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ABSTRACT

Chandrasekhar’s theory of stellar encounters predicts a dependence of the Brownian motion of a mas-
sive particle on the velocity distribution of the perturbing stars. One consequence is that the expectation
value of the massive object’s kinetic energy can be different from that of the perturbers. This effect is
shown to be modest however, and substantially smaller than claimed in a recent study based on an
approximate treatment of the encounter equations.

Subject headings: black hole physics — gravitation — gravitational waves — galaxies: nuclei

1. INTRODUCTION

A massive object at the center of a stellar system undergoes a random walk in momentum space as its motion is perturbed
by gravitational encounters with nearby stars. After the decay of transients, the steady-state velocity distribution f(v)
of the massive object is a balance between the accelerating forces of random perturbations and the decelerating force of
dynamical friction. Chandrasekhar’s (1942,1943) theory of gravitational encounters provides expressions for both forces
as functions of the mass and velocity of the test particle, and the masses and velocity distribution of the field stars. In the
case that the latter have a Maxwellian velocity distribution, the steady-state f(v) describing the motion of the massive
object is also a Maxwellian, with rms velocity given by the equipartition relation

v2
rms =

m

M
u2

rms, (1)

where M and v refer to the massive object and m and u to the perturbers.
One difference between Brownian motion in gravitating and non-gravitating systems is that the velocity distribution

ff (u) of the perturbers in a galaxy or star cluster can be substantially non-Maxwellian. The steady-state velocity
distribution of the massive object is still predicted to be Maxwellian (Merritt 2001), but there is no reason for vrms to
satisfy equation (1). In this note, the steady-state f(v) is derived for a massive particle that is subject to gravitational
perturbations from field stars with an arbitrary distribution of velocities. Departures from equipartition are found to be
small, even when the background is strongly non-Maxwellian. The stronger dependence of vrms on ff (u) claimed in a
recent study (Chatterjee, Hernquist & Loeb 2002, hereafter CHL) is shown to result from approximations made in the
application of Chandrasekhar’s theory.

2. STEADY-STATE VELOCITY DISTRIBUTIONS

The steady-state velocity distribution f(v) of a massive object (“black hole”) that interacts via gravitational scattering
with stars is given by the time-independent solution of the Fokker-Planck equation. Following the treatment in Merritt
(2001) (hereafter Paper I), we can write

0 = f

[

〈∆v‖〉 +
1

2v

(

〈∆v2
⊥〉 − 2〈∆v2

‖〉
)

]

− 1

2

∂

∂v

(

f〈∆v2
‖〉

)

(2)

where 〈∆v‖〉, 〈∆v2
‖〉 and 〈∆v2

⊥〉 are the standard diffusion coefficients describing the motion of the black hole. In a steady

state, we expect that v will be of order
√

m/M ≪ 1 times the typical stellar velocity. Expanding the diffusion coefficients
about v = 0,

〈∆v‖〉 = −Av +Bv3 . . . , (3a)

〈∆v2
‖〉 = C +Dv2 . . . , (3b)

〈∆v2
⊥〉 = 2(C + Fv2) . . . , (3c)

substituting into equation (2), and retaining the lowest order terms in v gives

0 ≈ (A+ 2D − F )f +
C

2

∂f

∂v

1

v
(4a)

≈ Af +
C

2

∂f

∂v

1

v
(4b)

1
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since A is of order M/m times D and F . This has solution

f(v) = f0e
−v2/2σ2

, (5a)

σ2 =
C

2A
, (5b)

i.e. the black hole’s velocity follows a Maxwellian distribution with 1D velocity dispersion σ.
If the background stellar distribution is assumed to be infinite and homogeneous, the diffusion coefficients are (Paper

I)

〈∆v‖〉 = −16π2G2Mmn

∫ ∞

0

du
(u

v

)2

ff (u)H1(v, u, pmax), (6a)

〈∆v2
‖〉 =

32

3
π2G2m2nv

∫ ∞

0

du
(u

v

)2

ff (u)H2(v, u, pmax), (6b)

where ff (u) is the velocity distribution of the field stars, normalized to unit number; n is the field star density; pmax is
the maximum impact parameter at which incoming stars are assumed to perturb the black hole; and

H1(v, u, pmax) =
1

8u

∫ v+u

|v−u|

dV

(

1 +
v2 − u2

V 2

)

ln

(

1 +
p2

maxV
4

G2M2

)

, (7a)

H2(v, u, pmax) =
3

8u

∫ v+u

|v−u|

dV

{[

1 − V 2

4v2

(

1 +
v2 − u2

V 2

)2
]

ln

(

1 +
p2

maxV
4

G2M2

)

(7b)

+

[

3

4

V 2

v2

(

1 +
v2 − u2

V 2

)

− 1

]

p2
maxV

4/G2M2

1 + p2
maxV

4/G2M2

}

Equation (7b) includes the “non-dominant” terms which are of order unity when pmax is large. The integration variable
V is the relative velocity of star and black hole when the star is at infinity.

In the standard approximation (e.g. Rosenbluth, MacDonald & Judd 1957; Spitzer 1987), the non-dominant terms are
neglected, and the logarithmic terms are taken outside the integrals, since they are slowly varying with respect to V . One
writes

ln

(

1 +
p2

maxV
4

G2M2

)

≈ 2 lnΛ, (8)

a constant, and

〈∆v‖〉 = −16π2G2Mmn lnΛ

∫ v

0

du
(u

v

)2

ff (u), (9a)

〈∆v2
‖〉 =

32

3
π2G2m2n ln Λv

[
∫ v

0

du
(u

v

)4

ff (u) +

∫ ∞

v

du
(u

v

)

ff (u)

]

, (9b)

with leading terms

AΛ =
16

3
π2G2Mmn lnΛff(0), (10a)

CΛ =
32

3
π2G2m2n lnΛ

∫ ∞

0

duuff(u). (10b)

The predicted 1D velocity dispersion of the black hole is then (CHL)

σ2
Λ =

CΛ

2AΛ
=

(m

M

)

ff (0)−1

∫ ∞

0

duuff(u). (11)

However when the velocity of the massive particle is very low, the logarithms in equations (7a-b) will be close to zero
for all stars with u < v, i.e. all stars that enter into the dynamical friction integral (9a). It is unclear in this case whether
removing the logarithm from the integrands is a reasonable approximation (Chandrasekhar 1943; White 1949).

Returning to the exact expressions (6a-7b) and expanding to lowest order in v, we find after some algebra:

A =
32

3
π2G2Mmn

∫ ∞

0

du

u
ff(u)

p2
maxu

4/G2M2

1 + p2
maxu

4/G2M2
, (12a)

C =
16

3
π2G2m2n

∫ ∞

0

duuff(u) log

(

1 +
p2

maxu
4

G2M2

)

. (12b)
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The non-dominant terms may be shown not to contribute to this order. Note that both diffusion coefficients now depend
on the field-star velocity distribution at all values of u, and in fact the field stars that produce the dynamical friction force
can be shown to have roughly the same velocity distribution as ff (u) (Paper I). In the standard treatment with “log Λ’s
removed,” the dynamical friction force comes entirely from stars with u < v (as in equation 9a), a physically unreasonable
result.

The black hole’s velocity dispersion is now

σ2 =
C

2A
=

1

4

m

M

∫ ∞

0 duuff(u) log
(

1 +
p2

maxu4

G2M2

)

∫ ∞

0 duu−1ff (u)
p2

maxu4/G2M2

1+p2
maxu4/G2M2

. (13)

If ff (u) is differentiable at low and high u, the denominator can be integrated by parts yielding

σ2 =
m

M

∫ ∞

0 duuff(u) log
(

1 +
p2

maxu4

G2M2

)

∫ ∞

0
du (−dff/du) ff(u) log

(

1 +
p2

maxu4

G2M2

) . (14)

This reduces to the approximate expression, equation (11), if the logarithmic terms are “taken out of the integrals.”

In the case of a Maxwellian field star velocity distribution, ff (u) = fM (u) = f0e
−u2/2σ2

f , the exact coefficients are

AM =
4
√

2π

3

G2Mmn

σ3
f

G(RM ), CM =
8
√

2π

3

G2m2n

σf
G(RM ), (15a)

G(RM ) ≡ 1

2

∫ ∞

0

dz e−z ln
(

1 + 4R2
Mz2

)

, RM ≡
pmaxσ

2
f

GM
. (15b)

and

σ2 =
CM

2AM
=

(m

M

)

σ2
f , (16)

independent of pmax (Paper I). Remarkably, this is also the value of σ2 given by the approximate expression (11) when
ff (u) = fM (u).

For all other – non-Maxwellian – ff ’s, however, equations (13) and (11) yield different results for σ2, and each is
different from the Maxwellian value. Furthermore σ2 as predicted by the exact expression (13) is in general a function of
the maximum impact parameter, since C and A depend differently on pmax.

Without loss of generality, we can express the dependence of σ2 on pmax via a dimensionless variable R, where R ≡
pmaxσ̃

2/GM and σ̃ is a 1D velocity dispersion that characterizes the field star velocity distribution. Equating G(R) in

equation (15b) with ln Λ ≡ ln(pmax/pmin) reveals that pmin ≈ GM/
√

2σf (Paper I), hence R ≈ pmax/pmin; note that
pmin is also approximately equal to the “radius of influence” of the black hole. When pmax is large, i.e. R ≫ 1, the
logarithmic terms in equation (14) are nearly constant and σ2 reduces to the value (11) derived by “taking out ln Λ.” But
for a supermassive black hole in a galactic nucleus, pmax is of order the core radius rc of the stellar distribution (Paper
I), and observed core radii are of order a few times GM/σ2

f at most (e.g. Poon & Merritt 2001); hence pmax ∼> pmin and

R is of order unity. Thus we expect the exact and approximate expressions for σ2 to be substantially different in many
astrophysically interesting situations.

3. EXAMPLES

The equations derived above can be applied to various field-star distributions and the results for σ compared with the
equipartition value. Following CHL, we quantify the departure of σ from equipartition via the parameter η, defined as

η ≡ M

m

σ2

σ2
⋆

(17)

with σ⋆ the stellar velocity dispersion at the location of the black hole; η is unity in the case of equipartition. Both σ and
σ⋆ are computed under the assumption that the black hole sits at the center of the stellar system. We emphasize that
the effect of the black hole on the stellar background is ignored.

King’s (1966) family of models

fK(E) =

{

(2πσ2
K)−3/2

(

eE/σ2

K − 1
)

, if E ≥ 0;

0, otherwise
(18)

have nearly Maxwellian central velocity distributions. Here E is the binding energy, E = −u2/2+ψ(r), and ψ(r) = −Φ(r)
with Φ(r) the gravitational potential due to the stars, equal to zero at the model’s edge. The parameter W ≡ ψ(0)/σ2

K is
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a dimensionless measure of the central potential. For large W , the King model parameter σK is nearly equal to the true
central velocity dispersion σ⋆, or

σ2
⋆ =

2

3

∫ W

0 dE (W − E)
3/2

fK(E)
∫ W

0 dE
√
W − EfK(E)

. (19)

A natural definition for R is

RK ≡ pmaxσ
2
K

GM
. (20)

King models having W ∼> 10 fit the observed brightness profiles of some elliptical galaxies moderately well. Setting M to

∼ 0.1% of the total stellar mass and equating pmax to the core radius gives RK of order unity when W ∼> 10. Figure 1
shows that η is extremely close to one when R and W have these values. King models with smaller W do not represent
galaxies well – their cores are too large – but are good fits to some globular clusters. The appropriate value of RK for
globular clusters is unclear however since it is not known whether such systems harbor massive central objects or what
their likely masses are. If we suppose that the black hole has a mass equal to a fraction F of the stellar mass in the core,
then RK ≈ F−1. An upper limit on R comes from assuming that the black hole has a minimum mass ∼ 10M⊙ and that
the core mass is ∼ 5 × 104M⊙, its value in a massive, large-cored globular cluster like ω Centauri (e.g. Merritt, Meylan
& Mayor 1997). Then F ≈ 2 × 10−4 and RK ≈ 5000. In such an extreme case, Figure 1 shows that η can approach its
asymptotic limit of 1.75 (CHL), but only in highly unphysical models with W ∼< 2.

Next we consider the polytropic models, some of which have strongly non-Maxwellian velocity distributions. The
Plummer (1911) polytrope has ff = f5(E), where

fn(E) =

{

f0E
n− 3

2 , if E > 0;
0, otherwise

(21)

and the gravitational potential is again defined to be zero at the model’s edge, which in this case lies at infinity. The
density profile is

ρ(r) =
3Mgala

2

4π

1

(r2 + a2)
5/2

(22)

and the central velocity dispersion is σ2
⋆(0) = GMgal/6a. We define

RP ≡ pmaxσ
2
⋆(0)

GM
(23)

which gives

η =
6

7

∫ 2

0
dx (2 − x)7/2 log

(

1 + 36R2x2
)

∫ 2

0 dx (2 − x)
5/2

log (1 + 36R2x2)
. (24)

As R → ∞, η → 4/3 (CHL). Figure 2 shows η as a function of R. Values of R appropriate to supermassive black holes
in galactic nuclei again give η close to one and the asymptotic value is approached only slowly as R is increased.

The third example considered by CHL was the n = 1 polytrope. The structure of this model makes it a poor represen-
tation of any stellar system, since the density profile:

ρ(r) =
Mgal

4π2a2
r−1 sin(r/a), r < πa (25)

is “all core.” Furthermore the distribution function is singular at the model’s edge. For this reason we must use the first
of the two expressions derived above for σ2, equation (13), since the second assumes differentiability of ff . We define R
in terms of the central velocity dispersion as in equation (23), where σ2

⋆(0) = GMgal/2πa. The result for η is

η =
1

16πR2

∫ 1/π

0 dx
(

1
π − x

)−1/2
log

(

1 + 16π2R2
)

∫ 1/π

0
dxx

(

1
π − x

)−1/2
(1 + 16π2R2)−1

. (26)

Figure 3 plots this function. The asymptotic value η = 4 (CHL) is again reached only very gradually as R increases.

4. DISCUSSION

The foregoing should not be taken to imply that a massive object at the center of a stellar system should always be in or
near a state of equipartition with respect to its less-massive perturbers. Indeed it is not even clear what Chandrasekhar’s
theory would predict in many physically interesting situations. Chandrasekhar’s theory is local in the sense that the
density and velocity distribution of the field stars are assumed to everywhere be the same as they are at the location of
the test particle. The effect of a massive particle on the structure of the background stellar system is also ignored. Both
of these assumptions make it difficult to apply the theory to the case of Brownian motion of a supermassive black hole



5

at the center of a galactic nucleus. The density of stars falls steeply away from the black hole in most galaxies; indeed a
density falloff as steep as ρ ∼ r−1/2 is required for self-consistency if the stellar velocities are isotropic near the black hole
(as assumed here). Furthermore the presence of the black hole implies a steeply-rising stellar velocity dispersion within
its sphere of influence, r ∼< GM/σ2

⋆, and the black hole’s Brownian motion would be influenced by these higher velocities.
The likely importance of such effects is suggested by a recent numerical study of Brownian motion in a galaxy with a

steep, ρ ∼ r−3/2 density cusp (Dorband, Hemsendorf & Merritt 2003). The stellar velocity dispersion in this model has a
central value of zero in the absence of the black hole, yet the numerical integrations reveal a significant Brownian motion
of the “black hole.” Evidently the massive particles in these simulations are responding to stars far from the center, or to
stars whose motions have themselves been influenced by the presence of the black hole, or both.

This work was supported by grants AST-0071099 and AST-0206031 from the NSF and by grant MAG5-9046 from
NASA.

REFERENCES

Chandrasekhar, S. 1942, Principles of Stellar Dynamics (Chicago:
Univ. of Chicago Press)

Chandrasekhar, S. 1943, ApJ, 97, 255
Chatterjee, P., Hernquist, L. & Loeb, A. 2002, Phys. Rev. Lett., 88,

121103
Dorband, E. N., Hemsendorf, M. & Merritt, D. 2003, J. Comp. Phys.,

185, 484
King, I. R. 1966, AJ, 71, 64
Merritt, D. 2001, ApJ, 556, 245

Merritt, D., Meylan, G. & Mayor, M. 1997, AJ, 114, 1074
Plummer, H. C. 1911, MNRAS, 71, 460
Poon, M. & Merritt, D. 2001, ApJ, 549, 192
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957, Phys.

Rev., 107, 1
Spitzer, L. 1987, Dynamical Evolution of Globular Clusters

(Princeton: Princeton Univ. Press)
White, M. L. 1949, ApJ, 109, 159



6

Fig. 1.— Departure from equipartition of a massive object at the center of a King-model galaxy. Thin curves are for R = 0.1, 1, 10, 100, 1000
moving upward, where R is the dimensionless maximum impact parameter defined by equation (20). Thick curve is the asymptotic form as
R → ∞. R is expected to be of order unity for a supermassive black hole at the center of a galaxy.
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Fig. 2.— Values of η for a massive object at the center of a Plummer-model galaxy, as a function of the dimensionless maximum impact
parameter R of equation (23). Upper dashed line shows asymptotic value for large R.
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Fig. 3.— Like Figure 2, for the n = 1 polytrope.
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