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Sequence Effects in Service Bundles: Implications for Service Design 

and Scheduling 

Michael Dixon, Naval Post Graduate School 
Rohit Verma, Cornell University 

Researchers in several academic disciplines have investigated the effect of the sequence 

of pleasure and pain on the customer in service, experience, or healthcare-related interactions. 

Specifically, past research from psychology, behavioral economics, and other related fields 

suggests that the sequence effect can significantly impact a customer’s overall impression of a 

service interaction. In this article, we test the influence that the sequence of discrete events 

separated by several days or weeks plays on customers’ assessment of service bundles. If the 

relative importance of the sequence effect for discrete bundles is known, then a service designer 

and event scheduler can optimize and develop a better sequence of interactions for the 

customers, leading to higher satisfaction, loyalty, and repurchase. Using an extensive multi-year 

ticket purchase database from a world-renowned performing arts venue, we develop and test 

econometric models to predict season ticket subscription repurchase. The estimated models 

show that sequence effects do indeed play a significant role in determining customer repurchase 

of subscriptions. These results have important implications for effective service design and 

capacity planning for a wide range of service industries. This article suggests both managerial 

implications and future research opportunities related to sequence effects in service operations. 

Introduction 

Effective service design and capacity scheduling involves developing a service concept that 

appeals to end users while considering operational constraints (e.g., Pullman et al., 2000; Verma et al., 

2001; Goodale et al., 2003). Furthermore, past research has emphasized that operations management’s 

role in designing a service concept involves understanding “what” should be done and “how” it should 

be done (e.g., Goldstein et al., 2002). Exploring the methods and frameworks of “what” and “how” has 

been the focus of much of the service design research; however, less explored is the importance of the 



timing decisions within a service delivery. In other words, “when” should customers experience different 

segments or components of a service has not been explored. Specifically, past research in service 

operations management has not discussed the relative importance of the sequence of pleasure and pain 

and associated interactions within service design. 

Based on research conducted in other academic disciplines, some operations management 

scholars have suggested that the sequence of events within a service can influence customer’s overall 

perception of quality and satisfaction (e.g., Chase and Dasu, 2001, 2008; Cook et al., 2002). Specifically, 

Chase and Dasu (2001) suggest various strategies for sequencing including placing the lowest point or 

bad news at the beginning of the service encounter, ending the service on a high note, and improving 

the experience over time. Furthermore, behavioral economics researchers such as Ariely and Carmon 

(2000) have reviewed the sequence-related research and suggested several characteristics of 

experiences that may influence customers’ assessments and future behavior. They state that 

experiences can be perceived as continuous or discrete, and evaluation of the individual parts of an 

experience can be done retrospectively, prospectively, and in real time. 

In this article, we explore the impact of naturally occurring (non-experimentally altered) 

sequences of discrete service interactions on future customer choice behavior using a prospective view. 

Using a comprehensive multi-year ticket purchase database from a world-renowned performing arts 

venue, we test the impact of event sequence on customer repurchase of subscription packages. Using 

econometric modeling, we estimate the impact of the placement of high-utility events and the trend of 

event utilities has on the probability of subscription repurchases. 

This article contributes to research related to event scheduling and planning, service design, and 

behavioral decision-making, and expands our understanding of the role of sequence in planning and 

placement of different components of a service bundle. We believe this paper is the first within the 

operations management literature that explores the above research issues by using a large archival 

dataset and that attempts to quantify the impact of service sequence on customer behavior. 

The remainder of this article is organized in the following manner: first, we provide a review of 

the literature related to service bundling and sequence-related behavioral research; second, we present 

our theoretical framework and hypotheses; third, we describe our research design and analysis 

approach; fourth, we present our results and associated discussion; and, lastly, we discuss theoretical 

and managerial implications of this research. 



Literature Review 

Service Bundling 

We address the temporal sequence of events within the context of a service bundle, that is, a 

combination of a number of different services sold in one package. Product (goods and service) bundling 

is a heavily researched topic in marketing (e.g., Guiltinan, 1987; Harlam et al., 1995; Stremersch and 

Tellis, 2002; Gaeth et al., 1991). This practice is common across many service industries; for example, 

online travel agencies offer packages including airfare, ground travel, and lodging; telecommunications 

and cable companies offer packages with several different services at one price; performing arts and 

sporting venues sell season subscriptions that include tickets to a number of events; and multi-day 

conferences and retreats are often bundled together to include food, lodging, and a series of 

workshops, seminars, and related activities. 

Some service bundles are created by combining a number of different services that are intended 

to be used simultaneously or concurrently. For example, for one monthly charge, telecommunication 

firms provide Internet, cable television, and home telephone services as a service bundle for which 

individual items can all be used at the same time. Other service bundles are created by placing similar 

discrete services together in a way that they have to be experienced across time or sequentially. For 

example, a course taught over 12 weeks may have 12 separate class sessions, and a cruise ship package 

may include 5 days of separate experiences at different locations. Similarly season ticket sales for 

performing arts or sporting events include a number of different events experienced across multiple 

days within a season. At times, the event sequence of a service bundles could be constrained; for 

example, the 5-day cruise typically includes visits to different islands in a physically linear fashion. 

However, in some other service bundles, the sequence is not assumed to be fixed or at least not entirely 

fixed; for example, the schedule of performances within a performing arts season subscription can be 

altered as necessary. These types of service bundles provide ideal testing ground for sequence-related 

behavioral research because the sequence of the discrete segments can be changed and the impact 

evaluated. 

Different hierarchical levels of service bundling effectively act as a pricing rate fence; for 

example, a cell phone company that bundles phone, texting, and Internet access can charge different 

prices for different combinations of bundles. Thus, operations management researchers to date have 

primarily concerned themselves with revenue management or pricing issues surrounding product (goods 

and service) bundling (e.g., Bitran and Caldentey, 2003; Bitran and Ferrer, 2007; Aydin and Ziya, 2008), 



and supply chain issues of supplier bundling, or product mix purchasing (Schoenherr and Mabert, 2008; 

Rosenthal et al., 1995). From an economic perspective, customers purchase bundles because their 

reservation prices for all individual elements are met; that is, the actual price for high-demand elements 

is lower than the reservation price, so the surplus is transferred to the less desired element of the 

bundle. 

In a related research stream, a number of procedures to understand “optimal” product and 

service attributes have been developed to find an attribute mix that maximizes sales, market share (e.g., 

Green and Krieger, 1989; Shocker and Srinivasan, 1979; Ho and Zheng, 2004), or profit (Green and 

Krieger, 1991; Morgan et al., 2001; Moore et al., 1999; Raman and Chhajed, 1995). Other researchers 

have developed attribute mix optimization models while considering operating constraints such as 

capacity (Pullman and Moore, 1999), production costs (Moore et al., 1999), waiting time and labor 

scheduling (Pullman et al., 2000), and operational difficulty (Verma et al., 2001). This stream of research 

has contributed to an understanding of consumers’ choice of product and service attributes; however, 

to our knowledge, none of the optimization models have considered the sequence-related attributes of 

service delivery. While this article does not attempt to optimize a service bundle, it is the first step in 

understanding what impact the service sequence might play in optimal bundles. 

Behavioral researchers have often broadly used the term “experience” to mean anything that 

would provoke a physiological or emotional response. Within the service management literature, there 

has been an effort to distinguish a service offering whose purpose is to evoke an emotion (Pullman and 

Gross, 2004; Voss, 2004; Zomerdijk and Voss, 2010; Voss et al., 2008). Others (Grove and Fisk, 2001; Pine 

and Gilmore, 1998) have compared these experience-centric operations to theater productions, 

comparing front-line servers to actors, physical surroundings to stages, and customers to audience 

members. Voss et al. (2008) concluded that operations management takes on the role of a 

choreographer, carefully planning and supervising service delivery in order to evoke a specific emotional 

state from a customer at a specific time. The metaphor of a choreographer is useful in helping 

researchers understand the role operations management takes in complex service environments that 

attempt to produce emotional experiences. Just like a choreographer, operations managers must 

deliberately and explicitly consider and define the settings, actions, timings, and sensory elements 

(sound, light, and smell) that lead to a desired experience. Our research investigates whether it is useful 

to consider one of these elements—timing—across a time-elapsing service bundle with discrete 

experiences. 



Sequence Effects of Service Bundles 

Behavioral economics researchers have shown that instead of summing or averaging the 

perception of all parts of an experience, gestalt characteristics are used as cues that, in turn, are used to 

evaluate the entire experience (Fredrickson and Kahneman, 1993; Loewenstein and Prelec, 1993). 

Traditionally, this stream of research considers the end-state perception, most salient-state perception 

(Ariely, 1998; Baumgartner et al., 1997; Kahneman et al., 1993), and overall trend of an experience 

profile (Ariely, 1998; Ariely and Zauberman, 2003; Hsee et al., 1991). (For a review of this stream of 

literature, see Ariely and Carmon, 2000; Chase and Dasu, 2001; Bitran et al., 2008.) 

An experience profile (Ariely and Carmon, 2000) considers the value, intensity, utility, or 

disutility of all the different episodes of a time-elapsing experience. The end-state perception, often 

called the end effect, is the state at the end of an experience; the most salient or peak effect is the 

highest point on the experience profile; and the trend effect is a measure of the overall development of 

the hedonic qualities of the experience over time and is often measured as the slope of the linear line 

through all points on the profile. In addition to these three effects, researchers have identified other 

effects found to impact perception in certain scenarios. For example, when multiple high-value events 

were scheduled, researchers found a preference to spread them out over time (Loewenstein and Prelec, 

1993; Loewenstein, 1987; Thaler and Johnson, 1990), also known as the spread effect. Additionally, 

other researchers have investigated the importance of placement of the salient activities relative to the 

beginning and end of experience and perceived progress toward a desired end state (Soman and Shi, 

2003; Soman, 2003; Carmon and Kahneman, 1996). In this article, we refer to all of these known effects 

collectively as sequence effects. 

Marketing researchers have used the above constructs in explaining how customer expectations 

are formed and how satisfaction with a product (good or service) is expressed (e.g., Oliver, 1980; 

Parasuraman et al., 1985). However, within the operations management literature, sequence effects 

have been less researched. In their seminal book Service Breakthoughs: Changing the Rules of the Game, 

Heskett et al. (1990) discussed the idea of the “service bookend” and emphasize the need for services to 

provide not only a strong ending, but also a strong beginning. Similarly, Johnston (1995) proposed that 

exceeding a customer’s expectation early in an encounter is more likely to delight the customer 

throughout the service encounter because the customer is primed to see good service. Chase and Dasu 

(2001, 2008) suggested that behavioral research and sequence effects ought to be considered in service 

design; however, they did not provide any additional empirical evidence. They did, however, propose 

that an upward trend and a strong ending are more important than a strong beginning (Chase, 2004). 



Other researchers have shown through experimentation (Hansen and Danaher, 1999) and service 

content analysis (Verhoef et al., 2004) that an upward trend of sequence performance leads to higher 

perception of quality and satisfaction; however, these studies only tested for a change in performance 

level across a fixed sequence, not for changes in the sequence of the process itself, that is, the service 

process remained unchanged and only the performance levels changed. Bolton et al. (2006) have shown 

that more recent service encounters as well as “going the extra mile” or extremely favorable 

experiences influence system support service contract renewals. More recently, Bitran et al. (2008) 

further refined a conceptual framework of duration in a service encounter and how it applied to 

profitability. They cited behavioral literature as it applied to duration and the sequence of an encounter 

and concluded by calling for more varying techniques of empirical-based evidence across different 

industries, contexts, and research methodologies. 

Our research adds to the past research in operations management and marketing in several 

ways. First, we are interested in the sequence of discrete bundled experiences as opposed to a single 

service encounter. Second, we hope to provide support for service scheduling’s impact on customer 

behavior. Finally, we test for the presence of sequence effects with econometric modeling. Doing so 

allows us to uncover sequence effects in a naturalistic archival data set. 

Sequences of Discrete Experiences 

Traditional sequence-related research has often taken place within the context of one 

continuous experience; for example, a medical procedure (Ariely and Carmon, 2000; Kahneman et al., 

1993; Redelmeier and Kahneman, 1996), controlled discomfort experiment (Fredrickson and Kahneman, 

1993; Ariely, 1998), queuing (Carmon and Kahneman, 1996), or a service call to a financial services call 

center (Verhoef et al., 2004). Ariely and Zauberman (2003, 2000) claim that the perceived continuity of a 

sequence should impact whether or not sequence effects are used in evaluations of experiences. They 

found that, as the level of perceived continuity within an experience increases, so too does the 

importance of some of the specific sequence effects in predicting overall evaluations. Similarly, 

Loewenstein and Prelec (1993) state that when events are separated in time, they may not be 

considered a sequence. 

However, other research has shown evidence of sequence effects in temporally distant and 

discrete experiences; for example, gift giving in financial services (Haisley et al., 2011), payment 

sequences for auto repair and vacations (Langer et al., 2005), timing of repair services performed in a 

service contract (Bolton et al., 2006), and a lifetime of future wages (Loewenstein and Sicherman, 1991). 



One explanation for why sequence effects were found in these contexts even though they are 

temporally distant and discrete is their degree of cohesion. Miron-Shatz (2009) found that when asked 

to evaluate a multi-episode sequence that had no apparent cohesiveness (events from the previous 

day), simple averages better explained overall evaluations than sequence effects. She suggests that 

multi-episode sequences with stronger levels of perceived cohesiveness will likely have different results. 

In this study, we are interested in sequences within time-elapsing service bundles. The offering 

of a service bundle could be perceived in one of two ways: either as a series of connected episodes or as 

a convenient way to purchase several separate events. Differing levels of assumed cohesiveness 

between episodes in a service bundle is an important factor to be considered in future research. Past 

researchers that have approached the subject have only tested breaking up a continual experience into 

smaller pieces with temporal space between them (Ariely and Zauberman, 2003). To our knowledge, 

outside of temporal space, there has been little work considering how different elements of cohesion 

impact sequence effects. First and foremost among possible different elements of cohesion is the act of 

bundling itself; that is, by simply bundling and selling episodes together, the degree of between-episode 

cohesion is likely increased. Second, we can assume that the role of inter-episode theme plays a role in 

cohesion; that is, a sequence of thematically similar episodes is likely to be perceived as more cohesive 

compared to thematically different episodes. 

In this article, we consider the case of a service bundle where cohesion between segments is 

assumed. Our research context is season subscriptions of themed bundled performing arts events; 

events are combined that have similar themes (genre, artist, composer, performer, and so forth) and 

that have similar temporal spacing between events. We do not explicitly test for, or compare levels of, 

cohesion in this study, but we investigate the presence of sequence effects within a previously 

uninvestigated area, mainly that of events that are temporally separate, thematically similar, and 

purposefully bundled. As mentioned above, past research as to what to expect in this case is mixed. 

Measuring Experiences 

The measurement of parts of an experience within sequence varies widely in past literature, 

that is, what is actually measured and when it is measured differ drastically. Earlier work focused on 

pain and discomfort in which participants were asked in real-time to rate their pain level; afterwards, 

participants were asked to summarize their overall experiences (Redelmeier and Kahneman, 1996). 

Other studies experimentally altered the sequence of discomfort (Ariely, 1998), service levels (Ariely and 

Zauberman, 2003), or extended uncomfortable end states (Kahneman et al., 1993) and then asked for 



overall evaluations of the experience in terms of pain, discomfort, satisfaction, happiness, or a choice 

between options. 

All of the above measures can be considered a measure of utility; however, the timing of when 

evaluations are taken determines the type of utility. Kahneman et al. (1997) make a case that sequence 

effects are largely found in remembered utility or retrospective evaluations, for it is in our recollection 

of a sequence that we tend to rely on gestalt characteristics. They argue that in order to reveal these 

effects, researchers should also capture experienced utility or real-time evaluations. However, Soman 

(2003) found that different effects were emphasized depending on when—before or after the 

experience—the evaluation was requested. In the context of a “goal-oriented service” in which the 

customer hoped to arrive at some state at the end of the service (e.g., transportation services), Soman 

(2003) found that when participants were asked for a predicted utility or prospective evaluation, they 

overemphasized early delays. However, when participants were asked for a retrospective evaluation 

after the service was complete, they overemphasized late delays. This provides support that sequence 

effects can be found using predicted utility, and that the preference for different effects might be 

different for predicted measures than from remembered measures. Similarly, research on anticipation 

(e.g., Loewenstein, 1987) suggests that sequencing can alter predicted utility; under some conditions, 

participants would prefer to delay good things, that is, the utility of a future experience increases if 

there is time to savor the anticipation of the event. 

A practical difficulty in investigating sequence effects in service bundles is appropriately 

measuring utility for each event. As we see in the previous paragraph, evaluations of an experience 

could happen prospectively, in real-time, or retrospectively. If service designers hope to implement 

sequence effects into the design of their experience, multi-episodic or otherwise, they will likely have to 

first rely on and determine an expected utility, that is, prospectively speculate on how their customers 

will evaluate an episode. For example, a teacher planning learning activities for an eight-week course 

will have to use experience and expert knowledge to predict how students will respond to and enjoy 

different activities. Such planning will be even more complex if she has never taught this specific course, 

these specific students, or used the specific activities before. The teacher will have to rely on a predicted 

utility in order to plan a schedule of activities. 

We could define utility of an event as the perceived value of the event minus the cost. When 

cost is lower than value, there is positive utility; if value is lower than price, there is disutility. An event 

scheduler must price an event so that revenue is maximized. In order to do this, the scheduler has to 

have an idea of demand for the event and how demand may change at different price points. The 



rational economic model states that customers will buy if they predict that their utility for the event will 

be positive. It might be the case that customers’ experienced or remembered utility is not positive for 

any given event, but by purchasing the tickets, they must have had a predictive utility that was positive. 

The profit-maximizing venue will not host or price an event for which average predictive utility will be 

negative. Therefore, in this study, we assumed that all episodes have a positive predicted utility and we 

deal exclusively in the realm of positive predicted utilities. Similarly, when we refer to peak events, we 

mean the events with highest positive utility as opposed to the negative utility sometimes used in other 

sequence research. Some of the previous gestalt characteristics research is in the context of pain and so 

uses only negative measures in which the most painful segment is considered the “peak” pain 

(Kahneman et al., 1993; Redelmeier and Kahneman, 1996). In contrast, we consider our “peak” event 

the one that had the highest positive utility. 

In the case of a service bundle, customers decide their predicted utility of the entire package by 

calculating the predicted utilities for the individual parts of the bundle. It may be the case that a few 

items in the bundle have high utility, and so the excess is spread to the other parts in order to make 

them palatable. If there is not enough excess utility to spread out to all potential disutility parts, the 

customer will not purchase the bundle, but will instead buy individual parts. In fact, the behavior of the 

nonbundle purchasers gives us an indication of which events have higher value on average across the 

set of events. For example, if a bundle is made up of five events and the fifth element has twice the 

ticket sales of the others, we can assume that it has higher expected value than the other four. Since the 

bundle ticket purchasers have bought tickets to all five of the events, it was the behavior of nonbundle 

purchasers that indicated which events had higher predicted value. 

Hence, the service scheduler can evaluate the expected utility of each event in a bundle, in 

comparison to the other events in the bundle—or across all offerings—with nothing more than an 

understanding of demand for each event, or by looking at archival data of past ticket sales. This 

approach is simpler than the more complex discrete choice models used in other service design 

research, but may be easier to implement in practice if the events are sold both as a bundle and 

individually, such as sporting and performing arts events and other services that are delivered in 

sequence. 

Admittedly, the weakness in this approach is the use of predicted utility as opposed to 

experienced or remembered utility. In considering initial purchase, predicted utility is an appropriate 

measure, as it safely can be used to predict if a customer will buy a service bundle. Nearly all discrete 

choice models used to indicate utility of specific elements of a product use predictive utility. In 



considering repurchase or retention of customers, remembered utility is likely a better measure, since a 

customer considering repurchasing a bundle will consider his or her memory (remembered utility) of the 

past sequence as an aspect of deciding to repurchase the next bundle. In addition to the memory of the 

past sequence, customers likely will use the predicted utility of the next sequence in deciding to 

repurchase a bundle. Ideal in predicting repurchase behavior would be to have a remembered utility 

measurement of the past bundle and a predicted utility of the future bundle. However, remembered (or 

even experienced) utility is not easily captured by service providers; it requires customer feedback about 

each element of the bundle after the conclusion of the bundle and ideally at the time of decision to 

repurchase. However, as explained previously, predicted utility is more easily captured in archival ticket 

sales data. Although not ideal, in our study, we use the predicted utility measure for both the past 

sequence and the future sequence, in large part to determine if it was useful to do so. Since our model is 

the first of its kind to attempt to use archival data to find sequence effects, we believe that it is an 

acceptable first step in the application of service bundle sequence effect scheduling. Both our 

hypotheses and the discussion of our results will be considered in light of predicted utility having been 

shown to be different than remembered utility, and we will conjecture possible differences future 

researchers might find with ideal data in hand. 

Theory and Hypotheses 

The decision to repurchase a repeating service bundle is based on the evaluation of the previous 

experience with the service (e.g., LaBarbera and Mazursky, 1983; Rust and Zahorik, 1993) and 

prospective evaluation of the future bundle. The evaluation of a product or service is in large part a 

function of evaluating multiple attributes that make up the offering (Gensch and Recker, 1979). 

The random utility theory and the corresponding discrete choice modeling approach suggest the 

utility of possible selection is based on the characteristics of individual decision-makers (e.g., customer) 

and the attributes (e.g., price, quality, and brand name) of the alternatives (McFadden, 1980; Luce, 

1959; Ben- Akiva and Lerman, 1985). In particular, research suggests that after acquiring information 

and learning about possible alternatives, decision-makers define a set of determinant attributes to use 

to compare and evaluate alternatives. After comparing available alternatives with respect to each 

attribute, decision-makers eliminate some alternatives and form a final choice set containing a few 

alternatives. They then form impressions of each alternative’s position on the determinant attributes, 

value these attribute positions with one another (i.e., make tradeoffs), and combine the attribute 



information to form overall impressions of each alternative. The random utility theory then assumes 

that an individual’s choice behavior is generated by maximization of preferences or utility. 

The typical customer choice model (Ben-Akiva and Lerman, 1985) can be expressed as: 

(1) 

 

In other words, the probability of choosing alternative i is a function of the customer’s attributes 

and the alternative’s (or product and service functional) attributes (Ben-Akiva and Lerman, 1985). In this 

manner, service design researchers have shown that service providers can gain valuable information 

about what type of customers are drawn to their offerings and what attributes these customers prefer 

(e.g., Verma et al., 1999, 2001). Our primary interest in this study is in knowing if sequence effects are 

used by customers as a functional attribute in repurchase decisions of discrete service bundles. As noted 

previously, the behavioral literature is mixed concerning whether or not gestalt characteristics are 

important functional attribute for a bundle of discrete events that span an elapsed period of time. The 

non-continuous nature suggests that the sequence effects should not matter, but the cohesion of the 

events within the same bundle suggests that they may. In order to test for the presence of sequence 

effects, we propose a nested-model comparison for which earlier models do not include gestalt 

characteristics of the bundle, while later models do. We propose, as a null hypothesis, that there is no 

difference in model fit characteristics (e.g., goodness of fit, prediction) between nested models. Because 

of the assumed cohesion among events in a themed bundle, we suggest the alternative hypothesis as 

follows: 

H1. The accuracy of service bundle repurchase predictive models improve significantly by including 

sequence effects, in addition to customer attributes and bundle features as independent variables. 

This first hypothesis is our primary concern in this article. Simply put, we hope to find that the 

sequence of discrete service events matter in a customer’s decision whether to repurchase. We 

investigate this hypothesis using past and future sequence attributes. Guided by the past literature and 

specific contextual attributes of our study—discrete, time-separated, theme-bundled events for which 

utility is measured with prospective evaluation—we suggest several other secondary hypotheses. 

Ariely and Carmon suggested that “frequent recent exposure. . . to similar experiences” is likely 

to lessen the peak effect in any given sequence, since a peak in one experience may not be very salient 

compared with a larger peak in a previous sequence (2000, p. 194). This observation has intuitive 



appeal, and we hypothesize that as customers experience the same bundle repeatedly, a peak is less 

salient since it may not be as extreme as a peak in an earlier experience of the bundle. Customers new 

to a bundle should then be more influenced by a peak since they have fewer past experiences by which 

to compare it. 

H2a. The relative weight of peak effects on repurchase is reduced as customers become more familiar 

with a service bundle. 

Soman (2003) found that when participants used prospective evaluation, they preferred a 

sequence for which a peak disutility (negative) was placed earlier in the sequence as opposed to later; 

the participants preferred to experience the anticipated dreaded event as quickly as possible. As stated 

earlier, we assume only positive utility and consider the peak event the highest positive utility event in a 

bundle. With a prospective evaluation of a peak event, customers would experience anticipation as 

opposed to dread, which may change preferences. One argument would suggest that with a prospective 

evaluation, customers are unlikely to want to maximize the end state by preferring a late-peak 

placement, but would instead prefer an earlier peak in order to capture the value of the peak event as 

early as possible. Another argument would be that customers want to linger in the anticipatory state 

and therefor prefer a late-peak placement. Another consideration is the sequence under consideration; 

in our study, we consider both the most recent sequence and the future sequence. At the time of 

repurchase a sequence has just been completed and could be used to evaluate future sequences, and 

the future sequence has been presented to the customers for consideration. Although we use a 

prospective, demand-driven evaluation of events for both past and future sequences, only the future 

sequence evaluation is truly prospective, since the past sequence had been experienced. We then follow 

Soman’s (2003) research that suggested preferences for peak placement change when the evaluation 

time was different: 

H2b. The relative weight for the placement of a peak event for repurchase is different for past and 

future service bundles. 

The above hypothesis gives no direction as to how we believe the placement of peaks differs 

because there is no strong research to support one hypothesis over another. However, the majority of 

sequence research suggests that the end state heavily influences retrospective evaluation. We predict 

that as the utility of the last event of the past sequence increases, its effect will remain salient in the 

customer’s mind at the time of repurchase and will result in a higher overall probability of repurchase: 



H2c. Customers’ likelihood to repurchase increases as the last event’s utility increases in the past service 

bundle. 

Conversely, we have no reason to believe that the utility of the last event in a future bundle 

should influence the evaluation of that bundle. Soman’s research (2003) suggested that it is in the 

experiencing rather than the prediction of the last event that makes its timing significant in influencing 

overall evaluations. 

H2d. Customers’ likelihood to repurchase is not influenced by the last event’s utility in the future service 

bundle. 

Finally, Chase and Dasu (2001) suggested that as a sequence improves over time, the feeling of 

loss is avoided and customer evaluations improve; however, Ariely and Zauberman (2003) found that as 

the events of a sequence become more discrete, trend effects are less important to evaluations. As 

discussed earlier, our study is different than past research since we anticipated a level of cohesion due 

to thematic bundling that was previously not considered. However, it is beyond the scope of this 

research to consider how different levels of cohesion of this sort will influence sequence effects. For this 

reason, we follow previous research in our expectations for trend effects: 

H2e. Repurchase probabilities of a service bundle are not influenced by the trend of the event’s utility 

over time. 

Research Design 

In order to test the proposed hypotheses, we estimate a series of econometric models that 

predict the probability that a customer who had purchased a given service bundle them for a given time 

period would again purchase a repeating bundle theme the subsequent time period. (We refer a time 

period as a “season”.) 

Specifically, for the set of customers C who bought bundle j season t, we are interested in 

predicting whether or not each customer will buy bundle j season t + 1, that is, the same bundle the 

subsequent season (as explained in the following section, the same bundle does not imply the exact 

same events, but instead the same bundle theme). The unit of analysis is individual customers who 

purchased a given bundle of the previous season, and our dependent variable is binomial: 1, if the 

customer purchased the same bundle the subsequent year; 0, if they did not. Since our dependent 

variable is binary, we have chosen to model the data using logistic regression. Our econometric model 

uses the following form, 



(2) 

 

where Ycjt+1 = 1 represents a repurchase of bundle j in season t + 1 (the next season’s bundle) by 

customer c, X is a vector of predictors, β is the vector of coefficients including an intercept, and ε are the 

errors. This model is estimated across all customers i who purchased bundle j in season t. The model 

predicts the log-odds of repurchase given the set of independent variables using a maximum likelihood 

estimator, assuming the distribution of errors follows a logit distribution. The actual model is estimated 

using fixed effects for seasons and robust standard errors (Huber–White) grouped on each customer. 

Described in more detail below, the independent variables include customer characteristics, service 

attributes, and sequence-related variables. 

Data Description 

To test the proposed hypotheses, we used a multi-year subscription ticket purchase database 

for an internationally renowned performing arts venue. This concert venue houses five concert halls that 

can be used simultaneously. The venue hosts approximately 300 events per year and offers over 40 

different subscriptions to its customers. The database includes 6 seasons of ticket sales data including 

over 1 million individual ticket sale transactions for more than 2400 events purchased by over 50,000 

unique customers. The database includes the date and time of the ticket purchase, the price paid, 

membership status of the customer during time of purchase, general seating category (based on price 

category), and whether the ticket was purchased as a part of a subscription. Additionally, we are given 

details about all the events such as the date and time of the event, the genre of the event (out of 16 

possible genres), and the specific concert hall used for the event. Finally, we have limited customer-

specific information that is optional when creating an account with the venue: gender, title, degree held, 

postal code, and so forth. 

The subscriptions offered by the venue are bundle themes offered year after year. Most bundles 

are based either on a certain genre or are specific to a particular ensemble. Themes based on genre 

alone include Jazz, Classical Symphony, Music and Film, Piano, and Children’s Music. Other themes 

include Rising Stars, International Orchestras, International Quartets, Beethoven, and Original 

Compositions. 

Bundle themes repeat each season; however, unique bundles are not identical replication of the 

previous year’s offerings, but instead consist of different performances that match the theme. The 



concert venue has historically found that patron loyalty is specific to bundle theme, i.e., patrons that 

repurchase subscription year after year tend to repurchase within the same bundle theme. The 

repeating nature of the thematic subscriptions allowed us to link bundles year to year to determine if a 

given customer repurchased the same bundle theme the next season. In the 6 years of data, we found 

41 bundle themes that repeat for all 6 seasons for a total of 246 unique bundles. There were other 

bundle themes that did not repeat all 6 seasons, but for reasons forthcoming, they were left out of the 

analysis. 

Customer Specific Variables 

In predicting repurchase, we consider three general sets of variables: first, customer-specific 

attributes, second, bundle-specific attributes, and finally sequence specific variables. We are not 

primarily interested in customer- and bundle-specific attributes, but they are included in the model to 

act as control variables. Additionally, our main hypothesis states that by including sequence attributes, 

our model should improve; therefore, we compare models that included sequence variables with those 

that did not. 

Customer-specific attributes include gender, seating category of tickets (seat placement), 

number of bundles purchased (for a given bundle, not across all bundles), total number of unique 

bundles purchased for the season, days from purchase date to first event in the bundle (measure of how 

early a bundle was purchased), and membership status. Since we are predicting the purchase of bundle j 

season t + 1, we derive the above-mentioned variables from ticket sales at the end of season t, that is, at 

the repurchase decision time. Additionally, we created a variable to determine the customer’s 

experience or loyalty with the bundle theme. We classify customers into four groups and subsequently 

predict that the groups can be thought of as ordinal in their likelihood to repurchase. The first group 

consists of those customers who have purchased the given subscription bundle theme for the past three 

seasons; we name these customers Longtime Loyal. The second group consists of customers who have 

purchased a given bundle theme for the past two seasons, but not the past three seasons; we name 

these Upcoming Loyal since their recent behavior suggested they are becoming more loyal. The third 

group we name Fickle and is made up of customers who have purchased a given bundle theme one 

season ago and three seasons ago, but not two seasons ago. They are fickle because they are not 

consistent in repurchasing. Finally, the last group is called New and is made up of those customers who 

have purchased the bundle theme for only one season. 



By calculating the loyalty variable, we set a limit on the data that can be used in the model 

because the fourth season (t = 4) is the earliest we can start to predict repurchase. For t = 4, t−3 is 

season 1, season t − 2 is season 2, and season t − 1 is season 3. Additionally, for the fifth and sixth 

seasons, we use the previous three seasons to determine loyalty status (i.e., for t = 5, loyalty is based on 

seasons 4, 3, and 2; for t = 6 loyalty is based on seasons 5, 4, and 3). With this restriction, we model 

repurchase predictions for seasons 4, 5, and 6, which have 40 bundle themes. There were an additional 

four more bundle themes that the venue initiated in season 2, for which we only modeled seasons 5 and 

6, giving us a total of 128 unique bundles (40 bundle themes with 3 seasons + 4 bundle themes with 2 

seasons). Within those 128 unique bundles, we found a total sample size of n = 31,816 customers who 

had purchased a bundle the previous season. Given the total size of the dataset and the resulting 

sample size for the model, we were satisfied with reducing the data in order to derive the loyalty 

variables. 

In our final model estimation, we excluded a random 10% of the observations used to validate 

the accuracy of the model. Further, we identified and excluded one outlier observation that proved to 

be a significant influence on the model estimation. Table 1 shows a summary of the customer-specific 

variables. 

Bundle-Specific Variables 

Both marketing and operations management researchers consider the product/service mix to be 

an important aspect of customer satisfaction, perception, intention, and subsequent choice processing. 

The product/service mix is the set of attributes for a given product and service; for example, a hotel 

property might include an exercise facility, a pool, a restaurant, wireless Internet, and concierge service; 

a credit card might have fraud protection, online account access, automatic bill pay, and cash back 

rewards; a car might have good gas mileage, five cup holders, a moon roof, and Bluetooth capability. 

Service providers have to choose what attributes to include in their offerings in order to entice the right 

customer to purchase. In the case of the concert venue, management must create bundles of 

subscriptions that include attributes such as the number of events in the bundle, the genre mix of the 

events, the percent of events on a weekend (Friday–Sunday) vs. a weekday, and the percentage of non-

matinee events vs. matinee (before 5:00 p.m.). Adding to the list of bundle-specific variables, we include 

a measure of total bundle utility calculated as the sum of all the individual event utilities. Event utility 

calculations are described in the next section. 



 

(3) 

 

This variable can be thought of as a measure of the total number of events within the bundle as 

well as the relative popularity of the subscription as a whole. These bundle attribute variables can be 

determined for both the past experienced season and the upcoming future season, that is, for season t 

and season t + 1. 

Determining the Utility of an Event 

As discussed earlier, as a measure for individual event utility, we rely on a prospective measure 

of utility largely determined by fulfilled demand. Specifically we use a measure of both seat occupancy 

and ticket price: Revenue per Available Seat (REVPAS). REVPAS is calculated by dividing the total 

revenue for each event by the total number of available seats for the event. 
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REVPAS is adapted from the revenue management field for which some measure of revenue per 

available unit is maximized. For example, revenue per available room (REVPAR) is used widely in the 

hotel industry and has been shown to be highly correlated to customer satisfaction (Davidson et al., 

2001; Davidson, 2003), service quality (Kimes, 2001, 1999), and brand loyalty (Kim et al., 2003; Kim and 

Kim, 2005). Consumers are often uncertain about the quality of a hotel property (as they are with 

performing arts events) and use price as a signal for expected quality. Consistently demanding higher 

prices and filling more rooms suggests that hotels with high REVPAR are able to deliver on the 

expectation set by the price signal, resulting in repeat business, loyalty, and positive word of mouth. Not 

unlike hotel brands that have proven their value, some performers or performances can demand higher 

prices and fill more seats because they provide a higher valued event. 

Unfortunately, our data does not provide us with the means to derive an individual customer 

level measure, and so we chose to test our hypotheses with aggregate measures. Certainly this is a 

weakness of our model from an individual customer’s perspective and is not ideal in deriving a choice 

model; however, from the standpoint of the service provider, an aggregate measure is needed to 

implement a scheduling methodology based on our results. Event schedulers forecast aggregate 

demand for each event and set prices accordingly. The forecasts are based on a combination of past 

attendance data and industry trend knowledge. Because the forecasts are derived from the same data 

we use in deriving event utility, they can be used to sequence the events according to the results of our 

model. With this early research we are content with assuming that the aggregate measure reflects a fair 

starting point in investigating the presence of sequence effects in our context. Table 2 shows descriptive 

statistics for bundle variables. 

Sequence Variables 

The sequence variables are of primary interest in this model, as they are used to test our 

proposed hypotheses. We identify the event with the highest utility within a subscription and captured 

its utility as the peak event utility. To consider the trend of the sequence of events, we calculate the 

utility slope for the line fit in ordinary least squares regression through event utilities and the number of 

days from the beginning of the bundle. 
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To consider the impact of the final state, we capture the last event’s utility. As mentioned 

earlier, we consider both the most recent past season and the next season, that is, season t and t + 1. 



Customers make their repurchase decisions between the last event of the previous season and the first 

event of the next season, so both the number of days from the peak event to the last event for the 

previous season (t) and the number of days from the first event to the peak event in the upcoming 

season (t + 1) are used as measures of the placement of the peak event relative to the event closest to 

the time of the decision. In both cases, as this measure reached 0, a peak is as close as possible to a 

purchase decision (Table 3). 

Results 

Due to the large number of variables available to predict repurchase, we chose to create three 

models nesting the three main variables types: customer specific, bundle specific, and sequence specific. 

We use nested model comparisons to determine if adding additional variables leads to an improved fit. 

The following three models were estimated: 

Model 1: Customer-specific variables. 

Model 2: Customer-specific and bundle-specific variables. 

Model 3: Customer-specific, bundle-specific, and sequence variables. 

As discussed earlier, at the time of the repurchase decision, customers may use both their 

recently experienced past season perspective and the future season perspective, that is, when deciding 

to purchase the next season, customers can consider what they just experienced and what is offered in 

the next season. Therefore, bundle-specific and sequence variables can be considered for both the past 

season and the future season. With this in mind, we estimated Model 2 using both season perspectives 

separately. Since bundles are thematic in nature, the attributes from one season to the next are highly 

correlated, raising concerns of multicolinearity. Additional models were estimated that included both 

perspectives together; however, these combined models had high variance inflation factors and 

coefficients that changed signs (both signs of high multicolinearity). For this reason, we did not report 

combined season perspective models; the only exception is that, in Model 3, we estimated a model that 

included future bundle-specific and sequence variables and past sequence variables (not including past 

peaks; again, they are highly correlated with future peaks). 

Because of the panel nature of our data (same customers over several time periods), we 

approached the estimation with a multilevel estimator: First, we included a fixed effect for the season 

by adding two dummy variables for seasons 4 and 5. This controlled for unobserved homogeneity within 

each season. To control for unobserved homogeneity within customers, we estimated the model by 



adjusting for standard errors using Huber White Robust (sandwich) errors clustered on each customer 

ID. 

The results of the models are shown in Table 4. Recall that the customer and the bundle 

attributes were not the primary concern for this study. We were interested in Models 1 and 2 primarily 

in comparison to Model 3. Therefore, we will only briefly discuss their results. The customer attribute 

model showed the following results: 

 The coefficient for the number of days from purchase to the first event is positive, 

indicating that customers are more likely to repurchase if they buy their tickets early. 

 As customers purchase more number of subscriptions, both within the bundle and 

across all bundles within the season, the more likely the customer is to repurchase the 

following season. These variables are not significant in Model 1, but become significant 

as additional variables are added. 

 Customers that are also members are more likely to repurchase than nonmembers. 

 Compared to New customers, Longtime Loyal, Upcoming Loyal, and Fickle customers are 

all more likely to repurchase. Surprisingly, Fickle customers are more likely to 

repurchase than Upcoming Loyal customers. 

 Customers who purchase higher priced seats (seat categories) have a higher likelihood 

of repurchase. 



 



 

The customer attributes in the second and third models retained their sign and general 

magnitude. The new variables introduced in the customer and bundle model showed the following 

results: 

 Compared to Orchestra, nearly all genres have negative estimated coefficients, indicating 

lower likelihood of repurchase. 

 As the number of genres in a bundle increase, repurchase likelihood decreases, indicating 

that, on average, mixed-genre bundles do not fare as well as single-genre bundles. 

 As the percentage of weekend events in a bundle increases, repurchase is more likely. 

 As the percentage of evening events in a bundle increases, repurchase is less likely. 

 Total bundle utility (sum of all event utility) is significant and positive in Model 2, indicating 

that, as total bundle utility increases, repurchase likelihood increases. However, when the 

sequence variables are introduced in Model 3, the total bundle utility variable loses 

significance, indicating that total bundle utility can be better explained with the sequence 

variables. 



Hypotheses Testing and Discussion 

Hypothesis 1 

Our primary hypothesis—by including sequence variables, the predictive model improves—can 

be tested using nested model comparison statistics. Using the changes in −2 pseudo log likelihood and 

the difference in degrees of freedom across the models, we created a hypothesis test to determine if 

the added variables in the model significantly added to the fit of the model. A decrease in −2 pseudo log 

likelihood indicates an improved goodness of fit. 

Table 5 shows that, comparing Model 2 to Model 1, there is evidence that the added bundle-

specific variables improved the model (p < 0.00001). Similarly, going from Model 2 to Model 3 (within 

season perspective, i.e. past and future season), there is evidence that the sequence variables also 

improved the model’s fit significantly (p < 0.00001). Finally, adding the past season’s sequence variables 

to the Model 3 future season also improved the model’s fit (p = 0.027). These conclusions indicate that 

the sequence variables, as a whole, significantly improve the fit statistics of the model, providing 

support for Hypothesis 1. 

We can take a similar approach to determine if specific variables alone improve the fit of the 

model. In order to do this, we compared a complete model with a model fit in which one term had been 

dropped. Terms were dropped one at a time, in turn, and the same chi-squared hypothesis test 

performed above (with degree of freedom = 1) was used to consider the usefulness of each variable to 

the fit of the model. Table 6 shows the results of individual sequence variable influence on the log 

likelihood of the final model. 

The results show that not all of the sequence variables contributed to the fit of the model. Only 

the days from past peak event to the past last event, future last event utility, and days from future first 

event to future peak event significantly improved the model fit alone. These same variables also had 

estimated coefficients that were significantly different than 0, as shown in Table 4. A similar approach 

was taken with identical results using Bayesian Information Criterion (BIC) comparisons between the 

complete model and models with one variable missing. This test is appropriate with models with a large 

sample size and a large number of estimators, and can be used as a supplement to and support for 

standard significance test results from coefficient estimates (Millar, 2006). These results suggest that, 

individually, the two peak placement variables and the last event utility were most important among the 

sequence variables in our dataset, and that they significantly contributed to the fit of the repurchase 

model. 



A similar test could be performed to compare if the R-squared improvement between nested 

models was significant using an F test (Cohen, 1968). Table 7 presents the results of the change in R-

squared F test. The results show that even though the change in R-squared seemed small, they were all 

significant except for the addition of a past sequence variable to the future sequence variable Model 3. 

This provides additional support that the model’s fit is improved as sequence variables are added. 

In addition to model fit, we considered the models’ abilities to accurately predict. The expected 

probabilities of repurchase for the excluded 10% were calculated and a Brier score was determined (the 

average of the squared difference between the prediction and the outcome). Brier scores ranged from 0 

for a perfect prediction to 1 for a perfectly incorrect prediction, so a smaller score indicate an improved 

prediction. The scores for the three models improved across models within the season perspective, but 

only slightly (past season: 0.1649, 0.1615, and 0.1609; future season: 0.1649, 0.1608, 0.16, and 0.1597). 

A logistic regression model predicts log odds that can be converted into probabilities; at some point, the 

probabilities must be converted into predictions. We calculated the probability of repurchase for all 

customers and classified those with 50% probability of repurchase as a repurchase and determine the 

percentage correctly classified, i.e. calculated a residual. Again, we saw a slight increase across models 

within the season perspective (past season: 76.65% and 76.70%; future season: 76.55%, 76.70%, and 

76.85%). 

 

The conclusions drawn from the previous paragraphs are that the sequence variables, and some 

individual variables alone, significantly improved the model’s fit; however, the sequence variables were 

not likely to significantly improve predictive power. What this means from a modeling perspective is 

that the sequence variables could be considered good descriptive variables because some of the 

estimated coefficients were significant and could be used to describe the behavior of customers; 



however, they were poor predictive variables because they did not improve the ability of the model to 

predict. It is likely the case that Model 2 (nonsequence) is able to estimate fairly well the direction of a 

probability. With the inclusion of sequence variables in Model 3, the probabilities and model fit 

improved (got closer to 100% or 0%), but the overall predictions did not change much. In this sense, the 

sequence variables are better able to describe how a customer decides, but not predict. From a 

theoretical standpoint, we were happy to derive from the model a better descriptive understanding of 

customer actions regardless if the predictive power fails to impress. Therefore, our model provided 

evidence to support hypothesis 1, and even more specifically, it showed that sequence variables could 

significantly improve the descriptive power of a model. 

Hypothesis 2a 

Hypothesis 2a states that as customers become more experienced with a sequence, the peak 

effect will be less important. This has intuitive appeal and was introduced by Ariely and Zauberman 

(2000) as a reason why the peak effect was not found in some of their studies; mainly that, as customers 

have been through several rounds of an experience, an interexperience peak may not be as influential 

because they have experienced something just as salient or more in the past. With our initial models, we 

found that there was no support for peak effects; the peak event utility was not a significant variable in 

any model (past or future). However, to formally test this theory, we estimated two additional models 

with an additional variable considering the interaction effect between customer loyalty and future peak 

event utility—more specifically, we estimated a model using a variable with an interaction between 

longtime loyal customers and Future Peak Event Utility, and an additional model that included an 

interaction between new customers and Future Peak Event Utility. For support of our hypothesis and 

past literature, we expected the longtime loyal interaction variable to be insignificant. Instead, we found 

that the coefficient for this variable was positive and significant (coef. = 0.01, p < 0.001), indicating that 

for longtime loyal customers, a higher peak event utility for a future bundle made repurchase more 

likely. Similarly, we expected a variable that new customer interaction be positive, but instead we found 

the opposite (coef. = −0.007 neg., p = 0.003). This means that as a peak event in future bundles 

increases in utility (controlling for total bundle utility), the likelihood of a new customer repurchasing 

decreases. 

These two findings cannot be explained by past research and warrant additional future 

investigation. The retention of new customers is of particular interest to our data provider because it is 

important to the long-term viability of the venue. From discussions with the data provider, we learned 



that the longtime loyal customer segment had been shrinking in the past decade; the customers in this 

segment were made up of an aging demographic that had been loyal to the venue for decades, but were 

slowly stopping regular purchases due to age-related capabilities. New customers were not replacing 

loyal customers as readily as they had in the past and it seemed that their preferences differed. Our 

findings suggest that one difference between loyal and new customers may be in how they perceived 

peak events in an offering. While a high peak event might entice a longtime loyal customer to stick to 

the bundle for one more year, it seemed to be a turn off to the new customer. It appears that new 

customers are skeptical of the value of highly leveraged bundles, that is, those bundles for which a peak 

event is much higher than the other events. The new customer segment appears to form higher 

prospective evaluations on bundles that have flatter profiles, that is, less variability. Different from the 

older longtime loyal segment, the younger segment has been accustomed to buying only parts of their 

entertainment (e.g., iTunes makes it possible to buy a single song from any album). This behavior implies 

that, rather than being enticed to purchase the entire future bundle as a peak event becomes more 

predictable and prospectively salient, a younger segment might purchase only the peak event and pass 

on the remaining events. This behavior could likely change the way seasons should be planned 

(Pogrebin, 2002). From an academic point of view, this finding suggests that there may be a 

demographic difference in how sequence effects are perceived and is left for future research to 

consider. 

Hypothesis 2b 

Hypothesis 2b states that the preference for the placement of peak events should be different if 

customers are evaluating past bundles or future bundles. This hypothesis is supported by the work of 

Soman (2003), who found a different preference for that placement of low points in a service based on 

when the evaluation took place (before or after the experience). The literature is mixed on what to 

expect concerning where the preference of the peak is more likely; to end on a high note suggests that a 

late peak might be preferred from a past bundle and, similarly, a late peak might increase the 

anticipation of future events. Conversely, an early peak might entice customer to buy if they know they 

will be able to redeem high value more quickly from the bundle purchase. 

Our results showed a preference for early peaks for past bundles, as the variable Days from Last 

Event to Peak Event was positive and significant (coeff. = 0.001; p < 0.001). This means that as the 

number of days from the peak event to the last event increased, repurchase probability was more likely. 

Similarly, we found a preference for early peaks for future bundles, as the variable Days from First Event 



to Peak Event was negative and significant (coeff. = −0.001; p < 0.001), which indicated that, as the 

number got smaller or closer to zero, repurchase probability increased. Since both past and future 

perceptions had the same preference (early peak), there was no support for our hypothesis. 

The most likely explanation of our findings is in the prospective evaluation measure of both past 

and future bundles. As explained earlier, the ideal would be to have experienced evaluation of past 

events and prospective evaluation of future events, which our data does not include. By using 

prospective evaluation based on the demand of events before they happened, it may be unsurprising 

that we have the same results for both perspectives. However, our findings suggest a couple of 

important contributions: First, with a prospective evaluation of a discrete sequence, customers 

preferred an early peak over a late peak; second, prospective evaluations were likely the same 

regardless of past or future bundle perspective. The first contribution has managerial significance, which 

we will discuss in the next section. The second contribution suggested that it mattered less whether we 

used past or future perspective if we only had one type of evaluation to consider. The results from other 

parts of the model similarly suggest there is little difference between past and future perspective, for 

example, within the same model, past and future model fit was not significantly better for one 

perspective. 

Hypotheses 2c and 2d 

We suspected that the end effect should have an impact on past bundles but not on future 

bundles. Instead, we found that the coefficients for the last event utility were consistently significant for 

both past and future perspectives. Given our prospective evaluations, this finding suggested that 

customers preferred a sequence in which there was something to anticipate at the end of the series; 

although the finding for a preference for early peaks suggested that the end might not have necessarily 

been the peak, just that it should have been high. We will discuss the implications of the past two 

findings more in detail in the next section. 

Hypothesis 2e 

Our final hypothesis was that the trend effect as measured by the slope would not significantly 

influence the repurchase decision of sequences that were discretely separated, as suggested by past 

literature. The coefficients for slope parameters are significant only in our final model, which included 

both past and future sequence effects (slope of past events: coef. = 1.664; p < 0.05); all remaining 

models provided insignificant estimated coefficients for slope variables. This finding suggested that as 

the event utility trend of a past bundle increased, customers were more likely to repurchase; however, 



trends of future bundles did not impact purchase decisions. Unlike the placement of the peak event, our 

results suggested that the trend effect was used for evaluation of past bundles, even with prospective 

evaluations, but predictably did not influence evaluations of future bundles, that is, customers could 

perceive an experienced trend but not an anticipated trend among discrete events. Knowing that the 

trend effect of discrete events is important only for evaluations of past sequences indicates that trend 

effects should be considered if retention and remembered utility are important, but less important if 

acquisition is of most importance. 

Managerial Implications 

In summary, our main findings are fourfold: 

1. Longtime loyal customers are more likely to repurchase when higher peak events are 

included; new customers are less likely to repurchase when higher peak events are included. 

2. Under prospective evaluations, an early peak event placement improves repurchase 

probabilities. 

3. As the event utility of the last event increases, repurchase probability increases under both 

past and future season perspectives. 

4. Trend effects impact past bundle evaluations, but not future bundle evaluations. 

There are two broad implications of these findings that lead to optimal bundle design. First, the 

findings give direction about which events should be bundled together. The first finding suggests that a 

bundle highly leveraged by a high utility event is not likely to retain new customers at least not in 

situations in which individual events can be purchased. By segmenting customers and designing bundles 

to target individual segments, service designers can group events together differently depending on the 

target segment’s taste for peak events. Bundles targeted to loyal customers could include an expected 

high utility event combined with lower utility events and expect positive impact on repurchase 

probabilities. However, our results suggest that the bundle targeted to newer customers should consist 

of events that are more similar in utility. 

A second implication of the findings gives direction about when events should be scheduled 

within a service bundle. The second finding suggests that peak events should be placed early in order to 

maximize perceived perception. We must interpret these results in the context of prospective 

evaluation, mainly that customer prefer to anticipate an earlier peak. This result would lead service 

designers to schedule a more anticipated popular event earlier in the season. 

 



 

 

Our final finding suggests that the trend of a discrete sequence is less important to prospective 

evaluations of future bundles, but is used in considering past bundles. The implication of this finding is 

that the trend of the event utilities is not likely to impact initial purchase of a bundle; however, after 

experiencing the bundle, customers are more likely to repurchase if the predetermined trend was low to 

high. 

This positive trend preference, combined with a preference for early peaks and a preference for 

high last-event utility (our third finding) seem to contradict one another; mainly, if a peak is placed early, 

a positive trend might be difficult, and the last event is not the peak and thus not maximized. In order to 

better understand the magnitude of repurchase probabilities under different scenarios, we calculated 

the repurchase probabilities with the estimates of Model 3 (future and past sequence variables), 

covarying values of the significant sequence variables. Leaving all other variables untouched, we 

estimated the repurchase probabilities for each individual if the sequence variable varied across the 

range of historical values, that is, at its lowest value and highest value. Table 8 shows the average 

percent increase of repurchase probabilities from the worst possible value to the best value of each 

sequence variable across the four customer types. 



These results provide a level of the effect size of our results and suggest that the future last-

event utility is the most influential among the sequence variables across the range of historical values. 

New customers had an average of 28.2% probability of repurchase under the lowest last-event utility 

(1.18), and an average of 57.5% probability of repurchase under the highest last-event utility (39.36)—a 

104% increase. This result implies that the last event utility is perhaps the most important of all events, 

even controlling for total bundle utility. 

While it is outside the scope of this research, we can consider the profile of an optimal event 

schedule using our findings. It would seem that an optimal bundle would have two higher utility 

events—the highest of which is placed early in the schedule (perhaps the second or third placement) 

and the lower placed at the end. The remaining events are ordered and scheduled from lowest to 

highest. Fig. 1 shows what this might look like in an experience profile. 

Conclusions 

At the highest level, our research has provided a degree of empirical support for sequence effect 

theories set forth by previous researchers. Uniquely, we found evidence that these effects can be found 

in sequences of discrete experiences that elapse over an entire subscription season, while past research 

has been focused on single interactions. The model shows that scheduling sequence decisions may 

impact repurchase behavior of customers and that prospective demand-based evaluations of event 

utilities can be used in these sequencing decisions. More specifically, using prospective evaluations of 

event utilities, we found evidence that customers were influenced by the placement of a peak event, the 

utility of the last event, and the trend of a previous bundle. We also found difference between customer 

loyalty segments in their perception of bundles that were highly leveraged by high peak events. Finally, 

we provided an example of how to elicit and test for sequence effects using only archival data. 

Limitations and Future Research Directions 

We acknowledge that our model suffers from self-selection bias, since customers choose which 

subscription to purchase and only customers that buy are modeled for repurchase. Although this bias 

may make it difficult to discern causality (vs. correlation) for many of our independent variables, we are 

concerned primarily about the sequence variables. It may be the case that customers who repurchase 

more use the future sequence of a subscription as an attribute of initial choice modeling, but that in 

itself is also an interesting finding. Since we have controlled for as many other product and customer 

attributes, we feel that the effects of the sequence variables are distinct. Whether they cause a 



repurchase or if customers who tend to repurchase prefer a specific sequence, the results still support 

the managerial implications of sequencing events in a specific way. Future research should test the 

causality of sequence effects by using additional controlled experimentation. 

Creating subscription bundles and scheduling an entire season of events is not as trivial as 

moving an event to a different place and time. Some events have constraints placed on them by the 

performers (e.g., a guest artist is in town) and others may be seasonal by nature (e.g., a Christmas 

show). We could easily find an optimal sequence given a fixed set of events, but the more challenging 

problem is to find an optimal schedule across all bundles and events. The problem becomes much more 

challenging and interesting if events are not only scheduled, but also put into the appropriate bundle. 

This problem and its insights are left for future research, most likely solved with heuristic optimization 

methods. 

Although our research is embedded in a specific service bundle context, we believe that the 

effect of utility-based scheduling can be realized outside the context of the performing arts. Certainly, 

the scheduling of sporting events, conferences, courses, and tour packages has similar bundling 

attributes that make it akin to scheduling based on estimated utilities. For example, individual National 

Basketball Association (NBA) teams likely do not have much to say about when games are scheduled; 

however, each team does bundle and sell a subset of their own games. Each game has a demand or 

expected prospective utility that can be determined based on historical rivalries, team and conference 

standings, and the expected importance of games. NBA team management can create bundles that will 

result in specific expected utility sequences. Certainly the experienced utility of a game is based largely 

on the outcome (win or loss), but since our research dealt with and found evidence for sequence effects 

in prospective evaluations, we could expect basketball fans to behave similarly as our performing arts 

patrons concerning expected event evaluations, that is, preference for early peaks, high ends, and 

positive trends. The specific recommendations that we have made above may not be applicable to all 

service bundles, but designers of all services should consider the sequence an attribute worth 

considering. 

As we have discussed several times throughout this article, future research on this topic should 

strive to include and understand the difference between retrospective evaluations and prospective 

evaluations in discrete theme bundles. It seems a harder case to find support for sequence effects in 

prospective evaluations, as we have. It will probably not be surprising to find sequence effects among 

retrospective evaluations, given that we can find them in prospective evaluations; however, we can only 

speculate on what the differences might be between the two types of evaluations and what it might 



mean to service design. We have demonstrated a way to derive prospective evaluations from archival 

data; however, experienced utility is likely more challenging to collect through surveys, second party 

post-event reviews, and ratings of events, or some other inner-experience measurement (e.g., applause 

meter, social media activity during segment). Combining archival data with collected experiential utility 

data are an appropriate next step in this research stream and will likely add to the understanding of how 

to implement sequence effects into service design. 

If future research shows that peak placement for experienced utility is different than 

prospective utility, service designers might be challenged to create a sequence that has an early 

prospective peak, and a late experience peak. This might be accomplished by heavily publicizing an 

earlier event, while secretly planning for a more exciting later event. The danger in this approach would 

be a reduction in the prospective value of the bundle and the future event, which may result in lower 

overall ticket sales, that is, nonsubscription sales for a later peak might suffer because of the loss of 

publicity. Similarly, the final event experienced utility could be made high in some way other than 

scheduling a high-demand event. For example, service designers could plan to make one event more 

memorable through some unexpected within-event activity (e.g., giving away a door prize, unexpected 

opening act, experience-centric activity). Our results showed that new customers were not impacted by 

the presence of a prospective peak event; however, perhaps they will be receptive to the planned, but 

unexpected, experienced utility peaks. There is more research needed in order to validate that 

experienced peaks can be created separate from prospective peaks and that their placement is 

preferred differently. 

Business scholars can certainly learn much from those that design experiences. As noted, service 

operations management and, more specifically, experience management can be compared to 

choreography attempting to elicit particular emotional and behavioral responses. In this article, we 

addressed a key part of choreography of a service: the importance of timing of high and low points 

across discrete service segments. There is much more to learn about how to elicit different levels of 

utility of service segments, and we look forward to a continued research stream surrounding these 

topics. 
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