with (l, q) = (1/3, 1/2).

23



VI. TRAVELING WAVE MODES

We consider, here, the traveling wave modes hTW
µν given by (3.46), where κ2

ns = 0. Since

Green’s function is real in this case, then h̃
(n,s)
µν (ρ) are real functions of ρ with meaningless

phase factors; then, hTW
µν has the form of

hTW
µν (t, ρ, ϕ, z) =2

∑

n,s

′

{

cos (n {Ω(t− z) − ϕ}) h̃(n,s)TT
µν (ρ)

}

+ 2
∑

n,−s

′

{

cos (n {Ω(t+ z) − ϕ}) h̃(n,−s)TT
µν (ρ)

}

, (6.1)

where the integers n and s are required to satisfy the conditions (3.32) and (3.40). From

these two conditions, n should be a positive integer which satisfies

1 − l ± q

2
n = j, (6.2)

where j is a positive integer, and s is given by

s =
qNl

2
n. (6.3)

The condition (6.2) means the parameter q should be a rational number for appearance of

traveling wave modes.

The summations in (6.1) are taken over pairs of (n, s) and (n,−s) satisfying the con-

ditions (6.2) and (6.3). For example, in the case of (l, q) = (0, 1/2), the pairs (n,±s) are

(4,±2), (8,±4), · · · . Non-zero components of h̃
(n,±s)TT
µν are

h̃(n,±s)TT
ρρ (ρ) = − h̃

(n,s)TT
ϕϕ (ρ)

ρ2

= − 2µ

qNlσp

∫ Nlσp

0

dσ

[

{

Gn ±s
n+2 (ρ, ρst(σ))ΘT+(ρst(σ))

+Gn ±s
n−2 (ρ, ρst(σ))ΘT−(ρst(σ))

}

exp(−in{±Ωqσ + ϕ̄(σ)})
]

(6.4)

h̃
(n,±s)TT
ρϕ (ρ)

ρ
= − 2µi

qNlσp

∫ Nlσp

0

dσ

[

{

Gn ±s
n+2 (ρ, ρst(σ))ΘT+(ρst(σ))

−Gn ±s
n−2 (ρ, ρst(σ))ΘT−(ρst(σ))

}

exp(−in{±Ωqσ + ϕ̄(σ)})
]

, (6.5)

where Green’s functions are given by (3.36).

The modes hTW
µν given by (6.1) consist of the superposition of the propagating waves with

circular polarization in the (±z)-direction for ±s, respectively. We can understand that
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these modes are obtained by the limit κ2
ns → 0 in the gravitational wave modes, that is,

the direction of wave emission in this limit is θs/n = 0, π. The metric perturbations of the

modes do not propagate off the string toward the radial direction. These are related to the

traveling waves discussed in Ref. [34].

In the helical string cases, from (3.33), the first line in the right hand side of (6.1) vanishes

and summation in the second line is taken over pairs (n,−s), where n is a positive integer

and s is given by

s =
(1 − l)Nl

2
n = Mln. (6.6)

There exists only a downward gravitational wave which is accompanied with the downward

string wave (2.11).

The wave length of each wave propagating along z-axis in the traveling wave modes is

λ =
2π

nΩ
. (6.7)

Then, the condition (6.3) for appearance of traveling wave mode means that the periodicity

of the stationary rotating string, which is given by (2.16), should be the wavelength of

traveling wave times the integer s, i.e.,

Zp = sλ. (6.8)

This fact is consistent with the result in ref.[36] which implies that the deformation of the

string is caused by the gravitational waves propagating on the string.

VII. SUMMARY

We have studied gravitational perturbations around a stationary rotating string in

Minkowski spacetime. We have solved the linearized Einstein equations with the energy-

momentum tensor of the string by using the one-dimensional Green’s function method.

We have analyzed three long range modes: potential mode, gravitational wave modes, and

traveling wave modes.

A. Potential mode

The stationary rotating strings produce the logarithmic Newtonian potential which is in

proportion to µ̃−T̃ , where µ̃ and T̃ denote the effective line density and the effective tension
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of a stationary rotating ‘wiggly’ string defined by averaging of the energy-momentum tensor

along its rotation axis. The appearance of the Newtonian potential is the result of the fact

that the effective line density becomes larger than the effective tension for rotating strings.

There also exists angular deficit, 4π(µ̃+ T̃ ), around the string.

In addition, there are the azimuthal frame dragging effect caused by the angular momen-

tum of the rotating string, and the linear frame dragging along the rotation axis caused by

the linear momentum 〈P 〉 of the string along the rotation axis. The linear frame dragging

disappears if 〈P 〉 = 0 in the inertial reference frame of observer.

The helical strings are very special strings. Since µ̃ = T̃ for the helical strings, they

are not associated with the Newtonian potential, and there is an angular deficit with the

same amount as the straight string case. Further, the helical strings cause the linear frame

dragging inevitably because there is no inertial reference frame such that 〈P 〉 = 0. The

azimuthal frame dragging and the linear frame dragging distinguish the helical strings from

the straight string.

B. Gravitational wave modes

The stationary rotating strings can emit the gravitational waves in several discrete direc-

tions. The possible directions for each string are determined by the set of parameters (l, q)

which specifies the shape of string. This property, analogous to the diffraction grating, comes

from the periodic structure of the strings along the rotation axis. The followings depend on

the directions of gravitational wave emission: fundamental frequency, waveforms, amplitude

ratio between plus and cross-modes, equivalently, the ellipticity of elliptic polarization of the

waves. The waveform of gravitational wave is not the sinusoidal curve but ‘saw-teeth’ like

shape. This means that the polarization is not exactly elliptical but almost elliptical.

Since the strings are infinitely long, the amplitude of gravitational waves at the large

distance is proportional to 1/
√
ρ. Actually, infinite strings are oversimplification. But, if

the description of the stationary rotating strings is applicable to a cosmological string in the

long range comparable to the distance between the string and a observer, the amplitude of

gravitational waves decreases more gradually than the case of point source. In this case, it

would be possible to detect gravitational waves from the stationary rotating strings in the

cosmological distance (e.g., ∼ 103 Mpc) by the present interferometric detectors. As the
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result of the numerical calculations, we have obtained the following rough estimation of the

gravitational wave amplitude:

h+,× ≃ O(10−14)
( µ

10−7

)

(

Ω/2π

103Hz

)−1/2(
ρ

103Mpc

)−1/2

, (7.1)

where we choose 10−7 as a reference line density of the GUT string, 103Hz as a reference fre-

quency, the most sensitive value of the current interferometric detectors (TAMA300, LIGO,

VIRGO and GEO600), and 103Mpc as a reference cosmological distance.

C. Traveling wave modes

As the special case of gravitational waves, traveling waves with the circular polarization

propagating along the rotating string can appear. The strings play the role of wave guide

then the amplitude of the gravitational wave does not decrease along the string. These waves

do not propagate off the string toward distant observers, but the waves are not confined in

the vicinity of the string. The amplitude of the traveling waves, described by the power or

logarithmic function in the radial coordinate, gradually decreases as the distance of from

the string increases. Then, even for the distant observer, it would be detectable as the

gravitational waves propagating parallelly to the strings.

The general stationary rotating strings lose the energy, angular momentum, and linear

momentum by the gravitational wave emission. Then, the strings should evolve by the grav-

itational radiation. If the loss rate of these quantities are small, we can expect that the

evolution occurs as the transitions in the family of the stationary rotating strings, approxi-

mately. What is the final state of strings after the gravitational wave emission? One would

expect that the straight string is the final state. But, we should point out that the helical

strings are also candidates for the final states. Because, they do not lose energy, angular

momentum and linear momentum by the gravitational radiation. They keep the rotation

constant with traveling waves. To determine the final state of the stationary rotating strings

are now under investigation[37].
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APPENDIX A: THE COMPONENTS OF Θµν

The components of Θµν are explicitly expressed in the following:

Θtt = −(1 − l2), Θtρ =
lΩ

2ρ
(ρ2

max − ρ2
min) sin (2|Ω|σ) , ρΘtϕ = −Ω2ρ2 − l2

Ωρ
,

Θtz = qlsign(Ω), Θρρ =
Ω2

4ρ2
(ρ2

max − ρ2
min)

2 sin2 (2|Ω|σ) ,

ρΘρϕ =
l

2ρ2
(ρ2

max − ρ2
min) sin (2|Ω|σ) , Θρz =

q|Ω|
2ρ

(ρ2
max − ρ2

min) sin (2|Ω|σ) ,

ρ2 Θϕϕ = −Ω2ρ2

(

1 − l2

Ω4ρ4

)

, ρΘϕz =
lq

|Ω|ρ, Θzz = q2.

(A1)

In these expressions, ρ = ρ(σ) is given by (2.5).
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