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Abstract Purpose: The incidence of regulatoryT cells (Treg) in intrinsic central nervous system malig-
nancies is unknown. Immunotherapeutic approaches that inhibit theTreg population may be
limited to a subset of patients with gliomas. Our hypothesis is that only the most malignant
gliomas have a prominent glioma-infiltratingTreg population that contributes to the immuno-
suppressive biology and that the presence ofTregs is a negative prognostic variable.
Experimental Design:We measured the incidence of Tregs in 135 glial tumors (including all
pathologic types) in a glioma microarray using immunohistochemical analysis. Results were
categorized according to the total number ofTregs within the tumors. Correlation of the presence
ofTregs with prognosis was evaluated using univariate and multivariate analyses.
Results: Tregs were not present in normal brain tissue and were very rarely found in low-grade
gliomas and oligodendrogliomas.We observed significant differences in the prevalence of Tregs
between astrocytic and oligodendroglial tumors, between tumors of different grades, and
between different pathologic types of tumors. We identifiedTregs most frequently in glioblasto-
ma multiforme (GBM) but very rarely in low-grade astrocytomas. The presence of Tregs within
GBMs did not alter the median survival in patients fromwhom the tumors were obtained.
Conclusions:Treg infiltration differed significantly in the tumors according to lineage, pathology,
and grade.Tregs seemed to have the highest predilection for tumors of the astrocytic lineage and
specifically in the high-grade gliomas, such as GBM. In both univariate and multivariate analysis,
the presence ofTregs in GBMs seemed to be prognostically neutral.

Immune cell infiltrates are common in the parenchyma of
human gliomas, and multiple studies have attempted to
correlate the intensity of the infiltration of these cells with
survival without reaching a definitive consensus regarding
the prognostic effect of infiltrating immune cells within tumors
(1–3). A lack of correlation between the presence of effector
T cells (CD4+ or CD8+) in tumors and improved survival is
likely secondary to the fact that the functional activity of the
infiltrating effector immune population and the presence of
the CD3+CD4+ regulatory T cells (Treg) is not accounted for.
FoxP3+ Tregs are inhibitors of antitumor immunity and have

been shown to be present in malignant effusions and blood
of patients with a variety of cancers (4–8). More specifically,

researchers have shown that an increased FoxP3+ Treg to CD4+
T cells ratio correlates with impairment of CD4+ T-cell
proliferation in peripheral blood specimens obtained from
patients with glioblastoma multiforme (GBM; ref. 9). The same
study also found that in murine model systems, in vivo deple-
tion of Tregs led to glioma rejection. Other studies have shown
that an immunosuppressive population of Tregs is present
within the GBM microenvironment (10, 11). This trafficking
of Tregs into the GBM microenvironment is secondary to GBM
elaboration of the chemokine CCL2 and to increased expres-
sion of the CCL2 chemokine receptor CCR4 on Tregs in
patients with GBM (12).
Recent studies found that the presence of FoxP3+ Tregs in

tumors was an unfavorable prognostic marker in patients with
hepatocellular carcinoma (13, 14) and pancreatic cancer (15).
However, another study found that an increased number of
FoxP3+ Tregs was not associated with poor survival in patients
with renal cell carcinoma (16). No studies have specifically
examined the prognostic role of Tregs within the infiltrating
lymphocyte population in patients with glioma. A funda-
mental understanding of which types of glioma have immune
resistance mediated by Tregs is required for developing and
initiating specific immunotherapeutic approaches that may
target these cells (17, 18). The purpose of our study was to
determine the incidence and prognostic significance of FoxP3+

Tregs in various types of gliomas, including tumors of oligo-
dendroglial and astrocytic lineage, tumors at various grades
within those lineages, and different pathologic types of tumors.
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Materials andMethods

Glioma tissue microarray analysis . A tissue microarray that con-

tained tissue specimens from 52 GBMs (WHO grade IV), 19 anaplas-
tic astrocytomas (WHO grade III), 3 low-grade astrocytomas (WHO

grade II), 21 oligodendrogliomas (WHO grade II), 16 anaplastic

oligodendrogliomas (WHO grade III), 5 mixed oligoastrocytomas
(WHO grade II), 13 anaplastic mixed oligoastrocytomas (WHO grade

III), and 6 gliosarcomas (WHO grade IV) was assembled by the study
neuropathologist (G.N.F.). The pathologic types of the tumors were

confirmed by the final issued standard of care postsurgical pathology

report by the neuropathology department at The University of Texas
M. D. Anderson Cancer Center, and the tumors were archived

embedded in paraffin blocks. As described previously (19), the

microarray also contained normal brain tissue specimens (white
matter, cortex, and cerebellum); these specimens were obtained from

parenchyma that overlaid deep metastases in surgical specimens that
were not involved with neoplasms. No autopsy tissue was used. This

study was conducted according to a protocol LAB03-0228 approved by

the M. D. Anderson Cancer Center Institutional Review Board.
Immunohistochemical analysis of Tregs in paraffin-embedded glioma

tissue microarray specimens. Formalin-fixed, paraffin-embedded sec-

tions of the brain tumor specimens in the microarray were deparaffi-

nized in xylene and rehydrated in ethanol. The endogenous peroxidase

in the tissue was blocked with 0.3% hydrogen peroxide/methanol

for 10 min at room temperature before antigen retrieval. Antigen

retrieval was done by placing the sections in an electric kitchen pot
filled with f800 mL of 0.05% citraconic anhydride solution (pH 7.4;

Immunosaver; Nissin EM Co. Ltd.) for 45 min at 98jC. They were then
cooled to room temperature for 20 min and washed once in APK

solution. For antigen retrieval of FoxP3 staining, the sections were

autoclaved in 10 mmol/L citrate buffer (pH 6.0) for 10 min at 121jC.
After blocking nonspecific binding with a protein block serum-free

solution (Dako), diluted primary antibodies against CD3 (clone SK7

8-11, 1:100; Dako), CD4 (clone 4B12, 1:40; Novocastra Laboratories

Ltd.), CD8 (clone 144B, 1:20; Dako), and FoxP3 (1:20; Dr. Nobuyoshi
Hiraoka, National Cancer Center Research Institute, Tokyo, Japan;

ref. 15) were added to the tissue arrays and incubated overnight in a

humidified box at 4jC. Slides containing the specimens described above

were subjected to staining with biotin-labeled secondary antibodies

(biotinylated link universal solution; Dako) for 30 min at room

temperature. Finally, streptavidin-horseradish peroxidase (Dako) was

added to the arrays, and the slides were incubated for 30 min at room

temperature. Diaminobenzidine (Dako) was used as the chromogen, and

color development was stopped by gently dipping the slides in distilled
water. The nuclei on the slides were counterstained with hematoxylin.

Human normal spleen, lymph node, and tonsil tissue specimens were

used as positive controls. The primary antibody was omitted from the

immunohistochemical staining procedure and replaced with a protein

block serum-free solution (Dako), which served as a negative control.

Quantitative microscopic evaluation of Tregs in the tissue was done

by examining the slides using at least three different high-power fields

(maximum, �40 objective and �10 eyepiece). Each of the specimens in

the microarray, which were obtained in duplicate from different areas

of the same tumor, were examined microscopically by four independent

observers (M.A.G., D.S.Y., C.R.O., and G.N.F.) in a blinded fashion,

and the number of cells that stained positively for CD3, CD4, CD8, and

FoxP3 was recorded. The duplicate specimens from each tumor were

then averaged to calculate the final number of CD3, CD4, CD8, and

FoxP3 positive lymphocytes per surgical specimen. Discrepancies

between the recorded numbers for any of the lymphocyte populations

prompted recounting of the cells in the specimens by the conflicting

observers; final arbitration was conducted by the study neuropathol-

ogist. The ratio of FoxP3+ Tregs to CD3+, CD4+, and CD8+ T cells was

calculated for each specimen. In the cases of negative staining for CD3,

CD4, CD8, or FoxP3+, a number of 0 was recorded. Potential

mismatching of data were minimized by staining the specimens in an

intact microarray with H&E and identifying the correct location of each

tissue core in the microarray by visually matching the tumors based on

their unique histologic elements.
Flow cytometric analysis for the presence of Tregs in fresh oligoden-

droglioma specimens. Qualitative analysis of Tregs in surgical oligo-
dendroglioma specimens obtained directly from patients (n = 5) was
done using fluorescence-activated cell sorting as described previously
(10) to verify the immunohistochemical observation that Tregs were
absent from oligodendrogliomas.

Statistical analysis . An equal-proportion examination with respect
to tumor grade, pathologic type, and glial lineage (astrocytic versus
oligodendroglial) was conducted (20). Kaplan-Meier product-limit
probability estimates of overall survival were calculated (21), and log-
rank tests (22) were done to compare overall survival according to
FoxP3 positivity (versus Foxp3 negativity), tumor grade, astrocytic and
oligodendroglial lineage, and sex. In each fitted overall survival regres-
sion model, nonsignificant variables were eliminated in a step-down
fashion using a P value cutoff of 0.10. Comparisons of infiltrating
immune populations were done by t test assuming unequal variances
with statistical significance set at 0.05.

Results

Study population. The median age of the 135 patients from
whom the study tumors were obtained was 44 years (range,
4-91 years). All patients received steroids at the time of surgery.
The majority of the patients (98%) had a Karnofsky perfor-
mance scale (KPS) score of z70; the median score was 90
at the time of diagnosis (range, 50-100). Table 1 lists the
patients’ ages, KPS scores, and median survival durations
stratified according to the pathologic types of the tumors.
The characteristics did not differ significantly from those in
patients in previous studies that examined prognostic markers
in glioma patients (19, 23, 24). Multifocal disease was present
in 1 case of anaplastic mixed oligoastrocytoma, 3 cases of
anaplastic oligodendroglioma, 3 cases of anaplastic astrocyto-
ma, 2 cases of gliosarcoma, and 10 cases of GBM. Of the GBM
cases, 9 (17%) had received prior chemotherapy and 11 (21%)
had received prior radiation therapy. Table 2 details the over-
all composition of the glioma tissue microarray and Fig. 1
shows the immunohistochemistry staining of the infiltrating
immune populations.
The number of infiltrating CD4+ and CD8+ cells in glioma

vary according to tumor grade . CD8+ cells were identified in
the majority of the glioma specimens despite the grade;
however, the number of patients that had a CD4+ population
present increased with tumor grade from 39% (7 of 18) for
WHO grade II to 73% (24 of 34) for WHO grade III, and 98%
(44 of 45) for grade WHO grade IV (P < 0.001; across all
grades). In contrast, CD8+ cells were identified in the majority
of the glioma patient specimens regardless of grade (Fig. 2A).
The number of both CD4+ and CD8+ tumor-infiltrating T cells
increased with tumor grade. Specifically, in WHO grade II
tumors, there was an average number of 1.4 (SD, 2.5; range, 0-
10) CD4+ T cells per core, which increased to 3.2 (SD, 5.0;
range, 0-21) for WHO grade III and 11.6 (SD, 13.1; range,
0-70) for WHO grade IV (P < 0.001; between grade II and IV).
Similarly, in WHO grade II tumor, there was an average number
of 8.6 (SD, 6.0; range, 0-22) CD8+ T cells per core, which
increased to 10.3 (SD, 11.5; range, 1-49) for WHO grade III
and 18.0 (SD, 21.5; range, 2-103) for WHO grade IV tumors
(P = 0.046; between grade II and IV).
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The incidence of Treg infiltration within gliomas varies
according to lineage. To determine whether tumors of the
oligodendroglial and astrocytic lineages are predisposed to
a high Treg population, we stained the specimens in the glioma
tissue array with an antibody against FoxP3 and scored the
number of positive cells as described above. We did not observe
FoxP3+ Tregs in normal brain tissue specimens (n = 5). The
patients with oligodendroglioma (WHO grade II; n = 21),
mixed oligoastrocytoma (WHO grade II; n = 5), and anaplastic
oligodendroglioma (WHO grade III; n = 16) only rarely had
faint staining of one to three FoxP3+ Tregs per core. To confirm
that Tregs were not present within oligodendrogliomas, we
obtained surgical specimens of these tumors (n = 5) directly
from patients not included on the glioma tissue microarray
and stained them for CD4+CD25+FoxP3+ Tregs. We did not
observe Tregs in any of these specimens.
Although FoxP3+ Tregs were barely discernable in the low-

grade astrocytoma specimens (WHO grade II; n = 3), we detected
several cells of lymphocytic morphology that stained positively
for FoxP3 in 10 (53%) of the 19 anaplastic astrocytoma
specimens (WHO grade III). Also, 39% of the 13 anaplastic
mixed oligoastrocytomas (WHO grade III) had FoxP3+ cells. In
addition, 48% of the 52 GBMs (WHO grade IV) had FoxP3+ cells.
Finally, 83% of the 6 gliosarcomas (WHO grade IV) had FoxP3+

Tregs. These cumulative data indicate that Treg infiltration
is more prevalent in tumors of the astrocytic lineage than in
those of the oligodendroglial lineage (P < 0.0001; Table 3).
The incidence of Treg infiltration varies according to tumor

pathology. We observed significant differences in staining for

FoxP3 according to pathologic type. Specifically, the presence
of any FoxP3 staining was most often observed in gliosarcomas
(83%) followed by anaplastic astrocytomas (53%), GBMs (48%),
and anaplasticmixed oligoastrocytomas (39%; Fig. 1). The patho-
logic types with the lowest incidence of staining for FoxP3 were
the anaplastic oligodendrogliomas (6%) followed by the oligo-
dendrogliomas (14%), mixed oligoastrocytomas (20%), and
low-grade astrocytomas (33%), again indicating a general attenua-
tion of Treg infiltration in tumors bearing oligodendroglial com-
ponents (Table 3). Additionally, no statistical differences were
found between the numbers of FoxP3+ T cells within each tumor
pathology between newly diagnosed versus recurrent tumor.
The incidence and number of Tregs in astrocytomas vary

according to tumor grade. Our immunohistochemical analysis
showed that the incidence of Tregs in tumors increased with
tumor grade. The highest grade astrocytic tumors (WHO grades
III and IV) had the highest numbers of FoxP3+ Tregs, and these
patients were more likely to have FoxP3+ Tregs within their
tumors compared with other glioma patients. Only 3 of the
21 oligodendrogliomas had faint staining of 1 to 3 FoxP3+

Tregs per tissue core in the microarray, and the number of
FoxP3+ cells in patients with anaplastic oligodendroglioma was
not significantly higher than that in patients with oligoden-
droglioma. Only one patient with anaplastic oligodendro-
glioma had faint staining of one or two FoxP3+ Tregs per tissue
core. Of the patients with low-grade astrocytoma, one rarely
had very faint staining of FoxP3+ Tregs. However, 10 (53%) of
the 19 patients with anaplastic astrocytoma had several cells
of lymphocytic morphology that stained positively for FoxP3.
Of the patients with gliosarcomas, 83% had FoxP3+ Tregs.
Although the number of patients with GBM who had FoxP3+

Tregs in tissue cores 25 (48%) was not significantly different
from that in patients with anaplastic astrocytoma, the number
of FoxP3+ Tregs in the former patients [at least 5 per core;
7 (14%)] was markedly higher than that in the latter patients.
In fact, we observed high numbers of FoxP3+ Tregs (at least
5 per core) only in patients with high-grade gliomas, such
as GBM (n = 7), gliosarcoma (n = 2), anaplastic mixed
astrocytoma (n = 1), and anaplastic astrocytoma (n = 1). Thus,
as the glioma grade increased, the number of cells that stained
positively for FoxP3 increased (P = 0.008; Table 4); this increase
was even more pronounced in tumors of astrocytic lineage than
in those of oligodendroglial lineage.

Table 2. Composition of the glioma tissue
microarray

Lineage n (%) Pathology n (%)

Oligodendroglial 55 (40.7) O 21 (15.6)
MOA 5 (3.7)
AMOA 13 (9.6)
AO 16 (11.9)

Astrocytic 80 (59.3) GBM 52 (38.5)
GS 6 (4.4)
LGA 3 (2.2)
AA 19 (14.1)

Table 1. Demographic characteristics of patients with glioma stratified according to pathology

Pathology Age (y) KPS score % newly diagnosed patients Median survival duration (mo)*

Median Min Max Median Min Max

O 40 7 55 100 70 100 81 99.8
MOA 41 24 52 95 70 100 75 —
AMOA 35 22 47 95 80 100 67 89.2
AO 39.5 25 59 95 70 100 75 —
LGA 33 4 44 95 90 100 100 166.7
AA 47 24 91 90 90 100 81 27.7
GBM 54.5 17 77 90 50 100 85 13.8
GS 55.5 23 68 80 70 100 50 4.9

Abbreviations: Min, minimum; Max, maximum; O, oligodendroglioma; MOA, mixed oligoastrocytoma; AMOA, anaplastic mixed oligoastro-
cytoma; AO, anaplastic oligodendroglioma; LGA, low-grade astrocytoma; AA, anaplastic astrocytoma; GS, gliosarcoma; —, not analyzable
due to rarity.
*Based on Kaplan-Meier estimates.
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The presence of Tregs is not a marker for survival duration.
Among all of the gliomas regardless of pathologic type, the
median survival duration was 43.0 months [95% confidence
interval (CI), 26.9-Not Available months] in patients whose
tumors stained negatively for FoxP3. In contrast, the median
survival duration was 19.2 months (95% CI, 13.8-34.0
months) in patients whose tumors contained FoxP3+ Tregs
(P < 0.001). However, this finding does not account for the
confounding influence of tumor grade on survival. Patients
with higher grade gliomas, which portend shorter survival
durations, were more likely to have Treg infiltration than
patients with lower grade gliomas were. Our observed differ-
ences in survival duration according to tumor grade and
pathologic type conformed to established expectations for these
tumor types (Table 1). As expected, we observed that survival
duration decreased as tumor grade increased.
Because the presence of FoxP3+ Tregs correlated with the

overall malignant behavior of astrocytic tumors, expecting this
expression to function as a negative prognostic indicator would

be reasonable. According to univariate Cox proportional
hazards analysis, within glioma pathologic types, the percent-
age of cells that stained positively for FoxP3 did not seem to
correlate with survival duration. For example, the median
survival duration in patients with GBM who had FoxP3+ Tregs
was 13.8 months (95% CI, 7.8-21.7 months), and that in
patients with GBM who did not have any FoxP3+ Tregs was
12.8 months (95% CI, 6.6-37.7 months), a difference that was
not statistically significant (P = 0.56; Fig. 3). Although we
observed a trend of a higher probability of survival at 2 years
in patients who did not have FoxP3+ Tregs [0.32 (95% CI,
0.18-0.57)] than in patients who had FoxP3+ Tregs [0.2 (95%
CI, 0.09-0.44)], this difference was not statistically significant
(P = 0.65). Univariate analysis showed that the presence or
absence of FoxP3+ Tregs (P = 0.03) and the absolute number
of FoxP3+ Tregs per tumor sample (P = 0.002) were prognostic
factors, similar to other established variables, such as KPS
score, age, and tumor grade (Table 5). However, when we did
multivariate analysis to account for confounding factors,

Fig. 1. Immunohistochemical staining of human glioma tissue sections demonstrating FoxP3 (A) and CD8-positive (B) lymphoid cells. FoxP3 staining is confined to the
nucleus, whereas CD8 staining is noted on the cell surface. A,Tregs are more evident in astrocytic, higher grade gliomas. Arrows, FoxP3-positive cells. B, CD8 staining
shows high numbers of infiltrative CD8+ Tcells within all glioma grades. All images were taken at �400. Oligodendroglioma (a), mixed oligoastrocytoma (b), anaplastic
oligodendroglioma (c), anaplastic mixed oligodendroglioma (d), low-grade astrocytoma (e), anaplastic astrocytoma (f), glioblastoma (g), and gliosarcoma (h).
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such as patient age and KPS score, we found that FoxP3 did not
have a prognostic effect. Specifically, neither the presence nor
absence of FoxP3+ Tregs (P = 0.45; hazard ratio, 1.2) nor the
absolute number of FoxP3+ cells (P = 0.35; hazard ratio, 1.03)
had a prognostic effect. We also analyzed the data set based on
the ratio of FoxP3+ Tregs (immune inhibitors) to CD8+ T cells
(cytotoxic effector) to determine whether the relative balance
of these factors influences prognosis. Within the GBM group,
we found that this ratio did not have a significant prognostic
effect (P = 0.17; hazard ratio, 1.04; 95% CI, 0.98-1.10). Upon
stratification of the GBM patients based on the presence of
FoxP3+ cells, no differences were identified in postoperative
treatment course including radiation (96% for FoxP3+ versus
100% for no FoxP3+ staining) or chemotherapy (96% for

FoxP3+ versus 93% for no FoxP3+ staining). Furthermore, there
was no statistical difference in the number of infiltrating Tregs
in GBM patients that had unifocal versus multifocal disease.
We cannot come to any meaningful statistical conclusions
regarding the prognostic effect of FoxP3+ Tregs on survival for
many of the other pathologic types of gliomas because of the
relative infrequency of FoxP3+ Tregs in these tumors.

Discussion

In this study, we showed that FoxP3+ Tregs were more
commonly associated with astrocytomas than with oligoden-
drogliomas. Furthermore, as tumors became more malignant,
the number of FoxP3+ Tregs in them increased. The number of
FoxP3+ T cells with increasing tumor grade has been shown
previously (25), but these studies were confined to astrocytic
gliomas and were not correlated with prognosis. Similarly,
among astrocytic tumors, we frequently observed FoxP3+ Tregs
in glioblastomas, gliosarcomas, and anaplastic astrocytomas.
However, significant Treg infiltration was not evident in many
of the other types of glial tumors, such as oligodendrogliomas,
which has not been previously described. Because we used
a brain tumor microarray, we cannot completely exclude the
possibility that Tregs were present in these other types of
glial tumors in low frequency. However, in an attempt to neg-
ate this as a possibility, we used duplicate tissue cores from

Fig. 2. The incidence of CD4+ Tcells and the number of CD4+ and CD8+ Tcell
increases with tumor grade. A, CD8+ cells were identified in the majority of the
glioma specimens despite the grade; however, the number of patients that had a
CD4+ population present increased with tumor grade (P < 0.001; across all grades).
B, the number of both CD4+ and CD8+ glioma infiltratingTcells increased with
tumor grade.

Table 3. Proportion of immunohistochemical
FoxP3+ cases stratified according to pathology
and WHO tumor grade

Pathology Grade No. of cases (%)

O II 3/21 (14.3)
MOA II 1/5 (20.0)
AO III 1/16 (6.3)
AMOA III 5/13 (38.5)
LGA II 1/3 (33.3)
AA III 10/19 (52.6)
GBM IV 25/52 (48.1)
GS IV 5/6 (83.3)

Table 4. Differences in the presence of FoxP3+

cells by tumor grade

Grade Pathology n (%)

II LGA 29 (21.5)
O

MOA
III AA 48 (35.6)

AO
AMOA

IV GBM 58 (43.0)
GS

Fig. 3. Kaplan-Meier survival estimates as stratified by the presence or absence
of FoxP3+ immunohistochemical staining within GBM patients. Median survival
in GBM patients that had positive FoxP3+ staining was13.8 mo (95% CI, 7.8-21.7)
and was12.8 mo (95% CI, 6.6-37.7) in GBM patients that did not have FoxP3
staining, which is not statistically significant (P = 0.56).
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different areas of the tumors in the microarray and analyzed
large volumes of tumor from surgical specimens of tumors
obtained directly from patients; we were unable to identify
Tregs in oligodendrogliomas as defined by the presence of
CD4+CD25+FoxP3+ Tregs according to flow cytometry analysis.
Most of the promising clinical trials of immunotherapy for

gliomas have assessed patients with anaplastic astrocytoma or
GBM (26–32). However, this therapeutic approach has great
potential for low-grade gliomas, given that the long survival
durations in patients with these tumors afford sufficient time to
generate immune responses and, as evidenced in the present
study, that these patients may have less overall immunosup-
pression compared with high-grade astrocytomas patients. A
variety of approaches to negating the negative immune
modulatory properties of Tregs in patients with glioma in
clinical trials are being considered, including treatment with
CTLA-4 blockade (33), an anti-CD25 antibody (17), cyclophos-
phamide (18, 34), and temozolomide (12). The use of these
agents would seem to be justified in clinical trials of immu-
notherapy for high-grade gliomas to inhibit Tregs but not
necessarily for other types of glioma, such as oligodendro-
glioma. Furthermore, the variability of the infiltrating Treg
population within tumors and the systemic circulation (9)
suggests that not all patients will uniformly benefit from these
approaches and that the greatest clinical responses to these
agents may be seen in patients with significant tumor Treg
infiltration and/or an enhanced Treg fraction in a diminished
CD4 compartment in the systemic circulation. Although low-
grade gliomas do not seem to exploit Treg infiltration as a
mechanism of immunosuppression, this does not mean that
other mechanisms of immunosuppression are not involved,
such as immunosuppressive cytokines, antigen loss, T-cell
apoptosis, and induction of anergy by tumor antigen–
presenting cells (35). The limitation of this study is that we
are only determining the influence of Tregs within the tumor
microenvironment and have not addressed the presence of
Tregs within the systemic circulation (9), which may inhibit the
activation of immune response in the periphery (i.e., outside
the central nervous system). The identification of glioma
patients who may be optimal candidates for immune therapies
directed at inhibiting Tregs should consider taking into account
both variables for enrollment.
T-cell infiltration is common in the parenchyma of human

gliomas (2). Several studies have attempted to correlate the
intensity of this infiltration with survival (1, 2). Although these

studies found prolonged survival durations that correlated with
the presence of lymphocytic infiltration, this has not been a
consistent finding in other studies (36). This is likely because
the absolute number of T cells in a glioma does not necessarily
correlate with functional activity (10) or account for the sub-
population of Tregs, which also have a CD3+CD4+ surface
phenotype. This study was an attempt to account for the
confounding factor of immune inhibitor Tregs in this type of
analysis. We did not observe prognostic significance of the
presence of Tregs in gliomas in the group of patients for which
sufficient statistical analysis could be done: those with GBM.
This was likely secondary to use of multiple redundant
immunosuppressive mechanisms in these patients.
Investigators have reported the presence FoxP3+ Tregs in a

variety of cancers, including hepatocellular carcinoma, colo-
rectal cancer, ovarian cancer, and others. Studies have shown
that the presence of FoxP3+ Tregs in ovarian cancer was not
only a predictor of poor prognosis but also an independent
predictor of overall survival and progression-free survival
(6, 37). However, in other cancers such as anal squamous cell
carcinoma, the presence of Tregs has not been shown to be a
prognostic influence (38). In head and neck squamous cell
carcinoma, Treg infiltration has proven to correlate positively
with locoregional control of the cancer (39). A hypothesized
variable factor that may be more predictive of prognosis than
solely the presence of Tregs is the balance between cytotoxic
T cells and Tregs (i.e., the effector to suppressor ratio). Authors
have reported that this ratio is more valuable than the presence
of a single tumor-infiltrating lymphocyte subset for cancer
prognostic purposes in ovarian cancer (37), lymphoma (40),
and hepatoceullar carcinoma after tumor resection (14).
However, in colorectal cancer, analysis of this ratio did not
predict poor survival (41). In the present study, we examined
both variables as potential prognostic factors for GBM. Using
both criteria, we did not find that FoxP3 was an independent
negative prognostic factor for survival. The low incidence of
Tregs in the oligodendrogliomas and low-grade gliomas did not
allow for definitive conclusions regarding the prognostic effect
of the presence of FoxP3 Tregs in these gliomas.
Although some cancers may mediate immunosuppression

predominantly by using Tregs, researchers have shown that
high-grade gliomas have multiple mechanisms of mediating
immunosuppression (35); thus, the lack of a prognostic effect of
one mechanism such as the presence or absence of FoxP3+ Tregs
in this setting is not entirely surprising. Furthermore, the ratio of
FoxP3+ Tregs to CD8+ T-cell effectors may not be valid as a
prognosticator in gliomas because the effector cells in gliomas
are not activated (10) and likely are not functional (42, 43).
In conclusion, Tregs frequently infiltrate high-grade malig-

nant gliomas of astrocytic lineage and are viable targets for
immunotherapy. However, their presence does not confer a
negative prognosis, likely confounded by multiple other
redundant immunosuppressive pathways.
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Table 5. Univariate Cox proportional hazards
model estimates, hazard ratio, and significance of
the study variables

Variable Estimate HR P

KPS score -0.02 0.98 0.03
Age at diagnosis 0.04 1.04 <0.0001
Sex 0.09 1.1 0.67
Tumor grade 1.06 2.9 <0.0001
Tumor lineage 1.33 3.79 <0.0001
FoxP3 positivity (vs none) 0.49 1.64 0.03
Actual FoxP3+ cell number 0.1 1.1 0.002

Abbreviation: HR, hazard ratio.
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