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Gary M. Thompson 
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This article presents the results of a study using discrete choice analysis (DCA) in 

the dine-in pizza industry. DCA offers an effective approach for incorporating customer 

preferences into operating decisions in service businesses. Our results show how 

customers tradeoff among several determinant attributes (e.g. price, waiting time, 

quality) when choosing a dine-in pizza restaurant. The article also offers evidence that 

managers' perceptions of customer choice patterns are not the same as customers' 

actual choice patterns for the businesses we examined. Finally, we show how our results 

can be easily incorporated into a decision support system for structuring service 

operations according to customer preferences. 

 

Introduction 

As the field of Service Operations Management moves beyond the “exploratory” 

research stage, a number of scholars have emphasized that an integration of operations and 

marketing perspectives are essential for design and management of high performing services 

(Chase, 1996). For example, Griffen and Hauser (1993) emphasize the usefulness of integrating 

the voice of the customer into service businesses. Lovelock (1992) suggests an integrated 

approach to service management using a combination of marketing, operations and human 

resources perspectives. Davidow and Uttal (1989) suggest using market segmentation analysis 

to determine service strategies for different segments of customers and better match supply 

and demand. Similarly, Heskett's (1987) ``strategic service vision'' consists of the identifying of a 

target market segment, developing a service concept to address targeted customers' needs, 

codifying an operating strategy to support the service concept, and designing a service delivery 

system to support the operating strategy. Hart (1988) advocates using unconditional service 

guarantees and suggests that they offer a very powerful strategy for service business. An 

unconditional service guarantee pushes the entire company to focus on the customers' 

definition of good service and not on any executive's assumptions. 

The above publications describe the multi-disciplinary nature of service operations and 

provide directions for effective management. At the same time another series of articles 



presents a variety of service classification schemes with the objective of identifying better 

service designs. For example, Lovelock (1983) classified services in five different two-by-two 

matrices and examined how the specific nature of services in a particular class affects 

operations and marketing. Chase (1981) proposed that if there is less direct customer contact in 

the service system, then the service system is more likely to operate at its peak efficiency. 

Mersha (1990) proposed a broadened definition of customer contact and extended Chase's 

customer contact model. Also building on the customer contact approach, Schmenner (1986) 

proposed the Service Process Matrix (SPM), based on three characteristics of service delivery 

systems: customer contact; service customization; and labor intensity. Wemmerlov (1990) 

proposed a taxonomy of service processes that included degree of customer contact, 

complexity and divergence, while Kellog and Nie (1995) proposed a two-dimensional matrix 

which connected the characteristics of service products with service processes. 

The motivation for our work stems from two streams of research. First, a number of 

articles have argued that service research has moved beyond the primary classification stage 

and therefore now it is necessary to validate the generally accepted concepts/frameworks and 

develop specific methodologies for service design and process improvement (Chase, 1996; 

Flynn et al., 1990; Meredith et al., 1989; Swamidass, 1991). The second motivation for our work 

comes from a series of recent articles which argue that in order to effectively compete in a 

competitive marketplace, service companies must develop a coherent operations strategy 

(Vickery et al., 1993). We will demonstrate the linkages between competitive priorities (product 

and service quality, cost, delivery and flexibility) and customer choice patterns for one specific 

industry. 

This article presents an econometric procedure known as discrete choice analysis (DCA) 

which can be used to effectively integrate market/customer preference information into 

operating decisions in service factories. The service typologies described earlier provide 

conceptual frameworks for analyzing the differences between service industries; however, they 

do not suggest how a particular company can position itself within its industry for higher profit 

and/or market share. The approach presented in this article can be used to align the product-

service package offerings of a particular company within a given industry and market structure. 

Specifically, this paper demonstrates an approach for identifying: 

(1) customer preferences based on quality, cost, delivery or flexibility attributes of product-

service packages offered in the marketplace; 

(2) managers' perceptions of customer product-service choice patterns; and 

(3) the gap between customer preferences and managers' perceptions. 

In the past, DCA has been successfully used for a variety of applications in marketing, consumer 

research, transportation, recreation and leisure research, sociology and other social sciences 

(for example: Ben-Akiva and Lerman, 1991; McFadden, 1986; Louviere and Timmermans, 1990; 



Verma and Thompson, 1996). Please refer to a recent paper by Verma et al. (1999) for 

guidelines for conducting DCA experiments for the service operations. 

 The empirical data presented in this study was collected from the managers and 

customers of three dine-in pizza restaurants located close to a large state university (approx. 

student population 25,000) in the United States of America. The same corporation owns these 

three restaurants and the majority of their customers are the students and staff members of 

the university. The results presented in this article show first, how the customers of the pizza 

shops tradeoff among various determinant attributes (quality, cost, delivery, and flexibility), 

and what managers think their customers need. We highlight key differences (gaps) between 

the choice patterns of the two samples (managers vs. customers) and draw implications for the 

design and operation of the service facilities. 

Although past research in service management has studied tradeoffs among different 

service attributes, none of the studies have used methods similar to DCA to identify customer 

choices and/or the gaps between customer choices and managers' perceptions. For example, 

Davis (1991) studied the tradeoff between customer waiting time and operations efficiency. 

Similarly Lindsley et al. (1991) studied the tradeoff between time and product variety in the 

book distribution industry and recommended that managers should be aware of relative values 

of time and variety in their distribution strategy for better service management. Even though 

these articles provide valuable information related to service operations management, they 

only study two (or three) service attributes. Effectively incorporating customer preferences into 

service operations management requires that one identify the relative importance of all (or 

most) of the attributes customers consider relevant. 

The rest of the article is organized in four sections. First, we present a brief overview of 

the DCA and describe the research design; second, we present the result of the empirical study 

conducted in the dine-in pizza; and third, we discuss the implications of using research 

approaches similar to DCA in service operations management. 

Research Approach 

In order to meet customer demand in a dynamically changing competitive environment, 

it is important to listen carefully to the voice of the customer (Griffin and Hauser, 1993). Past 

research shows that customers choose from a set of alternatives, the product/service that has 

the highest utility for them (McFadden, 1986; Ben-Akiva and Lerman, 1991; Louviere, 1988; 

Verma et al., 1999). After acquiring information and learning about the alternatives, consumers 

define a set of determinant attributes to use, and then compare products in a particular 

product/service class (Verma et al., 1999). After consumers form impressions of the positions of 

various alternatives on the determinant attributes, they make value judgements and combine 

information to form overall impressions of the alternatives. In order to do so, they have to 

make tradeoffs among different product/service attributes (Anderson, 1981, 1982). 



Discrete choice analysis (DCA) identifies the coefficients for different attributes based on 

the decision maker's response to experimentally designed profiles of possible alternatives and 

models the evaluation process described above. DCA involves designing several experimental 

profiles (alternatives) of decision situations (e.g. profiles of quick service restaurants with 

different food quality, cost, delivery time) and asking the decision maker(s) to choose an 

alternative from a set of possible choices. A typical discrete-choice experiment simultaneously 

shows two or more alternatives to the decision maker and asks him/her to choose one. This 

choice making process is repeated several times. Next, multinomial logit (MNL) (or more 

complex econometric) model is used to identify the weights and statistical significance of the 

attributes. The MNL model assumes that the probability of selecting an alternative depends on 

the decision maker's perceptions of the relative ``attractiveness'' or ``utilities'' of the 

alternatives (Louviere, 1988). 

Designing and conducting discrete choice experiments involves the following steps: 

identifying the attributes; specifying attribute levels; designing an experiment; presenting sets 

of alternatives to respondents; and estimating a model. For the sake of clarity, the next sub-

section briefly summarizes the above DCA steps. For a detailed review of DCA methodology, 

please refer to a recent review article by Verma et al. (1999). 

Discrete Choice Analysis: A Review 

A discrete choice experiment requires one to identify the determinant attributes used 

by decision makers to evaluate alternatives. Qualitative surveys, interviews, case studies, 

and/or focus groups and a review of academic and practitioner literature can be used to 

identify a set of relevant attributes (Verma et al., 1999). The final number of attributes selected 

often reflects a balance between completeness and complexity (Louviere et al., 1995). 

The researcher's next task is to determine the range of possible values for each of the 

identified attributes. Chosen attribute ranges can either span the actual values observed in the 

marketplace and/or represent values expected to be observed during the planning horizon. 

Response reliability may suffer if unrealistic attribute ranges are used (Louviere and 

Timmermanns, 1990). Next the attribute range is categorized into two or more levels for the 

purpose of experimental design. Two levels for each attribute (e.g. the lowest and highest 

possible values of an attribute) are sufficient to estimate linear effects of attributes on choice, 

but one needs more than two levels to estimate a nonlinear effect of the attribute on choice 

(Hagerty, 1986). 

After the identification of relevant attributes and their levels, experimental design 

procedures are used to generate descriptions (profiles) of hypothetical (but possible) product-

service alternatives. Factorial experimental designs allow one to create descriptions of choice 

alternatives such that all statistical effects of attributes can be estimated independently (Bishop 

et al., 1975; Hahn and Shapiro, 1966; Louviere, 1988; McLean and Anderson, 1984). In practice, 

however, complete factorial designs rarely can be used because they generate large numbers of 



combinations. Instead, fractional factorial designs are used to construct a limited number of 

profiles. Fractional factorial designs assume that one or more interactions (or the linear 

combinations of attribute effects) among the attributes are not statistically significant. Next, 

the experimentally generated profiles must be grouped together in some way to generate 

choice sets. Depending on the number of attributes, their levels, and number of alternatives 

per choice set, anywhere from eight to 100+ choice sets are created. 

Next, the survey instrument containing the discrete choice sets are presented to the 

selected respondents. A wide range of media can be used to describe hypothetical choice 

alternatives generated by the experimental design. For example, one may use sentences, short 

phrases, or paragraphs; pictures, drawing, photographs, or computer images; models; or any 

combination of written, visual or other sensory representation. The choice of presentation 

media is situational and the best medium for one study might not be appropriate for another. 

The final aspect of designing discrete choice experiments involves the format of the 

choice task. Most published DCA studies present two or more alternatives at the time to the 

decision makers and ask them to choose one (or none) of them (Louviere and Timmermans, 

1990; Verma and Thompson, 1996). It is also possible to show only one experimental profile at 

a time to decision makers and observe yes/no (accept/reject) responses. 

After generating choice sets and formatting the choice task, empirical data are collected 

from multiple respondents. Naturally, respondents should be chosen to be representative of 

the population of interest, otherwise the results will not generalize to the whole population. 

Depending on the size and complexity of the experiment, subjects can be asked to respond to 

all choice sets or one can divide the choice sets into two or more statistically equivalent subsets 

and randomly assign subjects such that each responds to one subset of the choice sets. 

Choice Model Estimation 

Empirical data collected from respondents to discrete choice experiments are 

categorical because respondents choose only one alternative (normally coded as 1; all other 

alternatives coded as 0) in each choice set. Thus, one cannot estimate discrete choice models 

for single individuals because there are too few observations per individual to satisfy the 

asymptotic conditions needed to obtain consistent and efficient parameter estimates (Ben-

Akiva and Lerman, 1991). Satisfaction of asymptotic properties ordinarily requires large 

numbers of observations of discrete choices (at least six respondents). Therefore responses 

from various subjects typically are aggregated and used to estimate choice models, although 

various segmentation schemes can be used to deal with respondent heterogeneity. The most 

common form of the econometric model based on discrete choice analysis is known as the 

multinomial logit (MNL) model (Ben Akiva and Lerman, 1991; Verma et al., 1999), which was 

also used in our study. The MNL model is expressed as 



𝑃𝑖𝑗 =
𝑒𝜇𝑉𝑖𝑗

∑ 𝑒𝑛𝜇𝑉𝑘𝑗𝐾
𝑘=1

                                   (1) 

where: 𝑃𝑖𝑗 represents the probability of selecting alternative 𝑖 from the 𝑗th set containing 

𝐾 alternatives, and 𝑉𝑖𝑗 represents the systematic utility of alternative 𝑖 in choice set 𝑗. 

 The MNL model assumes that the errors are independent and identically distributed 

according to a Gumbel distribution with a scale parameter 𝜇. Representing a product or service 

as a bundle of its attributes, and by assuming an additive utility function, an alternative's utility 

can be calculated as: 

𝑉𝑖𝑗 = ∑ 𝛽𝑙𝑥𝑖𝑗𝑙

𝐿

𝑙=1

                                      (2) 

where 𝑥𝑖𝑗𝑙  is the level of attribute 𝑙 of alternative 𝑖 in choice set 𝑗, 𝛽𝑙 is the relative utility 

weight (part-worth utility) associated with attribute 𝑙, and 𝐿 is the total number of attributes. 

Although a number of approaches can be used to estimate MNL parameters, maximum 

likelihood is preferred (Ben-Akiva and Lerman, 1991). The likelihood function for 𝑀 subjects can 

be represented as 

𝐿 = ∏ ∏ ∏ 𝑃
𝑖𝑗

𝑌𝑖𝑗𝑚

𝐽

𝑗=1

𝐿

𝑙=1

𝑀

𝑚=1

                             (3) 

where 

𝑌𝑖𝑗𝑚 = {   𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑚 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑖 𝑖𝑛 𝑐ℎ𝑜𝑖𝑐𝑒 𝑠𝑒𝑡 𝑗 𝑜𝑡𝑒𝑟ℎ𝑤𝑖𝑠𝑒.0,
1,  

Several likelihood ratio tests (similar to the F-test in ordinary least square regression) can be 

used to test the statistical significance of the estimated MNL choice models. A log-likelihood 

ratio test is based on the differences between the natural logarithm of the likelihood function 

(equation (3)) under two conditions. First the likelihood ratio is calculated assuming there are 

equal probabilities of choosing each alternatives in a choice set (or by assuming that all 𝛽𝑙 

parameters equal zero). This natural logarithm of the likelihood (loglikelihood) value is 

represented as LL(0). Next, the likelihood ratio is calculated again, assuming the estimated 𝛽𝑙 

parameters. This log-likelihood value is called LL(B). Then, the log-likelihood ratio test is defined 

as 

−2[𝐿𝐿(0) − 𝐿𝐿(𝐵)]                                     (4)  

and is 𝜒2 distributed with the degrees of freedom equal to the number of 𝛽 parameters. 

McFadden's 𝜌2 and adjusted McFadden's 𝜌2 measures (similar to 𝑅2 and adjusted 𝑅2 in OLS 

regression) are defined in the following manner: 

𝜌2 = 1 − [𝐿𝐿(𝐵)/𝐿𝐿(0)]                              (5) 



Adjusted 𝜌2 = 1 − [(𝐿𝐿(𝐵) − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)/𝐿𝐿(0)]                    (6)    

In order to investigate if two choice models are statistically similar to each other (e.g. customer 

vs. manager models) a 𝜒2 test developed by Swait and Louviere (1993) is used. This procedure 

first rescales Gumbel scale parameters (in equation 1) and then compares the models using the 

following 𝜒2 statistic with L + 1 degrees of freedom (L is the number of attributes): 

−2[𝐿𝐿𝜇 − (𝐿𝐿1 + 𝐿𝐿2)]                               (7) 

Where 𝐿𝐿1 and 𝐿𝐿2 are the log-likelihood values of the two multinomial logit models without 

any rescaling, and 𝐿𝐿𝜇 is the log-likelihood value for the joint model with a rescaling parameter 

𝜇. 

 To identify the relevant attributes for the dine-in-pizza restaurants located close to the 

university campus, we collected qualitative information from 15 randomly selected 

undergraduate and graduate students. According to Griffin and Hauser (1993) between ten to 

20 subjects are enough to identify the majority of attributes used by the customers in a given 

market segment in choosing a product/service. We conducted short interviews and asked the 

selected students to list the relevant variables for dine-in pizza restaurants. Based on their 

responses we selected the 15 attributes of dine-in pizza restaurants to be used in the further 

analysis. These attributes were considered to be important by at least three of the 15 

respondents. 

Past research in operations management and marketing suggests that customers choose 

products and services based on product quality, service quality, cost, delivery and flexibility 

attributes (Hayes and Wheelwright, 1984; Anderson et al., 1989). Table I presents the 

theoretical constructs (product quality, service quality, cost, delivery and flexibility) behind the 

15 attributes we used. We appreciate the argument that product quality, service quality and 

flexibility are multidimensional in nature and therefore several other variables might be 

necessary to adequately represent these theoretical constructs. However, the objective of this 

research is not to test theoretical constructs but to understand the choice behavior of 

customers in one market segment and to position service operations accordingly. Therefore, we 

only included the variables mentioned by 20 per cent or more (three or more out of 15) 

respondents. Additionally, since the research methodology (discrete choice analysis) is based 

on a factorial experimental design, including all possible attributes will increase the 

dimensionality of the study considerably. Louviere and Timmermans (1990) recommend such 

an approach and suggest that one should re-combine or re-express attributes to keep the set of 

attributes as nonredundant and as small as possible to make an experiment manageable yet 

realistic. 

Next, we used experimental design software, CONSURV (Intelligent Marketing Systems, 

1992) to generate 32 orthogonal fractional factorial profiles of dine-in pizza companies. These 

profiles contained one of the two levels of the attributes presented in Table II (since the price of  



 

 

 

 

 

 

 

 

Table I. Attributes of dine-in pizza establishments selected for experimental design 

three types of pizza sizes are multi-collinear in nature, we included only one of the price 

variables in the experimental design). The price of the medium pizza was assumed to be $4 less 

than that of the large pizza and the price of the small pizza was assumed to be $4 less than that 

of the medium pizza. The 32-profile design we used can estimate all the main effects of the 

variables represented in Table II. We used two levels for each attribute in experimental design. 

If we had used four levels for each variable, the dimensionality of the experiment would have 

increased from 215 to 415 (i.e. by a factor of 215, or 32,768 times). 

Next, we grouped several experimentally generated profiles together to generate 

discrete choice sets. To our knowledge, there is no agreement on the “best” method for 

generating the choice sets (see, for example, the texts by Ben-Akiva and Lerman, 1991; 

Louviere, 1988). If only two attributes are used for every variable then every profile can be 

combined with its ``foldover'' profile to generate an efficient choice set with two alternatives. A 

foldover design contains the opposite levels of every attribute for a given profile. We used this 

procedure to develop choice sets for the pizza study. Table III presents a sample choice set. 

Table III shows that Restaurant #2's attribute levels are opposite to those of Restaurant #1. 

Since the primary customers of the three dine-in pizza restaurants were the students of 

the university, we randomly selected 100 students as respondents. Approximately two-thirds of 

the student sample consisted of undergraduate students, with the remaining students enrolled 

in various graduate programs. As the subjects were selected from various parts of the university 

campus, the sample represents students in a variety of academic disciplines. Six students did 

not complete the survey instrument and five others mentioned that they do not like pizza, 

resulting in a final sample size of 89. Additionally we contacted the managers of the three pizza 

restaurants and collected their responses. Each subject (customers and managers) responded 

to 32 discrete sets (similar to Table III). The student subjects were asked to chose their 

preferred restaurant and the managers were asked to predict the choice patterns of student 

customers. 



 

 

 

 

 

 

 

 

 

 

 

Table II. Dine-in pizza restaurant: attributes and their levels 

Results and Analysis 

Consumer choice model 

Table IV shows the estimated multinomial logit model (MNL) for the sample of 89 

customers (or 2,848 responses). A negative 𝛽 means that the probability of a customer 

selecting a particular restaurant will increase if the level of that particular attribute is reduced. 

For example, based on the MNL model presented in Table IV, the market share of a particular 

pizza shop will increase if the price or waiting times are reduced. Similarly, a positive 𝛽 means 

that increasing the level of a particular attribute will increase the market share of a particular 

restaurant. For example, a pizza restaurant can increase its market share by offering more pizza 

crust options or more types of toppings (both have positive 𝛽 in Table IV). Additionally, we 

standardized the design code (mean = 0; standard deviation = 1) for all the variables presented 

in Table IV and so the absolute value of a 𝛽 parameter represents an attribute's relative 

importance for the customer. Therefore according to Table IV, reliability of service and amount 

of toppings on the pizza are the two most important attributes for the customers. 

Table IV also contains statistical information related to the MNL model for the 

customers. The log-likelihood test (equation (4)) tests the statistical significance of the overall 

model. The estimated log-likelihood ratio was found to be 985.34, which is 𝜒2 distributed with 

16 degrees of freedom (15 variables and one intercept) and is statistically significant at the 5 

per cent level. The McFadden's 𝜌2 (similar to 𝑅2 in Ordinary Least Square Regression) was 

found to be 0.74 which means that approximately 74 per cent of the variation in the dependent 

variable (customer choice) was captured by the estimated MNL model. Table IV also presents  



 

 

 

 

 

 

 

 

 

 

Table III. A sample choice set (note: each customer and each manager responded to 32 such 

choice sets. 

 

 

 

 

 

 

 

 

 

 

Table IV. Estimated multinomial logit model for customers (89 randomly selected customers 

responded to 32 choice set each. Therefore the model is based on 2,848 responses) 

the asymptotic t-statistic for the 𝛽 parameters. As shown in Table IV, 𝛽 parameters for all 15 

attributes were found to be statistically significant at the 5 per cent level. 

Managers’ perceptions of customer preferences 

We contacted the six managers of two dine-in pizza restaurants, both of which were  



owned by the same corporation. University students are the majority of the customers of the 

three restaurants. We asked the managers to predict the choice patterns of their customers. 

We showed them the same 32 choice sets (presented to 89 customers of their company) and 

asked them if their student customers would choose “Restaurant #1,” “Restaurant #2,” or 

“Neither Restaurant.” Then we compared the MNL model for customer choice to the MNL 

model for the managers' predictions of customer choice. 

Table V presents the MNL logit model for the managers' perceptions of customer choice 

patterns. The log-likelihood ratio was 99.19 which is 𝜒2 distributed with 16 degrees of freedom 

and is statistically significant at the 5 per cent level. The McFadden's 𝜌2 was 0.42 even though 

the MNL model is based on data collected from only six respondents (192 responses). As shown 

in Table V, 𝛽 parameters for seven out of 15 variables were found to be statistically significant 

at the 5 per cent level. 

The MNL models contain a Gumbel scale parameter, which cannot be estimated 

separately from 𝛽. Therefore the 𝛽 parameters of two MNL logit models (Table IV and Table V) 

cannot be compared directly. Recently Swait and Louviere (1993) developed a procedure for 

comparing two MNL models which first estimates the relative 𝜇 for the two models and then 

re-scales the 𝛽 parameters of one MNL model in terms of the second model. Next a 𝜒2 test is 

conducted to compare the re-scaled MNL model to the second model. We conducted similar 

tests for the MNL models presented in Table IV and Table V. Table V shows the re-scaled 

 

 

 

 

 

 

 

 

 

 

 

 

Table V. Managers’ perceptions of customer choice patterns (six managers responded to 32 

choice sets, each; therefore the model is based on 192 responses) 



customer choice model adjacent to the model of managers' predictions of customer choice. A 

simple visual comparison shows that the two sets of 𝛽 parameters are not the same. The 𝜒2 

test was conducted by NTELOGIT, which showed that the 𝛽 parameters for the two MNL 

models are not the same. In other words, we found that the managers' perceptions of customer 

choice patterns are not the same as the customers' actual choice patterns. 

Managerial Implications 

Several articles and books emphasize the need for customer-based operations 

management in service industries. In this article we have presented an effective approach for 

positioning service operations based on customer tastes and preferences. DCA can be used to 

identify relative weights for service attributes from the customers' points of view. The discrete-

choice weights show how changing a particular attribute level affects market share (and 

therefore profitability). As mentioned earlier the MNL model presented in Tables IV, and 5 can 

be easily incorporated into a spreadsheet as a decision support system and the managers can 

use this model to evaluate the change in market share if one or more attributes are changed by 

them or their competitors. 

For an actual application, it is important to validate that the experimental subjects are 

true representatives of the population of interest. However, for the sake of the example, we 

will assume that the customer choice result presented in Table IV can be generalized to all the 

customers of the pizza restaurants in the geographical area. We also assume that there are only 

three pizza restaurants (Shop #1, Shop #2, Shop #3) in the geographical region from which the 

data was collected. All three restaurants are dine-in facilities but the attribute levels are 

different for the three restaurants. Table VI shows the design codes (±1, +1 or 0) for these 

restaurants. The ±1 and +1 values represent the dine-in pizza restaurant attributes levels 

specified in Table II. For example, a “±1” for the ``Aesthetics of the restaurant'' indicates that 

the restaurant looks like a fast-food establishment and a “+1” indicates that it looks like an 

Italian restaurant. A design code of “0” represents the average value between ±1 and +1. For 

example, a “0” for “types of pizza available” represents “two types of crust.” 

Most of the attribute levels for the three pizza restaurants presented in Table VI are 

different from each other. Therefore the utility of each restaurant for customers should be 

expected to be different from each other. The MNL model developed for the customers (Table 

IV) can be used to calculate the utility for each of the three pizza restaurants and their expected 

market share (based on the assumption that the MNL model represents the choice patterns of 

all customers in the region). As shown in Table VI, the attribute levels for the pizza restaurants 

are multiplied by the corresponding 𝛽 value and then summed to get an overall utility for each 

restaurant. Next the MNL model provides the expected market share for each restaurant. As 

shown in Table VI, Shop #1, Shop #2 and Shop #4 are expected to have 44.96 per cent, 28.61 

per cent and 26.44 per cent market shares, respectively. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VI. Spreadsheet-based decision support model for managerial “what-if” analysis 

Table VI also shows the expected market share for the three pizza restaurants based on 

managers' perceptions. Based on managers' perceptions of customer preferences, Shops #1, #2 

and #3 should have market shares of 79.67 per cent, 10.05 and 10.28 per cent respectively. In 

other words, the simple analysis presented in Table VI shows that the pizza companies will 

make extremely poor decisions regarding the structure of their operations if the gap between 

the customers' preferences and managers' perceptions are not eliminated. Such analyses 

further enhance the value of DCA for service managers. 

The decision support system presented in Table VI directly links a firm's market  



performance to its operating priorities. For example, using the decision support system a 

manager can predict any changes in market share following a change in one or more attribute 

levels. The cost of changing any attribute level (for example, reduction in waiting time by 

increasing capacity or hiring more workers) can be compared to the revenue generated by 

expected market share gained before implementing the change in any attribute of the 

operating system. For example, assume that Shop #1 increases its price of large pizza from $11 

to $16 (from design code ±1 to design code +1). Recalculating the market shares for the three 

restaurants (using equation (1) and (2)) yields a new market share of 37.88 per cent for Shop 

#1. In other words, Shop #1 will lose approximately 7 per cent market share by making such a 

move. If we assume that the MNL model represented in Table V was for the managers of Shop 

#1 and recalculate the market share for the three shops using their perceptions, we do not see 

any major changes in the expected market share of Shop #1. In other words, the manager's 

model underestimates the impact of a price change on customer demand patterns. Should a 

decision to increase price be made, based on the managers' model, the firm might seriously 

hurt itself in the marketplace. Similar analyses can be conducted for other attributes (waiting 

times, service guarantee, etc.). 

The decision-support system is general is nature and therefore allows one to estimate 

the effect of multiple changes in attribute levels. By way of example, assume that Shop #1 

changes its price to $13.50 (a design code of 0) and amount of topping from little to lots (a 

design code of +1); that Shop #2 changes the amount of toppings from lots to little (a design 

code of 1) and amount of cheese from little to lots (a design code of +1); and that Shop #3 

changes its price to $11 (a design code of ±1) and changes types of crust to one (a design code 

of ±1). The new expected market shares will be then 55.68 per cent, 21.79 per cent, 22.53 per 

cent respectively, for Shops #1, #2, and #3. The corresponding market share predictions based 

on the managers' perceptions are 90.96 per cent, 4.16 per cent and 4.87 per cent. 

Conclusions 

This study has presented an approach for positioning services' operational priorities 

(quality, cost, delivery, and flexibility) based on customer preferences. We have demonstrated 

how discrete choice experiments can be designed and conducted in service operations. We also 

show that managers' perceptions of customer preferences might not accurately predict how 

customers choose services in the marketplace. Since ``customer contact'' is an important aspect 

of service businesses, it is important for the managers to understand the needs of the 

customers (Chase, 1981; Schmenner, 1986). However, often the managers of the service 

businesses are far removed from the customers and so they might not understand customer 

needs exactly. Similarly, managers in different functional areas within one organization might 

differ in their perceptions of customer choice patterns. Understanding managers' perceptions 

of customer choice patterns will provide very valuable information, then, should management 

desire to have their operations deliver what customers want. 

Using the MNL model developed for the customers, managers can position their  



operations to better meet market needs. Ideally managers would know exactly what their 

customers need and design and manage their service businesses accordingly. However, most 

companies do not operate under ideal conditions. For example, the results presented in Table V 

show that managers' perceptions of customer preferences are not the same as customers' 

actual preferences. Such information can be very valuable for quality and process 

improvement. Management can focus their attention on bridging the ``gaps'' between their 

perceptions and those of their customers and use the MNL models (Table IV and Table V) as a 

continuous improvement tool. 

The discrete choice results presented in this paper can be used to conduct numerous 

such decision-making analyses. Once a MNL model has been set up it can be easily used as a 

decision support system for evaluating, from the customers' points of view, any changes in the 

design of new product-service packages and/or changing the attributes of existing offerings. 

The objective of this study was to show how one could use DCA to effectively integrate 

customer preferences and choices into operating decisions in services. We have presented the 

methodology and an empirical example from the pizza industry and have demonstrated the 

usefulness of DCA as a decision support tool. We feel that the use of customer-based 

approaches similar to the one presented here can significantly improve the financial and 

market positions of firms operating in competitive service industries. 
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