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Statistical Power in Operations Management Research

Abstract
This paper discusses the need and importance of statistical power analysis in field-based empirical research in
Production and Operations Management (POM) and related disciplines. The concept of statistical power
analysis is explained in detail and its relevance in designing and conducting empirical experiments is
discussed. Statistical power reflects the degree to which differences in sample data in a statistical test can be
detected. A high power is required to reduce the probability of failing to detect an effect when it is present.
This paper also examines the relationship between statistical power, significance level, sample size and effect
size. A probability tree analysis further explains the importance of statistical power by showing the
relationship between Type 11 errors and the probability of making wrong decisions in statistical analysis. A
power analysis of 28 articles (524 statistical tests) in the Journal of Operations Management and in Decision
Sciences shows that 60% of empirical studies do not have high power levels. This means that several of these
tests will have a low degree of repeatability. This and other similar issues involving statistical power will
become increasingly important as empirical studies in POM study relatively smaller effects.
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This paper discusses the need and importance of statistical power analysis in 

field-based empirical research in Production and Operations Management (POM) and 

related disciplines. The concept of statistical power analysis is explained in detail and its 

relevance in designing and conducting empirical experiments is discussed. Statistical 

power reflects the degree to which differences in sample data in a statistical test can be 

detected. A high power is required to reduce the probability of failing to detect an effect 

when it is present. This paper also examines the relationship between statistical power, 

significance level, sample size and effect size. A probability tree analysis further explains 

the importance of statistical power by showing the relationship between Type 11 errors 

and the probability of making wrong decisions in statistical analysis. A power analysis of 

28 articles (524 statistical tests) in the Journal of Operations Management and in 

Decision Sciences shows that 60% of empirical studies do not have high power levels. 

This means that several of these tests will have a low degree of repeatability. This and 

other similar issues involving statistical power will become increasingly important as 

empirical studies in POM study relatively smaller effects. 

 

Introduction 

A number of articles published over the last ten years in leading management journals 

have argued that research in Production and Operations Management (POM) is often not very 

useful to operations managers and lags practice because it does not take into account the 

applied nature of operations management (Adam and Swamidass, 1989; Amoako-Gyampah and 

Meredith, 1989; Chase, 1980). It has also been pointed out that the nature and scope of POM 

as a discipline of science has changed dramatically over the last decade or so (Chase and 

Prentis, 1987). Some examples of the changing nature and complexity of operations in the 

1990s are the productivity crisis in western economies, issues in quality management, issues in 

service operations management, and international issues in POM. In recent responses to the 



above concerns, several authors have stressed the need and importance of field-based 

empirical research (Flynn et al., 1990; Meredith et al., 1989; Swamidass, 1991). In fact, the 

editors of the Journal of Operations Management have explicitly encouraged POM researchers 

to submit field-based empirical research papers (Ebert, 1990). 

Information derived from field-based empirical research provides a systematic 

knowledge of actual practice in manufacturing and service operations, which can be used to 

identify relevant research problems and to provide a baseline for longitudinal studies. Data 

collected from empirical research can be used to validate the findings of simulation and 

mathematical programming-based research. Empirical research is useful in expanding the scope 

of research in several fuzzy and under-researched topics, e.g., operations strategy, international 

issues, etc. In addition, it can add new perspectives to over-researched topics, e,g., operations 

planning and control, location planning, etc. A/so, empirical studies open up opportunities for 

conducting interdisciplinary research. Finally, empirical research can be used to build and verify 

theories. 

Recently, Flynn et al. (1990) published a detailed review paper which explains how 

empirical research can be done in Operations Management and related areas. This paper 

describes a systematic approach to empirical research drawn from Organizational Behavior, 

Psychology, Marketing, Anthropology, Sociology and other social sciences. In brief, the paper 

elaborates on the different stages in conducting empirical research, theory building versus 

theory verification, research designs, etc. Swamidass (1991) has identified empirical theory 

building as a methodological void in Operations Management. He addresses two questions in 

his article - What is empirical science? and How can empirical theory building be nurtured in 

POM? 

The above articles are very valuable resources for all empirical researchers in POM and 

related disciplines. However, both fall short in communicating the importance of the sensitivity 

of an empirical experiment. An empirical experiment can be broadly defined as a study based 

on empirical data that intends to test hypotheses, identify relationships, and/or infer causation. 

The issue of sensitivity of an empirical experiment has received considerable attention in other, 

more mature, social sciences (Chase and Chase, 1976; Cohen, 1962, 1977, 1988, 1992; Keppel, 

1991). 

A quantitative index of the sensitivity of an experiment is measured by its statistical 

power (Cohen, 1977, 1988). The statistical power represents the probability of rejecting the null 

hypothesis when the alternative hypothesis is true. Power can be interprefer as the probability 

of making a correct decision when the null hypothesis is false. Therefore, statistical power 

represents the probability that a statistical test of the null hypothesis will conclude that the 

phenomenon under study exists. In other words, power reflects the degree to which 

differences in sample data in a statistical test can be detected. A high power is required to 

reduce the probability of failing to detect an effect when it is present. 



The purpose of this paper is to address the issue of sensitivity of an empirical 

experiment. Specifically, we will (1) present the concept and discuss the need and relevance of 

statistical power analysis, (2) present a summary of power calculations from a number of 

articles in the Journal of Operations Management and in Decision Sciences, and (3) discuss 

strategic implications of power analysis. These issues are of interest to all empirical researchers 

in POM and related areas where empirical studies are just beginning to make inroads. In 

addition, the information presented here is fairly general in nature and will be useful to all 

researchers who write or study empirical research articles. 

Any science is known to be built on a large body of facts and information. Statistics is a 

common tool used in most social sciences to uncover facts and to enhance the understanding 

of a particular phenomenon. A statistical analysis provides a way of determining the 

repeatability of any differences observed in an empirical study. A well designed study also 

permits the inference of causation. In most of the social sciences, POM included, researchers 

are not primarily interested in just describing summary statistics of the sample. In general, the 

goal is to make inferences about the whole population. Therefore, an empirical experiment 

begins by formulating a number of research hypotheses. These hypotheses may represent 

deductions or derivations from a formal theoretical explanation of a phenomenon of interest, 

or they may simply represent speculations concerning the phenomenon. Research hypotheses 

are the questions which researchers hope to answer by conducting an empirical study. This 

article emphasizes the importance of power analysis in designing and conducting an empirical 

experiment and shows that results with low statistical power have a low degree of 

repeatability. The power calculations, presented later in this paper, reveal that some of the 

published research articles in POM and related areas are very deficient in statistical power. 

Hence, this is an appropriate time to understand the fundamentals of power analysis. 

In general, an empirical research project involves a lot of time, effort and money. Hence, 

it becomes important to design and conduct sensitive projects - those that are sufficiently 

powerful to detect any differences that might be present in the population. An important 

implication of power analysis is in the design of empirical experiments. Researchers can 

conduct a power analysis before the actual experiment and avoid undertaking a study which is 

expected to have low power. Hence, power analysis has important implications for planning of 

an empirical research project. Another reason for conducting a power analysis is to avoid 

wasting resources by performing studies with too much power. Studies with excessive power 

often have much larger than necessary sample sizes, and therefore waste time and money. 

Post-hoe power analysis of an empirical study might help researchers in arriving at a 

conclusion. For instance, a post-hoe power analysis might add insight to a nonsignificant F-test. 

It can suggest if the nonsignificant F occurs because there is no actual effect (the phenomenon 

of interest was not present) or because the power of the study was insufficient to detect the 

effect (Keppel, 1991). 



Statistical power of an experiment also reflects the degree to which the results might be 

duplicated when an experiment is repeated. If the power of an experiment is 0.50, it means 

that 50% of the repeated empirical experiments will not yield a significant result, even though 

the phenomenon exists (Keppei, 1991). 

The Fundamentals of Statistical Power Analysis 

This section of the paper reviews the factors that affect the statistical power of an 

empirical experiment. We explain the relationship between these factors and suggest the 

conditions under which high power can be achieved. Statistical power analysis describes the 

relationship among the four variables involved in statistical inference: the significance level (𝛼), 

sample size (𝑁), effect size (𝐸𝑆) and statistical power. For any statistical model, these variables 

are such that each is a function of the other three (Cohen, 1977, 1988). Therefore, 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 = 𝑓(𝛼, 𝑁, 𝐸𝑆)        (1) 

The following sections discuss how statistical power is related to the other three 

parameters in Eq. (1) (significance level, sample size and effect size). The relationship between 

statistical power and the probability of making a wrong decision in statistical tests is also 

discussed. 

Statistical Power and Significance Level 

In general, an empirical experiment begins with specification of statistical hypotheses 

(null and alternative hypotheses) which consist of a set of precise statements about the 

parameters of interest. The statistical hypothesis under test is known as the null hypothesis 

(𝐻0)  and is analogous to saying that the phenomenon of interest does not exist. The 

alternative hypothesis (𝐻𝑎) specifies values for the parameter that are incompatible with the 

null hypothesis. In other words, the alternative hypothesis states that the phenomenon under 

study exists. Next, relevant data are collected and then either the null hypothesis is rejected or 

it is retained. However, the crux of the problem is the fact that a portion of differences 

observed among the experimental conditions are random variations. 

The procedure followed in hypothesis testing does not guarantee that a correct 

inference will always be drawn. On the contrary, there will always be a probability of making an 

error. Depending on the actual state of the populations under study, the researcher can make 

either a Type I error or a Type 11 error. A Type I error occurs when 𝐻0 is rejected when it is true. 

A Type II error occurs when 𝐻0 is not rejected when 𝐻𝑎 is true. The probabilities of a Type I 

error and Type II error are known as 𝛼 and 𝛽, respectively. The 𝛼 is also known as the 

significance level. Statistical power is defined according to the following equation (Cohen, 1977, 

1988): 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽        (2) 

Table 1 presents the possible conclusions and errors in a statistical test and their  



relation to each other. Consider, 𝛼 = 0.05 and 𝛽 = 0.20 for a study in which 𝐻0 is rejected. 

Even though 𝐻0 is rejected, there is a finite probability of making an incorrect decision 

(significance level = 𝛼 = 0.05) and a finite probability of making the correct decision (statistical 

power = 1 − 𝛽 = 0.80), because it is impossible to know if 𝐻0 is indeed false. If the researcher 

did know that 𝐻0 is false, then there would have been no need for the hypothesis test. This 

simple example shows that the chances of making a correct decision in hypothesis testing 

increase with higher statistical power. 

 

 

 

 

 

 

 

 

Table 1 Illustration of Type I and Type II errors in hypothesis testing 

Consider an empirical study in which a researcher wants to test if two population means 

are equal to each other. The researcher can choose to perform an F-test (ANOVA). This means 

that the researcher must decide if the F-ratio obtained from the experimental data is consistent 

with the actual sampling distribution of F when the null hypothesis is true. Because of the 

probabilistic nature of this analysis, the researcher can never be certain if the calculated F-ratio 

corresponds to 𝐻0 or 𝐻𝑎. 

 

 

 

 

 

 

 

Fig. 1. Sampling distribution of F-ratio  Fig. 2. Sampling distribution of F-ratio when 

when the null hypothesis is true.   the alternative hypothesis is true. 



Fig. 1 represents the theoretical distribution of F when the null hypothesis is true. The 

region of rejection is specified to the right of 𝑓𝑎, which represents the magnitude of 𝛼. Hence, if 

the F-ratio calculated from the sample data falls in this region, then the null hypothesis will be 

rejected and an 𝛼 error will be made. Fig. 2 represents the theoretical distribution of 𝐹 when 

the alternative hypothesis is true. The region of rejection is again specified to the right of 𝐹𝛼. 

The area to the left of 𝐹𝛼 is the probability of making an incorrect decision. The critical value of 

𝐹(𝐹𝛼) is the same in Figs. 1 and 2. This happens because, in general, 𝐹𝛼 is set to a fixed value 

with the null hypothesis in mind. However, the value of 𝛽 (and hence statistical power) is not 

fixed. Fig. 3 combines Figs. 1 and 2. The reciprocity of 𝛼 and 𝛽 errors is clear in Fig. 3. Any 

change in the size of the rejection region 𝐹𝛼will produce opposite changes in the two types of 

errors. It is also clear from Fig. 3 that there is always a finite probability of making an error 

whether He is retained or rejected. Therefore, it is important in any statistical analysis to 

control both 𝛼 and 𝛽 errors. A balance between the two types of errors is needed because 

reducing any one type of error increases the probability of increasing the other type of error. 

 

 

 

 

 

 

 

Fig. 3. Sampling distributions of 𝐹-ratio under null and alternative hypothesis 

Typically, 𝛼 is taken to 0.05 in most of the social/behavioral sciences. In several cases, 

however, 𝛼 = 0.01, 0.001 and 0.0001 are also used. Since the 𝛼 and 𝛽 errors are dependent on 

each other, a more stringent 𝛼 level leads to a lower power for a given sample size. Often there 

is a tendency to report tests according to the "𝑝 − 𝑣𝑎𝑙𝑢𝑒" obtained on the computer printouts 

and to give more importance to" more significant" results. Doing this, however, reduces the 

power of those tests. In other words, if two statistical tests have different 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 (say 0.05 

and 0.001) but the same power (say 0.60) then both tests have the same probability (60%) of 

getting the same results if the statistical tests are repeated with new data sets under otherwise 

identical experimental conditions. Therefore, a better approach might be to treat all the tests 

which are significant at a fixed a value (say, 𝛼 = 0.05), with the same importance (Cohen, 1977, 

1988). 

There is no agreement among researchers on the issue of what defines a reasonable 

level of power. Certainly a power of 0.50 is too low. At the same time a power of 0.90 requires 

a very large sample size (Dallal, 1986). Recently, however, methodologists are beginning to 



agree that a power of about 0.80 represents a reasonable and realistic value for research in 

social/behavioral sciences (Cohen, 1977, 1988; Hinlde and Oliver, 1983; Kirk, 1982). A power of 

0.80 is reasonable in the sense that it reflects a general sentiment among researchers that 𝛼 

errors are more serious than 𝛽 errors and that a 4:1 ratio of 𝛼 to 𝛽 error is probably 

appropriate. 

Statistical Power and Effect Size 

The shape and location of the non-central 𝐹 distribution shown in Figs. 2 and 3 depend 

on several factors, one of which is the actual difference between the populations. Effect size is 

an index which measures the strength of association between the populations of interest 

(Cohen, 1977, 1988). Several measures of the effect size have been proposed. The reader is 

referred to Camp and Maxwell's (1983) article and Cohen's (1977, 1988) text for a detailed 

analysis of these effect size indices. Here we will briefly review some of the more popular 

approaches. One commonly used approach is known as omega-square (𝜔2) (Keppel, 1991). 

When applied to a single factor experimental design, 𝜔2 is based on two variances derived from 

the populations, one is the differences among the population means (𝜎𝑎
2) and the other is the 

variability within the populations (𝜎𝑠/𝑎
2). 

𝜔2 =
𝜎𝑎

2

𝜎𝑎
2+𝜎𝑠/𝑎

2         (3) 

If there is no difference between the populations then 𝜔2 = 0. The value of 𝜔2 varies 

between 0 and 1.0 when there are actual differences between the populations. Effect size, as 

measured by 𝜔2, is a relative measure, reflecting the proportional amount of the total 

population variance that is attributed to the variation among the populations under study. 

Cohen (1977, 1988), Camp and Maxwell (1983), and Vaughan and Corballis (1969) have 

developed a number of useful equations for calculating 𝜔2 for simple statistical tests. For 

example, for a one-way ANOVA with the same sample sizes, 𝜔2 can be estimated in the 

following manner (Keppel, 1991): 

�̂�2 =
(𝑎−1)(𝐹𝑜𝑏−1)

(𝑎−1)(𝐹𝑜𝑏−1)+𝑎𝑛
         (4) 

where 𝑎 represents the number of groups, 𝑛 represents the sample size in each group and 𝐹𝑜𝑏 

represents the observed 𝐹-ratio. 

 Although 𝜔2 is the most commonly reported measure of relative magnitude in 

experimental studies, other indices have also been used to estimate effect size. For example, 

Pearson and Hartley (1951, 1972) charts use a 𝜙2 statistic (based on an estimate of expected 

minimum effect size) to calculate the sample size required to get a reasonable value of power 

for a given significance level. Estimation of Pearson and Hartley's 𝜙2 requires sample size (𝑛) 

for all groups (𝑎), means of different populations (𝜇𝑖), the grand mean (𝜇𝑇) and the common 

within group variance in different populations (𝜎𝑠/𝑎
2). 



 𝜙2 = 𝑛
∑

(𝜇𝑖−𝜇𝑇)2

𝑎

𝜎𝑠/𝑎
2          (5) 

Effect size can also be estimated by Cohen's (Cohen, 1977, 1988) 𝑓 statistic. Cohen uses 

the range of means of populations divided by the common within-group standard deviation as 

an index in effect size calculation. All measures of effect sizes however, are interrelated. For 

example, the following two equations show how sample size (𝑛), 𝜔2, Pearson and Hartley's 𝜙2  

and Cohen's 𝑓 parameters are related to each other (Keppel, 1991): 

𝜙2 = 𝑛
�̂�2

1−�̂�2,          (6) 

𝜙2 = 𝑛𝑓2.          (7) 

Effect size indices are important because they help researchers distinguish between a 

meaningful effect and a trivial one and between the relative magnitude of effects. A small but 

significant F-ratio for a statistical test might suggest the presence of a trivial effect that was 

detected by a particularly powerful study whereas a medium but non-significant F-ratio might 

suggest the possible presence of an important effect that was not detected because of a serious 

lack of power. Cohen (1977, 1988) suggests the following rough guidelines to describe the size 

of an effect in the social/behavioral sciences: 

- A "small" effect is an experiment that produces an 𝜔2 of 0.01 (approximately 𝜔2 <

0.03). 

- A "medium" effect is an experiment that produces an 𝜔2 of 0.06 (approximately 𝜔2 is 

0.03 to 0.11). 

- A "large" effect is an experiment that produces an 𝜔2 of 0.15 or greater (approximately 

𝜔2 = 0.11 or more). 

Statistical Power and Sample Size 

Even though the power of a statistical test depends on three factors, from a practical 

point of view only the sample size is used to control power. This is because the 𝛼 level is 

effectively fixed at 0.05 (or some other value). Effect size can also be assumed to be fixed at 

some unknown value because generally researchers cannot change the effect of a particular 

phenomenon. Therefore sample size remains the only parameter that can be used to design 

empirical studies with high statistical power. 

In general, bigger sample sizes are needed for higher statistical power. Increasingly 

larger sample sizes are needed to continuously increase power by a fixed amount (Kraemer, 

1985, Kraemer and Theimann, 1987). Also, relatively small expected effect sizes require 

substantial sample sizes to achieve a reasonable power. 

Table 2 demonstrates the relationship between statistical power, sample size and effect 

size for two different significance levels (Dallal, 1986). It clearly shows that for a given effect  



 

 

 

 

Table 2 Sample size as a function of power, significance level and effect size 

size, bigger sample sizes are needed to maintain the same power level if statistical significance 

is increased. For example, the required sample size increases from 44 to 62 for a medium effect 

size if 𝛼 is reduced from 0.05 to 0.01 to maintain power at 0.80. Table 2 also shows that bigger 

sample sizes are required to get higher power and smaller effect sizes require relatively bigger 

samples to obtain reasonable power levels. 

 Pearson and Hartley (1951, 1972) have constructed some very helpful charts from which 

sample sizes can be estimated for a given power level. The Pearson and Hartley Charts present 

statistical power for two 𝛼 levels (0.05 and 0.01), different degrees of freedom, and for 

different 𝜙2 values. Eq. (5) can be used to calculate 𝜙2 by conducting a pilot study with a small 

sample size. Then, the Pearson and Hartley chart can be used to estimate "sample size 

required" to get the "calculated 𝜙2'' at a reasonable power level. Cohen (1977, 1988) 

developed another useful set of tables for calculating sample size required to get reasonable 

power levels at three different 𝛼 levels (0.10, 0.05 and 0.01). Software programs that greatly 

facilitate the estimation of power and sample size are now available. In this research, we have 

used the Statistical Power Analysis program developed by Borenstein and Cohen (1988). 

 

 

 

 

 

 

 

 

Fig. 4. Statistical Power: A Bayesian Analysis 

Information about other programs is available in (Brecht et al., 1988; Dallal, 1986; Anderson, 

1981; Goldstein, 1989; Stoloff and Couch, 1988). Minno (1991) reports that a PC version of SPSS 

can also conduct power analysis. A number of journals (for example Behavior Research 



Methods, Instruments and Computers, Educational and Psychological Measurements, American 

Statistician, British Journal of Mathematical and Statistical Psychology, Multivariate Behavioral 

Research) and magazines (PC Magazine, Byte) periodically publish reviews of new statistical 

packages. Please refer to these publications for information regarding new software programs. 

Statistical Power and Decision Making 

The importance of statistical power can be further understood by a simple probability 

tree analysis. The probability tree in Fig. 4 shows the two states of nature in hypothesis testing 

(𝐻0 true or 𝐻𝑎 true) and the two decisions (accept 𝐻0 or reject 𝐻𝑎) made by the researchers for 

those states of nature. The researcher either accepts H o or rejects H 0 without knowing the 

true state of nature. From this probability tree it is clear that there is a finite probability of 

making an error no matter what decision the researcher makes. Therefore, the following four 

conditional probabilities are of interest. 

If 𝐻0 is accepted then two possibilities exist: 

(A) Probability of 𝐻0 being true in reality given that the researcher accepts 𝐻0, P(RHoIDH0). 

This represents the conditional probability of making a correct decision when H o is 

accepted. Using Bayes' theorem, the above conditional probability can be calculated in 

the following manner (Watson et al., 1993): 

𝑃(𝑅𝐻0|𝐷𝐻0) =
𝑝(1−𝛼)

𝑝(1−𝛼)+(1−𝑝)𝛽
       (8) 

(B) Probability of 𝐻𝑎 being true in reality given that the researcher accepts 𝐻0, 

𝑃(𝑅𝐻0|𝐷𝐻0). This represents the conditional probability of making a wrong decision 

when H o is accepted. Hence, 

𝑃(𝑅𝐻𝑎|𝐷𝐻0) =
(1−𝑝)𝛽

𝑝(1−𝛼)+(1−𝑝)𝛽
       (9) 

If 𝐻0 is rejected and 𝐻0 is accepted then two possibilities exist: 

(A) Probability of 𝐻0 being true in reality given that the researcher accepts 𝐻𝑎, 

𝑃(𝑅𝐻0|𝐷𝐻𝑎). This represents the conditional probability of making a wrong decision 

when 𝐻0 is rejected. Therefore, 

𝑃(𝑅𝐻0|𝐷𝐻𝑎) =
𝑝𝛼

𝑝𝛼+(1−𝑝)(1−𝛽)
       (10) 

(B) Probability of 𝐻𝑎 being true in reality given that the researcher accepts 𝐻𝑎, 

𝑃(𝑅𝐻𝑎|𝐷𝐻𝑎). This represents the conditional probability of making the correct decision 

when 𝐻0 is rejected. Hence, 

𝑃(𝑅𝐻𝑎|𝐷𝐻𝑎) =
(1−𝑝)(1−𝛽)

𝑝𝛼+(1−𝑝)(1−𝛽)
       (11) 



Eqs. (8) and (11) represent the conditional probabilities of making the correct decisions 

and Eqs. (9) and (10) represent the conditional probabilities of making the wrong decisions. In 

an actual experiment, the value of 𝛼 is often fixed (in advance). Eqs. (8)-(11) contain "𝑝", which 

is defined as the probability of 𝐻0 being true in reality. The objective of this analysis is to show 

the general effect of 𝛽 error (and hence statistical power) on the likelihood of making right and 

wrong decisions. We chose 5 different levels of 𝑝 (0.1, 0.3, 0.5, 0.7, 0.9) to represent different 

scenarios. When 𝑝 = 0.1, it represents a very high probability that 𝐻𝑎, is true in reality. 

Similarly, 𝑝 = 0.0 represents a high probability of 𝐻0 being true. The value of 𝛼 was fixed to 

0.05 in this analysis. 

 

 

 

 

 

 

 

Fig. 5. Probability of making a correct decision  Fig. 6. Probability of making a wrong  

when 𝐻0 is accepted.     decision when 𝐻0 is accepted. 

Figs. 5, 6, 7 and 8 show the changes in the four conditional probabilities with respect to 

changes in the 𝛽 value, for different "𝑝" levels. It can be clearly seen from these plots that the 

conditional probabilities of making the correct decision decrease rapidly as 𝛽 increases from a  

 

 

 

 

 

 

 

 

 

Fig. 7. Probability of making a wrong   Fig. 8. Probability of making a correct  

decision when 𝐻𝑎 is accepted.   decision when 𝐻𝑎 is accepted. 



 

small (0.2) to a large (0.8) value (Figs. 5 and 7). It is also clear from Figs. 6 and 8 that the 

probability of making the wrong decision increases as the 𝛽 value increases. 

The above analysis suggests that it is in the best interest of the research project to keep 

the value of as low (or statistical power as high) as possible. Figs. 7 and 8 should be of special 

interest to most empirical researchers because more often they are interested in rejecting 𝐻0 

and accepting 𝐻𝑎. 

Previous Studies of Statistical Power 

Although statistical power is very important in empirical research, traditionally most of 

the emphasis has been given to statistical significance. The next section of the paper presents a 

brief literature review of the power analysis of published research in various social/behavioral 

sciences. 

In spite of the arguments in the previous section, most researchers pay little attention 

to power and, in fact, most of the empirical studies in behavioral/social sciences are lacking in 

power. Jacob Cohen (1962), in a classic study on the statistical power analysis of the articles 

published in the 1960 volume of the Journal of Abnormal and Social Psychology, found that the 

average power of the articles was only 0.48. This means that the significant effects reported in 

this volume of the journal would have, on average, about a 50-50 chance of being detected by 

others who try to duplicate these findings. Recently, Sedlmeier and Gigerenzer (1989) 

duplicated Cohen's study and analyzed the articles published in the 1984 volume of the Journal 

of Abnormal Psychology, and came to almost the same conclusion - the average power for 

detecting the median effect was found to be 0.50. Recently, several other studies were 

conducted in other social/behavioral sciences which also came to the conclusion that most of 

the research articles were seriously lacking in power. For example, Brewer (1972) found that 

the power of the studies with medium effect size as 0.58, 0.71, and 0.52, respectively, in 

American Journal of Educational Research, Journal of Research in Teaching, and The Research 

Quarterly. Chase and Chase (1976) studied the articles published in the Journal of Applied 

Psychology and found the average power for experiments with medium effect size to be 0.67. 

Table 3 presents a summary of results from a number of power calculation studies. 

Osbom (1990) conducted a survey of manufacturing organizations in the United States 

using statistical control charts. He found that 75% of the processes had less than 50% chance of 

detecting a critical shift on the first sample taken after the shift had occurred. Out of' the 61 

respondents, he found that power levels for 13 processes were less than 10% and eight of 

those were actually less than 1%. Ashton (1990) concludes that statistical power might be the 

reason for not being able to detect superior investment performance. Baroudi and Orlikowski 

(1989) conducted a survey of published Management Information Systems literature for five 

years and concluded that there is about a 40% chance of failure to detect the phenomenon 

under study, even though it may exist. 



 

 

 

 

 

 

 

 

Table 3 Average statistical power levels in empirical research in various disciplines 

The unfortunate conclusion from all these findings is that research in social/behavioral 

sciences is woefully lacking in power. This statement implies that a substantial number of 

research projects have been undertaken and then discarded when they failed to produce 

results at acceptable significance levels. If the power is 0.50, then it suggests that half the 

research undertaken will not yield significant results even though there are real differences 

among the treatment conditions. 

Statistical Power in the Journal of Operations Management and in Decision Sciences 

A survey of 28 empirical research articles of the last five years in the Journal of 

Operations Management (vols. 7-10) and Decision Sciences (vols. 20-24) was undertaken. The 

reason for presenting the results of the power calculations is to show the general trend of 

statistical power in POM and related disciplines. The tests analyzed in this study were 

correlations, t-tests, and multiple regression. Other statistical tests were not considered 

because of the lack of the necessary information reported in most of the articles. 

We used the Statistical Power Analysis program developed by Borenstein and Cohen 

(1988) to calculate the power of the statistical tests. This program is very easy to use and only 

requires summary statistics to calculate power. For example, the power calculation for a t-test 

requires knowing two sample means, sample standard deviations, sample sizes, and a level 

used. The program first estimates effect size (𝜔2- Eq. (3)), and then calculates power as a 

function of effect size, sample sizes and significance level. 

Table 4 presents the power levels found in the statistical tests for each journal with 

respect to High (0.80 to 1.0), Medium (0.60 to 0.80), Low (0.40 to 0.60), and Very Low Power (< 

0.40). This shows that 317 out of the 524 tests (60%) do not have a high power level (≥ 0.80). 

According to Table 3, Decision Sciences has a larger number of tests both at very low and high 

power. If we consider medium and high power levels to be acceptable, then the 73% of tests in 



the Journal of Operations Management have acceptable power. About 59% of the tests in the 

Decision Sciences have acceptable power levels. 

Table 4 also shows that regression analysis tends to have high power (92% of the tests) 

compared to correlation (36%) and t-tests (19%). For correlation, the number of tests classified 

as Low, Medium, and High Power are approximately uniformly distributed (30-35% in each). For 

𝑡-tests, 64% of the tests have Very Low or Low power. One possible reason for relatively low 

power levels in correlation and 𝑡-tests might be their extensive: use in exploratory-type 

analysis. 

 

 

 

 

Table 4 Cross tabulation of journal and method by power level of statistical tests 

With respect to the 𝛼 level, Table 5 tends to support the contention that researchers 

focus on 𝛼 levels and maintain the 𝛼 levels at acceptable values; i.e., 98% have 𝛼 ≤ 0.05 and 

34% have 𝛼 ≤ 0.001. Table 5 also looks at 𝛼 level and power level. The results show that 58% 

of the tests with 𝛼 = 0.001 have high power but only approximately 30% of the tests with 𝛼 ≤

0.01 or 0.05 have high power. A possible reason for the high power of tests with 𝛼 = 0.001  

might be bigger effect sizes and/or bigger sample sizes. Still, 42% of the tests with 𝛼 = 0.001 

do not have high power. Additionally, approximately 70% of the tests with 𝛼 = 0.01 or 𝛼 =

0.05 have power levels that are not high. 

Table 6 presents the results of the cross tabulation of effect size with journal, method, 

and power level. This shows that most of the tests reported in the Journal of Operations 

Management and Decision Sciences are analyzing effects considered large or medium. Small or 

subtle effects only account for 13% of the tests. A noticeable trend that can be identified in 

Table 6 is that tests with larger effect sizes achieve relatively higher power. In other words, 65% 

of the tests with large effect size have high power, 22% of the tests with medium effect size 

have high power, and only 10% of the tests with small effect size have high power.  

Table 6 also shows that 77% of the regression tests analyzed large effects. On the other 

hand, 62% of the 𝑡-tests and 37% of the correlations analyzed large effects. Recall that Table 4 

showed that most of the regression tests had much higher power than t-tests or correlations. 

Larger effect size might be a possible reason for this result. A detailed cross tabulation of the 

power analysis for each article is provided in Table 7 to show the relative contribution of each 

article to the aggregate measures used in the previous tables. 

 



 

 

 

 

 

 

 

Table 6 Cross tabulation of journal by effect size of statistical tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 Cross tabulation of articles by power level of statistical tests 



Concluding Remarks 

The objective of this article was to stress the need and importance of statistical power in 

empirical research in POM and related fields. We have presented a detailed review of the 

concepts related to statistical power. A meta-analysis of empirical research articles published in 

the Journal of Operations Management and in Decision Sciences has also been presented. The 

meta-analysis suggests that our field does relatively better than several other social sciences. 

This is good news, especially because empirical research is relatively new to POM. At the same 

time, the meta-analysis also shows that several of the statistical tests had very low power. 

Overall, the average power of correlation, 𝑡-tests and regression analysis reported in 

Journal of Operations Management and in Decision Sciences were approximately 0.71 and 0.72, 

respectively (from Table 4). The average power for tests with large, medium and small sizes 

were 0.85, 0.65 and 0.49, respectively. These numbers suggest that, overall, empirical articles in 

POM and related disciplines are doing better than several other disciplines. The literature of 

several other social/behavioral sciences show that the mean (or median) power observed was 

close to 0.50. Still, low power levels for tests with medium and small effect sizes is a reason for 

concern.  

An interesting trend is prevalent for the 𝛼 level. Researchers tend to focus on the 𝛼 level 

and report lower 𝛼 levels as more important, e.g., 𝑝 ≤ 0.001 is more meaningful than 𝑝 ≤

0.01. However, both tests could have the same probability of making a Type II error. This 

means that if the studies are repeated, both tests have an equal probability of not finding the 

same significance level (same 𝛼) as was found in the original tests. Hence, a better strategy will 

be to treat all results significant at a predetermined or level with the same importance. 

Currently, empirical studies in POM and related topics tend to focus on high and 

medium effects. This is not a surprising observation because empirical research is just beginning 

to make inroads in these fields. Other social/behavioral sciences have also gone through similar 

phases. A growing field starts by studying larger effects to "map the territory". As a field 

becomes more mature, more research is undertaken which explores smaller effects. Recall that 

statistical power generally suffers in current studies that analyze smaller effects. We feel that 

future empirical research will study increasingly smaller effects, so power levels will become 

increasingly important. 

Recall that statistical power is a function of three factors: 𝛼 level, effect size, and sample 

size. For a given study, effect size can be considered more-or-less fixed. Similarly, acceptable 𝛼 

levels are set by the norms of the field. Hence, only sample size is used as a controlling factor 

for generating acceptable power levels. With this information and some a priori assumptions, a 

more sensitive, powerful, and economical study can be designed.  

A number of statistical power analysis tools (Pearson and Hartley, 1951, 1972; Cohen, 

1977, 1988) and software programs (Borenstein and Cohen, 1988; Brecht et al., 1988; Dallal, 

1986; Goldstein, 1989; Minno, 1991) are available for researchers planning to conduct power 



analysis prior to conducting a large scale empirical study. We strongly recommend that 

researchers begin by conducting small pilot studies and then use their results to calculate the 

sample size required to get a reasonable power level in full-scale empirical studies. In fact, it 

might be possible to collect required data for a simple power analysis by using the results of 

pre-tests of empirical research instruments. Then, the study results should also note the power 

of the tests. 

Generally, empirical studies are conducted to identify or verify relationships and/or infer 

cause-and-effect for the phenomenon of interest. Therefore, we feel that statistical power 

analysis is a very useful tool in meeting the goals of empirical studies because high power 

increases the probability of making correct decisions. For further reading, see (Cohen, 1988; 

Lipsey, 1990). 
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