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Comparison of Numerical and Post-Newtonian Waveforms for Generic Precessing

Black-Hole Binaries

Manuela Campanelli, Carlos O. Lousto, Hiroyuki Nakano, and Yosef Zlochower

Center for Computational Relativity and Gravitation and School of Mathematical Sciences,

Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, New York 14623

(Dated: January 1, 2009)

We compare waveforms and orbital dynamics from the first long-term, fully non-linear, numerical
simulations of a generic black-hole binary configuration with post-Newtonian predictions. The
binary has mass ratio q ∼ 0.8 with arbitrarily oriented spins of magnitude S1/m

2
1 ∼ 0.6 and S2/m

2
2 ∼

0.4 and orbits 9 times prior to merger. The numerical simulation starts with an initial separation of
r ≈ 11M , with orbital parameters determined by initial 2.5PN and 3.5PN post-Newtonian evolutions
of a quasi-circular binary with an initial separation of r = 50M . The resulting binaries have very
little eccentricity according to the 2.5PN and 3.5PN systems, but show significant eccentricities of
e ∼ 0.01 − 0.02 and e ∼ 0.002 − 0.005 in the respective numerical simulations, thus demonstrating
that 3.5PN significantly reduces the eccentricity of the binary compared to 2.5PN. We perform
three numerical evolutions from r ≈ 11M with maximum resolutions of h = M/48,M/53.3, M/59.3,
to verify numerical convergence. We observe a reasonably good agreement between the PN and
numerical waveforms, with an overlap of nearly 99% for the first six cycles of the (ℓ = 2, m = ±2)
modes, 91% for the (ℓ = 2,m = ±1) modes, and nearly 91% for the (ℓ = 3, m = ±3) modes. The
phase differences between numerical and post-Newtonian approximations appear to be independent
of the (ℓ,m) modes considered and relatively small for the first 3-4 orbits. An advantage of the 3.5
PN model over the 2.5 PN one seems to be observed, which indicates that still higher PN order
(perhaps even 4.0PN) may yield significantly better waveforms. In addition, we identify features in
the waveforms likely related to precession and precession-induced eccentricity.

PACS numbers: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

The discoveries of quasars, AGN, and other black-hole
driven astrophysical phenomena in the 1960’s demon-
strated that the most energetic astrophysical phenomena
are powered by gravity in the strong-field regime. This,
in turn, spurred a renewed interest in classical General
Relativity. The second major milestone in the revival
of the theory was the realization that when astrophys-
ical black holes merge, they release incredible amounts
of energy in the form of gravitational radiation, mak-
ing them the brightest objects in the universe. During
their last few orbits, merging black-hole binaries release
energy with a peak luminosity of about 10−3c5/G, 1023

times the power output of the Sun.

There are currently major experimental and theoreti-
cal efforts underway to measure these gravitational wave
signals. On the experimental side, these efforts required
the construction of kilometers long interferometers, such
as LIGO [1] and VIRGO [2], sensitive enough to mea-
sure arm length distance changes smaller than the radius
of a proton. While on the theoretical side, these efforts
required major advancements in signal extraction tech-
niques and the theoretical modeling of the gravitational
wave sources. Modeling the gravitational radiation from
compact object sources has been particularly difficult, as
they require solving the fully non-linear Einstein Equa-
tions of General Relativity on powerful supercomputers.
However, even with the rapid advancements in computer

power, solving the two-body problem in General Relativ-
ity proved to be remarkably difficult, requiring over thirty
years of research for the field to mature. Then in 2005,
two complementary and independent methods were dis-
covered that allowed numerical relativists to finally solve
the black-hole binary problem in full strong-field grav-
ity [3, 4, 5].

The rapid progress and the number of new theoretical
insights that followed these breakthroughs have trans-
formed the field of numerical relativity (NR); turning it
into a very valuable tool with significant impact on as-
trophysics [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38], gravitational wave detec-
tion [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53], and on our theoretical understanding of black-binary
spacetimes [26, 29, 43, 54, 55, 56, 57, 58, 59].

One of the breakthrough methods, the ‘moving punc-
ture’ approach [4, 5], was adopted by a majority of the
NR groups and has proven to be accurate for the neutron-
star binary and mixed neutron-star—black-hole binary
problems [60, 61], as well as for black-hole configurations
with more than two black holes [62, 63].

On the subject of black-hole binaries, the NR com-
munity is in very good agreement concerning a variety
of results. Black-hole binaries will radiate between 2%
and 8% of their total mass and up to 40% of their angu-
lar momenta, depending on the magnitude and direction
of the spin components, during the last few orbits and
merger [29, 41, 42, 43]. In general, these binaries will
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radiate net linear momentum, causing the final remnant
black hole to recoil [6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
These recoils can be very large when the black holes in
the binary have significant spin components in the orbital
plane [15, 18, 20, 64] (up to 4000 km s−1 for astrophys-
ical binaries [20] and even 10000 km s−1 for extremely
close hyperbolic encounters [64]), which has astrophysi-
cally important effects [15, 27, 30, 31, 32, 33]. The ob-
servational consequences of these large recoil velocities is
an active area of current research [27, 34, 35, 36, 37, 38].

Currently, one of the most important tasks of NR is to
assist LIGO, VIRGO, and other interferometric observa-
tories, in detecting gravitational radiation and extracting
the physical parameters of the sources. Given the de-
manding resources required to generate these black-hole-
binary simulations, and the sheer volume of the seven-
dimensional space of intrinsic parameters of black-hole
binaries, we need to develop techniques to model ar-
bitrary binary configuration based on numerical simu-
lations in a carefully chosen sample of the parameters
space, in combination with post-Newtonian and pertur-
bative calculations. One of the most promising of these
approaches involves determining the region of common
validity of the numerical simulations and post-Newtonian
expansions, with the goal of modeling the full wave-
form using post-Newtonian waveforms for the initial in-
spiral and numerical waveforms for the late-inspiral and
merger. This method was pioneered with the use of the
Lazarus waveforms [46] and has readily been pursued af-
ter the breakthroughs in NR.

Comparisons of numerical simulations with post-
Newtonian ones have several benefits aside from the the-
oretical verification of PN. From a practical point of
view, one can try to parametrize deviations of the cur-
rent 3.5PN expansions to fit the numerical results [65,
66, 67, 68, 69], or directly propose a phenomenological
description [70], and thus make predictions in regions
of the parameter space still not explored by numerical
simulations. Another important application, from the
theoretical point of view, is to have a calibration of the
post-Newtonian error in the last stages of the binary
merger. The first results of comparisons for equal mass,
non-spinning binaries are encouraging [48, 49, 71, 72, 73].
Recently this analysis was applied to equal-mass, equal-
spin binaries with the spins aligned with the orbital an-
gular momentum (and thus non-precessing) [74, 75, 76].

In this paper we compare the numerical and post-
Newtonian waveforms for the challenging problem of
a generic black-hole binary, i.e. a binary with unequal
masses and unequal, non-aligned, and precessing spins.
The goal here is to evaluate accuracy of the current or-
der of post-Newtonian expansions when including spins
effects, as well as to develop new criteria for testing both
numerical and post-Newtonian developments.

The paper is organized as follows, in Sec. II we review
the numerical techniques used for the evolution of the
black-hole binaries, in Sec. III we present results from the

numerical evolution of two similar generic black-hole bi-
naries, and in IV we analyze and compare different wave-
form modes as computed numerically and with the high-
est available post-Newtonian approximation. Finally in
Sec. V we present our conclusions.

II. TECHNIQUES

To compute the numerical initial data, we use the
puncture approach [77] along with the TwoPunc-

tures [78] thorn. In this approach the 3-metric on the
initial slice has the form γab = (ψBL + u)4δab, where
ψBL is the Brill-Lindquist conformal factor, δab is the
Euclidean metric, and u is (at least) C2 on the punc-
tures. The Brill-Lindquist conformal factor is given by
ψBL = 1+

∑n
i=1m

p
i /(2|~r−~ri|), where n is the total num-

ber of ‘punctures’, mp
i is the mass parameter of puncture

i (mp
i is not the horizon mass associated with puncture i),

and ~ri is the coordinate location of puncture i. We evolve
these black-hole-binary data-sets using the LazEv [79]
implementation of the moving puncture approach [4, 5].
In our version of the moving puncture approach we re-
place the BSSN [80, 81, 82] conformal exponent φ, which
has logarithmic singularities at the punctures, with the
initially C4 field χ = exp(−4φ). This new variable, along
with the other BSSN variables, will remain finite pro-
vided that one uses a suitable choice for the gauge. An
alternative approach uses standard finite differencing of
φ [5]. Recently Marronetti et al. [83] proposed the use of
W =

√
χ as an evolution variable. For the runs presented

here we use centered, eighth-order finite differencing in
space [63] and an RK4 time integrator (note that we do
not upwind the advection terms).

We use the Carpet [84] mesh refinement driver to pro-
vide a ‘moving boxes’ style mesh refinement. In this ap-
proach refined grids of fixed size are arranged about the
coordinate centers of both holes. The Carpet code then
moves these fine grids about the computational domain
by following the trajectories of the two black holes.

We obtain accurate, convergent waveforms and horizon
parameters by evolving this system in conjunction with
a modified 1+log lapse and a modified Gamma-driver
shift condition [4, 85], and an initial lapse α(t = 0) =
2/(1 + ψ4

BL). The lapse and shift are evolved with

(∂t − βi∂i)α = −2αK, (1a)

∂tβ
a = Ba, (1b)

∂tB
a = 3/4∂tΓ̃

a − ηBa. (1c)

These gauge conditions require careful treatment of χ,
the inverse of the three-metric conformal factor, near
the puncture in order for the system to remain sta-
ble [4, 39, 47]. In practice one sets a floor value for χ
equal to one-tenth of its initial minimum value. This
floor is only needed for the first ∼ 5M of evolution. As
shown in Ref. [86], this choice of gauge leads to a strongly
hyperbolic evolution system provided that the shift does
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not become too large. In our tests, W showed better
behavior at very early times (t < 10M) (i.e. did not re-
quire any special treatment near the punctures), but led
to evolutions with lower effective resolution when com-
pared to χ. We chose η = 3 for the simulations presented
here.

We use AHFinderDirect [87] to locate apparent
horizons. We measure the magnitude of the horizon
spin using the Isolated Horizon algorithm detailed in [88].
This algorithm is based on finding an approximate rota-
tional Killing vector (i.e. an approximate rotational sym-
metry) on the horizon ϕa. Given this approximate Killing
vector ϕa, the spin magnitude is

S[ϕ] =
1

8π

∫

AH

(ϕaRbKab)d
2V, (2)

where Kab is the extrinsic curvature of the 3D-slice, d2V
is the natural volume element intrinsic to the horizon,
and Ra is the outward pointing unit vector normal to
the horizon on the 3D-slice. We measure the direction of
the spin by finding the coordinate line joining the poles
of this Killing vector field using the technique introduced
in [43]. Our algorithm for finding the poles of the Killing
vector field has an accuracy of ∼ 2◦ (see [43] for details).
Note that once we have the horizon spin, we can calculate
the horizon mass via the Christodoulou formula

mH =
√

m2
irr + S2/(4m2

irr), (3)

where mirr =
√

A/(16π) and A is the surface area of the
horizon.

We also use an alternative quasi-local measurement of
the spin and linear momentum of the individual black
holes in the binary that is based on the coordinate ro-
tation and translation vectors [26]. In this approach the
spin components of the horizon are given by

S[i] =
1

8π

∫

AH

φa
[i]R

bKabd
2V, (4)

where φi
[ℓ] = δℓjδmkr

mǫijk, and rm = xm − xm
0 is the

coordinate displacement from the centroid of the hole,
while the linear momentum is given by

P[i] =
1

8π

∫

AH

ξa
[i]R

b(Kab −Kγab)d
2V, (5)

where ξi
[ℓ] = δi

ℓ.

We measure radiated energy, linear momentum, and
angular momentum, in terms of ψ4, using the formulae
provided in Refs. [89, 90]. However, rather than using
the full ψ4, we decompose it into ℓ and m modes and
solve for the radiated linear momentum, dropping terms
with ℓ ≥ 5. The formulae in Refs. [89, 90] are valid
at r = ∞. We obtain highly accurate values for these
quantities by solving for them on spheres of finite radius
(typically r/M = 50, 60, · · · , 100), fitting the results to
a polynomial dependence in l = 1/r, and extrapolating

to l = 0 [5, 39]. Each quantity Q has the radial depen-
dence Q = Q0 + lQ1 +O(l2), where Q0 is the asymptotic
value (the O(l) error arises from the O(l) error in r ψ4).
We perform both linear and quadratic fits of Q versus
l, and take Q0 from the quadratic fit as the final value
with the differences between the linear and extrapolated
Q0 as a measure of the error in the extrapolations. We
found that extrapolating the waveform itself to r = ∞
introduced phase errors due to uncertainties in the areal
radius of the observers, as well as numerical noise. Thus
when comparing PN to numerical waveforms, we use the
waveform extracted at r = 100M . The extrapolations of
the radiated quantities are far more robust.

We convert the (ℓ,m) modes of ψ4 into (ℓ,m) modes
of h = h+ − ih× by calculating the Fourier transform of
each mode, dividing by −ω2 (where ω is the Fourier fre-
quency), setting the value of the resulting transform to
zero inside some specified window −ωw < ω < ωw, as well
as chopping off the transform at frequencies larger than 4
times the quasi-normal frequency, and finally taking the
inverse transform. By setting the transform to zero in
this window, we remove the spurious constant and linear
terms from h (we also remove spurious high-frequency
noise from the waveform by truncating the transform at
∼ 4 times the quasi-normal frequency). We confirm that
the calculation is correct by taking two time-derivatives
of the resulting h and measuring how much the result-
ing function differs from the original ψ4 (See Fig. 5 in
Sec. III). We also use an alternative waveform compari-
son, based on the modes of ψ4 rather than h, which does
not require this transformation.

We compute the eccentricities of the orbits using the
techniques of [91] and introduce a second technique based
on Newtonian trajectories. In [91], the eccentricity eD is
defined as

eD(t) =
r(t) − rc(t)

rc(t)
, (6)

where rc is obtained by fitting r(t) to a low-order polyno-
mial in t1/2. The actual eccentricity eD is the amplitude
of the oscillations in the resulting eD(t). We also intro-
duce a second measurement of eccentricity er defined by

er(t) = r(t)2r̈(t)/M. (7)

Here too, the eccentricity er is the amplitude of the
oscillations in er(t). This formula for the eccentricity,
which is only accurate for e≪ 1, arises from the Newto-
nian formula for the orbital radius r(t) = 3

√

M/Ω2(1 +
e sin(Ωt)) + O(e2). Note that in both cases, e(t) has si-
nusoidal oscillations and secular decay. The ellipticity
is the amplitude of the sinusoidal oscillations, while the
secular decay affects the accuracy of the ellipticity cal-
culation when its large. However, by differentiating r(t)
twice with respect to t, the secular terms are suppressed.
Eq. 7 can be modified with higher PN corrections [92] to
yield

e cos(Ω t) ≈ [r̈(t) − r̈0(t)] /(rΩ2), (8)
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where

Ω2 =
M

r3
[

1 − (3 − η)(M/r) + O(M/r)2
]

, (9)

ṙ0(t) = −64η

5

M3

r3

[

1 − 1

336
(1751 + 588η)(M/r)

]

, (10)

r̈0(t) =
16η

105

M5

r4
[252 − (1751 + 588η)(M/r)] , (11)

and r0(t) is the zero-eccentricity inspiral trajectory.

A. Initial Data

To generate the initial data parameters, we used ran-
dom values for the mass ratio and spins of the binary
(the ranges for these parameters were chosen to make
the evolution practical). We then calculated approxi-
mate quasi-circular orbital parameters for a binary with
these chosen parameters at an initial orbital separation
of 50M and evolved using purely PN evolutions until
the binary separation decreased to 11M . The goal was
to produce very low eccentricity orbital parameters at
r = 11M , as suggested in [91]. This technique is rather
different from the technique in [53], which used multiple
numerical evolutions to determine quasi-circular orbital
parameters. The initial binary configuration at r = 50M

had q = m1/m2 = 0.8, ~S1/m
2
1 = (−0.2,−0.14, 0.32), and

~S2/m
2
2 = (−0.09, 0.48, 0.35). As described in Sec. IV, we

used both truncated 2.5PN equations of motion for spin-
ning binaries, and equations of motions including 3.5PN
corrections (without the HS1S2,3PN term). Our PN evolu-
tions use the ADM-TT gauge which is the one closest to
the numerical quasi-isotropic coordinates (to help reduce
possible gauge ambiguities) [93, 94]. We denote the two
resulting configuration by G2.5 and G3.5, respectively.
We then used the PN momenta, spins, and particle lo-
cations to construct the initial data for the numerical
evolution. We fixed the puncture masses by requiring
that the total ADM mass be 1M and that the mass ratio
of the two holes has the specified value. We renormal-
ized the parameters to obtain an ADM mass of 1M in
order to aid comparison of the two configurations and the
analysis.

The initial data parameter are summarized in Table I.
We evolved these data using our eighth-order (in space)
accurate code. We evolved the G2.5 configuration us-
ing 12 levels of refinement, with a finest resolution of
h = M/48,M/53.33, andM/59.33, and the outer bound-
aries placed at 3072M . We used the standard 5th-order
Kreiss-Oliger dissipation operator and six buffer zones at
the refinement level boundaries. For the timestep, we
chose a CFL factor of 0.5 for the inspiral phase, and then
dropped the CFL by a factor of 0.95 during the merger
phase. We reduced the CFL because otherwise the simu-
lation proved to be unstable during the very fast plunge
phase (due to a violation of the CFL stability condition
for our evolution system). We evolved the G3.5 configu-

TABLE I: Initial data parameters for the numerical evolu-
tions. Parameters for configuration G2.5 were obtained from
a truncated 2.5PN evolution of a binary starting with an or-
bital separation of r = 50M , while parameters for config-
uration G3.5 were obtained from an evolution with 3.5PN
non-spinning corrections. The punctures have mass parame-
ters mp

i , horizons masses (Christodoulou) mH
i , momenta ±~p,

spins ~Si, and both configurations have a total ADM mass
MADM.

G2.5 G3.5 G2.5 G3.5
mp

1
/M 0.40659 0.40694 mp

2
/M 4.12328 0.456072

mH
1 /M 0.44841 0.44833 mH

2 /M 0.56054 0.56106
x1/M 3.32770 -2.57272 x2/M -2.66216 2.05867
y1/M -5.15410 -5.57057 y2/M 4.12328 4.45696
z1/M 0.51835 -0.47758 z2/M -0.41468 0.40645
Sx

1 /M
2 0.017896 -0.036840 Sx

2 /M
2 -0.066727 0.025826

Sy
1
/M2 0.069204 -0.0050028 Sy

2
/M2 -0.098217 0.14951

Sz
1/M

2 0.034786 0.069584 Sz
2/M

2 0.14722 0.11050
px/M 0.072919 0.080499 py/M 0.048074 -0.036311
103pz/M −5.4117 −0.743105 MADM/M 1.00000 1.00000

ration with the same setup as the M/53.3 G2.5 configu-
ration, but chose an initial CFL factor of 0.475 (there was
no evidence of any instability with this reduced factor).

III. FULLY-NONLINEAR NUMERICAL

WAVEFORMS AND TRAJECTORIES

We calculated ψ4 using our original 4th-order accurate
extraction code, and measured the convergence rate of
the amplitude and phase of the waveform separately. In
Fig. 1 we show the (ℓ = 2,m = 2) component of ψ4 of
the G2.5 configuration for the three resolutions. Note
the excellent phase agreement until about t = 1400M .
The phase error increases exponentially during the last
2 orbits. In Fig. 2 we show the convergence of the am-
plitude of the (ℓ = 2,m = 2) mode. The amplitude
shows between third- and fourth-order convergence as is
apparent by rescaling the amplitude differences by 1.5098
(fourth-order) and 1.35808 (third-order). As can be seen
in Fig. 3, the phase error converges to eighth-order for
t < 1200M . Beyond t = 1200M (which is the begin-
ning of the rapid plunge) the convergence falls to fourth-
order, as is apparent from the rescaling of the phase dif-
ferences by 2.30573 (eighth-order), 1.5098 (fourth-order),
and 1.35808 (third-order). Note a convergence order of
8 (up to t = 1200M) implies that the error in the phase
for the highest resolution run is less than 0.06 radians
for t < 1200M . In Fig. 4 we show the amplitude as a
function of phase. The phase error in the waveform con-
verges to higher order than the amplitude because it is
sensitive to the phase error in the orbit, which, in turn,
is a function of the convergence of the evolution code.
The amplitude, however, appears to be sensitive to the
extraction algorithm’s numerical error.

In Table II we show the radiated energy, angular mo-
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0 200 400 600 800 1000 1200 1400
t/M

−6e−05

−3e−05

0

3e−05

6e−05

ψ4(M/48.0)
ψ4(M/53.3)
8y4(M/59.3)

1400 1425 1450 1475 1500 1525 1550
−0.002

−0.001

0

0.001

0.002

FIG. 1: The (ℓ = 2,m = 2) component of ψ4 for the G2.5
configuration for the three resolutions. Note the excellent
phase agreement until about t = 1400M .

1400 1450 1500 1550 1600
t/M

0

5e−05

0.0001

0.00015

0.0002

0.00025

A
(t

) 
ex
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d 

at
 r

=
50

M

|A(M/48.0) − A(M/53.3)|
|A(M/53.3) − A(M/59.3)|
|A(M/53.3) − A(M/59.3)|*1.5098
|A(M/53.3) − A(M/59.3)|*1.35808

FIG. 2: Convergence of the amplitude of the G2.5 (ℓ = 2, m =
2) component of ψ4. The amplitude shows between 3rd-
and 4th-order convergence (as demonstrated by multiplying
the deviations in the amplitude by 1.358 and 1.5098, respec-
tively).

mentum, and gravitational recoil versus resolution for the
G2.5 configuration [89, 90]. Here, extrapolation errors
(to infinite radius) in the radiated energy and angular
momenta dominate the finite-difference errors, while the
extrapolation errors in the recoil appear to be similar to
the finite difference errors. In particular V z

rec has a no-
ticeable finite-difference error. This can be understood in
terms of the sensitivity of the out-of-plane recoil to the
angle that the spin direction makes with the infall direc-
tion at merger. Thus orbital phase errors in the plunge
can lead to significant deviations in the out-of-plane re-

0 500 1000 1500 2000
t/M

0

1

2

3

∆ϕ |ϕ(M/48.0) − ϕ(M/53.3)| 
|ϕ(M/53.3) − ϕ(M/59.3)|*2.30573
|ϕ(M/53.3) − ϕ(M/59.3)|*1.5098
|ϕ(M/53.3) − ϕ(M/59.3)|*1.35808

600 800 1000 1200 1400 1600
−0.1

−0.05
0

0.05
0.1

0.15
0.2

FIG. 3: Convergence of the G2.5 phase of the (ℓ = 2, m = 2)
component of ψ4. The phase shows 8th-order convergence up
to t = 1200M , decreasing to between 3rd- and 4th-order con-
vergence during the plunge (as demonstrated by multiplying
the phase deviations by 2.305, 1.5098, and 1.358 respectively).

−300 −200 −100 0
ϕ (radians)

0

0.0005

0.001

0.0015

0.002

A
(ϕ

)

M/48
M/53.3
M/59.3

FIG. 4: The amplitude of the G2.5 (ℓ = 2,m = 2) component
of ψ4 versus the phase. Note that the phase becomes more
negative as t increases.

coil [95, 96].

The radiated energy, angular momentum, and the re-
coil velocity for the G3.5 configuration are given in Ta-
ble III. The radiated energy and angular momenta are
slightly larger for the G3.5 configuration than the G2.5
configuration. Note that for both configurations, the ra-
diated angular momenta in the x and y directions are too
small to accurately measure. It should be pointed out
that the quoted uncertainties in the radiated quantities
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TABLE II: The radiated energy, angular momentum, and
gravitational recoil versus resolution for the G2.5 configura-
tion. The quoted uncertainties are due to extrapolation r →
∞. Note that this configuration has eccentricity eD ∼ 0.02
and er ∼ 0.01

M/48 M/53.3 M/59.3
Erad/M 0.0512 ± 0.0039 0.0513 ± 0.0036 0.0514 ± 0.0033
Jx

rad/M
2 0.018 ± 0.021 0.017 ± 0.020 0.014 ± 0.013

Jy

rad
/M2 −0.05 ± 0.12 −0.05 ± 0.12 −0.05 ± 0.13

Jz
rad/M

2 0.4445 ± 0.0081 0.4478 ± 0.0103 0.4466 ± 0.0077
V x

rec(km s−1) −1.6 ± 5.7 −6.9 ± 6.0 −2.2 ± 5.5
V y

rec(km s−1) 78.36 ± 6.51 75.75 ± 2.95 71.47 ± 0.24
V z

rec(km s−1) 934 ± 31 1008 ± 24 947 ± 16

TABLE III: The radiated energy, angular momentum, and
gravitational recoil for the G3.5 configuration. The quoted
uncertainties are due to extrapolation r → ∞. Note that this
configuration has eccentricity eD ∼ 0.005 and er ∼ 0.002

Erad/M 0.0522 ± 0.0042
Jx

rad/M
2 −0.20 ± 0.27

Jy

rad
/M2 0.051 ± 0.057

Jz
rad/M

2 0.4551 ± 0.0029
V x

rec(km s−1) 26.3 ± 5.2
V y

rec(km s−1) 103.0 ± 5.7
V z

rec(km s−1) 1529.9 ± 8.9

for G3.5 are due to extrapolation to infinity. Additional
uncertainties, due to truncation-errors are not included
(although results from G2.5 indicate that the uncertain-
ties in the radiated energy and angular momentum due
to truncation errors are small compared to the errors due
to extrapolation).

As a final point, we show that our method for calculat-
ing h from ψ4 using truncated Fourier transforms, yields
a reasonable approximation to the original ψ4 after differ-
entiating twice. In Fig. 5 we show ḧ and ψ4 of the sub-
leading (l = 2,m = 1) mode of the G2.5 configuration
(See however the discussion concerning the amplitudes
of h in Sec. IVB1).

A. Eccentricity and Precession

In Figs. 6, 7, and 8, we show the orbital trajectory for
the G2.5 and G3.5 configurations. With the time direc-
tion suppressed, we see excellent agreement between the
trajectories at the three resolutions. This is similar to
the excellent agreement in the amplitude versus phase
of the (ℓ = 2,m = 2) mode. However, when includ-
ing time, as can be seen in Fig. 9, there is a significant
difference between the high and medium resolutions for
t > 1200M . Also note in Fig. 9 the large eccentricity
(apparent from the oscillations in r) for the G2.5 config-
uration and that G3.5 has reduced, but still large, eccen-
tricity. Thus, assuming that the PN series converges, we

150 400 650 900 1150 1400
t/M

−0.0002

−0.0001

0

0.0001

0.0002

(l=
2,

m
=

1)
 m

od
e

ψ4(2,1)
h’’(2,1)

FIG. 5: A comparison of ḧ and ψ4 for the (l = 2,m = 1)
mode for the G2.5 configuration. The plot demonstrates that
the windowing procedure apparently does not contaminate
the waveform to a significant degree.

need to include still higher-order PN correction to obtain
low-eccentricity initial data parameters. The reduced ec-
centricity of G3.5 compared to G2.5, lends support to
the hope that higher PN order will give low eccentric-
ity data. Alternatively, to produce low-eccentricity data,
one can try to use the iterative methods of [53], which
have been shown to work well for non-spinning binaries.
Using the methods of [91], we can calculate the eccentric-
ity eD(t), as shown in Fig. 10. From the figure, we can
see that the eccentricity of G2.5, which is eD ∼ 0.02, is
more than 3.5 times as large as the eccentricity of G3.5,
which is ∼ 0.005. Using the formula er for the eccen-
tricities (See Fig. 11) yields er ∼ 0.0088 for G2.5 and
er ∼ 0.0022 for G3.5. However, as can be seen in the fig-
ure, the eccentricity for G2.5 decays throughout the evo-
lution, while the eccentricity of G3.5 (although smaller
than G2.5) remains roughly constant for t & 600M . This
is consistent with the results seen in Fig. 16 which shows
that the 3.5 PN prediction for the eccentricity does not
decay with time for sufficiently close binaries and small
eccentricities. In Ref. [91], they found that using PN pa-
rameters from a PN-evolved inspiral (from r = 40M to
r = 11M) reduced the eccentricity of the resulting binary
from e = 0.01, for a quasi-circular binary at r = 11M , to
e = 0.002. Here we see eccentricities after a PN-evolved
inspiral to r = 11M between 2.5 and 10 times as big.

In Figs. 12 and 13 we show ~r = ~x1 −~x2 versus time for
the G2.5 and G3.5 configurations after performing a con-
stant rotation that maps the initial orbital motion onto
the xy plane. Orbital plane precession drives the increase
in amplitude of the z-component of ~r. The precession
of the orbital plane is itself driven by the precession of
the total spin of the binary. Thus we can measure the
rate of orbital plane precession by looking at the com-
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FIG. 6: The trajectory difference ~x1 − ~x2 for the G2.5 con-
figuration. Note the orbital plane precession and the very
good agreement between trajectories at the different resolu-
tions (the tracks from the different resolutions are not distin-
guishable on this scale).
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FIG. 7: An xy projection of the trajectory difference ~x1 − ~x2

for the G2.5 configuration. Note the very good agreement
between trajectories at the different resolutions. The initial
orbital plane is inclined with respect to the xy plane, making
the orbit appear more eccentric.

ponents of the black-hole spins as a function of time.
In Fig. 14 we show the components of the spin of the
larger black hole as a function of time for the G3.5 con-
figuration. Note that the precessional frequency is quite
low, with the precession occurring on a timescale of order
1000M ; consistent with the time scale in the amplitude
modulation of the rotated z1 − z2 trajectory component
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M
FIG. 8: An xy projection of the trajectory difference ~x1 − ~x2

for the G3.5 configuration. The initial orbital plane is inclined
with respect to the xy plane, making the orbit appear more
eccentric.
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G2.5 (M/59.3)
G3.5 (M/53.3)

FIG. 9: The coordinate distance r = |~x1 − ~x2| between punc-
tures versus time for the G2.5 and G3.5 configurations. Note
that the large eccentricity in the orbit (apparent in the os-
cillation in r) is reduced by using the 3.5PN equations to
generate the initial data. Unlike in Figs. 6 and 7, here the
differences between resolution becomes apparent during the
plunge. These differences drive the phase error. Also note
that the G3.5 configuration merges more slowly.
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FIG. 10: The eccentricity eD(t) of the G3.5 and G2.5 config-
urations, as calculated using the techniques of [91]

300 500 700 900 1100 1300
t/M
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G2.5 (3.5PN prediction)

0 100 200 300
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FIG. 11: The eccentricity er(t) of the G3.5 and G2.5 config-
urations and the 3.5PN prediction for the G2.5 configuration
(the 3.5PN prediction for G3.5 is a factor of 10 smaller than
the NR prediction). The inset shows the ‘eccentricity’ at early
times when gauge effects dominate the trajectories. Note that
the eccentricity of G2.5 decays throughout the evolution while
the smaller eccentricity for G3.5 remains roughly constant be-
yond t ∼ 630M . At later times the eccentricities of G2.5 and
G3.5 begin to agree.

in Figs. 12 and 13. Despite this long timescale, preces-
sion can affect the waveform modes on shorter timescales
via mode-mixing effects. That is, precession of the or-
bital plane will cause our mode decomposition (which
uses a fixed z-axis) to mix different modes (which oscil-
late at different frequencies). This can lead to a beat-
ing effect that produces amplitude oscillations visible in
the waveform. In particular, when the orbital plane is
aligned with the xy axis, the m modes have a frequency

0 500 1000 1500
t/M

−10

−5

0

5

10 x/M
y/M
z/M

FIG. 12: The coordinate displacement ~r = ~x1 − ~x2 between
punctures versus time for the G2.5 configuration after per-
forming a constant rotation that maps the initial orbital plane
onto the xy plane. Precession is responsible for driving the
amplitude of rz.
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t/M
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5

10
x/M
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z/M

FIG. 13: The coordinate displacement ~r = ~x1 − ~x2 between
punctures versus time for the G3.5 configuration after per-
forming a constant rotation that maps the initial orbital plane
onto the xy plane. Precession is responsible for driving the
amplitude of rz.

of ∼ mωorbit. Hence if the m = 2 and m = 1 or m = 3
modes mix, the resulting system will have a beat fre-
quency of ∼ ωorbit; the same frequency as that due to
eccentricity. Thus, oscillations in the amplitude of the
modes at the orbital frequency can arise both from pre-
cession and ellipticity. We will come back to this point
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FIG. 14: The components of the spin for the more massive
black hole in configuration G3.5 as a function of time. The
precession of the spin drive the orbital plane precession. Here
the precession timescale is of order 1000M .

in Sec. IVB.

IV. POST-NEWTONIAN EQUATIONS OF

MOTION AND WAVEFORMS

In order to calculate post-Newtonian (PN) waveforms,
we need to calculate the orbital motion of the binaries.
We use the ADM-TT gauge, which is the closest to our
quasi-isotropic numerical initial data coordinates [93, 94].
In this paper, we use two different approximate PN equa-
tions of motion (EOM) based on [97, 98, 99]. To con-
struct the EOM we use the Hamiltonian provided in [97],
with the additional terms provided in [98, 99], and the
radiation-reaction force provided in [97]. We then use
the standard techniques of the Hamiltonian formulation
to construct EOM for the particle locations, momenta,
and spins. In the first approximate EOM, we included
the purely orbital Hamiltonian up to 2PN order, spin-
orbit coupling up to 2.5PN order, and spin-spin coupling
up to 2PN order (for the conservative part). That is to
say, we use the Hamiltonian

HR = HO,Newt +HO,1PN +HO,2PN

+HSO,1.5PN +HSO,2.5PN +HSS,2PN . (12)

Here we only include the leading order radiation reac-
tion (dissipative) effect. We refer to the above EOM as
the “truncated” 2.5PN EOM because there are terms up
to 2.5PN order. For the second approximate EOM, we
included the 3PN orbital Hamiltonian and 3PN spin(1)-
spin(2) coupling in the ADM-TT gauge [99], i.e., we use

the Hamiltonian

HF = HR +HO,3PN +HS1S2,3PN (13)

(the HS1S2,3PN term was also computed in [100, 101, 102]
in a different gauge). For the dissipative part, we added
the 3.5PN (non-spinning) radiation reaction terms, as
well as the leading spin-orbit and spin-spin coupling to
the radiation reaction [97]. In the radiation reaction
terms, we use the Taylor series of the flux [103, 104]. We
refer to this second EOM as the 3.5PN EOM (in prac-
tice the 3.5PN radiation reaction terms contribute to the
orbital EOM at 6PN order).

We then use the following procedure to construct hy-
brid waveforms from the orbital motion. First we use
the 1PN accurate waveforms derived by Wagoner and
Will [105] (WW waveforms) for a generic orbit. By us-
ing these waveforms, we can introduce effects due to ec-
centricity and effects due to black-hole spins, including
the precession of the orbital plane. On the other hand,
Blanchet et al. [106] recently obtained the 3PN wave-
forms (B waveforms) for non-spinning circular orbits. We
combine these two waveforms to produce a hybrid wave-
form that includes the known higher-order corrections
to the waveform. Note that, in the comparisons men-
tioned below, the ‘truncated 2.5PN’ waveforms and the
3.5 PN waveforms were constructed from the same WW
and B expressions. Differences only arise because the
‘truncated’ 2.5 PN waveforms are based on particle tra-
jectories obtained from the ‘truncated’ 2.5 PN EOM.

In order to combine the WW and B waveforms, we
need to take into account differences in the definitions
of polarization states and the angular coordinates (See
Eqs. (73)-(75) of [105] for the definition of the WW po-
larization states and Sec. 8 of [106] for the definition of
the B polarization states). The WW waveforms use the
standard definition of GW polarization states, which are
the same as those derived from the Weyl scalar, but the
B waveforms use an alternate definition; leading to a dif-
ference in sign for all the (ℓ,m) modes of h. The angular
coordinates in the B waveforms in [106] are derived from
circular orbits in the equatorial (xy) plane. To directly
compare the NR and PN waveforms, we must add an in-
clination to the B waveforms because in the generic case
the orbital planes are inclined (with a time dependent in-
clination angle) with respect to the xy plane. Hence we
need to use the procedure developed in [73, 107] to trans-
form the (ℓ,m) modes of B waveforms into modes with
respect to our rotated spin basis (We provide a simple
derivation of these transformations in Appendix A). The

following is an outline of the procedure. Let ~L = ~r × ~p
be the instantaneous orbital angular momentum, where

~L = L(sinΘL cosΦL, sin ΘL sin ΦL, cosΘL), (14)

~r = r(sin Θr cosΦr, sinΘr cosΦr, cosΘr), (15)

~p = p(sin Θp cosΦp, sinΘp cosΦp, cosΘp), (16)

and L, r, p, ΘL, ΦL, Θr, Φr, Θp, Φp are functions of
time. The first step is to rotate the orbital plane onto
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the xy plane. Let R(α, β, γ) be a general rotation defined
by the Euler angles α, β, and γ, where we first perform
a rotation through angle α about the z axis, followed by
a rotation through angle β about the y axis, and finally
a rotation through angle γ about the z axis (in practice,
we never need to perform this final rotation). Thus a

rotation R(−ΦL(t),−ΘL(t), 0) transforms ~L and ~r into
~L′ and ~r′, where

~L′ = L(0, 0, 1), (17)

~r′ = r(cos ΦB(t), sin ΦB(t), 0). (18)

The (ℓ,m) modes of the B waveform, in a frame where
the orbital plane is the xy plane, can be written in terms
of cosΦB(t), sin ΦB(t), r, and ωorbit. In order to calcu-
late the (ℓ,m) modes of h with respect to the numeri-
cal coordinates (where the orbital plane is inclined), we
use the results of [73, 107]. As was shown in [107], the
spin-weighted s spherical harmonics in the numerical co-
ordinates are related to those in the rotated coordinates
(where the orbital plane is the xy plane) by

Y s
ℓ m(Ω) = eisχ

∑

m′

e−im′αKℓ s
m′m(−β)e−imγY s

ℓ m′(Ω′),

(19)
where α, β, and γ are the rotation angles described above
(note γ = 0), and the phase factor eisχ arises from the
transformation of spin-weighted function under a change
of spin-basis. In [73] it was shown that Kℓ s

m′m is indepen-
dent of s (see Appendix A for an alternative proof), and
is thus given by [107]

Kℓ s
m′m(−β) = dℓ

m′m(−β), (20)

where dℓ
m′m(β) is the Wigner d matrix given by,

dℓ
m′m(β) =

√

(ℓ+m)!(ℓ−m)!(ℓ +m′)!(ℓ −m′)!

×
∑

k

(−1)k+m′−m

k!(ℓ+m− k)!(ℓ−m′ − k)!(m′ −m+ k)!

(

sin
β

2

)2k+m′−m (

cos
β

2

)2ℓ−2k−m′+m

, (21)

where the sum over k is such that the factorials are non-
negative. Since h = h′e−2iχ, we have

hℓm =

∫

hY −2
ℓ mdΩ

=
∑

m′

∫

h′eim′αdℓ
m′m(−β)h′Y −2

ℓ m′(Ω
′)dΩ′

=
∑

m′

eim′αdℓ
m′m(−β)h′ℓm′

=
∑

m′

e−im′ΦLdℓ
m′m(ΘL)h′ℓm′ . (22)

The remaining complication arises from the fact that
both the WW and B waveforms contain terms for a non-
spinning circular orbit. To avoid adding the common

terms twice, we subtract them from the B waveforms.
First, using the 1PN WW formulae, we obtain the wave-
forms from non-spinning circular orbits in the equatorial
plane. We do this by applying the 3PN EOM for circular
orbits to the WW waveform formulae. We then rewrite
the waveforms in terms of the gauge invariant variable
x, which is the normalized frequency. The B waveforms
are given in terms of x, so we can identify those terms
in the WW waveforms also present in B waveforms in
a unique way. We then remove these terms from the B
waveforms. For our generic case, we rotate the subtracted
B waveforms modes and add them to the modes of the
WW waveforms to obtain the hybrid waveform. Note
that there are no significant gauge ambiguities arising
from combining the WW and B waveforms in this way
because at 1PN order the harmonic and ADM gauges
are equivalent (and hence the WW waveforms are the
same in the two gauges) and the B waveforms are given
in terms of gauge invariant variables.

Note that we calculate the spin contribution to the
waveform through its effect on the orbital motion directly
in the WW waveforms and indirectly in B waveforms
through the inclination of the orbital plane. Other effects
of spin and orbital plane precession on the waveforms are
currently not known.

A. Orbital motion and initial parameters

Following the procedure detailed in [91], extended to
spinning particles, we used purely post-Newtonian evolu-
tions of a nearly quasi-circular binary with initial orbital
separation r = 50M to obtain the positions, momenta,
and spins for a non-eccentric binary with separation
r ∼ 11M . The idea behind this procedure is that one can
specify quasi-circular parameters with very low eccentric-
ity for binaries with large separations using the conserva-
tive part of the Hamiltonian (i.e. solve for circular orbits).
The subsequent PN evolution then provides the PN pa-
rameters (including radial momentum) of a closer binary
with similar (but lower) eccentricity. The initial quasi-
circular binary configuration at r = 50M had PN param-

eters q = m1/m2 = 0.8, ~S1/m
2
1 = (−0.2,−0.14, 0.32),

and ~S2/m
2
2 = (−0.09, 0.48, 0.35). We refer to the binary

configurations obtained using the truncated 2.5PN and
3.5PN EOM as G2.5 and G3.5, respectively. It turns
out that the order of the PN evolution is critical for pro-
ducing low eccentricity binaries. The eccentricity of the
G2.5 configuration, as measured by a subsequent 2.5PN
evolution is quite small. However, both the numerical
and 3.5PN simulations, show a that the eccentricity for
G2.5 is actually relatively large. Similarly, the eccentric-
ity of the G3.5 configuration, as determined from the full
numerical simulation, while smaller than the G2.5 config-
uration, is still relatively large. We used these r ∼ 11M
parameters in our numerical and subsequent PN evolu-
tions.

It is interesting to note that in the generic case, the
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FIG. 15: er versus radius for a binary with spins aligned with
the angular momentum. Here the eccentricity decreases with
r for all radii.

eccentricity, according to 3.5PN does not decrease with
time at smaller radii. To demonstrate this, we show the
eccentricity, calculated using the formula er(t) = r2r̈/M ,
where the magnitude of the oscillations in er(t) is the ec-
centricity. In Fig. 15 we show the eccentricity versus time
for a configuration with the same spin-magnitudes and
mass ratio as our generic case, but with the spins aligned
with the orbital angular momentum. As can be seen, the
eccentricity decreases with radius. However, in Fig. 16
we show the eccentricity calculated for our configuration,
and one slightly modified to give an even lower initial ec-
centricity, versus time. Here we see that the eccentricity
decreases to about e ∼ 0.0005 and then remains constant.
On the other hand, for the low-eccentricity data, the ec-
centricity actually increases until reaching e ∼ 0.0005.
From the figures is apparent that precession affects in-
duce an apparent ellipticity to the binary’s motion that
is not radiated away (at least to this order in the PN
expansion).

For the G2.5 configuration we used a truncated 2.5PN
evolution, which began at r = 50M , to obtain the
PN parameters provided in Table IV. The specific
spins of the two holes are S1/m

2
1 = 0.3945883931 and

S2/m
2
2 = 0.6008327554, respectively. The 2.5PN ADM

mass, MADM = m1 + m2 + HR, for these parameters
is MADM/M = 0.9925682736, where HR is given by
Eq. (12).

When using these parameters in the numerical evo-
lution, and subsequent PN evolutions starting from
r/MADM = 11.08236108, we normalized the PN param-
eters by the ADM Mass (i.e. we use the parameters

~r → ~r/MADM, ~p → ~p/MADM, and ~S → ~S/M2
ADM). This

renormalization is helpful because we choose to normal-
ize our numerical simulations such that the total ADM
mass is 1. However, due to the spurious radiation on
the initial slice, the numerical black-hole masses change

5 15 25
r

−0.002

−0.001

0

0.001

0.002

e r

G3.5
Low e

FIG. 16: er versus radius for the G3.5 configuration and a
very similar binary, with parameters chosen to reduce the
(PN) initial eccentricity. Note that the eccentricity at r < 10
is constant and roughly the same for both configurations.

TABLE IV: PN orbital parameters for the G2.5 and G3.5 con-
figuration at an orbital separation of r ∼ 11M , as calculated
directly from PN simulations starting at r = 50M . m1 and
m2 denote the masses, x, y, and z denote the components of
~r = ~x1 − ~x2, pi (i = x, y, z) denotes the linear momentum,
and S1i and S2i denote the spin angular momenta.

G2.5 G3.5
m1/M 0.4455115640 0.4455115640
m2/M 0.5568894551 0.5568894551
x/M 5.9453450513 -4.5976488271
y/M -9.2084320770 -9.9544694746
z/M 0.9260944396 -0.8775891873
px/M 0.0723766737 0.0799120544
py/M 0.0477169131 -0.0360468994
pz/M -0.0053715184 -0.00073769138
S1x/M

2 0.0176308357 -0.0365711851
S1y/M

2 0.0681788517 -0.0049664012
S1z/M

2 0.0342713607 0.0690768531
S2x/M

2 -0.0657393278 0.0256376428
S2y/M

2 -0.0967624976 0.1484228759
S2z/M

2 0.1450366736 0.1096979400

with time, and eventually equilibrate to a mass ratio of
q = 0.7993 (the uncertainty in the numerical masses of
the two holes was δm ∼ 0.00003 at the highest resolu-
tions). Thus in order to compare the PN and numerical
waveforms, we need to account for this change in mass
ratio. To do this, we modified our choices of m1 and
m2 such that MADM/M = 1 and q = m1/m2 = 0.7993.
However, because our two PN evolutions systems have
different Hamiltonians, we needed to use slightly differ-
ent values of m1/MADM and m2/MADM in each case.
Note that the spin angular momentum is not affected by
the spurious radiation to a significant level because the
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spurious radiation is nearly axially symmetric about the
two holes. For the truncated 2.5PN evolutions we used

m1/MADM = 0.4486274928 ,

m2/MADM = 0.5612754821 , (23)

i.e. from the equation MADM = 1 = (q + 1)m2 +
HR(q,m2), while for the 3.5PN evolutions we used

m1/MADM = 0.4486635058 ,

m2/MADM = 0.5613205377 , (24)

i.e. MADM = 1 = (q + 1)m2 + HF (q,m2). We verified
that these changes in the masses have a negligible ef-
fect on the eccentricity and waveforms according to the
PN evolutions. We then used both the truncated 2.5PN
and 3.5PN equations of motion to evolve this modified
configuration from r ≈ 11M . We made one additional
change in the truncated 2.5PN evolution of G2.5. In
our original truncated 2.5PN evolution from r = 50M ,
we used a simpler form of the radiation reaction term
based on PN expansion in the orbital parameters r and
~p. While in the subsequent evolution, we used a new ex-
pression (consistent with the old expression to 2.5PN or-
der in the Taylor expansion of the PN orbital parameters)
based on an expansion in the orbital frequency [97]. How-
ever, because we changed the EOM, the truncated 2.5PN
evolution of the G2.5 configuration, which according to
the original system had very-low eccentricity, now has a
small residual eccentricity (see Fig. 17). The radiation-
reaction terms is directly related to the radial motion of
the binary. Therefore, the radiation reaction force is very
important to determine the quasi-circular configuration,
and differences in the force have a strong effect on the
motion. This is an indication that 2.5PN is not accurate
enough to model the binary’s motion in the r = 50M to
r = 11M range.

For the G3.5 configuration, we used a 3.5PN evolution
(that did not include the HS1S2,3PN term) from r = 50M
to r = 11M to obtain the orbital parameters provided
in Table IV. The 3.5PN ADM mass of this system is
MADM/M = 0.9927145092, and, once again, we renor-
malized the PN parameters by the ADM mass. When
evolving this system numerically, we used slightly altered
values of the spin

S1x/M
2
ADM = −0.0368395795 ,

S1y/M
2
ADM = −0.0050028494 ,

S1z/M
2
ADM = 0.0695838052 ,

S2x/M
2
ADM = 0.0258257964 ,

S2y/M
2
ADM = 0.1495121453 ,

S2z/M
2
ADM = 0.1105030087 , (25)

which introduced negligible changes in the waveforms
and eccentricity. Here too, we find that the black holes
absorb spurious radiation arising from the initial data
that changes the mass ratio to 0.79937. To model
this change in the 3.5PN evolution, we changed the m1

and m2 PN masses to m1/MADM = 0.4485829815 and
m2/MADM = 0.5611706488. Here too, the changes to the
masses do not affect the motion or eccentricity of the bi-
nary according to the 3.5PN evolution. Thus, one should
use an iterative procedure, like those in Refs. [49, 108],
to reduce the eccentricity.

According to the truncated 2.5PN evolution (with the
new radiation reaction term based on the orbital fre-
quency discussed above), the G2.5 configuration has a
relatively small eccentricity, as is apparent in the small
oscillations of the time dependence of the 2.5 PN orbital
radius displayed in Fig. 17. However, both a subsequent
3.5PN evolution and the numerical evolution showed that
these data were highly eccentric. In Fig. 17 we see that
both the 3.5PN and numerical simulations produce sim-
ilar, large orbital radius oscillations (which are due to
eccentricity). The G3.5 configurations, which has very-
low eccentricity according to 3.5PN, as is apparent in
the non-oscillatory behavior of the 3.5PN orbital radius
seen in Fig. 18, still shows relatively large oscillations
in the orbital radius of the numerical simulation. Thus,
using the 3.5PN equations of motion to generate low-
eccentricity initial data reduces the eccentricity, but not
nearly to the extent seen in non-spinning binaries [91].
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FIG. 17: The evolution of the orbital radius for the G2.5 con-
figuration from the numerical, 2.5PN, and 3.5PN simulations.
The residual eccentricity in the 2.5PN evolution is due to our
using a different 2.5PN radiation reaction term from that used
in the original evolution beginning at r = 50M . Note that
both 3.5PN and the numerical simulation indicate that this
configuration has relatively large eccentricity.

B. Comparison of NR and PN waveforms

We produced both 3.5PN and 2.5 truncated PN wave-
forms for the G2.5 configuration and 3.5PN waveforms
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FIG. 18: The evolutions of the orbital radius for the G3.5 con-
figuration from the numerical and 3.5PN simulations. Here
the numerical simulations shows that the eccentricity was re-
duced, but is still relatively large, while the 3.5PN evolution
indicates that the binary is non-eccentric.

for the G3.5 configuration. In Figs. 19 and 20, we show
the real part of the (ℓ = 2,m = 2) mode of the strain
h for G2.5 and G3.5 respectively. Note the reasonable
agreement of the numerical and 3.5PN waveforms for
700M in both configurations. The differences between
the PN and numerical waveforms are larger than the nu-
merical waveform errors at this time. Also note that
the 3.5PN waveform shows evidence of an early merger
and has a higher frequency than the numerical wave-
form, while 2.5PN waveform shows the opposite behav-
ior. In Figs. 21 and 22, we show the real part of the
(ℓ = 2,m = 1) mode of h for G2.5 and G3.5 respectively.
Again, the agreement is fairly good at earlier times and
3.5PN is more accurate than 2.5PN. Also, note the inter-
esting oscillatory behavior of the amplitude of the real
part of the (ℓ = 2,m = 1) mode for both configura-
tions. Here the amplitude (of the real part) oscillates
at about the precessional frequency (see Fig. 14). For
the (ℓ = 3,m = 3) mode, we obtained results similar to
the (ℓ = 2,m = 2) mode, as seen in Figs. 23 and 24.
However, for this mode, oscillations in the amplitude are
more pronounced.

1. Amplitudes

We are concerned with exploring two different effects,
eccentricity and precession. Long-term precessional ef-
fects, which modulate the amplitude of the waveform
over many cycles, are more readily apparent in h be-
cause differentiating h twice (to obtain ψ4) suppresses
low-frequency oscillations in comparison to higher fre-
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FIG. 19: The real part of the (ℓ = 2, m = 2) mode of h for the
G2.5 configuration from the numerical, truncated 2.5PN, and
3.5PN simulations. Note that the 3.5PN prediction is closer
to the numerical waveform and that 3.5PN predicts an early
merger while 2.5PN predicts a late merger (as is evident by
the amplitude of the mode versus time).
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FIG. 20: The real part of the (ℓ = 2, m = 2) mode of h for the
G3.5 configuration from the numerical and 3.5PN simulations.
Here too, 3.5PN predicts an early merger (as is evident by the
amplitude of the mode versus time).

quencies. As the binary inspirals, the frequency of the
oscillations increases with the orbital frequency. Thus
there is a large ramp-up in the amplitude of ψ4 near
merger. This can mask other effects as we observe be-
low. On the other hand, the transformation from ψ4 to
h can induce both high-frequency and low-frequency dis-
tortions in h (i.e. numerical errors due to the windowing
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FIG. 21: The real part of the (ℓ = 2,m = 1) mode of h for the
G2.5 configuration from the numerical, truncated 2.5PN, and
3.5PN simulations. Note the precession induced modulation
in the amplitude of the oscillations.
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FIG. 22: The real part of the (ℓ = 2, m = 1) mode of h for the
G3.5 configuration from the numerical and 3.5PN simulations.
Note the precession induced modulation in the amplitude of
the oscillations.

procedure in the Fourier transform). Thus it is advan-
tageous to compare both ψ4 and h between the PN and
numerical simulations.

In order to analyze the behavior of the (ℓ,m) modes
of the waveform, we decompose the modes into ampli-
tudes and phases. In Fig. 25 we show the amplitude
of the (ℓ = 2,m = 2) mode of h for the G2.5 config-
uration. Here the 2.5PN waveforms appear to capture
the overall amplitude behavior to better accuracy, while
the 3.5PN waveforms capture the oscillations in the am-
plitude. These oscillations occur at roughly the orbital
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FIG. 23: The real part of the (ℓ = 3, m = 3) mode of h for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. Note the relatively high-frequency
oscillations in the amplitude (roughly corresponding to the
orbital period).
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FIG. 24: The real part of the (ℓ = 3, m = 3) mode of h for
the G3.5 configuration from the numerical and 3.5PN simu-
lations. Note the relatively high-frequency oscillations in the
amplitude (roughly corresponding to the orbital period).

frequency and are due mainly to eccentricity and, to a
lesser extent, precession. As discussed above, precession
can induce an oscillation in the (ℓ = 2,m = 2) mode
at the orbital frequency by mixing the (ℓ = 2,m = 2)
and (ℓ = 2,m = ±1) modes (and since the m modes
have frequency ∼ |m|ωorbit, where ωorbit is the orbital
frequency, the resulting modes will show a beating ef-
fect at the orbital frequency). A similar plot for the
G3.5 configuration, Fig. 26, shows that 3.5PN predicts
very small amplitude oscillations, which seem to confirm
that the oscillations seen in G2.5 are mainly due to ec-
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centricity. Note that in Fig. 26 the amplitude of the
numerical (ℓ = 2,m = 2) mode oscillates at about the
orbital frequency with a significantly larger amplitude
than the 3.5PN prediction; indicating that these oscil-
lations are due to eccentricity (which is consistent with
the relatively large oscillations in the numerical orbital
radius). Since the transformation from ψ4 to h can in-
duce artifacts into the waveforms, it is also important to
compare the PN predictions for ψ4 with the numerical
waveforms. In Figs. 27 and 28 we show the amplitude
of the (ℓ = 2,m = 2) of ψ4 for the G2.5 and G3.5 con-
figurations respectively. Note that, for ψ4, 3.5PN gives
a clearly better fit to the G2.5 waveform than truncated
2.5PN. Note also that the agreement between the 3.5PN
and numerical ψ4 appears to be significantly better than
the agreement in h. Thus it appears that the windowing
procedure has induced a very-low frequency mode into h
that yielded a net change in the amplitude of the wave-
form.

The effects of precession become apparent in the sub-
leading modes h (and to a lesser extent, in the sub-
leading modes of ψ4). However, numerical errors in the
lower amplitude modes are also more pronounced. In
Fig. 29 and 30 we show the amplitudes of the (ℓ = 2,m =
1) mode of h for the G2.5 and G3.5 configurations, re-
spectively. Here both 2.5PN and 3.5PN capture the sec-
ular behavior in the amplitude nicely. Unlike for the
(ℓ = 2,m = 2) mode, here the PN amplitudes oscillate
much more strongly than the numerical amplitudes for
the G2.5 configuration, while 3.5PN seems to capture
both the short (orbital frequency) timescale oscillations
and the longer (precessional) frequency oscillation (un-
til t ∼ 1000M) for the G3.5 configuration. The damp-
ing of the numerical oscillations for the G2.5 configura-
tion are likely a consequence of the windowing procedure
(which acts as a high-frequency and low-frequency fil-
ter), as a similar damping is not apparent in ψ4 (See
Figs. 30 and 32). Although the G3.5 configuration has
very low eccentricity (according to 3.5PN), the effects of
eccentricity can increase as the binary separation falls be-
low 15M (See Fig. 16). This effect appears to be related
to precession because the eccentricity of non-precessing
binaries (See Fig. 15) decreases uniformly with binary
separation. In addition, mode-mixing effects may also
be partially responsible for these oscillations in the am-
plitude of the (ℓ = 2,m = 1) mode at the orbital fre-
quency. The secular oscillation in the amplitude of the
(ℓ = 2,m = 1) mode matches the precessional frequency
(See Figs. 13 and 30), and is thus likely a direct conse-
quence of precession (the amplitude of the (ℓ = 2,m = 1)
mode contains significant contributions from the spins,
see Eq. (3) in [109]).

The (ℓ = 2,m = 1) mode of ψ4, as seen in
Figs. 31 and 32 again shows that the 3.5PN waveforms
are clearly more accurate than the truncated 2.5PN wave-
forms. The agreement of the 3.5PN waveforms for the
G2.5 configuration is remarkable. Note that the long-
timescale oscillation seen in the (ℓ = 2,m = 1) mode of

h, which is likely due to precession, is not apparent in
ψ4 of the G3.5 configuration. However, as this effect is
smaller in G3.5 (as seen by comparing Figs. 31 and 32),
it may be hidden in ψ4 by the ramp-up in amplitude of
ψ4 near merger.

Finally, in Fig. 33 and 34 we show the amplitudes of the
(ℓ = 3,m = 3) mode of h for the G2.5 and G3.5 configura-
tions, respectively. An interesting feature of these modes
is that the late-time amplitude oscillations, which are
roughly at the orbital frequency, increase with time, in-
dicating that they are due to the precession-induced late-
time eccentricity apparent in Fig. 16 For the G2.5 config-
uration, 3.5PN produces a remarkably good fit, captur-
ing all oscillations in the amplitude until t ∼ 1400M . On
the other hand, 3.5PN does not capture the early-time
oscillations in the G3.5 configuration. A possible expla-
nation for this result is that, as seen in Figs. 17 and 18,
both 3.5PN and the numerical simulation show similar
eccentricities for the G2.5 configuration, but 3.5PN shows
much lower eccentricity for the G3.5 configuration. This
eccentricity leads to the early-time oscillation in the am-
plitude of the (ℓ = 3,m = 3) mode that are not captured
by 3.5PN. However, as the binary evolves, the effects of
precession-induced eccentricity in the PN EOM increase
and eventually dominate. This causes the amplitude of
the oscillations in the 3.5PN waveform to increase and
eventually become larger than the numerical amplitude
oscillations. In Figs. 35 and 36 we show the amplitude
of the (ℓ = 3,m = 3) mode of ψ4 for the G2.5 and G3.5
configurations. Here too 3.5PN gives a remarkably good
estimation for the amplitude of the mode. Note that the
orbital-frequency oscillations seen in Fig. 34 are not read-
ily apparent in Fig. 36 (even in the PN waveforms). This
shows one advantage of analyzing h over ψ4; eccentricity
and precessional effects are more apparent in h.

From the amplitudes of each mode, we see that pre-
cession and eccentricity impart signatures on the modes
of the waveform at the orbital frequency. However, the
long-time oscillations in the amplitudes, here apparent
only in the (ℓ = 2,m = ±1) modes, seem to be due purely
to precession, and occur at the precessional frequency.

2. Phases

In Figs. 37 and 38 we show the phase differences be-
tween the 3.5PN and numerical waveforms for the (ℓ =
2,m = 1), (ℓ = 2,m = 2), and (ℓ = 3,m = 3) modes.
In all cases we normalized the phase differences by divid-
ing by ℓπ. Note that we renormalize by ℓπ, rather than
mπ. If the orbital plane were to lie along the xy plane,
or equivalently, we chose spherical coordinates such that
the θ = 0 corresponds to direction of normal to the or-
bital plane, then we would expect the (ℓ,m) modes to
have frequency ω ≈ m ωorbit, and an error in the orbital
phase of δΦorbit would lead to an error in the phase of
the (ℓ,m) modes of m δΦorbit. However, in that case
the (ℓ = 2,m = 1) mode would be very small. Conse-
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FIG. 25: The amplitude of the (ℓ = 2, m = 2) mode of h for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. The oscillations in the amplitude are
much more pronounced in the numerical and 3.5PN simula-
tions, indicating that these oscillations are likely due to ec-
centricity.
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FIG. 26: The amplitude of the (ℓ = 2, m = 2) mode of h for
the G3.5 configuration from the numerical and 3.5PN simula-
tions. The amplitude oscillations in the numerical waveform
are much larger than those in the 3.5PN waveform, indicating
that they are likely due to eccentricity

quently, in our non-aligned spin basis, the (ℓ = 2,m = 1)
mode is actually dominated by contributions from the
(ℓ = 2,m = ±2) modes (of the aligned spin-basis). Thus,
in our configurations, the (ℓ = 2,m = 1) mode has
frequency 2ωorbit and the error in the phase scales like
2δΦorbit. Note that the renormalized phase differences
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FIG. 27: The amplitude of the (ℓ = 2, m = 2) mode of ψ4 for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. Note the very good agreement be-
tween the 3.5PN and numerical waveforms.
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FIG. 28: The amplitude of the (ℓ = 2, m = 2) mode of ψ4 for
the G3.5 configuration from the numerical and 3.5PN simu-
lations.

are qualitatively independent of the mode. We therefore
focus on the (ℓ = 2,m = 2) mode. In Fig. 39 we show
the phase difference between the numerical, 2.5PN, and
3.5PN (ℓ = 2,m = 2) mode of h for the G2.5 configu-
ration. From the plot we see that the phase difference
improves with the higher PN order and changes sign. It
thus appears that still higher-order PN corrections may
make the waveform phases agree. As seen in Figs. 21, 19,
and 23, the truncated 2.5PN phase evolution is slower
than that of the NR and 3.5PN, and thus its phase lags
behind the other two. The 3.5 PN evolution merges too
quickly (but is still closer to the numerical evolution) and
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FIG. 29: The amplitude of the (ℓ = 2, m = 1) mode of h for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. The secular oscillation in the numer-
ical amplitude occurs at roughly the precessional frequency.
Here the shorter-timescale oscillations apparent in the PN
waveforms are much smaller in the numerical waveform.

thus its phase leads the numerical one.

3. Matching

In order to quantitatively compare the modes of the
truncated 2.5PN and 3.5PN waveforms with the numer-
ical waveforms we define the overlap, or matching crite-
rion, for the real and imaginary parts of each mode as

Mℜ
ℓm =

< RNum
ℓm , RPN

ℓm >
√

< RNum
ℓm , RNum

ℓm >< RPN
ℓm , R

PN
ℓm >

, (26)

Mℑ
ℓm =

< INum
ℓm , IPN

ℓm >
√

< INum
ℓm , INum

ℓm >< IPN
ℓm , IPN

ℓm >
, (27)

where Rℓm = Re(hℓm), Iℓm = Im(hℓm), and

< f, g >=

∫ t2

t1

f(t)g(t)dt. (28)

Hence, Mℜ
ℓm = Mℑ

ℓm = 1 indicates that the given PN and
numerical mode agree. To compare PN and numerical
waveforms, we need to determine the time translation
δt between the numerical time and the corresponding
point on the PN trajectory. That is to say, the time
it takes for the signal to reach the extraction sphere
(here r = 100M). We determine this time translation by
finding the time translation near δt = 100M that maxi-
mizes the agreement of the early time waveforms in the
(ℓ = 2,m = ±2), (ℓ = 2,m = ±1), and (ℓ = 3,m = ±3)
simultaneously. We find δt ∼ 112, in good agreement
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FIG. 30: The amplitude of the (ℓ = 2,m = 1) mode of h for
the G3.5 configuration from the numerical and 3.5PN simula-
tions. The secular oscillation in the numerical amplitude oc-
curs at roughly the precessional frequency. Here the shorter-
timescale oscillations (corresponding roughly to the orbital
period) are present in both waveforms with very similar am-
plitudes.
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FIG. 31: The amplitude of the (ℓ = 2, m = 1) mode of ψ4 for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. Note the very good agreement be-
tween the 3.5PN and numerical waveforms.

with the expectation for our observer at r = 100M .
We also determine an alternate time translation, one full
wavelength in the (ℓ = 2,m = 2) mode longer, that in-
creases the matching of the (ℓ = 2,m = 2) mode over
longer integration periods. On the other hand, this new
time translation, δt = 233, causes the (ℓ = 3) modes
to be out of phase, leading to negative overlaps. Thus
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FIG. 32: The amplitude of the (ℓ = 2, m = 1) mode of ψ4 for
the G3.5 configuration from the numerical and 3.5PN simu-
lations.
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FIG. 33: The amplitude of the (ℓ = 3, m = 3) mode of h for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. Note the very good agreement be-
tween the 3.5PN and numerical waveforms. Also note that the
short-timescale oscillations (orbital period) grow with time at
later times, indicating that, at least at later times, they are
due mainly to precession.

by looking at the (ℓ = 2) and (ℓ = 3) modes simul-
taneously, we can reject this false match. The results
of these matching studies are summarized in Tables V
and VI. As seen in the tables, the matching of the 3.5PN
and numerical waveforms are significantly better than
the matching of the 2.5PN and numerical waveforms for
all modes. Similarly, all PN modes match the numeri-
cal waveforms better over the shorter integration times.
This is consistent with the qualitative agreements in the
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FIG. 34: The amplitude of the (ℓ = 3,m = 3) mode of h for
the G3.5 configuration from the numerical and 3.5PN simula-
tions. Note that the short-timescale oscillation at later times
grow with time, indicating that these later-time oscillations
are due to precession. The early-time oscillations in the nu-
merical waveform (at the same frequency) are likely due to
eccentricity.

180 330 480 630 780 930 1080 1230
t/M

0

5e−05

0.0001

0.00015

0.0002

G
2.

5 
|ψ

4|
(l=

3,
m

=
3)

Num
3.5PN
2.5PN

FIG. 35: The amplitude of the (ℓ = 3, m = 3) mode of ψ4 for
the G2.5 configuration from the numerical, truncated 2.5PN,
and 3.5PN simulations. Note the very good agreement be-
tween the 3.5PN and numerical waveforms.

waveforms seen in Figs. 19 – 24. Note that the 3.5PN
and numerical waveform matches for all modes are sig-
nificantly better for the G3.5 configuration than the G2.5
configuration for the longer t = 1000M integration time
(the differences between the matches are most striking
for (ℓ = 3,m = ±3) modes, where the matching is ∼ 0.7
for G3.5 and ∼ 0.4 for G2.5). The only place where the
matches for the G2.5 configuration are consistently bet-
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FIG. 36: The amplitude of the (ℓ = 3, m = 3) mode of ψ4 for
the G3.5 configuration from the numerical and 3.5PN simu-
lations.
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FIG. 37: The phase differences in h between the numerical
and 3.5 PN simulations for the G2.5 configuration in the (ℓ =
2, m = 1), (ℓ = 2, m = 2), and (ℓ = 3,m = 3) modes. We
multiplied the phase differences in the modes by a factor of
1/(ℓπ). We divide by ℓπ, rather than mπ, because the (ℓ =
2, m = 1) mode is dominated by mode-mixing from the (ℓ =
2, m = ±2) modes (see text for more details). The vertical
lines shows the times when the (ℓ = 2,m = 2) frequency is
Mω = 0.05 (t ∼ 323M) and Mω = 0.075 (t ∼ 1075M).

ter than the matches for the G3.5 configuration is the
is the (ℓ = 2,m = ±1) modes for the shorter integra-
tion times. Thus, it appears that the 3.5PN waveforms,
in general, produce superior results for the more circular
G3.5 configuration, which is likely due to the fact that
the higher PN order B waveforms are accurate for quasi-
circular, rather than eccentric, binaries.
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FIG. 38: The phase differences in h between the numeri-
cal and 3.5 PN simulations for the G3.5 configuration in the
(ℓ = 2,m = 1), (ℓ = 2,m = 2), and (ℓ = 3, m = 3) modes.
We multiplied the phase differences in the modes by a fac-
tor of 1/(ℓπ). Note that the normalized phase differences are
qualitatively independent of the mode and arise from the or-
bital phase error in the PN approximation. We divide by
ℓπ, rather than mπ, because the (ℓ = 2, m = 1) mode is
dominated by mode-mixing from the (ℓ = 2, m = ±2) modes
(see text for more details). The vertical lines show the times
when the (ℓ = 2, m = 2) frequency is Mω = 0.05 (t ∼ 360M),
Mω = 0.075 (t ∼ 1252M), and Mω = 0.1 (t ∼ 1493M).

In Tables VII-VIII we show the matching of the modes
of ψ4 between 2.5PN, 3.5PN, and the numerical ψ4. Here
we find a better match when we use a slightly altered
time offset. Note that matching is generally worse than
that observed with h, especially for the longer integration
times. This is consistent with the observation that the
amplitude of ψ4 increases more rapidly in time than h
(due to the effects of increasing frequency and the two
time derivatives). Thus a matching of ψ4 emphasizes the
disagreement between the PN and numerical waveforms
at later times. Interestingly, the matching in G3.5 is
significantly better than G2.5 for the 1000M integration
time, particularly in the (ℓ = 3,m = 3) mode, where the
matching between the 3.5PN and numerical ψ4 is 65%
for G3.5 and only 14% for G2.5.

V. CONCLUSION

We analyzed the first long-term generic waveform pro-
duced by the merger of unequal mass, unequal spins,
precessing black-hole binaries (a shorter simulation of
this kind, which led to the discovery of the very large
recoil configuration, was reported in [15]). We demon-
strated eighth-order convergence of the waveform phase
and fourth-order convergence of the amplitude (consis-
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FIG. 39: The phase difference in the (ℓ = 2, m − 2) mode of
h between the NR and PN waveforms for the G2.5 configura-
tion. The vertical axis denotes the number of orbital rotations
derived from GW cycle. Note that the normalized phase dif-
ferences are qualitatively independent of the mode and arise
from the orbital phase error in the PN approximation.

tent with the order of accuracy of the extraction routine)
in the numerical results. These waveforms clearly show
the effects of eccentricity and precession on the ampli-
tude in the sub-leading (ℓ = 2,m = 1) and (ℓ = 3,m = 3)
modes. In particular, analyzing the (ℓ = 2,m = 1) mode
provides a way of detecting precessional effects in the
observed waveforms. We have also found that there are
two sources of eccentricity for a generic binary. Resid-
ual eccentricity, due to a non-ideal choice of initial data
parameters that tends to damp out as the binary separa-
tion decreases, and precession-induced eccentricity that
grows as the orbital separation falls below ∼ 15M (this
increase in eccentricity at later times is apparent in the
(ℓ = 3,m = 3) mode of h in both the PN and numerical
waveforms).

We have compared these waveforms with the truncated
2.5 post-Newtonian waveforms, as well as the waveforms
with the non-spinning 3.0 PN conservative and 3.5 PN
radiative corrections. We find a good initial agreement
of waveforms for the first six cycles, with overlaps of over
97% for the (ℓ = 2,m = ±2) modes, 90%-98% for the
(ℓ = 2,m = ±1), and over 90% for the (ℓ = 3,m = ±3)
modes. This provides a natural way to match numeri-
cal waveforms to the post-Newtonian ones with a time
translation (the same for all modes) motivated by the
physical location of the observer (See Fig. 20, for in-
stance). The agreement degrades as we approach the
more dynamical region of the late merger and plunge.
The disagreement begins in a region where the numeri-
cal waveform is still very accurate. Thus it appears that
the disagreement is mainly due to errors introduced by
truncating the PN series. Hence the overlap should be

TABLE V: The overlap (matching) of the real and imagi-
nary parts of the modes of h of the G2.5 configuration for the
truncated 2.5PN and 3.5 PN waveforms and the numerical
waveforms for various integration times and PN time trans-
lation δt. In all cases, we start the integration just after the
numerical initial data (spurious radiation) pulse leaves the
system.

Integration Time 600 800 1000
Truncated 2.5PN (δt = 112.2)
Re (ℓ = 2,m = 2) 0.789 0.615 0.365
Re (ℓ = 2,m = 1) 0.705 0.501 0.292
Re (ℓ = 3,m = 3) 0.596 0.286 -0.038

3.5PN (δt = 112.2)
Re (ℓ = 2,m = 2) 0.975 0.922 0.693
Im (ℓ = 2,m = 2) 0.976 0.924 0.723
Re (ℓ = 2,m = −2) 0.975 0.922 0.693
Im (ℓ = 2,m = −2) 0.978 0.926 0.723
Re (ℓ = 2,m = 1) 0.982 0.938 0.687
Im (ℓ = 2,m = 1) 0.977 0.924 0.699
Re (ℓ = 2,m = −1) 0.984 0.939 0.707
Im (ℓ = 2,m = −1) 0.980 0.933 0.711
Re (ℓ = 3,m = 3) 0.908 0.794 0.418
Im (ℓ = 3,m = 3) 0.916 0.795 0.435
Re (ℓ = 3,m = −3) 0.909 0.782 0.403
Im (ℓ = 3,m = −3) 0.912 0.794 0.426

3.5PN (δt = 233.3)
Re (ℓ = 2,m = 2) 0.928 0.803 0.746
Re (ℓ = 2,m = 1) 0.918 0.800 0.774
Re (ℓ = 3,m = 3) -0.850 -0.602 -0.492

TABLE VI: The overlap of the real and imaginary parts of the
modes of h of the G3.5 configuration for the 3.5 PN waveforms
and the numerical waveforms. In all cases, we start the inte-
gration just after the numerical initial data (junk radiation)
pulse leaves the system.

Integration Time 600 800 1000
3.5PN (δt = 112.5)
Re (ℓ = 2,m = 2) 0.986 0.964 0.895
Im (ℓ = 2,m = 2) 0.987 0.962 0.900
Re (ℓ = 2,m = −2) 0.986 0.964 0.895
Im (ℓ = 2,m = −2) 0.987 0.962 0.901
Re (ℓ = 2,m = 1) 0.904 0.912 0.843
Im (ℓ = 2,m = 1) 0.916 0.901 0.820
Re (ℓ = 2,m = −1) 0.920 0.908 0.833
Im (ℓ = 2,m = −1) 0.917 0.903 0.816
Re (ℓ = 3,m = 3) 0.938 0.891 0.738
Im (ℓ = 3,m = 3) 0.919 0.868 0.721
Re (ℓ = 3,m = −3) 0.931 0.880 0.733
Im (ℓ = 3,m = −3) 0.906 0.857 0.721

improved significantly by including 3.0 PN and higher-
order conservative and radiative corrections, including
spin terms [99, 101, 102, 110, 111].

In fact, our results indicate that higher-order PN cor-
rections to the orbital motion may further increase the
accuracy of the PN waveforms. Although, the PN ex-
pansion has not yet been shown to converge, we do find
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TABLE VII: The overlap (matching) of the real and imagi-
nary parts of the modes of ψ4 of the G2.5 configuration for
the truncated 2.5PN and 3.5 PN waveforms and the numeri-
cal waveforms for various integration times with the PN time
translation δt = 106.5 for the truncated 2.5PN and δt = 113.0
for the 3.5PN. In all cases, we start the integration after
t=180. The integration time means that the end of integra-
tion is the same as that used in the overlap of h.

Integration Time 600 800 1000
Truncated 2.5PN (δt = 106.5)
Re (ℓ = 2,m = 2) 0.900 0.744 0.435
Im (ℓ = 2,m = 2) 0.898 0.717 0.469
Re (ℓ = 2,m = 1) 0.824 0.654 0.408
Im (ℓ = 2,m = 1) 0.851 0.675 0.431
Re (ℓ = 3,m = 3) 0.767 0.472 0.00578
Im (ℓ = 3,m = 3) 0.776 0.477 0.0102

3.5PN (δt = 113.0)
Re (ℓ = 2,m = 2) 0.980 0.909 0.519
Im (ℓ = 2,m = 2) 0.984 0.916 0.563
Re (ℓ = 2,m = 1) 0.982 0.936 0.544
Im (ℓ = 2,m = 1) 0.976 0.921 0.594
Re (ℓ = 3,m = 3) 0.906 0.759 0.150
Im (ℓ = 3,m = 3) 0.906 0.754 0.140

TABLE VIII: The overlap of the real and imaginary parts
of the modes of ψ4 of the G3.5 configuration for the 3.5 PN
waveforms and the numerical waveforms with δt = 113.5. In
all cases, we start the integration after t=180. The integration
time means that the end of integration is the same as that
used in the overlap of h.

Integration Time 600 800 1000
3.5PN (δt = 113.5)
Re (ℓ = 2,m = 2) 0.981 0.962 0.860
Im (ℓ = 2,m = 2) 0.983 0.958 0.876
Re (ℓ = 2,m = 1) 0.882 0.927 0.850
Im (ℓ = 2,m = 1) 0.853 0.893 0.811
Re (ℓ = 3,m = 3) 0.869 0.841 0.640
Im (ℓ = 3,m = 3) 0.868 0.834 0.649

remarkably better agreement in ψ4 between the PN and
numerical waveforms when moving from a 2.5PN EOM to
a 3.5 EOM. This would appear to underscore the need for
higher-order post-Newtonian calculations of both spin-
orbit and spin-spin terms (especially in the EOM). Spin
effects first appear at 1.5PN order, producing the spin-
orbit hangup effect [29, 41]. Other spin effects, such as
those due to precession, generate more subtle effects in
the waveforms, and require higher-order PN corrections
to accurately model (while subtle, these effects are also
responsible for the very large kicks seen in spinning bi-
naries with the spins oriented in the orbital plane). Our
results seem to indicate that calculating these higher-
order correction may prove to be invaluable for generat-
ing waveform templates from generic black-binary con-
figurations.
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APPENDIX A: TRANSFORMATION OF THE

(ℓ,m) MODES OF SPIN-WEIGHTED FIELDS

UNDER ARBITRARY ROTATIONS.

Here we consider the spin-weighted spherical harmon-
ics in two different angular coordinate systems, (θ, φ)
and (θ′, φ′), related to each other by a simple rotation.
For convenience, we will use Ω to denote the coordinates
(θ, φ) and dΩ = sin θdθ dφ to denote the volume element
on the unit sphere. To construct spin-weighted functions,
we need to define a null dyad qA on the unit sphere obey-
ing qA qA = 0 and qA q̄A = 2 (indices are raised and
lowered with the unit sphere metric). Here we will use
qA = ∂θ + i/ sin θ ∂φ (see [112] for a review of the sub-
ject). Any two choices for the dyad qA and q′A can differ
by at most a phase factor, i.e. q′A = eiχqA. A spin-
weight s field J transforms as J → J ′ = eisχJ under
this change in spin-basis. Of relevance here are the two
dyads qA = ∂θ + i/ sin θ ∂φ and q′A = ∂θ′ + i/ sin θ′ ∂φ′ .
The choice of qA fixes the ð operator on spin-weighted
fields.

The spin-weighted spherical harmonics are constructed
as follows [107],

Y s
ℓ m(Ω) =

√

(ℓ− |s|)!
(ℓ+ |s|)!

{

(−1)sðsYℓm(Ω) if s > 0
ð̄|s|Yℓm(Ω) if s < 0

,(A1)

where

ðf = ∂θf +
i

sin θ
∂φf − sf cot θ

ð̄f = ∂θf − i

sin θ
∂φf + sf cot θ, (A2)

for a function f of spin-weight s. In the Ω′ coordinates
and the corresponding q′A spin basis. Eqs. (A1) and (A2)
take on an identical form, but with the Ω coordinates re-
placed with the Ω′ coordinates. Let J be a spin-weighted
s field of arbitrary spin-weight that can be decomposed
into spin-weighted spherical harmonics. That is,

J =
∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

JℓmY
s
ℓ m(Ω). (A3)



22

We define a spin-zero potential j, such that

j =

∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

jℓmYℓm(Ω), (A4)

where

jℓm = Jℓm

√

(ℓ− |s|)!
(ℓ+ |s|)! p, (A5)

and p = (−1)s if s > 0 and p = 1 otherwise. Hence

J =

{

ðsj if s > 0
ð̄|s|j if s < 0

. (A6)

Under a change of spin basis, J → J ′ = eisχJ but j →
j′ = j. Thus

J ′ =

{

ð′sj if s > 0
ð̄′|s|j if s < 0

, (A7)

and

J ′ =

∞
∑

ℓ=|s|

ℓ
∑

m=−ℓ

√

(ℓ+ |s|)!
(ℓ− |s|)! p j

′
ℓmY

′s
ℓ m(Ω′), (A8)

where

j′ℓm =

∫

j Y ′
ℓm(Ω′)dΩ′. (A9)

Thus

Jℓm = jℓm

√

(ℓ+ |s|)!
(ℓ− |s|)! p,

J ′
ℓm = j′ℓm

√

(ℓ + |s|)!
(ℓ − |s|)! p, (A10)

where

J ′
ℓm =

∫

J ′ Y ′s
ℓ m(Ω′)dΩ′, (A11)

and hence we can determine how the modes of J mix
under a rotation of the coordinates by looking at the
modes of j.

It was shown in [107] that the relationship between the
spherical harmonic modes Yℓm(Ω) and Y ′

ℓm(Ω′), where
the Ω′ coordinates are obtained from the Ω coordinates
by a rotation described by the Euler angles α, β, γ in
Sec. IV, is given by

Yℓm(Ω) =
ℓ

∑

m′=−ℓ

e−i(m′α+mγ) dℓ
m′m(−β)Y ′

ℓm′(Ω′),

(A12)
and hence

jℓm =

∫

j Yℓm(Ω)dΩ

=

∫

j Yℓm(Ω)dΩ′

=

∫

j

ℓ
∑

m′=−ℓ

ei(m′α+mγ) dℓ
m′m(−β)Y ′

ℓm′(Ω′)dΩ′

=

ℓ
∑

m′=−ℓ

ei(m′α+mγ) dℓ
m′m(−β) j′ℓm′ . (A13)

Finally, using Eq. (A10) we get

Jℓm =

ℓ
∑

m′=−ℓ

ei(m′α+mγ) dℓ
m′m(−β)J ′

ℓm, (A14)

which is independent of the spin-weight of J .
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