Investment Values of Lodging Property: Proof of Value for Selected Models

Jan A. deRoos
Cornell University, jad10@cornell.edu
Stephen Rushmore
Hospitality Valuation Services

Follow this and additional works at: https://scholarship.sha.cornell.edu/articles
Part of the Hospitality Administration and Management Commons

Recommended Citation

deRoos, J. A., \& Rushmore, S. (1999). Investment values of lodging property: Proof of value for selected models [Electronic version]. Cornell Hotel and Restaurant Administration Quarterly, 37(1), 89-96. Retrieved [insert date], from Cornell University, School of Hospitality Administration site:
http://scholarship.sha.cornell.edu/articles/172/

This Article or Chapter is brought to you for free and open access by the School of Hotel Administration Collection at The Scholarly Commons. It has been accepted for inclusion in Articles and Chapters by an authorized administrator of The Scholarly Commons. For more information, please contact hotellibrary@cornell.edu.

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.

Investment Values of Lodging Property: Proof of Value for Selected Models

Abstract

In an earlier article the authors introduced two models that demonstrated the effects of taxes and lender criteria on a property estimated value. Here's the proof of value for those models.

Keywords
lodging property, property price, property tax, lender criteria
Disciplines
Hospitality Administration and Management
Comments
Required Publisher Statement
© Cornell University. Reprinted with permission. All rights reserved.

Investment Values

of Lodging

Property

In an earlier article the authors introduced two models that demonstrated the effects of taxes and lender criteria on a property's estimated value. Here's the prool of value for those models.
by Jan A. deRoos and
Stephen Rushmore

1
n an ealier, compamion article on modeling the effects of income taxes and alternative lender criteria on investment yalues, we presented two valuation models for lodging properties that can be used to estimate the value of a hotel or inotel on an after-tax basis. The models allow one to study the effects of two

[^0]© 9996 Caf iel Univetsty

Exhibit 1
 Values for all calculations

Our proof uses these numerical

 values:| M | 75% |
| :--- | :---: |
| n | 10 years |
| r | varies |
| NOIR | $4,031,000$ |
| SE | 3% |
| R | 11.5% |
| i | 10.25% |
| m | 30 years |
| $t 1$ | 39% |
| $t 2$ | 28% |
| $L 1$ | 39 years |
| $L 2$ | 7 years |
| B | 60% |
| $B r$ | 30% |
| F | 20% |
| $F r$ | 70% |

The net operating incomes and reserves for replacement are as follows:

Year	Net operating income	Reserve for replacement
1	$2,112,000$	320,000
2	$2,423,000$	344,000
3	$2,728,000$	370,230
4	$2,865,000$	397,740
5	$3,008,000$	417,630
6	$3,158,000$	438,510
7	$3,316,000$	460,440
8	$3,482,000$	483,460
9	$3,656,000$	507,630
10	$3,839,000$	533,010

Note: Some of these values are taken from: Stephen Rushmore, "Seven Current Hotel-Valuation Techniques," Comell Hotel and Restaurant Administration Quarterly, Vol. 31. No. 4 (August 1992), pp. 49-56.
distinct lender underwriting criteria: (1) the loan-to-value ratio (i.e., value-based lending) and (2) the alternative debt-service-coverage ratio (i.e., cash-flow-based lending). In that earlier report the models are presented and solved algebraically; an example is presented showing the difference between before-tax and after-tax equity yield rates, while holding value constant; and the effects of the two underwriting criteria are demonstrated.
In this part of the analysis we provide a proof of value. The proof is necessary to verify the accuracy of the model and to demonstrate the ability of the model to produce robust results across a wide range of parameters.

The proof is presented using the input values from our previous article, reproduced here as Exhibit 1. The proof is limited to Model 1 and Model 2 and is structured as a net-present-value (NPV) problem, solving for value given the other input values. If the answer we derived in the first article is correct, then the NPV of the equity cash flows developed here will be equal to that answer.

Base Case, Model 1 (before-lax analysis)

Inputs: loan-to-value ratio is 75 percent; before-tax equity yield is 21.0 percent.

The value is proven by discounting the cash flows to the mortgage and equity components at their required rate of return. If the sum of the annual debt service plus ending mortgage balance discounted at the mortgage interest rate equals the initial mortgage balance; and if the sum of the annual equity dividends plus equity residual discounted at the equity yield rate equals the amount of equity capital invested, then $\$ 24,041,000$ is the correct value using the algebraic model.

Using the assumed financial structure set forth for this scenario, the value can be allocated between the debt and equity as follows:
Mortgage component
(75 percent)
$\$ 18,031,000$
Equity component
(25 percent)
6,010,000
\$24,041,000
The annual debt service is calculated by multiplying the mortgage component by the mortgage constant, as follows:
Mortgage component $\$ 18,031,000$
Mortgage constant
(10.25 percent, 30 years) . 108297

Annual debt service $\$ 1,953,000$
The cash flow to equity is calculated by deducting the debt service from the projected net operating income as shown in Exhibit 2.

The reversion value is calculated by capitalizing the eleventh year net operating income at 11.5 percent, as follows:
Reversion value
$(\$ 4,031,000 / .115) \quad \$ 35,052,000$
less
Brokerage and legal fees
(3 percent) $\quad 1,052,000$
Mortgage balance $\quad 16,344,000$
Equity residual $\quad \$ 17,656,000$
Exhibit 3 demonstrates that the
lender will receive a 10.25 -percent rate of return.

Exhibit 4 demonstrates that the equity investor will receive a 21 percent rate of return on the equity invested (equity yield).

Since the two components of capital (debt and equity) are receiving their desired rate of return, the value of $\$ 24,041,000$ has been proved.

Case Two, Model 1 (before-tax analysis)

Inputs: no debt; unleveraged total property yield is 14.1 percent.
The value is proven if the sum of the annual total cash flows plus the
reversion value discounted at the total property yield equals the value of the hotel $(\$ 24,041,000)$.

The reversion value at the end of the tenth year is calculated as follows:
Reversion value

$$
(\$ 4,031,000 / .115)
$$

\$35,052,000

less

Brokerage and legal fees
(3 percent)
Reversion
1,052,000

Exhibit 5 shows that discounting the annual cash flow at a discount rate of 14.1 percent (total property yield) produces the $\$ 24,041,000$ valuation.

Case Three, Model 2 (after-tax analysis)

Inputs: loan-to-value ratio is 75 percent; after-tax equity yield is 17.5 percent.
The value is proven if the sum of the annual after-tax cash flows to equity (equity dividends) plus the after-tax equity residual discounted at the after-tax equity yield rate equals the amount of equity capital invested.

The assumed financial structure set forth for this scenario is the same as the base case (Model 1, on the previous page), allocated between debt and equity as follows (and as shown earlier):

Mortgage component (75 percent)	$\$ 18,031,000$
Equity component (25 percent)	$6,010,000$
\quad Total	$\$ 24,041,000$

Calculating the annual debt service is the same as for the base case and is repeated here:
Mortgage component $\$ 18,031,000$
Mortgage constant
(10.25 percent, 30 years) . 108297

Annual debt service $\$ 1,953,000$
Using annual debt service of $\$ 1,953,000$, and assuming one annual mortgage payment, the amortization table shown in Exhibit 6

Exhibit 2
Calculation of cash flow to equity (base case; in \$000s)

Exhibit 3					
Mortgage-component yield (IRR = 10.25\%)					
Present value					
	Total annual debt service		(PV) of \$1 @ 10.25\%		Discounted cash flow
1	1,953	\times	0.907031	=	1,771
2	1,953	\times	0.822706	$=$	1,606
3	1,953	\times	0.746219	$=$	1,457
4	1,953	\times	0.676644	=	1,322
5	1,953	\times	0.613918	=	1,199
6	1,953	\times	0.556843	=	1,087
7	1,953	\times	0.505074	=	986
8	1,953	\times	0.458117	=	895
9	1,953	\times	0.415527	=	811
10	18,297*	\times	0.376896	$=$	6,896
Value of mortgage component					18,031
*10th year debt service of plus outstanding mortgage balance of					$\begin{array}{r} 1,953 \\ 16,344 \\ \hline \end{array}$
Numbers are 000s of dollars					18,297

Exhibit 4					
Equity-component yield (IRR = 21\%)					
	Net Income to Equity		resent valu (PV) of \$1 @ 21%		Discounted cash flow
1	159	\times	0.826446	=	132
2	470	\times	0.683013	=	321
3	775	\times	0.564474	=	438
4	912	\times	0.466507	=	426
5	1,055	\times	0.385543	=	407
6	1,205	\times	0.318631	=	384
7	1,363	\times	0.263331	=	359
8	1,529	\times	0.217629	=	333
9	1,703	\times	0.179859	=	306
10	19,542*	\times	0.148644	=	2,905
Value of equity component					6,010
*10th year net income of plus net sale proceeds to equity o					$\begin{array}{r} 1,886 \\ 17,656 \\ \hline \end{array}$
Numbers are 000s of dollars					19,542

Exhibit 5
 Total property yield (IRR = 14.06\%)

Year	Net income before debt service		Present value (PV) of \$1 @ 14.06\%		Discounted cash flow
1	2,112	x	0.876705	=	1,852
2	2,423	\times	0.768611	=	1,862
3	2,728	\times	0.673845	=	1,838
4	2,865	\times	0.590763	=	1,693
5	3,008	\times	0.517925	=	1,558
6	3,158	\times	0.454067	=	1,434
7	3,316	\times	0.398083	=	1,320
8	3,482	\times	0.349001	=	1,215
9	3,656	\times	0.305971	=	1,119
10	37,839*	\times	0.268246	=	10,150
Total property value					24,041
*10th year net income before debt service of plus sale proceeds of					3,839
					34,000
Numbers are 000s of dollars					37,839

shows the debt service, annual interest, mortgage balance at the beginning and end of each year, and the amount of amortization.

To determine the taxable income, the amount of the annual depreciation must be quantified. Using the acquisition price of $\$ 24,041,000$, the following table shows the allocation of the basis among the three components: building (60 percent); furniture, fixtures, and equipment (FF\&E, 20 percent); and land (20 percent).

Improvements:	
Building	$\$ 14,425,000$
FF\&E	$4,808,000$
Land:	$4,808,000$
Total	$\$ 24,041,000$

The straight-line depreciation method will be used, with the building component being depreciated in 39 years and the FF\&E component being depreciated in seven years.

The reserve for replacement needs to be factored into the depreciation calculations. It is assumed that each year's reserve for replacement will be spent in a lump sum on the last of each year and will increase the basis in the following year. Thirty percent of the reserve for replacement will be spent on building components (39-year assets) and 70 percent on the acquisition of FF\&E (seven-year assets). The depreciation of reserve-forreplacement expenditures in a year will commence the following year. Exhibit 7 shows the calculation of the depreciation for the building and FF\&E components.

The basis for the building is calculated each year by deducting the annual depreciation from the beginning-of-the-year basis and then adding the building component of the reserve for replacement. The basis for the FF\&E is calculated each year by deducting the annual depreciation from the beginning-of-the-year basis and then adding the

Exhibit 6
Amortization table, base case three (\$000s)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Interest payment	1,848	1,837	1,826	1,813	1,798	1,782	1,765	1,746	1,725	1,701
Principal payment	105	115	127	140	154	170	188	207	228	252
Annual debt service	1,953	1,953	1,953	1,953	1,953	1,953	1,953	1,953	1,953	1,953
Beginning mortgage balance less	18,031	17,926	17,811	17,684	17,544	17,390	17,220	17,032	16,825	16,597
Principal payment	105	115	127	140	154	170	188	207	228	252
Ending mortgage balance	17,926	17,811	17,684	17,544	17,390	17,220	17,032	16,825	16,597	16,345

Exhibit 7

Depreciation for the building and FF\&E components (\$000s)

Year	1	2	3	4	5	6	7	8	9	10
Total reserve for replacement	320	344	370	398	418	439	460	483	508	523
Building basis, beginning of year	14,425	14,151	13,882	13,618	13,359	13,104	12,851	12,602	12,356	12,113
Initial building depreciation	370	370	370	370	370	370	370	370	370	370
		2	2	2	2	2	2	2	2	2
			3	3	3	3	3	3	3	3
				3	3	3	3	3	3	3
					3	3	3	3	3	3
Reserve for replacement, building depreciation						3	3	3	3	3
							3	3	3	3
								4	4	4
									4	4
										4
Less: Total building depreciation	370	372	375	378	381	384	387	391	395	399
Add: Reserve for replacement, building	96	103	111	119	125	132	138	145	152	160
Building basis, end of year	14,151	13,882	13,618	13,359	13,104	12,851	12,602	12,356	12,113	11,875
FF\&E basis, beginning of year	4,808	4,345	3,867	3,373	2,861	2,323	1,757	1,165	1,218	1,293
Initial FF\&E depreciation	687	687	687	687	687	687	687			
		32	32	32	32	32	32	32		
			34	34	34	34	34	34	34	
				37	37	37	37	37	37	37
					40	40	40	40	40	40
Reserve for replacement, FF\&E depreciation						42	42	42	42	42
							44	44	44	44
								46	46	46
									48	48
	(51
Less: Total depreciation	687	719	753	790	830	872	916	275	291	308
Add: Reserve for replacement, FF\&E	224	241	259	278	292	307	322	338	355	373
FF\&E basis, end of year	4,345	3,867	3,373	2,861	2,323	1,757	1,165	1,218	1,293	1,358

The basis for the building is calculated each year by deducting the annual depreciation from the
beginning-of-the-year basis and then adding the building component of the reserve for replacement.
The basis for the FF\&E is calculated each year by deducting the annual depreciation from the
beginning-of-the-year basis and then adding the FF\&E component of the reserve for replacement.

Exhibit 8
Calculation of taxable income (\$000s)

Exhibit 9
Calculation of after-fax equity cash flow (\$000s)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
Taxable income	-473	-162	144	282	416	558	708	1,554	1,753	1,965
Tax rate	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
Tax liability	-184	-63	56	110	162	218	276	606	684	766
Cash flow before debt service	2,112	2,423	2,728	2,865	3,008	3,158	3,316	3,482	3,656	3,839
Less debt service	-1,953	-1,953	-1,953	-1,953	-1,953	-1,953	-1,953	-1,953	-1,953	-1,953
Tax liability	184	63	-56	-110	-162	-218	-276	-606	-684	-766
After-tax equity cash flow	344	533	719	802	893	988	1,087	923	1,020	1,129

FF\&E component of the reserve for replacement.

A separate taxable-income calculation is necessary because the IRS definition of taxable income is different from annual cash flow.

The following items are allowable (IRS) deductions:

- All normal operating expenses,
- Interest on mortgages, and
- Depreciation (a non-cash expense).
The following cash expenditures are not allowable deductions:
- Reserve for replacement, and
- Amortization of mortgages.

The taxable-income calculation starts off with the 10 -year projection of income and expense. The projection includes the reserve for replacement, which is not an allowable deduction. From the projection of income and expense, the assumed debt service (interest and amortization) is deducted. The interest component of the debt service is an allowable deduction but the amortization is not. The result of deduct-
ing the reserve for replacement and debt service from the projection of income and expense is commonly called "cash flow after debt service."

Taxable income is calculated by adding back the amortization and reserve for replacement and deducting the depreciation on the building and $F F \& E$. The details are shown in Exhibit 8.

Once the taxable income is calculated, the tax liability can be determined by multiplying the taxable income by the assumed tax rate (39 percent). The after-tax equity cash flow takes the cash flow after debt service and deducts the tax liability (see Exhibit 9). These calculations result in the quantification of the annual after-tax equity cash flow for the 10 -year projection period.

Note that in years where the taxable income is negative, the tax liability is positive, thus assuming that the tax benefit can be used to offset a tax liability from another investment.

The valuation model assumes the sale of the subject property at the end of the tenth year. The resulting equity residual and tax consequences need to be determined. This is called the after-tax equity residual.

The after-tax equity residual is calculated by capitalizing the eleventh-year's net income by the terminal capitalization rate to obtain the reversion value. The before-tax equity residual from the sale of the property is determined by deducting the ending mortgage balance and sales expenses (broker and legal fees) from the reversion value.

As indicated earlier (and repeated here) the reversionary value is calculated by capitalizing the eleventh year net operating income at 11.5 percent, as follows:

Reversion value
$(\$ 4,031,000 / .115) \quad \$ 35,052,000$
less:
Brokerage and legal fees

\quad (3 percent)	$1,052,000$
Mortgage balance	$16,344,000$
Equity residual	$\$ 17,656,000$

The tax consequences must then be determined to obtain the aftertax equity residual. The capital gain is the difference between the reversion value and the property's tax basis at the end of the tenth year. The capitalgains tax liability is found by multiplying the capital gain by the assumed tax rate (28 percent). The after-tax equity residual is the equity residual minus the capital-gains tax.

The following table illustrates the calculation of the tax consequences of the subject property's sale and the resulting

Exhibit 10
Equity-component yield (IRR $=17.51 \%$)

Year	Net income before debt service		Present value (PV) of \$1 @ 17.51\%		Discounted cash flow
1	344	\times	0.850994	$=$	293
2	533	x	0.724191	$=$	386
3	719	\times	0.616282	=	443
4	802	\times	0.524452	=	420
5	893	\times	0.446306	=	398
6	988	\times	0.379804	$=$	375
7	1,087	\times	0.323211	=	351
8	923	\times	0.275050	$=$	254
9	1,020	x	0.234066	$=$	239
10	14,316*	\times	0.199189	$=$	2,851
Value of equity component					6,010
*10th year after-tax cash flow of plus after-tax equity residual of					1,129
					13,187
Numbers are 000s of dollars					14,316

after-tax equity
residual:

Net sale price	\$34,000,000	
Less basis:		
Building \$11,875,000		
FF\&E 1,358,000		The proof is completed by discounting the annual after-tax cash
Land 4, 4,808,000		
Total basis	18,041,000	flows for the ten-year projection
Capital gain	\$15,959,000	period plus the after-tax equity
Capital gains tax rate	0.28	residual at the assumed after-tax
Capital gains tax	\$4,469,000	equity yield rate of 17.51 percent to
Before-tax equity residual	\$17,656,000	nal equity investment of $\$ 6,010,000$.
less: capital gains tax	4,469,000	Exhibit 10 shows the discounting
After-tax equity residual	\$13,187,000	process and proof. CQ

T
his issue of Cornell Quarterly has much to offer about service quality, which gives me the opportunity to add my two cents based on some first-hand observations. Regular readers of this page of Cornell Quarterly may recall the last missive from executive editor Glenn Withiam, in which he described his preference for anonymity during his hotel stays (December 1995, p. 96). That letter prompted me to 'fess up: unlike Glenn, over the past several years I have been shameless (or perhaps just cheaper yet) in taking advantage of my professional affiliation with the industry.

Knowing that I still have much to learn about the inner workings of the hospitality industry, I have arranged numerous stays in advance of my travels by making my itinerary known in advance, requesting tours of the property, and scheduling meetings with key management personnel. I have also had the opportunity to participate in several "fam" trips.

So it was that I found myself in Jamaica this past October, a guest of allinclusive Ciboney Ocho Rios, a Radisson villa, spa, and beach resort. It was a perfectly orchestrated fam trip for about a dozen journalists, organized by NYC's Ellin Ginsburg Communications. The tightly scheduled trip delivered precisely and generously what the letter of invitation promised. That is, we toured and enjoyed the resort's facilities, traveled beyond the resort's 45 acres to see more of Jamaica's natural beauty, tasted the culinary specialties of the island, saw what makes Ciboney a special place for romantic getaways, and watched as delighted, paying guests got their money's worth. (Ciboney's rates are based on length of stay; a minimum three-day visit for a couple in typical villa accommodations is US $\$ 1,260$. The honeymoon villa suite is a little less than twice that amount.)

The enthusiastic cooperation of Ciboney's staff, the carefully maintained grounds and facilities, the culinary skill and inventiveness exhibited by CIAgraduate chef Jack Shapansky, and the well-conceived amenities and accommodations combined to demonstrate exactly

how and why the relatively young resort (it opened in 1991) has earned so many awards. Among Ciboney's trophies are: designation by the American Association of Travel Editors USA as "one of the world's ten best hotels" for 1994, the Official Hotel Guide's awards for "Most Romantic Resort" and "Best Honeymoon Value," the 1995 Gold Key and Gold Platter awards from Meetings and Convention magazine, and, also in 1995, its third consecutive AAA Four-Diamond award. (In fact, Ciboney was the first allinclusive resort in the world to receive AAA's four-diamond accreditation.)

Ciboney is the brainchild of Jamaican entrepreneur Peter Rousseau, who engaged us with his company during our visit. Rousseau is one of just three individuals nominated as "Independent Hotelier of the World" by Hotels magazine in 1994. Along with the team that developed the $\$ 45$-million resort, he conceived the idea of individual swimming pools for the resort's 80 -some villas, which in turn resulted in the resort's promotional tag line, "What kind of a resort has 90 swimming pools?" Well, now I know: A wellmanaged, relaxed-and-friendly, makes-me-feel-at-home resort called Ciboney.

So, how do they do it? Ciboney's enviable success, I mean, and making guests feel special? First, the resort is very good at delivering exactly what it prom-ises-and more. Moreover, as best as I could tell, the management is not afraid to invest in two key success strategies:
(1) retain quality employees and (2) promote Ciboney's products to tour guides, meeting planners, and travel agents through on-site visits.

I made it a point to ask each and every line employee I encountered how long they had been employed at the resort, which has been in operation for just under five years. Among all the housekeepers, groundskeepers, barkeepers, waitstaff, ground-transportation drivers, and spa workers to whom I spoke, not a single employee answered fewer than three years. That is key to service-quality management and guest satisfaction: longterm employees who are well trained, who enjoy the work they do, and who are devoted to a management that rewards them for a job well done (often by promotion up through the ranks).

Site inspections are also key for any property trying to compete in a highly developed market such as Jamaica. Besides the group I was in, the resort was hosting several other travel-industry groups during my brief visit, primarily travel agents. Undoubtedly, those folks will return home and promote the honeymoon packages, meetings-and-convention services, and leisure-travel opportunities that Ciboney excels at delivering. (Ciboney's market mix is about 85 -percent leisure and 15-percent meetings and incentive.)

Merely hoping that potential customers, meeting planners, or travel agents will happen to see an advertisement, or just relying on positive word of mouth from satisfied guests, are by themselves insufficient strategies. So is an off-site sales pitch that, no matter how well crafted it may be, can't begin to differentiate one allinclusive property from another if the customer hasn't experienced either. Ciboney clearly benefits from the value of a direct outreach approach that offers decision makers first-hand experiences at the resort, which in turn helps those key individuals to sort more decisively through the clutter of ubiquitous advertisements, promotions, and sales calls from similar, competing operations.

Service-quality management is a complicated concept to formulate and actualize, as indicated by the several articles in this issue of Cornell Quarterly which tackle different aspects of that topic. So if, after studying and reading all about service quality, you're still not sure what it's all about or what it looks like, let me suggest you go see for yourself: visit Ciboney Ocho Rios.-F. L.C.

[^0]: Thin A derobes nic Stephen Rushimore Investinerit Values of Lodging Property: Modeling the Effects of licome laxes and Aletratye tender Criteria;" Cofrifl Hotel and Restauram: Admimistration Quartely, Vol: 36, No. 6. (December 1995), pp. 62-69.

 Jan A. deRoos, Ph.D. is in assistant professor at the Compll University School of I Iotel Admuistration: Stephen Rushmore is president of Hospitality Valuation Services, bised in Mineola, New York:

