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Abstract. We present results from HST/STIS long-slit spectroscopy of the gas motions in the nuclear region of the
Seyfert 2 galaxy NGC 5252. The observed velocity field is consistent with gas in regular rotation with superposed
localized patches of disturbed gas. The dynamics of the circumnuclear gas can be accurately reproduced by
adding to the stellar mass component a compact dark mass of MBH = 0.95 (−0.45; +1.45)× 109 M⊙, very likely
a supermassive black hole (BH). Contrarily to results obtained in similar studies rotational broadening is sufficient
to reproduce also the behaviour of line widths. The BH mass estimated for NGC 5252 is in good agreement with
the correlation between MBH and bulge mass. The comparison with the MBH vs σc relationship is less stringent
(mostly due to the relatively large error in σc); NGC 5252 is located above the best fit line by between 0.3 and
1.2 dex, i.e. 1 - 4 times the dispersion of the correlation. Both the galaxy’s and BH mass of NGC 5252 are
substantially larger than those usually estimated for Seyfert galaxies but, on the other hand, they are typical of
radio-quiet quasars. Combining the determined BH mass with the hard X-ray luminosity, we estimate that NGC
5252 is emitting at a fraction ∼ 0.005 of LEdd. In this sense, this active nucleus appears to be a quasar relic, now
probably accreting at a low rate, rather than a low black hole mass counterpart of a QSO.

Key words. black hole physics, galaxies: active, galaxies: bulges, galaxies: nuclei, galaxies: Seyfert

1. Introduction

It is widely accepted that Active Galactic Nuclei (AGN)
are powered by accretion of matter onto massive black
holes. AGN activity peaked at z ∼ 1 − 2 and the high (>
1012L⊙) luminosities of quasi stellar objects (QSOs) are
explained by accretion onto super massive (∼ 108 − 1010

M⊙) black holes at or close to the Eddington limit. The
observed evolution of the space density of AGN (e.g.
So ltan 1982, Marconi et al. 2004, Yu & Tremaine 2002)
implies that a significant fraction of luminous galaxies
must host black holes, relics of past activity. Indeed, it
is now clear that a large fraction of hot spheroids contain
a massive BH (Kormendy & Gebhardt 2001, Merritt &
Ferrarese 2001) and it appears that the BH mass is pro-

Send offprint requests to: A. Capetti
⋆ Based on observations obtained at the Space Telescope

Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Incorporated, under
NASA contract NAS 5-26555.

portional to both the mass/luminosity of the host spheroid
(Magorrian et al. 1998, Marconi & Hunt 2003) and its ve-
locity dispersion (Ferrarese & Merritt 2000, Gebhardt et
al. 2000, Tremaine et al. 2002).

Several radio-galaxies, all associated with giant ellipti-
cal galaxies, like M87 (Macchetto et al. 1997), M84 (Bower
et al. 1998), NGC 7052 (van der Marel & van den Bosch
1998) and Centaurus A (Marconi et al. 2001), are now
known to host supermassive (∼ 108 − 109 M⊙) BHs in
their nuclei. The luminosity of their optical nuclei indi-
cates that they are accreting at a low rate and/or low
accretion efficiency (Chiaberge, Capetti & Celotti 1999),
with the exception of Cygnus A (Tadhunter et al. 2003).
They presumably sustained quasar activity in the past
but at the present epoch are emitting much below their
Eddington limits (L / LEdd ∼ 10−5 − 10−7.)

For the radio-quiet AGN, there are two viable explana-
tions for the low luminosity of Seyfert galaxies compared
to QSO. Firstly, they may represent a population of less
massive BH’s accreting at a level close to their Eddington

http://arXiv.org/abs/astro-ph/0411081v1


2 Alessandro Capetti et al.: The supermassive black hole in NGC 5252

limit. Support for this interpretation comes from the es-
timated BH mass derived from reverberation mapping
which are found to be in the range between ≃ 106 M⊙

and ≃ 108 M⊙ (Wandel, Peterson & Malkan 1999, Kaspi
et al. 2000, Peterson 2003). However the data are far from
extensive and it is still possible that in some Seyfert nuclei
there are much more massive BH, currently in a dormant
phase in which the accretion rate is much reduced from
their hay-day as QSO’s, i.e. they are relics of past QSO
activity of the sort described above. In practice a hybrid
population is likely to exist in galaxies as a whole as a con-
sequence of the regulation of BH growth by fluctuations
in accretion rate with time. The study of the Seyfert BH
mass distribution then provides a statistical method of in-
vestigating the interplay between accretion rate and BH
growth. In order to achieve this it is necessary to directly
measure (bound) the BH masses in Seyfert galaxies and
to compare their Eddington and Bolometric luminosities
using the hard X-ray luminosities.

Clearly, measurements of BH masses in Seyfert galax-
ies would provide us not only with very important insights
concerning their connection with the past quasars activity,
but represent also a crucial test for their unified scheme,
as e.g. systematic differences between the BH measured in
the two spectroscopic types will argue against the general
validity of the unified model. Similarly important will be
the comparison between the BH masses found in Seyfert
galaxies with those of non active galaxies. Several ongo-
ing HST/STIS program aimed at measuring BH masses in
spiral and disk galaxies should constrain the mass func-
tion and space density of BHs, and their connection with
host galaxy properties (e.g., Hubble type, bulge and disk
mass, central velocity dispersion, etc). A comparison of
the BH masses in Seyfert and those derived from these
programs will allow us to define differences between qui-
escent and active galaxies. In particular it will be possible
to test whether the current level of activity is accompanied
by significant growth of the BH mass in active galaxies.

To date, the handful of measurements of BH masses
in Seyferts have been obtained using essentially the rever-
beration mapping technique (Wandel, Peterson & Malkan
1999, Kaspi et al. 2000, Wandel 2002). Despite lingering
worries about the limitation of this technique (e.g. Krolik
2001) the good agreement between these estimates and
the predictions of the σc - MBH and Mbulge - MBH cor-
relations supports the idea that they are indeed reliable
estimates of MBH (e.g. Wandel 2002 , Peterson 2003).
However, this method is limited to Seyfert 1 only as the
broad line region in Seyfert 2 is hidden from our view.
Estimates of MBH using H2O masers have not provided
similarly compelling evidence or accurate measurements
in Seyfert 2 galaxies (Greenhill et al. 1996, 1997a, 1997b,
2003) as in the classic case of NGC4258 (Miyoshi et al.
1995).

Leaving aside the reverberation mapping technique, to
detect and measure the masses of massive BHs requires
spectral information at the highest possible angular reso-
lution – the ”sphere of influence” of massive BHs is typi-

cally
<
∼ 1′′ in radius even in the closest galaxies. Nuclear

absorption line spectra can be used to demonstrate the
presence of a BH, but the interpretation of the data is
complex because it involves stellar-dynamical models that
have many degrees of freedom (e.g. Valluri, Merritt, &
Emsellem 2003). In Seyfert galaxies the problems are com-
pounded by the copious light from the AGN. Studies at
HST resolution of ordinary optical emission lines from gas
disks in principle provide a more widely applicable and
readily interpreted way of detecting BHs (cf. Macchetto
et al. 1997, Barth et al. 2001) provided that the gas ve-
locity field are not dominated by non gravitational mo-
tions. When dealing with luminous AGN, this is a particu-
larly important issue, as the active nucleus might substan-
tially affect the nuclear gas dynamics. In general, black
hole mass estimates based on gas dynamics have large
uncertainties if the inclination of the gas disk cannot be
constrained at the low inclination end. A significant ad-
vantage of studying Seyfert 2 galaxies is that the unified
scheme requires the innermost regions to be seen at a suf-
ficiently large inclination to allow the circumnuclear torus
to obscure its nucleus and Broad Line Region, effectively
eliminating this problem.

Following this chain of reasoning, we obtained STIS
observations of NGC 5252, an early type (S0) Seyfert 2
galaxy at a redshift z = 0.023 in order to study its nuclear
kinematics and to determine the mass of its central black
hole. Adopting Ho = 75 Km s−1 Mpc−1, at the distance
of NGC 5252 (92 Mpc), 1′′corresponds to 450 pc.

Line emission in this galaxy shows a remarkable bicon-
ical morphology (Tadhunter & Tsvetanov 1989) extending
out to 20 kpc from the nucleus along PA -15◦. On a sub-
arcsec scale (Tsvetanov et al. 1996), three emission line
knots form a linear structure oriented at PA ∼ 35, close to
the bulge major axis. Ground based measurements of the
large scale velocity field of the gas were obtained by Morse
et al. (1998) with a resolution of 1.4′′. They found that,
while at radii larger than 40′′ the gas rotates in the plane
of the stellar disk, at smaller radii there is evidence for two
superposed dynamical components: a gaseous disk signif-
icantly inclined (by ∼ 40◦) with respect to the galaxy’s
plane and traced by a the dusty spiral structure identified
by Tsvetanov et al. (1996); a counterrotating ring copla-
nar with the stellar disk.

The paper is organized as follows: in Sec. 2 we present
the observations and the data reduction that lead to the
results described in Sec. 3. In Sec. 4 we model the observed
rotation curves taking into account the star distribution.
We will show that the dynamics of the circumnuclear gas
can be accurately reproduced by circular motions in a thin
disk. Our results are discussed in Sec. 5.

2. Observations and data reduction

STIS observations were obtained on Jan 29th, 1999. The
nucleus of NGC 5252 was acquired with the ACQ mode
with two 60 s exposures through the F28X50LP optical
long-pass filter. The 50′′x 0.′′2 slit was then positioned at 3
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Fig. 1. Hα image of the central 3′′× 3′′of NGC 5252 with
superposed the three slit locations. North is up, East is
left.

different locations: on the continuum peak (position NUC)
and at two off-nuclear positions (OFF1 and OFF2) offset
by ± 0.′′2. The orientation of the slit was -135◦ from North,
approximately aligned with the galaxy’s major axis and
the triple inner structure of line emission. Fig. 1 shows
the slit locations superposed onto the WFPC2 Hα image.

At each position, we used the medium dispersion grat-
ing G750M, which provides a scale of 0.56 Å pixel−1 and,
in combination with the 0.′′2 slit, a resolution of R = 3000,
centered on the redshifted Hα line and covering the rest
frame wavelength range 6160-6700 Å. The pixel size in the
spatial direction is 0.′′0507. The exposure time was set at
1000 s for OFF1 and OFF2 and at 1400 s on the nucleus.

The data were calibrated using the CALSTIS pipeline
to perform the steps of bias subtraction, dark subtraction,
applying the flat field, and combining the two subexpo-
sures to reject cosmic-ray events. To reject hot pixels from
the data, we employed dark frames obtained immediately
before our observations. The data were then wavelength-
calibrated and rectified by tracing the wavelenght cali-
bration lamps and then applying these solutions for the
geometric distortions to the data.

We then selected the spectral regions containing the
lines of interest and subtracted the continuum by a poly-
nomial/spline fit pixel by pixel along the dispersion di-
rection. The continuum subtracted lines were fitted, row
by row, along the dispersion direction with Gaussian
functions using the task SPECFIT in STSDAS/IRAF.
All emission lines present in the spectra (Hα, [N
II]λλ6548,6584 and [O I]λλ6300,6363) were fitted simul-
taneously with the same velocity and width.

Fig. 3. Velocity, FWHM and flux at along the POS1 slit.
Positions along the slit are relative to the continuum peak,
positive values are SW. The instrumental line-width of 100
km s−1 is drawn as a dotted line in the FWHM panel.

In three regions a single Gaussian does not produce an
accurate fit to the line profile: on the nucleus, where there
is a strong blue wing, and in the range 0.′′2 < r < 0.′′4
on both sides of the nucleus in the NUC slit (at the inner
edges of the off-nuclear knots) where the line profile shows
a broad base offset from the narrow line core (see Fig. 2).
Two Gaussians fit were performed in these regions. We
preferred to model the blue wing in the nuclear spectrum
with a high velocity component rather than with a broad
Hα line as this line asymmetry is also seen in the [O I]
and [S II] lines. This contrasts the classification of NGC
5252 as a Sy 1.9 by Osterbrock & Martel (1993).

Where the SNR was insufficient the fitting was im-
proved by co-adding two or more pixels along the slit di-
rection.

3. Results

The results obtained from the fitting procedure at the
three slit positions are shown in Fig. 3 through Fig. 5
where we show the line central velocity, flux and FWHM
at each location along the slits. Emission is detected out
to a radius of ∼ 1.′′6 corresponding to ∼ 720 pc.

On the central slit, the line emission (Fig. 4, central
panel) is strongly concentrated showing a bright compact
knot cospatial with the continuum peak. Two secondary
emission line maxima are also present at ± 0.35′′ from the
main peak. They represent the intersection of the slit with
emission line blobs seen in Fig. 1.
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Fig. 2. Emission lines profiles on the nucleus (right panel) and at 0.′′3 NE of the nucleus (left panel) showing the
regions were the line profile cannot be fitted with a single Gaussian and a high velocity component was added.

Fig. 4. Same as Fig. 3 for the NUC slit. The patches
of disturbed gas, spatially coincident with the off-nuclear
line knots, are marked with asterisks. Here lines are fitted
with a double Gaussian to separate the broad perturbed
component from the rotating gas.

The velocity curve has a full amplitude of ∼ 400
km s−1and it shows a general reflection symmetry.

Fig. 5. Same as Fig. 3 for the POS2 slit.

Starting from the center of symmetry (at r ∼ 0.′′1 and
v ∼ 6950 km s−1) the velocity rapidly rises on both sides
by ∼ 200 km s−1reaching a peak a r ∼ 0.′′2. In this cen-
tral region both the line flux and the line width rapidly
decrease (from the maximum value of 600 km s−1 to 100
km s−1).
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In correspondence with the off-nuclear knots (r ∼ 0.′′3
- 0.′′6) the situation is more complex as in these regions
two velocity components are present. The narrower com-
ponent (FWHM ∼ 100 − 150 km s−1) has a lower (and
decreasing) velocity offset. Its width and flux also decrease
with radius, following the trend seen at smaller radii. The
second component, marked with an asterisk in Fig. 4, is
considerably broader (FWHM ∼ 250 − 400 km s−1) and
shows higher velocity offset with respect to the center of
symmetry. At radii larger than r ∼ 0.′′4 the intensity of the
narrow component falls below our detection threshold and
only the broader component is visible. Lines remain broad
out to ∼ 0.′′8 from the nucleus. At even larger distances
the velocity field flattens.

It therefore appears that two different gas systems are
present in the nuclear regions of NGC 5252: the first shows
a symmetric velocity field, with decreasing line width and
can be interpreted as being produced by gas in rotation
around the nucleus, counter-rotating with respect to the
large scale stellar and gas disk. The second component,
showing significant non circular motions, is found to be
associated exclusively with the off-nuclear blobs.

The velocity fields in the off-nuclear positions are quite
similar to the one seen on the nucleus, but here the signal-
to-noise is insufficient to provide detailed information on
the line profiles. The presence of the high-velocity gas is
nonetheless clearly revealed looking at the behaviour of
the line width in correspondence of the line knots, but the
broad and narrow components cannot be separated.

4. Modeling the rotation curves

Our modeling code, described in detail in Marconi et al.
(2003), was used to fit the observed rotation curves. Very
briefly the code computes the rotation curves of the gas
assuming that the gas is rotating in circular orbits within
a thin disk in the galaxy potential. The gravitational po-
tential has two components: the stellar potential (deter-
mined in the next section), characterized by its mass-to-
light ratio and a dark mass concentration (the black hole),
spatially unresolved at HST+STIS resolution and charac-
terized by its total mass MBH . In computing the rotation
curves we take into account the finite spatial resolution of
HST+STIS, the line surface brightness and we integrate
over the slit and pixel area. The χ2 is minimized to de-
termine the free parameters using the downhill simplex
algorithm by Press et al. (1992).

4.1. The stellar mass distribution

In order to account for the contribution of the stars to the
gravitational potential in the nuclear region, the stellar
luminosity density is derived from the observed surface
brightness distribution.

We reconstructed the galaxy light profile using two
NICMOS F160W (H band) images obtained with the
NIC1 and NIC2 cameras whose pixel size are 0.′′043 and
0.′′075 respectively. The first image, with smaller pixel size

Fig. 6. Central 8 × 8 arcsec of the NICMOS F160W
image of NGC 5252. The compass indicates the North-
East orientation. Note the smooth regular shape of the
galaxy and the bright central unresolved source.

(shown in Fig. 6), was used for the central regions (r <
1′′) while for the more extended emission we took ad-
vantage of the larger field of view of camera NIC2. We
used the IRAF/STSDAS program ELLIPSE to fit ellip-
tical isophotes to the galaxy that is particularly well be-
haved (see Fig. 7). Excluding the nuclear regions that are
dominated by a central unresolved source, the ellipticity
is essentially constant at a value of 0.45 out to a radius
of 6′′where it slowly increases to a value of 0.55. Also the
position angle does not show significant variations being
approximately constant at PA = 15◦. All isophotes are
concentric within half a NIC1 pixel, i.e. 0.′′02.

The inversion procedure to derive the stars distribu-
tion from the surface brightness is not unique if the grav-
itational potential does not have a spherical symmetry as
in the case in NGC 5252 where the isophotes are not circu-
lar. Assuming that the gravitational potential is an oblate
spheroid, the inversion depends on the knowledge of the
potential axial ratio q, and the inclination of its princi-
pal plane with respect to the line of sight. As these two
quantities are related by the observed isophote ellipticity,
we are left with the freedom of assuming different galaxy
inclinations to the line of sight. The measured ellipticity
implies a minimum inclination for the galaxy of 53◦. We
therefore performed the deprojection for three representa-
tive values of the galaxy inclination, namely 55◦, 70◦ and
85◦. Following van der Marel & van den Bosch (1998), we
assumed an oblate spheroid density distribution parame-
terized as:

ρ(m) = ρ0

(

m

rb

)

−α
[

1 +

(

m

rb

)2
]

−β
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Fig. 7. Results of the isophotes analysis of the H band
images of NGC 5252. Surface brightness is shown in the
top panel (in units of erg s−1 cm−2 Å−1 arcsec−2), the
galaxy’s ellipticity and position angle are shown in the
middle and bottom panels respectively.

m is given by m2 = x2+y2+z2/q2 where xyz is a reference
system with the xy plane corresponding to the principal
plane of the potential and q is the intrinsic axial ratio.
A detailed description of the relevant formulas and of the
inversion and fit procedure is presented in the Marconi et
al. (2003). The best fit obtained for an inclination of 70◦

is shown in Fig. 8 with α = 2.0, β=3.1 and rb =17.5′′. The
presence of an unresolved nuclear point source, and its as-
sociated Airy ring, are clearly visible in Fig. 6. Indeed a
point source with flux (7.3 ± 0.1) 10−17 erg s−1 cm−2 Å−1

had to be added to the extended luminosity distribution
to provide a good fit to the brightness profile. It has been
shown by Quillen et al. (2001) that unresolved infrared
sources are found in the great majority of HST images of
Seyfert galaxies and that their luminosities strongly cor-
relate with both the hard X-ray and the [O III] line lumi-
nosity. This result suggests a dominant AGN contribution
to the IR emission. This seems to be the case also for the
nuclear source of NGC 5252 (that is part of the Quillen et
al. sample) as its luminosities in the IR (1.2×1042 erg s−1)
and hard X-ray (∼ 2 × 1043 erg s−1, Cappi et al. 1996)
make its representative point to lie on the IR - X-ray cor-
relation defined by Seyfert nuclei.

4.2. Fitting the gas kinematics

Our modeling code was used to fit the nuclear rotation
curve. Clearly data points associated to the high velocity
components in the region 0.′′2 < r < 0.′′8 on both sides of
the nucleus, must be excluded from the fitting procedure,

Fig. 8. Brightness profile of NGC 5252. Surface bright-
ness is in units of erg s−1 cm−2 Å−1 arcsec−2. Fit to the
profile obtained from an oblate spheroid stellar density
distribution with an added nuclear point source.

but there is some level of arbitrariness in the decision of
exactly which portion of the rotation curve to use for the
dynamical modeling. As we showed in Sec. 3, based on
the behaviour of gas velocity, line width and flux, it ap-
pears that it is possible to isolate the component extend-
ing the regular nuclear velocity field from the perturbed
high velocity patches, at least within 0.′′2 < r < 0.′′4 from
the nucleus. Nonetheless, we prefer to always examine the
robustness of our results against the more conservative
choice of excluding altogether this critical spatial region.
For the off-nuclear slits the high velocity component asso-
ciated to the off-nuclear knots is clearly also present (see
e.g. the local velocity minima at r=-0.′′3 and -0.′′6, corre-
sponding to maxima of flux in Fig. 5) but here the sig-
nal to noise is insufficient to deblend it from the narrow
component. We conservatively used only the 5 five central
points of OFF1 and OFF2 and those at radii larger than
0.′′8. The fit was also constrained using the values of the
line width over the same regions.

The observed emission line surface brightness was
modeled with a composition of two Gaussians, the first
reproducing the central emission peak while the second
accounts for the brightness behaviour at large radii. This
brightness distribution was used to build the synthetic
kinematic models.

Having fixed the line brightness distribution, the free
parameters of the fit are

– the systemic velocity, vsys,
– the impact parameter (i.e. the distance between the

nuclear slit center and the center of rotation) b,
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– the position of the galaxy center along the nuclear slit
s0,

– the angle between the slits and the line of nodes, θ,
– the disk inclination i,
– the mass to light ratio, Υ,
– the black hole mass MBH .

Concerning the disk inclination, in a oblate spheroid,
the stable orbits of the gas are coplanar with the principal
plane of the potential and it is possible to directly asso-
ciate the galaxy inclination and line of nodes with those
of the circumnuclear gas. However, the potential shape
is not sufficiently well determined by the isophotal fitting
down to the innermost regions of the galaxy and it is quite
possible that a change of principal plane might occur at
the smallest radii, in particular in the presence of a su-
permassive black hole. We then preferred to leave the disk
inclination as a free parameter of the fit.

We then performed a χ2 minimization allowing all pa-
rameters to vary freely. We also tested that the effects of
assuming different galaxy inclinations for the deprojection
of the stars surface brightness have a negligible impact on
the final values of the free parameters.

The best fit to our data is shown in Fig. 9 and is ob-
tained for the set of parameters reported in Table 1. The
residuals between the fit and the data (see Fig. 13, up-
per panel) show the good agreement between the model
and the observed velocity points and line width indicat-
ing that the kinematics of gas in the circumnuclear regions
of NGC 5252 can be successfully accounted for by circu-
lar motions in a thin disk. We also note that, contrarily
to results obtained in similar studies (Barth et al. 2001,
Verdoes Kleijn et al. 2000, 2002), no additional source of
internal gas speed is needed, in addition to rotational or
instrumental broadening, to reproduce the behaviour of
line width.

To estimate the uncertainty associated to the black
hole mass estimate we explored its variation with respect
to the other free parameters, and in particular with those
that are more strongly coupled to it, the gas inclination i
and the mass-to-light ratio Υ.

For the gas inclination, in the case of NGC 5252 the
orientation of the galaxy is constrained to be larger than
53◦. On the other hand, even if a change of orientation
occurs at small radii, since NGC 5252 is classified as a
Seyfert 2, invoking the unified scheme imposes, as we de-
scribed in the Introduction, a tight lower bound on the
inclination of i > 30 (very conservative). We then selected
two representative values, 45◦ and 70◦, for our analysis.

At these fixed values of i we derived the best fit for each
pair of BH mass and Υ values leaving all other parameters
free to vary. We then build a χ2 grid at varying Υ and BH
mass.

The values of minimum χ2 are far larger than the val-
ues indicative of a good fit and this is in contrast with the
fact that the curves shown in the figures seem to trace the
data points well. The reason for this discrepancy is that χ2

is not properly normalized (e.g. because not all points are

Fig. 10. χ2 contours at varying Υ and MBH for an incli-
nation of 70◦. Contours are plotted for confidence levels
of 1, 2 and 3 σ. Plotted in a dotted contour is the 1 σ con-
fidence level for 45◦, while the plus sign mark the overall
best fit.

independent or as they do not include the uncertainties
in the relative wavelength calibration for the three slits)
and/or imply the presence of small deviations from pure
rotation. Following Barth et al. (2001) we then rescaled
the error bars by adding in quadrature a constant error
such that best fitting model provides χ2/dof ∼ 1. This is a
quite conservative approach as it has the effect of increas-
ing the final uncertainty on MBH . The additional error
are found to be 23 km s−1 for the velocity and 80 km s−1

for the velocity width. We rescaled all values of χ2 with
this procedure.

The result of this analysis is presented in Fig. 10 where
we plot the confidence levels. The overall 1 σ range of the
BH mass is MBH = 0.95+1.45

−0.45 × 109 M⊙.
At this stage we tested how the exclusion of the ve-

locity points in the region 0.′′2 < r < 0.′′4 affects this es-
timate re-running the modeling code. The difference from
the above estimate is marginal as we found a BH mass
only ∼ 10 % larger (1.07 × 109 M⊙) with an uncertainty
increased by ∼ 15 %.

We also estimated the allowed range for the remaining
free parameters looking at their range of values restricting
to the region of the Υ vs BH mass plane within the 1 σ
confidence level. All parameters are remarkably stable.

– The mass to light ratio in the H band Υ ranges from
0.27 to 0.93, values characteristic of a stellar popula-
tion with an age of a few Gyr (see Maraston 1998).
Only the lower end of this range corresponds to ages
which are uncomfortably low for an S0 galaxy; how-
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Fig. 9. Best fit to the rotation curves (left), line surface brightness (upper right panel) and line width (lower right
panel).

Table 1. Best fit parameter set

i b s0 θ Vsys Υ M (M⊙) χ2

r

77 -0.03 0.01 193 6950 0.46 0.95×109 16.5

ever, given the relatively weak correlation between
MBH and Υ, at least within the 1 σ confidence re-
gion, excluding a posteriori low values of mass to light
ratios would not significantly affect our estimates of
the black hole mass.

– The angle between the slit and the disk line of nodes
is 15◦ ± 10◦, corresponding to a position angle of the
disk major axis of 30◦± 10◦ to be compared with host
galaxy’s major axis at 15◦. This is consistent with the
idea that, although counterrotating with respect to the
stars, the nuclear gas is coplanar with the galaxy disk
as expected for settled orbits in the galaxy’s poten-
tial, As already mentioned in the Introduction, ground
based studies evidenced the presence of two gaseous
structure in the central regions of NGC 5252. The ve-
locity field seen by HST appears to be extension at the
smallest scale of the counterrotating ring.

– The systemic velocity found from our fit is 6950 ± 10
km s−1 (with an additional uncertainty of 12 km s−1

associated to the absolute wavelength calibration) and
it is consistent within the errors with the value of 6916
± 42 NGC 5252 reported by Falco et al. (1999).

5. Discussion

Our model fitting of the nuclear rotation curve of NGC
5252 indicates that the kinematics of gas in its innermost
regions can be successfully accounted for by circular mo-
tions in a thin disk when a point-like dark mass (presum-
ably a supermassive black hole) of MBH = 0.95×109 M⊙

is added to the galaxy potential.

Let us firstly explore how this mass determination is
connected with the properties of the host galaxy.

Concerning the connection between black hole and
bulge mass, Marconi & Hunt (2003) report a bulge mass
for NGC 5252 of 2.4×1011 M⊙. The value expected for
MBH in NGC 5252 from their correlation between MBH

and Mbul is 5.7 108 M⊙ in close agreement with our es-
timate.

Conversely, adopting the central velocity dispersion of
NGC 5252 reported by Nelson & Whittle (1995) of 190 ±

27 km s−1, the correlation between velocity dispersion and
black hole mass (in their different forms as presented by
Ferrarese & Merritt, 2000; Gebhardt et al. 2000; Tremaine
et al. 2002; Marconi & Hunt 2003) predicts a mass of
M = 1.0+1.0

−0.5 × 108 M⊙, where the error is dominated
by the uncertainty in σc. Taken at face value, our esti-
mate for the black hole mass of NGC 5252 is larger by
a factor ∼ 7 - 10 (depending on which best fit is used)
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than the value expected from this correlation (see Fig.
11). However, combining the relatively large uncertainty
on σc with the error on MBH the allowed range of upward
scatter for NGC 5252 is 0.3 - 1.2 dex, i.e. 1 - 4 times the
dispersion of the MBH - σc correlation.

Nonetheless, this suggests a more critical analysis of
our result. The most convincing evidence in favour of the
reality of the observed upward scatter comes from the best
fit to the rotation curves derived fixing the BH mass to
the value predicted by the correlation (i.e. M = 108 M⊙),
shown in Fig. 12. This model is unsatisfactory for several
reasons: the rotation curve is monotonic (it does not show
the observed fall off towards large radii) and, in order to fit
the large nuclear gradient, it overpredicts the amplitude of
the large scale velocity field; secondly, it does not produce
a sufficiently large line width in the central regions. Both
effects are clearly indicative of the fact that, adopting this
BH mass, the resulting nuclear potential well is not suf-
ficiently deep to account for the observed gas motions.
The residuals shown in Fig. 13 (central panel) confirm
the shortcoming of this model as they present a relatively
large amplitude (up to 50 km s−1) and, even more impor-
tantly, systematic departures on both sides of the nucleus.
The reduced χ2 for this model is 1.46. We conclude that
a mass larger than predicted by the correlation between
velocity dispersion and black hole mass is needed in the
case of NGC 5252. As a comparison, in the same Fig. 12,
we also show the best fit obtained without a central black
hole. The drawbacks of this model (for which χ2

r = 2.83)
are similar to those discussed for M = 108 M⊙ but quan-
titatively more prominent.

There are several possibilities to account for the up-
ward scatter in MBH -σc plane. For example, the mea-
surement of σc can be affected by the presence of the AGN
emission lines. The most likely contaminants are the [Fe
VI]λ5158 and [Fe VII]λ5177 lines. As they lie on the wings
of the Mg absorption lines, this would cause a decrease in
the measured σc. Similarly, correction for a possible rota-
tional contribution to σc, not unexpected since NGC 5252
is a S0 galaxy, would also enhance the observed scatter. An
alternative interpretation comes from inspection of Fig. 1
of Marconi & Hunt (here reproduced as the right panel of
Fig. 11): this figure shows that the residuals of the MBH

- σc relation correlate with the galaxy’s effective radius
Re. The brightness profile of NGC 5252 is well described
with a de Vaucouleurs law (its Sersic index is 3.92 in the J
band) with Re = 9.7 kpc (Marconi & Hunt 2003), among
the largest values for galaxies with measured MBH . In this
sense the scatter from the MBH - σc correlation is not un-
expected, strengthening the possible role of this structural
parameter in driving the correlations between bulge and
black hole properties.

It is also important to compare the properties of NGC
5252 with those of other active galaxies, in particular with
Seyfert galaxies and quasars for which estimates of black
hole masses are available, derived combining the widths
of the broad lines with measurements of the BLR radius,
RBLR; BLR radii are derived in part directly from the re-

Fig. 13. Residuals between the kinematical models and
the observed velocity points on the nuclear slit for the best
fit, corresponding to MBH = 9.5 108M⊙ (upper panel),
for a black hole mass of MBH = 108M⊙ discussed in
section 5 (middle panel) and for the case without central
black hole (lower panel.

verberation mapping technique and in part from the cor-
relation between RBLR and the optical nuclear luminosity
(Kaspi et al. 2000, McLure & Dunlop 2001). At least for
a sub-sample of Seyfert galaxies it has been possible to
show that adopting these estimate they follow both the σc

- MBH and Mbulge - MBH correlations defined by dynam-
ical estimates of BH masses (e.g. Wandel 2002, Peterson
2003) supporting the reliability of these estimates. In Fig.
14 we present the data for Seyfert and QSO discussed by
McLure and Dunlop (2001) including the new determi-
nation of BH mass for NGC 5252. Clearly NGC 5252 is
an outlier with respect to Seyfert galaxies, as it harbours
a black hole larger than typical for these objects, but its
host galaxy is also substantially brighter than average. On
the other hand, both the black hole and the bulge’s mass
are typical of the range estimated for radio-quiet quasars.

The estimate of the black hole mass in NGC 5252 al-
lows us to explore the nature of accretion at work in this
source. The luminosity of NGC 5252 in the hard X-ray
band 2 - 10 keV is ∼ 2× 1043 erg s−1 (Cappi et al. 1996).
For a standard quasars spectrum the luminosity in this
band is ∼ 1/30 of the total bolometric luminosity (Elvis
et al. 1994). As the Eddington luminosity for a 0.95 109

M⊙ black hole is LEdd = 1.3 1047 erg s−1, we estimate
that NGC 5252 is emitting at a fraction ∼ 0.005 of LEdd.
Note that, while on the one hand, this value is substan-
tially lower than expected for a standard QSO (0.1 - 0.5,
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Fig. 11. left) MBH vs. stellar velocity dispersion σc and middle) MBH vs. bulge mass with the best fits obtained from
a bisector linear regression analysis (solid line) and ordinary least-square (dashed line); right) residual of the MBH -
σc correlation vs. Re from Marconi & Hunt (2003)

Fig. 12. Best fit of the rotation curves (left), to the line surface brightness (upper right panel) and line width (lower
right panel) obtained for a black mass of M = 108 M⊙ predicted from the correlation between BHM and velocity
dispersion. The dotted lines correspond to the case of no central black hole.

e.g. McLure & Dunlop 2001), on the other it is signifi-
cantly higher than what is derived for the low luminosity
radio-galaxies discussed in the Introduction. A possible
difference in the accretion process in NGC 5252 with re-
spect to other Seyfert galaxies is also supported by its
spectrum: contrarily to the extended emission line region
where the optical line ratios are typical of Seyfert galax-
ies, in its central component they are typical of LINERs
(Goncalves et al. 1998) and its X-ray spectrum is unusu-
ally flat (Γ ∼ 1.45, Cappi et al. 1996).

We conclude that NGC 5252 appears to be the relic
of a luminous quasar, harbouring a large mass black hole,
that is now probably accreting at a low rate, rather than
a low black hole mass QSO counterpart.

6. Summary and conclusions

We presented results from HST/STIS long-slit spec-
troscopy of the Seyfert 2 galaxy NGC 5252 at a redshift z
= 0.023. The nuclear velocity field shows a general reflec-
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Fig. 14. Host galaxy’s magnitude versus black hole mass
for radio-quiet QSO (open circles), radio-loud QSO (filled
circles) and Seyfert 1 (squares) taken from McLure &
Dunlop (2001). The cross marks the location of NGC 5252
in this plane that falls in the region populated by QSO.

tion symmetry and it is consistent with the presence of gas
in regular rotation; however there are superposed patches
of disturbed gas, localized on two off-nuclear emission-line
blobs. We separated these two components on the basis of
the behaviour of line width and flux, discarding the re-
gions where the disturbed gas appears to dominate. The
dynamics of the rotating gas can then be accurately repro-
duced by motions in a thin disk when a compact dark mass
of MBH = 0.95+1.45

−0.45×109 M⊙, very likely a supermassive
black hole, is added to the stellar mass component; the es-
timate of MBH is quite stable against different choices of
the spatial regions modeled. This result provides a posteri-

ori support for our interpretation of a gravitational origin
for the observed gas motion, also considering the internal
consistency of our modeling, e.g. the value of the galaxy
mass-to-light ratio, the reduced velocity gradient in the
off-nuclear slits with respect to what is measured on the
nucleus. Nonetheless, we cannot rule out alternative ex-
planations only on the basis of the data presented in this
paper.

The MBH value thus estimated is in good agreement
with the correlation between bulge and BH mass, while
it is larger that predicted by the correlation proposed be-
tween BH mass vs velocity dispersion (MBH ∼ 108), with
an upward scatter between 0.3 and 1.2 dex, i.e. 1 - 4 times
the dispersion of the correlation. We show that adopting
MBH ∼ 108 it is impossible to obtain a satisfactory fit to
the data. A possible interpretation of this scatter comes

from the presence of a correlation between the residuals

of the MBH - σc relation with the galaxy’s effective ra-
dius Re. In fact NGC 5252 has one of the largest values of
Re for galaxies with measured MBH , suggesting a possi-
ble role of this parameter in the connection between bulge
and black hole properties.

Concerning the properties of its active nucleus, NGC
5252 is an outlier when compared to the available data
for Seyfert galaxies, not only as it harbours a black hole
larger than typical for these objects, but also as its host
galaxy is substantially brighter than average for Seyfert
galaxies. On the other hand, both the black hole and
the bulge’s mass are typical of the range for radio-quiet
quasars. Combining the determined BH mass with the
hard X-ray luminosity, we estimate that NGC 5252 is
emitting at a fraction ∼ 0.005 of LEdd. This active nucleus
thus appears to be a quasar relic, now probably accreting
at a relatively low rate, rather than a low black hole mass
counterpart of QSOs.
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