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Preface

This book contains the papers presented at the 14th International Conference
on Field Programmable Logic and Applications (FPL) held during August 30th–
September 1st 2004. The conference was hosted by the Interuniversity Micro-
Electronics Center (IMEC) in Leuven, Belgium.

The FPL series of conferences was founded in 1991 at Oxford University
(UK), and has been held annually since: in Oxford (3 times), Vienna, Prague,
Darmstadt, London, Tallinn, Glasgow, Villach, Belfast, Montpellier and Lisbon.
It is the largest and oldest conference in reconfigurable computing and brings
together academic researchers, industry experts, users and newcomers in an in-
formal, welcoming atmosphere that encourages productive exchange of ideas and
knowledge between the delegates.

The fast and exciting advances in field programmable logic are increasing
steadily with more and more application potential and need. New ground has
been broken in architectures, design techniques, (partial) run-time reconfigura-
tion and applications of field programmable devices in several different areas.
Many of these recent innovations are reported in this volume.

The size of the FPL conferences has grown significantly over the years. FPL
in 2003 saw 216 papers submitted. The interest and support for FPL in the
programmable logic community continued this year with 285 scientific papers
submitted, demonstrating a 32% increase when compared to the year before.
The technical program was assembled from 78 selected regular papers, 45 ad-
ditional short papers and 29 posters, resulting in this volume of proceedings.
The program also included three invited plenary keynote presentations from
Xilinx, Gilder Technology Report and Altera, and three embedded tutorials from
Xilinx, the Universität Karlsruhe (TH) and the University of Oslo.

Due to the inclusive tradition of the conference, FPL continues to attract
submissions from all over the world. The accepted contributions were submitted
by researchers from 24 different countries:

USA 37 Canada 6 Netherlands 3 Mexico 2
Spain 21 Portugal 6 Austria 2 Switzerland 2
Germany 20 Brazil 5 Belgium 2 Australia 1
UK 11 Finland 3 Czechia 2 China 1
Japan 9 Ireland 3 Greece 2 Estonia 1
France 7 Poland 3 Italy 2 Lebanon 1



VI Preface

We would like to thank all the authors for submitting their first versions
of the papers and the final versions of the accepted papers. We also gratefully
acknowledge the tremendous reviewing work done by the Program Committee
members and many additional reviewers who contributed their time and exper-
tise towards the compilation of this volume. We would also like to thank the
members of the Organizing Committee for their competent guidance and work
in the last month. Especially, we acknowledge the assistance of Michael Hübner
and Oliver Sander from Universität Karlsruhe (TH) and Rolf Enzler from ETH
Zurich in compiling the final program. The members of our Program and Orga-
nizing Committees as well as all other reviewers are listed on the following pages.

We would like to thank Altera, Synplicity and Xilinx for their sponsorships.
We are indebted to Richard van de Stadt, the author of CyberChair. This ex-
traordinary free software made our task of managing the submission and review-
ing process much easier.

We are grateful to Springer-Verlag, particularly Alfred Hofmann, for his work
in publishing this book.

June 2004 Jürgen Becker
Marco Platzner
Serge Vernalde
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FPGAs and the Era of Field Programmability

Wim Roelandts

Xilinx Inc,
2100 Logic Drive,

San Jose, CA.

Abstract. The progress of the semiconductor industry over the last several
decades has been described as a series of alternating cycles of standardization
and customization.  According to Makimoto’s wave, as the model is known, we
are now in an era of field programmability. This cycle is characterized by
standardization in manufacturing and customization in application. The
application drivers for this second digital wave are networking, digital
consumer electronics and the convergence of communications and computing
technologies.

Xilinx has been the foremost company in field programmable logic since
inventing the FPGA over twenty years ago. Today, Xilinx FPGAs are the key
technology enabling the era of programmability. From this vantage point, we
begin this talk by surveying the key technologies that define the state-of-the-art
in field programmable logic. We proceed to explore future directions and
consider some of the most important research challenges that lie ahead.

Solutions to the research challenges will require the best efforts of many
talented minds around the world. Continued collaboration between academia
and industry is vital at the graduate research level. Equally important is the need
to ensure that young engineers are adequately prepared for the era of
programmability. We close by describing some of the novel work emerging
from Xilinx research and the initiatives that we are taking to ensure the ongoing
success of our partnership with academia worldwide.
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Reconfigurable Systems Emerge

Nick Tredennick and Brion Shimamoto

Gilder Technology Report, 1625 Sunset Ridge Road, Los Gatos, CA 95033
bozo@computer.org

Abstract. As the world of electronics shifts from tethered devices to mobile
devices, reconfigurable systems will emerge. After twenty years, the PC is now
good enough for most consumers’ needs. As PC development becomes less im-
portant, engineering emphasis shifts to mobile devices: digital cameras, MP3
players, and cell phones. Mobile devices redirect the design goal from cost per-
formance to cost-performance-per-watt. Smaller transistors don’t help because
they are too expensive and because they leak too much. The microprocessor has
effectively stalled hardware design for thirty years, and it will not be the work-
horse in mobile devices of the future. Both microprocessors and DSPs are un-
suitable for mobile devices because instruction-based processing is computa-
tionally inefficient and because they use too much energy. Today’s memory
components are also unsuitable. New programmable logic devices, based on
next-generation non-volatile memory, will enable efficient reconfigurable sys-
tems.

1   Introduction

A few years ago, when a speaker promised a surge in robotic applications, a skeptic
in the audience interrupted: “Robotics advocates have promised soaring applications
for fifty years and haven’t delivered. What’s different this time?” I don’t recall the
speaker’s answer, but my answer would have been: “Today, we can put millions of
transistors of intelligence in a knee joint for less than a dollar.”

Advocates for reconfigurable systems, who have a history going back to the be-
ginnings of Altera and Xilinx more than twenty years ago, face similar skepticism.
Times change. Robots are surging into applications—reconfigurable systems will
soon follow.

To put the conclusion up front, the engineering community is coming out of a
thirty-year stall in the development of design methods that was caused by the enor-
mous success of the microprocessor. The microprocessor will move from its central
role in problem solving to a supervisory role. “Paged” circuit definition will displace
instruction-based algorithms as the workhorse of systems. For the engineering com-
munity, it will be a reluctant transition, one that will be forced by the rapidly growing
market for consumer mobile devices.
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2   The Microprocessor

The transistor was the first generic semiconductor. The transistor led to the integrated
circuit. The integrated circuit combined transistors on a single chip to form building
blocks called “logic macros.” Families of logic-macro chips proliferated because they
raised the designer’s efficiency. Instead of designing with individual transistors, engi-
neers built systems from building-blocks. The microprocessor, introduced in 1971,
was the culmination: an integrated circuit that was a computer.

The microprocessor differed fundamentally from logic macros. The microproces-
sor brought the computer’s problem-solving method to system design. The com-
puter’s breakthrough in problem solving was to separate the algorithm from the
hardware. The computer separated physical structure from logical procedure. The
computer provided general-purpose hardware, including a state sequencer. To solve
problems, the engineer provided procedure in the form of a program.

The engineer no longer needed to design as much hardware and no longer needed
to design a state sequencer. Problem solving became programming. This had two
beneficial consequences. First, engineering productivity increased because one engi-
neering team designed the microprocessor that supported a range of applications and
because engineers solve problems faster with programs than with logic macros. Sec-
ond, the community of programmers is probably ten times larger than the community
of logic designers.

In designing with logic macros, the engineer built systems from blocks of hundreds
or thousands of transistors. Logic-macro chips raised the engineer’s level of abstrac-
tion. For this gain in productivity, engineers forfeited efficiency because individual
transistors could no longer be custom tailored to their position in the circuit.

Trained problem solvers are a critical resource. The microprocessor added pro-
grammers to the community of problem solvers.

The microprocessor consolidated logic macro chips into microprocessors, memory,
and peripherals. Since the microprocessor was a generic component, its design cost
could be amortized across a range of applications, lowering its cost and increasing its
unit volumes. The microprocessor’s market grew from almost nothing at its introduc-
tion to billions of units per year.

Microprocessor-based design is entrenched in the engineering community. Univer-
sity engineering programs teach microprocessor-based design almost exclusively.
Development software (compilers, assemblers, profilers, debuggers, simulators) and
support systems (PCs, workstations, development boards, web sites) abound. Billion-
dollar companies (Apple, IBM, Intel, Motorola, STMicroelectronics, Texas Instru-
ments) sell chips and services for microprocessor-based design.

Can anything dislodge the microprocessor from its central role? Yes, the value PC
and the value transistor.
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3   The Value PC

For more than twenty years, the personal computer (PC) has been the focus of devel-
opment for the semiconductor industry. In recent years, the PC industry has con-
sumed forty percent of the dollar value of all semiconductors.

When the PC was introduced, its performance didn’t satisfy any of its users. Over
time, the PC’s performance improved at a rate related to the Moore’s-law improve-
ment in its underlying components, especially its microprocessor and memory. Be-
cause they are consumer items, PCs are built for low cost. But the industry’s profit-
ability is tied to buyers’ demand for performance.

The demand for performance seemed insatiable. PCs continued to offer more per-
formance, and consumers bought all the performance they could afford. In the semi-
conductor industry, we got so used to this behavior that we think of demand as infi-
nitely elastic. We forgot about the difference between supply and demand.

The PC industry supplies performance that rises with time. The demand for per-
formance also rises with time. We expect more from our next PC than we did from
our last one. But there is no necessary correlation between the rise in the supply of
performance and the rise in demand for performance.

As nerds, we don’t see the separation between supply and demand. We think sup-
ply conjures demand. The nerd community, including the readers of this paper, is
demand’s leading edge. Nerds are early adopters, always demanding more perform-
ance. But as the PC matures more consumers enter the market. These late adopters,
clerks, accountants, school teachers, bureaucrats, and so on, are not the sophisticated
users of the nerd community. They don’t need as much and they don’t expect as
much. Thus, demand spreads; nerds, with leading-edge applications, want more per-
formance, late adopters, with trailing-edge applications, don’t need as much perform-
ance.

If the supply of performance rises faster than the demand for performance, then the
PC’s performance will eventually exceed the demand for some users. The supply of
performance has been rising faster than the demand for performance is increasing.
The PC’s performance is good enough for a great many users. This situation creates
the value PC. Value PCs offer good-enough performance at low absolute prices. The
demand shifts from the leading-edge PCs to value PCs, decreasing industry profit-
ability.

And each year’s value PC offers more performance than last year’s value PC, so
each year’s value PC covers a larger area under the demand curve. This further de-
creases industry profitability, creating incentive to reallocate engineering resources to
more profitable systems. Engineering emphasis is shifting from tethered systems,
such as the PC with its decreasing profitability, to more-profitable untethered sys-
tems.

The shift from tethered systems to untethered systems changes the design goal
from cost performance to cost-performance-per-watt.
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4   The Value Transistor

For more than forty years, the semiconductor industry’s answer to the need for more
performance at lower cost has been the shrinking transistor. Smaller transistors run
faster and they use less energy to switch.

The same number of transistors fits in a smaller area, decreasing cost and lowering
power. The smaller chip thus becomes cost-effective in applications for which the
older-generation chips had been too expensive.

For a fixed area and cost, more transistors fit on the chip. With more transistors,
the chip becomes adequate in applications for which older-generation chips did not
have enough logic capacity or did not have the performance.

Fixed-logic chips got cheaper; fixed-size chips got more transistors for the same
cost. This model of decreasing the cost for low-end applications and of increasing the
performance and capacity for high-end applications is built into the business models
of many semiconductor companies. The revenues from one product generation sup-
port shrinking the chip or they support designing the next higher-performance chip.

But, just as with the value PC, this model ignores the difference between supply
and demand. As long as the transistor isn’t good enough, Moore’s-law improvements
in transistors find a ready market. But there’s no assurance that demand for smaller
transistors is growing as fast as Moore’s law can shrink transistors. Today’s answer
is: “It always has.” The value transistor is changing the answer. The value transistor
is a transistor that is good enough for the application. As we shall see, it’s not always
the smallest transistor.

Like the PC, when the transistor came out, it didn’t satisfy any of its applications.
Moore’s-law improvements define the supply curve for transistors. And, like the PC,
demand is a difficult-to-define family of curves that spreads with time. The leading-
edge designs of the early adopters require leading-edge transistors; the trailing-edge
designs of the late adopters do not require leading-edge transistors.

In the early days of integrated circuits, smaller transistors were adopted quickly.
This worked for decades, but times change. As recently as 1996, for example, TSMC
introduced its 350-nm process. By the beginning of 1997, about thirty percent of its
wafer starts were in the new, smaller transistors. In two years, that rose to more than
fifty percent. Contrast that with the adoption of a 150-nm process introduced in 1999,
which by 2001 represented less than five percent of wafer starts.

A number of reasons account for the decline in adoption rates, but the primary rea-
son is the value transistor; the old transistors are good enough for some applications.
As time goes by, more and more applications will be satisfied with less than leading-
edge transistors. Plant costs double with each process generation. The cost of the
plant and its equipment must be amortized into the cost of the transistors it produces.
With escalating costs, newer transistors can be more expensive than old transistors
coming from already-amortized plants. Applications won’t opt for newer, more-
expensive transistors unless there’s a compelling performance requirement—and for
an increasing range of applications, such as microwave ovens and hair dryers, there
isn’t.
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Even the cost of moving a design from an old process to a new one increases with
each generation, so the incentive to cost-reduce old designs decreases with time.
Smaller transistors use less switching energy, but they leak more. That wasn’t a
problem when chips held thousands of transistors because the leakage currents were
several orders of magnitude smaller than the switching currents. But as designs grow
to billions of transistors, leakage currents become significant. In modern perform-
ance-oriented designs, leakage currents can amount to half of the chip’s power
budget. More on this later.

5   Consequences

Here’s the situation in the semiconductor industry. Microprocessor-based design is
thoroughly entrenched. Progress in computer design has created the value PC, which
is good enough for most users. Moore’s-law progress in semiconductors has created
the value transistor, which is good enough for most applications.

As value PCs displace leading-edge PCs in consumer preference, the decreased
profits suggest moving engineering resources from PC development to more-
profitable products. The development effort is shifting from tethered systems to un-
tethered systems. This shift changes the design objective from cost performance to
cost-performance-per-watt.

The shift in design objective to cost-performance-per-watt is a problem for micro-
processor-based design. The microprocessor was invented to replace custom hard-
ware in systems where its performance was adequate and where its cost was lower.
The microprocessor’s use was justified because it lowered the cost of design and it
lowered the cost of components. It lowered the cost of design because engineers de-
signed systems faster by programming ready-made, general-purpose, microprocessor-
based systems than by creating custom hardware.

Efficiency, a requirement for cost-performance-per-watt, was never a hallmark of
microprocessor-based designs. It couldn’t be. The microprocessor is, after all, an
instruction-based emulation of what would otherwise be custom hardware. Custom
hardware is the benchmark for performance and for efficiency.

One way that microprocessors extended their range of applications was through in-
creased performance. The primary means for increasing the microprocessor’s per-
formance has been by increasing its clock frequency. Roughly speaking, doubling the
microprocessor’s clock frequency doubles its performance. Unfortunately, clock
frequency appears as a term in the power equation. Doubling the clock frequency
doubles power use. Up to a point, that’s not a problem for systems that use wall
power. No one cares whether the microprocessor in a 1500-watt microwave oven
dissipates a tenth of a watt or ten watts.

To control power use in microprocessors, designers have been lowering the volt-
age as the clock frequency increases. Fortunately, the voltage term in the power
equation is squared. Halving the voltage lets the microprocessor run at four times the
clock frequency for the same power. But there’s a limit below which the microproc-
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essor’s transistors no longer function. Today’s microprocessors are too close to that
limit to benefit from further voltage reductions.

Microprocessors have reached their voltage floor while performance requirements,
particularly for mobile communication systems, continue to climb. The microproces-
sor can’t meet the cost-performance-per-watt requirements of untethered systems.
And smaller transistors of the newer semiconductor processes won’t help either. In
two process generations, leakage currents increase by a factor of ten. Two watts of
leakage in a 130-nm process becomes twenty watts in a 65-nm process. Performance
requirements for mobile communication systems are growing faster than the Moore’s-
law rate of improvement in semiconductors. That means that, even in the absence of
leakage-current problems, faster transistors wouldn’t yield enough performance to
make microprocessor-based implementations practical.

6   ASICs

Application-specific integrated circuits (ASICs) represent the ultimate in logic effi-
ciency. Unfortunately, escalating requirements in mobile communication systems
demand flexibility that ASICs, unlike programmed or programmable components,
just don’t have. Also, ASIC design costs have been growing rapidly. ASICs can still
be cost effective, but their growing costs mean that they are cheaper for an ever-
narrowing range of high-volume applications.

Microprocessors are flexible, but they lack efficiency; ASICs are efficient, but they
lack flexibility. Two companies, ARC and Tensilica, offer a compromise between the
two. They offer customizable instruction sets in the form of an ASIC. Designers add-
ing custom instructions to a base microprocessor might achieve a ten- or hundred-fold
improvement in performance for their application.

7   Programmable Logic

Altera and Xilinx have been selling programmable logic devices for more than twenty
years. But these programmable logic devices won’t do either. The SRAM-based ver-
sions, commonly called FPGAs (field-programmable gate arrays), come the closest to
the requirements for custom logic and for flexibility. But they are too slow, too power
hungry, and too expensive. This is so because Altera and Xilinx built their businesses
around logic prototyping and on consolidating glue logic. Their device designs have
followed the needs of their current customers and are, therefore, not well suited to the
needs of mobile communication systems.

Altera and Xilinx offer soft-core microprocessors for their FPGAs. Altera’s soft-
core microprocessor is NIOS, which now offers application-specific customization of
its instruction set. Xilinx, in addition to offering two soft-core microprocessors, Mi-
croBlaze and PicoBlaze, offers hard-core PowerPC microprocessor cores on its high-
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end FPGA family. These microprocessor cores relieve system designers from having
to design a state sequencer.

In addition to the microprocessor cores, both companies offer a wide range of in-
tellectual-property cores for licensing. Altera and Xilinx provide some of the cores
and third parties provide some of the cores. The development of in-house intellectual
property is subsidized by chip sales. The customer base for both companies has been
logic designers. With the move to microprocessor cores and to the availability of a
wide range of intellectual-property cores, both companies are moving slowly toward
programmers as customers.

As FPGA applications move from custom hardware prototyping and from glue-
logic consolidation to general applications that employ on-chip hard- or soft-core
microprocessors and other intellectual-property cores, the logic elements on the chips
may become more application specific (rather than being the relatively fine-grained
look-up tables that they are today).

8   Memory

The semiconductor industry wants to move to untethered systems, but it lacks a suit-
able vehicle. Microprocessors lack both the performance and the efficiency. ASICs
lack the flexibility and will be restricted to large unit-volume markets due to their
high development cost. FPGAs are too slow, too power hungry, and too expensive.

Not only are there no suitable components for implementing the logic, but today’s
memory chips are unsuitable as well.

Today’s memory chips are DRAM, SRAM, and flash memory. All of these devices
grew with the personal computer market. DRAM, the PC’s working memory, is
dense, but it is slow and it does not retain data through power cycles. SRAM, which
speed-matches between the PC’s fast microprocessor and its slow DRAM working
memory, is fast, but its memory cells take a lot of space and they use a lot of power.
SRAM also does not retain its data through power cycles. Flash memory, which holds
the programs that initialize the PC on start, retains its data through power cycles, but
it is slow for reading, very slow for writing, and it actually wears out. The PC exploits
the advantages of these memory types and is relatively insensitive to their shortcom-
ings. Riding the success of the PC, each of these memory types achieved high-volume
production, and, therefore, low cost.

The ideal memory component would have the density of DRAM, the performance
of SRAM, and the non-volatility of flash memory. Candidates for this ideal memory
have been around for fifteen years, but have never been able to achieve the low cost
that would let them displace any of the components in the PC.

In untethered systems, DRAM, SRAM, and flash memory alone and in combina-
tion are all unsuitable. This creates an enormous investment incentive for the industry
to create the ideal memory component. It could be one of the long-time candidates,
such as magnetoresistive random-access memory (MRAM), ferroelectric random-
access memory (FRAM), or ovonic unified memory (OUM). Each of these has major
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backers and a long development history. But I think it just as likely that the ideal
memory component will come from a startup such as Axon Technologies or Nantero.

Axon Technologies, for example, uses a solid electrolyte between two conductors,
one of which is silver. A small potential across the conductors causes silver atoms to
ionize and migrate through the electrolyte. They plate out on the opposite conductor
and capture an electron. In a matter of ten nanoseconds, a physical bridge forms be-
tween the two conductors. The connection can be maintained indefinitely. The proc-
ess is completely reversible. Nantero’s memory is based on properties of carbon
nanotubes. There are probably dozens of others. We should soon see commercial
memory chips with characteristics ideal for untethered applications.

9   Programmable Logic Revisited

When we do get the ideal memory cell, it will also benefit FPGAs, which today are
dominated by on-chip configuration memory and by interconnections. If the on-chip
configuration memory cells, which today are SRAM-based, are replaced with ideal
memory cells, FPGAs will gain enormously in logic capacity, in performance, and in
convenience. Each one-transistor, non-volatile memory cell will displace at least six
transistors in the configuration memory. This brings circuits closer together and it
reduces interconnection distances, which increases performance. Since the configura-
tion memory will then remember its data across power cycles, the chips won’t require
off-chip configuration storage. They won’t have the configuration delay and configu-
ration information will be more secure since it won’t be passing across the chip inter-
face each time the power comes on.

Combining the new non-volatile memory cells with application-oriented logic
elements and on-chip microprocessor cores makes future FPGAs well suited to un-
tethered applications. The microprocessor core provides the state sequencer that su-
pervises the application. The combination of intellectual-property cores, custom in-
structions, and custom hardware provides efficient application-specific logic. Soft-
ware, such as Altera’s SoPC Builder or CriticalBlue’s Cascade, makes these resources
available to the community of programmers.

An implementation based on an FPGA with new non-volatile memory cells and
with new application-oriented logic elements could be more efficient than an ASIC,
even for an implementation that doesn’t require the FPGA’s flexibility. Yes, I think
the future’s FPGA, call it an “nvFPGA,” could be more efficient than an ASIC, which
is today’s benchmark for custom-logic efficiency.

Think of the dozen or so substantially different tasks performed by a modern cell
phone. With an ASIC, each task’s hardware is permanently resident. They can’t all be
next to each other and they can’t all be close to the data sources. All of the ASIC’s
functions will contribute to leakage currents and will subtract from the power budget.
In the nvFPGA, only the task that is running has hardware present. The hardware-
definition bits for each task are “paged” into the nvFPGA as needed. Instead of ship-
ping multimedia data from unit to unit as would happen in an ASIC, hardware might
be paged into the area where the data is. Moving the hardware to the data might be
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more efficient in power use and in time than moving the data to the hardware, par-
ticularly for data-intensive algorithms. Functions can be closer to the data and closer
to communicating neighbors than they might be in an ASIC.

10   Getting There

Let’s suppose all of this is true: the semiconductor industry is shifting from tethered
systems to untethered systems, microprocessors won’t do, ASICs are too expensive,
the ideal memory cell will arrive soon, and the FPGA vendors will deliver compo-
nents with the new non-volatile memory cell, with application-oriented logic ele-
ments, and with the software to take advantage of their resources. We still have the
enormous problem of turning a whole industry that seems irreversibly committed to
microprocessor-based design. Can this be done?

I think it can. What the industry needs is a compelling proof-of-concept for recon-
figurable systems. It’s about to get one from Stretch, Inc.

Stretch is a Silicon Valley startup company. Though Stretch never uses the term
reconfigurable, it can still deliver the proof that’s needed to turn the industry. Stretch
is a little like Tensilica. It offers a Tensilica instruction set and it offers software to
customize the implementation. But there’s a difference. Tensilica appeals to logic
designers who want to design an application-specific microprocessor for implementa-
tion in an ASIC. Stretch offers a generic component that is a combination of a Ten-
silica microprocessor and programmable logic. Stretch’s chips appeal to programmers
who cannot get the performance they want from off-the-shelf microprocessors. The
engineer writes the application in a high-level language and profiles the program with
Stretch’s software. The engineer designates one or more performance-critical regions
in the program. Stretch’s software generates hardware equivalents of the perform-
ance-critical program regions.

Many have tried and many have failed with reconfigurable systems. But Stretch of-
fers two decisive advantages over predecessors. First, Stretch offers generic chips that
are customized in the field. Second, Stretch’s customers are programmers, not logic
designers.

A generic chip that is customized in the field has the advantage of production vol-
ume that is the sum of all the applications. Volume production means lower cost.
Amortizing development cost across the range of applications makes the chip
cheaper. Engineers might get close to the performance of a custom design without the
costs of ASICs.

Stretch’s chips are accessible to programmers. Stretch doesn’t have to convert
logic designers into believers to succeed. The community of programmers, which is
perhaps ten times as large as the community of logic designers, gets access to hard-
ware acceleration.
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11   Industries in Transition

Even if I’m wrong about the transition from tethered systems to untethered systems
and about the imminent arrival of non-volatile memory, reconfigurable systems will
still happen.

There’s an ongoing, fruitless search for “the next killer app.” It’s time to give up
the search; this view of the future is narrow. Instead, let’s look at opportunities of-
fered by industry transitions. Here are examples.

The automotive industry is in transition from analog to digital, from mechanical to
electrical, and from isolated to connected. The film and video industry is in transition
from analog to digital and from isolated to connected. The consumer-products indus-
try is in transition from analog to digital, from tethered to untethered, and from iso-
lated to connected. (Consumer products also offer high-growth opportunities supply-
ing everyday appliances to emerging economies.) The biomedical industry is in tran-
sition from analog to digital and from wet laboratories to bioinformatics. The telecom
industry is in transition from copper to wireless, from copper to fiber, and from ana-
log to digital. The computer industry is in transition from desktop to embedded.

These transitions will transform these industries. These transitions will create large
markets for semiconductors, for microelectromechanical systems, and for computers
and software over the next few years. The first big transitions, from machine-room
computers to personal computers and from wired telephones to cell phones, were
viewed as “killer apps.” But they were really pioneering applications that opened the
gates for the general transition from analog to digital.

Many of these transitions, like the one from tethered systems to untethered sys-
tems, will demand power efficiency that cannot be gotten from microprocessor-based
systems. Reconfigurable systems will emerge for those applications for which micro-
processors lack the necessary efficiency and for which ASICs are too expensive or
too inflexible.
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Abstract. Due to fundamental dynamics in the semiconductor industry, FPGAs
vendors are increasingly focusing on cost and EDA vendors are focusing on
system-level design. This is good news for the end user because both time-to-
market and device unit cost are top of their priority lists whilst performance and
density now often take a back seat – these problems having been solved. However,
are these two initiatives of cost reduction and better system-level design tools cor-
rectly aligned for FPGAs? This talk will explore some of the areas where they are
aligned, and some areas where they are not. The analysis uses real system exam-
ples to illustrate the successes to date, as well as the challenges looking forward
as more and more engineers develop low cost solutions using FPGAs.
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Abstract. The proteins in living organisms perform almost every significant
function that governs life. A protein's functionality depends upon its physical
structure, which depends on its constituent sequence of amino acids as specified
by its gene of origin. Advances in mass spectrometry have helped to determine
unknown protein sequences but the process is very slow. We review a method
of de-novo (novel) protein sequencing that requires a fast search of the genome.
In this paper, we present the design of a hardware system that performs this
search in a very fast, cost-effective manner. This hardware solution is more than
30 times faster than a similar search in software on a single modern PC, and up
to 40 times more cost effective than a computer cluster capable of the same per-
formance. The hardware is FPGA-based to reduce the cost and allow modifica-
tion of the algorithm, both key requirements of practical protein analysis tools.

1   Introduction

Proteins and their interactions regulate the majority of processes in the human body.
From mechanical support in skin and bones to enzymatic functions, the operation of
the human body can be characterized as a complex set of protein interactions. Despite
the efforts of scientists, many proteins and their functions have yet to be discovered.
The wealth of information that lies in these unknown proteins may well be the key to
uncovering the mysteries that govern life. The subject of this paper is the use of digi-
tal hardware to aid in a specific technique used to discover new proteins.

Proteins are composed of long chains of molecules known as amino acids, and the
order of these amino acids is known as the sequence of a protein [2]. Protein se-
quencing - the process of identifying the sequence of a given protein - is a means of
establishing the protein's identity, from which its functionality can be inferred. Ad-
vances in technology over the past two decades introduced the concept of protein se-
quencing by mass spectrometry [3]. A mass spectrometer (MS) is a device that takes a
biological or chemical sample as input and measures the masses of the constituent
particles of the sample. This mass information is used to identify the molecules in the
sample. Protein samples to be identified are broken down into smaller subunits known
as peptides and fed into an MS for identification. For novel proteins, the common ap-
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proach is to identify each peptide, combine this information and thus determine the
complete protein sequence. However, the sequence of novel proteins can be obtained
from the information contained in genes which act to create proteins [2]. In effect, a
complete genome can be interpreted as a complete protein database. For this tech-
nique to be useful in MS experiments however, very high speed searches of the ge-
nome are required, which are not feasible on general purpose processors due to the
limited memory bandwidth. In such applications such as high speed searches, which
involve identical repeated operations, custom hardware implementations are an ideal
solution.

2   Background

A basic understanding of genetics and protein synthesis is required to comprehend the
protein identification methods described in this paper. To this end, we provide a brief
overview of protein synthesis and common methods of protein identification in use
today.

2.1   Protein Synthesis

Within an organism, proteins are synthesized from the DNA template stored in the
cell. DNA is contained in the genes of organisms where it is stored as a chain of nu-
cleic acid molecules which consist of Adenine, Thymine, Cytosine and Guanine
(A,T,C,G). These genes are translated into a chain of amino acids by a series of bio-
logical mechanisms. Thus if the set of all genes of the organism – its genome – is
known, the set of all proteins it can create – its proteome – can be inferred. An exam-
ple of protein synthesis is shown in Fig 1.

 
 
 
   ATG   -   TTA -  ACG     (DNA) 

 
    Met    -   Leu   -  Thr      (Protein) 

codons 

Fig. 1. Protein Synthesized from gene

Note that the DNA in the gene is grouped into sets of 3 DNA molecules, or codons.
Each of these codons is then translated into an amino acid resulting in the protein
chain. The rules for the translation from codons to amino acid are well known, and it
is therefore easy to translate a codon string to its corresponding amino acids and vice
versa [2]. However, it is difficult to reliably predict the starting point of a gene. The
three DNA molecules in a codon, imply 3 different possibilities (known as reading
frames). Further, every DNA strand is coupled with a complementary DNA strand
that may also encode proteins resulting in a total of 6 reading frames.
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2.2   Protein Identification

Prior to analysis by a mass spectrometer, proteins are digested or broken down into
smaller subunits known as peptides. Digestion is performed by enzymes (such as
trypsin) that cleave the protein at specific amino acid points. An example of the tryp-
tic cleavage of a protein is shown in Figure 2.

MAVRAPCOKLHNWF 
Original protein in sample 
 
MAVR   APCOK     LHNWF 

After digestion – 3 smaller tryptic peptides

Fig. 2. Trypsin Digestion of Proteins

Trypsin always cleaves the protein after the amino acids Argnine ( R) and Lysine (K)
with a few special exceptions. Mass spectrometric analysis of the peptides is then per-
formed as follows:

1. Selection: An MS measures the masses of the tryptic peptides, and creates a list of
masses. An operator then selects an individual peptide by mass from this list for
further analysis.

2. Identification: The selected peptide is fragmented and analyzed by a second MS;
this is followed by a complex computation that produces the sequence of the se-
lected peptide.

3. Repeat Cycle: After a short delay (approx 1 sec.), another peptide is selected from
the list and Step 2 is repeated. This is done for each peptide on the list.

The peptide sequences from individual peptides are grouped together and ordered to
obtain the full sequence of the protein. With a few hundred peptides in a sample, a
great deal of the delay in the MS process comes from having to repeat the identifica-
tion process for each peptide. It is possible to use a single peptide sequence as a query
to a protein database, which will return the protein that contains the query peptide as
its substring. However, this technique only applies to known proteins, whose se-
quences exist in databases. For de-novo sequencing, i.e. the identification of novel
proteins, a variant of this technique is used which relies on the core concept described
in the previous section - every protein is synthesized from the template of DNA stored
in the genes. This implies that given the knowledge of all the DNA of an organism (its
genome) the sequence of all its proteins can be determined. In effect, the genome of
an organism is translated into its proteome – the set of all its proteins. This proteome
can then be used as a protein database, as described above to identify novel protein
sequences.
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3   Inferring Proteins from Genes

The concept of using genetic information to infer protein sequences is not new. Sev-
eral researchers have proposed and implemented the concept in software. We employ
an approach similar to that employed by Choudary et al [1]. The steps of the method
are illustrated in Figure 3.
The process begins with step a) in Figure 3, which begins immediately after the sec-
ond step of the MS analysis procedure described earlier. After one peptide has been
identified (sequenced), it is reverse translated to the codons from which it could have
originated. Thus a set of DNA strands that could have coded the peptide is now avail-
able. In step b) these DNA strands are used as queries to a genome database – in ef-
fect we are searching for the genes that may have coded the sequenced peptide. As
indicated in b) it is likely that there will be multiple genes that match the set of que-
ries. To uniquely resolve the true match, each gene must be individually considered.
In step c) in Figure 3, each gene is translated to its protein equivalent as shown in
Figure 1, and these translated proteins are then cleaved as shown in step d). Note that
the translated protein is also cleaved at the K and R amino acids. The mass of each of
the translated tryptic peptides is then calculated and compared to the list of masses
produced by the first step of MS analysis. This process essentially compares the
translated protein from the database against the protein actually detected by the MS. If
a sufficient match is found, the protein sequence has been identified and no further
work need be done. If not, the next matching gene is translated to its protein equiva-
lent and the process is repeated.
The most obvious advantage of this approach is that the overall sequencing time will
be greatly reduced. In the example in Figure 3, only a single peptide was required to
obtain the full protein sequence. Note from step 3 of the MS analysis process that
there is a 1 sec. (approx) delay before each peptide on the mass list is analyzed. If the
algorithm described above is to be useful it must be performed within this delay. If
not, an expensive downtime will be incurred as the MS instruments are stalled while
the operator determines the next peptide to be analyzed. Note that several attempts at
hardware sequencing have been implemented in the past [8] but we believe that this is
the first published design targeting real time sequencing. Further, the work presented
here is the only published design that uses the unannotated MS mass information to
rank its outputs.

The key requirement of this approach is the ability to search the genome database
and make comparisons to the mass list at high speeds. The Human genome contains
3.3 billion nucleic acids, and a search time of 1 second requires enormous throughput.
Fortunately this kind of search is highly parallelizable in both software and hardware.
Applications of this nature are good candidates for custom hardware implementation,
thus the goal in this work is to design a hardware system that meets the requirements
of the sequencing algorithm as described above. A number of hardware based genome
search techniques have been developed over the years. Many of these, such as imple-
mentations of the Smith-Waterman algorithm are geared towards calculating the edit
distance between two stringss. Other commercial devices such as DeCypher [8] are
designed to perform BLAST and HMM searches which are not designed to use MS
data to help identify true matches.
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Pro Arg Ser Ala 
CC* AGA AGC GC* 
CC* AGG AGT GC* 
CC* CG* TC* GC* P R S A

ATTTCTCATGTTCCCCGTTCTGCCAAAGATTAT 

ATT  TCT  CAT  GTT  CCC  CGT  TCT  GCC  AAA  GAT  TAT 

I S H V P R S A K D Y

DY  = 297.11 Da 
SAK  = 305.18 Da 

ISHVPR = 708.41 Da 

297.11 Π 

 

305.18 Π 

 

708.41 Π
MS Mass List 

ISHVPRSAKDY    Π 

a) Peptide mapped to multiple codon queries 

b) Multiple matches in genome 

d) Protein digested in-silico and compared to mass list values  

c) DNA around hit translated to protein  

e) If significant matches are found, protein is identified  

Fig. 3. Algorithm Outline

4   Design

The goal of the algorithm described in the previous section is to search through the
genome in less than 1s. In addition a mass calculator is required to translate the ge-
nome to its tryptic peptide equivalents and calculate the peptide masses. Finally, a
scoring system capable of comparing these calculated peptide masses to the masses
measured by the MS is required.

The design takes three primary inputs, namely:

1. A peptide query from the MS, which is a string of 10 amino acids or less,
2. A genome database,
3. A list of peptide masses detected by the MS.

The design produces a set of outputs for a given peptide query:

1. A set of gene locations within the genome, which can code the input peptide query,
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2. A set of scores for each potential protein gene location identified in the search. The
scores rank the genes based on the likelihood that they coded the protein in the
sample.

An overview of the units and their interconnection is shown in Figure 4.

 

Tryptic 
Mass 

Calculator
 

Search  
Engine 

  

Genome 
  Database 
  

Peptide  
Query 

  

Scoring 
Unit

 

MS detected 
mass

list

Score
 

Gene  
Locations 

  

Matching 
genes

 

Calculated 
peptide 
masses

 

INPUTS 

OUTPUTS 

Fig. 4. Device Architecture

The search engine identifies all locations in the genome that can code the peptide
query while the tryptic mass calculator translates these gene locations into their pro-
tein equivalents. The scoring unit then compares the peptides in the translated proteins
to the peptides detected by the MS and provides a ranking for each gene location
based on how well it matches the masses detected by the MS.

4.1   Search Engine

The first key component of our hardware is the search engine, which returns the loca-
tion of every gene that can synthesize a query peptide.  Many FPGA based text search
techniques have been designed over the years, particularly for genome databases [8]
and network security systems [6]. Most network security systems however require a
new circuit to be synthesized for different sets of rules (i.e. different query strings)
while genomic search engines are optimized for edit distance calculations.  We re-
quire a far simpler circuit that serves merely to identify the presence of a query string
in the genome.

 

M u lt ip le  
c o p ie s  
o f  Q u e r y  

G e n o m e  
f r o m  
R A M  

M a t c h in g  
g e n e s  

M a t c h in g  A d d r e s s  

Fig. 5. Search Engine
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Thus our search is simply a linear traversal through memory in which each address is
read, and its contents are compared with the query. Figure 5 shows that multiple cop-
ies of the query are initialized in the hardware to simultaneously perform a parallel
comparison with every position in the RAM word. If a match is detected, the corre-
sponding memory address is sent to the user, who can then identify the coding gene at
this location. Figure 5 illustrates a simplified view of the search engine, and additional
hardware to implement wildcarded searches [7] has been removed from the diagram
for brevity. This search looks at every nucleic acid position in the genome individu-
ally, thus no additional consideration of reading frames is required. Note further, that
the matching genes are passed to the next unit, the tryptic mass calculator.

4.2   Tryptic Mass Calculator

As described, there may be several matching genes and it remains to determine which
of these is the true coding gene. To this end, each gene must be translated to its pro-
tein equivalent to determine whether its constituent peptides have been detected by
the mass spectrometer. To perform the translation of genes, the matching genes from
the search engine are sent to the tryptic mass calculator, which interprets the DNA
data from the genome as a set of codons or equivalently, a set of amino acids. It fur-
ther accumulates the amino acid masses and identifies the tryptic digestion sites (the
amino acids K and R) to produce a list of tryptic peptide masses. An example of the
translation and calculation process is shown in Figure 6. It must be noted that the cal-
culator interprets the gene as stored in RAM and also as the complement of the stored
sequence - thus a calculator produces two reading frames of peptide masses for every
gene sequence. To cover all possibilities, three calculator units are instantiated to
translate all six frames of information simultaneously.

 

Matching 
Genes 

1) GCAATACGATTA… 
2) ATACGATTACGC… 

3) TGGGCATACGAC… 

Digest 
Protein to 
Peptides 

Translate 
to 

Protein 

1) 235.3, 457.8, 22.9, … 
2) 88.5, 734.2, 755.4, … 

3) 100.4, 11.4, 276.5, … 

Calculator 

Peptide 
masses 

Fig. 6. Tryptic Mass Calculator

Each matching gene in Figure 6 is translated to a list of tryptic masses. It remains to
identify whether these calculated peptide masses were detected by the MS. The scor-
ing unit detailed in the following section performs this task.
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4.3   Scoring Unit

Once each potential coding gene is translated to a tryptic mass list, it must be com-
pared to the list of detected masses from the MS. The gene showing the closest match
can then be identified as the true coding gene for the protein sample in the MS.
The first step of the scoring process is to store the MS mass list to chip. The values
are stored using data associative techniques similar to those used in Content Address-
able Memory (CAMs). A subset of the most significant bits of the mass value is used
to divide the masses into specific ranges as illustrated in Figure 7. The ADDR_BITS
most significant bits of the address are used as an address to store the MS measured-
mass.

On-chip 
RAM 

comparator 

Closest  mass 

tolerance 

MS mass 
or 

Calculated 
mass 

- 

/ 

ADDR_BITS 

match 

Fig. 7. Data Associative Mass Storage and Matching

    Upon device initialization, each of the masses from the MS is stored in the on-chip
RAM. The calculated mass is then used as an address to retrieve its closest matching
mass from RAM. If the difference between these values meets a user specified toler-
ance, a match is signaled. It must be noted that the matches alone do not determine
the final score. The final step of the scoring process once again divides masses into
ranges in a manner similar to that depicted in Fig 7. In effect a histogram of masses is
recorded in hardware. This histogram records the number of matches in each of the
mass ranges and uses this information to calculate the final score. The score is calcu-
lated based on the MOWSE algorithm, which attempts to rank matches based on their
significance. The interested reader can find the details of the MOWSE algorithm and
our specific implementation in [5] and [6] respectively.

5   Implementation Performance and Costs

Variants of the design described above have been implemented in software. In this
section we compare the software approach of Choudary et al [1] to our hardware. A
slightly simplified version of the hardware design described has been successfully
implemented and tested on the University of Toronto’s Transmogrifier 3A platform
[7][10].
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The software scoring algorithm against which we compare our design is MASCOT
[4], which is based on the MOWSE scoring algorithm. We choose the work in [1] as
our software reference, as it shows the closest match to our hardware. Since the tech-
nique of real time genome scanning has generally been deemed infeasible, there have
been comparatively few software implementations of search engines that use MS data
for scoring. The operations in [1] were performed on a 600 MHZ Pentium III PC, re-
sulting in search and score times of 3.5 minutes (210 s) per query. A significant por-
tion of this time is spent searching through the genome for matches. We scale these
values to current processor speeds, by assuming a linear increase in speed based on
processor clock speed, which is optimistic. Based on this assumption, we state that the
software can complete the task in 52.5 seconds on a 2.4 GHz processor. This scaling
is unlikely, as memory bandwidth does not scale with processor speed, but this opti-
mistic assumption presents the ideal performance of this algorithm in software. Table
1 shows what is required to achieve performance that is comparable to the hardware.

Table 1. Total Cost of Processor-based System

Number of

CPUs
Scan time (s) Cost (USD)

1 52.5 $1,962
32 1.6 $31,392
64 0.8 $62,784
512 0.1 $502,272

The original target for the hardware implementation was the Transmogrifier 3A,
but as noted above, the design had to be simplified (i.e. lower bit-widths) to fit the de-
sign into the onboard FPGAs. To better reflect the capabilitets of modern FPGAs, the
system was redesigned to target an Altera Stratix EP1S20 for the search engine and
three Stratix EP1S40 FPGAs to implement1 multiple parallel calculator and scoring
units to maximize the processing throughput. The calculator and scoring units operate
at a maximum frequency of 75 MHz, thus limiting the system to 2G char/sec. Table 2
below shows the costs of building a full system capable of performing the operations
described here.

Table 2. Cost of Hardware Search and Score System

Scan
Time

(s)

Cost of
RAM
(USD)

Cost of
PCB
(USD)

Cost of
FPGAs
(USD)

Purchase
Price

[Full] 2

(USD)

Purchase
Price

[Search]
(USD)

1.6 $344 $131 $6,950 $11,137 $1,530
0.8 $689 $262 $13,900 $25,426 $1,530
0.1 $5,512 $2,100 $111,200 $225,469 $12,087

                                                          
1 The units were implemented using Altera’s Quartus II 3.0
2 The Purchase Price columns include the cost of a PCB for each of the systems with an addi-

tional 50% margin.
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The last two columns in Table 2 show the price of the full system (as described
above) and the genome search engine as a standalone unit. We divide the systems in
this manner as there are myriad applications that only require the search capabilities
without the scoring described above. As a standalone search engine, the hardware is
capable of out performing the software by a factor of 40 in terms of cost. With ad-
vances in mass spectrometry and the rapid progression of genetic and proteomic re-
search, it is clear that custom hardware is a far more practical processing solution.

6   Conclusion

In this work we have studied the design of a hardware system designed to accelerate
MS/MS based de-novo protein sequencing. The objective has been to study the feasi-
bility of a custom hardware implementation of a real time protein-sequencing algo-
rithm. The results of this work show that hardware implementations of certain key
features of the sequencing system result in performance gains up to 30 times as com-
pared to a modern processor. In addition the cost of a custom hardware solution
ranges from 2 to 40 times less than that of a processor cluster capable of similar per-
formance. With such obvious advantages, it is clear that a custom hardware imple-
mentation of this algorithm is the better choice for this protein sequencing technique.
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Abstract. In this paper we show how to significantly accelerate Smith-
Waterman protein sequence alignment algorithm using reprogrammable
logic devices – FPGAs (Field Programmable Gate Array). Due to per-
fect sensitivity, the Smith-Waterman algorithm is important in a field
of computational biology but computational complexity makes it im-
practical for large database searches when running on general purpose
computers.
Current approach allows for aminoacid sequence alignment with full sub-
stitution matrix which leads to more complex formula than used in DNA
alignment and is much more memory demanding. We propose differ-
ent parellization scheme than commonly used systolic arrays, leading to
full utilization of PUs (Processing Units), regardless of sequence length.
FPGA based implementation of Smith-Waterman algorithm can accel-
erate sequence alignment on a Pentium desktop computer by two orders
of magnitude comparing to standard OSEARCH program from FASTA
package.

1 Introduction

Sequence comparison is one of the most important bioinformatic problems. Num-
ber of published protein sequences increases rapidly and current databases con-
tain gigabytes of the data. Processing of such amount of data, especially sequence
comparisons necessary for the scientific discovery, requires, in addition to the ef-
ficient data storage, significant computational resources. Moreover, users would
like to achieve results fast, in most cases interactively, which cannot be achieved
using single, general purpose computer.

For the sequence comparison, the most widely used is Smith-Waterman al-
gorithm [17]. The computational complexity of the algorithm is quadratic which
additionally makes it difficult to use for the processing of large data sets. This
makes ground for investigation of new algorithms and new acceleration tech-
niques which can make processing of actual and future data feasible.

We propose efficient implementation of the Smith-Waterman algorithm in re-
configurable hardware. Recent Field Programmable Gate Array (FPGA) chips
provide relatively low cost and powerful way of implementing highly parallel
algorithms. Utilization of FPGAs in the biological sequence alignment has a
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c© Springer-Verlag Berlin Heidelberg 2004
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long history [12], but most of the implementations cover special case of Smith-
Waterman algorithm: DNA alignment with simple edit distance, which is equiv-
alent to computing LLCS (length of longest common subsequence) [16]. Efficient
bitvector implementations of LLCS dedicated to general purpose computers have
been developed [16], potenitially leading to speeding up by a factor of 64 when
implemented in modern processors. We investigate the possibility of implement-
ing more general case of the Smith-Waterman algorithm allowing alignment of
protein sequences (20 letters alphabet) with full substitution cost matrix (400
entries, 8 bits each) and 18 bits of alignment score using Xilinx Virtex 2 pro
FPGAs. Currently Xilinx releases suitable FPGAs: XC2VP50 and XC2VP70.

Number of comparisons of protein residues per second using rigorous Smith-
Waterman algorithm exceeds 1010 for a single XC2VP70 device and can scale
up to 1012 in a case of a cluster of PCs each equipped with FPGA accelerator.

2 Problem Description

For the sequence comparison we assume widely used edit distance model. Dis-
tance between strings is measured in terms of edit operations such as deletions,
insertions, and replacements of single characters within strings. Comparison of
two strings is accomplished by using edit operations to convert one string into
the other, minimizing the sum of the cost of operations used. This total cost is
regarded as a degree of similarity between strings.
Let us define formally our goal, which is local optimal alignment.

Definition 1. Let A = {a1, a2, . . . , an} be a finite set of characters - alphabet.
Let ε denote the empty string. Let us define A∗ as a set of all strings over
alphabet A. Notation for a string w ∈ A∗ having wi ∈ A as the i-th character is
w = w1w2 . . . wn, i = 1 . . . n.

Example 1. We are particularly interested in the following alphabets important
in computational biology:

1. {C, T, G, A} - nucleotides: Cytosin, Thymin, Guanin, Adenin
2. {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y } - 20 aminoacids.

Definition 2. An edit operation is an ordered pair (γ, ξ), where γ, ξ are strings
having length one or equal to ε. Let EA denote a set of all edit operations over
alphabet A.

Edit operations can be viewed as operations describing rewriting rules: (γ, ε)
denotes deletion of character γ, (ε, ξ) denotes insertion of character ξ and (γ, ξ)
denotes substitution of character γ by ξ.

Definition 3. An alignment of strings s, t ∈ A∗ is a sequence of edit operations
((γ1, ξ1), . . . , (γn, ξn)) such that s = γ1 . . . γn, t = ξ1 . . . ξn. Let Align(s, t) denote
a set of all possible alignments of strings s, t.
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In order to work with optimal alignments we have to introduce optimization
criterion.

Definition 4. An edit score function ρedit : EA → � assigns a real value to
each edit operation.

In computational biology function ρedit is known as a scoring matrix for proteins
such as BLOSUM62 used by BLAST program [25].

Definition 5. An alignment score function ρalign : Align(s, t) → � is defined
as ρalign(((γ1, ξ1), . . . , (γn, ξn))) =

∑n
i=1 ρedit((γi, ξi)),

where ((γ1, ξ1), . . . , (γn, ξn)) ∈ Align(s, t), and s, t ∈ A∗.We assign a value equal
to sum of all edit operations constituting particular alignment.

Finally, one can define optimal local alignment, and local alignment score de-
scribing optimization goal.

Definition 6. An Optimal alignment score opt is defined as follows:
opt(s, t) = max (ρalign(α);α ∈ Align(ŝ, t̂), ŝ ⊂ s, t̂ ⊂ t). The alignment α having
maximum score in this sense is called an optimal local alignment.

Obvious brute-force approach relays on generating all possible alignments of
all substrings of s, t and evaluating its score. This leads to unreasonably high
complexity. Using Smith-Waterman algorithm it is possible to reduce complexity
to quadratic one.

3 Smith-Waterman Local Alignment Algorithm

This algorithm computes both optimal local alignment and its score. Let s =
s1 . . . sm, t = t1 . . . tn ∈ A∗ be fixed input strings. Let us define matrix M:

M [i][j] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, i = 0 or j = 0

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
M [i − 1][j] + ρedit(si, ε)
M [i][j − 1] + ρedit(ε, tj)
M [i][j] + ρedit(si, tj)

i = 1 . . . m, j = 1 . . . n
(1)

Optimal local alignment score is equal to
max ({M [i][j]; i = 1 . . . m, j = 1 . . . n}). In serial approach we compute
matrix M row after row. The optimal local alignment itself can be retrieved by
tracing back from the maximum entry in M . This algorithm requires mn steps
and at least mn space.

3.1 One Row Version

In order to achieve effective FPGA implementation we need to reduce memory
requirement of the algorithm. Only one row c of a matrix M and few temporary
variables is sufficient to implement serial version, which is also effective for PC
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1. int c[n+1]; for (j=0; j<=n; ++j) c[j]=0;
2. max_score=-MAXSCORE;
3. for (i=1; i<=m; ++i) {
4. Diag=0;Left=0;
5. for (j=1; j<=n; ++j) {
6. Upper=c[j];
7. DLU=max(Diag+sim(s[i],t[j]), max(Left,Upper) + GAP,0);
8. c[j]=DLU;
9. Diag=Upper; Left=DLU;
10. max_score=max(DLU, max_score);
11. }
12. }

Fig. 1. Modification of the Simth-Waterman algorithm using only one row c

implementation, because all data fits into cache memory. The most interesting
is optimal alignment score which is computed in the FPGA. For those scarce
sequences from database which turn out to be enough similar to the query se-
quence, optimal alignments can be computed in desktop computer within short
time. The algorithm written in C-like syntax is shown in the Fig. 1. Similarity
matrix sim(s, t) in program is an alias for ρedit(s, t) and we assume constant
penalty for inserting a gap: GAP = ρedit(si, ε) = ρedit(ε, tj). This algorithm is a
basis for a parallelized and pipelined FPGA implementation.

4 Pipelined and Parallelized FPGA Implementation of
FPGA Smith-Waterman Algorithm

Direct implementation of the Smith-Waterman algorithm (Fig. 1) led to 40 MHz
frequency of the main clock. To make algorithm faster, pipelining was used.
Pipelining is a technique that can speed-up a complex operations by breaking
it into smaller concurrently executing stages. The maximum speed of pipelined
operation is as good as the slowest single stage, at the cost of lengthening number
of clocks required to obtain completion of full complex operation. Pipelining can
be used only while processing independent data. We need at least k independent
data chunks, where k is the number of stages. The key observation in Smith-
Waterman algorithm is that each cell in a matrix can be calculated using its only
three neighboring cells (Left, Upper and Diagonal), so data laying on ”diagonal”
does not depend on each other as presented in the Fig. 2.

In real implementation we have more complex pipelining schema (compared
to the three stages shown in Fig. 2). There are 7 stages, each dependent on
calculations of the previous one: Move generator, Sequence reading, Score matrix
reading, Maximum counting (takes 3 cycles), Global Max finder. Additionally,
temporal signals update is made. All pipelining stages are executed concurrently,
synchronized by clock signal, but each stage computes different entry in a matrix.
In this way, every clock cycle there is one new matrix entry which have passed all
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Fig. 2. Simplified view of the pipelining with three stages. For each matrix entry being
calculated (shaded) there is stored its actual stage number executed: (entry1) is at
stage 1, (entry2) at stage 2. Arrows indicate direction of movement. When an entry
has passed all stages it moves to the next position in a row (if available) or advances
to the next uncalculated row (shown on the Fig. 3)

Fig. 3. Advancing to a new row: (entry1) has passed all stages and advances to the
next uncalculated row, beginning with first stage

the stages of computation. Developed VHDL program uses a number of signals
to keep track of calculations. More detailed view (showing only three entries
being calculated) of temporal signals used in pipelining structure is presented in
Fig. 4. In order to maintain boundary conditions properly, we use dummy buffer.
It is needed when computations start from a new row, and during calculations
of last rows. Each entry in a matrix needs information about its Upper, Left
and Diagonal neighbor. For this purpose H1, H2 arrays are introduced. Depth
of H1 and H2 is equal to number of stages and its width is 18 bits. These small
arrays are implemented in Configurable Logic Blocks (CLBs). Each processing
unit needs to know, which matrix entry is supposed to compute, so we need
signals: ik, jk, k = 1 . . . 7. The row c is red by entry1 and written to by entry7.
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Fig. 4. How the history arrays H1, H2 and row c are kept and used: (entry1) uses
the row c to retrieve its Upper, Diagonal neighbors when it advances to the next row.
Other entries take this information from H1, H2 arrays. Row c is written by last entry.
Dummy buffer filled with zeros is kept to maintain boundary conditions. In this way
it is sufficient to store only one temporary row c, despite many stages

Information about neighbors is taken from arrays H1, H2 in a case of entries
2 . . . 7, and from the row c in a case of entry1. When entry1 is in first row, it
reads c initially set to zero, but when it moves to next uncomputed row (Fig. 3)
c is filled by the information provided by entry7.

Data Storage. Let us look at the details of the Xilinx Virtex 2 Pro imple-
mentation. Each aminoacid sequence is kept in 18 Kbit BlockRAM, which is
true dual port memory with simultaneous read/write operations in each port.
BlockRAMs are the key component of Xilinx devices, making it very suitable
for the sequence alignment algorithms. Please note, that dual port BlockRAM
memory is able to read from and write to a different address in a single clock.
This enables to stages execute in parallel during reading and writing to a row c.
Maximum BlockRAM density is found in Xilinx Virtex 2 Pro series (up to 444
in one chip), providing excellent maximum memory throughput. Large memory
storage space is also needed for a row c, where temporal scores are kept. As it
turn out, it is ineffective to keep aminoacid sequences of length 2048 and row
c in distributed logic due to large number of CLBs utilized. This leads to low
parallelism - we cannot implement many copies running in parallel within one
chip. According to the algorithm properties we need five BlockRAMs for each
algorithm copy: one for keeping edit score function ρedit, one for query sequence,
one for database sequence, two for row c. Other signals are kept in CLBs. Block-
RAMs can have different aspect ratio. In this implementation we store 2048 9
bit values, which is sufficient for keeping aminoacids. It is not enough for keeping
temporary score in row c, so we use two BlockRAMs for that purpose, obtaining
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18 bits. Assuming average protein sequence length l = 300 residues, one can see
that I/O is not a bottleneck, because of quadratic complexity of the algorithm.
If we implement 88 parallel PUs in FPGA we need to tranfer database sequences
(query sequence is loaded once per database search) 88∗5bit every 300 180 MHz
cycles - giving about 30 MBytes/s transfer rate, and standard 32 bit/ 33 MHz
PCI interface turns out to be sufficient. Data is transferred using second port
of BlockRam used to store database sequence, which can be uploaded with a
new database sequence independently of read performed during computations
of current database sequence. For testing purposes we have used opencores [29]
PCI interface and obtained 80 MB/s write transfer rate using Memec Design
Spartan II PCI board.

Parallelism. Highly parallel FPGA implementation can be achieved at two
levels. First is internal parallelism: by making many copies (up to 88) within
one chip of the same processing unit executing the algorithm in order to process
one fixed query sequence against many different sequences from a database. This
is different parallelization method compared to often used systolic arrays, and
leads to better PUs utilization. In systolic arrays average number of utilized PUs
is dependent on sequence length [9].

Second level could involve hybrid solution: cluster of desktop computers, each
equipped by FPGA accelerator in a form of PCI card. Not very intense commu-
nication between desktop computers can be performed by standard Ethernet.
Parallelization level is limited by the FPGA size. Limiting factor in presented
solution is the BlockRams count (5 BRams per PU). Control logic occupy about
44% of CLBs in Virtex 2 Pro when 97% of BlockRams are allocated (XC2VP70
chip). This explains difference in performance (Table. 1), between implementa-
tion in XC2V80 (contains 8 BRams) and XC2VP70 (contains 328 BRams).

5 Benchmarks

We used the following combination of software. Logical synthesis by Synplicity
Amplify 3.5 [28] program. Place and Routing by ISE Xilinx tools [27]. Detailed
timing analysis on post and route implementation revealed that the clock fre-
quency is about 180 MHz on (-5) device speed version.

For the comparison purposes we have evaluated speed of widely used software
from Pearson [19] FASTA 3.4 package - OSEARCH (dropnsw.c,v 3.4t23 March
5, 2003) running on Pentium IV 1.7 GHz CPU (gcc 3.2.2 , intel(c) 6.0 compiler)
under Linux 9 and on SUN UltraSPARC-III 900 MHz with SUN Workshop 5.0
compilers. Best result are summarized in Table. 1. Please note that we have
omitted Intel(c) icc compiler results, because it did not perform any better
in this case (possibly due to lack of floating point operations). Benchmark was
performed on aminoacid sequences of length 2048 residues.

Our program has been successfully verified by implementation on Memec
Design Spartan II FPGA board, in limited version due to Spartan II architecture.
Limitations apply to sequence length of 512 residues (smaller BlockRams).
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Table 1. Comparison of various implementations of Smith-Waterman algorithm

Hardware Compiler Program Residues /s

Pentium IV 1.7 GHz gcc -O3 (3.3.2) osearch34 -3 49.30 · 106

UltraSPARC-III 900 MHz cc -fast -xarch=v9a osearch34 -3 37.60 · 106

XC2V80-5 Amplify 3.5 this work 180 · 106

XC2VP70-5 Amplify 3.5 this work 11180 · 106

Implementation in currently available FPGA XC2VP70 turns out to be at
least 200 times faster than Pentium IV 1.7 GHz.

6 Related Work

Acceleration of DNA sequence alignment using FPGAs and VLSI devices has a
long history: VLSI implementation [12], SPLASH [11] and SPLASH2 [10] (com-
putes simple edit distance for both 2 and 4 bit alphabet) system based on FPGA,
however little attention has been paid to a more general case of protein seqence
alignment with full 8 bit substitution matrix, where the computational problem
does not reduce to simpler formulas used in LLCS computations. Moreover, it
would be interesting to compare those DNA versions with accelerated by bitvec-
tor algorithms working on general purpose computers [16].

Direct comparison is quite difficult, because almost each implementation re-
ported in literature is prepared for different parameter sets and is working on
different hardware (different FPGA chips, VLSI or software). We list some of
the implementations and compare its area of applications.

First group of implementations calculate DNA simple edit distance, mainly
using systolic array parallelization. One of the latest achievements in DNA se-
quence alignment is presented in [1], where impressive number of 4,032 PEs were
placed on an XCV1000E-6 device running 202 MHz, without the need for run-
time reconfiguration. Similiar density is achieved using runtime configuration in
[4]. Design working on 8 bit alphabet, but with constant value for a character
mismatch is presented in [2]. Another solution based on FPGA is presented in
[5], which is able to compute DNA simple edit distance score and the optimal
alignment.

Second group involves existing implementations of more general case of the
Smith-Waterman algorithm with full similarity matrix. [7,8,9,13] is a design using
VLSI chips and is able to use full substitution matrix. Interesting FPGA design
is presented in [3], but the sequence being compared is compiled into the design,
which may be impractical for large FPGA chips. Commercial VLSI hardware is
provided by Paracel [15]. Software implementation is given by commercial Celera
[15]. The other known implementation is presented by Timelogic [26]. Their
FPGA based machine Decypher is a commercial product, and details of their
implementation are not published. Sencel company [6] sells interesting software
solution, using MMX and similiar extended instruction set of general purpose
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processors to achieve parallelism, but it is limited to 8 bit score in order to
achieve 6 times faster computations.

7 Conclusions

DNA alignment with a simple edit score problem has a long history and there
exist a number of efficient FPGA implementations.

We investigate the possibility of implementing more general case of the
Smith-Waterman algorithm allowing alignment of protein sequences (20 letters
alphabet) with full substitution cost matrix (400 entries, 8 bits each) and 18 bits
of alignment score using Xilinx Virtex 2 pro FPGAs.

The algorithm has been adopted to FPGA architecture which resulted in
good parallelization and efficient pipelining. Presented benchmarks show that
our implementation can run on a modern FPGA chip over high speed which
results in 200 times faster execution compared to the standard OSEARCH pro-
gram compiled on a PC workstation.

Future work will develop new more complex and faster homology search
algorithms suited for FPGAs. Number of such algorithms has been developed
for general purpose processors [19,20,21,22,24], but most of them has significant
memory requirements and cannot be directly implemented in FPGAs.

Other interesting topic is multidimensional sequence alignment [23], which
is useful in determining functional relationships, but computationally very de-
manding.
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Abstract. Data security is becoming ever more important in embedded and
portable electronic devices.  The sophistication of the malicious techniques used
by attackers is amazingly advanced. Defensive measures for protecting a device
must be even more sophisticated and robust. This paper presents an architecture
that manages cryptographic keys for a secure memory interface on an FPGA.
The architecture includes functional units that serve to authenticate a user,
create a key with multiple layers of security, and encrypt an external memory
interface using that key. Cryptographic methods built into the system include an
RSA-related secure key exchange, the Secure Hash Algorithm, a certificate
storage system, and the Data Encryption Standard algorithm in counter mode.

1 Introduction

In today’s world of advanced security cracking techniques, it is difficult to secure a
digital device against unauthorized use or tampering.  Companies and governments
wishing to deploy digital hardware into situations where the device may be subject to
malicious analysis risk losing secret algorithmic and functional information to
competitive or hostile entities.  There is a growing need for devices that are capable
not only of authenticating a user to the device but also of masking the device function
through cryptographic techniques.  For example, a military unit may want to deploy a
digital device running a secret algorithm in hostile territory without revealing the
nature of the algorithm in the event the device is captured.  Since the loss of a
cryptographic key could compromise even the best of these devices, key management
is integral to and arguably the most important aspect of any cryptographically secured
system.

Attacks used to gain information from digital devices are commonly carried out on
the authentication and memory systems.  If the device’s authentication system can be
fooled into allowing unauthorized use, the process of further analysis is simplified.  If
a logic analyzer is placed on the address and data busses of an embedded device’s
external memory, the algorithmic function of the device can easily be compromised.

There are compelling reasons for choosing FPGAs as the technology for
implementing a secure memory and key management scheme.  Within a single FPGA,
the user authentication system, the memory controller, and every necessary
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cryptographic algorithm can be realized.  Such a system could cryptographically
secure both the user authentication interface and the memory interface, effectively
rendering the FPGA a black box capable of performing the task for which it was
designed without betraying its internal methods or software to a hostile entity.  Logic
analysis of the authentication or memory interface would yield only encrypted
information.

A secure key management system has been implemented using a Celoxica RC1000
development platform [1]. This prototype utilizes the key management system to
secure a memory port on the FPGA, protecting the contents from discovery.
Additionally, a Dallas Semiconductor Java-Powered iButton [2] is used as a secure
token that can authenticate a user to the system by establishing a secure channel for
conveying user identification data from the iButton’s memory to the FPGA.  On the
FPGA, an Authentication Control Unit (ACU) establishes the other side of the secure
channel, and a counter-mode Data Encryption Standard (DES) algorithm [3] is used to
secure the RAM interface.

This paper presents this FPGA-based secure memory system from the perspective
of its cryptographic key management scheme. Section 2 presents the general
architecture of the FPGA functional units. Section 3 introduces the components used
in the prototype.  Section 4 discusses the cryptographic algorithms used to securely
manage the keys as they pass from the iButton through the ACU to the encrypted
memory controller (EMC). Section 5 details a vulnerability analysis for our system.
Section 6 presents the level of completion of the current implementation.

2 Architecture

A block diagram of the entire architecture is shown in Figure 1. When a user wishes
to be authenticated and use the device, they will plug an authorized iButton into a
receptacle connected to the 1-Wire interface. The iButton then communicates with the
ACU serially via the auxiliary I/O pins on the Xilinx Virtex XCV2000E FPGA [4].  A
Dallas Semiconductor DS9097U Universal COM Port Adapter [5] translates between
the iButton’s 1-Wire serial protocol and the serial transmit and receive  protocol
expected by the UART in the FPGA.  The link between the FPGA and the iButton is
an exposed and potentially vulnerable interface.  Measures must be taken to protect
the presumably exposed data transferring across this link.

The ACU is responsible for establishing a secure channel with the iButton to
retrieve the iButton’s user identification (UID) and check it to ensure that the iButton
holder is an authorized user.  The UID is used by the EMC to create a DES key that is
unique to the current user.  This final DES key is used as the key for encrypting the
data traveling between the embedded application and the external RAM. Once the
final DES key is established in the ECU, the embedded application is signaled to
allow it to begin secure operation. Section 4 presents this architecture and its
cryptographic methods in detail.
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Fig. 1. Block diagram of system architecture

3 Platform

A block diagram of the Celoxica RC1000 platform is shown in Figure 2. The RC1000
is a PCI card that can interface with a Windows or Linux host PC. The RC1000
version used in this prototype contained an XCV2000E FPGA. It also includes four
512k×32 SRAM banks, each with their own address, data, and control interfaces to
both the FPGA and the PCI bus. The PCI bus interface also includes control and
status signals to the FPGA. A program running on the host PC can pass data to and
from the SRAM interfaces with direct memory access transfers, control the FPGA
clock, and communicate directly with the FPGA through the control and status
signals.  The RC1000 also includes fifty auxiliary I/O pins that allow direct
connection to the FPGA’s external I/O pins.

In our design, the Dallas Semiconductor Java-Powered iButton model DS1957B
serves as a secure token.  The DS1957B is packaged in a cylindrical stainless steel
canister 5 mm high and 16 mm in diameter, and resembles a watch battery.
Internally, it consists of a Java processor, a 1024-bit cryptographic math accelerator, a
random number generator, 134-kilobytes of non-volatile RAM, and a serial
communications interface for communicating over its proprietary 1-Wire interface
protocol.  Communications on this 1-Wire interface also serve to power the iButton
whenever it is plugged into a 1-Wire compatible receptacle. The iButton’s
construction is physically tamper resistant due to a mechanism that will destroy the
contents of its memory if its case is opened.
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Java applets can be programmed using Dallas Semiconductor’s iButton Integrated
Development Environment (iB-IDE) [7] and uploaded to the iButton.  In our system,
we have written an applet using iB-IDE to control the iButton’s role in establishing a
secure communications protocol between the iButton and the FPGA.

4 Key Management

Key management is the term used to describe the path that the UID travels through the
secure authentication interface to the DES engine to become the final key used for
memory encryption. A major theme in the proposed key management scheme is
keeping the secret information on the iButton separated from the secret information
on the FPGA to ensure that if either the iButton’s or the FPGA’s individual security
methods are broken, the entire system will not be violated. This rule is enforced
throughout the following key management units.

4.1 Authentication Control Unit

The ACU and the iButton negotiate a secure channel and establish each other’s
identities using an encryption, authentication, and certificate-checking system similar
to the RSA-based [8] Public Key Infrastructure (PKI) [9].  There are a few significant
differences.  First, the public encryption keys for the iButton and the FPGA are never
transmitted over an insecure channel.  Since it is essential to our system that all keys
remain secret, they will not be referred to as public and private keys. Those familiar
with RSA encryption methods will recognize the encryption key as RSA’s public key
and the decryption key as RSA’s private key.  Second, certificates in our system are
Secure Hash Algorithm (SHA) [10] hashes of valid iButton UIDs. SHA is a one-way
hash, meaning that it is mathematically difficult to calculate the input to the hash
using only the result of the hash.  This makes it safe to store the hash results of the
UIDs in a certificate table outside the iButton.  This table could reside directly on the
FPGA, which would require modifying the FPGA bitstream every time a new
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certificate was issued to an authorized user, or it could be retrieved by some other
means from a trusted certificate authority.  Our design places it within the FPGA.

There are two pairs of encryption and decryption keys and two moduli used in the
authentication scheme.  Prior to the programming of the iButton and the creation of
the FPGA bitstream, four large prime numbers are chosen to create these key pairs
and moduli.  These primes, pi, pf, qi, and qf, are combined to form the moduli, ni and nf,
through multiplication.

ni = piqi (1)

nf = pfqf (2)

The encryption keys, ei and ef, are then chosen to be relatively prime to (pi−1)(qi−1)
and (pf−1)(qf−1), respectively.  Using ei and ef, the decryption keys, di and df, can be
calculated.

di = ei

−1 mod (pi−1)(qi−1) (3)

df = ef

−1 mod (pf−1)(qf−1) (4)

In this way, a key pair and a modulus have been established for both the iButton—
ni, ei, and di—and the FPGA—nf, ef, and df.  All these values are considered secret.
They are calculated before the iButton and FPGA designs are implemented and never
transmitted over a clear channel.  These secret keys and moduli are stored on the
FPGA and iButton as shown in Table 1.

Table 1. Storage of secret keys and moduli.

FPGA IButton
ni, nf, ei, df ni, nf, ef, di

With the encryption key, e, the decryption key, d, and the modulus, n, chosen in
the same way, the general RSA encryption algorithm computes an encrypted message,
c, from a clear-text message, m, using using e, through a modular exponentiation.

c = me mod n (5)

The RSA algorithm decrypts that message using d.

m = cd mod n (6)

The proposed authentication method uses this same relationship between the keys
to encrypt communications between the iButton and the FPGA.  This relationship has
been thoroughly examined and proven mathematically.

In the prototype system, it is not only important for the iButton to authenticate
itself as an authorized user to the FPGA, but the FPGA must also authenticate itself as
an authorized host to the iButton.  This prevents a man-in-the-middle attack wherein a
device would pretend to be the the FPGA to the iButton while simultaneously
pretending to be the iButton to the FPGA in an effort to steal the iButton’s UID and
falsely authenticate itself to the FPGA.  Taking this double authentication into
account, the ACU-iButton authentication method goes through the following steps:
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1 iButton is plugged in to the 1-Wire interface.
2 FPGA recognizes presence of iButton.
3 iButton generates a random number, mi, encrypts it using ef and nf, and sends

the encrypted result, ci, to the FPGA.
4 FPGA uses df and nf to decrypt ci and retrieve mi.
5 FPGA uses ei and ni to encrypt mi and sends the encrypted result, cf, to the

iButton.
6 iButton decrypts cf using di and ni and confirms that the FPGA has correctly

returned mi. If so, the FPGA has authenticated itself to the iButton, and the
process continues. If not, the iButton does not respond to the FPGA and
waits to be disconnected.

7 iButton encrypts the value of (UID + mi) using ef and nf and sends the
encrypted result, cUID, to the FPGA.  The UID is not encrypted directly, or the
UID packet would be the same for every authorization session with that
iButton.

8 FPGA uses df and nf to decrypt cUID and retrieves UID by subtracting mi from
the decryption result.

9 FPGA runs UID through the SHA hash and treats the result, hUID, as the
iButton’s certificate.

10 FPGA checks hUID against the authorized certificates in its certificate table.  If
it finds a match, the iButton has been authenticated to the FPGA. If not, the
iButton represents an invalid user, and the FPGA waits for the iButton to be
disconnected.

Once the iButton is authenticated to the FPGA and the FPGA to the iButton, the
UID is sent to the EMC to create the final key for the DES engine.

4.2 Encrypted Memory Controller

Upon startup, the EMC uses a secret DES key that is unique to and known only to the
FPGA.  This key is used only in the creation of the final DES key, never for actually
encrypting the external memory interface.  The final DES key used for encrypting the
external memory interface is formed by passing the UID from the iButton through the
DES engine using the secret DES key. The first 56 bits of the 64-bit result of this
operation are used as the final DES key. This is another example of the adopted
philosophy of keeping the information necessary to crack the entire system separated
between the iButton and the FPGA. Secret information from the iButton and the
FPGA is required to calculate the actual key used to encrypt the memory interface
that protects the embedded application data.

Once the final DES key is calculated, the EMC is ready for encrypted read and
write operations to and from the external memory, and the embedded application or
CPU is signaled to begin operation. The encryption method used by the EMC is
related to DES counter-mode encryption [11]. In DES counter-mode encryption, a
counter is placed as the input data to the DES engine, and the DES-encrypted result is
used in an XOR operation with the data to be encrypted. Decryption in counter mode
is similar. To decrypt, the same counter value is encrypted by the DES engine using
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the same key, and this number is used in an XOR operation with the encrypted data to
retrieve the original data.

Similarly, when an address and a 32-bit data word are written to the EMC from the
embedded application, the address is expanded using any 1-to-1 function to 64 bits
and used as the input to the DES engine, using the final DES key as the key.  The
result of this is a 64-bit encrypted value. The 32-bit data word then goes through two
XOR operations, one with the most significant 32 bits of the 64-bit DES result, the
other with the least significant 32 bits. The result of these operations is an encrypted
32-bit number that is written to the original address value in the external memory.
Figure 3 illustrates this encrypt-and-write operation. The original address bus width is
not specified since the same method could be used for any size of address bus.
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Fig. 3. EMC encrypt-and-write operation.

The read-and-decrypt operation is exactly the same process for the DES engine,
but the 32-bit input data going through the two XOR operations is the encrypted data
from the external RAM. The output is the clear text 32-bit data value requested by the
embedded application.  Figure 4 illustrates the read-and-decrypt operation.
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Fig. 4. EMC read-and-decrypt operation.

Note that for both the encrypt-and-write and read-and-decrypt operations, only the
DES encryption function is required, since the same DES result is used both for
encryption and decryption of the values written to memory at any given address. The
DES decryption function is never used.

There is one layer of complexity in the prototype system that is not illustrated in
Figures 3 and 4. As shown in Figure 1, there is a set of prediction registers in the
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EMC that hold DES result values for memory addresses predicted to be the next
accessed.  The reason for having the prediction registers is that the DES engine has a
latency of sixteen clock cycles between the time the first value is clocked into the
DES input and the time the result is present on the DES output. However, since the
DES engine is a pipeline, it can output a new result on each clock cycle after the
initial sixteen-cycle latency. Keeping in mind that a memory controller needs to run at
the highest possible speed, the pipelined nature of the DES engine makes it expedient
to continue running predicted addresses through the DES engine after the requested
address has been processed. Mathematically, the time, tDES, in clock cycles, that it
takes to calculate a given number of pipelined address values, nADDR, can be described
as

tDES = 16 + (nADDR − 1). (7)

In the prototype system, we expect that the behavior of the embedded application
will follow the principle of locality of reference, meaning that the next address
referenced will be very near the most recent address referenced. Following this
guideline, when an address is run through the DES engine, the prediction registers are
filled with DES results for the sixteen addresses above and the sixteen addresses
below the currently requested address. Upon the next address reference, the address is
checked to see if it is in the range of addresses whose DES results already reside in
the prediction registers. If it does, the pre-calculated DES result is retrieved from the
correct prediction register, and the DES engine is not used. The sixteen-cycle latency
is avoided.  If the address does not fall in the range of the prediction registers, the
DES engine is used to calculate the DES result, and the prediction registers are filled
with the DES results for the addresses above and below this new address.

The prediction registers are designed to be filled without delaying the rest of the
operation of the EMC.  If a data is read from or written to an address not in the
prediction registers, once the DES result is calculated for the requested address, the
prediction registers are filled independently while the rest of the read or write cycle
takes place.

In a more complex RAM system that includes a cache, the locality of reference
principle is made slightly more complex. The prediction registers should hold the
DES results for the data held in the cache lines. This new design would have to take
into account more complex cache functions such as flushes. Similarly, in systems
where the behavior of the embedded application could be easily predicted, the
principle guiding the filling of the prediction registers should be modified
accordingly.

5 Vulnerability Analysis

The system’s vulnerability to probing and cryptanalysis has been considered in detail.
An authorized user (user with an authorized iButton) can use the iButton to start the
embedded application on the FPGA but can gather neither the value of their own
authorized UID from the iButton nor the values of the data in RAM external to the
FPGA without breaking RSA and DES, respectively.  RSA’s strength is in the
difficulty of factoring its modulus, n, so a security analysis would need to be done
prior to deploying the system to determine an appropriate size for n. It has been
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shown that DES is becoming increasingly vulnerable to differential cryptanalysis as
computers become more adept at solving large numerical analysis problems [12]. A
major advantage of the prototyped system is that any stronger keyed block cipher,
such as counter-mode Advanced Encryption Standard [13] or Triple DES [14], could
replace the DES engine in our current design. FPGAs add a higher degree of security
by allowing cryptographic updates as needed to face new security threats.

If the physical security measures in the iButton, mentioned in Section 3, were
broken and the contents of the iButton were known, an attacker would know an
authorized UID, both RSA moduli, the iButton’s decryption key, and the FPGA’s
encryption key. The attacker could then potentially negotiate an unauthorized session
on the FPGA; however, the memory interface and the details of the embedded
application data would still be secure due to the secret DES key’s role in creating the
final DES key from the UID.

Only an attack that intercepts the contents of the FPGA would unravel the entire
key management scheme. If the contents of the FPGA were known, the attacker
would know the proper moduli and RSA keys to setup an unauthorized session with
the iButton to steal the UID.  The secret DES key would be known as well, allowing
the attacker to construct the final DES key and analyze the memory interface. The
data for all authorized iButtons would still be safe, however, since the certificate table
only stores the SHA hash of the valid iButton UIDs.

It is important to recognize that knowing the contents of the FPGA would also
completely reveal the details of the embedded application. It is assumed in the scheme
presented that it is not possible to know the contents of the FPGA, and much work has
been done by others in this area.  For example, Xilinx has implemented a feature in
the Virtex-II FPGA family that allows the designer to encrypt bitstreams using Triple
DES [15].  The Virtex-II has a Triple DES engine on its die that decrypts the
bitstream as it programs the FPGA.

6 Implementation

A proof-of-concept design that includes a working ACU and an EMC with a
prediction register system has been built. The proof-of-concept ACU is capable of
retrieving a UID from a Java iButton, hashing the UID, and checking the hash digest
against the certificate table to authenticate the user. The proof-of-concept EMC was
implemented as described in Section 4.2.  The prediction register system in the proof-
of-concept design reduced the per read/write cycle encryption delay to an average of
only 2 clocks for the tested embedded application. This is a significant improvement
over the 16-clock delay that would be required during every read/write cycle for the
DES engine alone if the prediction register system was not present.

7 Conclusion

A secure key management architecture for an encrypted external memory interface on
an FPGA has been presented. The scheme is secured using modified versions of
proven cryptographic algorithms. The system is not only protected from unauthorized
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users, but its embedded application is also protected against analysis of its memory
interface. This system is currently well suited to protect embedded applications and
algorithms that will be deployed publicly under the scrutiny of competitive or hostile
entities, and it is extensible to encompass future advances in block cipher algorithms
to keep up with new security threats.
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Abstract. The increasing demand for pervasive security poses a challenge in
achieving robust authentication at very low cost. Identification using human
biometrics is considered the most robust solution, but requires powerful
computers to be performed in acceptable time. In this work a FPGA
implementation of a biometric authentication system based on hand geometry is
presented. The system covers all necessary steps to process a human hand
pattern and verify it against a user template. This solution is able to reduce
processing time by three orders of magnitude with respect to microprocessor-
based solutions of similar cost, while keeping the same identification quality.
On the other hand, it can be implemented in a small size FPGA, thus making it
suitable for a large number of low cost applications.

1   Introduction

The increasing demand for security in our society is driving attention towards more
robust and efficient solutions for user authentication and identification. Biometrics
has been traditionally considered one of the best solutions for human recognition.
Biometric patterns are unique for each person and are more difficult to fake than
others based on passwords and secret codes or those based on physical tokens.
Existing biometric systems are based on different biological or behavioural features
such as speaker verification, signature recognition, fingerprint measure, iris pattern or
hand geometry [1] and [2]. Among these, hand geometry has the advantage of being
user-friendly and ergonomic. The quality of these techniques is represented by two
ratios, False Acceptance Ratio (FAR) and False Rejection Ratio (FRR) which try to
report the number of errors the system performs when recognizing users.
Biometric authentication systems require complex pattern recognition algorithms.
These algorithms can be executed in today’s computers within acceptable time.
However, execution time is still unacceptable in low cost microprocessors. This fact
prevents the widespread use of biometric systems in an important market that requires
very low cost systems and includes applications such as ubiquitous access control,
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smart cards, etc. In order to satisfy this demand, low cost systems with higher
performance are needed.
In this work, an efficient hardware implementation of a biometric authentication
system based on hand geometry is proposed. This implementation provides an
improvement of three orders of magnitude in processing time and can be downloaded
in a small FPGA (ASICs could be used if the product volume is large enough). In
addition, it can also be used to improve performance for systems that require
verification with respect to a large user database.
This work has been partially funded by Spanish Government, through the research
project TIC-2003-01793 SIDECAR, (Identification and Communications Systems
through Reconfigurable Hardware)
The paper is organized as follows. In section 2, main aspects of the hand geometry
authentication algorithm are explained. Section 3 details architecture implementation.
Results are shown in section 4 and, finally, conclusions are stated in section 5.

2   Hand Geometry Recognition

Hand geometry recognition systems are quite good for environments where medium-
high security is required, and where a medium cost equipment (only a low resolution
CCD camera is needed), relative low computational cost (because the algorithms to
extract the features are based on basic morphological image processing [3],[4] and
[5]) are needed. Finally, it implies a very low feature vector size.
A typical biometric recognition system is normally structured in two phases, namely
enrollment and verification, Fig. 1. The enrollment process consists in taking various
samples of a user pattern and generating a user template that it is stored for eventual
comparison. The authentication process is launched every time a user wants to gain
access to the secure environment, and decides whether the current user data
corresponds to the user template. Currently, user templates are stored in smart cards
which act as physical tokens.

Fig. 1. Hand Geometry Recognition System

The authentication process involves three main steps. First, the user pattern must be
captured and preprocessed in order to enhance the features of interest. The second
step is feature extraction. Finally, the current features are compared with the template
features in order to authenticate the current user. Our hand geometry recognition is
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based on the algorithm proposed in [6] and [7], and the main steps are described in
the sequel.

Image Capture
In this step an image of the hand is taken using a low resolution CCD camera. The
hand is placed on a platform guided by 6 tops, in order to position the hand in front of
the camera objective. Different views of the prototype designed can be seen in Fig. 2.

Fig. 2. Prototype developed (a. general view; b. placement of the hand; c. sample taken)

A mirror is located on one side of the platform for obtaining a side view of the hand
and performing more measures. The platform is painted in blue to increase the
contrast with the human skin. Images taken are RGB with 480x640 pixels (24 bits).

Data Preprocessing
This step converts input data into manageable information where biometric features
could be easily extracted. The algorithm transforms a color image of the user’s hand
into a hand profile. First, a grey-scale image of the hand is generated in order to
eliminate all unnecessary information (background). Secondly, a black and white
image is obtained in order to generate, finally, a hand profile with an edge detection
filter.

Grey Scale Conversion
The original algorithm applies the equation (1), in order to eliminate blue color
(background) from the image and to obtain a grey-scale one. Normalizations are done
in order that histogram can be expanded. Resulting image has 480x640 pixels (8 bits
pp).

( )nnnnn B)G(R −+  . (1)

Black and White Conversion
This process converts the grey-scaled image into a black and white one. A threshold
is applied in order to decide if the pixel is black (hand) or white (background). The
result is an image of 480x640 pixels (1 bit pp).
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Edge Detection
This process applies filters to generate a hand profile that enables the measuring of
the main features. Sobel and Laplacian filters have been considered in this work. Both
of them consist in detecting pixels surrounded by different colored pixels. A mask
matrix is applied on every pixel. The results obtained by Sobel filter are better for
noisy input images but the profile has wider edges.

Feature Extraction
In this step geometrical measures are performed, from the hand profile, to obtain a set
of 25 features. These features have been previously defined and stated as the most
representative set of measurements, [1] and [2], and include:

• Widths of the 4 fingers (thumb is excluded)
• Width of the palm
• Height of the palm, the middle finger and the

small finger
• Distances between the finger joints
• Angles between the finger joints

To avoid changes due to gain or losing of weight, all the measures (except the angles)
are normalized by the first width measured of the middle finger. The result is a
feature vector with 25 components, each of them coded in 1 byte.

Feature Matching
Once pattern features are available, they are compared with template features in order
to obtain the distance between them. Euclidean distance, Hamming distance, etc.
could be applied depending on the degree of security that is considered, [6] and [7].
With the distance obtained from the comparison between template and measurements,
the recognition system must decide user access to the secure environment. A
threshold is set in such a way that FAR as well as FRR are minimized. This threshold
must be statistically calculated during enrollment process.
In this biometric technique Continuous Hamming distance is applied on the 25
features obtained from the user’s hand image. Considering r1 and r2, pattern features
and user template features respectively, and b typical deviation of every data,
Hamming distance, d(r1,r2), is defined as shown in equation (3).
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3   System Architecture

In order to improve the performance of the hand geometry recognition algorithm, a
hardware implementation is proposed. Fig. 3a shows the architecture of this hardware
implementation. It contains four main blocks, according to the steps of the algorithm,
preprocessing (Grey Scale and Edge Detector), feature measuring and feature
matching. Also, the architecture has three interfaces for receiving user pattern and
user template, as well as for storing temporary data in external memory banks. An
internal RAM memory is used to store temporary data in the latest steps of the
algorithm execution.

In the hardware implementation information storage is a key factor due, mainly, to
the large amount of data to be processed. It is important how and where the
information is stored, as it could be seen in Fig. 3b where storage blocks are filled. In
this implementation partial and global results are stored in RAM blocks, external or
internal to the circuit. The use of various banks of memory and fast memories has
provided short access times and a small number of memory accesses.
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Fig. 3. a) Architecture of the proposed hardware implementation b) Storage blocks

In order to generate a high speed application, faster operators, parallelism and
pipelining have been applied. Finally, it is important to set the precision required not
only for achieving good results in the information processed but also for reducing
resources employed. Arithmetic operations are performed with full precision.
Regularly it is not possible to store the amount of information generated and results
data will be truncated in order to be stored in memory.
The FPGA implementation of the hand geometry recognition technique is described
in this section. The resulting system is analyzed with respect to the enhancements
obtained in the time domain, in the resources used and in the cost achieved. Also, the
accuracy terms FAR and FRR is taken into account. These ratios are detailed in
section 4.
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Data Storage
This first step in the processing receives input data, which is a hand image (RGB) of
M pixels (8 bits per pixel), being M=480x640. In the following M will state for
480x640, to represent the number of pixels.
Image is coming from a digital camera and it is stored in external memories. In the
process of downloading, some values are calculated that could be applied in latter
processes, such as normalizations (e.g. Rn).
The use of three banks of memory reduces the number of memory accesses from 3M
to 1M. On the other hand, accuracy is maintained and resources needed are a Data
Path and an Address Generator.

Black and White
The original algorithm for grey scale conversion applies the equation (1). In this
work, equation (5) has been implemented, in order to reduce memory accesses as well
as arithmetic operations.

nn BG)(R −+ . (5)

Table 1 shows the complexity of the hardware and software implementations as a
function of M. Second column contains cycles needed for arithmetic operations,
while third and fourth are for memory readings and writings. Last column shows total
cycles required in each implementation. As it can be seen, FPGA implementation
reduces memory accesses as well as cycles employed in arithmetic operations, thanks
to parallelism and pipelining. Pixels are processed in one clock cycle with a latency of
5 cycles. It should be noted that in FPGA implementation these arithmetic operations
are performed in parallel with memory readings and writings, so as total execution
times is even less.

Table 1. Cycles required in preprocessing hand image in FPGA and software implementation

Algorit
hm

Implementatio
n

# Arithmetic
Operations

#Memory
Readings

#Memory
Writings

Total

HW (FPGA) 3M 3M 3M 6M
(1)

SW (uP) 12M 12M 7M 31M
HW (FPGA) 1M 1M 1M 2M

(5)
SW (uP) 6M 6M 4M 16M

Once the grey scale image is obtained, a black and white conversion is performed, by
the application of a threshold. This last step produces images of 480x640 pixels (1 bit
pp) which are stored in an internal memory of the circuit.
With respect to the accuracy, the comparison between results given by the FPGA and
the software implementation has shown slight differences. Fig. 4a shows a black and
white image generated by the hardware block. In Fig. 4b, differences with software
application image could be seen. The average error is less than 2%. This error is due
to internal precision, 16 bits in hardware and 64 bits in Matlab®.
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   a) b)

Fig. 4. a) Black and white image. b) Difference between results given by hardware and
software implementation

Edge Detection
In this step, filter application consist in matrix multiplication (3x3) on every pixel of
the black and white image. As masks are composed of constant values,
multiplications become very simple.
The main bottleneck in this task is memory access to read the whole image. It is
necessary to read 9 values per pixel, so 9M reads are needed. This is solved by using
3 banks of memory to store the image. If the black and white image is stored in the
three banks at a time, only one cycle is needed to read three values. Also, if values
used for the previous pixel processing are maintained, only three new values are
needed for the next. With these two conditions, only M cycles are needed to operate
pixels and M memory accesses are needed.
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Fig. 5. Circular shift register and data path for edge detection

This solution has been implemented in the FPGA with a circular shift register which
is able to store, rotate and shift values coming from the memories, shown in Fig. 5a.
Parallelism and pipelining has been applied in order to reduce the time delay in the
arithmetic operations. Pixels are processed in one clock cycle, with a latency of 5
cycles, within data path shown in Fig. 5b. In Table 2, cycles needed to process the
image, in hardware and software implementation are compared. Second column
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contains cycles needed for arithmetic operations, while third and fourth are for
memory readings and writings. Last column shows total cycles required in each
implementation. It could be seen that software implementation uses 27M memory
while FPGA uses only 1M.

Fig. 6. Edges detected with Laplacian and Sobel filters in the hardware implementation.

Table 2. Cycles required for edge detection in FPGA and software implementation

Implementation
# Arithmetic
Operations

#Memory
Readings

#Memory
Writings

Total

HW (FPGA) 1M 1M 1M 1M
SW (uP) 17M 9M 1M 27M

The accuracy obtained in the FPGA implementation is quite good. Currently,
hardware provides results quite similar to software implementation. In Fig. 4 and Fig.
5 the superposition of both results are given for Laplacian and Sobel filters. As it
could be seen, Sobel filter provides wider edges.

Biometric Feature Extraction
In this step the hand profile is read and measured in order to obtain the 25 features
that characterize a human hand [1] and [2]. The architecture of the feature extraction
module is shown in Fig. 7. This architecture is able to compute all features in parallel
as the hand profile is being read from the memory. Thus, all features can be extracted
within a single full memory read. Data path for arithmetic operations is pipelined in
order to improve throughput.
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Fig. 7. Architecture of feature matching block
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The architecture contains a data path (FingerJoints) that is in charge of reading the
hand profile from memory and identifying some key points of the hand geometry, the
finger joints which serve as reference points for other measures. Measurer Widths is a
specific data path for obtaining finger widths and Measurer Datapath is in charge of
calculating features that involve complex operations (angles, deviations, etc.). Finally,
a set of register is used to store final measurements.
Execution process takes as much as M+ M/20 memory readings and the same for
arithmetic operations. Table 3 presents a comparison with software implementation.

Table 3. Cycles required for edge detection in FPGA and software implementation

Implementation
# Arithmetic
Operations

#Memory
Readings

#Memory
Writings

Total

FPGA M/20+1M M/20+1M 1 M/20 + 1M
uP M/20+1M 25*1M 25 M/20 +26M

The accuracy has been checked and the results are quite similar. Differences are due
to internal bit precision employed (16 bits in FPGA and 64 bits in Matlab®).

Feature Matching
The hardware implementation of this block is a comparator that decides if differences
between user pattern and user template are less than a provided threshold (typical
deviation). This block implements the Hamming distance detailed in section 2.
Comparison is done in parallel, and only one cycle is required for this block. FAR
and FRR for FPGA implementations is quite similar to those for software
implementation, Fig. 8, therefore quality is maintained.
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False Acceptance Ratio

False Rejection Ratio

False Acceptance Ratio

False Rejection Ratio

False Acceptance Ratio

False Rejection Ratio

Threshold

Fig. 8. FAR and FRR ratios in software implementation

4   Implementation Results

The Hand Geometry Authentication system implemented with a FPGA solution has
been designed following top-down methodology. Hardware descriptions have been
done in VHDL language at RT level. Synopsys®, ISE® and Modelsim® CAD tools
have been used during the design process for RTL simulation, logic synthesis,
place&route and FPGA mapping. Final prototyping has been done in a platform
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FPGA from Xilinx (Virtex 2000E) included in a PCI board from Celoxica Ltd, [8]
and [9]. This board provides also four banks of memory (2MB per bank) as well as
PCI communication.
Comparison with respect to software application has been represented graphically,
according to steps needed in the whole process. This information is shown in Fig. 9,
for memory readings, memory writings and arithmetic operations.

Implementation report is shown in Table 4. There is a low FPGA occupation
except for Block RAMs, used to store hand profile and to enhance memory accesses.
It is possible to use smaller FPGAs storing this partial result in external memory also.
With respect to maximum frequency, typical delay is 29.7 ns. Therefore this FPGA
implementation works at 33 MHz.
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Fig. 9. Comparison of memory accesses and arithmetic operations in both implementations

Table 4.

FPGA Elements Used Available %
Slices 1,578 19,200 8%
Slice Flip-flops 892 38,400 2%
4 input Lust 2,813 38,400 7%
Bounded IOs 263 408 64%
BRAMs 128 160 80%
GClks 1 4 25%

From tables 1, 2 and 3 the total number of cycles for algorithm execution has been
obtained. FPGA implementation takes 1,551,360 operation cycles while software
solution takes 22,133,760 cycles. Considering two scenarios, implementation in the
selected FPGA and in a typical microprocessor (1Minst. per cycle) typical execution
time will be 47ms and 20s respectively (taking into account that an instruction cycle
in a microprocessor takes more than one clock cycle). On the other hand, if we
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consider the use of a high performance PC, times are in the same order as in FPGA
but cost, resources and power consumption is much higher. Therefore, FPGA
implementation has been proved as the best solution with respect to cost-effective and
fast applications.

5   Conclusions

In this work, a hardware implementation for biometric recognition system based on
hand geometry has been presented. Main aspects related to area, speed and accuracy
have been considered. The proposed solution is able to reduce processing time by 3
orders of magnitude with respect to microprocessor based solutions, with a similar
cost, size and power consumption, while keeping the same identification quality. On
the other hand, it can be implemented in a small size FPGA, or an ASIC if product
volume is large enough, thus making it suitable for a large number of low cost
applications.
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Abstract. This paper presents the Customisable Modular Platform
(CMP) approach. The aim is to accelerate FPGA application develop-
ment by raising the level of abstraction and facilitating design reuse.
The solution is based on network of Nodes, communicating using packet-
based protocol. The approach is illustrated using SoftSONIC, a CMP for
video applications. Our approach promotes modularity and design reuse
by having multiple interoperable layers of design abstraction, while sup-
porting advanced development and verification methods such as mixed-
abstraction execution and efficient system-level simulation based on
Transaction Level Modelling. The platform provides domain-specific ab-
stractions and customisations of various elements such as communication
protocols and topology, enabling exploitation of data locality and fine-
and coarse-grain parallelism. The benefits of our approach is demon-
strated using SoftSONIC for development of several real-time HDTV
video processing applications.

1 Introduction

Design cost has become a critical issue as a result of the exponential rise in silicon
and design complexity. This paper presents the Customisable Modular Platform
(CMP) approach, which aims to lower the design cost of complex digital systems.
Reconfigurable platforms are utilised to alleviate some of the problems caused by
manufacturing Non-Recurring Engineering (NRE) and silicon complexity, such
as mask cost, probe card, signal integrity, power and clock management, man-
ufacturing and process variability [1]. The novel aspects of the CMP approach
aims to solve system complexity issues and those silicon complexity issues that
are not directly solved by using reconfigurable platforms.

This area has attracted much attention during the past few years. Exam-
ples include platform-based system-level design [2,3], automated communication
refinement [4] and network-on-chip paradigm [5]. The SystemC community has
been the main contributor to the work on Transaction Level Modelling (TLM)
[6], alongside with SpecC [7].

Our work differs from these previously proposed approaches in the following
ways. (1) Exploitation of reconfigurable platforms: automated mixed simulation
and hardware execution, rapid prototyping and run-time reconfigurability. (2)
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Domain specific design approach, which entails domain-specific information for
design optimisation. (3) Platform customisation to minimise overhead. (4) Com-
bining verification and reuse of Intellectual Property (IP) within a single frame-
work. In addition, while previous work on TLM has been focused on bus-based
embedded mircroprocessor systems. Our work offers a hardware oriented ap-
proach with a selection of communication topologies. Finally, CMP can be used
for abstracting and generalising the Sonic-on-a-Chip approach [8].

The rest of the paper is organised as follows. Section 2 introduces the CMP
approach. Section 3 presents SoftSONIC. Section 4 and 5 cover functional and
design abstractions. Section 6 presents implementation results. Section 7 looks
at current and future work, and concludes the paper.

2 Customisable Modular Platform Approach

Advanced multi-million gate FPGAs such as Xilinx Virtex II Pro and Altera
Stratix and can significantly reduce the manufacturing NRE cost. However, the
design NRE cost dominates the overall cost and time [9]. The CMP approach is
developed to address this issue.

The CMP approach originates from the platform-based design concept [1,2,
10]. A CMP is a domain specific design methodology, capturing the underlying
abstractions and design rules in the form of a virtual platform. It contains a
set of design rules that characterise the target architecture. These rules are
determined partly by the physical architecture and implementation technology,
for instance hardware/software or FPGA/microprocessor. Many of the rules are
‘virtual’, enabling higher-level abstraction of architectural and physical issues.
This higher-level abstraction accelerates the mapping of the application to the
target architecture, and facilitates the design and verification process.

The CMP defines different abstraction layers for the functional abstractions.
Each abstraction layer is defined in terms of information that they entail, for
example numerical precision, timing behaviour, and resource usage. The CMP
adopts four distinct abstractions: Algorithmic, Virtual TLM, Physical TLM, and
Register Transfer Level (RTL).

The penalty in speed, area and power consumption is reduced by two fac-
tors. (1) The platforms are application domain specific. By narrowing the scope,
platform abstractions can be chosen in accordance to known efficient implemen-
tations. Examples of such application domains are video processing [15], wire-
less networks [11] and communications [12]. (2) The platforms are customisable
within the domain for a particular application and implementation, to support
efficient architectural exploration and realisation. In general, architecture-level
design decision have potentially much greater impact on the final performance
than low level implementation optimisations.

Often, the first step in our approach is the selection of a domain specific CMP,
characterised by the communication and computation. The specific scope of the
chosen CMP enables efficient modelling and optimisation. Within SoftSONIC,
our CMP for video applications, the customisable aspects include the level of
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coarse and fine grained parallelism, communication packet structures, communi-
cation protocols and topologies, packet data sequencers, and hardware/sofware
partitioning. For example, the achievable parallelism can be dictated by the
inherent parallelism of the algorithm or can be bound by communication band-
width. The platform can be customised to meet the maximum performance in
either case, for example with the selection of inter or intra device communication.

The main goal of a CMP is the separation of design concerns. In addition to
the traditional separation of computation from communication and the function-
ality from architecture, the CMP approach provides the separation of verification
of functionality from verification of performance. When applicable, this separa-
tion reduces the overall verification effort. The purpose is to avoid functional
re-verification after design exploration and customisation for performance. High-
level functional verification is also simplified, as implementation details need not
be considered.

The CMP approach reduces the observed complexity to alleviate the over-
all design and verification effort in the following ways. IP Reuse. The platform
concept enhances IP reusability by specifying an unambiguous interface between
communication and computation. Furthermore, the modularity of the approach
makes IP reuse possible in several levels and abstractions. Restricted Design
Space. Application developers can focus on using the optimised facilities of-
fered by a particular CMP, while CMP developers can focus on creating efficient
CMPs by optimising and generalising designs. High-Performance System
Simulation. The CMP approach uses TLM for the high-level block models.
Simulation speed at transaction level can be 100 times faster than RTL simu-
lation [13]. Mixed-Abstraction Execution. When a new block is developed,
the behaviour of the rest of the system can be obtained by the fastest available
model, reducing the simulation time. In addition, when using reconfigurable plat-
forms, it is possible to use the actual hardware of available blocks in real-time
execution. This can be several orders of magnitude faster than software sim-
ulation. Co-Simulation. Co-simulation between different design tools is diffi-
cult. The CMP approach alleviates the co-simulation problem by specifying a
restricted, unambiguous platform communication mechanism. Intrinsic Sup-
port for Run-Time Reconfiguration. The possibility to update a product
after deployment enables: (a) support for new features, (b) post-delivery design
optimisation, and (c) adaptation to run-time conditions.

3 SoftSONIC CMP

SoftSONIC is a CMP for video processing applications. It is inspired by the Ul-
traSONIC board-level architecture [14]. The main difference between SoftSONIC
and UltraSONIC is that UltraSONIC was developed to support easy integration
of hardware modules, whereas the aim of SoftSONIC is to reduce the observed
design complexity of the system in order to speed up the design and verification.

In UltraSONIC the system is constructed from discrete PIPE hardware mod-
ules. In SoftSONIC these modules, called Nodes, are virtual, and are separated
from an actual implementation. For example, one FPGA can contain several
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Nodes, or one Node can span several FPGAs. UltraSONIC has a specific set of
protocols to support a particular board architecture. SoftSONIC, in contrast,
can be customised to target different board architectures and applications.

From the functional perspective, SoftSONIC is similar to UltraSONIC; both
cover high-bandwidth video image processing applications [14,15]. SoftSONIC
also adds or improves the following functionalities. Multi-cycle pixel process-
ing. The processing of a pixel can take an arbitrary number of cycles. SoftSONIC
supports pixel-level parallelism in three ways. (1) At high level, the number of
Nodes that run in parallel can be varied. (2) At Node level, the data packets can
be processed in parallel. In FPGA implementations of the Nodes, the packets are
stored in block RAM, which supports parallel accessing. (3) At Node level, the
clock frequency of each Node can be customised to meet design requirements.
Fork and join of data streams. Forking of a stream is important, when new
data are extracted from a stream while the original stream is needed later in
the processing pipeline. The joining of streams is used, for example, in creat-
ing composite images, like blue/green-screen composition, logo insertion, and
gradual stream transition. Support for non-image data. In addition to pure
image data such as RGB 4:4:4[:4] and YUV (4:2:2, 4:2:0) in lines, windows and
scattered pixels, SoftSONIC supports image-related information such as image
metadata, compressed image data, and audio. Shared memory random ac-
cess. Memory random access is enhanced with the use of memory-server Nodes
and random-access data packets.

These improvements illustrate the additional functionalities that SoftSONIC
supports. However, the main goal of SoftSONIC is to reduce application devel-
opment time, which is achieved by exploiting the advances in Section 2.

4 Functional Abstraction

The purpose of functional abstraction is to specify the platform in a concise and
easily adoptable manner. Functional abstractions include the model of commu-
nication and the model of computation. These functional abstractions separate
the timing inside a Node from its external interfaces. This is an important factor
in separating the communication from computation to obtain the benefits listed
in Section 2.
Model of Communication. Communication in SoftSONIC is based on packets
that contain a header and a payload. The packet payload contains structured
data: in addition to explicit information, the type of packet implicitly indicates
how the data should be interpreted. In SoftSONIC, basic packet types are pixel-
based image data, structured to lines, windows or scattered pixel and address-
data pairs for random memory access.

The information structure between Nodes is restricted to packets. The com-
munication is unidirectional: once the packet is sent by the producing Node it
cannot be altered, and after consumption the packet is deleted. Packet schedul-
ing follows bounded First-In-First-Out (FIFO) buffers in a process network.
Both attempts to read an empty buffer and to write to a full buffer are blocking
operations.
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One exception to packet communication is Configuration Register (CReg)
communication. An element outside the communication network, for example
the host computer or on-board user interface, can access CRegs inside the Nodes
without using packet-based communication. The CReg interface is intended for
low-bandwidth, time-independent sporadic communication involving, for exam-
ple, information about Node parameters and user control. The CReg interface
implementation is application and environment specific, but must follow CReg
update rules, which due to space restrictions are not explained here.

Model of Computation. User-defined functions take place inside the Nodes.
The general structure of a SoftSONIC Node is depicted in Fig. 1. A Node consists
of: the Input and Output Buffers, the Buffer status information ‘S-box’, the Node
Engine Wrapper, and the Node Engine.

The Input and Output Buffers contain FIFOs for packet communication. The
S-box contains the status information of the buffer and handles the arbitration of
the buffer. The S-box interface handles the transition between abstractions lay-
ers, development environments, and clock domains. The Node Engine Wrapper
is a customisable data sequencer for input and output buffers. It can be cus-
tomised, for example, to access packets in parallel sequential streams or to have
application specific scan pattern. It starts consuming the input packet when all
required input buffer(s), output buffer(s) and the Node Engine(s) are available.
The CReg interface is implemented within the Node Engine Wrapper and the
actual registers locate inside the Node Engine.

User-defined computation is performed inside the Node Engine. The Node
Engine can use only the information included in the input buffer(s), the packet
header, internally stored data and the CReg data. A Node can contain one or
more engines wrapped by a single Node Engine Wrapper.

The Nodes are connected to each others with channels. The channels have an
identical interface to the input and output buffers, and have the same firing rules
as computation Nodes. The only difference is that a channel does not change the
contents of the packet in any way; it just transports a packet from one buffer to
another. It is also possible to connect Nodes together in a point-to-point manner.
In this case one Node’s output buffer becomes another’s input buffer.
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Fig. 2. Transaction Level Model Layers: Virtual and Physical

5 Design Abstraction Layers

SoftSONIC is divided into four distinct design abstraction layers. Each layer is
defined in terms of timing, implementation and data accuracy, the incoming and
resulting system model and the target design questions the layer aims to answer.

Algorithmic: Executable Specification. The algorithmic layer does not use
SoftSONIC functional abstractions. The purpose of this layer is to provide an
executable specification for the system under development. In this layer, the
whole system functionality is described using high level software languages such
as C/C++ or Matlab. The executable specification does not contain information
about the timing and performance of the system. However, this layer must con-
tain information about limited bitwidth effects and the maximum error bound.

Virtual TLM: Parallel Functionality. Layer 2, Virtual TLM, is the first
SoftSONIC specific layer. The purpose of this layer is to re-specify the contents
of the Algorithmic layer using the SoftSONIC functional abstraction. The main
design effort is in mapping the functionality to individual Nodes and extraction of
parallelism in the application. Node communication is modelled using unlimited
communication resources in bandwidth and the number of connections, but with
bounded input and output buffers. In other words, the packet always takes zero
time to arrive from producer to the consumer. Bounded input and output buffers
enable mixed-abstraction execution. The bounding of the FIFOs can be made
arbitrarily at this point, as it does not affect the functionality of the system. An
example of a Virtual TLM is depicted in Fig. 2(a).

In this layer, sending and receiving a packet is modelled as a single transaction
in a queueing process network. Coarse grain parallelism at Node level can be
explored, but there is limited feedback of resource usage as unbounded resources
are assumed. In other words, it is possible to explore whether the algorithm
can be parallelised, but it is impossible to determine whether such a system is
feasible for real-life implementation. The verification task is system-to-system:
the functionality of the Algorithmic layer must correspond to that of Virtual
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TLM. In this layer, both communication channels and computation Nodes are
described using untimed TLM models.
Physical TLM: Design Exploration. In the Physical TLM layer, the func-
tional description of the Nodes remains unchanged. The focus is on resource
allocation, design exploration, and customisation. As the functionality does not
change, the verification task of this layer involves purely the validation of the
performance requirements in speed, area, power, etc. The separation of func-
tional and performance verification simplifies the task, and makes it easy to
support a systematic approach to the problem. This can guarantee ‘correct by
construction’ functionality when carrying out architectural design exploration.

Design exploration can be divided into two parts: communication and Node
implementation analysis. Communication exploration examines the choice of dif-
ferent communication protocols, media and throughput versus resource usage.
Choices can be made between on-chip and off-chip resources, packet sizes and
types. A crucial decision is the size of the input and output buffers, as these can
have significant impact on performance and resource usage. In Node implemen-
tation analysis, different levels of coarse and fine grain parallelism are explored.
Also, if the decision has not been made earlier, Node-level software/hardware
partitioning is carried out.

In this layer, the final packet sizes and types, communication and imple-
mentation media are allocated and buffer sizes re-examined. Thus performance
analysis in terms of throughput can be estimated by modelling the individual
throughput of the Nodes and communication system. These figures can be ob-
tained from the lower RTL layer, or estimated. The communication is described
using timed TLM models. As mentioned before, the computation Nodes remain
unchanged; they are still modelled with untimed TLM models.

From the Virtual TLM layer description in Fig. 2(a), one possible outcome of
design exploration and customisation is illustrated in Fig. 2(b). The communi-
cation of the first two Nodes is handled by point-to-point communication, such
that the output buffer of the producing Node is the input buffer of the consum-
ing Node. One of the Nodes is replicated to enhance Node-level parallelism. The
second communication choice is to utilise a packet switch for the communication
and finally, a bus is utilised.
RTL: Path to Implementation. The RTL layer implementation begins by
generating the communication description from the Physical TLM layer. The
communication acts as a wrapper for the RTL implementation. For simulation,
the higher-level description of the communication can be used. This layer is
focused on to the computation in the Nodes and the communication remains
unchanged. The RTL description of the Node engines can be done by using a
synthesisable language like RTL SystemC, HandelC, VHDL or Verilog. The ver-
ification of the Nodes is made easier by the independence of the Nodes and the
ability to re-use the verification environment. The verification task is Node-to-
Node when we move from Physical TLM layer to RTL layer. This is in contrast
to system-to-system verification, which is the case when we move from Algo-
rithmic layer to Virtual TLM layer. This also leads to opportunity for the use
of advanced verification methods like assertion-based verification and formal
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Table 1. Comparison of performance in Thermal Camouflage effect

Implementation Clock Seed Throughput Speed-Up Factor
[MHz] [Frames/s] (compared to SW)

Software (PC) 2400 1.6 1.00
VHDL simulation (PC) 2400 0.0006 0.0004
Mixed VHDL and SoftSONIC 2400/133 0.02 0.01
SoftSONIC 133 64 37.85
Parallel SoftSONIC 133 128 75.70
UltraSONIC 66 32 18.88
Normalised SoftSONIC 66 32 18.78

methods. The reduced scope of the verification problem increases the feasibility
of these methods.

6 Results

This section compares the performance of various implementations of SoftSONIC
against UltraSONIC and software simulations. We have developed an experimen-
tal hardware implementation which involves a real-time HDTV 1920 by 1080
RGB 4:4:4 10 bit/channel (SMTPE 372M – “Super2K”) video effect applica-
tion. The system creates a ‘thermal camouflage’ effect used to visualise semi-
transparent objects. Similar effect has been used, for example, in the movies
Predator (1987) and Hollow Man (2000). This application consists of 6 Nodes:
Packet Source and Sink, 3x3 Blur Filter, 2D 3x3 Sobel Filter, Image Differen-
tiator, and finally the ‘Lens Effect’ Node that produces a special effect to areas
where the foreground image is different from the background image. The lens
effect is created by varying the refraction according to the intensity of the edges.

One implementation of SoftSONIC is customised to the application and to
the Xilinx Virtex-II Pro 50 FPGA by selecting packets of one line with buffer
size of 2. This way, eight Block RAMs in 512x36 bit mode can form one buffer.
With this setup, it is possible to have eight parallel pixel reads and writes. In
this application, maximum throughput is determined by external memory ac-
cess. Buffer size of 2 offers optimal performance/area tradeoff, as one buffer can
be read while the other is being written, without significant pauses in processing.
As all the functions in the application involve stream processing without non-
deterministic components, point-to-point communication is the optimal selection
for communication. Sometimes, the performance could be further optimised by
maximising the individual clock speed of the Nodes, but in this case the maxi-
mum clock speed of 133MHz is dictated by the ZBT SRAM interface. Clock rates
could also have an effect on the power consumption, but this is not currently
being evaluated.

We consider seven different implementations, and the performance results are
summarised in Table 1. The software implementation is the C++ Algorithmic
level description of the system as a DirectShow filter running on a dual Athlon
PC at 2.4GHz with 2G bytes of memory. Software simulation is based on Mod-
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Table 2. SoftSONIC Node performances

Kernel BRam 1 engine 2 engines 4 engines 8 engines
Slice MHz fps Slice MHz fps Slice MHz fps Slice MHz fps

Invert Colours 8 160 289 139 183 295 282 228 315 604 405 296 1137
Image Diff 16 264 277 132 313 270 259 445 279 535 809 267 1025
Alfa Blend 16 364 175 83 554 167 160 951 160 307 1868 146 560
3x3 Noise Filter 24 1162 201 95 1773 202 191 3056 200 380 5525 220 836
2D 3x3 Sobel 24 1578 200 94 2736 202 191 4999 185 351 9389 140 532

elSim SE Plus 5.7f running on the above PC. In the mixed VHDL and Soft-
SONIC implementation, only the Lens Effect Node is simulated, and the other
parts of the design is running on the FPGA. The Lens Effect Node would most
likely be the only one that needs to be built from scratch, as the other Nodes
are common image processing kernels. In the Parallel SoftSONIC implementa-
tion, the Packet Source and Sink produce/consume packets in double rate, and
there are two Node Engines in each processing Node to enhance parallelism.
The application does not have inter-line dependencies, so the upper limit of the
parallelisation is bound only by the available memory or memory bandwidth.
The UltraSONIC implementation contains Xilinx Virtex 1000E FPGAs using
UltraSONIC protocols. Finally, in order to enable fair comparison between Soft-
SONIC and UltraSONIC, the Normalised SoftSONIC is an implementation on
UltraSONIC hardware.

From the results it can be seen that the SoftSONIC implementations provide
significant speedup compared to the software implementation. The Normalised
SoftSONIC implementation is only slightly less efficient than the UltraSONIC
implementation, indicating that the performance penalty is not significant. The
main overhead is the higher usage of Block RAMs for input and output buffers.

Table 2 illustrates individual SoftSONIC Node performances, without con-
cerning external memory access. The results are obtained after place and route,
but without I/O buffers, as reported by Xilinx ISE 6.2.01i. For synthesis, Syn-
plify Pro 7.2.2 is used. For each kernel, there are four separate implementations,
which indicate 1, 2, 4, and 8 parallel engines inside a Node. Naturally, the faster
implementations consuming more area, has more parallelism. All the implemen-
tations are automatically generated according to the level of engine parallelism.
Because of the used abstractions, the engines can simply be replicated in order to
accommodate the parallelism. However, as all these implementations use before
mentioned 8 BRAM I/O buffers size, the data sequencers are different in each
implementation in order to handle serialisation and de-serialisation of the data.
Although, in the case of window processing this is non-trivial task as parallel
engines have overlapping data, also these are automatically generated.

The table shows that very high frame rates can be achieved by using the
SoftSONIC Nodes, and it is likely that the performance limitation will come
from external memory access. In addition high performance of the kernels, the
integration of kernel-Nodes to applications is greatly facilitated, as the Node
interface guarantees interoperability.
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7 Summary

We have described the Customisable Modular Platform approach for rapid ap-
plication development and optimisation of reconfigurable designs. Our approach
is illustrated using the SoftSONIC platform. Opportunities for customising Soft-
SONIC are discussed, and it is shown that SoftSONIC can produce many im-
plementations rapidly without significant overheads. Current and future work
includes refining the SoftSONIC model, automating the customisation process,
and evaluating our approach using complex applications.
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Abstract. The high complexity of the modern SoC designs ([17]) raises the se-
rious verification challenges. The design verification becomes even more critical
because of the constantly shrinking project timescales due to the time to market
pressure. The hardware platform based verification is the only one that can cope
with the increasing SoC complexity: only in hardware, complex test sequences
exercising the complete design can run at a reasonable speed. This paper presents
how both emulation and rapid FPGA-based prototyping technologies are deployed
in a complementary way in a real industrial environment. Taking two latest highly
complex SoC projects as an illustration (3 and 4 million ASIC gates without
counting memories), we will describe the integral hardware platform based vali-
dation approach. The deployed methodology resulted in a success story for both
emulation and rapid prototyping projects for both SoCs.

1 Introduction

Producing the first silicon is an important milestone for the SoC project. Getting the
working first silicon allows the semiconductor company to gain the customers confidence
and largely contributes to fitting the market window. Two conditions are necessary to
obtain the working and “life" first silicon: (1) all vital hardware parts are functional;
(2) the application and driver software is ready at the moment the chip is back from
the fabrication. To reach the first condition, it is mandatory to exercise the complete
chip functionality before the tape-out. To meet the second condition, the software teams
should start the software development a long time before the silicon is back. The solution
to satisfy both conditions is the concurrent hardware-software engineering.

The hardware-based emulation ([2], [3], [10], [16]) is the only one technology that
allows to run the complex test sequences on a complete SoC. It insures a 105 − 106

speedup compared to simulation. The simulation capabilities are limited to testing sub-
systems and separate IP blocks. To run the tests approaching the real life functionality
or to exercise the in-circuit operation of the SoC, it is mandatory to use the emulation.
Once the design was emulated, the design team gets sufficient confidence in hardware
functionality. Very often, the corner case operation may be detected not by using an
artificial test sequences but when trying to develop and to run the real software drivers.
As a consequence, the software development should start very early.

Big emulation machines ([10]) can support the SoC software development as well
as hardware debug. The disadvantage for software engineers is a relatively low speed
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of an emulator (100K to 1Mhz) and its extremely high cost limiting the duration of the
access time. On the opposite, the rapid FPGA-based silicon prototypes are much more
convenient for software debug, working 10 to 100 times faster and being less expensive
([4], [9], [14], [15]). The only problem is that the mapping process is more complicated
and requires more time. To be mapped on an FPGA platform, the design hardware
should be debugged and stable to reduce the number of iterations to be done for FPGA
mapping. Emulation is thus an important pre-requisite to insure the FPGA-based silicon
prototyping success.

Deploying both hardware-based emulation and FPGA-based rapid prototyping tech-
nologies in parallel allows to meet the hardware verification as well as software develop-
ment objectives. It constitutes the basis for concurrent hardware-software engineering.
This paper describes how this deployment was done using an example of two latest
highly complex SoCs. These SoC designs will be called DVD project and STB project.
Both projects extensively used emulation to debug hardware prior to tape-out and an
FPGA-based silicon prototype was created for both projects to support the software
development teams.

Although both emulation and rapid prototyping technologies exist for a number of
years ([1], [2], [3], [12], [13]), their industrial application remains challenging and re-
quires the breakthrough in the design teams and software teams way of thinking. The
difficulties encountered during the mapping on emulator or an FPGA platform often
require an additional support from the design teams, which are already heavily loaded
with the design activities. From the other side, the market reality and constantly reduc-
ing project timescales push the design teams to apply the hardware-based verification
technologies. The given paper describes the methodology, allowing taking the best of
both emulation and rapid prototyping technologies and making them profitable to the
design teams.

The paper is organized as follows. Section 2 describes the hardware-based veri-
fication cycle embedded inside the project development cycle. Section 3 presents the
mapping flow for both emulation and rapid prototyping platforms putting an accent on
the most critical points. Section 4 presents the statistical data about the emulation and
rapid prototyping activities for DVD Project and STB Project followed by the Conclu-
sions.

2 The Hardware-Based Verification Cycle

The latest SoC designs are highly complex ([17]). They contain one or more cores, ten to
twenty main IP blocks, several SRAM, SDRAM or DDR memory interfaces, a number of
interfaces to peripherals. The project development starts from block-by-block validation
of the selected IP blocks. A big number of IPs are reused. A large number of blocks are
re-designed or re-customized. The initial block validation is done in simulation or co-
simulation with hardware. In parallel to the block validation, once the SoC architecture is
determined, the design team becomes able to produce the first assembled backbone. This
backbone usually contains a processor core, the system bus and the memory interfaces.

The emulation and the rapid prototyping activities usually follow a number of itera-
tions. The iteration corresponds to a fixed step in the project development reflecting the
degree of project maturity. The first iteration is usually done with the first assembled
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backbone. The emulation and the rapid prototyping projects are done in a timeframe that
corresponds to a period between the creation of the first backbone and the coming back
from production of the first silicon. Today, the approximate duration of this period is
around six months. The hardware-based verification technologies should be extremely
efficient to allow several productive iterations during this time frame. The hardware-
based verification technologies require a high competence and a constant follow-up of
the technology progress. That is why, hardware-based verification is done by a different
team specialized in hardware emulation and prototyping. The emulation team offers
the platform mapping to the design team and then both teams collaborate to debug the
design.

The emulation activity starts when the design team delivers the first backbone to the
emulation team (Figure 1). This backbone is mapped on the emulator to run a number of
system-level tests. Numerous hardware bugs are usually cleaned out during this step. The
hardware emulators offer an excellent visibility for hardware debug. They allow seeing
all the design nodes with a comfortable depth and fast re-compile. On the contrary, the
visibility on the commercial FPGA-based rapid prototyping platform is limited. These
platforms are not suitable for hardware debug in the case of big SoC designs. The design
that is supposed to be ported on an FPGA platform should be stable and clean. The
emulation insures that the hardware is operational, the RTL is synthesizeable and clean.
Mapping to emulator is an important condition for the silicon prototyping success.

Fig. 1. Hardware-based verification life cycle

The hardware-based verification flow is depicted in Figure 2. Once the first backbone
is cleaned in emulation, it can be delivered to the FPGA prototyping team to map it on
the FPGA platform. This first rapid prototyping iteration is rarely directly usable for the
SoC software teams. Its purpose is basically the validation of the FPGA mapping. This
first iteration is followed by a number of subsequent iterations where each time new IP
blocks are added to the backbone. The last, the pre-tape-out assembly has to contain the
complete design. The emulation technology allows validation of a number of in-circuit
interfaces, which gives to the design team a high confidence that the first silicon will
respond to the external stimuli. The final FPGA-based silicon prototype should be ready
early enough before the first silicon is back to give to the software teams enough time
for validating the software.
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Fig. 2. HW and SW debug using hardware platforms

In practice, the software development teams first start using the emulation platform
for software development. Then, they switch to the FPGA-based platform once it is
working. The earlier they start using the FPGA platform, the earlier they can benefit
from its higher speed and free the emulators for debugging the other projects or even let
the design team to continue debug. The next section describes the mapping flow used
for both the emulation platform and the FPGA platform.

3 Mapping Flow

The first prerequisite for HW emulation or prototyping mapping is to have a synthesizable
RTL. The chip is then delivered in gate format to emulation team. The mapping flow is
depicted in Figure 3. Among the existing commercial emulation solutions the company
choice was oriented to the Mentor Graphics Celaro emulator ([10]). The Celaro emulation
technology is based on custom FPGA developed explicitly for emulation. Aptix System
Explorer MP4CF system ([5]) was selected as a rapid prototyping platform, targeted to
the SoC software development. The targeted FPGA technology is Xilinx Virtex 2 ([6],
[7], [11]).

Mapping on an emulator requires modeling the ASIC memories using the memory
resources available on the emulator. In addition, the ASIC designs often directly instan-
tiate the technology cells. These cells should be modeled to map on the emulator. The
major difficulty to get the working design on the emulator is the clock domain resyn-
chronization. Often, it requires several compile iterations. The emulation technology
is developed to support the designs which are not yet mature and offers numerous fa-
cilities: clock injection at any point inside the hierarchy, description of clock domains
using simple input files, easy pull-up or pull-down of the internal signals, easy fix of
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Fig. 3. The emulation and rapid prototyping flow

the internal signals to constants, etc. Exploiting all these facilities makes mapping on an
emulator a matter of days. Once the emulation platform is operational, the design can
be replicated on the FPGA platform.

Mapping on an FPGA platform requires much more effort. The final objective is
better performance and low cost. These advantages justify the considerable mapping
effort. Compared to mapping on an emulator, the design has to be partitioned by the
user when mapping on an FPGA-based platform. If the design has a lot of connectivity,
the partitioning step has to be followed by the pin multiplexing. The major difficulty
when mapping on commercial FPGAs is clocking. Very often, it happens that the design
works on the emulator but does not work when mapped on FPGA. The reasons are
the gated clocks and the different non-FPGA friendly logic structures. Big emulation
machines automatically transform the logic when they encounter gated clocks or other
non-mappable structures. This transformation is transparent to the user. On the contrary,
when mapping on commercial FPGAs, the user has to analyze the clock trees and detect
all the structures that are not clean. The clock problem cleaning is very poorly supported
by the FPGA mapping tools. Few tools support the gated clock transformation only for
certain types of gated clocks. In any case, the user has to understand the clocking in order
to guide the de-gating process and finally to clean the remaining cases manually. The
latest SoCs have extremely complex clocking: twenty or more main clocks, digital clock
generators with programmable clock frequencies that may change during the operation,
hundreds of gated clocks, clock division, etc. In addition, clock signals may be used for
example as selection of multiplexers or enable of tri-states. All these structures must
be cleaned to get the working FPGA implementation. Very often, detecting these cases
happens when debugging the not working design mapped on the FPGA platform.
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The emulation platform is a very efficient support to debug the FPGA prototype. It
is much closer to the FPGA prototype than simulation platform (test bench, memories,
clocks) and is used as a reference during the debugging. In addition, it allows debugging
the in-circuit functionality with external devices that are not possible to be represented
as a simulatable model. Both emulation platform and FPGA platform use the common
synthesizeable test bench. The FPGA platform requires slight modifications of the test
bench for the clock and reset logic. Mapping on FPGA platform takes as a starting point
the input files for the emulator: these files define the clock domains and specify the
different fixes done during the debugging on emulator. These fixes often correspond to
applying constants on the selected signals, applying the pull-ups and pull-downs and
injecting clocks.

To complete the commercial tool set for emulation and rapid prototyping, the hard-
ware prototyping team developed a number of internal tools. As an example may be cited
the “emulation rule checker", the memory generators, the emulator booking system, the
gated clock cleaning scripts for FPGAs, etc.

4 Project Data

The described above methodology was successfully applied to two recent SoC projects.
Both projects are the consumer applications. The DVD project is a DVD circuit of
approximately 3 millions ASIC gates without counting memories. The STB project is an
STB circuit of about 4 millions ASIC gates without counting memories. The practical
project data is summarized in the Table 1.

Table 1. Practical project data

Both projects use a DDR memory model implemented with a wrapper around an
SRAM memory. Despite the extremely complex process of development and validation,
the model is compliant with Jedec DDR standard. The Celaro emulator configuration



70 A. Bigot et al.

was in both cases a 96 slot machine. Both projects require an external interface for
the JTAG connection between SW debugger and a processor core in order to develop
and test the application software. One of the in-circuit interfaces for the DVD project is
represented in Figure 4. It shows the multi-core TAPMUX allowing reducing the number
of external JTAG connections to talk to all internal cores. The functional diagram of this
external interface is presented in Figure 5. It shows the multiplexed access to multiple
cores inside the SoC through only one external connection. Debugging this interface on
the emulator was one of the critical pre-tapeout activities. Insuring that both cores are
reachable through the JTAG interface was mandatory to get the life silicon.

Fig. 4. In-circuit interface for multi-core TAPMUX on the emulator (DVD project)

Fig. 5. TAPMUX functional diagram (DVD project)

For both projects, the replication on the FPGA platform started after the design was
operational on the emulator. The FPGA implementation for the STB project required 9
FPGA modules. Such complexity requires significant FPGA synthesis and place&route
time. However, the major part of the mapping time was dedicated to overcoming dif-
ferent kind of problems. Although the mapping on the FPGA platform was a complex
process, the obtained speed-up (20 and 30 times) was extremely interesting for the soft-
ware development teams. While getting the test tool prompt for the DVD project on an
emulator required 30 minutes, on FPGA platform it required only 1 minute. The speed
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advantage is even more important because the software engineers often work interac-
tively using software debuggers. Due to the overlapping schedules, the Aptix MP4CF
board had a common configuration for both projects. The board contained in total 10
FPGAs. The DVD project was using 7 of them. The STB project was using 9 FPGAs.
Both projects used 6 FPGAs in common. The platform was used in a time-shared mode
for both projects. The FPGA board view for both projects is represented in Figure 6.
Depending on the project that booked the FPGA platform, the FPGA board was recon-
figured for this project. The software teams used the micro-connect link to access the
design inside the hardware platform.

Fig. 6. FPGA board view for STB Project and DVD Project

The number of the emulation iterations versus the number of the rapid prototyping
iterations presented in Table 1 corresponds to the difference in the mapping process
productivity. Due to the longer mapping times for the FPGA platform, only 2 or 3
essential design versions were ported to the FPGAs. While the first mappings for both
emulation and rapid prototyping platforms took time, the last incremental mapping on
the emulator for the DVD Project was done in only 1 day. The latest incremental mapping
on an FPGA platform took 1 week. The comparison between the prototype speed and
the platform setup time for both rapid prototyping and emulation is presented in Figure
7. The depicted numbers correspond to the results of the DVD Project and STB Project.
Mapping on emulator requires from few days to one or two weeks and the prototype
works at about 100KHz. Mapping on the FPGA platform takes several weeks and the
prototype works at a speed of 1-10MHz.

The hardware verification platforms were deployed on one of the company sites. The
hardware and software validation teams for both projects were geographically spread to
more than five sites. All the emulation and rapid prototyping technology users accessed
the hardware platforms remotely. For software debug, as shown in Figure 8, a micro-
connect box was connected to each hardware platform. The software engineers used an
IP address to establish the connection with the micro-connect box. The geographical
time shifting contributed to increase the hardware platforms utilization ratio.
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Fig. 7. Emulation versus FPGA-based prototyping

Fig. 8. Hardware platform utilization: use model

5 Conclusions

The paper presented a successful application of the emulation and rapid FPGA-based
prototyping technologies to two recent SoC projects. The emulation technology is vital
for the SoC hardware debug, while the rapid FPGA-based prototyping technology sup-
ports the SoC software development. The amount of practical project datas presented in
the paper shows how both hardware prototyping technologies were deployed in a com-
plementary fashion. The deployed methodology offered the SoCs hardware engineers
a fast emulator porting time and good internal signal visibility. Software engineers got
an opportunity to benefit from the fast speed of the commercial FPGA based platforms.
Porting the design to FPGA-based hardware platform was preceded by emulation, thus
guaranteeing the correct hardware functionality and faster mapping times. From the
industrial viewpoint, the ideal future hardware verification platform would be one that
combines the high speed of the modern FPGA technology with the fast mapping time
and visibility of the big emulation machines.
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Abstract. In this paper algorithms and architectures for new GF (3m)
multiplier and inverter components are presented. It is described how
they can be utilized as part of a hardware implementation of an Iden-
tity Based Encryption (IBE) scheme. The main computation, the Tate
pairing in such a scheme in outlined and it is illustrated how it can be
implemented on reconfigurable hardware using these components.

1 Introduction

Public key cryptography is the means by which two unfamiliar hosts generate a
shared secret for bulk communication across an insecure channel. Typically this
involves the use of each users public and private keys and public key certificates.
In order for Alice to negotiate a shared secret with Bob both user’s need to have
their public key listed with some key certificate authority [1]. An Identity Based
Encryption (IBE) scheme is a public key cryptosystem where any string (such
as an email address) is a valid public key. The advantages of an email scheme
based on IBE include: senders can mail recipients who have not set up a public
key, and there is no need for an online lookup to obtain the recipients public
key certificate. The idea of such a scheme was originally proposed by Shamir
[2]. Recently a full IBE scheme (the Boneh-Franklin scheme) has appeared in
the literature [3]. This system works on points on an elliptic curve E over an
underlying Galois field. The principal computation in such a scheme is the Tate
pairing, T . It is desirable to implement this calculation in hardware as it repre-
sents the major computational bottleneck in the implementation of IBE schemes.
FPGAs represent a cost-effective, versatile implementation platform.

The calculation of the Tate pairing requires a large number of multiplicative
operations in the underlying Galois field. Typically extension fields of charac-
teristic p = 2 or fields where p is a large prime are preferred for hardware
implementation of cryptographic ciphers due to the simplicity of the underly-
ing arithmetic. These have been well studied in the literature [4]. However, in an
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IBE scheme operations are implemented in GF (pm) and also GF (pkm). For max-
imum security it is required that k be as large as possible while satisfying certain
other security criteria [5]. For fields of characteristic three, p = 3 the GF (pm)
extension k takes its maximum possible value of k = 6. Using a base Galois
fields of characteristic 3, GF (3m), some of the most secure IBE schemes are pos-
sible [5]. To date, few hardware architectures for GF (3m) arithmetic suitable for
cryptographic purposes have appeared in the literature. However, architectures
for bit serial and digit serial GF (3m) multipliers appeared in [6] and [7] respec-
tively. A flexible combined multiplication-division GF (3m) arithmetic processor
was published in [8].

In this work a new algorithm for Extended Euclidean Algorithm (EEA) based
inversion in GF (pm) is described, and an efficient slice-wise architecture in the
important case of GF (3m) is implemented. A literature search revealed no de-
signs similar to this in the open literature despite the fact that GF (3m) inver-
sion is required to implement the Tate pairing. An algorithm for coefficient-wise
Most Significant Coefficient First (MSC) GF (pm) multiplication suggested but
not discussed in [7] is also presented. A slice-wise architecture for this algorithm
for GF (3m) is also described. The functionality of these multiplier and inverter
algorithms was verified against a reference C++ software implementation and
the Mathematica package. The aim of this contribution is to describe the basic
arithmetic units necessary to perform the Tate pairing calculation and outline
how they may be incorporated into a full hardware Tate pairing accelerator.

2 Identity Based Encryption and the Tate Pairing

2.1 The Boneh-Franklin IBE Scheme

IBE relies on the existence of a transformation, T the Tate Pairing that takes
two points P , Q on E as inputs and outputs an element f of the Galois field,
i.e. T (P, Q) = f . There is a group structure on the points of E so a point
P can be multiplied by an integer a to get the point aP also on E. The se-
curity of the scheme relies on the fact that T (aP, bQ) = T (P, Q)ab, for el-
liptic curve points P ,Q and integers a, b. For example for when Alice e-mails
Bob at bob@bobscompany.com she can use his e-mail address as his public key
string. The system parameters contain two public points P and xP , and an
integer x known only to the private key generator (PKG). Bobs public key
string is hashed into a point Q on E. Bobs corresponding private key is the
point xQ. To encrypt, Alice picks a random number r and performs the Tate
pairing s = T (Q, xP )r. This Galois field element s represents the session key.
Alice sends the elliptic curve point rP to Bob across the insecure channel.
Bob is then able to retrieve the session key by getting xQ from the PKG. He
can then compute shared secret s via another calculation of the Tate pairing,
T (xQ, rP ) = T (Q, P )xr = T (Q, xP )r = s. An evesdropper Eve sees only P ,
xP , rP and Q and it is difficult to compute s with only this information [3]. A
flowchart of operation of the Boneh-Franklin IBE scheme is illustrated in Fig. 1.
More detailed descriptions of aspects of this scheme can be found in [3] and [4].
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Fig. 1. Flowchart of operation of the
Boneh-Franklin IBE encryption scheme

Fig. 2. Elliptic curve point addition

Table 1. Point addition and point doubling on E

PADD : (xt′ , yt′) = (xt, yt) + (xp, yp) PDBL : (xt′ , yt′) = [2](xt, yt)
λA = (yp − yt)/(xp − xt) λD = −a/yt

xt′ = λ2
A − (xt + xp) xt′ = xt + λ2

D

yt′ = (yt + yp) − λ3
A yt′ = −(yt + λ3

D)
l1A(x, y) = y − yt − λA(x − xt) l1D(x, y) = y − yt − λD(x − xt)
l2A(x) = x − xt′ l2D(x) = x − xt′

2.2 Arithmetic on Supersingular Curves

A supersingular elliptic curve E over a field GF (3m) is defined as the set of pairs
(x, y), x, y ∈ GF (3m) such that

E : y2 = x3 + ax + b, a �= 0, b ∈ GF (3m) (1)

The curve in (1) also defines an elliptic curve over the field extension GF (36m)
of GF (3m), as GF (3m) ⊂ GF (36m). Point addition of two points T, P ∈ E is
defined by constructing the line l1A through points T and P . It intersects E at a
third point R. A vertical line l2A is constructed through R and the point where
this line intersects E is defined as T + P . Point doubling is defined in a similar
manner except l1D is defined as the tangent to E at T , and the intersection
of R and l2D is defined as [2]T . The point addition operation in outlined in
Fig. 2. The lines l1A, l2A, l1D, l2D can be considered as functions on the curve
E. Algebraically the point addition operation (PADD) and the point doubling
operation (PDBL) for supersingular curves E over curves of characteristic 3 are
described in Table 1. Note the need for multiplication, inversion, addition and
subtraction over GF (3m).

2.3 The Tate Pairing and Millers Algorithm

Over fields of characteristic three the Tate pairing is a transformation from
two elliptic curve points P, Q ∈ E(GF (36m)) to an element f ∈ GF (36m),
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t(P, Q) → f . It is computed as outlined in Algorithm 1 [5]. In practice t(P, Q′)
is calculated to guarantee a meaningful result. Here Q′ = Q+S by PADD and S
is a random point on E(GF (36m)). Point P is chosen so that P ∈ E(GF (3m)),
i.e. P is an element of a subfield curve as this simplifies the calculation. The
number l is the largest prime which divides 36m − 1. Let n = �log2(l)	 − 1 and
li be the ith bit of l. The accumulators f1 and f2 in Algorithm 1 are elements of
GF (36m). Using a method described in [5] multiplications of two GF (36m) field
elements are are carried out in 36 GF (3m) multiplications. This multiplication
in the larger field is indicated by the symbol ∗ in Algorithm 1.

Algorithm 1 : Millers Algorithm
Initialize : T = P , f1 = 1, f2 = 1,

Q′ = (xq′ , yq′) = Q + S
Calculate : for li in n downto 1 do

T = [2]T by PDBL
f1 = f2

1 ∗ l1D(xq′ , yq′) ∗ l2D(xs)
f2 = f2 ∗ l2D(xq′) ∗ l1D(xs, ys)

⎫⎬
⎭ MDBL

if li = 1 then
T = T + P by PADD
f1 = f1 ∗ l1A(xq′ , yq′) ∗ l2A(xs)
f2 = f2 ∗ l2A(xq′) ∗ l1A(xs, ys)

⎫⎬
⎭ MADD

end if
end do
Return : f = (f1/f2)

A flowchart of the Tate pairing calculation in terms of the underlying GF (3m)
multiplier and divider cores is illustrated in Fig. 3. As illustrated the fundamen-
tal operations in this calculation are GF (3m) multiplication and inversion. A
proposed hardware architecture based on 25 multipliers and an inverter is illus-
trated in Fig. 4. Here R, M and I represent GF (3m) registers, multipliers and
inverters respectively. Using this type of architecture the updating of f1 and f2
from Algorithm 1 can be carried out in parallel.

3 MSC Multiplication in GF (3m)

In the well studied binary field GF (2) = {0, 1}, addition and multiplication are
carried out by the logical AND and XOR operations respectively and a single bit
is required for storage. This situation is more complex in GF (3) = {0, 1, 2} as
two bits are now required for storage and propagation of GF (3) and a non-trivial
amount of combinational logic is required to implement the basic addition and
multiplication operations. As the underlying logical units on many FPGAs are
reconfigurable 4:1 lookup tables this makes them a suitable choice of implemen-
tation platform for GF (3) arithmetic. The basic GF (3) arithmetic operations
can be efficiently mapped to two 4:1 reconfigurable units. We choose the en-
coding 0 = {00, 01}, 1 = {10} and 2 = {11} as the check if zero operation
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Fig. 3. Flowchart the computational opera-
tions in Millers Algorithm in terms of under-
lying GF (3m) arithmetic

Fig. 4. Proposed hardware archi-
tecture for calculation of the Tate
Pairing

is achieved by only checking the high bit of a GF (3) element. In our imple-
mentations elements of GF (3m) are stored in registers of 2m bits. Thus in an
FPGA implementation 2m one bit flip-flops (the fundamental storage unit on
reconfigurable hardware)are required to store a GF (3m) element.

Multiplicative operations (multiplication, inversion etc.) in GF (pm) are per-
formed modulo a specially chosen irreducible polynomial F = xm +

∑m−1
i=0 fix

i.
It is useful to define a polynomial f ′ from F by :

f ′ =
m−1∑
i=0

fix
i = fm−1x

m−1 + . . . + f1x + f0, fi ∈ GF (p) (2)

Using the most-significant-coefficient-first (MSC) multiplication (Algorithm 2)
the product C = AB ∈ GF (pm) is computed in m iterations. On each iteration
the partial product biAx ∈ GF (pm) is calculated and accumulated. Here multi-
plication by x involves a coefficient-wise shift to the left. After m iterations the
product AB is found in the accumulator (Z).

Algorithm 2: MSC Mul in GF(pm)
Input : A, B ∈ GF (pm), polynomial f ′

Initialize : Z = 0
Calculate : for i in m − 1 downto 1 do

Z = Z + biA
Z = xZ
if zm �= 0 then

Z = Z − zmf ′

end if
Return : C = Z + b0A Fig. 5. Calculation slice of

GF (3m) MSC Mul
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The basic calculation slice for implementation in fields over GF (3) is illus-
trated in Fig. 5. The blocks +,− and × represent GF (3) arithmetic combina-
tional logic. The MSC Mul architecture involves a chain of m such slices (0
. . . m−1) with each slice updating a coefficient (2-bits) of Z, along with a m−1
bit counter for control line r (r-low indicating the final iteration). All data lines
are 2-bit lines, and a 1-bit control line r indicates the final iteration of the calcu-
lation in which Z updates differently. Fixed inputs to each slice are coefficients
of A and f ′ (2-bit coefficients ai and f ′

i from (2)). The input bmsc represent
the most significant coefficient of B (outputted from a 2-bit shift register). The
feedback coefficient zm, is the zo output from the mth slice. If the overflow co-
efficient zm is nonzero the shifted value of zi is scaled by zmf ′

i . The slice in Fig.
5 can be efficiently synthesized to FPGA technology and was found to occupy
fourteen 4:1 lookup tables and four 1-bit flip flops. Clock frequency for a single
slice is 131 MHz on Xilinx VirtexE device.

4 Inversion in GF (3m) Based on the EEA

In this section we present a new algorithm for inversion in GF (pm) based on
the Extended Euclidean Algorithm, (EEA) (Algorithm 3). It is a generalization
of the GF (2m) inversion algorithm found in [9]. The inverse of input A,A−1 is
calculated after 2m iterations. It is useful to define the polynomial f ′′ from F
by:

f ′′ =
m∑

i=1

fi

f0
xi =

1
f0

xm + . . . +
f2

f0
x2 +

f1

f0
x fi ∈ GF (p) (3)

This is necessary to perform modulo reduction if there is an overflow coefficient
in the division by x in Algorithm 3. Polynomials R and S and polynomials U
and V update independently of each other (Algorithms 4 and 5) and this allows
for the definition of two sperate calculation slices for our implementation in
GF (3m). These are illustrated in Figs 6 and 7 respectively. The architecture for
a GF (3m) inverter based on these slices includes an (m + 1) slice chain of RS
slices (0 . . . m) and an m slice chain of UV slices (0 . . . m−1), along with a global
control of a 2m bit iteration counter and a 2m bit bidirectional shift register for
tracking the value of δ. The δ = 0 condition is efficiently checked by the status
of the least significant bit of this register.

The GF (3) RS calculation slice, Fig 6, as described in Algorithm 4, updates
coefficients (2-bits) of the R and S polynomials. Data lines are 2-bit lines and
control is via the 1-bit i, r and d lines. The control i-low indicates that two bit
registers for holding coefficients of R and S are initialized to values of ai and fi

respectively. For the rest of the calculation the resisters are updated via the d
and r lines. The condition d-low indicates the δ = 0 condition in Fig. 6 and the
r-low control indicates the condition rm = 0 (Algorithm 4) and is obtained by
tapping the high bit of the ro output of the most significant RS slice. The input
q is the 2-bit GF (3) element q = sm/rm which is calculated on each iteration.
The slices are chained so the ro, so from in the jth slice connect to the ri,si
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Algorithm 3 : EEA Inv in GF(pm)
Input: A ∈ GF (pm), irreducible F
Initialize: S = F , R = A, U = 1,

V = 0, δ = 0, q = 0, t = 0
Calculate : for i in 0 to 2m − 1 do

if(rm = 0) then
R = xR
U = (xU) mod F
δ = δ + 1

else
q = sm/rm

S = S − qR
V = V − qU
S = xS
if(δ = 0) then

t = R, R = S, S = t
t = U , U = V , V = t
U = (xU) mod F
δ = δ + 1

else
(U = U/x) mod F
δ = δ − 1

end if
end if

Return : A−1 = (U/rm)

Algorithm 4 : EEA Inv RS Up-
date

if(rm = 0) then
R = xR, S = S

else
S = S − qR, S = xS
if(δ = 0) then

t = R, R = S, S = t
end if

end if

Algorithm 5 : EEA Inv UV Up-
date

if(rm = 0) then
(U = xU) mod F

else
V = V − qU
if(δ = 0) then

t = U , U = V , V = t
U = (xU) mod F

else
U = (U/x) mod F

end if
end if

in the (j + 1)th slice. A single RS slice was synthesized for the Xilinx VirtexE
technology and was found to occupy twenty-two 4:1 lookup tables and four 1-bit
flip flops with an estimated clock frequency of 113 MHz.

The operation of the UV calculation slice is outlined in Algorithm 5 and
illustrated for GF (3) in Fig. 7. Its operation is more complex than that of the
RS slice due to the possible multiplication of U and V −qU by x, and the division
of U by x, modulo the irreducible polynomial F . The UV calculation slices are
chained so that the uo, vo from the jth slice are connected to the ui, vi in the
(j + 1)th slice. In order to perform the division operations the input u′

i in the
jth slice is driven by the uo output in the (j + 1)th slice. The inputs of f ′

i and
f ′′

i are constant 2-bit coefficients of the polynomials in (2) and (3). The inputs
u0 and um−1 are the least and most significant coefficients of polynomial U and
are common to all m slices. These are the uo outputs of the first and last UV
slices in the chain. Similarly the input v′

m−1 is common to every slice and is
given by v′

m−1 = vm−1 − qum−1, generated from the outputs uo and vo from the
(m− 1)th UV slice. The MUXs indicated by stars in Fig. 7 are controlled by the
high bit of u0, um−1 and v′

m−1 respectively and control the modulo reduction
for multiplication and division by x. A UV calculation slice was synthesized for
Xilinx VirtexE technology and was found to occupy thirty-two 4:1 lookup tables
and four 1-bit flip flops, with an estimated clock frequency of 96 MHz.
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Fig. 6. RS calculation slice of GF (3m)
EEA Inv

Fig. 7. UV calculation slice of GF (3m)
EEA Inv

5 Results

The slice-wise GF (3m) multiplier and inverter cores were captured in the VHDL
design language at the RTL level. The designs were synthesized over three differ-
ent field sizes suitable for cryptography GF (397), GF (3127) and GF (3161) and on
two high performance FPGA technologies, the Xilinx VirtexE, and Vitrex2Pro.
Both post-synthesis (PS) and post place-and-route (PPR) timing results are
given along with the slice usage (the fundamental FPGA area unit post place-
and-route) and the percentage of the chip occupied (Tables 2-5). In [6] and [7]
only multiplication over the field GF (397) was considered and a comparison of
multiplication time of the MSC Mul design with these designs on a similar tech-
nology is presented in Table 6. As seen the MSC Mul has a better performance
than that in [6] and a slightly decreased performance than the digit serial multi-
plier in [7]. However, as this design processes a number of coefficients in parallel
the underlying FPGA resource usage in this design is a factor of 4 times larger
then the MSC Mul.

It has been illustrated that as field size increases a high clock frequency is
still obtainable for our multiplier, Tables 2-3. This is due to the simple slice-wise
nature of the designs. The EEA Inv inverter design gives a higher performance
than the joint multiplier divider design presented in [8]. Its speed is slower than
that of the MSC Mul over similar fields due to the increased complexity of
the slices, and the greater number of control signals required to propagate to
each slice. A high performance is still achievable as field size increases however,
particularly on the Virtex2Pro technology , Table 5. An inversion time of 3.13
μs is achievable on this technology over GF (397).

Both our MSC Mul and EEA Inv designs over GF (3m) are suitable for im-
plementation on FPGA technology. The calculation slice-wise nature of these
designs, which contains an amount of combinational logic followed by two bit
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Table 2. MSC Mul implemented on a
Xilinx XCV3200E-fg1156 device

GF (3m) PS/MHz PPR/MHz slices %
97 106.4 68.7 934 2
127 104.7 59.8 1250 3
161 104.7 58.8 1607 4

Table 3. MSC Mul implemented on a
Xilinx XCV2VP125-ff1704 device

GF (3m) PS/MHz PPR/MHz slices %
97 213.9 119.0 985 1
127 210.7 79.9 1253 2
161 210.7 70.5 1634 2

Table 4. EEA Inv implemented on a Xil-
inx XCV3200E-fg1156 device

GF (3m) PS/MHz PPR/MHz slices %
97 66.6 47.6 2300 7
127 64.8 41.2 3014 9
161 62.8 32.6 3810 11

Table 5. EEA Inv implemented on a Xil-
inx XCV2VP125-ff1704 device

GF (3m) PS/MHz PPR/MHz slices %
97 117.0 61.8 2210 3
127 116.1 50.1 2897 4
161 113.8 44.5 3669 6

Table 6. Comparison of multiplication time of MSC mul design over GF (397) against
those appearing in [6] and [7] implemented on Xilinx Virtex2Pro technology.

Design Time for optimized multiplication / μs

Bit serial multiplier [6] 50.68 (@ 20 MHz)
Digit serial multiplier [7] 0.74 ( @ 94.4 MHz)

MSC mul 0.81 (@ 119 MHz)

registers (Figs. 5-7) mirrors the internal structure of the Xilinx FPGA, which
contains 4:1 configurable logic elements followed by single bit flip-flips. Exclud-
ing global control lines each calculation slice only communicates with its nearest
neighbors in the slice chains hence the efficient Virtex2Pro adjacent slice rout-
ing resources can be exploited. The more efficient routing resources and more
advanced processing on the Virtex2Pro over the VirtexE family of devices are
the most probable causes of the increase in performance of when implemented
on this technology.

The performance and area usage of our GF (3m) multiplier and inverter cir-
cuits make them suitable for use in an FPGA implementation of Miller Algorithm
as outlined in section 2. Due to the low slice usage of the MSC Mul an FPGA
processor for calculation of the Tate pairing over GF (3m) as outlined in Figure
4 becomes feasible (30% of a Xilinx XCV2P125 device). Using this architecture
the PADD/PDBL, MDBL and MADD operations from Algorithm 1 can be cal-
culated in 5m, 50m and 38m clock cycles respectively. It is probable that the
EEA Inv inverter (@ 62.8 MHz) represents the critical path in the design out-
lined in Fig. 4 as the remainder of the design consists of multipliers, memory
elements, a bus architecture and a simple controller for scheduling the operations
(not shown). Conservatively estimating the total design runs at 40 MHz, it is
estimated that the Tate pairing can be computed on a Xilinx XC2P125 device
for the base field GF (397) in approximately 35 ms. This represents a fivefold
increase over the results reported in [5] for the same calculation on a 1 GHz
Pentium 3 processor.
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6 Conclusions and Further Work

In this paper efficient slice-wise multiplication and inversion architectures in
GF (3m) have been described. To the authors knowledge the EEA Inv architec-
ture is the most efficient FPGA implementation to date for inversion over fields
GF (3m). Our MSC Mul multiplier compares well performance wise with recent
FPGA implemented GF (3m) multipliers and utilized a relatively small amount
of FPGA resources. Using these multiplier and inverter components as outlined
a hardware accelerator for IBE schemes becomes viable by migrating the com-
putation of the Tate pairing to hardware. Work is currently underway to design
a full FPGA implementation of an IBE scheme using the multiplier and inverter
cores described here.
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research innovation fund project.
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Abstract. Cryptosystem designers frequently assume that secret pa-
rameters will be manipulated in tamper resistant environments. However,
physical implementations can be extremely difficult to control and may
result in the unintended leakage of side-channel information. In power
analysis attacks, it is assumed that the power consumption is correlated
to the data that is being processed. An attacker may therefore recover
secret information by simply monitoring the power consumption of a de-
vice. Several articles have investigated power attacks in the context of
smart card implementations. While FPGAs are becoming increasingly
popular for cryptographic applications, there are only a few articles that
assess their vulnerability to physical attacks. In this article, we demon-
strate the specific properties of FPGAs w.r.t. Differential Power Analysis
(DPA). First we emphasize that the original attack by Kocher et al. and
the improvements by Brier et al. do not apply directly to FPGAs be-
cause their physical behavior differs substantially from that of smart
cards. Then we generalize the DPA attack to FPGAs and provide strong
evidence that FPGA implementations of the Data Encryption Standard
(DES) are vulnerable to such attacks.

1 Introduction

Since their publication in 1998 [1], power analysis attacks have attracted
significant attention within the cryptographic community. So far, they have
been successfully applied to different kinds of (unprotected) implementations
of symmetric and public-key encryption schemes. Most published attacks
apply to smart cards and only a few articles assess the vulnerability of FPGA
implementations to power analysis attacks [2,3]. In this paper, we demon-
strate the specificity of this kind of platform in the context of Differential
Power Analysis. First, we show that the original attack described in [1] and
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its most recent improvements [4] do not work properly for FPGAs because
their physical behavior is different than smart cards. Then we generalize the
power consumption model and apply it to FPGAs. Finally, we describe a
correlation attack [4,5] in which we correlate theoretical predictions of the
power consumption with real measurements in order to make an efficient
use of all the collected data. The resulting attack is more efficient than the
popular “multiple-bit” DPA and allows interesting theoretical predictions
of the attacks with simulated data. All these techniques are successfully
applied to an FPGA implementation of the DES. This is the first result on
the vulnerability of an FPGA implementation of a block cipher to power attacks.

This paper is organized as follows. Section 2 presents the hypothesis used
to carry out the DPA and Sect. 3 gives a short description of the DES
algorithm. Section 4 describes the original DPA attack and underlines why it
is not applicable to FPGAs. Sections 5 and 6 investigate a generalized power
attack. Section 7 presents some theoretical predictions of the generalized attack
and Sect. 8 applies it to real measurements. Finally, conclusions are presented
in Sect. 9.

2 Hypothesis

In Differential Power Analysis, an attacker uses a hypothetical model of the
device under attack to predict its power consumption. These predictions are
then compared to the real measured power consumption in order to recover
secret information (e.g. secret key bits). The quality of the model has a
strong impact on the effectiveness of the attack and it is therefore of primary
importance.

While little information is available on the design and implementation of
FPGAs (much of the information is proprietary), we can make assumptions
about how commercial FPGAs behave at the transistor level. The most popular
technology used to build programmable logic is static RAM1, where the storage
cells, the logic blocks and the connection blocks are made of CMOS gates. For
these circuits, it is reasonable to assume that the main component of the power
consumption is the dynamic power consumption. For a single CMOS gate, we
can express it as follows [7]:

PD = CLV 2
DDP0→1f , (1)

where CL is the gate load capacitance, VDD the supply voltage, P0→1 the prob-
ability of a 0 → 1 output transition and f the clock frequency. Equation (1)
specifies that the power consumption of CMOS circuits is data-dependent. How-
ever, for the attacker, the relevant question is to know if this data-dependent
behavior is observable. This was confirmed by the following test.
1 For all the experiments, we used a Xilinx Virtex XCV800 FPGA [6].
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(a) Hamming weight (b) Transitions

Fig. 1. Preliminary test.

Let three 4096-bit vectors be defined as follows. Initially, a0 = 00000...001 and
b0, c0 = 00000...000. Then:

ai+1 = SL(ai)
bi+1 = bi ⊕ ai

ci+1 = ci ⊕ bi ,

where SL is the shift left operator and consecutive values (xi, xi+1) are separated
by a register. It is easy to see that:

– a is a bit-vector with a constant Hamming weight (H(a) = 1). The position
of the 1-bit inside the vector is periodically incremented from 0 to 4095.

– b is a bit-vector for which the Hamming weight is incremented/decremented
from 0 to 4095.

– c is a bit-vector for which the number of bit switches between two consecutive
states is incremented/decremented from 0 to 4095.
A design that generates these three vectors was implemented in the FPGA.

Figure 1(a) illustrates2 the power consumption of the vectors a and b. Fig-
ure 1(b) illustrates the power consumption of vectors a, b and c. From this
experiment, we conclude that the power consumption clearly depends on the
number of transitions in registers but not on the Hamming weight of the data
in the registers.

Based on these considerations, we used the following hypothesis to mount
power attacks against FPGAs: “an estimation of a device power consumption
at time t is given by the number of bit transitions inside the device registers at
this time.” Predicting the transitions in registers is reasonable since registers
usually consume a large part of the power in a design.
2 Measurement setups for DPA have already been intensively described in the litera-

ture. In Fig. 1, we observe the voltage variations over a small resistor inserted in the
supply circuit of the FPGA. Every trace was averaged 10 times in order to remove
the noise from our measurements.
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3 The Data Encryption Standard

In 1977, the Data Encryption Standard (DES) algorithm [8] was adopted
as a Federal Information Processing Standard for unclassified government
communication. Although a new Advanced Encryption Standard (AES, [9]) was
selected in October 2000, DES is still widely used, particularly in the financial
sector. DES encrypts 64-bit blocks with a 56-bit key; its main operations are
permutations, substitutions and XOR operations. DES is an iterated block
cipher that applies 16 key-dependent transformations called rounds to the
plaintext. This structure allows for very efficient hardware implementations.

The plaintext is first permuted by a fixed permutation IP. Next the re-
sult is split into two 32-bit halves, denoted with L (left) and R (right) to
which a round function is applied 16 times. The ciphertext is calculated by
applying the inverse of the initial permutation IP to the result of the 16th round.

The secret key is expanded by the key schedule algorithm from 56 bits
to sixteen 48-bit subkeys Ki; each round uses a different subkey Ki. The key
schedule consists of bit permutations and rotations. As a consequence, if one
can find any subkey, one can derive the complete key immediately (the missing
8 bits can be found by exhaustive search over 256 values).

Finally, the round function is represented in the grey part of Fig. 2(a); it
can be described as follows:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki), i = 0, . . . 15 .

Here L16‖R16 is the ciphertext. The details of the nonlinear function f are
provided in Fig. 2(b): the right part Ri is first expanded to 48 bits with the E
box, which duplicates some bits. Next, the 48-bit subkey Ki is added bitwise
modulo 2 (XORed) to E(Ri) and the result of the XOR function is sent to eight
non-linear S-boxes (S ). Each of them has six input bits and four output bits.
The resulting 32 bits are permuted by the bit permutation P.

f

li Ri

L0 R0

Ki

Ri

Expansion

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Permutation

(a) DES (b) f function

Fig. 2. Data Encryption Standard.
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We have performed our experiments on the sequential DES implementation of
[10] that takes one clock cycle to perform one round. It is represented in Fig. 2(a).

4 Original Attack

In its original form [1], Differential Power Analysis of DES requires a selection
function D(C, b, KSb,15) that we define as computing the value of a bit b which
is part of the intermediate vector L15 (Fig. 3(a)). One can write b as follows:

b = one output bit of Sb ((six bits of L16) ⊕ KSb,15) ⊕ one bit of R16 .

To implement the DPA attack, an attacker first observes m encryptions and
captures the power traces Ti (1 ≤ i ≤ m) and their associated ciphertexts Ci.
No knowledge of the plaintext is required. By guessing six key bits KSb,15, the
function D can be computed for each value of i and we can divide the traces
into two sets: one set corresponding to Di = 0 and the other one with Di = 1.
The traces in each set are then averaged to obtain two average traces A0 and
A1 and we can compute the difference Δ = A0 − A1.

If KSb,15 is correct, the computed value for D will be equal to the actual
value of target bit b with probability 1. As the power consumption is correlated
to the data, the plot of Δ will be flat, with spikes in regions where D is
correlated to the values being processed. If KSb,15 is incorrect, Δ will be flat
everywhere. Finally, in a multiple bit attack, the selection function outputs
d bits with d > 1. It allows to improve the SNR of the attack: if a single-bit
DPA attack using N traces has a signal to noise ratio SNR1, then an all-zeros-
or-all-ones d-bit DPA attack using N traces will have a ratio SNRd = d ·SNR1.

According to [1], the selection function was chosen because, at some point
during a software DES implementation, the software needs to compute its
value. When this occurs or any time data containing the selection bits is
manipulated, there will be a slight difference in the amount of power dissipated,
depending on the values of these bits. However, in the case of RAM-based
FPGA implementations, this function does not correctly match the physical
behavior of the devices. In a multiple-bit attack, one tries to distinguish bit
vectors of different Hamming weights, although it is clear from Fig. 1 that the
most significant power differences are related to the switching activity between
two states. In the next section, we propose to modify the selection function in
order to take into account the physical behavior of the FPGAs.

5 Modified Selection Function

In its original form, the selection function is defined as computing the value of
a bit b which is part of the intermediate vector L15. For multiple bit attacks,
d bits are computed and we denote them by D = L15[p0, p1, . . . , pd−1], where
pi is the position of the ith bit guessed. Distinguishing D =“00. . . 0” from
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f

K15D

(a) Original (b) Modified

f

K15D1

D2

L15 R15 R15L15

L16 L16R16 R16

Fig. 3. Selection functions D,D′.

D =“11. . . 1” therefore implies distinguishing vectors of different Hamming
weights. A modified selection function can be defined as follows. Let D1 be the
original selection function that involves bits L15[p0, p1, . . . , pd−1]. As L16 is part
of the ciphertext, we can access it. With the notation D2 = L16[p0, p1, . . . , pd−1],
we define a new selection function correlated with the switching activity of the
device: D′ = H(D1 ⊕ D2). Based on this selection function, we have mounted
successful 4-bit attacks against FPGA implementations of the DES. However,
as a multiple bit attack only considers the texts that give rise to 0 or d switches,
it is far from optimal and a lot of texts are actually not used. Next, we propose
an improved attack based on the correlation between the theoretical power
consumption files and the practical measurements.

Note that the same model is used implicitly for software implementations
in smart cards: Brier et al. clearly state in [4] that the DPA model is based on
the Hamming distance between the data handled and an unknown but constant
reference state. This constant reference state simply corresponds to the address
of an instruction. As a software implementation will load the instruction before
loading the data, a DPA attack actually models the switching activity between
two states, but one of these states (i.e. the instruction address) is constant. Our
selection function (with two variable states) is therefore a generalization of the
original DPA model.

6 Improved Attack

A correlation attack [4,5] against an FPGA implementation of the DES is divided
into three steps. Let N be the number of plaintext/ciphertext pairs for which
the power consumption measurements are available. Let K be the secret key
used to encrypt. When simulating the attacks, we assume that K is known to
the attacker (when the attack is implemented, K is of course unknown).

Prediction phase: For each of the N encrypted plaintexts, the attacker first
selects a target S-box for the selection function D′ (cf. supra). Then, he predicts
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the value of D′ (i.e. the number of bit flips inside a target register between
rounds 15 and 16) for the 26 key guesses. The result of the prediction phase is
an N × 26 selected prediction matrix containing integers between 0 and 4.
For simulation purposes, it is also interesting to produce the global prediction
matrix that contains the number of bit flips inside all the registers3 of the
design, for all the cycles. That is, if the encryption is performed in 16 clock
cycles, we obtain an N × 16 matrix, containing integers between 0 and 64. This
is only feasible if the key is known. According to the hypothesis of Sect. 2, these
matrices give estimations for the power consumption of the device.

Measurement phase: During the measurement phase, we let the FPGA
encrypt the same N plaintexts with the same key, as we did in the prediction
phase. While the chip is operating, we measure the power consumption for the 16
consecutive clock cycles. Then, the power consumption trace of each encryption
is averaged 10 times in order to remove the noise from our measurements and we
store the maximum value of each encryption cycle so that we produce a N × 16
matrix with the power consumption values for all the texts, cycles. We denote
it as the global consumption matrix.

Correlation phase: In the correlation phase, we compute the correlation
coefficient between the 16th column of the global consumption matrix (corre-
sponding to 16th round targeted by the prediction phase) and all the columns
of the selected prediction matrix (corresponding to all the 26 key guesses). If
the attack is successful, we expect that only one value, corresponding to the
correct key guess, leads to a high correlation coefficient.

An efficient way to perform the correlation between theoretical predic-
tions and real measurements is to use the Pearson coefficient. Let Ti denote the
ith measurement data (i.e. the ith trace) and T the set of traces. Let Pi denote
the prediction of the model for the ith trace and P the set of such predictions.
Then we calculate:

C(T, P ) =
E(T.P ) − E(T ).E(P )√

V ar(T ).V ar(P )
. (2)

Here E(T ) denotes the mean of the set of traces T and V ar(T ) its variance. If
this correlation is high, it is usually assumed that the prediction of the model,
and thus the key hypothesis, is correct.

Finally, theoretical predictions of the attack can be performed by using
the global prediction matrix in place of the global consumption matrix. As
the global prediction matrix contains the number of bit switches inside all the
registers, it represents a theoretical noise free measurement and may help to
determine the minimum number of texts needed to mount a successful attack,
3 Note that since the same key is used for all the measurements, the power consumption

of the key schedule is fixed and may be considered as a DC component that we can
neglect as a first approximation.
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i.e. an attack where the correct key guess leads to the highest correlation
coefficient. This is investigated in the next section.

7 An Attack Using Simulated Data

Let our target for the selection function D′ be the 4 bits of the register L that
are affected by the 6 Most Significant Bits (MSBs) of the round key 16. It
corresponds to the output bits of S-box S0. Let the number of measurements be
N = 4096. A theoretical prediction of our attack can be performed by running
it with simulated data.
In the first step of the simulated attack, we produce the selected prediction
matrix and global prediction matrix as defined in the previous section.
Thereafter, we perform the correlation phase between these two matrices. If
the attack is successful, we expect that only one value, corresponding to the
correct key guess, leads to a high correlation coefficient. Figure 4 shows that this
expectation is fulfilled and the correct 6 MSBs of the last round key guess are
1Ehex = 30dec.
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Fig. 4. A correlation attack using simulated data

As an attacker would like to learn the minimum number of plaintexts that are
necessary to find the key, we have also calculated this correlation coefficient for
different values of N : 0 ≤ N ≤ 2 000. As shown in Fig. 5, after approximately
400 plaintexts the right 6 key-bits can be distinguished from a wrong guess. We
may therefore say that the attack is theoretically successful after about 400
texts.
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Fig. 5. A correlation attack using simulated data for different N values.

8 An Attack Using Practical Measurements

When attacking a device in practice, the selected prediction matrix stays
unchanged while we replace the global prediction matrix by the measured
global consumption matrix. Therefore, we let the FPGA encrypt the same
N = 4096 plaintexts with the same key as we did in the previous section and
produced the matrix as described in Sect. 6.

In order to identify the correct 6 MSBs of the final round key, we used
the correlation coefficient again. As it is shown in Fig. 6, the highest correlation
occurs when the key guess is 1Ehex = 30dec. This value corresponds to the
correct 6 MSBs of the round key 16. As a consequence, the attack is practically
successful, i.e. the selected prediction matrix is sufficiently correlated with
the real measurements and we can extract the key information. Remark that
comparing Fig. 4 and Fig. 6 clearly allows to evaluate the effect of the noise in
our measurements.

It is important to note that more bits of the final subkey may be found
using exactly the same set of measurements. The attacker only has to modify
the selected prediction matrix in order to target different key bits. As every
subkey consists of 48 bits and the master key of 56 bits, we can easily find the
last 8 key bits by exhaustive search.

Finally, a more accurate prediction of the FPGA power consumption could
allow to improve the efficiency of the attack. A notable feature of FPGAs is
that they contain different components (e.g. logic blocks, connections) with a
different power consumption because of a different effective load capacitance. As
a consequence, the power consumption of FPGA designs does not only depend
on their switching activity but also on the internal components used. Recent
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works [11] tried to identify these important resources in the FPGA architecture
and to characterize their power consumption. This could be used to improve
the power consumption predictions.

In practice, more accurate estimations about the most power hungry compo-
nents of an FPGA design can be derived from the delay information that is
generated by most implementation tools [12]. As an input delay represents the
delay seen by a signal driving that input due to the capacitance along the wire,
large (resp. small) delay values indicate that the wire has a large (resp. small)
capacitance. Based on the reports automatically generated by implementation
tools, one may expect to recover a very accurate information about the signals
that are driving high capacitances. The knowledge of the implementation
netlists with delay information is therefore relevant. It will allow an attacker to
improve the attack.
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Fig. 6. A correlation attack with real measurements

9 Conclusion

This paper demonstrated the specific properties of SRAM-based FPGAs in the
context of Differential Power Analysis. As the original attack of [1] does not
apply ‘as it is’ to these reconfigurable devices, we generalized the model of power
attacks in order to take into account the physical behavior of FPGAs. The
resulting attack is effective with a reasonable number of measurements. It is more
efficient than the popular “multiple-bit” DPA and allows interesting theoretical
predictions of the attacks with simulated data. Moreover, the power consumption
model and therefore the efficiency of the attack could be improved in different
ways, for example by taking advantage of implementation netlists and delay
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information as we suggest in Sect. 8. Other block ciphers (e.g. AES Rijndael)
are also vulnerable to our methods. These results confirm that power analysis
presents a realistic threat for FPGA implementations of block ciphers.
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Abstract. Recently, the appearance of very large (3 – 10M gate) FPGAs
with embedded arithmetic units has opened the door to the possibility of
floating point computation on these devices. While previous researchers
have described peak performance or kernel matrix operations, there is
as yet relatively little experience with mapping an application-specific
floating point loop onto FPGAs. In this work, we port a supercomputer
application benchmark onto Xilinx Virtex II and Virtex II Pro FPGAs
and compare performance with three Pentium IV Xeon microprocessors.
Our results show that this application-specific pipeline, with 12 multiply,
10 add/subtract, one divide, and two compare modules of single precision
floating point data type, shows speed up of 10.37×. We analyze the trade-
offs between hardware and software to characterize the algorithms that
will perform well on current and future FPGA architectures.

1 Introduction

Over the past decade, Reconfigurable Computing (RCC) using Field-Programm-
able Gate Arrays (FPGAs) has demonstrated speed-ups of one to two orders
of magnitude on data- and compute-intensive processing tasks involving fixed
point computation on small integers, typically in signal and image processing
applications. Floating point computation was not mapped to FPGAs due to
the large operand size (32- or 64-bit) and excessive area consumed by float-
ing point arithmetic units on configurable logic cells. Recently, that limitation of
FPGAs appears to be receding: 3–10 million gate FPGAs with embedded proces-
sors, memories, and arithmetic units have become available, making it feasible
to consider a broader range of applications than traditional signal and image
processing, including those requiring floating point operations. Studies compar-
ing floating point performance of FPGAs vs. high performance microprocessors
[1] suggest that peak FPGA floating-point performance is growing significantly
faster than peak floating-point performance for a CPU. Other studies [2,3] also
suggest that modern FPGAs may be competitive with microprocessors on dense
matrix operations such as matrix multiply and LU decomposition.

However, it is well-known in the supercomputing community that peak per-
formance and dense matrix kernel operations are far from accurate predictors of
realized performance of a complete application. Memory access patterns, cache
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behavior, control flow, and inter-processor communication result in actual per-
formance that is well below peak. For example, applications run on a cluster
supercomputer often realize no more than 50–80% of theoretical peak [4], reduc-
ing a 30 TFLOP machine to 15 TFLOPs.

The purpose of the work described below is to better quantify the perfor-
mance of FPGA-based floating point computation on real applications by map-
ping a portion of an application (as opposed to a kernel) onto an FPGA. We
compare the performance of an application-specific (single precision) floating
point pipeline mapped to the Virtex family of FPGAs to execution on compa-
rable microprocessors.

Reconfigurable Computing using FPGAs exploits “spatial parallelism”, the
ability, for example, to unroll a computational block directly onto hardware, ex-
ecuting the entire block in parallel. This ability is not available on a CPU, which
depends on a fast clock rate to increase performance. FPGAs use a significant
amount of spatial parallelism to compensate for having a clock speed that is an
order of magnitude slower than that of a CPU.

In this paper we describe our FPGA implementation of a floating-point in-
tensive supercomputing application called “radiative heat transfer” [5]. First, we
describe other floating-point applications implemented on FPGAs and discuss
floating-point libraries for FPGAs. Next, we give an overview of the radiative
heat transfer application. We describe how we parallelized the inner loop of
the application, which is the most computationally intensive portion of the pro-
gram. We present performance results of the inner loop on three Intel Pentium
IV Xeon workstations and compare that to the performance of our implemen-
tation on Xilinx Virtex II and Virtex II Pro FPGAs. Finally, we provide our
conclusions.

2 Related Work

Using FPGAs for floating-point operations is not new. Past efforts explor-
ing floating point include exploration by Virginia Tech[6], a re-evaluation at
Clemson[7] and a library produced at Northeastern[8]. These efforts demon-
strate the viability of using floating-point on FPGAs. FPGAs are viable targets
because they can be programmed to include many concurrent floating-point
operations[1]. Earlier work [9] found that FPGAs were not fast enough to be
competitive with general purpose processors for floating point. However, cur-
rent generations have increased performance with faster logic and embedded
multipliers [10]. This increased performance may allow FPGAs to be used for
floating-point in areas normally reserved for supercomputers.

FPGAs offer several advantages when used to calculate floating-point oper-
ations. First, FPGAs offer a high degree of flexibility, where they can provide a
customized solution for a given floating-point algorithm. Second, due to the avail-
able concurrency, an FPGA can provide a floating-point solution that is faster
than a general purpose processor. Third, FPGAs are based on SRAM, and thus
they track trends in transistors (e.g. “Moore’s Law”) more closely than general
purpose processors. FPGAs take advantage of transistor density to provide high
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levels of concurrency. Offsetting those advantages are the slow clock speed rel-
ative to microprocessors and the relatively large area required by floating point
operands and operations, which limits spatial parallelism opportunities.

Several commercial [11,12] and open source [8,10] libraries are available for
creating floating-point circuits. For our implementation of the radiative heat
transfer algorithm, we chose the FPLibrary, a VHDL library of hardware opera-
tors for floating-point computation, developed by the Arénaire project [13]. The
FPLibrary meets three important qualifications. First, it is written in VHDL
in a platform-independent manner. This allows designs to be easily targeted
to different FPGA architectures. Second, the library implements add, multiply
and divide floating point operations which are required for this algorithm. Third,
the modules and floating-point types have parameterizable bitwidths, so that we
can easily program the library for single, double or arbitrary sized floating point
types. FPLibrary is used to leverage the advantages of FPGAs to implement the
core of a supercomputing application.

3 Description of the Monte Carlo Radiative Heat
Transfer Simulation

Monte Carlo radiative heat transfer simulation was chosen for implementation
on an FPGA, because it contains computationally intensive floating-point op-
erations. It has been run on a SPARCStation computer cluster [14] as well the
Cyber 205 supercomputer [5]. It is a real world problem, because it models the
geometry of a laser isotope separation (LIS) unit to accurately determine the
radiant exchange factors among the surfaces. This is an important component
of the isotope separation process simulation.

Fig. 1. Test Geometry for Radiative Heat Transfer

The radiative heat transfer simulation is a Monte Carlo application that
traces a large number of photons emitted from the surfaces of a 2-D enclosure
(Figure 1). The simulation records how many photons emitted from each surface
i were absorbed at surface j. This information is used to compute a heat transfer
coefficient between each pair of surfaces, i and j. It is a Monte Carlo application
because it uses random values to determine characteristics of an emitted photon’s
path and because it traces a large number of photons.



98 M. Gokhale et al.

In the algorithm, N photons are emitted (with randomly chosen characteris-
tics) from each surface of an m-sided polygon. The algorithm follows the path of
each emitted photon. It identifies the surface of intersection, which is the most
computationally intensive portion of the algorithm. Next, a random number de-
termines whether the photon is absorbed into the surface, reflected off of it, or
transmitted through it. The photon is followed until it is transmitted, absorbed
or lost. This algorithm is designed to calculate intersections assuming a con-
vex chamber. There is also a more sophisticated version which works with both
convex and concave surfaces, and is the subject of future work.

Fig. 2. Radiative Heat Transfer algorithm loop structure. Loop “d” is implemented
on the FPGA.

The parallel version of the algorithm distributes at the “task” level. The
pseudo-code for each task is summarized in Figure 2. In loop “a”, a task iterates
through the m surfaces of the polygon and traces the N photons emitted from
each surface. For each surface, a for loop (“b”) iterates through each photon
emitted, then an inner while loop (“c”) checks if the photon is still active before
following it to its next surface intersection. Inside the while loop, an inner for
loop (“d”) computes the surface intersection, then the random number generator
determines if the photon is absorbed, reflected, transmitted or lost.

When considering which part of the algorithm to implement on the FPGA,
we decided that parallelism at the task or surface level was too coarse, and
would not fit on currently available FPGAs. At the while loop level, tracing
one photon’s path until it is not active may be possible in terms of fitting on
an FPGA, but there are dependencies carried between loop iterations that make
the implementation more complex and limit parallelism. At the inner for loop
level, where the algorithm checks for the surface of intersection, the code is
straightforward to realize on an FPGA, since the loop iterations are independent
of each other and can be spatially replicated on the FPGA.
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float x1[NSM], x2[NSM], y1[NSM], y2[NSM], delx[NSM], dely[NSM], sqln[NSM], rhs[NSM];

delxs = delx[s]; delys = dely[s]; rhss = rhs[s];
x1s = x1[s]; y1s = y1[s]; x2s = x2[s]; y2s = y2[s]; sqlns = sqln[s];

/* compute intersection points*/
det = ex*delys - ey*delxs;
absdt = fabs(det);
if(absdt <= epsdet0) det = epsdet0;
dtinv = 1.0/det;
xi = dtinv * (delxi*rhse - ex*rhss);
yi = dtinv * (delyi*rhse - ey*rhss);

/* test for intersection between surface endpoints*/
ssq = (xi - x1s)*(xi - x1s) + (xi - x2s)*(xi - x2s)

+ (yi - y1s)*(yi - y1s) + (yi - y2s)*(yi - y2s);
if(ssq <= sqlns) {

intersect_side[s] = 1; /* s is the intersected side */
else intersect_side[s] = 0; /* break here in the software version */

}

Fig. 3. Radiative Heat Transfer code implemented on the FPGA

In addition, this inner for loop is the most computationally intensive por-
tion of the program. Using a timer described in Section 5.1, with N=5000 and
m=37, we found that a Pentium IV Xeon 3 GHz workstation spends 86% of
the algorithm time executing the inner for loop. The C code inside this loop is
included in Figure 3. All the variables used in the arithmetic computations are
floating-point.

Originally the program was written for double precision floating-point. In this
work, we evaluate single and double precision floating-point. We found that there
is not a significant difference in the scientific results from the algorithm when
using single versus double precision. The number of photons absorbed differed by
only .0025% in the single precision version as compared to the double precision
version.

4 Hardware Implementation

We target the hardware implementation to the Virtex II and Virtex II Pro
FPGAs. These devices have small embedded memories called Block RAMs as
well as embedded 18-bit multipliers. An initial approximation of the pipeline was
generated from the Streams-C compiler [15] on an integer version of the code.
The generated pipeline was then converted to use floating point modules, and
manually optimized to maximize pipelining.

Figure 3 shows the C code for the compute-intensive for loop of the radia-
tive heat transfer algorithm. In each iteration of this loop, the calculations are
performed relative to one of the surfaces of the convex shape. Some variables
are invariant across loop iterations (e.g., epsdet0) while others assume unique
values for each loop iteration, as shown by the array index s, for example, delxs,
delys, and rhss. The latter variables are assumed to reside in Block RAMs.

Figure 4 shows the pipelined hardware implementation of the loop. The de-
sign is an 11 stage pipeline utilizing the floating point libraries from [13]. It
consists of 12 multiply, 3 addition, 7 subtraction, 1 divide and 2 comparison
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Fig. 4. FPGA Implementation

modules. The breakdown of the latency is as follows: 4 cycles for multiplica-
tion, 3 cycles for addition or subtraction, 15 cycles for division, and 1 cycle for
comparison. The total latency of the 11 stage pipeline is 41 cycles. There are 2
intermediate registers that need pipelining from Level 4 through Level 5. This
data synchronization requirement introduces 32 additional 34-bit registers into
the design.1 For clarity, only two registers are shown in in the Figure 4 in Level
5, but there are 15 registers for each operand, for a total of thirty 34-bit registers
at Level 5.

For this implementation there are eleven inputs to the pipeline – six inputs
are consumed in Level 1, four at Level 7 and one at Level 10. The data is stored
in two 204-bit by 512 deep, dual-port Block RAMs. Memory reads are scheduled
so that values arrive at Level 7 and at Level 10 at exactly the cycle they are
consumed. By scheduling the reads in this way, we avoid the overhead of fully
pipelining the 5 inputs that are needed at Level 7 and Level 10. The latter
approach introduces an extra 27 cycles × 4 registers (Level 7) plus 40 cycles ×
1 register (Level 10), or 112 + 40 = 152 34-bit registers into the design. These
152 registers correlate to a 1% increase in area utilization on the Virtex II.

5 Performance

This section analyzes the performance of the application running on several
Pentium IV Xeon (P4) systems versus the Virtex II (V2-6k) and Virtex II Pro
(V2p100,V2p125)2 hardware platforms. Note that the V2p125 is not yet avail-
able.

1 The FPLibrary adds a 2-bit tag to each floating point register.
2 The V2-6k is speed grade –4 and the V2p100 and V2p124 are speed grade –6.
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5.1 Workstation Performance

For performance comparisons with the FPGA we examined the innermost loop
of the application, which is the iteration over m surfaces for a single photon,
searching for an intersection. The static instruction count of this loop count
is 130 instructions: 61 floating point instructions, 9 branches, 73 instructions
which reference the stack (including floating load/store to stack for locals), and
only one integer instruction (the loop counter). All the instructions and data for
this loop fit into the Level 1 cache (the fastest cache level), and hence could be
expected to run at maximum speed on the CPU.

Timing measurements of the inner loop are easily perturbed due to the small
instruction count of 130 instructions. Obtaining an accurate measure of this
loop represents a challenge, since traditional profiling tools such as gprof are
only acceptable for function-level timing, and do not provide an extremely ac-
curate measure of the inner loop. However, on the Pentium and later processors
there is a timer register, called the Time Stamp Counter (TSC), which measures
processor ticks at the processor clock rate. This 64-bit read-only counter is ex-
tremely accurate, as it is implemented as a Model-Specific Register inside the
CPU. The overhead of using this register is extremely low. On a 1.7 GHz P4 the
TSC runs at 1.68 GHz and has a resolution of 595 picoseconds; on a 3 GHz P4
the TSC has a resolution of 333 picoseconds.

We used the TSC to measure the inner loop of the application. C code was
added using the gcc asm statement, which produces inline assembly code to read
the TSC at the start and end of the loop code. We performed measurements both
in the application itself, and by extracting the inner loop and running it many
times. As expected for this loop, the performance varied with the CPU being
used, with the fastest CPU being the 3 GHz P4.

We tested both the Intel compiler v7.0 and gcc v3.2. The gcc compiler pro-
vided the best performance results with –O3 optimization level. Timing for one
iteration of the inner loop, shown in Figure 5, ranges from 60ns to 104ns. It is
important to note that the time is an average, since in the sequential version of
the loop body, there is opportunity for early exit from the loop.

5.2 FPGA Performance

Synplicity was used to synthesize the inner loop to Xilinx FPGAs. Placement and
area results were obtained using Xilinx ISE 6.1. The results for one iteration of
the inner loop on the Virtex II and Virtex II Pro FPGAs are shown in Figure 5.
On the V2-6k, only 20% of the Look Up Tables (LUT) are used by the loop
body. However, all the multipliers are used, and therefore only one instance of
the loop body can fit on this part. In contrast, the larger Virtex II Pro parts
can fit three pipelines of the inner loop, resulting in a higher degree of spatial
parallelism. The speed up row calculates the speed up relative to the 3 GHz P4.
The hardware calculation assumes a steady state pipeline in which a result is
delivered every clock cycle. With three pipelines three results are delivered every
clock cycle, effectively reduce the execution time by one third. These results do
not include the time to write the parameters into Block RAM.
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V2-6k V2p100 V2p125 P4 1.7 P4 2.4 P4 3
# Pipelines 1 1 2 3 1 2 3
Execution Time (ns) 29.9 16.7 7.89 5.78 15.7 7.72 6.12 104 74 60
%Area (LUTs) 20 15 33 50 12 26 40
%Multiplers 100 32 64 97 25 51 77
Latency (cycles) 41 41 41 41 41 41 41
Speed up 2.01 3.59 7.61 10.37 3.82 7.77 9.81 0.58 0.81 1

Fig. 5. FPGA vs. Workstation performance for Inner Loop. Speed up compared to
the P4 3 GHz System.

In terms of technology generation, the V2-6k and P4 1.7 GHz are comparable.
The V2-6k hardware implementation outperforms the 1.7 GHz Pentium by a
factor of 3.48. For the newer generations of FPGA and microprocessor (V2p100
and 3 GHz), the single pipeline speed up is slightly better – 3.59×. However,
with this newer generation Virtex Pro it is possible to fit three pipelines on the
V2p100 which allows a speed up of 10.37.

As noted above, the hardware design is highly pipelined. The pipelining al-
lows a relatively high clock frequency for the design, at the cost of high latency
– 41 clock cycles before the first result appears. For a large number of surfaces,
the effect of pipeline latency diminishes. For example, with 10,000 surfaces the
speedup for three pipelines is 10.25×. 150,000 surfaces are desirable for this
particular simulation, so the pipeline latency effect is negligible.

Fig. 6. Placement results for a single pipeline 16, 32, and 64-bit implementations of
the inner loop.

Lastly, if we analyze the granularity of the input data width as shown in
Figure 6, the placement results show that for a 16-bit word width, the area uti-
lization across the Virtex Family is 5% to 8% which allows 10 to 20 instantiations
of the inner loop to run concurrently on the FPGA. For larger bit widths, fewer
parallel versions of the loop can fit onto hardware, for example with 32-bits 3
pipelines fit. As expected, the run-time clock speeds are faster for smaller bit
widths. The results show that on the Virtex II Pro family, 32-bit operations
are only slightly more expensive than 16-bit, while 64-bit incur a much higher
penalty both in area and clock speed. As the graphs show, the 64-bit version of
the application does not fit on the V2-6k.
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5.3 Discussion

Our results show that the FPGA hardware outperforms a comparable generation
of microprocessor by up to 10.37× on an application-specific single-precision
floating point pipeline. There are several points to note.

First, the FPGA implementation must execute all loop iterations of the inner
for loop. The software timing is an average number: many times the software
breaks out of the loop without completing all iterations, as the last if statement
of Figure 3 contains a break in the software version of the loop. If all loop
iterations were executed, the FPGA speed up would be much greater.

Second, this application fits well in the L1 cache of the microprocessor. A
more data-intensive application would better use the strengths of the FPGA
(greater memory bandwidth and better performance on data-intensive compu-
tation).

Third, the tractability of an application kernel to pipelining, especially long
pipelines, is crucial to get performance. The highest performance floating point
operators are heavily pipelined, so there is substantial cost in starting up and
breaking up the pipeline. Like vector processors, the application-specific pipeline
on the FPGA shows the best performance when the algorithm has many iter-
ations with minimal data-dependent branching. In this application, the vector
length is very large, and thus the latency is negligible. This application also has
the advantage of little data-dependent branching. Although predication can be
used to reduce the impact of branching, area costs increase by having both the
then and else bodies instantiated on the chip.

Fourth, the floating point library we used in this experiment is technology-
independent. In fact, we were able to synthesize it to several different families,
including the Altera Stratix. Technology-specific floating point cores such as
Quixilica yield smaller area and faster clock rate. On the minus side, other float-
ing point libraries, including Quixilica, have even higher operation latencies. For
best performance, embedded hard floating point units in a fabric of reconfig-
urable logic would, of course, be desirable.

Finally, it is important to compare the performance of the application-specific
pipeline, with a mix of different floating point operators and branching con-
structs, to peak performance results cited by others. While theoretical peak
numbers are useful to gauge feasibility, a floating point intensive supercomput-
ing application gives us more accurate performance results.

6 Conclusions

We have presented hardware implementation of a floating point Monte Carlo
radiative heat transfer simulation application on the Virtex II and Virtex II Pro
families of FPGA. In contrast to previous work that presented peak performance
or performance results on small kernels, we have implemented an application-
specific pipeline on the FPGA. We have presented detailed timing results com-
paring FPGA speed to high performance workstations, realizing a 10.37× speed
up with three single precision floating point pipelines running on a Virtex II Pro
hardware platform versus running the application on a 3 GHz workstation.
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Abstract. Biological cell simulations generally require high-powered computer
resources. A reconfigurable system is a possible solution to the problem as an
alternative approach against PC/WS clusters. A stochastic simulation algorithm
proposed by Gillespie is implemented on a reconfigurable platform called ReCSiP,
and the performance is evaluated. The implemented Lotka system outperforms the
software implementation on AthlonXP2800+ by 105.13 times.

1 Introduction

A number of sophisticated methods of biological experiments were developed in ’90s,
and they enabled quantitative modeling of cellular systems with massive amount of
experimental data. Such modeling and simulation on computers are now indispensable
to understand the cellular processes in detail. Some software simulators including The
Virtual Cell[1], E-Cell[2] have been already utilized by researchers, and their execution
time becomes a problem even by using recent high speed PCs. For example, 2 seconds
simulation of a nerve cell on The Virtual Cell required 2 days using a workstation with
MIPS R8000[1]. To address this problem, Bio-grid project[3] has been developed to use
a huge power of parallel processing through the network. As more economical solution,
parallel processing on PC/WS clusters have been widely used.

Unfortunately, problems in biological researches often generate a lot of fine grain
processes frequently communicating with each other. Such problems are difficult to be
treated with network-based parallel processing used in PC/WS clusters or Bio-grid. In-
stead, reconfigurable systems[4] which execute the algorithm directly on programmable
logic devices are suitable for such problems, since they can make the best use of the
inherent fine grain parallelism. The flexibility of reconfigurable systems is also useful
for biological application which will be changed depending on the research results.

We developed a reconfigurable accelerator called “ReCSiP” for biocomputing, and
ODEs(Ordinary Differential Equations)-based simulation has been already implemented
on it[5].

In this paper, the design and evaluation of another way of FPGA-based simulator
which is based on Gillespie’s stochastic simulation algorithm is shown. By making the
best use of fine grain parallelism, the implemented module for the Lotka system achieved
105.13 times performance compared with the software executed on AthlonXP 2800+.

The proposed simulator can be easily extended for other reaction model, since the
common simulation part and reaction system specific part are separately implemented.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 105–114, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Overview of ReCSiP

The major goal of ReCSiP is acceleration of metabolic simulations to reasonable respon-
sive time for researchers. It is designed to achieve high-throughput computation by the
co-operation of the host CPU and reconfigurable platform containing FPGA. ReCSiP
consists of the hardware (ReCSiP board), and the software (driver and API). The hard-
ware layer of the ReCSiP includes an FPGA, four SSRAM sets (which can be accessed
simultaneously), an SDRAM set, and a PCI interface. It can be inserted into the PCI bus
slot on common PCs. Users can easily build up their own acceleration modules coded
in HDL for their own simulation tasks. Figure 1 shows the hardware part of the ReCSiP.
On the other hand, the software layer provides the device driver and the API. The API
can be easily customized to help the development of hardware-accelerated simulators.

64bit/66MHz PCI Bus

QuickLogic

QL5064-PB456C-66B

QuickPCI

Xilinx

XC2V6000-4BF957C

Virtex-II

64bit Local Bus

Micron 256Mb SDRAM
MT48LC16M16A2TG-7E x2

Micron 18Mb SSRAM
MT58L1MY18DT-7.5 x2

Configuration
Control

MultiLINX
Cable

Configuration via
USB/MultiLINX

Configuration via
PCI

USB Port

DC Power
Supply DC 5V

Local Clock
Generator

Expansion
Connector

1.5V

3.3V

Local Clock

ReCSiP Board

Fig. 1. Concept of ReCSiP

3 Gillespie’s Algorithm

3.1 Features of the Algorithm

There are two approaches in mathematical modeling of metabolic reaction systems:
deterministic and stochastic. The deterministic approach describes the time evolution of
chemical systems in the form of ODEs. Now, many software biological simulators with
deterministic approach have been researched and developed. Although various useful
knowledge has been obtained by this approach, it has a problem of parameter sensitivity.
That is, the equations become stiff according to their parameters, and the solution would
not be stable.

The stochastic approach regards the time evolution of the target system as a kind
of random-walk process which is governed by a single differential-difference equation.
It is difficult to systematically solve the equation, but there is a solution to analyze the
behavior of a system without dealing the equation directly by using random numbers.

Gillespie’s algorithm[6] is a well-known stochastic simulation algorithm for cellular
processes. Since it is a kind of Monte-Carlo simulation, simulation results of the same
target will be different by each trial. By running the simulation a number of times, the
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average of the results will be close to the actual system behavior. That is, the stochastic
algorithm is stable to stiff equations, and does not too much sensitive to parameters.

The problem of this approach is computation time. STOCKS[7] is the software simu-
lator using Gillespie’s algorithm.At worst, the execution time of the behavior of prokary-
otic gene expression in 2,100 seconds, is 22 hours (executed on PentiumIII 800[MHz]).
With increasing the complexity of the target system structure and the behavior, more
time will be required for simulation.

3.2 Summary of the Algorithm

Gillespie’s algorithm is consisting of the iteration of following steps.

1. Calculate τ ; time to the next reaction
2. and, μ; type of the next reaction
3. Increase or decrease the molecule numbers by the determined μ

The pair of two values (τ and μ) is calculated from the molecular numbers in the
current system, and the molecular numbers in the next iteration are determined by the
output of the previous reaction and two random numbers.

τ is the time between the present and the proceeding reaction. τ is a value obtained
by multiplying the inverse of the sum of all the reaction possibilities which are in the
target system by logarithmic-distributed random number which is derived from a uniform
random number r1 (0 < r1 ≤ 1).

The other variable, μ denotes the next reaction, which is determined by selecting one
reaction from all the occurable reactions in the current conditions of the target system.
The selection is done by using a uniform random number, r2 (0 < r2 ≤ 1).

τ and μ are calculated with Equation (1) and (2).

τ =
1
a0

ln
(

1
r1

)
(1)

μ−1∑
ν=1

aν < r2a0 �
μ∑

ν=1

aν (2)

aν in Equation (2) is the reaction probability of the corresponding reaction Rμ in the
target system. aν is a value multiplied combination of molecule numbers related to Rν

by the stochastic reaction rate constant cν . cν is related to rate constant kν , which forms
the basis for the deterministic approach to chemical kinetics. cν is a value obtained by
dividing kν by V (volume of target system). If V is not changed during the simulation,
cν is constant. a0 implies the sum of all the aν .

3.3 Lotka System

The Lotka system is a mathematical model of the predator-prey ecosystem. The following
system is an example of simulation of the Lotka system, described in Gillespie’s paper[6].
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It has 4 species of molecule and 4 reactions among them. Each molecule number
is represented with X1, · · · , X4, and the reactions are represented with R1, · · ·R4, as
follows:

R1 : X2 + 1 , (X̄1 − 1) (3)

R2 : X2 − 1 , X3 + 1 (4)

R3 : X3 − 1 , X4 + 1 (5)

R4 : X2 − 1 , X4 + 1 (6)

The Lotka system is well suited for evaluation of Gillespie’s algorithm implemented
on FPGA. Reaction R1 is the reproduction of specie X2 by consuming X1. In the other
words, R1 implies that X2 feeds on the foodstuff X1 and breeds. Reaction R2 represents
that the specie X3 feeds on the specie X2 and breeds. R3 and R4 are isomerization, which
describe the death of X2 and X3. The bar over X1 means that the number is assumed to
be constant. In this system, reproduction of X1 is not performed, but it does not decrease,
since it is assumed to be a constant, as in Gillespie’s work. By nature, X1 and X4 are
regarded as input and output of the system, respectively. Numbers of X2 and X3 draw
waved trajectory by the time series.

Followings show a cycle of process in the Lotka system. It assumes that initialization
has been done.

Step 1. hν is stored in a value which is combination of molecule numbers related to Rν

(ν = 1, · · · , 4) in the current system

h1 = X1 · X2, h2 = X1 · X3, h3 = X3, h4 = X2

Step 2. aν and a0 are substituted with multiplication of hν and cν , and the sum of aν

aν = hν · cν , a0 =
∑4

i=1 ai

Step 3. New random numbers r1 and r2 are generated. And 1/τ is calculated with
multiplication of 1/ ln(1/r1) and a0. μ is determined by comparing aν with r2a0

1
τ = a0

1/ ln(1/r1)

∑μ−1
ν=1 aν < r2a0 �

∑μ
ν=1 aν

Step 4. X1, · · · , X4 in step 1 are modified by Rμ

Step 5. Modified molecule numbers X ′
1, · · · , X ′

4 and τ are generated. X ′
1, · · · , X ′

4 are
referred by the next cycle of step 1

Various kinds of chemical reactions can be modeled like equations (3), (4), (5), and
(6), to simulate other systems.

4 Implementation

4.1 Overview of the Simulator

In this section, design and implementation of the Lotka system with the stochastic
simulator on ReCSiP are introduced.
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Fig. 2. Structure of the Lotka System Module

The reactor module, which performs step 1, 2, 3, and 4 in the previous section, is
parallelized and controlled by the other modules as shown in Figure 2. The Lotka system
module consists of two simulator modules and an output control module. Each simulator
module has two reactor modules as the core of simulator.

A simulator module starts calculation when it receives the random seed and initial
value of molecule numbers stored in the SRAM module. The results from 2 simulator
modules (4 reactor modules) are stored into the SRAM modules through the output
control module.

4.2 Simulator Module and Reactor Module

Each simulator module simply consists of two reactor modules, which share a logarithmic
table.

A reactor module processes a cycle of the Lotka system with Gillespie’s algorithm.
In the first step of the process, the module receives the molecule numbers, X1, · · · , X4.
Then, it processes a cycle of the Lotka system with Gillespie’s algorithm. Finally,
it outputs τ and molecule numbers X ′

1, · · ·X ′
4 after the reaction. Molecule numbers

X ′
1, · · ·X ′

4 are used in the next input of reactor module. As X ′
2, X

′
3 and τ are required

for the evaluation of the simulation result, they are transferred to the output control
module.

The reactor module consists of two parts; the common part for Gellespie’s algorithm,
and the specific part for the Lotka system. By separating them, the common part can be
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used for the other reactor modules. That is, by replacing the reactor module in Verilog-
HDL code level, other reactions can be simulated.

The common part calculates τ and μ, and also generates random numbers. The
target-specific part processes the combinations of reactions, then increases or decreases
numbers of molecules according to the result of calculated μ.

A reactor module has 4 kinds of major functional units, which are two 32bit inte-
ger multipliers, five Single-precision FP adders, six Single-precision multipliers, and a
Single-precision FP divider.

– Single-precision FP multiplier includes 18 × 18 bit dedicated multiplier blocks
(distinct features of Virtex-II)

– Single-precision FP divider using 2bit-base subtract-and-shift divider
– 32 bit LFSRs (Linear Feedback Shift Registers) for the random number generation

with M-sequences
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Fig. 3. Data-flows in Reactor Module

Figure 3 shows the flow of calculation in the implemented reactor module. The reactor
module has 37 pipeline stages. It takes X1, · · · , X4 as inputs, then outputs molecule
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numbers X ′
1, · · ·X ′

4 and τ after a reaction through step 1, 2, 3, and 4 described before.
The output takes 37 clocks for X ′

1, · · ·X ′
4, and 52 clocks for τ . So, it is possible to execute

37 independent simulation processes at a time. These multiple concurrent executions
are advantageous in this kind of stochastic simulation which returns an average of the
iterative executions.

Values of 1/ ln(1/r1), which are required to calculate τ , are stored in 32bit width
tables whose depth are 215. The tables are implemented on Block RAM on Virtex-II.
τ is derived with multiplication of the fetched number and a0 (the sum of the reaction
probability of each reaction aν).

The reactor module has 32bit-width 37 entries shift registers which store the total
simulation times t. Each register updates value by adding previous t and τ at the end of
a cycle.

4.3 Output Control Module

The Lotka system module has two simulation modules each of which has two reactor
modules, and in a reactor module, 37 simulation processes are executable in parallel.
Therefore, maximum 148 simulation processes are “on-the-fly” in the whole the Lotka
system module. Total simulation time t, number of prey species X2, and number of
predator species X3 are generated with the simulation of the Lotka system. These values
are represented 32bit integer or single-precision floating-point. As a result, four sets of
three 32bit data is generated from the Lotka system module with each cycle.

Output control module manages data transfer from the simulator module to SRAM
modules. The module works as follows.

– A set of three 32 bit data is transferred from reactor modules to SRAM modules
with an arbitrary cycle interval

– FIFO buffer for temporary storage of output data is provided. It begins to store data
from the reactor module in the specified cycle

Inputs of the output control module are four sets of three 32 bit data which are t,
X2 and X3 per clock. The module transfers them to SRAM modules with an arbitrary
interval (that is, interval must be nothing less than 5). Figure 4 shows the structure of
the output control module.

5 Evaluation

5.1 Result of Synthesis and Place and Route

Table 1 and 2 show required resources and maximum operation frequency for the Lotka
system module.

Modules are described in Verilog-HDL. Synthesis and place & route are done with
Xilinx ISE6.1i. The target device is Xilinx’s XC2V6000-4BF957C, which is equipped
on the ReCSiP board.

In order to optimize the clock frequency, this implementation is somehow specialized
to the Lotka system. So, it can not be extended larger scale systems without modifying
the Lotka system directory in the current implementation.
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Table 1. Resource Utilization

Slices 18x18 Multipliers 18kbit BlockRAM
26091 (77.21%) 120 (83.33%) 132 (91.67%)

Table 2. Performance

Frequency [MHz] Throughput [cycle/sec]
76.25 304.88M

Some simulation results are shown in Figure 5 and 6. These are results after 500,000
cycles of executions with 10 output intervals. The difference between them is caused
only by the random seeds, and the conclusive simulation result of the Lotka system is
obtained with taking an average of them by appropriate time interval.
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Fig. 6. Example of Another Result

5.2 Accuracy Verification

The accuracy and performance of the simulator on ReCSiP is compared with a software
simulator on common PCs.

Since the floating-point number arithmetic units on ReCSiP are not based on rounding
algorithm in the IEEE standard, its influence must be examined. In calculation of τ ,
there is no error propagation because the output isn’t used as the input of the next cycle.
However, the result of μ is used to determine what the next reaction occurs. In this case,
the accumulation of rounding errors may cause a problem.

To examine the effect of rounding errors, the same simulator including an M-
sequence generator written in C is executed with the same random seed. Figure 7 and 8
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show the result of software execution and result from ReCSiP board. They are measured
after 100,000 cycles of execution, and the output interval is 10. Trajectories of molecule
number X2 and X3 are similar both in software and in hardware execution. This shows
that useful simulation results can be obtained from the hardware execution on ReCSiP
board.
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Fig. 7. Exec by C Code
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5.3 Performance Evaluation

Table 3 shows response times and performance for 500,000 cycles of the software simu-
lation of the Lotka system. In the software execution, the program is compiled with -O3
option. Throughput S is derived from the equation S = 0.5[Mcycle]/run-time [μsec].

Table 3. Throughput of the Software

Processor Memory Environment Run-time Throughput
[μsec] [cycle/sec]

AthlonXP2800+ Free BSD 4.8
2.08GHz 2GB +gcc2.95.3 172,226 2.90M

Xeon 2.8GHz Linux2.4.21
Dual(HT off) 4GB +gcc2.95.3 214,219 2.33M

UltraSPARCIIIcu Solaris8
1.2GHz 4GB +gcc2.95.3 555,907 0.90M

The implemented Lotka system simulator can generate a result at intervals of 37
clocks, and the maximum operation frequency is 76.25 MHz. Accordingly, by equa-
tion 76.25 [MHz]/37 = 2.06 [Mcycle/sec], the throughput of the single simulator is
2.06[Mcycle/sec].

The implemented reactor module is 37-stage pipelined, and four reactor modules
can be mounted (on a Lotka system module). Thus, this simulator is able to execute
148 simulations simultaneously in a clock. As the result, the maximum throughput of
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the Lotka system simulator is 304.88 [Mcycle/sec]. It is about 105 times faster than the
software implementation on AthlonXP 2800+ (operating at 2.08GHz).

ReCSiP is connected to host PC with 64bit/66MHz PCI bus. If the Lotka system
module transfers to SRAM modules by 10 output intervals, total throughput of output
data is 365.856 [MByte/sec]. That is, each simulator outputs three 32bit data, X2, X3,
and t in every cycle, and 148 simulations are executing at a cycle. The performance of
the Lotka system module is 304.88[Mcycle/sec]. If the output interval is assumed to
be 10, data throughput becomes 365.856 [MByte/sec]. 64bit/66MHz PCI bus has the
enough bandwidth to transfer the amount of data derived above.

6 Conclusion

A stochastic cell simulator is implemented on ReCSiP, a reconfigurable platform for
bioinformatics. A hardware simulator of the Lotka system with Gillespie exemplifying
is implemented and evaluated. This module can execute simulations 105.13 times faster
than that of software implementation on the AthlonXP2800+.
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Abstract. Modern application scenarios out of the multimedia and mobile
communication domains demand more and more performant data processing
architectures, which cannot be reached by using actual DSP or microprocessor
approaches. This contribution describes a new architecture approach out of the
reconfigurable array field which offers a set of new features to increase the
flexibility and usability of reconfigurable array architectures by increasing the
performance benefit concurrently. The main focus of this publication is the
communication topology where the authors will discuss the concepts in detail.

1   Introduction

The increasing complexity and performance requirements of actual applications e.g.
within multimedia and mobile communication domains with their control and data
oriented characteristics needs more and more sophisticated architecture solutions for
providing efficient and rapid application execution. By far the most systems today
consist of a set of DSPs, microprocessors and ASICs, which compose the main data
processing core. Beyond this approaches there are only a few exceptions where new
concepts are realized [NEC1], [XP01].

The concepts of microprocessors and DSPs base on sequential execution of in-
structions in combination with load and store procedures of data and instruction
words in and out of the memory. By this approach the architecture gets concept spe-
cific advantages and disadvantages. Basically, in combination with random access
memories sequential execution processors are predestinated for processing of control
oriented application. The disadvantages of this kind of approaches lie in the fre-
quently memory accesses during instruction/data reading and writing. Thereby this
strategy leads inevitable to a bandwidth bottleneck which results because of a brisk
data exchange between the memory and data processing unit. Modern microproces-
sors reduce this problem by deploying fast clocked caches. By working on streaming
data the caches loose their potency and the throughput of the data processing unit
converges to maximum memory throughput, which limits the system performance.

Similar to ASIC concepts but more flexible approach follow the concepts of dy-
namic reconfigurable array architectures. In this architecture domain we differ two
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architecture types: fine grained architectures [XI01], [AL01] and coarse grained ar-
chitectures [Kr01], [XP01], [XP02], [Be01], [Be02], [NEC1]. Both architecture types
use multiple functional unit implementations in combination with a flexible commu-
nication network. This network is used to connect the functional units dynamically
during the runtime. The main difference between both architecture types is the data
word width granularity of the architectures. Those approaches are able to perform
arithmetic data manipulation directly on input data. Whereas the fine grain ap-
proaches are working on single bit data by realizing low level Boolean functions. The
advantage of this approach is clear: by mapping a function into the area and using the
functional units in parallel the architecture reaches similar properties like ASICs.
High utilization of functional units, parallel data processing and lowered I/O-
bandwidth without the almost needed administration overhead of a processor lead to
high performance. At the same time the architecture does not need high frequencies
like DSPs and in this connection it is also possible to lower the core voltage which
results in high reduction of power consumption.

Naturally dynamic reconfigurable architectures possess several not neglectable
disadvantages in comparison to microprocessors or ASICs. Because of structural
reasons and mostly easy composition of functional units with their rudimental set of
operations till a few exceptions [Be01] it is not easy to perform a control flow based
application on such kind of architectures. At this point one more flexible approach is
needed, which allows the execution of control flow based application. The first step
in this direction personates a flexible communication network, which allows the effi-
cient transportation of control data between the functional units and other system
components beyond the array architecture. Therefore this paper introduces in detail a
new adaptive multigrain dynamic reconfigurable communication network topology,
which offers new ways for dynamic communication within such kind of architectures.

The next chapter gives an overview of the target architecture, the HoneyComb ar-
ray, which is used to demonstrate the feasibility and performance capability of the
new communication approach. The third chapter introduces the new communication
topology approach. In chapter 4 an application scenario for using the new architecture
is shown. This contribution is finalized with conclusion in chapter 5.

2   HoneyComb: Adaptive Dynamic Reconfigurable Architecture

The HoneyComb (HC) architecture belongs to the class of multi grained reconfigu-
rable array architectures. It offers a lot of new features, which extend the usability of
this architecture. With new dynamic functions, like dynamic adaptive routing, intelli-
gent I/O-units and multigrain data paths, the architecture has been enabled to support
data flow based applications as well as a set of control flow based applications with-
out loosing the performance benefit caused by great reconfiguration overhead. The
main granularity of the HoneyComb is 32 bits. Figure 1 shows the logical and tech-
nological structure of the HoneyComb array. The array is based on the hexagonal
geometrical shape, wherefrom the architecture name is derived. This structure offers
six direct neighbors to each cell. All neighbors are connected through on RTL con-
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figurable set of bidirectional links, typical configuration contains six links. The six
directions of the hexagonal structure increase the routing overhead, but offer a good
tradeoff in respect of reach ability and communication latency between cells. De-
pendant on the relative position of two cells the latency gain can be up to 50% in
comparison to 4 neighbored architectures, where the data needs half of the time as
before. The reachability can be increased by raising the number of direct neighbors,
but this proceeding is expensive because of fast raising complexity of needed multi-
plexers.

Fig. 1. The Overview of the HoneyComb array: The logical structure (on the left hand side) is
based on hexagonal cells with six direct neighbors. The technology mapping changes the
structure to quadratic form.

The HoneyComb array consists of three cell types. Each cell contains a routing
unit and a specialized module which defines the type of the cell. The routing unit is
the controller unit of the communication network, where the sum of all routing units
in the array composes the communication network. All neighbor cells are connected
through routing units. The first and main type cell in the HoneyComb array is the data
processing honey comb (DPHC). This cell is responsible for data manipulations and
calculations. The idea behind those data paths is to integrate more intelligent logic
into the data paths to enable the data path to respond to control focused application
flows. The second cell type of the HoneyComb is the memory honey comb
(MEMHC). This cell offers storage functionality within the HC array. The data can be
stored in a FIFO, LIFO or linear memory of defined size. Integration of additional
rudimental functional units into the MEMHC is also planned. The last cell type of the
HoneyComb is the input/output honey comb (IOHC). The main job of this cell is the
interfacing of the HoneyComb array to the main on-chip bus. Basically this cell is
responsible for transportation of data and configurations into the array and data out of
the array. Therefore IOHC possesses AMBA AHB master/slave interfaces on the
system side. The clue of the IOHC is the integrated distributed stack pointing and
instruction controller (DiSPIC). This controller enables the IOHC to read any data out
of the memory in any irregular sequences. The idea behind the DiSPIC was to create
small programs and associate those programs with logical data streams which connect
the IOHC and any port within the array. The direction of those streams is not rele-
vant, whereby the software developer can create input DiSPIC programs as well as
output routines.
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The communication network of the HoneyComb array offers support for dynami-
cally routing during runtime in hardware. The architecture provides functionality
which undertakes the routing in the array. Beyond this feature it offers multigrain
channels for transportation of the below inducted control information or fine grain
data for logical calculations. Those fine grain channels can be routed by the architec-
ture as well as the standard 32 bit data channels. The automated routing connects
always one dedicated data output port to one dedicated input port. Those ports can be
part of the data path within the DPHC, memory module within the MEMHC or
DiSPIC within the IOHC. Logically there is no difference between all named ports
except the location and address within a specified cell.

3   Adaptive Dynamic Runtime Routing Topology in Hardware

The following sections describe the communication protocol, multigrain hardware
links, the special defined instruction set, the adaptive routing and the build-up of the
routing unit.

3.1   Communication Protocol and Register Buffering

The network topology of the HoneyComb architecture is based on bidirectional point-
to-point links between all routing units within neighbor cells. Each bidirectional link
consists of two single opposite unidirectional handshake protocol based connections.
The exact protocol diagram is shown in Figure 2. If the transmitter cell wants to send
a data word it asserts the RDY signal line at time point t. The receiver cell detects the
readiness of the sender and generates - if ready - an asynchronous response within the
same time clock t by asserting the ACK signal. This is done by generating the re-
sponse by integrating the necessary logic in a combinational net. If both control sig-
nals RDY and ACK are asserted at a given positive clock edge, both communication
partners accept the valid transfer. In this way it is possible to transfer a data word in
each clock cycle with data buffering in each cell.

Fig. 2. Waveform .of the handshake protocol used for data transmission

But the described communication protocol causes a critical path. If there is a chain
of several communication participants each one with a single register buffer, one
single delay at the end of the chain can cause data loss. The problem is the propaga-
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tion time backward through the chain. Because of asynchronous ACK signal genera-
tion the whole chain has to be passed in one cycle. It is surely clear understandable,
that this can not work because of dynamic number of the chain length. The remedy at
this point is the extension of each participant with double buffers. The strategy is to
use in normal operation mode just one single register and fill the second register just
in case that the successor participant is not able to receive data. In the next clock
cycle this participant blocks the receiving till the point the second buffer register is
empty again. The InReg module within the routing unit in each cell of the Honey-
Comb has to take care of the described problem. Therefore this module consists of
two word registers and one control FSM.

3.2   Multigrain Hardware Links

The multigrain communication support in the HoneyComb is realized with two link
types. The first type is the coarse grain link, which is fixed to 32 bit for data transmis-
sion and can not be splitted in smaller channels. An additional instruction flag is used
to tag the data type, which is used to differ between instruction and data words. All
instructions are carrying asserted instruction flag. Each coarse grain link contains a
RDY signal as well as an ACK signal. An additional ROUTACK signal, which runs
from receiver to sender, is implemented as well. It is needed to indicate if the routing
is successful or not. Figure 3 shows the protocol signals of two connected communi-
cation participants.

32 Bits Data

Ready

Type

Ack

32 Bits Data

Ready

Type

Ack

FU A FU B unidirectional
connection
A to B

unidirectional
Conenction
B to A

RoutAck

RoutAck

Fig. 3. Signal overview of the bidirectional hardware links between two neighbor cells com-
pose of two separated unidirectional links.

The second link type is the fine grain link (see figure 4). This link has the size of
32 bits but can be splitted into smaller channels. Those channels have the size of 1 bit
or 8 bit. The sum of eight 1 bit channels and three 8 bits channels adds up to the
whole fine grain link of 32 bits. Each 1 bit or 8 bits channel implies RDY and ACK
signals and an additional PATHDELETE signal, which can be used to release this
channel. The realization of multigrain streams can now be done by logical combina-
tion of a set of this channel to an interrelated stream of desired size. An example
transition of an input fine grain link to an output fine grain link is shown in figure 4.
Figure 5 shows all involved signal within a fine grain channel.
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3.3   Instruction Set

The implementation of adaptive runtime routing is realized by executing an instruc-
tion set of a total of seven instructions which is defined for this purpose. The first
instruction in this context is the start configuration instruction. This instruction initi-
ates the transmission of new configuration instructions with a header-data field
method. The main purpose of the start configuration instruction is the routing, be-
cause it is not possible to transmit data on not routed links. Before transmitting any
data words on the array it is necessary to build up a logical connection, so called logic
stream, between start and target cells. Within this logic stream all involved physical
links are fix assigned to this stream and can not be used by other streams. If a logical
stream is not longer needed, the involved links can be released and the logical stream
is dissolved. For doing this job, the start configuration instruction contains several
data fields. Beside the coordinate information of the target cell, this instruction con-
tains information about type of wished logical stream. A priority bit within the in-
struction control influences the handling of this request in each routing unit. Routing
instructions with set priority bit will be handled privileged. Additional a speed path
bit can be used to bypass register buffer in long pipeline chains and to reduce the
transmission latency. The exactly routing techniques are described in section 3.5.

Fig. 4. Routing example of incoming fine grain link with 12 bits data width to an output link,
where 12 bits are already occupied.

The next instruction type is the configuration header instruction. This instruction
covers the configuration data for the target cell. It contains information about the
amount of configuration data which should be stream into the configuration interface
of the data path or memory module. After interpretation of this instruction the routing
unit transmits the specified amount of followed data to the configuration interface.

The routing instruction is similar to the start configuration instruction. The differ-
ence of those instructions is the purpose of the routing instruction to connect two
ports within the HoneyComb. Therefore this instruction establishes a logical stream
from specified output port to specified input port. The routing works similar to the
routing caused by the start configuration instruction.
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The special issue of the routing instruction is to route also fine grain logical
streams, too. Therefore the routing units just forwards the copy of the routing instruc-
tion over the coarse grain links in parallel to the mentioned fine grain logical stream.
The stream end instruction releases a routed logical stream. Therefore this instruction
should be injected into the data or configuration stream. All passed routing units
identify the stream end instruction and delete before written multiplexer control in-
formation in the routing memory.

Fig. 5. Involved signal of a single bit physical channel; a set of this channels in addition to
three 8 bits channels with same control signals composes the whole fine grain link.

3.4   Routing Unit Structure

The routing unit consists of a set of modules which realizes the above described
functions. The first unit is the InReg module. This module contains two registers for
data buffering in case if any delay is happening. The InReg is additional controlled by
the InCtrl. The InCtrl module detects weather the incoming data is an instruction or
not and decides what has to be done next. InCtrl forwards routing requests to the
Request Dispatcher. This unit distributes the requests to multiple intermediate regis-
ters. Those registers contain all information about actual routing operations which are
in progress. The multiple implementations of intermediate registers allow parallel
routings at the same time.

The intermediate registers communicate with the routing controller and induces
routing operations. The routing controller analyzes the routing memory data, which
describes the states of the output link und multiplexer assignments. Based on this
information the controller calculates the next routing direction and switches the nec-
essary multiplexers. After this the Routing Controller forwards this information to the
intermediate register and waits till the routing operation successes or fails. If the
routing successes the routing controller just writes the routing data into the routing
memory and forwards this to the InCtrl, which switches to normal transmission mode.
If the routing fails, the routing controller checks alternative directions if any available
else forwards the information of failing to the InCtrl, which uses the InReg to inform
the predecessor cell of failed routing operation.

In case of fine grain routing the strip matcher checks additionally the fitting fine
grain output links, which offer enough free capacity to transport the requested granu-
larity. Those links are included by the routing controller into the next direction cal-
culation.
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Fig. 6. Structure of the routing unit; left: output ports of the cell internal module like data path;
top: input links from neighbor cells; right: input ports to the cell internal module; bottom:
output links to neighbor cells.

Configuration instructions induce the InCtrl to rout the following data of specified
size to the configuration port of this cell, where e.g. the data path controller interprets
the forwarded data. Figure 6 shows the whole routing unit structure.

The IRoutCtrl at the entrance of the data path or memory module has the job to
block the local stream end instruction. The global stream end instructions will be
propagated through the data path and release all configurations.

3.5   Adaptive Routing Techniques

The adaptive routing technique is used to route the logically stream for data trans-
portation. Therefore the physical links between HoneyComb cells get logic assign-
ment to a specified logic stream. For better understanding how this technique is
working exemplary routing process for start configuration instruction is described.

The start cell of the start configuration instruction within the HoneyComb archi-
tecture is the IOHC. The DiSPIC in the IOHC transmits the start configuration in-
struction to the routing unit in the same cell. The routing unit calculates the direction
to the target cell and forwards a copy of the instruction to the selected cell and waits
till the routing is finished or failed. If the routing was successful the ROUTACK
signal will be asserted during the successor cell signals with the ACK signal the ab-
sorption of actual applied data. Hereupon the routing unit establishes the logical
stream by writing the output multiplexer control data into the routing memory. If the
routing fails the routing unit tries to route over the other directions. If those actions
fail too, the routing unit signals this nuisance to the DiSPIC which has to handle the
problem.
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The calculation of the direction is based on the coordinate information within the
instruction and the cell position. The following cells on the way to the target cell
operate in similar manner till the target cell is reached. The target cell just consumes
the start configuration instruction and acknowledges the target achievement to previ-
ous cell. From now on the logical stream is established and the configuration can be
received by the target cell.

The expected advantages of this new routing method are the saving of needed
memory space, smaller mapper tool complexity and fault tolerance. The memory
space can be saved because the architecture does not need several geometrical con-
figuration IPs. The mapper software can generate template configurations, which can
be used by system controller to adapt the geometrical property of this configuration to
the current free available cell constellation in the array. The template should contain
informations about the suggestive configuration splitting by providing data about
routing load within this configuration for the purpose of calculation minimizing dur-
ing runtime. Of course, this template should be usable by the HoneyComb array di-
rectly.

By making available the hardware routing in runtime the configuration design
software like configuration mapper should result in reduced complexity. It is not
longer necessary to generate the configuration data for the wiring. The main focus is
to map the functions onto the data paths and memory modules. The routing in this
context is done by generating the necessary routing instructions. For the purpose of
optimization it will be additionally necessary to estimate the routing load within the
configuration to prevent high latency signals between HoneyComb cells.

Well, in combination of template configurations and dynamic hardware routing it
is possible to prevent the HoneyComb of using faulty cells. If a faulty cell is detected,
direct after fabrication or later, however it is possible to deactivate this cell. The de-
activation effects that the hardware routing avoids deactivated cells and routes a by-
pass over the neighbor cells. The deactivated cell can use the implemented link proto-
col to signalize failed routing. This cause the previous cell just routes over other
available directions like described above.

4   Conclusion

This paper introduced the innovative concepts of the dynamic runtime routing in
hardware. The resulting technique helps to accelerate the dynamic reconfiguration
activity by supporting multiple reconfiguration channels within every configuration.
Furthermore, the adaptive routing offers a lot of advantages, like flexible configura-
tion programming, flexible configuration patterns and fault tolerant array usability.
The flexible DiSPIC interface composes a flexible control front-end, which enable the
HoneyComb architecture to operate without system controller interferences.

The first VHDL-version of this architecture is already developed, but needs more
optimization effort. The current area of a DPHC with six coarse grain and 2 find grain
links per side and the data path configuration of 4 adders, 1 multiplier, 1 divider and
LUTs is about 1,5 mm² by using the Synopsys Design Compiler and UMC 0.13 μm
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standard cell technology. The ambition at this point is to reach area size of about 0.7-
1.0 mm². Reachable clock rates are at about 250 MHz.

Furthermore, some programming support is needed. Therefore the definition of a
suitable assembler language is planned. Based on this language, development of an
application for demonstration purposes will be developed. The selected demonstration
application is H.264, which offers a lot of challenges because of strong control ori-
entation to reconfigurable array architectures.
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Abstract. A distinguishing characteristic of field-programmable logic is the
ability to route wires in the field, but previous authors have made compelling
arguments for routing packets, not wires, between major system components.
The present paper outlines the packet-switched network for interconnecting het-
erogeneous nodes in QuickSilver Technology’s Adaptive Computing Machine
(ACM). Special attention is paid to two truly innovative aspects of the ACM ar-
chitecture: (1) the Point-to-Point (PTP) protocol for transferring real-time,
streaming data and (2) the node wrapper which makes all nodes appear homo-
geneous regardless of their internal structure or functionality. The wrapper also
provides a single, uniform and consistent mechanism for task management, flow
control and load balancing across all node types. With the PTP protocol and the
node wrapper, nodes as diverse as digital signal processors, reduced-instruction-
set processors, domain-specific processors, reconfigurable fabrics, on-chip and
off-chip bulk memories and input/output ports can communicate seamlessly.
Moreover, once a node (including wrapper) has been configured, or reconfig-
ured, by a supervisory node, it is able to operate autonomously without the need
for global control.

1   Introduction

A distinguishing characteristic of field-programmable logic is the ability to route
wires in the field, but previous authors have made compelling arguments for routing
packets, not wires, between major system elements. Seitz[1] and Dally[2] argue that a
dedicated packet-switched network offers several advantages in structure, perform-
ance and modularity:

− Electrical properties are optimized and well controlled
− Controlled electrical parameters enable aggressive signaling circuits
− Aggressive signaling circuits reduce power and increase propagation velocity
− Sharing wires among multiple communication flows makes more efficient use of

wires
− A standard interface facilitates modularity

QuickSilver Technology’s Adaptive Computing Machine (ACM) [3,4] extends the
previous work by introducing network protocols and hardware mechanisms designed
to make the transfer of real-time streaming data among heterogeneous nodes as
seamless as possible, and does so without the need for global control. Two key as-
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pects of the ACM architecture – and the focus of this paper – are (1) the Point-to-
Point (PTP) protocol for transferring real-time streaming data over the ACM network
and (2) the node wrapper which makes all nodes appear homogeneous regardless of
their internal structure or functionality. With the PTP protocol and the node wrapper,
nodes as diverse as digital signal processors, reduced-instruction-set processors, do-
main-specific processors, reconfigurable fabrics, on-chip and off-chip bulk memories
and input/output ports can communicate seamlessly.

The present paper introduces the ACM architecture including network topology
and streaming protocols and describes how the node wrapper provides a single, uni-
form and consistent mechanism for task management, flow control and load balancing
across all node types. The hardware task manager – which is inspired by Dennis’s
pioneering work in data-flow computing [5,6] – is a key component of the node
wrapper and is discussed in detail.

2   The Adaptive Computing Machine

Adaptive Computing Machines are targeted at satisfying the signal and image proc-
essing needs of low-power, handheld, mobile, wireless devices and other forms of
consumer electronics.

2.1   The ACM Network

The Adaptive Computing Machine consists of a collection of heterogeneous nodes
interconnected by a scalable, fractal-based network (Figure 1). The network has a sin-
gle root to which are connected:

− Network input and output ports
− System port (optional)
− Internal and external bulk memory (optional)
− K-Node (Supervisor Node)
− One or more descending quadtrees with heterogeneous leaf nodes

The quadtrees are implemented using 5-ported switch elements, each connected to a
single parent and up to four children. The switch elements implement a fair, round-
robin arbitration scheme and provide pipelining with multi-level look-ahead for en-
hanced performance. At present, the width of all paths is constant (51 bits), but the
option is available to widen pathways as a tree is ascended, in the style of Leiserson’s
fat trees [7], in order to increase network bandwidth.

2.2   Network Words

All traffic on the ACM network is in the form of 51-bit network words (Figure 2)
where the fields are defined as follows:
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Fig. 1. ACM Network with 32 Leaf Nodes, K-Node (Supervisor Node), Off-Chip-SDRAM
Controller and On-Chip SRAM with Controller

42 41 38 37 32 31 0

PAYLOADSERVICE

4350

S AUXILIARYROUTE

Fig. 2. A Network Word

Route – Destination address of the network word; The two high-order bits are the
chip ID

S (Security Bit) – Bit allowing peeks (reads) and pokes (writes) to configuration
memory; Set only for words sent by the K-Node

Service – Type of service

Auxiliary – Dependent on service type

Payload – Payload

The service field defines one of sixteen service types, two of which are of interest
to us here:
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Point-to-Point (PTP) – Streaming data

PTP Acknowledgement – Supports flow control for PTP data; Causes a Consumer or
Producer Count at the destination node to be incremented or decremented

2.3   Nodes

Each node in the network has three elements as illustrated in Figure 3: a node wrap-
per, an execution unit (EU) and memory (nodal memory).

Memory

Execution Unit

Network In

Network Out

Node
Wrapper

Fig. 3. A Cell

The wrapper makes the node identical in outward appearance to all other nodes re-
gardless of its internal structure or functionality. The wrapper also relieves the execu-
tion unit from having to deal with myriad activities associated with task management
and network interactions. Among other things, the wrapper is responsible for dispos-
ing of each incoming network word in an appropriate fashion – in one clock cycle.

The execution unit is responsible for executing tasks. It may take a wide variety of
forms:

− Digital signal processor
− Reduced-instruction-set processor
− Domain-specific processor
− ASIC (application-specific integrated circuit)
− Reconfigurable (FPGA) fabric

But regardless of its form, the EU interacts with the node wrapper through a standard
interface.

Nodal memory is accessible to both the node wrapper and the execution unit. It is
where the node wrapper deposits incoming streaming data and where the EU accesses
that data. A node’s own memory, however, is typically not where the EU sends output
data. To minimize memory accesses, output data is usually sent directly to the node(s)
requiring that data: the consumer node(s). Nodal memory is also used to store task pa-
rameters and is available to tasks for temporary (scratchpad) storage.
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3   Transferring Streaming Data

In a multi-node system where nodes are both consumers and producers of streaming
data, matching production and consumption rates is a fundamental problem. A pro-
ducer task on one node may produce data at a rate that is either greater than or less
than the rate at which a consuming task on another node can handle. If the producer is
sending data at a greater rate than the consumer can handle, then data is eventually
lost. If the producer is sending data at a lesser rate than the consumer can handle, then
the consumer may be starved for data, thereby potentially causing the consumer to sit
idle waiting for additional data.

To address these issues, the ACM provides – via the Point-to-Point protocol and
the node wrapper – a single, uniform and consistent mechanism for task management,
flow control and load balancing. Task management ensures that a task is placed in
execution only when it has sufficient input data and when there is sufficient space in
the consumer node(s) to accommodate the data produced by the task. Flow control
guarantees that a producer task will never overwhelm a consumer task with too much
data in too short a time. Load balancing permits a producer task to distribute data
among several alternate consumer nodes, thus allowing the producer task to operate at
a potentially higher rate.

3.1 Point-to-Point Channels

Streaming data is transferred between two nodes (points) via a Point-to-Point chan-
nel (Figure 4). Associated with each PTP channel are:

− A Producer Node (Node A in Figure 4)

− A Producer Task running on the Producer Node’s execution unit that produces a
finite-sized block of PTP data per task activation, that block of data being sent over
the PTP channel as a sequence of PTP words (Task 1 in Figure 4)

− An Output Port on the Producer Node that is associated with the Producer Task
(Output Port j in Figure 4)

− A Consumer Node (Node B in Figure 4)

− An Input Port on the Consumer Node via which the Consumer Task receives PTP
data from the PTP channel (Input Port k in Figure 4)

− A circular Input Buffer in the Consumer Node’s nodal memory into which the in-
coming PTP data is deposited (Input Buffer k in Figure 4)

− A Consumer Task running on the Consumer Node’s execution unit that consumes
a finite amount of the PTP data residing in the circular input buffer per task activa-
tion (Task 2 in Figure 4)

Data is conveyed over a PTP channel when the Producer Task transfers a 50-bit
Point-to-Point word (Figure 5) to the node wrapper in the Producer Node. (The 51st

bit, the Security Bit, is added later by the network.) The node wrapper, in turn, hands
the PTP word over to the packet-switched network for transfer to the Consumer Node.
The 8-bit Route Field of the PTP word provides the address of the Consumer Node,
while the low-order 5 bits of the Auxiliary Field indicate to which of the Consumer
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Node’s input ports the data is directed. When the PTP word arrives at the Consumer
Node, the node wrapper deposits the 32-bit payload into the circular input buffer as-
sociated with the indicated input port. The transfer is then complete.

Task 2

Node B

Input
Port k 

Input
Buffer k

Task 1

Node A

Output
Port j 

Fig. 4. A Point-to-Point Channel

42 41 38 37 32 31 04350

0 0 0 0 PortM Data

36

Node

Fig. 5. A Point-to-Point Word

4 Task Management, Flow Control, and Load Balancing

Having described a simple mechanism for moving streaming data between two points
in the ACM, we now turn our attention to the mechanisms for task management, flow
control and load balancing.
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4.1 Consumer Counts and Producer Counts

As already noted, there is an input buffer associated with each input port. There is
also a two's-complement signed count associated with each port, both input and out-
put.

For an input port, the count is referred to as a consumer count since it reflects the
amount of data in that port’s input buffer that is available to be consumed by the asso-
ciated task. A consumer count is enabled when its value is non-negative – that is,
when its sign bit is 0. An enabled consumer count indicates that the associated input
buffer has the minimum amount of data required by an activation of the associated
task. At system initialization, or upon reconfiguration, a consumer count is typically
reset to –C, where C is the minimum number of 32-bit words required per task acti-
vation.

For an output port, the count is referred to as a producer count since it reflects the
amount of available space in the downstream input buffer to accept the data that is
produced by the associated task. A producer count is enabled when its value is nega-
tive – that is, when its sign bit is 1. An enabled producer count indicates that the
downstream input buffer has space available to accommodate the maximum amount
of data produced per activation of the associated task. At system initialization, or
upon reconfiguration, a producer count is typically reset to P – S – 1, where P is the
maximum number of 32-bit words produced per task activation and S is the size of the
downstream input buffer in 32-bit words.

Notice that both consumer counts and producer counts are typically initialized to
negative values, which means that consumer counts start out disabled while producer
counts start out enabled. This initial state reflects the fact that input buffers are usu-
ally empty at system initialization/reconfiguration.

4.2   PTP Acknowledgements

Consumer and Producer Counts are updated by a system of credits and debits in the
form of forward acknowledgements and backward acknowledgements. Both types
of acknowledgements are network words (Figure 6) sent by a task as the last steps in a
task activation. In both cases, the payload contains four fields: (1) a bit indicating the
type of acknowledgement, (2) a port, (3) a task and (4) an Ack Value.

42 41 38 37 32 31

0 100

4350

0

0

Node 0 0 0 0 0

131630

Task Port

121529 1267

0

8

Ack Value

Fig. 6. A PTP Acknowledgement

The sequence of acknowledgements that a task performs at the end of each activa-
tion is as follows:

A. For each output port of the task:

1. Send a forward acknowledgement to the consumer node specifying the con-
sumer input port and the consumer task; Ack Value is the number of PTP
words the task just sent to the consumer input port
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2. Send a backward acknowledgement (a self ack) to the node on which the task
resides specifying the output port and the task; Ack Value is the number of
PTP words the task just sent via the output port

B. For each input port of the task:

1. Send a backward acknowledgement to the producer node specifying the pro-
ducer output port and producer task; Ack Value is minus the number of 32-
bit words the task just consumed from the input port’s buffer

2. Send a forward acknowledgement (a self ack) to the node on which the task
resides indicating the input port and the task; Ack Value is minus the number
of 32-bit words the task just consumed from the input port’s buffer

4.3 The Hardware Task Manager

The hardware task manager is the part of the node wrapper responsible for updating
consumer and producer counts in response to incoming acknowledgements. It also
monitors the sign bits of those counts and launches a task when an appropriate set of
counts is enabled. This last responsibility is met using two signed counts that are as-
sociated not with a port but with a task: a task input count and a task output count.
A task’s input (output) count reflects the number of task consumer (producer) counts
that are enabled. A task count is said to be enabled when its value is non-negative. A
task is enabled – and available for execution – when both its input count and its out-
put count are enabled.

Incoming acknowledgements update various counts and cause tasks to be launched
as follows:

A. If a forward acknowledgement is received:

1. Interpret the specified port as an input port, and add Ack Value to the corre-
sponding consumer count

2. If the consumer count makes a transition from disabled to enabled (enabled
to disabled), then increment (decrement) the input count of the specified task
by 1

B. Else if a backward acknowledgement is received:

1. Interpret the specified port as an output port, and add Ack Value to the corre-
sponding producer count

2. If the producer count makes a transition from disabled to enabled (enabled to
disabled), then increment (decrement) the output count of the specified task
by 1

C. If after Step A or B the specified task’s input and output counts are both en-
abled, then place the task on the ready-to-run queue if it is not already on the
queue; Launch the task when it reaches the head of the queue

These actions, in effect, embody the firing rule for tasks. They cause a task to be
placed on the ready-to-run queue and ultimately executed when a sufficient number of
consumer counts and a sufficient number of producer counts are enabled. What those
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sufficient numbers are is determined by the initial values of a task’s input count and
output count. If I (O) is the number of input (output) ports associated with a task and
ICInitial (OCInitial) is the initial value of the task’s input (output) count, and if we assume
that all consumer counts are initially disabled and all producer counts are initially en-
abled as discussed above, then a task fires when

–ICInitial out of I consumer counts are enabled
AND

(O – OCInitial) out of O producer counts are enabled

For example, for I = 4,

If ICInitial = –1, then 1 out of 4 consumer counts must be enabled
If ICInitial = –2, then 2 out of 4 consumer counts must be enabled
If ICInitial = –3, then 3 out of 4 consumer counts must be enabled
If ICInitial = –4, then 4 out of 4 consumer counts must be enabled

For O = 4,

If OCInitial = 3, then 1 out of 4 producer counts must be enabled
If OCInitial = 2, then 2 out of 4 producer counts must be enabled
If OCInitial = 1, then 3 out of 4 producer counts must be enabled
If OCInitial = 0, then 4 out of 4 producer counts must be enabled

4.4   Flow Control

Earlier, we said that flow control guarantees that a producer task will never over-
whelm a consumer task with too much data in too short a time. In the context of the
ACM, that means that a producer task will never overflow an input buffer of a con-
sumer task. The mechanism that guarantees this property has been spelled out above:

1. The producer count associated with the output port of the producer task is initial-
ized to P – S – 1 as described in Section 4.1.

2. The producer and consumer tasks perform the sequence of acknowledgments out-
lined in Section 4.2 upon the completion of each activation.

4.5   Load Balancing

The mechanism described in Section 4.3 – that launches a task when just one of its
output ports is enabled – permits a producer task, usually a high-throughput task, to
send the output of each activation to one of several alternate, usually lower-
throughput, consumer tasks. The downstream processing load is thus distributed (bal-
anced) among the several consumer tasks. To support this capability, the node wrap-
per makes available to the execution unit the identities of enabled input and output
ports.
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5   Conclusions

The node wrapper and the point-to-point protocol provide an asynchronous, distrib-
uted mechanism for handling streaming data in a system with heterogeneous nodes.
This distributed intelligence supports task management, flow control and load bal-
ancing across a wide range of node types.

This work is connected to prior research in several related areas. Petri nets [8] were
the first mathematical model to truly capture the notion of concurrency, and the firing
rule described in Section 4.3 above can be seen as a generalization of Petri’s original
firing rule. Dennis’s work on data-flow computing [5,6] – which inspired our work
and was in turn inspired, at least in part, by Petri’s work – is based on the principle
that computing should be data-driven, that an operator (task) should fire (execute)
when input data and output buffers are available. Seitz[1] and Dally[2] recognized the
importance of making a transition from routing wires – the realm of field-
programmable logic – to routing packets (tokens) – the realm of data-flow computing.

There is also a connection to Lysaght’s work [9] on logic caching since the hard-
ware task manager provides a mechanism for distributed, rather than centralized,
control of logic caching. Finally, there is a connection to threshold logic which can be
appreciated when one realizes that consumer and producer counts act as threshold
gates with the output sign bit indicating whether a threshold has been reached.
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Abstract. This paper proposes a new adaptable FPGA logic element based on
fracturable 6-LUTs, which fundamentally alters the longstanding belief that a
4-LUT is the most efficient area/delay tradeoff.  We will describe theory and
benchmarking results showing a 15% performance increase with 12% area de-
crease vs. a standard BLE4.  The ALM structure is one of a number of archi-
tectural improvements giving Altera’s 90nm Stratix II architecture a 50% per-
formance advantage over its 130nm Stratix predecessor.

1   Introduction

Previous research on LUT-size for FPGAs [12][14][15][10] has consistently shown
that a 4-LUT provides the best area-delay product. This is based on the fact that larger
LUTs can absorb more logic and decrease the critical path length, but require in-
creasing resources for LUT-mask and input muxing. Mainstream Altera and Xilinx
SRAM-based FPGAs use a 4-LUT, though this sometimes comes with additional
hardware to compose base logic elements.

Here we show a new view of this tradeoff, illustrated in Figure 1.  By novel use of
input sharing and fracturability we are able to get the advantages of larger LUT sizes
without paying the high price of the additional inputs required to build 5 or 6-LUTs.

   
                 Fig. 1.  Area/delay Tradeoff                         Fig. 2.  BLE4 logic element
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The adaptive logic module developed in this paper allows us to decrease the criti-
cal path depth by 20% on average, but because the structure can be used either as a 6-
LUT, two 5-LUTs with sharing, or other combinations without the need for expensive
additional input muxing, we are able to achieve this without area penalty. With fur-
ther improvements built on the ALM we can actually show an area benefit.

2   Logic Element Architecture and Adaptive Logic Modules

In this paper the generic BLE4 of Figure 2 and it’s BLE5 and BLE6 analogs form the
base comparison for the new logic structure. Empirically as we map for larger values
of k nominal area and delay decrease. For BLE5 an average netlist uses 15% fewer
LUTs and has 25% shorter unit delay; for BLE6 this is (-22%, -36%) and for BLE7 (-
28%, -46%).  However, as we move from BLE4 to BLE5 we add 16-bits of SRAM
for the LUT-mask, and a new input mux to sample the neighboring connection block
(see [5] for terminology).  The true chip-area metric of #LEs * sizeof(LE) is mini-
mized at about k=4 as shown in Figure 1. Related previous work also involves the use
of heterogeneous LUT sizes [8], and hybrid PTERM/LUT architectures [9].

An interesting property of tech-mapping for larger LUTs is a decrease in effi-
ciency.  In a 6-LUT mapping, for example, only about 1/4 of LUTs end up as 6-input
functions, the rest are underutilized. A design mapping to 100 LUTs with k=4 will
map to 78 6-LUTs with a distribution of {23,32,17,9,13} LUT-{6,5,4,3,2} functions,
based on experiments with RASP/FlowMap [7][6] and confirmed with Altera tech-
mappers.

The cost of larger k is not just the LUT mask, though that is significant. Most
dominant is the input mux, which is roughly 30:1 in a Stratix LAB.  Though CLB and
LAB routing structures are rather different this is also roughly 30:1 for VirtexII,
based on quotes in [2]. The register, adder and other logic is unchanged.

Two reasons why a 6-LUT might be more preferable for depth than previously
seen are that both the area devoted to routing and the relative delay contribution of
interconnect to the critical path have been increasing consistently with new process
generations.  Also, the concept of LAB hierarchy and routing flexibility introduced in
Altera’s FLEX8K architecture, discussed in [3][1] and improved upon with depopu-
lation [11] has minimized the effect.  All modern FPGAs utilize some degree of clus-
ter-based hierarchy.  However, to use a 6-LUT effectively, we need to deal efficiently
with the increase in input muxing, and the wastage involved in building a 6-LUT
which is often underutilized.

If LUT-mask were the only concern, than we could compose multiple base LEs
into larger LUTs, as shown in Figure 3.

The drawback with this approach is the ensuing area cost. This structure has a total
of 19 input muxes, and 4 registers. When used as a 6-LUT, multiple signals have to
be routed repeatedly through the connection block, and 3 of the 4 registers and sets of
output muxing are wasted.  The netlist of 100 BLE4 LUTs quoted above will re-map
on average into 78 6-LUTs with a distribution of 23 LUT6, 32 LUT5, and 39 other.
To implement this directly in the structure of Figure 3 would cost well more than 100



Improving FPGA Performance and Area Using an Adaptive Logic Module        137

BLE4s in equivalent area.  Using BLE5 as the base (meaning you can’t use the BLE4
outputs) would help, but would still be more expensive than the BLE4 base.

Fig. 3. Composing BLE4 to build a LUT6.

Our solution to this problem is the fracturable logic module, shown abstractly in
Figure 4.  The logic structure has a total of 8 input-muxes, and provides 4 functional
outputs (2 comb, 2 reg), uses 64 bits of LUT-mask (6-input complete) and 2 bits of
arithmetic and registers.  We denote this a 6,2 fracturable LE, because it is a 6-LUT
with 2 additional inputs for use when fracturing to smaller LUTs. These extra inputs
are key to facilitating packing of non 6-input functions, without the overkill of adding
a complete set of 10 or more inputs.  Variants of this structure such as 4,2 are possi-
ble, but beyond the scope of this paper. Each of the two outputs (top and bottom) are
denoted as an ALUT. This terminology is necessary in order to account for area later.

The ALM can implement one 6-LUT, two 5-LUTs which share 2 inputs, or two
independent 4-LUTs, among other combinations.

Fig. 4.  Fracturable 6,2 adaptable logic module (first version).
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Observe that the logic module of Figure 4 is more comparable in area with two
BLE4 logic elements than with the four shown in Figure 3, because it has the same
number of input mux, FF, output mux and arithmetic cost; only the proportion of the
logic element devoted to the LUT-mask is increased.  In functional terms, it is closer
to the composition of two BLE5 logic elements.

Though the difference between composing two independent LEs and fracturing
one compound structure is subtle, the most important issue to understand is the differ-
ence in the area cost of the two approaches.

2.1   Outputs, LUT-Mask Sharing, and 7-Input Functions

We can make a number of improvements to this first version of the ALM. One issue
with Figure 4 is the number of outputs. We have partially addressed this by pushing
the output merging back one stage in order to incur a speed hit only on the 6th stage
input d2.  When in fractured mode we set the SRAM-bit to 0 to disconnect the upper
ALM-half from the lower.

However we can do better with the following transformation to Figure 5.  First we
duplicate the 2nd level muxes controlled by the 5th stage (d1 input), and add a new mux
which choose c1 or GND on the top ALUT and c2 or VCC on the bottom.  The effect
of the transformation is to remove the additional output muxing from the critical path
of the LE for all speed-paths, pushing it to the middle inputs only.  Routing interfaces
are identical to Figure 4 and are not shown.

As a further transformation, we introduce swap muxes controlled by R and T, for
reasons which will become clear shortly.

Fig. 5. 6,2 ALM with 2 outputs and shared LUT-mask.
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The operation of the logic module of Figure 5 is now a bit more complex.  We still
have two outputs and 8 inputs, and all previous properties.  However there is an addi-
tional benefit from the latter transformation that makes it particularly clever.  Note
that when a 6,2 ALM is used in 6-LUT mode, there are two outputs unused (wasted).
With the additional circuitry, which we call “shared LUT-mask” or SLM, we are now
able to configure the logic module to implement two 6-input functions that share 4
inputs as long as they share the identical LUT-mask function.  By setting R=1 and
T=1, S=0 and U=1, and reorganizing the LUT mask appropriately, SLM1 becomes a
6-LUT function of (a1,a2,b1,b2,c1,d1) and SLM2 becomes the same function, only of
(a1,a2,b1,b2,c2,d2).

This seemingly obscure property is incredibly useful in practice.  Designs which
contain multiple barrel shifters and crossbars will synthesize into many 4:1 muxes
with common data and different select lines, which fit perfectly into the SLM struc-
ture.  For example, a benchmark SPI-4 (posphy level 4) core is able to implement
about 12% of all ALMs as packed pairs of 6-LUTs implementing 4:1 muxes, meaning
a 12% overall savings in ALM area.

A further side-effect of this transformation is that the ALM of Figure 5 can also
implement a restricted set of 7-input functions.

Setting R=0 the upper two 4-LUTs are arbitrary functions of (a1,a2,b1,b2).  Setting
T=1 the bottom 4-LUTs are arbitrary functions of (a1,a2,b2,c2).  Setting S=1 makes
the upper shaded muxes controlled by c1 and the results of these controlled by d1.
When c1=0 out7 is driven by the L1 and L3 outputs chosen by d1.  When c1=0 out7
is driven by the L2 and L4 outputs chosen by d1.  The result is that we can compute a
class of 7-input functions using all the inputs except for d2.

Specifically, we can implement any 7-input function that can be expressed as
F1 = fn(a1,a2,b1,b2,d1),   F2 = fn(a1,a2,b2,c2,d1),   Out = mux(F1,F2,c1)

Thus we can compute the c1-controlled mux of two 5-input functions which share
4 of their inputs, differing only in b1 and c2.  The reason that the output of the func-
tional template is controlled by c1 rather than d1 as shown in the physical diagram
comes from the LUT-mask changes performed by synthesis to rotate the c1 and d1
effects (this does require some thought to see completely).

Figure 6 shows how to build an 8:1 mux in 2 ALMs (4 ALUTs) using this prop-
erty.  We first compute sub-functions y0 and y1.  Since y0 and y1 are 5 input func-
tions with two shared inputs they pack into a single ALM and generate the two out-
puts y0 and y1.  In the second ALM we compute the output of the 8:1 mux using
F1=fn(s0,s1,d3,y0,y1) and F2=fn(s0,s1,d7,y0,y1) and the 2:1 mux controlled by s2.
In both sub-functions one of the bridged inputs is unused, but nonetheless the result is
a partial 7-input function matching the above template.

An 8:1 mux implemented with simple BLE4 requires 5 BLE4 logic elements vs. 2
ALMs, which saves roughly the area of a BLE4.

It is worth noting that though the composable BLE4 structure of Figure 3 is not ef-
ficient for making 6-LUTs or 5-LUTs, it is quite useful for building muxes – it can
build an 8:1 mux in 4 composable BLE4s, which is comparable in area to the 2 ALM
solution.
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As a final comment on the choice of 6-LUTs as the basis for the ALM, we note
that in addition to 4:1 muxes, 6-input functions are natural implementations for many
other logical functions.  One such class of functions is DES encryption.

The core operation of DES is an array of 8 sboxes or substitution tables. Each sbox
has 6 inputs and produces 4 outputs. In a parallel implementation when targeting
speed, it is usual to produce 128 SBOXes, each of which needs 6 BLE4 for each of 4
outputs (3072 LEs).

The sbox has a natural implementation in 4 6-LUTs.  Due to the complex nature of
the function each of the 6-LUTs would otherwise require the worst-case 6 4-LUTs
shown in Figure 7. This behavior is typical of other encryption functions such as
Rijndael also, and is a further justification that 6-LUTs are a “natural” building block
for combinational functions.

For an area-optimized DES core, the ALM described in this paper uses 239 ALMs
vs. 736 in BLE4. For the speed-optimized version, we use 1465 ALMs vs. 5352
BLE4 logic elements.  This represents a roughly 35% and 45% overall area improve-
ment, respectively.

  
          Fig. 6. 7-input function for 8:1 mux               Fig. 7.  DES sbox with BLE4

In a naïve implementation, the total area of the Figure 5 ALM is a little larger than
two base BLE4s, roughly 15-20%. This comes from the additional LUT-mask SRAM
bits and extra 2:1 muxes and configuration. However, since layout of the ALM is
done as a pair, much of this can be clawed back with intelligent layout sharing. In
overall chip area the physical implementation of Figure 5 is roughly area-neutral with
the BLE4 architecture yet achieves the 36% decrease in logic depth.

3   Balanced Technology Mapping

It is critical to balance the distribution of LUT-sizes away from the natural distribu-
tion of tech-mapping to one which is more packable and facilitates SLM.

Consider Figure 8.  The network on the left can be covered by three ALUTs – two
6-LUTs and one 4-LUT (upper solution), and this is the solution that FlowMap will
generate.  After packing, the solution has depth 2 and 2 ½ ALMs. The solution to the
bottom, though it generates 4 ALUTs (all 5-LUTs), can be efficiently packed into just
2 ALMs while maintaining the depth-2 solution.
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We refer to modifying the distribution of LUT-sizes to improve packing as bal-
ancing.  The goal of balanced mapping is to maintain optimal critical path depth (unit
delay) while producing a more packable LUT distribution.

The primary issue to tech-mapping for a good distribution is to modify cost func-
tions to avoid 6-LUTs when they are not necessary for delay minimization.  Further
discussion is beyond the scope of this paper.  However, Figure 9 shows empirical
results from our prototype tools using default, balanced and aggressive balancing.

In the prototype we captured 7-LUT functions not by mapping to k=7, but rather
by specifically recognizing 8:1 muxes in RTL synthesis, and then post-processing the
netlist after tech-mapping.  On average, we find that 7% of all ALMs are able to im-
plement a 7-input function, a very significant area benefit.

  
  Fig. 8.  Better with balanced mapping.                       Fig. 9.  LUT-size distribution

4   Experimental Results

This section shows results on 80 large VHDL/Verilog industrial designs, using pro-
totype architecture development tools. Each design is synthesized and mapped by the
Quartus II architecture evaluation flow, then clustered, placed and routed by our pa-
rameterized architecture evaluation toll PMT. Architectures are generated automati-
cally by PMT based on the size of the design, to emulate as-full-as-possible chips.

For evaluating the ALM, the routing architecture of the LIM and global network
outside the LAB is held fixed.  However optimization sweeps for connectivity of the
input mux is performed for both the BLE4 and ALM 6,2 cases, so that each receives
its optimal layout and connectivity while maintaining routability. Timing delays for
the different delays through the BLE4 and ALM are obtained by Spice simulation
based on a preliminary layout on a common 130nm process.  Routing delays are also
obtained by Spice, and are common between the two architectures. Area models are
computed using preliminary layout estimation, also using common 130nm process
design rules.  Layout optimizations and rough transistor sizing is done to optimize the
BLE4 and ALM independently. As a caveat, design efforts were biased towards per-
formance over area, so results could change slightly with different emphasis.

Figure 10 shows performance results (as a ratio), overall a 15% geomean im-
provement.  Figure 11 shows chip area, with a 12% geomean improvement. For area,



142        M. Hutton et al.

we capture the effect of clustering into LABs and routing architecture, by using the
metric “labsize * sizeof(lab)” as this is the fairest comparison.   Both architectures
route all designs.

The ALM structure introduced in this paper is one of a number of architectural
changes introduced in the Stratix II family of FPGAs recently announced by Altera,
further architectural changes were also made to the LAB and routing structure, and
these are in general additive.

Fig. 10.  Performance improvement of 6,2 ALM vs. BLE4

Fig. 11.  Area improvement of 6,2 ALM vs. BLE4

Figure 12 shows the breakdown of overall performance gains in the Stratix II ar-
chitecture over Stratix.  In contrast with the earlier discussion, these are bottom-line
results comparing production software and timing models in both cases and including
the 90nm process gains for Stratix II.
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Fig. 12.  Stratix II Silicon Performance Improvements vs. Stratix

5   Conclusions

This paper presents a new and novel adaptive logic module structure for FPGAs.
The goals of the ALM is to allow technology mapping to 6-input functions in order to
capture the depth benefits of wider functions without the unacceptable cost that would
be incurred with a BLE6 based logic element.

We showed the sources of area cost of building logic elements with more than 4
inputs and how those costs break down into both the obvious costs (LUT-mask size)
and the large but less apparent costs such as input and output muxing and appropriate
number of FFs and outputs per block.

We presented a specific logic element based on a 6-LUT that is fracturable into 5
LUTs, but that using sharing and other optimizations can be implemented with area
comparable to two BLE4 logic elements. Further extensions to the logic element
improve propagation delay through the logic function, allow for partial functions of
7-inputs, and allow two 6-input functions that share 4 inputs and the same LUT mask
to be implemented in the same logic element – a 2X area savings when used. Efficient
balancing is achieved through improved software, and by choosing the right balance
of extra inputs needed to achieve good packing results vs. the cost of providing them.

Overall comparisons between an FPGA architecture based on the 6,2 ALM and
based on a 4-input LUT on the same process and with no routing architecture changes
show an average performance gain of 15% and average decrease in chip area of 12%.

A version of the adaptable logic module described in this paper has been imple-
mented as a key component of the Stratix II family of commercial FPGAs from Al-
tera. The 15% performance improvement from the ALM along with further architec-
tural changes and process migration results in a 50% average performance improve-
ment between the 90nm Stratix II and it’s predecessor Stratix on 130nm technology.

Acknowledgements. Thanks to Richard Cliff, Misha Burich, David Mendel and Paul
Leventis for their reviews and comments improving the presentation of this paper.



144        M. Hutton et al.

References

[1]    Ahmed and J. Rose, "The Effect of LUT and Cluster Size on Deep-Submicron FPGA
Performance and Density," in Proc. ACM Symp. FPGAs, pp. 3-12, 2000.

[2] J. Anderson, F. Najm and T. Tuan,  “Active Leakage Power Optimization for FPGAs”,
in Proc. ACM Symp. FPGAs, pp. 33-41, 2004.

[3] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs:  Area-Efficiency vs. In-
put Sharing and Size”, in Proc. Custom Integrated Circuits Conference 1997, pp. 551-
554.

[4] V. Betz, J. Rose and A. Marquardt.  “Architecture and CAD for Deep-Subicron
FPGAs”, Kluwer, 1999.

[5] S. Brown, R. Francis, J. Rose and Z. Vranesic, “Field-Programmable Gate Arrays”,
Kluwer, 1992.

[6] J. Cong and Y. Ding, “FlowMap:  An Optimal Technology Mapping Algorithm for
Delay Optimization in Lookup-Table Based FPGA Designs”, IEEE Trans. CAD Vol 13
No 1, pp. 1-12, 1994.

[7] J. Cong, J. Peck and Y. Ding, “RASP: A General Logic Synthesis System for SRAM-
based FPGAs”, in Proc. ACM Symp. FPGAs, pp. 137-143, 1996.

[8] J. He and J. Rose, “Advantages of Heterogeneous Logic Block Architecture for
FPGAs”, in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 7.4.1-7.4.5,
1993.

[9] Kaviani and S. Brown, “Hybrid FPGA Architecture”, in Proc. ACM Synp. FPGAs, pp.
3-9, 1996.

[10] J. Kouloheris and A.El Gamal, “FPGA Performance vs. Cell Granularity”, Proc. of
Custom Integrated Circuits Conference, May 1991, pp. 6.2.1 - 6.2.4.

[11] G. Lemieux and D. Lewis, “Using Sparse Crossbars Within LUT Clusters”, in Proc.
ACM Symp. FPGAs, pp. 59-68 2001.

[12] J. Rose, R.J. Francis, D. Lewis and P. Chow, “Architecture of Field-Programmable
Gate Arrays: The Effect of Logic Functionality on Area Efficiency”, IEEE Journal of
Solid-State Circuits, pp. 1217-1225, 1990.

[13] J. Rose, R.J. Francis, P. Chow and D. Lewis, “The Effect of Logic Block Complexity
on Area of Programmable Gate Arrays”, Proc. IEEE Custom Integrated Circuits Con-
ference (CICC), pp. 5.3.1-5.3.5 1989.

[14] S. Singh, “The Effect of Logic Block Architecture on FPGA Performance”, M.A.Sc.
Thesis, University of Toronto, 1991.

[15] S. Singh, J. Rose, P. Chow and D. Lewis, “The Effect of Logic Block Architecture on
FPGA Performance”, IEEE Journal of Solid-State Circuits, Vol 27 No. 3, pp. 282-287,
1992.

[16] S. Trimberger, K.Duong, and B. Conn, “Architecture Issues and Solutions for a High-
Capacity FPGA”, Proc. ACM Synp. FPGAs, pp. 3-9, 1997.

[17] K. Veenstra, B. Pedersen, J. Schleicher and C. Sung, “Optimizations for a Highly Cost-
Efficient Programmable Logic Architecture”, in Proc. ACM Symp. FPGAs, pp. 20-24,
1998.



A Dual-VDD Low Power FPGA Architecture

A. Gayasen1, K. Lee1, N. Vijaykrishnan1, M. Kandemir1, M.J. Irwin1, and
T. Tuan2

1 Dept. of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
{gayasen,kiylee,vijay,kandemir,mji}@cse.psu.edu

2 Xilinx Research Labs
2100 Logic Dr.

San Jose, CA 95124
Tim.Tuan@xilinx.com

Abstract. The continuing increase in FPGA size and complexity and
the emergence of sub-100nm technology have made FPGA power con-
sumption, both dynamic and static, an important design consideration.
In this work, we propose a programmable dual-VDD architecture in which
the supply voltage of the logic blocks and routing blocks are programmed
to reduce power consumption by assigning low-VDD to non-critical paths
in the design, while assigning high-VDD to the timing critical paths in the
design to meet timing constraints. We evaluate the effectiveness of differ-
ent VDD assignment algorithms and architectural implementations. Our
experimental results show that reducing the supply voltage selectively
to the non-critical paths provides significant power savings with minimal
impact on performance. One of our VDD-assignment techniques provides
an average power saving of 61% across different MCNC benchmarks.

1 Introduction

In modern FPGAs, power consumption has become an important design consid-
eration. Increasing performance and complexity have raised the dynamic power
consumed per chip, while the use of deep sub-micron processes has resulted
in higher static power in the forms of sub-threshold leakage and gate leakage.
High power consumption requires expensive packaging and cooling solutions. In
battery-powered applications, high power consumption may prohibit the use of
FPGA altogether. Consequently, solutions for reducing FPGA power are needed.

Reducing the supply voltage (VDD) is an effective technique for reducing
both dynamic and static power. Dynamic power has a quadratic dependency on
supply voltage, while both sub-threshold leakage (due to Drain Induced Bar-
rier Lowering, DIBL) and gate leakage exhibit exponential dependencies on the
supply voltage. However, reducing supply voltage also negatively affects circuit
performance. A well-known technique to reap the benefits of voltage scaling with-
out the performance penalty is the use of dual-VDD. The timing critical blocks
in the design operate on the normal VDD (or VDDH), while non-critical blocks

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 145–157, 2004.
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operate on a second supply rail with a lower voltage (or VDDL). While dual-
VDD ICs have been successfully used in low-power ASICs and custom ICs [17],
no commercial FPGA today uses multiple VDD’s for power reduction.1

The difficulty of designing a dual-VDD FPGA is that the optimal VDD as-
signment changes from one design to another. Consequently, if logic blocks are
statically determined to be operating at low or high VDD, the placement and
routing algorithms need to be modified accordingly as in [11]. However, static
assignment of VDD to the blocks may prevent the ability to reduce power con-
sumption or to meet timing constraints for some designs. In contrast, the use of
VDD-programmability for each block helps to tune the number of high and low
VDD blocks as desired by the application. In this approach, the challenge is in
determining the VDD assignments to each block. The need for level converters
wherever a low-VDD logic block drives a high-VDD block and the associated de-
lay and energy overheads are an important consideration when performing these
VDD assignments. Furthermore, positioning of the level converters influences the
ability to assign lower VDD’s to the routing blocks.

In this work, we propose a programmable dual-VDD architecture in which the
supply voltage of the logic and routing blocks are programmed to reduce power
consumption by assigning low-VDD to non-critical paths in the design, while
assigning high-VDD to the timing critical paths in the design to meet timing
constraints. In our programmable dual-VDD architecture (see figure 1), the VDD

of a circuit block is selected between VDDH and VDDL by using two high-VT

transistors (supply transistors) connecting the block to the supplies. The state
(ON/OFF) of each supply transistor is controlled by a configuration bit, which
is set by the VDD assignment algorithm. The configuration bits are set either to
connect the block to one of the power supplies or completely disconnect the block
from both the power supply lines when the block is unused or idle. We evaluate
the effectiveness of different VDD assignment algorithms and implementation
choices for an island style FPGA architecture designed in 65nm technology. Our
results indicate that one of our VDD-assignment techniques provides an average
power saving of 61% across different MCNC benchmarks.

The remainder of this paper is organized as follows. In Section 2, we revise the
related work, focusing in particular on power optimizations for FPGAs. In Sec-
tion 3, we discuss our dual-VDD FPGA architecture. Section 4 describes the ex-
perimental methodology we used, and discusses the VDD assignment algorithms
and the power estimation technique we used. Section 5 presents experimental
results and section 6 concludes the paper.

2 Related Work

Most of the previous works on power modeling, estimation and reduction in
FPGA have focused primarily on dynamic power. In [9], the dynamic power
1 Xilinx Virtex-II FPGAs use different supply voltages for I/O and the core. Pass

transistors used for interconnects are also supplied higher gate voltages to eliminate
the VT drop. But this is not targeted to reduce power.
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(a) (b) (c)

Fig. 1. Supply transistors used for programmable VDD

of a Xilinx XC4003A FPGA was analyzed by taking measurements of test de-
signs. [15] analyzes dynamic power consumption in Virtex-II FPGA family. [12,
10] evaluate different FPGA architectures for power efficiency. [16] presents a
routability-driven bottom-up clustering technique for area and power reduction
in clustered FPGAs.

Leakage in FPGAs has captured interest only very recently. [18] makes a
detailed analysis of leakage power in Xilinx CLBs. It concludes that significant
reduction of FPGA leakage is needed to enable the use of FPGAs in mobile appli-
cations. [3] presents a fine-grained leakage control scheme using sleep transistors
at gate level. [14] evaluates several low-leakage design techniques for FPGAs
and shows that using multiple VT switch blocks reduces leakage significantly.
[1] selects the polarities of logic signals to reduce active leakage power in FP-
GAs. [5] presents a cut enumeration algorithm targeting low power technology
mapping for FPGA architectures with dual supply voltages. [6] presents a region-
constrained placement approach to reduce leakage in FPGAs.

Dual-VDD techniques have been proposed previously for ASICs [19,17]. Re-
cently, a low-power FPGA using pre-defined dual-VDD/dual-VT fabrics has been
proposed in [11]. But, they have focused on reducing only dynamic power, while
keeping the leakage constant. Further, they have used a fixed dual-VDD/dual-VT

fabric, keeping all the routing resources at high-VDD, which limits the power
savings significantly.

3 Architecture

The proposed dual-VDD architecture is built on cluster-based island-style FPGA
architecture, with the configuration stored in SRAM cells. It facilitates config-
urable supply voltage for logic blocks and routing multiplexers. Figure 2 gives
an overview of the architecture. The basic logic element (BLE) consists of a
4-input LUT and a flip-flop. Eight such BLEs cluster together to form a logic
block (CLB). Figure 2(a) shows how the CLB is configured using high-VT supply
transistors to operate at two different voltages.

As mentioned in section 1, a dual-VDD design needs level conversion when a
low-VDD block drives a block operating at high-VDD. In our dual-VDD architec-
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(a) Dual-VDD CLB (b) Dual-VDD routing mux

Fig. 2. Dual-VDD architecture

ture, level conversion takes place only at CLB pins. For this purpose, CLB pins
have level converters (LCs) attached to them. A multiplexer allows to by-pass
the level converter if level conversion is not needed at that pin. Placing the level
converter only at CLB pins reduces the complexity of the routing fabric, and at
the same time, limits the overheads due to level converters.

We experimented with two architectures differing in the placement of the
level converters. While the first architecture places LCs at the output pins of
CLBs; the second architecture places them at CLB input pins. Figure 2a shows
the first case, where only the output pins of a CLB have LCs attached to them.
In this case, a net with multiple fanouts operates at high VDD if any one of the
CLBs driven by this net is at high VDD (since, the signal’s voltage level does
not change in the routing fabric). This limits the number of routing muxes that
can be operated at low VDD, and therefore, is less effective in reducing routing
power compared to the case when LCs are attached to CLB input pins. But,
the drawback of keeping LCs at input pins of CLBs (apart from area penalty)
is that a larger number of LCs are needed, which increases the leakage in logic
blocks. Our results support this reasoning, but show that overall leakage is lower
for the second case.

Figure 2(b) shows a routing multiplexer (mux) in the dual-VDD architec-
ture. The multiplexer’s output is connected to a level-restoring buffer to restore
the VT -drop through the NMOS-based multiplexer. Note that the same set of
supply transistors control the voltage of configuration SRAM cells and the level-
restoring buffer. Since the configuration SRAM is not timing critical, the supply
transistors need to be sized just enough to supply the maximum current needed
by the level-restoring buffer connected to it.

If a circuit block (CLB or routing multiplexer) is completely unused, then
in order to save leakage, it is desirable to completely switch-off that block. This
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is achieved by keeping a separate configuration bit for every supply transistor2.
Although this incurs more area overhead, it results in significant leakage savings,
since resource utilization in an FPGA is typically low [18]. Due to the area
overhead of level converters and supply transistors, the dual-VDD FPGA takes
approximately 21% more area than a single-VDD FPGA when LCs are at CLB
outputs. For the case when LCs are at CLB inputs, this number is estimated to
be around 23%.

Majority of leakage in an FPGA occurs in the configuration SRAM cells.
It has been previously shown in [6] that by increasing the threshold voltage of
the configuration SRAM, its leakage can be reduced by 98%, while increasing
configuration time by 20%. Since configuration time is not critical in most of our
target designs, this tradeoff for power savings is reasonable. In order to see the
effect of dual-VDD on power consumption, we have neglected the configuration
SRAM leakage both for single supply design, and for the dual supply design
(since the reduction of configuration SRAM leakage is achieved by increasing
its threshold voltage, and is equally applicable to both single and dual supply
designs).

3.1 Level Conversion

Level converters have been studied widely ever since multi-VDD circuits were
proposed [19,13]. The area, delay and power overheads of level converters pro-
hibit random VDD assignment to logic elements of a circuit. For the present work,
we have used the level converter circuit shown in Figure 3, and a 65nm BSIM4
SPICE model to simulate it. For an FPGA architecture where level converters
are placed at CLB input pins, four level converters are required per BLE. For
a VDDH of 1.1V and VDDL of 0.9V, the LC delay is almost 17% of the delay
of an LUT, and as much as 41% of the clock-to-Q delay of the flip-flop. This
significant delay in the LC prohibits the use of many LCs within a logical path
of the circuit. In contrast to delay, power consumption in an LC was observed
to be negligible (< 1%) compared to a BLE. This allows us to place LCs at all
input pins of a CLB and still get power savings.

4 Methodology

We used VPR and its power model [2,12] for this work. MCNC benchmarks
were used for experimentation to evaluate the dual-VDD architecture and VDD

assignment algorithms. The routing architecture that we supplied to VPR closely
resembles a modern FPGA, with a routing channel width of 200, and buffered
segments of lengths 1, 2, 6 and “long”. The LUT-size of 4, and cluster-size of 8
LUTs are chosen to be same as a Xilinx Virtex-II device.

Circuit simulations were performed in SPICE using 65nm BSIM4 device mod-
els. Delays of BLE and LC were obtained from these simulations. Power con-
sumption, both static and dynamic, of the LC was also obtained by simulating
2 In case of a routing mux, we may need to pull down the control signals when the

mux is unused. The pull-down transistors can be sized very small.
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Fig. 3. Level converter circuit

Fig. 4. Experimental Flow

in SPICE using BSIM4 models. Figure 4 shows the experimental flow. The flow
deviates from a normal VPR flow after the place and route stage. We first assign
voltage to all CLBs using algorithms that are discussed below, and then estimate
power of the design placed and routed on the target dual-VDD architecture. As-
signing voltages after routing makes the timing analysis more accurate, since all
the routing delays get incorporated in the timing graph.

4.1 VDD Assignment

In order to be effective, a dual VDD scheme requires that paths in the circuit
vary in their delays. If all paths are of same delay then all circuit elements will
require high VDD to maintain the performance of the design.

Figure 5 shows the distribution of path delays averaged over MCNC bench-
marks which we used for all our experimentation. It is evident from the figure
that path delays in a circuit vary considerably. Therefore, a dual-VDD scheme
can be expected to reduce the power consumption significantly. Figure 5 also
shows the path delays after using our dual-VDD assignment algorithms.

Optimal assignment of VDD to gates in a circuit is known to be an n-p
complete problem. We use the heuristic shown in figure 6 for VDD assignment.
Initially we assign low VDD to all CLBs in the FPGA, and find those paths
whose delays become greater than the desired clock time period. e call such
paths “critical”. Those CLBs which do not belong to any of the critical paths
can be kept at low voltage without affecting performance of the design. Some of
the remaining CLBs and routing muxes need to operate at high-VDD so that the
design’s performance target is met. The order in which these CLBs are analyzed
is crucial for the performance of the heuristic. We define “criticality” of a CLB,
as the number of critical paths that pass through this CLB3. The CLBs within
3 This definition of criticality can potentially be improved by assigning priorities to

paths depending on their delay or other parameters.
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Fig. 5. Distribution of path delays

Table 1. Comparison of High-to-Low and
Low-to-High algorithms (LC at CLB in-
puts, VDDH = 1.1V, VDDL = 0.9V

Assign VDDL to all CLBs and routing muxes
P = list of all paths in the design
T = longest delay path when all circuit blocks operate at VDDH

Td = xT, where x ≥ 1 is a user-defined performance metric
critical path = {Pi ∈ P | delay(Pi) > Td}
for each CLB

criticality(CLB) = number of paths passing through it
while (critical path not empty) {

Pk = path ∈ critical path with maximum delay
N = all blocks through which Pk flows
Sort N based on criticality (first entry has most paths)
while (delay(Pk) > Td) {

Ni = first(N)
N = N - Ni

Assign VDDH to Ni and all the routing muxes driven by Ni

update delay of all paths passing through Ni

}
critical path = critical path - {Pk}

}

Fig. 6. Algorithm for VDD assignment: Low-to-High (assuming LCs at CLB input
pins)

a path are analyzed in decreasing order of their criticalities. We started with
CLBs on the most critical path, and proceeded to smaller paths in decreasing
order of their delay. Figure 6 shows the algorithm for the case when LCs are
at CLB inputs. In that case all routing muxes driven by a CLB have the same
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Assign VDDH to all CLBs and routing muxes
P = list of all paths in the design
T = longest delay path when all circuit blocks operate at VDDH

Td = xT, where x ≥ 1 is a user-defined performance metric
vddl delay(Pi) = delay(Pi) when all blocks in Pi are at VDDL

critical path = {Pi ∈ P | vddl delay(Pi) > Td}
for each CLB

criticality(CLB) = number of paths passing through it
while (critical path not empty) {

Pk = path ∈ critical path with maximum delay
N = all blocks through which Pk flows
Sort N based on criticality (last entry has most paths)
while ((delay(Pk) < Td) & (N not empty)) {

Ni = first(N)
N = N - Ni

Assign VDDL to Ni and all the routing muxes driven by Ni

calculate delays of all paths flowing through Ni

if any of the delays > Td

reset Ni and all routing muxes driven by Ni to VDDH

else
update delays of all paths flowing through Ni

}
critical path = critical path - {Pk}

}

Fig. 7. Algorithm for VDD assignment: High-to-Low (assuming LCs at CLB input
pins)

voltage as the CLB. For the other situation, when LCs are at CLB outputs, the
voltage of routing muxes driving a CLB is the same as that of the CLB.

In order to enumerate all paths whose delays become larger than the required
clock time period, we used the algorithm proposed in [8]. It maintains all paths
in a heap data structure with their delays as the keys. Each path also maintains
all the branch-points in the path in increasing order of their branch-slacks4.

We experimented with a variant of the above algorithm (High-to-Low) too,
in which all the CLBs are initially kept at high voltage and then some of them
are changed to low VDD (see figure 7). Before changing a CLB to low-VDD, we
need to make sure that this will not increase the delay of some other path in the
circuit above the desired clock period. The number of low VDD blocks using both
versions, for VDDH of 1.1V and VDDL of 0.9V (for 65nm technology) is shown in
table 1. For 10 out of 15 designs, the High-to-Low (h2l) version performs better
than Low-to-High (l2h). This happens because in case of h2l, when the CLBs on
a particular path are being analyzed whether they can be run on low-VDD, the
algorithm continues to look at all the other CLBs on the path even after it failed

4 Branch slack is defined as the decrease in path delay if a particular branch point is
used to generate a new path
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to change the VDD of some CLB. In contrast, in the l2h case, the algorithm
keeps changing CLBs on a path to high VDD (in decreasing order of criticality),
till the delay of the path is less than the required clock period. This sometimes
causes the path’s delay to be reduced more than what was necessary.

4.2 Power Estimation

After all logic blocks have been assigned appropriate supply voltages, we estimate
power consumption of the entire FPGA. We concentrate only on the power
consumption in the core of the FPGA, and do not try to optimize or estimate IO
power consumption. Furthermore, we did not estimate the power consumption
in the global routing grid used for clock distribution.

In order to estimate dynamic power, VPR’s power model calculates tran-
sition densities at all internal nodes of the FPGA, assuming that all inputs
to the FPGA have the same static probability (default: 0.5). Capacitances are
estimated from the capacitance values of a MOSFET, and that of wires and
switches, all of which need to be provided in the architecture file taken by VPR
as an input. We used Berkeley Predictive 65nm technology parameters for our
experimentation.

We modified VPR’s dynamic power model to include dual supply voltages,
and the power consumption of level converters. Due to quadratic dependence of
dynamic power on supply voltage, dynamic power of a circuit element reduces
by ( VDDL

VDDH
)2 when its voltage is reduced from VDDH to VDDL. Dynamic power

of a level converter (obtained from SPICE simulations) was added wherever a
level converter was used (using the transition density at that node).

VPR has got a basic leakage model, which calculates sub-threshold leakage
due to weak inversion. But in a 65nm technology, two more effects, namely, DIBL
and gate leakage become significant, and need to be included in the leakage
estimation. We also modified the leakage model to take into account multiple
supply voltages, and sleep modes. Specifically, the following modifications were
made to VPR’s leakage estimation.

1. Gate leakage and sub-threshold leakage due to DIBL were included in the
leakage estimation. In order to estimate leakage of a single MOSFET, we
used results from SPICE simulations. 65nm BSIM4 device models were used.
Simulations were performed for various supply voltages to get leakage num-
bers for different voltages. These numbers were incorporated into the power
model of VPR to estimate gate leakage of the entire FPGA.

2. We estimated average leakage in a routing multiplexer by halving the worst
case leakage, as discussed in [14]. To verify, we simulated multiplexers of
various sizes and structures and found our leakage estimate to be very close
to the SPICE results.

3. In the dual-VDD FPGA, unused logic blocks and routing muxes are kept in a
sleep state, by switching off both the supply transistors. Circuit simulations
in SPICE showed that in sleep mode, leakage of a circuit block reduces to
10% of the original (high VDD) leakage.
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Fig. 8. Power consumption for differ-
ent VDDL’s. VDDH = 1.1V .

Fig. 9. Power consumption for differ-
ent architectures and algorithms.

Fig. 10. Average power breakdown be-
tween logic and routing resources.

Fig. 11. Average power consumption for
different critical path delay tolerances.

4. To estimate level converter leakage, we obtained the leakage number for one
level converter from SPICE simulations, and multiplied this by the number
of level converters in the FPGA.

5 Results and Analysis

Power reduction due to the dual-VDD architecture strongly depends on the volt-
age values of VDDH and VDDL. In order to understand this dependence, and to
come up with a good voltage choice, we fixed the high-VDD at 1.1V and varied
VDDL from 0.8V to 1.0V. Figure 8 shows the power consumption for different
VDDL values (using High-to-Low Algorithm, LC at CLB’s inputs) . Note that for
11 (out of 15) designs, VDDL value of 0.9V results in maximum power savings.
When VDDL is increased to 1.0V, although the number of CLBs on low VDD

increases, the total power consumption increases. This happens because power
consumption of the circuit elements at 1.0V is significantly higher than at 0.9V.
On the other side, when we reduce VDDL to 0.8V, power consumption again
increases because the number of CLBs and routing muxes on low VDD becomes
too low. Therefore, for all other results in this section, we use a VDDL of 0.9V.
For this case, on an average, we get close to 61% power saving.
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Figure 9 shows the power consumption of the designs for the two algorithms
— High-to-Low (h2l) and Low-to-High (l2h), and level converter placements —
at CLB outputs (LCo) or inputs (LCi). (h2lLCi denotes High-to-Low algorithm
with LC at CLB Inputs.) Note that for most designs, the High-to-Low algorithm
outperforms the Low-to-High algorithm. This is expected because we showed in
section 4 that the High-to-Low algorithm resulted in larger number of low-VDD

CLBs. Further, the placement of LCs at CLB inputs saves more power (average:
61%) than their placement at outputs (average: 57%). This happens because LC
leakage is not large enough to overshadow the gains we get in routing power
by placing LCs at CLB inputs. But note that placing the LCs at CLB inputs
increases the area of the FPGA.

Figure 10 shows the static and dynamic power consumption in both logic and
routing resources for the different algorithms and LC placements. An important
observation is that not all components of power are reduced by the same factor.
The reduction in dynamic power is much less than that in leakage. For example,
using High-to-Low algorithm and placing LC at CLB inputs saves 24% dynamic
power and 76% leakage power. This can be attributed to two factors. First, in an
FPGA since there exist a large number of unused circuit elements, it is possible
to reduce the leakage in them by switching them off. And second, leakage varies
exponentially with supply voltage, but dynamic power varies only quadratically
with supply voltage. Note that leakage in routing resources reduces to less than
17% of the original, because in most designs it is possible to put a large number
of routing muxes in sleep state, as they are sparsely used. Another trend to note
is that the logic portion of leakage is larger when LCs are placed at CLB inputs
(LCi) than when they are placed at CLB outputs (LCo). This implies that the
larger overall power saving for the LCi case comes entirely from the routing
resources.

Finally, figure 11 shows what happens when we modify the VDD assignment
algorithm to allow some degradation in the performance of the design. In the
figure, a delay value of 110% denotes 10% performance penalty. Note that these
delay values may increase after circuit implementation due to the use of supply
transistors, and due to a possible increase of wire lengths (since total CLB area
and consequently inter-CLB distances increase). Using h2lLCi, a 10% decrease
in performance increases the average power saving by around 4%. But beyond
20%, power saving remains almost constant.

6 Conclusion and Future Work

We have presented a dual-VDD FPGA architecture that provides significant
power savings with minimal performance penalty. Variations of the VDD assign-
ment algorithm and level converter placement were explored. It was observed
that High-to-Low Algorithm coupled with placement of level converters at the
input pins of CLBs resulted in maximum power savings. An average power sav-
ing of 61% was observed for this case. The dynamic power was reduced by 24%,
while the reduction in static power was close to 76%. But placing the level con-
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verters at CLB output pins reduces the area penalty by about 2% and still saves
about 57% of total power.

In the present work, the router in VPR is essentially unaware of multiple
supply voltages available for every logic block and routing switches. This could
be improved by performing a dual-VDD aware routing. We plan to work on this
in future.
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Abstract. Traditional placement algorithms for FPGAs are normally carried out
on a fixed clustering solution of a circuit. The impact of clustering on wire-
length and delay of the placement solutions is not well quantified. In this paper,
we present an algorithm named SCPlace that performs simultaneous clustering
and placement to minimize both the total wirelength and longest path delay. We
also incorporate a recently proposed path counting-based net weighting scheme
[16]. Our algorithm SCPlace consistently outperforms the state-of-the-art
FPGA placement flow (T-VPack + VPR) with an average reduction of up to
36% in total wirelength and 31% in longest path delay.

1   Introduction

A typical LUT-based FPGA architecture [1] contains a two-level physical hierarchy:
Basic Logic Elements (BLE) and Cluster-based Logic Blocks (CLB). As described in
Fig. 1, each BLE contains one K-input LUT and one flip-flop (FF), and the LUT and
FF share the same output. As described in Fig. 2, each CLB contains N BLEs, I inputs
and N outputs. Each of the I inputs can drive all the BLEs, and each BLE drives an
output. Here K, N, and I are parameters described by the architecture file. The inter-
connect delay between BLEs within the same CLB is usually much smaller than the
delay between BLEs in different CLBs.

Fig. 1. VPR’s Basic Logic Element (BLE) Fig. 2. VPR’s Cluster-Based Logic Block
(CLB)
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In a typical FPGA design flow, a circuit is first synthesized and mapped into a
netlist of LUTs and FFs. Then it goes through the following three steps: clustering,
placement and routing. The clustering step arranges LUTs and FFs into CLBs ac-
cording to the timing and the connectivity of the mapped netlist; the placement places
the clustered netlist onto the array of on-chip CLBs; the routing routes all the wires in
the netlist with the available routing resources on the device.

The drawback of this design flow is that the clustering and placement stages are
artificially separated. During the clustering stage, we have great freedom to change a
circuit’s structure, but a fast and accurate estimation of the final placement wire-
length, timing and routability information is not available.  During the placement
stage, we can optimize wirelength, timing and routability simultaneously, but the so-
lution space is greatly confined because we are committed to a fixed circuit structure.
Since the mistakes made during the clustering phase cannot be corrected during the
placement process, it will ultimately generate a sub-optimal place and route result.
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Fig. 3. Impact of Clustering on Placement

Fig. 3 illustrates the impact of clustering on placement. The initial network (a)
consists of six FFs. We assume each CLB contains two BLEs, and the device is a 2 x
2 grid. The delay model used here is the Manhattan distance. The “optimal” clustering
solution in (b), which consists of three CLBs and one logic level, can be obtained
from T-VPack [17] (which minimizes the number of clusters and the number of lev-
els). However, the optimal placement solution (c) on this optimal clustering has a
longest path delay of two. Instead, when we perform clustering together with place-
ment, we can obtain a placement solution (d) with a longest path delay of one.

In this paper, we propose a novel algorithm to perform clustering optimization
during the placement for wirelength and timing minimization. We also incorporate a
recently proposed path counting-based net weighting scheme in our approach. This
new algorithm outperforms the current state-of-the-art FPGA placement flow T-
VPack + VPR with an average reduction of up to 36% in total wirelength and 31% in
longest path delay. Another significant contribution is that our combined approach
has a runtime complexity similar to the existing VPR placement algorithm.
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2   Review of Existing FPGA Clustering and Placement Algorithms

Packing LUTs and FFs into CLBs is a critical step in the cluster-based FPGA design
flow, since it has a great impact on both timing and routability. VPack [17] packs
each logic block to its capacity to minimize the number of clusters and encourages
input sharing to minimize the number of connections between clusters. The timing-
driven version, T-Vpack [17], minimizes the number of connections on the critical
path since on average the internal connections are much faster than the external con-
nections. Rpack [4] introduces an effective routability metric and presents a routabil-
ity driven clustering algorithm for cluster-based FPGAs. PRIME [10] integrates ret-
iming with performance-driven clustering/partitioning. For a given area bound for
each cluster, if duplication is allowed, PRIME can generate a quasi-optimal solution
with a delay of no more than a small constant over the minimal delay.

Placement is a classic problem and becomes increasingly difficult and important as
the design size rapidly increases. There are three classes of widely used placement
methods: min-cut based placer [11][5][23], analytical placer [12][15][20] and simu-
lated annealing-based placer [14][21][1]. Min-cut based placers recursively partition
the circuit until the number of cells in each partition is small enough and then assign
cells to appropriate rows. The min-cut based methods are usually very fast, but since
the cutsize is not an exact function of either wirelength, timing or routability, the
quality is not as good as other placers.  The analytical method includes the force di-
rected and quadratic programming method. The force directed method introduces at-
tracting, repelling and other additional forces and then solves a linear equation system
using the forces. The quadratic programming (QP) method solves the placement
problem by solving a sequence of quadratic programming problems derived from the
circuit connectivity information. The force directed and quadratic-programming
methods have a short runtime and produce good results, but they are not flexible
enough to handle complex constraints. The simulated annealing algorithm simulates
the annealing process that is used to produce high-quality metal structures by gradu-
ally cooling down the temperature. The initial placement is gradually optimized by
performing a number of moves at each temperature. Each move is accepted with a
certain probability p = e-delta_cost/T, where delta_cost is the change in cost function and T
is the current temperature. Simulated annealing-based placers are very flexible for
handling different kinds of constraints, and they usually generate a good solution in a
reasonable amount of time. In recent years there have been several novel placement
algorithms that incorporate multiple placement techniques. For example, Mongrel
[13] adopts a middle-down methodology in which a global placement solution is ob-
tained by placing logic cells into coarse bins. During the global placement phase, a
Relaxation Based Local Search methodology is applied to generate global complex
modifications to the current placement. A novel ripple move [13] based legalization
procedure is also presented. After the global placement is completed, a detailed
placement is obtained by applying the optimal interleaving [13] technique.
Dragon2000 [22] uses a top down hierarchical approach, and integrates the parti-
tioning-based cutsize minimization techniques and the simulated annealing-based
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wirelength minimization techniques. mPL [6] and mPG [7] are based on the multi-
level framework to improve both runtime and quality of the placement

3   Simultaneous Timing Driven Clustering and Placement
Algorithm

3.1   Overview

Our algorithm uses a simulated annealing-based optimization engine [21][1][18]. We
first perform an initial clustering on the mapped netlist, and then generate a random
placement of the clustered netlist. During the annealing process, we optimize the
clustering structure and circuit placement at the same time. To improve the sub-
optimal clustering structure during placement, we introduce a fragment level move.
After each move, we update the cost function and decide whether to keep the move or
not. We iteratively perform a certain number of moves at each temperature and then
reduce the temperature until the acceptance rate is too low. In order to optimize both
wirelength and circuit delay, we minimize a weighted function of bounding-box
wirelength cost and timing cost (weighted edge delays). For the net weighting, we
implement a recently proposed path counting-based net weighting scheme.

3.2   Clustering Optimization During Placement

Our main contribution is to perform clustering optimization during placement. There
are two types of moves in our approach. The first type of move is the block level
move, in which an entire CLB is moved to a new location and swapped with another
CLB if necessary. The second type of move is the fragment level move, in which only
a BLE is moved to a new CLB and swapped with another BLE if necessary. Due to
the powerful fragment level move, we are able to significantly improve the sub-
optimal clustering structure to achieve a high quality placement. This is especially
important when the chip utilization is high, and the clustering stage has to perform
unrelated packing to squeeze the design into the device. Due to the lack of physical
information, it is almost impossible for a clustering algorithm to make the right
packing decisions among unrelated logics. With the simultaneous clustering optimi-
zation and placement optimization, we can correct mistakes made during the previous
stage and significantly improve both routability and timing.

When we perform a fragment level move, we need to check whether the new CLB
is in a valid configuration. When we check the feasibility of each CLB, we need to
check the number of BLEs and the number of inputs. For real industry architectures,
we also need to check the number of clocks, the number of feedbacks, the number of
control signals, etc. Hence, we dynamically update a hash-map for each involved
CLB whenever a fragment level move is performed. The complexity of the update is
O(K), where K is the input size of the LUT.
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3.3   Path Counting-Based Net Weighting

The net-based timing-driven placers (e.g. [18]) convert timing information into net
weight and optimize a weighted function of all nets. The basic idea of net weighting
is to assign higher weights to timing critical nets and lower weights to non-critical
nets. The net weighting scheme is both efficient and flexible enough to handle com-
plex constraints, but most existing methods do not take into account the path infor-
mation.
Here we incorporate a novel net weighting scheme [16] proposed by Dr. T. Kong,
which accurately counts all paths (critical and non-critical) for certain types of dis-
count functions such as D(x, y) = a-x/y. This scheme considers path sharing, and thus
assigns a higher weight to the edges shared by two or more critical paths. For more
details about path counting, please refer to [16].

4   Runtime/Quality Trade-Off

For a given architecture, each CLB contains N BLEs, I inputs and N outputs. In the
input clustered netlist, the number of CLBs is n, and the number of BLEs is m. n ≤ m
≤ N*n, and O(m) = O(N*n) = N*O(n). If every swap performed at each temperature
is at the BLE level, the number of swaps needed will be O((N*n) 4/3), which is quite
costly.

However, we perform both block level move and fragment level move in our ap-
proach. At each temperature, the number of block level moves performed is n4/3, and
the number of fragment level moves performed is (α∗m)1.33 ≈ (α∗N∗n)1.33. We can
change the value of α between 0 and 1, and achieve the runtime/quality trade-off.

5   Complexity Analysis

We first analyze the computation complexity of VPR’s placement engine T-VPlace
[18]. The timing analysis is performed once per temperature change, which is an O(n)
operation. At each temperature the inner loop of the placer is executed O(n4/3) times
(i.e., O(n4/3) swaps are performed). In the inner loop is the incremental-bounding-box-
update operation that is worst case O(kmax), where kmax is the fanout of the largest net in
the circuit. The average case complexity for this bounding box update is O(1) [2][3].
Also in the inner loop is the computation of the Timing_Cost for each connection af-
fected by a swap. This is also O(kmax). In the average case this is O(kavg) where kavg is
the average fanout of all nets in the circuit. Since kavg is typically quite small, the aver-
age complexity of this Timing_Cost computation is O(1) as well. The overall result is
that the VPR algorithm is worst case O[kmax·(n)4/3], but on average it is O(n4/3). The av-
erage case complexity is really the only relevant value here. The complexity of the
algorithm is the average over millions of swaps, so a user will always see the average
case complexity.



Simultaneous Timing Driven Clustering and Placement for FPGAs         163

In our algorithm SCPlace, at each temperature the complexity of the block level
moves is O(n4/3), and the complexity of the fragment level move is O((α∗N∗n)4/3). In
reality, the value of N is not very big, and we can always choose α to make
O((α∗N∗n)4/3) = O(n4/3). Hence, the overall complexity is O(n4/3+n4/3) = O(n4/3). As a
result, our algorithm’s complexity can be similar to VPR, and hence very scalable.

6   Experimental Results

We implemented our algorithm SCPlace under the VPR framework. For the purpose
of comparison, we downloaded the VPR 4.3 source code, architecture file and the
complete set of 20 MCNC benchmark circuits used by VPR from [24]. We modified
the architecture file to specify the number of BLEs contained in a single CLB. For all
of the 20 MCNC circuits, we compare with the commonly used academic FPGA de-
sign flow [17]. We first run the script.algebraic in SIS [19], followed by Flowmap
[9]. Then we run T-VPack [17] to generate an initial clustering solution. This initial
clustering is then given to both VPR and SCPlace to perform placement. The default
architecture we use assumes that each CLB contains 4 LUTs, and each LUT has 4 in-
puts. In section 6.1 and 6.2, we perform 100% fragment moves and no block moves.
In section 6.3 we perform both block and fragment moves and explore the trade-off
between quality and runtime. Only the runtime of the second half of benchmark set is
reported since the circuits in the first half are too small.

  Table 1. Wirelength Comparison                 Table 2. Impact of Architecture on Wirelength
  with  T-VPack + VPR

6.1   Wire-Length Comparison

In Table 1, we compare our algorithm SCPlace with VPR using the total weighted
bounding box wire lengths as the only optimization objective. The weights for nets of
different sizes can be found in [8]. When we combine clustering with placement, we
can outperform VPR by 22% on average.
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In Table 2, we illustrate the impact of architecture on the wirelength improvement
obtained from SCPlace. When we change the size of the CLB (N) from 2 to 10, the
wirelength gap between SCPlace and T-Vpack+VPR increases monotonically from
7% to 36%. The result shows that as the size of CLB increases, it is more and more
difficult to generate a good clustering solution with small wirelength without physical
information. Since SCPlace explores different clustering solutions during the place-
ment stage, it generates clustering and placement solutions with much shorter wire-
length.

    Table 3. Timing Comparison with                       Table 4. Impact of Architecture on Timing
    T-VPack + VPR

6.2   Timing Comparison

In Table 3, we compare SCPlace with both VPR and TTT [16] in timing optimization.
If we use path counting-based net weighting scheme only in SCPlace, we can outper-
form VPR by 14% (column 4); if we perform clustering optimization only in
SCPlace, we can outperform VPR by 13% (column 6); if we integrate the path
counting-based net weighting scheme with the clustering optimization, SCPlace sig-
nificantly outperforms the original VPR result by 25%.

In Table 4, we illustrate the impact of architecture on the delay improvement ob-
tained from SCPlace. For architecture with the CLB size of 2, the timing gap between
SCPlace and T-Vpack+VPR is 17%. When the size of the CLB (N) increases from 4
to 10, the timing gap between  SCPlace and T-Vpack+VPR remains in a narrow range
between 22 to 25%. The result shows that even when the CLB size is relatively small
(2 or 4), it is difficult to generate a good clustering solution with small delay without
physical information. Since SCPlace explores different clustering solutions during the
placement stage, it generates clustering and placement solutions with much better
delay.
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  Table 5. Effect of α on timing (CLB = 4)            Table 6. Effect of α on timing (CLB = 10)

Table 7. Routed Delay and Track Count Comparison

6.3   Runtime Speedup

For a given architecture, each CLB contains N BLEs, I inputs and N outputs. In the
input clustered netlist, the number of CLBs is n, and the number of BLEs is m, and m
≈ N∗n. From Table 1 to Table 4, we perform m1.33 ≈ (N∗n)1.33 fragment moves and 0
block moves. In this section, we fix the number of block moves to be n1.33, and set the
number of fragment moves to be (α∗m)1.33 ≈ (α∗N∗n)1.33, where α is between 0 and 1.

In Table 5, we show the impact of α on the amount of timing improvement achiev-
able. It is no surprise that when α increases, i.e., the number of fragment moves in-
crease, the timing improvement increases from 22% to 31%. And this is better than
the 25% we achieve in Table 4 when we perform fragment moves only. The results
illustrate that performing both block and fragment moves is better than only per-
forming one type of moves. Our runtime is generally shorter than VPR due to the fact
that the number of block moves we perform is only 10% of VPR’s. If we reduce the
number of block moves VPR performs to be the same as SCPlace, it yields about 5%
worse result (both timing and wirelength) and consumes 15% of standard VPR ‘s
runtime. When α = 0.25, SCPlace uses 33% of standard VPR ‘s runtime. SCPlace’s
runtime increases up to 63% as α increases to 1. Table 6 shows the same trend when
the size of the CLB is 10. The bottom line is that you could easily tradeoff runtime
with quality by changing the value of α.



166          G. Chen and J. Cong

6.4   Routed Results

In Table 7, we show the comparison of routed delay and track count between
SCPlace and T-Vpack+VPR. The given architecture has a CLB size of 4, and the
SCPlace run is from Table 5 when α = 0.50. The routed delay improvement is 19%
on average and the reduction in routed tracks is 12% on average. This is consistent
with the estimated delay/wirelength reduction after placement.

7   Conclusions

We introduce a novel simultaneous clustering and placement algorithm and incorpo-
rate a novel path counting-based net weighting scheme. The new algorithm produces
impressive results for both bounding box wire length optimization and timing optimi-
zation. When compared with the state-of-the-art separate FPGA design flow T-VPack
+ VPR, our algorithm improves up to 36% in wirelength and 31% in longest path de-
lay. Since our algorithm has a similar computational complexity, our approach is also
very scalable.
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Abstract. Layout tools for FPGAs can typically be run in two dif-
ferent modes: non-timing-driven and timing-driven. Non-timing-driven
mode produces a solution quickly, without consideration of design per-
formance. Timing-driven mode requires that a designer specify perfor-
mance constraints and then produces a performance-optimized layout
solution. The task of generating constraints is burdensome since design
performance is difficult to gauge at the pre-layout stage and the relation-
ship between the constraints supplied and tool execution time is unpre-
dictable. In this paper, we propose a new mode for layout tools, called
“automatic timing-driven” mode that produces a performance-optimized
layout, without requiring any constraint specification. A key feature of
this mode is a novel and practical method for automatic constraint gen-
eration that creates constraints that result in predictable and controlled
layout execution time. The automatic constraint generation approach
has been integrated into commercial FPGA layout tools and tuned to
provide layouts having 28% better performance than non-timing-driven
mode, on average. Results show that the ratio of the automatic to non-
timing-driven layout execution time is consistent and predictable across
a suite of designs.

1 Introduction

State-of-the-art field-programmable gate arrays (FPGAs) can implement sys-
tems with millions of gates that operate at speeds in the hundreds of megahertz.
An important part of the FPGA CAD flow is the layout step, comprised of plac-
ing and routing a design on a target FPGA device. Place and route systems for
FPGAs typically support two modes of operation: non-timing-driven and timing-
driven. The former mode ignores delays, producing a valid placed and routed
design as quickly as possible. Since delays are ignored, the resultant solution can
have poor performance characteristics. In contrast, timing-driven mode typically
requires that the user (designer) provide performance constraints. Layout tools
then perform delay optimization in order to meet the specified constraints.
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In this paper, we propose a new mode of operation for FPGA layout tools
in which a performance-optimized layout solution is produced without the need
for a user to provide performance constraints. A relevant question that arises
relates to the definition of “performance”. The aspect of performance we choose
for automatic optimization is a design’s clock frequency, which represents the
most common optimization goal in digital circuit design. We refer to the new
layout mode as automatic timing-driven layout.

The proposed automatic mode offers a number of benefits. First, as we will
demonstrate, the layouts produced by the automatic mode have better perfor-
mance than those produced by non-timing-driven mode. Often, the automatic
layout performance will be sufficient to meet design requirements and no con-
straint specification and additional layout passes will be needed. Second, and
perhaps most important, the automatic mode offers predictable and controlled
layout execution time. In particular, the automatic approach can be tuned to
produce performance-driven layout solutions in execution times that are con-
sistently longer by a pre-specified percentage than those associated with non-
timing-driven layout. Thus, its aim is to offer the best possible performance
within a given execution time. This differs considerably from other automatic
performance-driven FPGA layout systems, such as [1], which attempt to opti-
mize design performance to the maximum extent possible. Rather, our approach
provides a user with a reasonably good performance-optimized layout, as well as
offers the run-time predictability that is a crucial part of a quality “push-button”
tool experience – a primary concern for commercial FPGA tool vendors.

To optimize performance in today’s high-speed FPGAs, users employ a rel-
atively “ad hoc” process. A trial-and-error approach is typically used for con-
straint generation whereby a user specifies performance constraints, executes
layout tools and then analyzes the results. If the constraints are met, new and
more aggressive constraints are specified and the process is repeated. On the
other hand, if constraints are not met, long and unpredictable tool run-times
are incurred, the constraints must be relaxed and layout tools re-executed. Each
iteration of this process can take hours or days for a large design, leading to a
lengthy design cycle and increased cost. An important application of the pro-
posed automatic approach is as an initial layout pass that requires no user in-
tervention and takes limited execution time. The resultant solution can then be
used as a starting point for further optimization, leading to a reduction in the
number of passes through the design flow.

One of the key contributions of this paper is a novel method for performance
constraint generation that chooses design constraints in a way that is conscious
of layout execution time. The approach works by doing a careful analysis of the
distribution of delay slacks in circuits and produces realistic and feasible per-
formance constraints. The aggressiveness of the generated constraints and the
related layout execution time are managed elegantly through a single parame-
ter. The proposed automatic approach has been integrated into a commercial
FPGA layout system and used for performance optimization of industrial FPGA
designs. The rest of this paper is organized as follows. In Section 2, we present
preliminary background material and discuss related work. The automatic layout



170 J. Anderson et al.

approach is described in Section 3. Experimental results are given in Section 4.
Conclusions are offered in Section 5.

2 Background

For the purpose of static timing analysis, the combinational part of a digital
circuit can be represented using a timing graph, G(V, E), which is a directed
acyclic graph (DAG) with nodes, V , corresponding to circuit blocks and edges
(connections), E, between nodes corresponding to electrical connections between
blocks. Delay values are associated with each node and edge in a circuit’s timing
graph. Let input(v) and output(v) represent the predecessors and successors
of a node v (v ε V ), respectively. A node v with input(v) = ∅ corresponds
to a primary input or register output. Similarly, a node v with output(v) = ∅
corresponds to a primary output or register input. The maximum performance
of a layout solution (clock frequency) is limited by the delay of the longest-delay
path in the timing graph, as given by:

Tperiod = max
πεΠ

{
∑

b ε nodes(π)

Delay(b) +
∑

c ε edges(π)

Delay(c)} (1)

where nodes(π) and edges(π) represents the circuit blocks and connections on a
path π, respectively, and Π represents the set of all paths in the timing graph.
An important property of a combinational path π is its slack, which is defined to
be the difference between the path’s required delay (RTπ) and its actual delay
(ATπ):

slack(π) = RTπ − ATπ (2)

The required delays for paths are generally fixed by user constraints specified
prior to layout synthesis. Paths with negative slack are referred to as critical;
such paths have excessive delay that must be reduced if performance constraints
are to be met. Layout tools usually operate at the level of individual driver/load
connections (edges) rather than entire paths. The slack of a connection, c, is
defined to be the minimum slack of any path through c:

slack(c) = min
πεΠc

{slack(π)} (3)

where Πc represents the set of all paths through connection c. An early work by
Hitchcock et. al. showed how path delays, path slacks and connection slacks can
be computed in O(|V |) time [2]. Other related work has focused on distributing
the slack of a path amongst its constituent connections to yield an upper bound
on the allowable delay of each connection, for use by layout tools [3,4,5].

Substantial research has been dedicated to performance-driven layout syn-
thesis for FPGAs (e.g., [1,6,7,8]). Generally, the approach taken has been to op-
timize performance by giving higher priority to connections with negative slack,
versus non-critical connections. The priority notion can have different meanings,
depending on the context in which it is applied. In the placement phase for exam-
ple, nets with negative slack connections are given priority for wirelength and/or
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delay minimization, which can be estimated using metrics such as half-perimeter
bounding box length. In the routing phase, steps can be taken to ensure that
negative slack connections are given preference for allocation of low-delay FPGA
routing resources [7].

3 Automatic Timing-Driven Layout Synthesis

In this section, we present the proposed automatic timing-driven layout ap-
proach. We first describe how performance constraints are automatically gen-
erated and subsequently, we outline how the constraint generation process is
integrated into layout tools.

3.1 Constraint Generation

A straight forward way to handle automatic constraint generation is to ana-
lyze the circuit prior to placement and routing, estimate the achievable clock
frequency and then perform timing-driven placement and routing with the es-
timated target. The problem with this approach is that the ability to predict
performance at the pre-layout stage is quite limited. In FPGAs, path delay is
often dominated by interconnect delay rather than logic block delay. Intercon-
nect delays are difficult to predict and are known accurately only after layout is
complete. In pre-layout constraint estimation/generation, if the estimated design
frequency is too low, then the resultant design performance will be far from the
best achievable. Conversely, if the estimated performance is too aggressive, long
and unpredictable layout run-time will be incurred and the target frequency may
not be feasible. To address these issues, in our approach, we dynamically adjust
the performance target throughout the flow, based on the current layout status.

Our constraint generation approach is based on the crucial observation that
the run-time of layout tools is highly dependent on the number of critical con-
nections rather than the absolute performance target. We will demonstrate this
assertion in our experimental results; however, it makes sense intuitively since
greater numbers of critical connections imply greater competition for the FPGA
resources with the best delay characteristics, leading to more complex trade-
offs and increased run-time. Furthermore, critical connections must be routed
in a “delay-driven” manner. Delay-driven routing is compute-intensive since it
involves detailed RC delay calculations, for example using [9] or [10], to find
minimum delay paths through the FPGA routing fabric from a critical connec-
tion’s source to load pin. Thus, a good constraint generation approach must be
cognizant of how many connections are made critical by the constraints imposed.

The goal of tightly controlling the number of critical connections eliminates
the possibility of employing a “naive” constraint generation approach, which uses
an intermediate layout solution’s maximum path delay to derive a performance
constraint. For example, consider the timing graphs for two circuits shown in
Fig. 1(a)1. The top of the figure shows a timing graph for a circuit with four
1 Block delays are assumed to be zero in these examples.
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Fig. 1. (a) Timing graphs; (b) Constraint generation.

paths. The maximum path delay is 10 ns. The bottom of the figure shows a
timing graph for a circuit with six paths. The maximum path delay is also
10 ns. If, for example, we generated path delay constraints by taking 90% of the
maximum path delay, then the maximum allowable path delay for both circuits
would be constrained to 9 ns. For the circuit in the top of Fig. 1(a), this would
result in all its paths and connections becoming critical, since the delays of all
paths in this circuit lie between 9 and 10 ns. On the other hand, a 9 ns constraint
applied to the circuit in the bottom of Fig. 1(a) would result in only a single path
with 3 connections being critical. Thus, the naive approach lacks control over
the number of connections that become critical and is unsuitable for automatic
constraint generation.

The novel aspect of our constraint generation approach is that it selects a
performance target in a way that carefully manages the number of critical con-
nections. Fig. 1(b) gives an abstract view of the constraint generation process.
The input to the process is a delay for each connection in the design being op-
timized. At the placement stage, connection delay estimates are used; at the
routing stage, accurate delays are available. Let Tlayout be the maximum delay
of any path in the current layout. We begin by computing the slacks of all con-
nections in the circuit based on a performance constraint of Tlayout. Part 1 of
Fig. 1(b) shows the distribution of connection slacks at this stage (top of figure).
The horizontal axis represents connection slack; the vertical axis represents the
number of connections having a given slack. Observe that since slacks are com-
puted based on a constraint that is equal to the current maximum path delay,
there are no connections with negative slack.

Our goal is to choose a constraint that results in a specific fraction of con-
nections becoming critical. In this example, assume we aim to make Y % of the
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design’s connections critical. Larger values for Y imply increasingly hard-to-
meet delay constraints and longer run-times. We analyze the slack distribution
to identify the slack, S, such that Y % of connections have a slack less than or
equal to S. This set of connections is represented by the dark, shaded region in
part 2 of Fig. 1(b). We set the new path delay constraint, Tconstraint, for the
circuit as follows:

Tconstraint = Tlayout − S (4)

The new slack distribution, based on a constraint of Tconstraint, is shown
in in part 3 of Fig. 1(b). Precisely Y % of connections are critical in the lay-
out solution for constraint Tconstraint. This form of constraint determination is
used throughout the layout flow, with varying values for parameter Y . Note
that in this discussion, we have restricted ourselves to designs having a single
clock. However, extending the approach to designs with multiple clock domains
is straight forward as slack distributions and period constraints can be generated
independently for each clock domain in the same manner.

Observe that because our constraint generation approach is connection-
based, it does not require enumerating the paths in a circuit (an operation with
exponential time complexity). Rather, the proposed approach simply involves de-
termining connection slacks using [2] and then “binning” the slacks to generate
a histogram, similar to those in Fig. 1(b). Histogram generation and connection
slack computation are both O(|V |) operations; therefore, the complexity of the
constraint generation approach is O(|V |).

3.2 Integration into Layout Tools

We implemented the constraint generation approach and integrated it into a
commercial FPGA layout system. The specific algorithms used in the system are
proprietary; however, the constraint generation procedure described above is not
limited for use with any particular layout algorithm. The placement step of the
layout system proceeds in phases. Early phases optimize the design at a high-level
of abstraction, permitting large changes in the placement solution. Later phases
are mainly concerned with finer-grained placement refinement. Each placement
phase prioritizes connections based on their delay slacks and the most critical
connections are afforded preference for wirelength minimization. Prior to each
placement phase, the circuit’s interconnect delays are estimated and annotated
onto the timing graph. At this point, the automatic constraint generation pro-
cess is invoked. We empirically determined that setting parameter Y to 3%
(3% of connections are made critical) achieves our objective of producing rea-
sonably good quality performance-optimized layout solutions in a predictable
and relatively low execution time. The placement phase then commences with
consideration of the newly generated constraint (and its associated connection
slacks). We have observed that this approach results in successively aggressive,
but realistic constraints as placement proceeds through its phases.

The routing tool operates in two phases. In the initial phase, a design’s con-
nections are routed without timing considerations. The goal is to produce a
routing solution with minimal resource usage. After initial routing, automatic
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constraint generation is executed and 2% of connections are made critical. To
meet the constraint, critical connections are re-routed in a delay-driven manner
and their delays are reduced. If, after delay-driven routing, the constraint is met,
the constraint generation processes is invoked again with parameter Y = 2%.
This causes 2% more connections to be added to the total pool of connections
that must be routed in delay-driven mode. The iterative process of successive
constraint generation and delay-driven routing continues until one of two condi-
tions is true: (1) a performance constraint that is difficult or impossible to meet
is identified, or (2) a fixed iteration limit is exceeded (3 iterations). We have
observed that router run-time is highly sensitive to the number of connections
that must be routed in delay-driven mode. Run-time considerations are managed
through condition (2), which places strict limits on the fraction of a design’s con-
nections that are permitted to become critical. Following constraint generation
and delay-driven routing, the final routing phase proceeds, which refines the
initial routing solution and removes any remaining infeasibilities.

One of the elegant features of our approach is that no timing constraint or
performance data is passed between the various stages of the layout tool, for
example, between the placer and the router. Instead, the various phases dynam-
ically determine the performance of the current layout and a performance target
is chosen accordingly. This greatly simplified the integration of the proposed
approach into existing timing-driven layout tools.

A second attractive feature of the approach is that the “aggressiveness” of
the constraint generation process is controlled by a single parameter (Y ). As
discussed above, specific values for Y have been selected for use in our layout
framework. This particular tuning reflects performance results and execution
times that we believe to be acceptable to users of the automatic timing-driven
flow. Of course, higher (lower) values for Y will lead to better (worse) perfor-
mance at the expense of longer (shorter) tool execution time. In the next section,
we validate our choices for this parameter experimentally through an analysis of
tool run-time and layout quality.

4 Experimental Study

To evaluate our approach, we compare it with the layout solutions that repre-
sent the extremes in the run-time/performance trade-off space. Specifically, we
compare the automatic approach with two different scenarios: non-timing-driven
layout and best performance layout.

In the non-timing-driven scenario, the placement and routing tools are run
without a performance objective. A layout solution is generated in as little time
as possible, without regard for design performance. In the best performance sce-
nario, layout tools are run with a difficult-to-meet performance objective (clock
frequency constraint), which must be selected individually for each design. We
determined the performance objective for each design in an iterative manner by
starting with an easy-to-meet objective and then increasing it gradually until
eventually, a performance objective that could not be met was discovered. The
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highest, meet-able objective was then selected as the performance objective for
the best performance layout scenario.

In our experiments, we use 35 industrial benchmark circuits collected from
Xilinx r© customers and target a popular commercial FPGA (Xilinx VirtexTM-
II) [11]. The primary combinational logic element in the target FPGA is a 4-input
look-up-table, which is a small memory capable of implementing any logic func-
tion requiring less than or equal to 4 inputs. FPGA logic blocks are referred
to as slices; each slice contains two 4-input look-up-tables, two registers as well
as arithmetic and other circuitry. The sizes of the circuits in our study range
from 109 slices to 14334 slices. The FPGA’s interconnection network is com-
prised of variable length wire segments that connect to one another through
programmable buffered switches.

Fig. 2. (a) Performance vs. non-timing-driven; (b) run-time vs. non-timing-driven.

4.1 Experimental Results

We begin by summarizing the performance of the three layout solutions. Fig. 2(a)
shows the average percentage improvement in clock frequency for the automatic
approach and the best performance solution versus the non-timing-driven layout
solution. The average performance improvement offered by the automatic solu-
tion is about 28%. The best performance layout solutions have clock frequencies
that are 48% faster than the non-timing-driven solutions, on average. The results
underscore the huge benefits of timing-driven layout: the performance improve-
ments over non-timing-driven amount to the equivalent of several speed grades.
Note that the disparity in performance between the automatic and best perfor-
mance layouts simply reflects our tuning preferences, described in Section 3.2.
Below, we show that other tunings are also possible.

Fig. 2(b) summarizes the run-time results. The average increase in the layout
tool’s run-time is shown for the automatic solution and the best performance
solution, in comparison with the non-timing-driven solution. Observe that the
run-time hit associated with both forms of performance-driven optimization is
considerable. On average, the run-time of automatic timing-driven layout syn-
thesis is about 2.4 times (X) longer than the run-time for non-timing-driven
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layout. Producing the layout solution with the best performance takes 4.9 times
longer, on average, than non-timing-driven layout.

Table 1 gives detailed performance results for a subset of the circuits used
in the experiments. Columns 2 through 4 of the table present performance data.
The clock frequency for each circuit is shown in megahertz; the percentage im-
provement versus the non-timing-driven layout solution is shown in parentheses.
Observe that the performance gap between the automatic and best performance
solution is fairly design dependent. For example, for the circuit industry2, the
automatic solution performance is within 5% of the best performance result.
Conversely, for the circuit industry5, the automatic solution performance is 31%
better than non-timing-driven performance, and the best performance solution
is superior by 68% to the non-timing-driven solution. The variability in the per-
formance gap between the automatic and the best performance solutions across
the design suite is explained by considering the approach taken to automatic
constraint generation. Performance constraints are generated based on making
a specific fraction of a design’s connections critical rather than on the basis of a
design’s maximum potential performance.

Table 1. Performance results for individual circuits.
Non-timing- Automatic Best perf.

Circuit driven (MHz) (MHz) (%) (MHz) (%)
industry1 79.9 110.7 (38.5) 127.7 (59.8)
industry2 111.9 149.8 (33.9) 156.9 (40.2)
industry3 167.1 174.2 (4.2) 190.4 (13.9)
industry4 92.7 111.3 (20.1) 116.3 (25.5)
industry5 109.2 142.7 (30.7) 183.9 (68.4)
industry6 88.8 150.3 (69.3) 162.8 (83.3)
industry7 84.3 110.1 (30.6) 146.4 (73.7)
industry8 133.4 179.3 (34.4) 201.1 (50.7)
industry9 158.5 182.2 (15.0) 198.8 (25.4)
industry10 56.7 89.9 (58.6) 97.9 (72.7)
industry11 73.9 100.4 (35.9) 113 (52.9)
industry12 26.4 32.3 (22.3) 35.5 (34.5)
industry13 60.1 70.9 (18.0) 83.1 (38.3)
industry14 123.2 153.8 (24.8) 179 (45.3)
industry15 112.5 133.3 (18.5) 156.8 (39.4)

Avg. % impr. 30.3% 48.3%
(these circuits)
Avg. % impr. 28.0% 47.50%
(all circuits)

Figs. 3(a) and (b) show the run-time results for the individual circuits
and demonstrate a key benefit of our approach: execution time predictability.
Fig. 3(a) gives results for the best performance layout runs; Fig. 3(b) gives re-
sults for the automatic timing-driven runs. Each point in these figures represents
the run-time increase (vs. non-timing-driven layout run-time) for one of the 35
benchmark circuits. Fig. 3(a) shows that the time needed to generate the layout
solution with the best performance is highly variable and strongly design depen-
dent. The standard deviation in run-time for this case is 2.03X the non-timing-
driven run-time. In addition to the variability apparent in Fig. 3(a), the number
of layout runs needed to determine the best performance (as described above)
was also variable, and generally involved between 3 and 10 iterations of layout
execution and constraint tightening. In contrast, Fig. 3(b) clearly illustrates the
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power of the proposed constraint generator to deliver performance-driven lay-
outs in a predictable amount of execution time. For the automatic timing-driven
runs, the standard deviation in run-time is 0.4X the non-timing-driven run-time.
Predictable run-time strongly influences user perception, making the proposed
approach well-suited for use in a push-button FPGA layout tool.

Fig. 3. (a),(b) Run-time results; (c) Results for alternative tunings.

For the results presented so far, the automatic timing-driven solution was
tuned based on our desire to provide layout solutions with reasonably good
performance within a consistent and relatively low execution time. Here how-
ever, we demonstrate that by increasing the aggressiveness (parameter Y ) of
the constraint generation, we can tune the automatic approach to produce so-
lutions that represent other points in run-time/performance trade-off space. We
investigated more aggressive constraint generation and the results are shown in
Fig. 3(c) for two alternative tunings, labeled tuning1 and tuning2. For tuning1,
parameter Y was increased to 10% for constraint generation in placement. For
tuning2, parameter Y was increased to 20% for placement and 3% for routing.
The bottom-left data point in Fig. 3(c) reflects the results presented above. The
data in Fig. 3(c) demonstrates the effectiveness with which parameter Y controls
layout performance and run-time. Observe that the performance characteristics
for tuning2 layout solutions are quite close to those of the best performance lay-
out solutions studied above, but require considerably less run-time. From this,
we conclude that the extra run-time needed to move from a “close to” best
performance layout to a “true” best performance layout is substantial.

5 Conclusions

Performance-driven layout synthesis is a mandatory component of modern high-
speed FPGA design. A key task in the design process is that of determining
appropriate performance objectives to supply to layout tools as constraints. In
this paper, we presented a new approach to FPGA layout synthesis, called au-
tomatic timing-driven layout. The proposed layout approach produces perfor-
mance optimized layout solutions, without requiring constraints to be specified.
Constraints are generated automatically as layout progresses, in a manner that
results in a specific fraction of a circuit’s connections becoming delay critical.
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This method permits performance-optimized layout solutions to be generated,
while providing predictable layout execution time. The approach has been inte-
grated into a commercial FPGA layout tool, where it has been tuned to produce
solutions having a 28% performance advantage (on average) over non-timing-
driven layout solutions, in execution times that are predictably 2.4 times that
required for generating a non-timing-driven layout.

Acknowledgements. The authors thank Walt Manaker, Tom Wurtz and Nick
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Abstract. In this paper we propose a new routing architecture, based
on a new switch called T-switch, which we implement in two different
versions. Our approach is based on a modified disjoint topology in or-
der to reduce the number of buffers required and on the introduction
of a decoding stage between configuration memories and the switch to
reduce the number of SRAM cells. This solution is particularly suitable
for multi-context arrays, where configuration memory cells need to be
replicated as many times as the number of contexts.
The buffered switch proposed has been implemented in two different gate
array architectures, in order to evaluate its effectiveness. The results show
that the T-switch routing architecture reduces the device area occupa-
tion up to 29% in a 4-context array. We also show that the critical path
delay is reduced, while routability is substantially unaffected.

1 Introduction

The area of an island-style FPGA is dominated by programmable interconnec-
tions where switch blocks are the most complex and challenging component.
Hence special care must be taken in the design of switch blocks, since they
determine routability and most of the delays. In this paper we present a new
interconnect architecture and two buffered switch designs that greatly reduce
area occupation of previous schemes. The circuits proposed use only one buffer
and introduce a decoding stage in the switch block, in order to reduce the num-
ber of configuration memories. The architecture presented is also suitable for
multi-context FPGAs [1,2]. In these run-time reconfigurable (RTR) devices, dif-
ferent contexts coexist, but only one is active. Switching from one context to
another changes FPGA functionality in very short time. However, this advan-
tage is achieved at the cost of replicating each SRAM cell used to store con-
figuration bits as many times as the number of contexts. Therefore area can
increase considerably, together with the length of wires which affect delays and
power consumption more and more as technology scales. The limited number of
memories required by the routing switch proposed can significantly reduce the
area penalty of this class of FPGAs. Evaluation of the proposed architecture has
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been conducted both on a datapath-oriented multi-context array implemented
on silicon and on a generic FPGA, in order to verify the generality of the ap-
proach.

2 Buffered Switch Design

Technology scaling is dramatically augmenting the portion of delay due to in-
terconnections in FPGA devices. For this reason the trend is to mix buffers and
pass-transistors in routing architectures [3]. Unfortunately each buffered switch
needs two configuration bits to determine both its on/off state and the signal
direction. Although a pass-transistor switch requires only a bit to set its state,
it is more inefficient in terms of delay especially for the implementation of high-
fanout nets.

a b

buffered buffered

"buf"
switch

"bufm"
mux switch

SRAM

Fig. 1. Typical buffered switch designs

In [4] several routing switches are presented and evaluated from the area and
delay point of view. The typical buffered switch (buf ) is shown in figure 1-a,
while in 1-b (bufm) a multiplexing stage allows to share buffers among the four
wire endpoints converging into the switch. In this way the area occupation due
to large sized buffers can be greatly reduced.

2.1 Decoder Based T-switch

In order to further reduce the number of buffers a new T-switch routing archi-
tecture is presented. The basic architecture is a modified disjoint topology where
horizontal and vertical tracks are connected between the end point of a wire and
the mid point of the other one (Fig. 2-b). Differently from the typical switch
(Fig. 2-a), it does not allow the connection between two end-points of orthogo-
nal tracks. Since one ending wire entering the switch can be propagated in two
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a) connection between
     ending tracks

b) connection between a midpoint
     and two endpoints

T−switchT

M1

M2

M3
MZ

M6

M5

M4

Fig. 2. T-switch topology and schematic.

a)    −switch decoder+T

SRAM

Tb)    −switch decoders

M5

M6

M4

M3

M2

M1

MZ M1

M2

M3

M4

M6

MZ

M5
SRAM SRAM SRAM SRAM SRAM SRAM SRAM

Fig. 3. Decoding logic structure in T-switches.

opposite directions, T-nets can be easily implemented. With this architecture,
the switch block flexibility Fs is 2, thus the number of possible connection pat-
terns is reduced. Therefore a switch schematic featuring only one buffer (Figure
2) can be adopted, still preserving all the flexibility provided by the T-switch
architecture.

In multi-context FPGAs the number of configuration bits is extremely criti-
cal, since the SRAM cells grow with the number of contexts. Therefore the ap-
proach adopted is to introduce a decoding stage between memories and switches
which limits configuration redundancy [5]. Since this is an additional block we
introduce in our switch, it has been carefully designed in order to keep its area
overhead small. Two decoding schemes are presented which have different area
occupation and provide different routing flexibility. Since the delay of the decoder
stage is not critical all the transistors are minimum sized. The first scheme shown
in Figure 3-a (T+-switch) encodes only switch inputs, while each output is in-
dividually controlled by a SRAM cell. This decoding scheme preserves all the
flexibility provided by the T-switch, featuring multi-fanout nets.
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Table 1. Area occupation of different switches.

Number of contexts (k)
Switch Type Area Profile 1 2 4 8
pass 6S + 6P 78 138 210 354
buf 12S + 12B 504 624 768 1056

+ 12P
bufm 12S + 4B 228 348 492 780

+ 4P + 20p
T+-switch 5S + 1B + 3P 98 148 208 328

+ 4p + D+

Ts-switch 3S + 1B + 3P 102 132 168 240
+ 4p + D

Key: S(SRAM) = 5T for 1 context
S(SRAM) = 6kT + 3 otherwise
B(buffer)=29T, P(out pass) = 8T
p(in pass)=1T
D+(decoder) = 16T, D(decoder) = 30T

In order to further reduce the number of SRAM cells, the decoding scheme in
Figure 3-b is presented (Ts-switch), where only 3 configuration bits are required.
In this case switch outputs are also encoded, therefore only one active connection
can be implemented. However since the switch provides T connections, to some
extent multi-fanout nets can still be implemented.

Table 1 shows the area required by different types of switches for different
number of contexts. Transistor area has been calculated similarly to what done
in [4], though assuming 2-stage buffers having large size. In this way the results
achieved in improving area occupation are more conservative. For single-context
FPGAs both the Ts-switch and the T+-switch are the smallest buffered switch,
less than half the area of the bufm switch. Area reduction is even more remarkable
when the number of contexts grows. For a 4-context array, the Ts-switch occupies
about 1/3 and 1/4 the area of respectively the bufm and the buf switch.

Concerning delays, the T-switch and the bufm have almost the same design,
except from the presence of three output pass-transistors instead of one that
is typical of tristate buffers. In the case of the Ts-switch only one of the three
pass can be active, eliminating any fanout degradation. Since the capacitive
contribution of two off pass-transistors is negligible with respect to wire parasitic
capacitance, Ts-switch and bufm present the same delay performance. With
respect to the buf switch, which does not have the input multiplexing stage,
the delay increase is only 7% as shown in [4]. However it must be noted that
these comparisons do not take into account the variation in wire parasitics due
to different area occupation of the switches.

On the contrary the T+-switch allows the buffer to drive two different nets,
which can affect delays.
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b) buf(m) pattern

RLC

RLC

RLC

RLC

RLC

RLC

RLC

RLC

a) T−switch pattern

Fig. 4. Switch block pattern for length 3 wires.

3 Architectures Considered

In order to evaluate the performance of the proposed routing architecture, a
complete FPGA architecture need to be designed. Since we showed that the
switch area considerably changes when adopting a T-switch approach, we need
to consider its impact on the tile area and consequently on wire parasitics in
order to correctly estimate delays.

Two different FPGA architectures have been considered to test the generality
of the T-switch proposed. The first one is the PiCoGA [8], a datapath-oriented
multi-context array which has been implemented on silicon. Based on the infor-
mation derived from the design of the PiCoGA a second more generic FPGA ar-
chitecture called GA has been analyzed, which eliminates the datapath-oriented
feature of PiCoGA and some peculiarities of its routing architecture.

3.1 Routing Architecture

The baseline routing architecture uses length 3 wires, which defines regular pat-
terns for groups of 3 tracks in order to have identical tiles to be repeated. In
the case of T-switches the routing scheme involving 3 tracks is shown in Figure
4-a. With this scheme one connection between the midpoints of two wires arises,
which is implemented using a pass-transistor. Therefore a net can turn in every
switch block through either a T-switch or a pass-transistor. The use of pass-
switches reduces area occupation, but unfortunately pass-series cause most of
routing delays. With the pattern proposed after a turn where a pass-transistor
is used, a buffered switch is necessarily encountered. This makes the calculation
of propagation delays more accurate even if non-buffered switches are used. In
the case of buf and bufm switches, a typical length 3 wire pattern (Figure 4-b)
is adopted, implementing the two midpoint connections with pass-transistors.

Concerning area calculation of the whole switch block, it can be noticed that
in the first case the scheme requires one pass-transistor every two T-switches,
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while in the second one there are two pass-transistors for each buf(m) switch.
Therefore the T-switch approach presents twice the number of buffered switch
points than buf(m).

3.2 Connect Blocks

The design of connect blocks is important as much as that of switch blocks since
they contribute more or less equally to determine most of the area occupation of
FPGAs. In the case of multi-context FPGAs a solution based on Decoder-Based
Multi-context (DBM) connect blocks can be exploited [6]. The DBM approach
is based on the introduction of a decoding stage between configuration memories
and pass-transistors connecting the routing channel with the logic block. In the
case of a line which has to be connected to one of n other wires, m = k�log2n�
memory cells are needed, where k is the number of contexts.

The DBM structure achieves a high reduction in the transistor count, if
compared with the standard solution where a dedicated SRAM cell individually
drives each pass-transistor. As shown in [6] area reduction is remarkable, espe-
cially in case of a high number of contexts or of a wide bus: 60 % and 70 %
respectively for 4 and 8 contexts when 32 connections are implemented. Note
that the application of this approach to an output of a logic block, obviously re-
duces routability, as it does not allow connections with fanout > 1 in the connect
block. Concerning delays, the DBM structure has the same delay of the standard
solution, since it avoids the pass-transistor series delay of output multiplexing
approaches.

4 PiCoGA Implementation

The PiCoGA (Pipelined Configurable Gate Array) is a configurable datapath
designed to implement high throughput pipelines. From a structural point of
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view the PiCoGA is an array of rows, each representing a possible stage of a
customized pipeline processing up to 32-bit wide operands. Each row is composed
of 16 Reconfigurable Logic Cells (RLC) which are directly connected to PiCoGA
pins with four 32-bit input and two 32-bit output busses. Switch blocks connect
vertical and horizontal wires. Each logic cell is composed of a cluster of 2 4-input
LUTs having 2-bit granularity. The PiCoGA is designed as a multi-context device
featuring 4 configuration cache layers. Context switch occurs in one clock cycle,
providing 4 immediately available circuits.

Since the PiCoGA is a datapath-oriented array, the routing network has
been designed with 2-bit granularity to reduce area occupation. However, input
connection blocks have 1-bit granularity in order to preserve routability and ef-
ficiency of resources even in the case of odd shifting, single bit control signals
and coupling of bits coming from different RLCs. Channels are composed of 15
couples of length 3 tracks, which has been found to be a good compromise be-
tween propagation delay and routability. Direct connection from an RLC to the
one below has also been provided. Furthermore, two couples of global horizontal
lines have been designed to support fast propagation of control signals such as
multiplexer selection bits which often need to be routed to all RLCs in a row.

PiCoGA configuration flow is based on the Griffy compiler [9] which trans-
lates a generic DFG, described using a subset of ANSI C, into a netlist of RLCs.
Configuration of logic blocks is obtained by using a library based synthesis.
Griffy-C also places the netlist of RLCs on the PiCoGA rows, implementing a
pipelined execution of the DFG.

In order to correctly configure the DBM routing architecture, we designed
a specific router for PiCoGA, called XiRouter, which is based on the routing
algorithm from VPR [7]. One main modification concerns the implementation
of Ts-switches, which are critical when implementing multi-fanout nets. Since
a decoding stage is introduced in Ts-switches, a wire can only drive one of the
other two converging ones. This is implemented in XiRouter by increasing the
cost of the connections in a Ts-switch if a net already passes through the switch.

4.1 Experimental Results

The design of the PiCoGA has been carried out exploiting STMicroelectronics
0.13 μm CMOS technology. This version of the PiCoGA adopts both Ts-switches
and DBM connect blocks. A standard cell based design flow starting from a vhdl
description was used for random logic inside the RLC, while LUTs, memory cells
and the routing network were custom designed. With this approach almost half
of the area is occupied by standard cells, SRAM cells to configure the RLC and
overhead due to standardization of hard macro dimensions during back-end flow.
Since this portion of the tile could be drastically reduced, the tile area decrease
achieved when adopting a Ts-switch approach is certainly a conservative number
with respect to a full custom design.

The buf, bufm and Ts switches are compared, in terms of area and delays.
The tile area of the different approaches are calculated starting from that of
the 0.13 μm implemented version of PiCoGA and augmenting it. Since DBM



186 A. Lodi et al.

20000

30000

40000

buf

0.8

0.9

1

+0%

+7%

T

−9%

s

T
ile

 a
re

a 
oc

cu
pa

tio
n

N
or

m
al

iz
ed

 a
ve

ra
ge

 d
el

ay

sbufm

+17%

T_DBM

−10%

T_DBMsbufm Tsbuf

+2.7%

−1%

bufm_DBM
buf_DBM buf_DBM

bufm_DBM

+22%

2μ(   m  )

Fig. 6. PiCoGA area and delay performance.

connections reduce routability when applied to RLC outputs, their impact need
to be carefully evaluated especially when used in conjunction with Ts-switches
which also have limited fanout capabilities. Therefore we considered different
models with DBM or traditional connect blocks.

The tile area and delays of the different routing architectures are illustrated
in Fig. 6 where the terminology adopted is described below:

– buf(m): which is the baseline architecture with buf(m) switches;
– Ts: which adopts Ts-switches;
– buf(m) DBM: which adopts buf(m) switches and DBM connect blocks;
– Ts DBM: which adopts both Ts-switches and DBM connect blocks;

In the histograms bufm and bufm DBM are used for reference when calculat-
ing the percent variations. Results show that Ts-switch blocks reduce tile area
of 10% and 27% with respect to the bufm and buf switches in the case DBM
connect blocks are adopted. In order to evaluate the delays of the described ar-
chitectures, we implemented a set of DSP algorithms. The delay associated to
the critical path is lower in the models adopting Ts-switches and DBM connect
blocks. This is essentially due to the smaller device area, such that signals have
to drive shorter wires which present lower parasitic effects.

The four models have shown very little difference in channel occupation, thus
demonstrating that routability with DSP-oriented algorithms is still granted even
in the Ts DBM architecture. This is also due to the fact that each rlc can connect
separately to the routing channel on the left and bottom side, to the horizontal
global lines below and directly to the rlc below. In this way multi-fanout nets
can be supported by the different connect blocks, though with limited flexibility.

5 Generic FPGA Implementation

In order to evaluate the efficiency of the T-switch routing architecture on a
generic device different from a datapath-oriented architecture such as PiCoGA,
we introduce a more generic FPGA, called GA. CLBs are composed of four 4-
inputs LUTs, having eight inputs and four outputs. A local crossbar connecting
the eight inputs of the CLB to the sixteen of the LUTs is fully populated and
any feedback connection among outputs and inputs of the LUTs are allowed.

The GA routing architecture is characterized by:
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Table 2. Different GA routing architecture performance.

Routing Tile area Delay Channel width
architecture (Kμ2) variation variation
bufm 15

1-context buf 20.5 (+36%) +3% 0 (0%)
GA T+ 14.1 (-6%) -3% 0 (0%)

Ts 14.2 (-5%) -5% +0.5 (+4%)
bufm 38

4-context buf 43.6 (+15%) +2% 0 (0%)
GA T+ 35.8 (-6%) -4% 0 (0%)

Ts 34.2 (-10%) 0% +0.5 (+3%)
bufm DBM 27.2

4-context buf DBM 32.8 (+21%) +2% 0 (0%)
GA DBM T+ DBM 25 (-8%) -2% -0.1 (0%)

Ts DBM 23.4 (-14%) 0% +2.3 (+11%)

– Two orthogonal identical thirty tracks wide channels of length 3 wires.
– Internal switch block population of 100%.
– Fully populated input and output connect blocks.

Sis [10] was used to technology map each circuit to 4-LUTs and flip-flops and
T-VPack to cluster them into CLBs. Differently from PiCoGA, placement of logic
blocks on the GA is provided by the placement algorithm of VPR. Programmable
interconnections are implemented by a modified version of XiRouter which also
take into account degradation under fanout of the T+-switch.

5.1 Experimental Results

We tested the proposed interconnect architecture by comparing the routing per-
formance of six different versions of GA on a set of 35 MCNC circuits. As in the
case of PiCoGA, models are characterized by the adoption of different switch
blocks, with DBM or traditional connect blocks. Table 2 shows that area perfor-
mance of T-switches is better than in the case of PiCoGA, since we consider to
have custom design also for CLB logic, thus reducing its impact on the total area.
In this case Ts-switches reduce tile area up to 14% (29% with respect to buf ),
even if routability is affected when applied together with DBM connect blocks.
Concerning delays, the average critical path delay is substantially unchanged.

T+-switches still achieve a considerable reduction of the tile area (6-8%),
while having the same routability of traditional buf(m) switches. Furthermore
critical path delay is reduced up to 4%, mainly due to shorter wires of the T+

architecture.
Experiments on a standard single-context GA version have also been con-

ducted. In this case DBM connect blocks are no more convenient in terms of
area occupation, so they have not been considered. Results substantially don’t
change with respect to the multi-context array, showing that the T-switch rout-
ing architecture still achieves the best performance.
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6 Conclusions

A new routing architecture and a new buffered switch, called T-switch, has been
proposed. Schematic details of the switch blocks have been presented. Perfor-
mance analysis compared T-switch with typical routing switches in two kinds of
gate arrays, having different number of contexts. Results have shown that the
proposed solution achieves a considerable reduction in the device area, and the
best performance in critical path delay without affecting routability.
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Abstract. In this paper, we develop a unified theory in analyzing
optimal switch box design problems, particularly for the unsolved
irregular cases, where different pin counts are allowed on different sides.
The results drawn from our system of linear Diophantine equations
based formulation turn out to be general. We prove that the divide-
and-conquer (reduction) design methodology can also be applied to the
irregular cases. Namely, an optimal arbitrarily large irregular or regular
switch box can be obtained by combining small prime switch boxes,
which largely reduces the design complexity. We revise the known VPR
router for our experiments and show that the design optimality of
switch boxes does pay off.

Keywords. Configurable computing, on-chip network, FPGA, switch
box

1 Introduction

A switch box (SB) consists of terminals (pins) and programmable switches, with
each switch connecting two pins on different sides. A switch box is regular if all
sides have the same number of pins; otherwise it is irregular. As the optimality of
a switch box design imposes a crucial impact on silicon cost and performance of
FPGAs, extensive investigations on this problem have been carried out in recent
years, see [3,4,5,7,12,13] for examples. Chang et al.[5] started the study on the
so-called optimal Universal Switch Block (USB) structure, which is defined as a
switch box being able to accommodate any 2-pin net routing requirement with
the least number of switches. In [9,7,8], the so-called Hyper-Universal Switch
Box (HUSB) was investigated to cover the general cases of multi-pin routings.
Although it has been shown that this optimal switch box design problem can be
solved by divide-and-conquer (reduction) approaches [7,8], only regular switch
box cases were analyzed before.
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Fig. 1. Examples of irregular switch boxes.

Despite the surprising result suggesting that square switch boxes might be the
best in terms of area and delay [10], Fig. 1 gives some scenarios where irregular
switch boxes are efficient and desirable. Besides the classic crossbar structures
with unequal input and output pins [11], some recent technological advances
have somehow stirred the study interest on developing more general irregular
switch boxes, which, for example, can allow more customization flexibility for
embedded FPGA cores of SoC designs. In [1], directional bias and non-uniform
FPGA architectures were experimentally addressed. The directional bias refers
to the different number of tracks between horizontal and vertical channels, while
the non-uniformness refers to channel width variation between different channels
of the same direction. In [10], rectangular switch blocks formed by a union of
several aligned regular switch boxes [14] were studied. Irregular switch boxes
can also be used in hierarchical FPGA architectures and circuit-switching based
reconfigurable on-chip networks with non-uniform I/O port densities of different
sides. In all these examples, irregular switch boxes provide extra flexibility in
designing on-chip networks with non-uniform channel densities.

Similar to the regular switch boxes design problems, the problem is to design
optimal irregular switch boxes satisfying two specifications: 1) shape specifica-
tion, which includes the number of sides (dimension) and the number of ter-
minals on each side (channel density), and 2) routability specification, which is
characterized by the set of routable routing cases.

We use (r1, . . . , rk)-SB to denote a k-sided switch box with channel density ri

on side i for i = 1, . . . , k. We are interested in designing a generic class of switch
boxes determined by a channel density ratio vector d and a residual vector c,
i.e., a group of (wd + c)-SBs with all integer scales w ≥ 1. In particular, when
d = (1, . . . , 1) and c = (0, . . . , 0), a (wd + c)-SB is a regular switch box of k
sides with w terminals on each side. We will show that a solution scheme for
the generic switch box design problem can be used to design a specific irregular
switch box.

In this paper, we first formulate routing requirements as nonnegative integer
solutions of System of Linear Diophantine Equations (SLDEs), then apply the
theory of SLDE to find decompositions of routing requirements. Accordingly a
reduction design scheme for irregular switch box design is obtained, which gener-
alizes the design scheme for regular switch boxes. In other words, an arbitrarily
large irregular switch box can also be obtained by combining some small prime
switch boxes. The VPR [2] router is used to compare the routability of differ-
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ent irregular switch-boxes on a fixed channel density ratio. The large MCNC
benchmark circuits are used in the experimental test.

This paper is organized as follows. Terminology and switch box design prob-
lem are given in Section 2. Section 3 formulates a new modelling of routing
requirements and develops decomposition theory of routing requirements by ap-
plying the theory of system of linear Diophantine equations. In Section 4, the
generalized reduction design scheme for irregular switch boxes of arbitrary shapes
is introduced. Two design examples for illustration and experimental results are
presented in Sections 5 and 6, respectively. Conclusions are drawn in Section 7.

2 The Switch Box Design Problem

We model a switch box as a graph as in [7]. For an (r1, . . . , rk)-SB, we denote
the j-th terminal on side i by vi,j for i = 1, . . . , k, j = 1, ..., ri. If there is a switch
joining terminals vi,j and vi′,j′ , then we denote the switch by an edge vi,jvi′,j′ .
Thus, an (r1, . . . , rk)-SB corresponds to a k-partite simple graph with vertex
partition (V1, . . . , Vk), where Vi = {vi,j |j = 1, . . . , ri}, i = 1, . . . , k.

The disjoint union of two k-sided switch boxes G1 and G2 is a k-sided switch
box with the i-th side being the union of the i-th sides of both G1 and G2
together with all switches of G1 and G2, denoted by G1 +G2. The disjoint union
of h copies of G1 is denoted by hG1. As depicted in Fig.2, the (4, 3, 4, 3)-SB (c)
is a disjoint union of (2, 1, 2, 1)-SB (a) and (2, 2, 2, 2)-SB (b).

Side 4

Side 3

Side 4Side 2

Side 3

Side 1

(c)  (4, 3, 4, 3) - SB

Side 1

(a) (2, 1, 2, 1 ) - SB

Side 4Side 2

Side 3

Side 1

Side 2

(b)  (2, 2, 2, 2) - SB

Fig. 2. An example of the disjoint union of two switch boxes.

A (signal) net for a k-sided switch box is a connection request on some
terminals of the switch box. In our switch box design problems, a net only
specifies the sides where its terminals are located; a router will take care of
exact terminal assignments besides switch connection assignments [5,7,8,13]. A
net is said to be an m-pin net if it specifies m different sides; an m-pin net which
specifies sides i1, . . . , im will be expressed as {i1, . . . , im}, which is a subset of
{1, . . . , k}. For example, a 3-pin net connecting three terminals in sides 1, 2 and
3 is represented by {1, 2, 3}. Sometimes only certain types of nets are considered
in the switch box design; this set of types consists of some subsets of {1, . . . , k},
it is called a net pattern set (over {1, . . . , k}), denoted by P. A net N in P is
referred as a P-net. A net of size 1 (singleton) does not need a switch in routing,
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but it is very convenient when consider its mathematical properties. Therefore,
we always assume that any P-net contains all singletons.

For examples, the net pattern set P = P2 = {N |N ⊂ {1, . . . , k}, |N | ≤ 2}
is used in the study of universal switch boxes[5], while P = Pk = {N |N ⊂
{1, . . . , k}} is used for hyperuniversal switch box designs[7].

A routing requirement (RR) for a switch box is a group of nets need to be
connected simultaneously through the switch box. Formally, a P-net (r1, . . . , rk)-
RR is a collection of P-nets [N1, . . . , Nr] such that Nj ∈ P for j = 1, . . . , r, and
the number of Nj ’s that specify side i is equal to ri, i.e., |{j|i ∈ Nj}| = ri for
i = 1, . . . , k.

A feasible routing of a routing requirement in a switch box is an ON/OFF
assignment of the switches such that all the nets of the routing requirement are
connected (realized) simultaneously. A realization of a net is modelled as a tree
with one vertex in each side specified by the net. Formally, it is defined as follows.
Let G be a (r1, . . . , rk)-SB with sides Vi = {vi,j |j = 1, . . . , ri}, i = 1, . . . , k. An
(r1, . . . , rk)-RR R = [N1, . . . , Nm] is said to be routable in G if G contains
m vertex disjoint subtrees L1, . . . , Lm such that for each i = 1, . . . , m, Li has
exactly one vertex in the sides specified by Ni, i.e., |V (Li) ∩ Vj | = 1 for each
j ∈ Ni. We call {L1, . . . , Lm} a feasible routing of R in G, and Li a feasible
routing of Ni in G. We note that if Ni is a singleton, then its feasible routing
only consists of a terminal with no switch used. Therefore adding (or removing)
singletons to a routing requirement does not change its routability.

Fig.3(a) shows a (4, 4, 4, 4)-SB, where each side has four terminals which
are assigned unique track IDs (1 to 4). Fig.3(b) shows a (4, 4, 4, 4)-RR, which
has seven nets: N1 = {1, 2}, N2 = {1, 2, 4}, N3 = {1, 4}, N4 = {2, 3, 4},
N5 = {1, 3}, N6 = {2, 3}, N7 = {3, 4}. Net N2 is a 3-pin net, which requires
two switches to connect its three terminals in sides 1, 2, and 4. Fig.3(c) shows a
feasible routing for the routing requirement.

(c)  a feasible routing
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1
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(a)  a  (4, 4, 4, 4) − SB (b) a (4, 4, 4, 4) − RR

Fig. 3. An example of switch box, routing requirement and feasible routing.

An (r1, . . . , rk)-SB G is said to be P-universal if every P-net (r1, . . . , rk)-RR
is routable in G, and an optimal P-universal switch box is one with the least
number of switches. The notion of P-universal unifies both universal and hyper-
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universal discussed in [5,7]. The P2-universal is just the so called universal, while
the Pk-universal is the hyperuniversal.
Generic switch box design problem: Given k-dimensional nonnegative in-
teger vectors d and c and a net pattern set P, design an optimal P-universal
(wd + c)-SB for every w ≥ 1.

Our ultimate goal is to derive a general method to solve the generic switch
box design problem. A solution scheme for a generic switch box design problem
can be used to design a specific (r1, . . . , rk)-SB. For a given vector (r1, . . . , rk),
we can select proper d, c and w0 such that (w0d + c) = (r1, . . . , rk), then a
(w0d + c)-SB is an (r1, . . . , rk)-SB.

3 Decomposition Theorems

Our design technique for generic switch boxes is based on the decomposition
properties of routing requirements. We prove the general decomposition theorems
by employing the routing requirement vectors and the theory of system of linear
Diophantine equations.

The routing requirement vectors were first used to represent (w, w, w, w)-RRs
in [5]. We modify the definition to fit in our routing requirements modelling as
follows. For a 2-pin net (w, w, w, w)-RR R, let ni,j denote the number of net
{i, j} in R, and let ni denote the number of singleton {i} in R, we call vector
(n1, n2, n3, n4, n1,2, n1,3, n1,4, n2,3, n2,4, n3,4) a 2-pin net routing requirement vec-
tor of R. Obviously a nonnegative integer vector is a routing requirement vector
if and only if it satisfies the following equation.⎧⎪⎪⎨

⎪⎪⎩
n1,2 + n1,3 + n1,4 + n1 = w
n1,2 + n2,3 + n2,4 + n2 = w
n1,3 + n2,3 + n3,4 + n3 = w
n1,4 + n2,4 + n3,4 + n4 = w

(1)

In general, for a given net pattern set P = {S1, . . . , St}, a P-net (r1, . . . , rk)-RR
R = [N1, . . . , Nm] can be expressed by a vector X = (x1, . . . , xt) where xi is
the number of Nis in R, i.e., xi = |{j|Nj = Si}|, denoted by P-net (r1, . . . , rk)-
RRV. A vector X = (x1, . . . , xt) is a P-net (r1, . . . , rk)-RRV if and only if it is
a nonnegative integer solution of

AXT = (r1, . . . , rk)T , (2)

where A = (ai,j)k×t is the incidence (characterization) matrix of P. I.e., ai,j = 1
if i ∈ Sj ; otherwise ai,j = 0. Therefore, we can compute all routing requirements
by finding all nonnegative integer solutions of equation (2).

In mathematics, a linear system AXT = bT is called a system of linear
Diophantine equations (SLDE) if the entries of A and b are integers, and only
nonnegative integer solutions are considered. If bT = 0, the system is homo-
geneous. The SLDE has been studied extensively. Let X = (x1, . . . , xt) and
X ′ = (x′

1, . . . , x′
t) be two nonnegative integer solutions of an SLDE. Define

X � X ′ if xi ≤ x′
i for all i = 1, . . . , t. A solution of an SLDE X is said to be a
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minimal solution if there is no other solution X ′′ satisfying X ′′ � X. It is known
that the set of all minimal solutions is finite, and that any nonnegative integer
solution of a homogeneous SLDE is a nonnegative integer linear combination
of its minimal solutions (called the Hilbert basis). We use B[S] to denote the
set of all minimal solutions of an SLDE S. There are several known algorithms
for computing the set of minimal solutions of an SLDE. Interested readers can
consult Contejean and Devie [6].

Given nonnegative integer vectors d =(d1, . . . , dk) and c =(c1, . . . , ck), a P-
net (wd+c)-RRV corresponds to a (X, w), which is a nonnegative integer solution
of (A,−dT )(X, w)T = cT . There is a vector (X ′, w′) ∈ B[(A,−dT )(X, w)T = cT ]
such that (X ′, w′) � (X, w). (X, w) − (X ′, w′) is a solution of (A,−dT )(X, w)T

= 0T , thus, (X, w) − (X ′, w′) is a nonnegative-integer linear combination of
minimal solutions of (A,−dT )(X, w)T = 0T . Therefore,(X, w) = (X ′, w′) +∑m

i=1 ai(Xi, wi), where (Xi, wi)s are minimal solutions of (A,−dT )(X, w)T =
0T . In summary, we have the following theorem.

Theorem 3.1 (The first decomposition theorem). Let d and c be two k-
dimensional nonnegative integer vectors and P be a net pattern set. Then any
P-net (w0d + c)-RRV can be expressed as a vector in B[(A,−dT )(X, w)T = cT ]
plus a nonnegative integer linear combination of vectors in B[(A,−dT )(X, w)T

= 0T ], where A is the incidence matrix of P.

Theorem 3.2 (The second decomposition theorem). Let d and c be two
k-dimensional nonnegative integer vectors and P be a net pattern set. Then there
exists an integer p > 0 and a finite set of nonnegative integers D satisfying the
following properties: for any w ≥ 1, there is a qw ∈ D such that every (wd+ c)-
RRV can be represented as a sum of one (qwd + c)-RRV and w−qw

p (pd)-RRVs.
Consequently, if U0 is a P-universal (pd)-SB and Uw is a P-universal (qwd+c)-
SB, then Uw + w−qw

p U0 is a P-universal (wd + c)-SB.

Proof. Due to page limitations, the proof is not included in this paper and is
available upon request. �

4 Generalized Reduction Design Scheme

The decomposition theorems described in the last section establish the follow-
ing reduction design scheme for generic switch boxes with simple structure and
reduced number of switches.

Reduction Design Scheme for Generic Switch Boxes
Given two k-dimensional nonnegative integer vectors d and c and a net pattern
set P with an incidence matrix A:

I. Compute B[(A,−dT )(X, w)T = 0T ] and B[(A,−dT )(X, w)T = cT ] using
Hilbert basis algorithm, where A is the incidence matrix of the net pat-
tern set P. Suppose B[(A,−dT )(X, w)T = 0T ] = {(X1, w1), . . . , (Xm, wm)}
and B[(A,−dT )(X, w)T = cT ]= {(X ′

1, w
′
1), . . . , (X ′

l , w
′
l)}.
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II. Use S = {w1, . . . , wm}, S′ = {w′
1, . . . , w

′
l} to compute an integer p and a set

D satisfying the conditions of Theorem 3.2. We have that p is bounded by
the least common multiple of w1, . . . , wm, but p could be much smaller, and
D ⊂ {0, 1, . . . , mp − m + max{w′

1, . . . , w′
l}}.

III. Design a P-universal (pd)-SB U0 and set up a feasible routing table record-
ing feasible routings for every pd-RRs in U0. For each r ∈ D, design a
P-universal (rd + c)-SB, Ur, and set up the corresponding feasible routing
table. We call U0 and Ur (r ∈ D) prime switch boxes.

IV. For any w ≥ 1, construct a P-universal (wd + c)-SB as follows: if w ∈ D,
then use the prime (wd + c)-SB Uw, otherwise choose the minimum q such
that w − qp ∈ D. The disjoint union of one Uw−qp and q copies of U0, i.e.,
Uw−qp + qU0, is a P-universal (wd + c)-SB. We call it a compound switch
box.

Remark: We note that if we only want to construct a P-universal (wd + c)-
SB for a specific w, we only need to construct a P-universal (pd)-SB U , and a
P-universal (qwd + c)-SB Uw−qp. Then Uw−qp + w−qw

p U0 is a (wd + c)-SB.
The reduction design scheme reduces the generic switch box design problem

to its prime switch box design problems. Although there is still no efficient
known method for designing optimal prime switch boxes, the degree of difficulty
has been largely reduced due to the much smaller sizes of prime switch boxes.
Nonetheless, as a complete switch box has a switch joining every pair of terminals
from different sides, it is P-universal for any P. Therefore, if we simply let U0 be
the complete (pd)-SB Kpd and Ur be the complete (rd + c)-SB K(rd+c), then
K(qwd+c) + w−qw

p Kpd is a P-universal (wd + c)-SB, and it has O(w) number of
switches. We also have that the decomposition of a routing requirement can be
done in a polynomial time, and finding a feasible routing in a prime switch box
can be done in a constant time by looking up a routing table created for the
prime switch box. Therefore, there is a polynomial time algorithm for finding a
feasible routing in the compound switch box.

Theorem 4.1. For any given vectors d, c and net pattern P, there is a P-
universal (wd + c)-SB with O(w) switches for every w ≥ 1, and an algorithm
which finds a feasible routing for any (wd + c)-RR in the switch box in time
polynomial of w.

5 Two Examples of Irregular Switch Box Designs

In this section, we show how to design a specific optimal (4, 5, 6)-HUSB and
a (5, 6, 7)-HUSB using the reduction design scheme. The strategy consists of
choosing d = (1, 1, 1) and c = (0, 1, 2) first, then designing the generic (w, w +
1, w + 2)-HUSBs. The target switch boxes are the cases when w = 4, 5.
I. The net pattern set for 3-sided hyper-universal switch boxes is {{1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The incidence matrix of the net pattern set is
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Fig. 4. Optimal (3, 4, 5)-HUSB and (5, 6, 7)-HUSB.
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Fig. 5. Rectangular switch boxes.
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⎛
⎝1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠ .

By computing the set of minimal solutions of (A,−dT )(X, w)T = 0T , we obtain

(1, 1, 1, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 1), (1, 0, 0, 0, 0, 1, 0, 1),
(0, 1, 0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 1, 0, 2), (0, 0, 1, 1, 0, 0, 0, 1)

By computing the set of minimal solutions of (A,−dT )(X, w)T = cT we obtain

(0, 1, 2, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 2, 0, 1).

II. Compute p and D of Theorem 3.2. We have p = 2 and D = {1, 2}. That is, any
solution (X, w) of (A,−dT )(X, w)T = cT can be expressed as (X, w) = (X ′, w′)+∑(w−w′)/2

i=1 (Xi, 2), where (X ′, w′) is a minimal solution of (A,−dT )(X, w)T = cT

and (Xi, 2)s are solutions of (A,−dT )(X, w)T = 0T , and w′ = 1 or 2 according
to the parity of w.
III. Design an optimal (2d)-HUSB U0, (1d + c)-HUSB U1 and (2d + c)-HUSB
U2, see Fig.4(a),(b),(c).
IV. An optimal (wd+ c)-SB can be obtained by combining (w−w′)/2 copies of
U0 and one U1 or U2 depending on the parity of w. In particular, U2 + U0 is an
optimal (4, 5, 6)-HUSB, and U1 + 2U0 is an optimal (5, 6, 7)-HUSB. See Fig.4(d)
and (e). The second example is the design of generic rectangular universal switch
boxes with channel density ratio vector d = (1, 2, 1, 2) and residual vector c =
(0, 0, 0, 0). Following the design scheme, we obtain p = 2 and D = {1, 2}. Since
c = 0, we only need to design two prime switch boxes (2, 4, 2, 4)-USB U0 and
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(1, 2, 1, 2)-USB U1. Fig. 5(a) and (b) show the optimal design of the prime switch
boxes, which can be used to construct optimal (w, 2w, w, 2w)-USBs for all w ≥ 3.

6 Experimental Results

In the experiment, we focus on the simple issue: what could be the routability
difference on entire-chip routings between FPGAs adopting optimal irregular
switch boxes, or other random but basically reasonable irregular switch boxes?

Table 1. Comparison of VPR experimental results on channel density w between
disjoint like (w, 2w, w, 2w)-SBs and our optimal (w, 2w, w, 2w)-USBs.

Disjoint-like Optimal Design Disjoint-like Optimal Design
alu4 7 7 ex5p 11 10

apex2 8 8 frisc 10 9
apex4 10 9 misex3 9 8
bigkey 5 5 s298 6 6
clma 9 9 s38417 6 5
des 6 5 s38584.1 6 6

diffeq 6 6 seq 9 8
dsip 5 5 spla 10 10

elliptic 10 9 tseng 5 5
ex1010 8 7 e64 6 6
Total 152 143 (-6.3%)

Direct experimental comparisons with other previous works are basically not
available, since the result given in [1] was global routing only, and the switch
density used in [10] is quite different from ours.

Here we give the experimental test for our (w, 2w, w, 2w)-USB designs. We
revise the well considered, effective, and fair FPGA router VPR [2] and run
large MCNC benchmark circuits for our routing experiments. The logic block
structure for our VPR runs is set to consist of one 4-input LUT and one flip-flop.
The input or output pin of the logic block is able to connect to any track in the
adjacent channels, i.e. Fc = w (or 2w for wide sides). A reasonable switch design
with the same switch count, which is an extension of the known disjoint-like
(Fig. 5(c)) switch structure, is adopted for comparison.

Fig. 5(d) illustrates our proposed optimal S-box structure and its correspond-
ing routing result. As shown in Table 1, the switch box design optimality does
matter. FPGAs adopting the optimal switch box design can save 6% switch
resources according to this experiment.

7 Conclusions

We presented a Divide and Conquer method for designing a wide range of irreg-
ular switch boxes. That is, an arbitrarily large optimal irregular switch box can
be constructed by a simple disjoint union of some smaller prime switch boxes. To
achieve this, we expressed a routing requirement as an integer vector satisfying
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Fig. 6. Routing result of e64 by using Optimal S-Box, w=6 on (w, 2w, w, 2w)-USB

a System of Linear Diophantine Equations (SLDE). By applying the theory of
SLDE, we solved the generating problem of routing requirements and proved a
general decomposition theorem, which established our reduction design scheme:
first design a few prime switch boxes, then use them to build others. As a direct
consequence, a switch box designed in this way has a linear number of switches
and a linear time detailed routing algorithm.
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Abstract. This paper presents a new data representation known as Dual FiXed-
point (DFX), which employs a single bit exponent to select two different fixed-
point scalings. DFX provides a compromise between conventional fixed-point
and floating-point representations. It has the implementation complexity similar
to that of a fixed-point system together with the improved dynamic range offered
by a floating-point system. The benefit of using DFX over both fixed-point and
floating-point is demonstrated with an IIR filter implementation on a Xilinx Virtex
II FPGA.

1 Introduction

Most arithmetic operations implemented on FPGAs use fixed-point arithmetic represen-
tations. For applications where a large dynamic range is required, fixed-point representa-
tion may result in implementations with very wide bit-width . In contrast, floating-point
representation has a much larger dynamic range than fixed-point for a given bit-width,
but arithmetic circuits for floating-point numbers are considerably larger and slower
than their fixed-point counterparts. In this paper, a new representation known as Dual
FiXed-point (DFX) is introduced. It combines the simplicity of a fixed-point system with
the wider dynamic range offered by a floating point system. Using a single bit expo-
nent which selects two different fixed-point representations, it allows dynamic scaling
of signals throughout the system.

The original contributions of this paper are: 1) to propose the new Dual FiXed-
point (DFX) system; 2) to present the design of basic arithmetic operators using DFX;
3) to demonstrate the use of DFX through the implementation of an IIR filter on a FPGA;
4) to compare DFX with conventional fixed-point and floating-point implementations in
terms of area, accuracy and speed.

The paper is organised as follows. Section 2 compares fixed-point and floating-point
number systems. The new DFX number system is described in Section 3. Section 4 shows
the design of the basic arithmetic functions using DFX and compares their size and speed
to those using fixed-point and floating-point. The implementation and performance of
an IIR filter in all three number formats are given in Section 5. Section 6 concludes the
paper and suggest future work.
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2 Floating-Point Versus Fixed-Point

In fixed-point arithmetic, all numbers are represented by integers, fractions or a com-
bination of both. This is done by partitioning a binary word of n digits into two sets:
q digits in the integral part and p digits in the fractional part, satisfying p + q = n. In
two’s complement fixed-point notation, the value of an n-tuple with radix point between
q most significant digits and p least significant digits is

X = −xq−1 · 2q−1 +
q−2∑

i=−p

xi2i (1)

The position of the radix point determines the range of the fixed-point number.
Throughout this paper the word-length and the radix point of a fixed-point number is
denoted as n p.

Floating-point representation allows designers to attain a large dynamic range with-
out having to scale the signals. Generally, a floating-point number F is represented by
the pair (M ,E) having the value

F = M · βE (2)

where M is the significand (or mantissa), E is the exponent and β is the base of the
exponent. Typically for digital systems β = 2.

For all practical systems it is possible to choose a word-length long enough to reduce
the finite precision effects to a negligible level, it is often desirable to use as few bits as
possible while achieving user-defined output error conditions in order to optimize area,
power or speed. Recent work in mulitple word-length optimisation for fixed-point and
floating-point systems can be found in Constantinides [1] and Gaffar [2] respectively.
Often, fixed-point designs out-perform floating-point designs in overall system-wide cost
including area, power and speed [3] as long as its inputs are properly scaled with the
appropriate bit-width [4]. However when signals have a large dynamic range, floating-
point designs prevail due to its large dynamic range as compared to fixed-point.

Some work has been done attempting to combine the best of the two number formats.
Horrocks and Bull [5] used a pseudo floating-point structure for FIR filters while [6] uses
a floating-point representation for design parameters. Both methods show good output
performance with low complexity but since they inherently run on fixed-point, they do
not possess the large dynamic range capability of floating-point. Block floating-point
approach [7], commonly used in FFT analysis, provides most of the advantages asso-
ciated with floating-point realizations with an implementation complexity approaching
that of fixed-point. However, block floating-point only scales a block of data; it lacks
the dynamic scaling property offered by the proposal in this paper.

3 Dual FiXed-Point

The proposed n-bit Dual FiXed-point (DFX) format consists of an exponent bit E, and
n−1 bits of a signed significand X , as shown in Figure 1. The exponent selects between
two scalings for the significand X , giving two possible ranges for the number. The lower
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n - 1 bits

Exponent E Signed Significand X

1 bit

Fig. 1. DFX Format

number range is referred to as Num0 while the higher number range is referred to as
Num1.

In order to achieve two different scalings, we define two radix points p0 and p1 such
that the radix point of Num0 and Num1 are p0 and p1 bits from the least significant
bit respectively, and p0 > p1.

The value of this DFX number is given by

D =
{

X · 2−p0 if E = 0
X · 2−p1 if E = 1 (3)

A boundary value, B, is needed to decide the best scaling to use and hence the value
of E. E is determined as follows,

E =
{

0 if −B ≤ D < B
1 if D < −B or D ≥ B

(4)

0 B = 2n-p0-2 2n-p1-2

Num0 Range

Num1 Range

-B = -2n-p0-2-2n-p1-2

Fig. 2. Num0 and Num1 range in a DFX Number

In order to simplify the design of the arithmetic units, the boundary value is de-
fined as the next incremental value after the maximum positive number of Num0,
i.e. B = 2n−p0−2 (−2 because of the exponent and sign bits). The range and precision
of Num0 and Num1 are illustrated in Figure 2. To completely define a DFX number, we
need n, the size of the DFX number, p0 and p1, the radix points. The notation used in
this paper is DFX n p0 p1.

Dynamic range is defined by the ratio between the largest and the smallest absolute
number in the data format. The smallest absolute value of a DFX number is 2−p0 while
the largest absolute value is 2n−p1−2, hence the dynamic range of a DFP number is given
as

Dynamic range = 20 log10(2
n+p0−p1−2) dB (5)

Having two possible scaling for a number gives DFX better range capability than
fixed-point as shown in Table 1.
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Table 1. Dynamic Range comparisons

Number System
Dual FiXed-

point
Dual FiXed-

point
Fixed Point Floating Point

Format 32_30_0 32_16_4 32-bit 32-bit IEEE

Dynamic Ranges 260 ˜  361dB 246 ˜  276dB 231 ˜  187dB 2254 ˜  1529dB

E = 0   if -B Input < B
1 if Input < -B or Input B

Fixed-Point 
Input E

nin _pin

n-1

nin

p0

pin

Bits of interest
for detection

Input

Num0

(a) (b)

Fig. 3. (a)DFX Range Detector Module and (b) Input Bits the range detector is interested in

4 Dual FiXed-Point Circuits

Arithmetic modules in DFX have been designed in VHDL and mapped onto a Xilinx
Virtex II (XC2V80-6fg256) in order to evaluate their area and speed.

4.1 DFX Range Detector

The function of the DFX Range Detector, shown in Figure 3(a), is to generate the
exponent bit, E, which selects the range used in the DFX number. The input to this
module is a fixed-point number with the format nin pin (nin being the input word-
length and pin being the position of its radix point). The boundary chosen allows this
operation to be simplified down to a logic operation given by (6). If the input is in the
Num0 range, all the bits above the boundary will be 0’s (when it is a positive input) or
1’s (when it is a negative input) since the input is a two’s complement number. The bits
of interest for detection are shown in Figure 3(b).

E = dnin−1 · dnin−2 · . . . · dnin−(n−p0−2)−pin

+ dnin−1 · dnin−2 · . . . · dnin−(n−p0−2)−pin

(6)

4.2 DFX Adder

The DFX Adder module adds together two DFX numbers (see Figure 4(a)). Similar to
a floating-point adder, DFX inputs may have to be scaled in order to align the radix
points before adding. But unlike floating-point, the number of bits to shift is known a
priori. Therefore only multiplexers instead of barrel shifters are necessary to perform the
necessary scaling. As a result the DFX Adder is expected to be both smaller and faster
than the equivalent floating-point adder. Note that ">>" and "<<" are the shift operators
which requires only wire routing and mod 2n−1 simply extracts the least significant (n-1)
bits.

The Adder Control Block determines the shifting of the inputs via the A sel and
B sel signals. If the input exponents are different, i.e. one input is Num0 and the other
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(n-1) bits
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mod 2n-1

Fig. 4. (a) DFX Adder Module and (b) Rescaler Block

is Num1, the Num0 number will be shifted up to the Num1 range. If both exponents
are the same, there will be no shifting.

The adder is a full precision adder and its result sum is fed into the Rescaler Block
whose scaling is provided by the signal S sel. The adder’s resulting scale is always
Num1 unless both the inputs are Num0. The output signals of the Adder Control Block
are given below in Figure 4.

The Rescaler Block (Figure 4(b) first detects the range of sum with two range
detectors that are aligned to the two possible scales. The Num0 Range Detector assumes
the its input is a Num0 number producing the signal det N0 while the other assumes
a Num1 input producing the signal det N1.

No shifting is needed if the adder’s result remains in the same range. If the result
changes from a Num0 to a Num1, Sum has to be shifted p0 − p1 bits to the right and
sign extended. The result will however be shifted p0−p1 bits to the left and zero padded
if the result changes from a Num1 to a Num0 number. The combinational logic of the
internal signals and the exponent bit are given below. Finally, the multiplexer truncates
the output to give (n − 1) bits for the significand.

no change = (S sel · det N0) + (S sel · det N1)

shift r = S sel · det N0

shift l = S sel · det N1

Exponent bit = (S sel · det N0) + (S sel · det N1)

(7)

Table 2 shows the size and speed comparison of a 32-bit adder implemented in all
three number formats. It can be seen that while DFX is about 4 times larger and slower
than an equivalent fixed-point adder, it is also almost 4 times smaller and faster than the
floating-point circuit.

4.3 DFX Multipliers

Two versions of the multiplier have been designed. The DFX-H Multiplier takes one
DFX input and one fixed-point input, while the DFX-F Multiplier performs a full multi-
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Table 2. Size and latency delay comparison table of 32-bit adders

Adder Type Size (Slices) Latency (ns)

Fixed-Point 17 2.5
DFX 64 10.28

Floating-Point 
(IEEE)

255 34.48

Rescaler 
Block

X

Aexp

A

M m bits

(n-1) bits

n'_p0'_p1'
Q

P
n_p0_p1

m_pm

n_p0_p1

0 0 m

1 1 m

n' = m + n -1
p = p + p
p ' = p + p

'

(a)

(n'-1)_p0' 
Range Detector

(n'-1)_p1' 
Range Detector

P

(n'-1) bits

>> pm

>> pm-(p0-p1)

mod 2n-1

mod 2n-1

mod 2n-1>> pm+(p0-p1)

0

1

0

1

0

1

(n-1)_p0

(n-1)_p1

Q

Pexp

n_p0_p1

0

1
(n'-1) bits

(b)

Fig. 5. (a) DFX-H Multiplier module and (b) Rescaler Block

plication between two DFX inputs. Due to space constraints, only the DFX-H multiplier
is described here.

Figure 5(a) shows the DFX-H Multiplier forming the product between a DFX input
A and a fixed-point input M . This is particularly useful in applications such as filtering
where one of the operands is a constant. Unlike the DFX Adder, a DFX-H Multiplier
does not require aligning the radix points at the inputs to the binary multiplier. However,
the product P needs to be properly scaled and converted into DFX format.

Consider the multiplication of a DFX n p0 p1 number with a FX m pm number,
as shown in Figure 5(a), giving a product P which is in DFX n′ p′

0 p′
1 format, where

n′ = m+n−1, p′
0 = p0 +pm and p′

1 = p1 +pm. The product P needs to be converted
back to a DFX n p0 p1 formatted number.

Figure 5(b) show the circuit for the DFX-F Rescaler Block. The range detectors are
aligned to the radix points of p′

0 and p′
1 respectively. Further optimization could be done

assuming the multiplier M is a constant value.
Table 4 shows the size and speed comparison of 32-bit multipliers implemented in

all three number formats. The optimized DFX-H Multiplier is about 1.2 times larger
and slower than an equivalent fixed-point multiplier. However it is also about 1.2 times
smaller and faster than a floating-point multiplier. The DFX-F Multiplier is comparable
with its floating-point counterpart and it is about 1.5 times larger and slower than fixed-
point.

4.4 DFX Encoder and Decoder

In order to utilize this number system, a method is needed to convert a number from a
known type to DFX. Currently modules exists to encode and decode to and from two’s
complement fixed-point. The size and latency of the 32-bit DFX modules are given
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Fig. 6. IIR Filter signal flow diagram

Table 3. DFX Encoder and Decoder size and latency delay table

Module Size (Slices) Latency (ns)

Encoder 17.5 7.8
Decoder 10 5.8

Table 4. Multiplier size and latency delay comparison table

Multiplier Type Size (Slices) Latency (ns)

Fixed-point 43 13.946
DFX-H 58 17.308
DFX-F 76 19.149

Floating-point 73 20.683

in Table 3. The values for the decoder are approximate because the decoder is usually
absorbed into adjacent blocks by logic optimization.

5 Example and Results

The effectiveness of using DFX as an alternative computation method to floating-point
is demonstrated by using a Direct Form I implementation of a 2nd order notch IIR filter
with the notch at 0.15 of the Nyquist frequency as shown in Figure 6. The filter has five
coefficients, three of it in the forward path and two in the feedback path. 32-bit versions
of the filter were implemented with DFX (designs D1 and D2), fixed-point (X1, X2
and X3) and floating-point (P1 and P2) formats for comparison and the result is given in
Table 7. The DFX Multiplier FX is used in the design since the coefficients are constants.

The target chip for the IIR design is a Xilinx Virtex II XC2V500-6fg456. Comparing
the formats with the same bit-width, i.e. 32-bit, DFX designs fall between fixed-point
design X1, the smallest and fastest, and floating-point design P1, the largest and slowest.
Designs X3 and P2 are about the same size with DFX designs with design X3 being the
fastest of the four.

In order to exercise the dynamic range capability of DFX, a set of input data with the
frequency distribution as shown in Figure 8(a) and an appropriate spectrum was created.
The output SNR, average relative error and maximum relative error of different filter
types are shown in Table 5. The error is with reference to double precision floating-point
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Filter 
Type

Design Format
Size 

(Slices)
Latency 

(ns)

D1 32_18_6 584 52.29
D2 32_9_6 580 51.28
X1 32_7 255 24.26
X2 33_8 272 24.18
X3 43_18 572 31.51
P1 32bit M23 E8 1459 127.39
P2 17bit M10 E6 586 88.183

DFX

Floating 
Point

Fixed 
Point
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P2
D1

D2

X1

X2

X3

0

200

400

600

800

1000

1200

1400

1600

0.00 50.00 100.00 150.00
Latency (ns)

S
iz

e
 (

sl
ic

e
s)

Fig. 7. IIR filters size and latency comparison
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Fig. 8. (a) The frequency distribution of the input and (b) the frequency response relative error for
the filter in Fig. 6

Table 5. The error results for the IIR Filter in Fig. 6

Filter 
Type

Design Format SNR (dB)
Av Relative 
Error (dB)

Max Relative 
Error (dB)

D1 32_18_6 333.88 -82.89 -41.02
D2 32_9_6 347.25 -29.63 13.07
X1 32_7 330.53 -18.20 24.14
X2 33_8 344.09 -23.95 17.77
X3 43_18 482.21 -84.75 -44.21
P1 32bit M23 E8 299.13 -85.90 -29.88
P2 17bit M10 E6 115.42 -7.24 48.25

DFX

Fixed 
Point

Floating 
Point

results taken to be the expected results. Relative error is calculated as a ratio of the
difference error over the reference result.

According to Table 5 floating-point design P1 performs pretty well in terms of relative
error (the lower the value the better) but poorly in terms of output SNR. DFX designs out-
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performs floating-point designs because the DFX design a more precise number number
format (i.e. the signifand of design D1 has 31-bits, compared to 24-bits in design P1).

Fixed-point designs show improvement in terms of output SNR and relative error as
its word-length increases. In terms of output SNR, DFX design D2 may beat fixed-point
design X1, but by increasing the bit-width by one, design X2 is able to out perform
design D2. However, design D1 shows good average relative error performance which
can only be match by designs X3 and P1. Being a floating-point design, design P1 is
notably larger than D1 and fixed-point design X3 is similar in size to D1.

Figure 8(b) shows the relative error of the frequency response measured against the
maximum output range of designs with similar word-length. It shows that the floating-
point performance is poor overall especially at the notch frequency. The DFX imple-
mentation performs similarly to fixed-point but, notably, DFX performs better than
fixed-point at the notch frequency.

6 Conclusion and Future Work

This paper demonstrates that by only providing two possible scalings, as in DFX, reduces
the design complexity to give smaller and faster designs as compared to floating-point.
By choosing the right scaling, DFX can have similar performance to fixed-point while
capable of handling a wider dynamic range.

Future work will include the exploration of multiple word-length designs using DFX
and the optimization of DFX design for area, accuracy and speed.
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Abstract. This paper describes different implementations of dividers on FPGA.
Many division algorithms have been adapted for FPGA technology; neverthe-
less the peculiar characteristics of re-configurable hardware devices deserve
special attention to ensure efficient implementations. This paper presents com-
parative analyses of implementations targeting Virtex and Virtex II FPGA tech-
nology. With respect to the algorithms, selected comparison criteria are operand
widths, remainder representations and radix options. At the implementation
level, latency, throughput, and area consumption have been traded-off within
array, pipelined and sequential options; the results have been compared with
previous ones. Area and speed improvements have been obtained thanks to
careful implementation techniques. With respect to non-restoring implementa-
tions, significant delay improvements - up to 42% - have been achieved.

1   Introduction

In the recent past, division operation has been hard to implement on FPGAs, not only
because of the complexity of the algorithms itself but mainly for the limited capacity
of the first available FPGA devices. Thanks to a fast growing density feature, efficient
division units on FPGA turned to be more feasible. This paper focuses on dividers
within floating-point (FP) operations, namely with operands in range [1,2).

A simple and widely implemented class of division algorithm is based on digit re-
currence. The most common implementation of digit-recurrence division in modern
CPU´s is SRT-division, taking its name from the initials of Sweeney, Robertson, and
Tocher, who developed the algorithm at approximately the same time. Digit recur-
rence, specifically SRT, and other division algorithm surveys can be found in [1-5].

Many implementations of SRT dividers on FPGA were recently presented in [6-8].
In [6], dedicated Virtex II multipliers are used to implement radix 2, 4 and 8 SRT
dividers; a C++ generator is used to produce a synthesizable VHDL code. Paper [7]
presents a minimally redundant radix-8 SRT division scheme; previous results of a
radix-4 SRT are pointed out. In [8], radix 2, 4 and 8 SRT division schemes are itera-
tively implemented as fully combinational and pipelined circuits; they use module
generator in JHDL. This paper departs from previous works by several points. First
low-level component instantiations in parameterized VHDL code are used in order to
keep control over implementation details. Then analyses are presented on maximally
redundant radix 2, 4, 8 and 16 SRT dividers with 2’s complement expression for the
remainder, as well as a radix-2 carry-save remainder. Furthermore array, pipelined,
and iterative architectures are evaluated, and then results are compared with the non-
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Restoring division algorithm
r(0) := X;
for i in 1 .. p loop
    rest_step(r(i-1),
              D,q(i), r(i));
end loop;

rest_step (a, b, q, r)
z := 2*a - b;
if z < 0 then
    q := 0; r := 2*a;
else  q := 1; r := z;
end if;

Non-restoring division algorithm
r(0) := X;
for i in 0 .. p-1 loop
    nonr_step(r(i),
          D,q(i), r(i+1));
end loop;
q(p):=1; q(0):=1-q(0);

nonr_step (a,b,q,r)
if a < 0 then
  q := 0; r := 2*a+b;
else
  q := 1; r := 2*a-b;
end if;

Fig. 1. Restoring and non-restoring
division algorithms

restoring division algorithm: one of the easiest to implement, and the one used in
CoreGen [9] and others cores. Finally designs are implemented on Virtex and Virtex
II devices. Differences in routing architecture,
for each device family, lead to slightly different
conclusions.

2   Algorithms

Given two non-negative real numbers the divi-
dend X and the divisor D (D≠0), the quotient q
and the remainder r are non-negative real
numbers defined by the following expression: X
= q.D + r  with r < D.ulp, where ulp is the unit
in the least significant position. If X and D are
the (unsigned) significant of two IEEE-754
floating-point numbers, then they belong to the
range [1,2), and q lies in the range  [0.5, 1). This
result can be normalized by shifting the quotient then adjusting the exponent.

Division generally does not provide finite length result. The accuracy must be de-
fined beforehand by setting the allowed maximum length of the result (p). The num-
ber of algorithmic cycles will therefore depend upon the aimed accuracy, not upon the
operand length (n).

Restoring and Non-Restoring Algorithm: To divide two integers, the most well
known procedures are the restoring and non-restoring digit-recurrence algorithms
[3],[4]; the corresponding FPGA implementations are easy and the area/speed results
are always better for non-restoring. Figure 1 depicts restoring and non-restoring divi-
sion algorithm. In the latter one, a correction step should be added in order to correct
the last remainder whenever negative.

SRT Division: As other digit-recurrence algorithms, SRT generates a fixed number
of quotient bits at every iteration. The algorithm can be implemented with the stan-
dard radix-r (r = 2k) SRT iteration architecture presented at fig-
ure 2. n-bit integers division requires t = n/k iterations. Two
additional steps are required to check input values (division by
zero and scaling) and to convert the signed-digit quotient repre-
sentation to a standard radix-2 notation. The division x/d pro-
duces k bits of the quotient q per iteration.

The quotient digit qj is represented using a radix-r notation
(radix complement or sign-magnitude). The first remainder w0 is
initialized to X. At iteration j, the residual wj is multiplied by the
radix r (shifted by k bits on the left, producing r.wj ). Based on a
few most significant bits of r.wj and d (nr and nd bits respec-
tively), the next quotient digit qj+1 can be inferred using a quo-
tient digit selection table (Qsel). Finally, the product qj+1 × D is
subtracted to r.wj to form the next residual wj+1.

W(j) D

R.W(j)

Qsel Table

Shift

Multiplier

substractor

W(j+1)

Q
(j+

1)

Fig. 2. General
SRT division step
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Figure 3 exhibits the general architecture; the last step cond_adder is necessary for
the last remainder adjustment only (not essential in FP implementations). For the
hardware implementation of an SRT divider, some important parameters have to be
traded off.
Radix r = 2k : For large values of k the iteration number t decreases but each step is
getting more complex (larger Qsel tables, complex products qj+1 ×D). Higher radices
(larger than 16, k=4) lead to very huge quotient digit selection tables and seem to be
impracticable within present FPGA technology.
Residual representation (wj): Traditionally in ASIC
implementation, a redundant number system such as
carry-save is used for wj  to accelerate the operation
qj+1×D - r.wj. In FPGA’s dedicated carry logic
makes traditional ripple-carry faster than carry-save
for small bit widths additions or subtractions. Non-
redundant system (2’s complement) and redundant
(carry-save) format are analyzed in what follows.
Quotient representation: For speed up subtractive
division redundant digit sets of the form of {- ,-

+1,...,0,..., -1, } is used. The radix-2k quotient is
represented by a signed-digit redundant number
system. It ensures that the next quotient digit deter-
mination is possible referring to just a few most
significant bits of the remainder and divisor (nr and
nd respectively). Higher values of  lead to simpler
quotient digit selection (smaller values of nr + nd for
the address of the Qsel table) but also to more com-
plex products qj+1×d.

3   FPGA Implementations

Details of FPGA implementation are discussed here. The division algorithms are
implemented (i) in a fully combinational way, (ii) pipelined with different logic depth
and finally (iii) as sequential implementations with different granularity.

3.1   Array Circuits

The array implementations of different division architectures are analyzed in this
section. Traditional restoring and non-restoring algorithms are presented first, then
SRT radix 2, 4, 8, and 16 with 2’s complement remainder. Finally, a novel imple-
mentation of SRT radix-2 with carry-save remainder representation is worked out.
Areas and delays are studied for each case. Same division step described in this sec-
tion are employed later in pipelined and sequential implementation.

3.1.1   Radix-2 Restoring and Non-restoring
Integer division is traditionally dealing with restoring or non-restoring algorithms.
Adjusting to fractional operands is trivial. The restoring division algorithm, imple-
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mented with the algorithm depicted in figure 1, needs p restoring_division_step cells.
Each cell uses an (n+1)-bit sustractor and an n-bit 2-1 multiplexer, that means (n+1)
slices and a delay of  2.Tlut + n.Tmux-cy + Tnet. Then, an n-bit divider with p-bit accuracy
has an area of Crest(n, p) = p.(Crest_div_step(n)) = p.(n+1) = p.n + p slices, and a delay of
Trest(n, p) ≈ p.( Trest_div_step(n) + Tnet) = 2.p.Tlut + p.n.Tmux + 2.p.Tnet

Non-restoring division implemented in Virtex / Virtex II FPGA is more efficient.
The nonrestoring_division_cell is implemented with p (n+1)-bit adder-subtractor.
Each cell needs n/2+1 slices and a delay of
Tlut + n.Tmux-cy. If the final remainder is re-
quired, an additional conditional adder (n/2
slices) will be needed to adjust the remain-
der whenever negative.
Cnr(n, p) = p.(Cnonr_step(n)) + Ccond_adder(n) =

                  p.(n/2+1)+ n/2 = p.n/2 + p + n/2
slices.

Tnr(n,p)≈ p.(Tnonr_step(n)+Tconec)+Tcond_adder(n)+Tnet =

               (p+1).Tlut+p.(n+1).Tmux+(n+1).Tnet

3.1.2   Radix-2 SRT with 2´s Complement
Remainder
If the remainder is represented in 2´s complement
notation, the Qsel table is trivial (actually doesn’t
exist). The most significant two bits of the remain-
der are utilized to settle on the operation to be exe-
cuted in the next division step (figure 4.a).

Therefore, Qsel, the multiplier (by –1, 0 or 1) and
the subtractor can be integrated in a single cell
(srt_step_r2) that means (n+1)/2 slices only. The
slice detail of srt_step_r2 is shown at figure 4.b; the
carry (-1) is filled with srn(0) (the second most
significant bit of the previous remainder). The logic
function g(i) implemented in each LUT is

wdsdwswdswds 1100 +++ . Delay of srt_step_r2 cell

is given by:   Tsrt_step_r2 (n) = Tlut + (n+1).Tmux-cy. The
complete array implementation of SRT divider is
shown at figure 4.c. The cond_adder cell adds one
dividend D if the last remainder is negative; it uses
n/2 slices. The adjust signal is the most significant
bit of the last remainder. The converter cell trans-
forms the quotient digits q(i)∈{-1,0,1} in a p-bits
2’s complement number; one is subtracted further if
the remainder needs adjustment. This cell is imple-
mented as a traditional subtractor, but the first carry
is the adjust signal, so it takes (p/2+1) slices.

The total area of the SRT radix-2 corresponds to
a p srt_step_r2 cell (p.(n+1)/2 slices), a conditional
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Fig. 4. SRT radix 2 with 2´s
complement remainder.
a. Operations to be done in a
radix-2 SRT divider cell.
b. Configuration of a Virtex /
Virtex II slice for srt_step_r2
cell. c.  Array structure.

W(n:n-1)=
srn(1:0)

Remainder
Value

Operation Q(i)

0 0 0 ≤ r <  1/2 Nothing 0
0 1 1/2 ≤ r < 1 Subtr Div 1
1 0 -1< r ≤-1/2 Add Div -1
1 1 -1/2≤ r < 0 Nothing 0
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adder (n/2 slices), and a converter cell (p/2+1 slices), which similar to the area of the
non-restoring divider.
Csrt_r2(n,p) =  p.(n+1)/2 + n/2 + p/2+1 = (pn+n+2p)/2+1 slices.

Tsrt_r2(n,p)≈p.(Tlut+(n+1)Tmux-cy+tnet)+Tlut+max(p+1,n+1).Tmux-cy=(p+1).Tlut+(p+1)(n+1).Tmux-cy+(p+1).Tnet

3.1.3   Radix-4, Radix-8, and Radix-16 SRT with 2’s Complement Remainder
In these implementations maximally redundant digit set is used. Therefore, in radix-4
the Qsel table uses 5 bits to determine the quotient digit in range {-3,-2,-1,0,1,2,3}
according to the PD plot of [3]. The quotient digit code uses 3 bits in a signed value
representation, but the sign assumes coding 1 for positive and 0 for negative. The sign
bit is calculated directly from the most significant remainder bit W(n+2), the quotient
value is calculated from the next 3 bits of the remainder W(n+1:n-1) and the second
bit of the divisor d(n-
2). The Qsel table
uses a slice config-
ured as a 5-input
function generator
(using a F5mux) to
calculate the quotient
bit q(0), and a LUT to
calculate bit q(1).

The srt_step_r4
cell (Figure 5.a), uses
the dedicated mul_and
gate for the 2-bit by n-
bit multiplier ((n+2)/2
slices); the Qsel function uses 3 LUTs (2 slices) while the additional adder requires
(n+2)/2 slices. The critical path includes the Qsel calculus, the multiplier carry propa-
gation, the addition cell and connections. The area and delay are Cdiv_step_r4 = n+4
slices, and Tdiv_step_r4 = 3.Tlut + (n+2).Tmux-cy + 2.Tnet respectively.

The converter cell converts signed representation of radix-4 digits to 2’s comple-
ment. Efficient implementation can be achieved, using inverted logic for the sign digit
qq(i)(2) (0 for negative, 1 for positive). Figure 5.b exhibits the slice detail of the con-
verter, the carry(-1) input uses the adjust signal: zero triggers the subtraction of one
from the result. LUT tables implement o(2i) = not (qq(i)(0)) and o(2i+1) = not
(qq(i)(1)) respectively. Finally the cost and delay of the SRT radix-4 divider are:
Csrt_r4(n,p)=p/2.(Cstep_r4(n))+Ccond_add(n)+Cconv=p/2.(n+4)+n/2+p/2+1=p.n/2+n/2+3/2.p +1 slices

Tsrt_r4(n,p)≈p/2.(Tstep_r4(n)+Tnet)+Tcond_add(n)+Tnet= (3/2.p+1).Tlut+(p/2+1).(n+2).Tmux-cy +(2/3.p+1).Tnet

In radix-8, Qsel table uses 9 bits to resolve the quotient in the digit-set range {-7,...,
7}. The quotient digit is coded in 4-bit sign-magnitude. The first quotient digit bit
(sign) qq(i)(3) is directly derived from the most significant remainder digit W(n+3).
Quotient selection is achieved with five digits from the remainder W(n+2:n-2) and
three from the divisor D(n-2:n-4). A total of 33 LUTs packed in 17 slices is needed
for Qsel table. For str_step_r8 a 3-bit by (n+3)-bit multiplier (n+3 slices) and an
(n+3) adder-subtractor (n/2+2 slices) are used. Area and delay of division step in
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n+2 bits
adder_substractor
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n+2 X 2
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Fig. 5. SRT radix-4 divider  a. srt_step_r4 cell   b. Slice detail
for converter cell.
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radix 8 are: Cdiv_step_r8 =3/2.n+22 slices, and Tdiv_step_r8=7.Tlut+(n+3).Tmux-cy+6.Tnet. The
circuit, as in radix-2 and -4 needs an (n+1)-bit conditional adder for the remainder
(n/2+1 slices) and a 2’s complement converter for the quotient ((p+1)/2 slices).
Csrt_r8(n,p)=p/3.(Cstep_r8)+Ccond_add+Cconv=p/3.(3/2.n+22)+n/2+(p+1)/2+1=p.n/2+n/2+47/6.p+2 slices

Tsrt_r8(n, p)≈p/3.(Tstep_r8+Tnet)+Tcond_adr+Tnet = (7/3.p+1).Tlut+ (p.n/3+n+2).Tmux-cy+ (7/3.p+1).Tnet

Radix-16 Qsel table uses 12 bits to resolve the quotient digit in range {-15,...,15}.
The quotient digit is coded in 5-bit sign-magnitude. The first quotient digit (sign)
qq(i)(4) is directly derived from the most significant remainder digit W(n+5). Quo-
tient selection is achieved with seven bits from the remainder W(n+4:n-2) and five
from the divisor D(n-2:n-6). A total of 268 LUTs packed in 141 slices is needed for
Qsel table in Virtex, and 221 LUTs packed in 181 slices in Virtex II. The differences
between FPGAs families are mainly due to the availability of muxF7 and muxF8 in
Virtex II. For str_step_r16 a 4-bit by (n+4)-bit multiplier (3/2.n+6 slices) and an n+4
adder-subtractor (n/2+4 slices) are used. Finally Cdiv_step_r16=2.n+144 slices and
Tdiv_step_r16 = 8.Tlut+(n+4).Tmux-cy+6.Tnet. As in previous radices, a final (n+1)-bit condi-
tional adder, and a sign-magnitude to 2’s complement representation converter for the
quotient are needed. The complete implementation has the following costs.
Csrt_r16(n,p) = p/4.(Cstep_r16)+Ccond_add+Cconv=p/4.(2.n+150)+n/2+p/2+2=p.n/2+n/2+36.p+2 slices

Tsrt_r16 (n,p)≈ p/4.(Tstep_r16+Tnet)+Tcond_adder+Tnet=(2.p+1).Tlut+(p.n/4+n+2).Tmux-cy+(7/4.p+1).Tnet

3.1.4   Radix-2 SRT
with Carry-Save
Remainder
Block diagram of radix-2
SRT carry-save remain-
der is shown at 6.c. Two
division_step alternatives
are analyzed. The first
implementation is the one
suggested in figure 6.a;
the first (leftmost) 3 bits
of u and v are added, the
most significant 3 bits of
the result address a table
from where q_pos and
q_neg are extracted. It
has been established that
3+3 bits from the carry-
save representation are adequate to make a proper selection of the quotient digit [11],
although 4+4 bits are suggested in [3] and [4]. The multiplexer and carry-save adder
(CSA) of figure 6.a can be implemented within (n+1) slices using the cell of figure
6.b. Observe that each CSA digit is calculated with one LUT only (together with a
muxcy and a xorcy), but, due to routing limitations, only one CSA digit can be calcu-
lated per slice. Therefore, the division cell area and delay figures are Ccell_cs1 = n+4
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slices; Tcell_cs1 = 3.Tlut+3.Tmux-cy +2.Tne+2.Txor. So, this first version of the radix-2 SRT
divider with carry-save remainder, has an area and delay costs given by
Ccs_v1(n,p)=p.Ccell_cs1+Ccond_add+Cconv=p.n + 4.p + n/2 +1 + n/2+1  = (p+1).n + 4.p + 2 slices.

Tcs_v1(n,p)≈p.(Tcell_cs1+Tnet)+2.Tnet+Tadd+Tcond_add=(3p+2).Tlut+(2n+3p+2).Tmux-cy+2p.Txor+(3p+2).Tnet

Area and delay can be improved using a single table to calculate q_pos and q_neg.
A 26 x 1 bit memory is necessary for each signal. The Qsel cell is implemented using
8 LUTs (4 slices) together with F5mux, F6mux multiplexers. The second version of
SRT carry-save remainder division cell has an area and delay of: Ccell_cs_lut = (n + 4)
slices, and Tcell_cs_lut ≈ 2.Tlut + Tmux6 + Tnet + Txor ≈ 3.Tlut + Tnet + 2.Txor. So, the SRT ra-
dix-2 carry-save remainder division with Qsel fully implemented in LUTs (srt_cs_L)
has an area and delay costs given by
Csrt_cs_L (n,p) = p.Ccell + Ccon_adder + Cconverter = (p+1).n + 4.p + 1 slices.

Tsrt_cs_L (n,p)=p.(Tcell+Tnet)+2.Tnet +Tadd +Tcond_add=(3p+2).Tlut+(2n+2).Tmux-cy+p.Txor+(2p+2).Tnet

Observe that Tcs_v1 as well as Tcell_cs_lut are constant values; so, the computation time
of the total divider is a linear function of p (or n if n > p).

3.2   Pipeline Circuits

For speed improvement, pipeline is a fruitful technique whenever a great batch of data
is dealt with. In this architectural approach each k successive division_step, storage
elements (called pipeline registers) are added, so that the longest delay, overall the
entire circuit, is shopped down and the frequency can be improved.

Pipeline implementations of non-restoring, SRT radix-2 and -4 with 2´s comple-
ment remainder and SRT carry-save remainder for several logic depths have been
implemented. In what follows, LD stands for the maximum number of division_step’s
between successive register banks. The division_step’s for each implementation are
the ones described in section 3.1.2, 3.1.3, 3.1.4, and 3.1.5 respectively.

In order to implement the register
stages flip-flops (FF) distributed in
slices are used. Additionally, the
quotient digit de-skewing can be
implemented using shift-register (SR)
implemented in LUT (called SRL16).
Look-up table based shift-registers
allow the designer to compress up to
16 bits SR in a single LUT unit. Pipe-
lining in FPGA has a low impact in
area due to the embedded register
distributed into the slices and the SRL
characteristics of LUT.

3.3   Sequential Circuits

The general architecture adds a state
machine to control the datapath it is
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made of g consecutive division_step’s with the corresponding register to store inter-
mediate values (figure 7). At each clock cycle, the circuit calculates g.r bits, while an
extra cycle is necessary to compute the remainder; then a total of p/(g.r) cycles are
used for the complete calculation, with an eventual extra cycle for remainder adjust-
ment.

4   Implementation Results

The circuits are implemented in a Virtex (XCV800hq 240-6) and in a Virtex II
(XC2V1000bg575-6). The circuits have been described in VHDL instantiating, when
necessary, low level primitives such as LUTs, muxcy, xorcy, … [12]; Xilinx ISE 6.1
tool [13] and XST [14] for synthesis were used. Same pin assignment, preserving
hierarchy option, speed optimization and timing constraints were part of the design
strategy. Area and delay results presented below are those reported by Xilinx tools.

The major differences between Virtex and Virtex II implementations are observed
in the routing delay. In Virtex, relation logic-route in worst path is averaging (55%,
45%), while in Virtex II, this relation is (63%, 37%). Other differences are observed
due to fast connection between slices and muxF7 and muxF8 availabilities in Virtex
II; this makes the large combinational blocks more efficient. Large Qsel tables as in
radix-8 and -16 are implemented faster and require less area.

4.1   Results in Array Implementations

Table 1 shows, for Virtex devices, areas (LUTs and slices) and delays (total, due to
logic and routing) expressed in ns. The circuits are the ones detailed in section 3.1:
restoring and non-restoring (rest, nonrest); SRT radix-2, 4, 8, and 16 with 2´s com-
plement remainder (srt_r2, . . . , srt_16) and finally, two SRT radix-2 with carry-save
remainder representation (with adder srt_cs_ad and look-up table srt_cs_L).

Up to 24 bits, non-restoring and SRT radix-2 shows best results in delays; for
greater operand sizes SRT carry-save remainder (srt_cs_L) and SRT radix-4 are the
best choices. With respect to areas requirements, SRT radix-2 and non-restoring are
always the best. On the opposite, restoring and SRT radix-16 are the worst area con-
sumers. Best results in area × delay merit relation are provided by SRT radix-2 up to
24 bits and SRT radix-4 for greater sizes.

Table 2 exhibits the results for Virtex II. The circuits implemented are the same as
above. Restoring and srt_cs_ad are not shown because of poor results. The architec-
ture proposed in section 3.1.4, i.e. the SRT carry-save remainder (srt_cs_L), holds the
best delay performance, followed by SRT radix-16 (srt_r16). Speed improvement,
with respect to non-restoring algorithm, is up to 42.5 %. In area, like in Virtex, SRT
radix-2 and non-restoring need the fewest resources. Results in area × delay (#slice ×
ns) relation point to SRT radix-4 (srt_r4) as the best choice.
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Table 1. Results for array implementations in Virtex

N Area Delay N Area Delay N Area Delay
P slices total logic route P slices total logic route P slices total logic route

40 880 251.7 129.2  122.5 40 940 243.7 114.7 129.0 40 1802 336.9  132.1  204.8
32 576 180.6 93.3  87.3 32 624 187.8 87.3 100.5 32 1186 259.2  105.0  154.1
24 336 118.7 62.5  56.2 24 372 125.7 63.4 62.3 24 698 192.8  80.6  112.2no

nR
es

t

16 160 68.8 37.8  30.9

sr
t_

r4

16 184 82.4 39.8 42.6 sr
t_

cs
_a

d

16 338 119.6  54.6  65.2
40 1640 329.1 146.4  182.7 40 1112 277.3 101.1 176.1 40 1779 238.6  103.5  135.0
32 1056 238.3 108.2  130.1 32 804 224.6 83.0 141.6 32 1183 179.2  81.1  98.1
24 600 158.4 74.5  83.8 24 487 154.6 60.2 94.4 24 695 141.4  59.9  81.4re

st

16 272 91.5 44.2  47.3
sr

t_
r8

16 243 83.9 41.4 42.5

sr
t_

cs
_L

16 335 87.9  42.8  45.1
40 861 293.2 124.3  168.8 40 2258 245.7 95.5 150.2
32 561 198.1 90.8 107.3 32 1666 191.1 75.9 115.2
24 325 125.5 60.8  64.6 24 1137 138.4 56.4 82.0sr

t_
r2

16 153 69.2 37.0  32.2

sr
t_

r1
6

16 676 81.8 36.6 45.2

Table 2. Results for array implementations in Virtex II

4.2   Results for Pipeline Implementations

The following pipeline implementations have been achieved: non-restoring algorithm,
SRT radix-2, SRT radix-2 using SRL (LUT’s configured as shift-register), SRT radix-
4, and SRT radix-2 using carry-save in remainder. Table 3 shows area expressed in
slices, register count and maximum bandwidth in MHz, for 32-bits divider imple-
mentations and different logic depth LD (the maximum division steps between suc-
cessive register banks) in Virtex II. Both architectures show similar results in speed
improvement vs. area overhead.

The SRT radix-4 exhibits best results for both device families. In Virtex II, SRT
with carry save remainder shows results good in speed but poor in area, meanwhile
traditional non-restoring gives valuable results. A maximally pipelined architecture
(LD=1) speeds up the system up to more than 20 times with respect to the fully com-
binational architecture (LD=32) with an area overhead lower than three times.
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Table 3. Logic depth, clock cycles, area in slices, register utilization, and maximum bandwidth
in MHz for the different architectures in Virtex II.

4.3   Results for Iterative Implementations

Table 4 shows results for iterative implementations in Virtex and Virtex II. The
amount of bits calculated at a time (G) and the total clock cycles necessary (C) are
presented together with slices and register utilization and minimum period and maxi-
mum frequency in MHz. Finally the latency in ns (L = clock period × number of clock
cycles) and the area × latency (AxL) in ms × slice are reported. As G grows, the la-
tency decreases at the expense of area. Best latency results are provided by SRT ra-
dix-4 in both device families. Minimum value for area × latency figure is obtained for
G = 2.

Table 4. Results for iterative circuits in Virtex and Virtex II.

Virtex Virtex II
G C slic FF P(ns) F L(ns) AxL slic FF P(ns) F L(ns) AxL

1 32 113 203 8.9 112 285.7 32.3 109 203 4.9 205 155.5 17.0

2 16 124 202 13.7 72 219.8 27.3 123 202 8.7 115 138.7 17.1

4 8 155 200 23.8 42 190.2 29.5 155 200 16.4 61 131.2 20.3

no
n_

re
st

8 4 219 196 44.9 22 179.6 39.3 219 196 31.8 31 127.2 27.8

1 32 135 240 8.0 124 256.9 34.7 127 237 4.9 204 156.4 19.9

2 16 139 236 13.4 74 214.8 29.9 141 236 8.5 117 136.7 19.3

4 8 169 236 24.1 41 193.0 32.6 171 236 15.8 63 126.4 21.6sr
t_

r2

8 4 229 236 47.9 20 191.7 43.9 231 236 30.1 33 120.3 27.8

2 16 134 221 12.7 78 202.9 27.2 184 219 7.9 127 125.8 23.2

4 8 169 221 21.9 45 175.2 29.6 170 221 14.5 68 116.2 19.7

sr
t_

r4

8 4 240 222 41.2 24 164.6 39.5 240 221 28.6 34 114.5 27.5

4 8 336 255 23.0 43 183.9 61.8 366 251 14.0 71 111.7 40.9

_r
16

8 4 603 294 41.9 23 167.5 101.0 635 293 28.3 35 113.1 71.8

1 32 179 269 11.9 83 382.0 68.4 174 267 7.0 143 223.0 38.8

2 16 210 267 17.7 56 282.6 59.3 210 267 9.9 101 157.7 33.1

4 8 282 267 29.9 33 239.3 67.5 312 267 15.0 66 119.8 37.4sr
t_

cs

8 4 426 267 52.5 19 210.2 89.5 425 267 29.7 33 118.8 50.5
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4.4   Comparison

The results of the implementations
presented in this paper are compared
with other recent contributions (fig-
ure 8). From the experiments, array
implementations of SRT radix-2. -4
and -16 with 2’s complement re-
mainder (srt_r2, srt_r4, srt_r16) and
the carry-save remainder represen-
tation (srt_cs_L) are charted. Fi-
nally, radix-4 and -8 SRT imple-
mentation results from [7] (l_r4 and
l_r8), best result of [6], a radix-8
SRT using embedded Virtex II
mult18x18 blocks (b_r8), and a 24-
bit array implementation of radix-2
and -4 SRT dividers of [8] (w_r2.
w_r4) complete the figure 8. Figure
9 shows the area-delay-latency
trade-off for some of the 32-bit di-
viders presented in this paper. The
sequential implementation shows best area performance, while pipeline exhibits best
delay with a relatively low area penalty with respect to the array implementation, but
with an initial latency.

5   Conclusions

This paper has presented improved
architectures and implementations
of SRT dividers. The optimizations
have been targeted for Virtex and
Virtex-II FPGAs families. The
slight difference in slice architec-
ture, and the more important one in
routing characteristics of the FPGAs
families under review, makes the
specific conclusions somewhat
different from each others.

The circuits presented have been
implemented in VHDL instantiating
low-level primitives whenever nec-
essary. Latency, throughput, and area are traded off within arrays, pipelined and se-
quential implementations. Improvements have been shown with respect to recent
contributions where high-level techniques were used.
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In Virtex II for array implementation, the lower influence of routing delays makes
SRT with carry-save remainder - proposed in section 3.5.1 - the best choice, improv-
ing the delays with respect to non-restoring algorithms by up to 42.5 %.

Further research is needed to explore carry-save remainder representation with
higher radices. The power consumption features are currently under study. An opti-
mized fully IEEE compliant floating-point unit is another key research interest.
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Abstract. This paper presents a new scheme for the hardware evalua-
tion of elementary functions, based on a piecewise second order minimax
approximation. The novelty is that this evaluation requires only one small
rectangular multiplication. Therefore the resulting architecture combines
a small table size, thanks to second-order evaluation, with a short critical
path: Consisting of one table lookup, the rectangular multiplication, and
one addition, the critical path is shorter than that of a plain first-order
evaluation. Synthesis results for several functions show that this method
outperforms all the previously published methods in both area and speed
for precisions ranging from 12 to 24 bits and over.

1 Introduction

The evaluation in hardware of elementary functions such as sine/cosine, exp,
log, or more complex functions has been an active research subject over the last
decade. Applications include digital signal processing, but also neural networks
[15], logarithm number system [5], and the initialization of Newton-Raphson
iterations for hardware division [11] among many others.

The simplest hardware evaluator is a lookup table storing precomputed val-
ues. Its size grows exponentially with the size of the input word, which confines
this solution to input precisions smaller than 10 bits. The table size can be re-
duced by using a piecewise linear approximation of the function. The hardware
now requires a multiplier [10], but the bipartite trick and its variations [2,14,12,
3] allow to replace the multiplier with an adder, which improves both area and
speed. These methods allow for practical input precisions up to 20 bits. For more
precision, approximations by higher order polynomials are needed [7], using ei-
ther more multipliers, or iterations over a single multiplier, with an increased
delay. Variations on these higher order methods include partial product arrays
[6], parallel powering units [13,9], and difference formulas [8,1].

This article presents a second order method which involves only one small
rectangular multiplication. This method is well suited to input precisions from 10
to 24 bits and over. It is simpler and more flexible than previous similar work [4],
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allowing complete automation of the synthesis of operators for arbitrary func-
tions and arbitrary input and output precision. This scheme also outperforms
the other previously published methods listed above in both area and speed.

Notations. Throughout this paper, we discuss the implementation of a function
whose inputs and outputs are in fixed-point format. We note wI and wO the
required input and output size (in bits). Without loss of generality, we will focus
in this paper on functions with both domain and range equal to [0; 1[. Thus any
input word X is written X = .x1x2 · · ·xwI

and denotes the value
∑wI

i=1 2−ixi.
Similarly an output word is written Y = .y1y2 · · · ywO

.

2 The SMSO Approximation Scheme

2.1 General Idea

The main idea behind the Single Multiplication Second Order method (SMSO)
is to consider a piecewise degree 2 polynomial approximation of the function f .
The input word X is thus split into two sub-words A and B of respective sizes
α and β, with α + β = wI (see Figure 1) :

X = A + 2−αB = .a1a2 · · · aαb1b2 · · · bβ .

The input domain is split in 2α intervals selected by A. On each of these
intervals, f is approximated by a second order polynomial:

f(X) = f(A + 2−αB)
≈ K0(A) + K1(A) × 2−αB + K2(A) × 2−2α(B − 1−2−β

2 )2.

Remark : we need the parabolic component to be centered in the interval so
that we can exploit symmetry later on.

We can then split B into two sub-words B0 and B1 of respective sizes β0 and
β1, with β0 + β1 = β (see Figure 1). In other words B = B0 + 2−β0B1. This
gives:

f(X) ≈ K0(A)
+ K1(A) × 2−αB0 + K1(A) × 2−α−β0B1

+ K2(A) × 2−2α(B − 1−2−β

2 )2.
(1)

We decide to tabulate as follows:

– A Table of Initial Values: TIV(A) = K0(A);
– A Table of Slopes: TS(A) = 2−αK1(A);
– Two Tables of Offsets: TO1(A, B1) = 2−α−β0K1(A)×B1 and TO2(A, B) =

2−2αK2(A) × (B − 1−2−β

2 )2.
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wI

α β

A B

A0 B0
α0 β0

β1

β2

A1
α1

A2
α2

B1

B2

Fig. 1. Decomposition of the input word X.

We then have:

f(X) ≈ TIV(A) + TS(A) × B0 + TO1(A, B1) + TO2(A, B)

where there is only one multiplication, the rest being table lookups and additions.
In this scheme so far, the approximation error is only due to the initial

polynomial approximation. Remark, however, that the relative accuracies of the
various terms are different, due to the powers of two in Eq. 1. We may therefore
degrade the accuracy of the most accurate terms (the least significant ones), to
align it on the least accurate terms. This is achieved by reducing the number of
bits addressing the various tables, which will reduce their size:

– The TS is addressed by A0 = .a1a2 · · · aα0 the α0 ≤ α most significant bits
of A.

– The TO1 is addressed by A1 = .a1a2 · · · aα1 the α1 ≤ α most significant bits
of A and B1.

– The TO2 is addressed by A2 = .a1a2 · · · aα2 the α2 ≤ α most significant bits
of A, and B2 = .b1b2 · · · bβ2 the β2 ≤ β most significant bits of B.

Section 3 will quantify this relation between the approximation error and the
various parameters which determine the table and multiplier sizes.

Finally, we get the SMSO approximation formula below, which can be im-
plemented as the architecture depicted Fig. 3:

f(X) ≈ TIV(A) + TS(A0) × B0 + TO1(A1, B1) + TO2(A2, B2)

2.2 Exploiting Symmetry

As remarked by Schulte and Stine in [14] in the case of the multipartite method,
the tables present some symmetry. We have TO1(A1, B1) = 2−α−β0K1(A1)×B1,
which can be rewritten:

TO1(A1, B1) = 2−α−β0K1(A1) × B1

= 2−α−β0

(
K1(A1) × (B1 − 1−2−β1

2 ) + K1(A1) × 1−2−β1

2

)
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TIV(A)

f

values stored
in the TO1

Fig. 2. Example of segment symmetry.

where the term 2−α−β0K1(A1) × 1−2−β1

2 can be added to the value of the TIV.
This allows us to use the segment symmetry as depicted in Fig. 2, saving a bit
in addressing the TO1 at the expense of a few XOR gates needed to reconstruct
the other half of the segment.

The values of TO2 also present symmetry, which allows to divide its size by
two as well. In this case the output of the table should not be XORed, as TO2
holds an even function (see Fig. 3).

2.3 Architecture

An example of SMSO operator architecture is given Fig. 3. All the table lookups
are performed in parallel. One should also notice that two of the three additions
of the adder tree can be performed in parallel to the multiplication. Therefore
the critical path is the TS table lookup, the multiplication and the last addition.

round

xorxor

xor

α β

TO2 TO1
TSTIV

Fig. 3. Architecture of the SMSO operator for α = 4, β = 8, α0 = α = 4, α1 = α2 = 2,
β0 = 5, β1 = 3 and β2 = 3
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An important advantage of this scheme is that the multiplier is kept small and
rectangular due to the splitting of B. This will lead to efficient implementation
on current FPGA hardware with fast carry circuitry (and even more efficient if
block multipliers are available).

The remainder of this article shows how to choose the numerous parameters
introduced here to ensure a given accuracy bound.

3 Optimisation of SMSO Operators

In the following, we want a SMSO architecture to (classically) provide faithful
accuracy: The result returned must be one of the two numbers surrounding the
exact mathematical result, or in other terms, the total error of the scheme should
always be strictly smaller than 2−wO . However all the following is easily adapted
to other error bounds.

The bound on the overall error ε of the SMSO operator is the sum of several
terms:

ε = εpoly + εtab + εrt + εrm + εrf ,

where:

– εpoly is the error due to the polynomial approximation, studied in 3.1;
– εtab is the approximation error due to removing bits from the table inputs

as shown previously; It is studied in 3.2;
– εrt and εrf are rounding errors, when filling the tables, the product and the

final sum; They are studied in 3.3;

In the following, we show how these terms can be computed, depending on the
design parameters. An heuristic for optimising a SMSO operator then consists
in enumerating the parameter space, computing the error for each value of the
parameters, keeping only those which ensure faithful accuracy, and selecting
among them the optimal either in terms of speed or of area.

3.1 Polynomial Coefficients – εpoly

The coefficients K0(A), K1(A) and K2(A) are computed on each of the 2α in-
tervals as a minimax approximation based on the Remez algorithm[11]. This
method provides us with the 3 coefficients along with the value of εpoly. To cut
the exploration of the parameter space, we may remark that this error is obvi-
ously bounded by the second order Taylor approximation error:
εpoly ≤ 1

62−3α−3 maxX∈[0;1[ |f ′′′(X)|

3.2 Reducing Table Input Sizes – εtab

Removing α − αi bits from the input of one table means imposing a constant
table value over an interval of size 2α−αi . As the content of the table is usually
monotonous, the value that minimises the error due to this approximation is the
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mean of the extremal values on this interval, and the error induced is then the
half of the distance between these extremal values, suitably scaled according to
Eq. 1.

The symmetry reduction described in Section 2.2 to halve the size of the
TOis entails no additional approximation error.

3.3 Rounding Considerations – εrt and εrf

Unfortunately, the tables cannot be filled with results rounded to the target pre-
cision: Each table would entail a maximum rounding error of 2−wO−1, exceeding
the total error budget of 2−wO . We therefore fill the TIV and the TOis with a
precision greater than the target precision by g0 bits (guard bits). Thus rounding
errors in filling one table is now 2−wO−g0−1 and can be made as small as desired
by increasing g0. For consistency of the final summation we chose to round the
output of the multiplier to g0 bits as well, by truncating it and adding half a bit
to the value in the TIV before rounding . Thus the total error due to these four
roundings is bounded by 4 × 2−wO−g0−1 = 2−wO−g0+1.

The output of the TS table is not concerned by the previous discussion, and
we may control its rounding error by another number of guard bits g1. This
entails another rounding error that adds up with the summation errors. Finally
we have:

εrt = 2−wO−g0+1 + 2−wO−g1−1 .

The final summation is now also performed on g0 more bits than the target
precision. Rounding the final sum to the target precision now entails a rounding
error up to εrf = 2−wO−1. A classical trick due to Das Sarma and Matula [2]
allows to improve it to εrf = 2−wO−1(1 − 2−g0).

Note that this discussion has added another two parameters g0 and g1 to the
SMSO architecture, but setting g1 = g0 (so that the result of the multiplication
does not need any rounding) gives a formal expression for g0. A trial-and-error
method can be then applied to decrease g0 and g1 to finely tune the operator.

There is an implicit implementation choice in the previous error analysis,
which is that we use an exact, full-precision multiplier. Another option would
be to truncate the multiplier hardware directly. Our choice is obvious when
targetting FPGAs with small multipliers, like the Virtex-II. It also makes sense
in the other cases, as it allows to cleanly express the error as a function of the
parameters. Besides, the expected gain in using a truncated multiplier is less
than half the size of the multiplier, which is itself small compared to the tables
as Section 4 will show. Therefore this choice seems justified a posteriori.

4 Results

4.1 ROM Size, Area, and Delay Estimations

In this section we give estimations of area and critical path delay for varying
precisions (with wI = wO) for the following three functions:
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Fig. 4. Area and delay of some SMSO operators (without using block multipliers).

Table 1. Impact of using the Virtex-II 18 × 18 block multipliers.

Function log(1 + x) sin x

Precision (wI = wO) 16 bits 20 bits 24 bits 16 bits 20 bits 24 bits

Multiplier bit size 8 × 11 8 × 14 14 × 17 8 × 13 8 × 14 14 × 19

not using area (slices) 148 419 981 124 332 671
block multipliers delay (ns) 21 22 27 19 21 25

using area (slices) 102 362 855 71 275 540
block multipliers delay (ns) 18 21 25 19 21 25

– The natural logarithm: log(1 + x) : [0; 1[→ [0; 1[;
– The power of 2: 2x − 1 : [0; 1[→ [0; 1[;
– The sine: sin(π

4 x) : [0; 1[→ [0; 1[.

These estimations were obtained using Xilinx ISE v5.2 for a Virtex-II XC2V-
1000-4 FPGA. We performed synthesis with and without using the small mul-
tipliers embedded in those FPGAs, to compare our results with those of other
published works. Only results for combinatorial operators are detailed, as the
estimations for pipelined circuits present only slight differences.
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Table 2. Compared table size, area and delay of the multiparitite table method [3]
and of the SMSO for the sin x and 2x − 1 functions.

Function sin x 2x − 1
Precision (wI = wO) 8 bits 12 bits 16 bits 20 bits 24 bits 16 bits

Multipartite table size (bits) — — 7808 — 189440 8704
area (slices) 19 76 258 1209 4954 283
delay (ns) 17 18 24 34 43 23

SMSO table size (bits) 280 720 1376 7808 16288 2208
area (slices) 21 63 123 321 648 149
delay (ns) 8 14 19 19 24 19

Fig. 4(a) shows that the combined size of the four tables (TIV, TS and
TOis) grows exponentially with the precision, as expected for a table-based
method. Fig. 4(b) closely resembles Fig. 4(a), which indicates that the adders
and multiplier contribute only by a small amount to the overall area of the
operators. This fact is also underlined by Table 1, which studies the impact
on area and delay of using block multipliers: the difference in area corresponds
roughly to the area of the multiplier implemented in slices.

Fig. 4(c) shows that the delay of the SMSO operators grows linearly with the
precision, as it is dominated by the table lookup delay which is logarithmic in
the size of the tables. For precisions up to 28 bits, the SMSO operators can run
at frequencies higher than 33 MHz. Pipelined designs in 3 to 4 stages have been
successfully tested at 100 MHz. Table 1 shows that using the small multipliers
provided by Virtex-II FPGAs speeds up the whole circuit by 10 to 20%.

As a conclusion, implementing these operators on FPGAs provided with
small multipliers will bring improvements in both area and speed, but perfor-
mance is still very close without embedded multipliers, so the method is also
well-suited to multiplier-less FPGA families.

4.2 Comparison with Previous Works

We first compare our SMSO scheme to the state of the art in multipartite method
[3]. Table 2 shows that, thanks to its 2nd-order approximation, a SMSO operator
is always much smaller than its (first-order) multipartite counterpart. On Virtex
FPGAs, this gain in size also allows our method to outperform the multipartite
method in terms of delay, despite the multiplier in the critical path where the
multipartite scheme have only additions.

We also compare our method to the lookup-multiply units developed by
Mencer et al. in [10]. The results they publish are obtained on XC4000 FPGAs,
which prevents comparing delays. As XC4000 CLBs can be compared to Virtex-II
slices, Table 3 shows that the SMSO operators are much smaller than lookup-
multiply units, which actually seem less efficient than multipartite ones.

Finally, we want to compare the SMSO scheme with the faithful power-
ing computation developed by Piñero et al. in [13], once again implemented on
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Table 3. Area compared to the lookup-multiply method [10] for the log(1+x) function.

Precision (wI = wO) 8 bits 12 bits 16 bits 20 bits 24 bits

Lookup-multiply area (XC4000 CLBs) 80 180 560 2000 8900

SMSO area (Virtex-II slices) 33 76 145 407 949

XC4000 FPGAs. Their method uses a squarer unit and a multiplier to compute
a second-order approximation, which is probably more generally applicable than
what they publish: Their architecture is hand-crafted for powering functions with
a precision of 23 bits. Their area estimation (1130 slices, but it is unclear for
which function) is roughly the same as those of our method (about 1000 slices,
depending on the function), but their critical path is larger, as their operator
performs all the additions after the multiplications. Besides the strong point of
our method here is its flexibility.

5 Conclusion

We have presented a new scheme for elementary function approximation, based
on a piecewise degree 2 minimax approximation involving only one small rect-
angular multiplication. The method is simple and leads to architectures well
suited to modern FPGAs, is suitable for arbitrary differentiable functions and
any precision, and performs better in terms of area and speed than all previously
published methods for hardware function evaluation in the precision range from
12 to 24 bits and over. For smaller precisions, a simple table or the multipartite
method may be more efficient.

We have also developed a simple method to explore the huge parameter space
depicted in Section 3, as exhaustively as possible: maximum error, area and delay
estimations are quickly computed for each possible choice of parameters, and all
the acceptable solutions are sorted according to a user-specified score function.
Eventually, the best solutions are effectively built to choose the optimal one.
This method runs in less than a minute for a precision of 24 bits.

This work will also lead to improvements in our LNS operator library [5].
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Abstract. Elliptic Curve Public Key Cryptosystems (ECPKC) are be-
coming increasingly popular for use in mobile appliances where band-
width and chip area are strongly constrained. For the same level of secu-
rity, ECPKC use much smaller key length than the commonly used RSA.
The underlying operation of affine coordinates elliptic curve point mul-
tiplication requires modular multiplication, division/inversion and ad-
dition/substraction. To avoid the critical division/inversion operation,
other coordinate systems may be chosen, but this implies more oper-
ations and a strong increase in memory requirements. So, in area and
memory constrained devices, affine coordinates should be preferred, es-
pecially over GF(p).
This paper presents a powerful reconfigurable hardware implementa-
tion of the Takagi modular divider algorithm. Resulting 256-bit circuits
achieved a ratio throughput/area improved by at least 900 % of the only
known design in Xilinx Virtex-E technology. Comparison with typical
modular multiplication performance is carried out to suggest the use of
affine coordinates also for speed reason.

1 Introduction

Modular arithmetic plays an important role in cryptographic systems. In mo-
bile appliances, very efficient implementations are needed to meet the cost con-
straints while preserving good computing performances. In this field, modular
multiplication has received great attention through different proposals: Mong-
tomery multiplication, Quisquater algorithm, Brickell method and some others.
The modular inversion problem has also been extensively studied. It can be per-
formed using the well-known Euclid algorithm (or any of the binary variants like
the Montgomery inverse [10,8]), Fermat little theorem or the recently GCD-free
method [6].

The modular division is believed to be slow and has not received a lot of
attention because it can be replaced by a modular inversion followed by a modu-
lar multiplication. Despite their slowness, these operations are needed in several
cases: when creating public-private key pairs for RSA and when deciphering in
an ElGamal cryptosystem. Although, the main bottleneck arises when we talk
about Elliptic Curve Cryptosystems (ECC).
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This paper is structured as follows: section 2 reminds the theoretical bases
of ECC over GF(p) and the different coordinate systems. We introduce the
rewritten algorithm and the reason why it has been chosen in section 3. The main
contribution of this paper lies in section 4 where we present our implementation.
The opportunity of special adders is discussed and a pipelined architecture is
described. Practical results and comparisons with the only known published
design are in section 5. A typical modular division design is also introduced,
suggesting the use of affine coordinates for their memory and area requirements
as much as their computational time. Finally, section 6 concludes the article.

2 Elliptic Curve Operations over GF(p)

An elliptic curve E over GF (p), with p a prime number, is defined as the set of
points (x, y) verifying the reduced Weierstraß equation:

E : f(X, Y ) � Y 2 − X3 − aX − b ≡ 0 mod p

for a, b ∈ GF (p), each choice of these parameters leading to a different curve.
Such a curve is called “non-singular” if its discriminant is different from 0
(this corresponds to three distinct roots). The condition is then rewritten as
4a3 + 27b2 �≡ 0 mod p.

In ECC, the data to be encrypted is represented by a point P on a chosen
curve. The encipherment by the key k is performed by computing Q = P + P +
· · · + P = kP . This operation, called scalar multiplication, is usually achieved
through the “double and add” method (the adaptation of the well-known “square
and multiply” to elliptic curves).

2.1 Point Addition and Doubling in Affine Coordinate

In most cases, the addition of points P = (xP , yP ) and Q = (xQ, yQ) leads to
the resulting point R = (xR, yR) through the following computation:

{
xR = λ2 − xP − xQ mod p
yR = −yP + λ(xP − xR) mod p

, λ =

{ yP −yQ

xP −xQ
mod p if P �= Q

3x2
P +a

2yP
mod p if P = Q

In some cases, exceptions may arise. When we try to add P to its inverse
−P = (xP ,−yP mod p), there is an obvious problem in the computation of λ.
This is theoretically tackled by the definition of the point at infinity O. The
result is defined as P + (−P ) = O ⇔ P + O = −P . This means that O is the
identity element. Another issue is the doubling of P when it lies on the x-axis,
i. e. when its y-coordinate is 0. As might expected, the result is the point at
infinity.

2.2 Using Other Coordinate Systems

In the computation of Q = kP , the “double and add” method requires on average
(m− 1) doubling steps and (m− 1)/2 addition steps according to the Hamming
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weight of k, where m is the bit length of k. For each of these steps, we need
to know the value λ. It can be computed by a modular division or a modular
inversion followed by a modular multiplication. As those operations are believed
to be slow, one may prefer representing points in another coordinate system [3].

Those kinds of systems allow point addition and point doubling with only
multiplications and additions. Inversion is no more intertwined in the elliptic
curve operations, but we still need it to convert the final result back to affine
representation.

Table 1 contains the timings in modified jacobian1 and in affine coordinates,
where M denotes the time for a modular multiplication, S for a squaring and I
for the inversion. I + M can be replaced by a modular division D.

Table 1. Timings of different coordinate systems
Doubling Addition

modified jacobian t(2J m) = 4M + 4S t(J m + J m) = 13M + 6S
affine t(2A) = 2M + 2S + I t(A + A) = 2M + S + I

It is now possible to issue the upper bound for the ratio I/M under which
the affine coordinates are theoretically more useful. We extract it by asking the
average timings for scalar multiplication in affine to be quicker than in jacobian
coordinates.

(m − 1) · t(2J m) + m−1
2 · t(J m + J m) ≥ (m − 1) · t(2A) + m−1

2 · t(A + A)
2 · (4M + 4S) + 13M + 6S ≥ 2 · (2M + 2S + I) + 2M + S + I

8 ≥ I/M

The last result is obtained assuming a square is performed using the same cir-
cuitry as a multiplication. The same kind of criteria may be adapted to the ratio
D/M . In this case, we reach 9 ≥ D/M . Of course, those timing considerations
must be weighted by their area and memory requirements.

3 Algorithm

All the algorithms practically used for modular division are based on the Ex-
tended Binary GCD. The main problem is that a comparison is generally needed
in order to determine the next operations to compute. For this reason, some ef-
forts have been made to speed up the operation [2], but we believe that the most
clever idea is due to the work of Takagi [11], based on the plus-minus algorithm
of Brent and Kung [1]. He reaches the goal of avoiding comparison by replacing
it with the inspection of Least Significant Bit (LSB) from shift registers and
variables.

Takagi’s algorithm is rewritten in algorithm 1. For a m-bit modulus M , it
takes between m + 4 and 2m + 4 clock cycles to perform the loading of the
1 We choose this system since it is the fastest at point doubling.
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operands, the modular division and the last correction step. The operations
between brackets are performed in parallel.

Algorithm 1 Algorithm for modular division computation.
Inputs: 2n−1 < M < 2n ; −M < X, Y < M

Output: Z = X/Y mod M

Step 1:
A ← 0, B ← Y, U ← 0, V ← X, P ← n, D ← 1

Step 1bis:
A ← A + B, B ← M, U ← U + V, V ← 0

Step 2:
while P ≥ 0 do

if [a1a0] = 0 then A ← A/4, U ← MQRTR(U, M)
if D < 2 then

if D = 1 then P ← P − 1
else P ← P − 2

D ← D − 2
elsif a0 = 0 then A ← A/2, U ← MHLV (U, M)

if D < 1 then P ← P − 1
D ← D − 1

else
if ([a1a0] + [b1b0]) mod 4 = 0 then q ← 1 else q ← −1
if D ≥ 0 then A ← (A + qB)/4, U ← MQRTR(U + qV, M)

if D = 0 then P ← P − 1
D ← D − 1

else D ←−D − 1, A←(A+qB)/4, B ←A, U ←MQRTR(U + qV, M), V ←U

Step 3:
U ← 0

Step 4:
if [b1b0] mod 4 = 3 then

if V ≥ 0 then Z ← U − V + M else Z ← U − V

else
if V ≥ 0 then Z ← U + V else Z ← U + V + M

The presented algorithm is slightly different from the original. The initializa-
tion step has been duplicated (step 1bis) and a reset step (step 3) has been
added before the correction step (step 4) to spare resources within the targeted
devices. The extra clock cycles added are negligible with respect to the global
executing time.

Instead of using redundant binary representation like Takagi, we decided to
use classical binary representation. Indeed, we want to focus on the smallest area
requirements and the redundancy roughly twice the amount of hardware needed
in the FPGA. With this choice, the timings of the P and D shift registers used in
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the control part are less critical. So, we decided to replace those registers by small
counters, like suggested in [11]. Their sizes are in log2 (log2 (M)), so the propa-
gation delay is very short. Another fact in aid of counters is that shift registers
with different directions and steps consume a lot of resources on FPGA. Finally,
counters also enable a slight reduction of the algorithm complexity, leading to a
more efficient control structure.

The main feature of this algorithm is the use of P and D counters. The com-
parison between A and B in commonly used algorithms is replaced by D = α − β,
where α and β are values such that 2α and 2β represent the minimums of the
upper bounds of |A| and |B| respectively. This substitution reduces the compar-
ison between A and B in the “while” loop to “|A| > 0”. Instead of investigating
all the bits of A, it is replaced by a counter P with sign detection, indicating
the minimum of the upper bounds of |A| and |B|.

The halving operation MHLV (T, M) of T mod M is performed either by T/2
or (T + M)/2 regarding the parity of T (the LSB). The quartering operation
MQRTR(T, M) of T mod M depends on the value of M mod 4. If it equals 1,
then the operations to be carried out are T/4, (T − M)/4, (T + 2M)/4 or
(T + M)/4, accordingly as T mod M is 0, 1, 2 or 3. If M mod 4 equals 3, the
operations are T/4, (T + M)/4, (T + 2M)/4 or (T − M)/4 with respect to the
value of T mod M , respectively 0, 1, 2 or 3.

It should be finally noticed that, when using binary GCD, a division does
not slow down the computation compared to the inversion, since U or V are not
used in the control part2.

4 Implementation

In this section, we present two different kinds of implementation. We first in-
troduce the basic sequential architecture and the opportunity of flags precom-
putation. After, we present an improvement of this architecture by tackling the
critical path: the carry chain of the adders. We will show that the best com-
promise lies in the use of pipelinening instead of carry conditional and select
adder.

4.1 Basic Division Architecture

We present here the basic sequential architecture. It is naturally broken up in
different distinct parts: the ControlStage, the ABstage, the UVstage and the P,D
counters.

The ControlStage: The main advantage of the algorithm we use lies in the
absence of comparison, serially wired with the main operative part. Fortunately,
this improvement implies only a small complexity increase with the use of P and
D counters. In the main loop, all the flags only depend on parity bits of variables
and on sign of small counters. So, all the flags can be efficiently precomputed,
leading to high working frequency.
2 U is set to 1 when performing an inversion, to X otherwise.
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The ABstage: The ABstage operative part is shown in Fig. 1. It consumes
mainly 3 Logic Elements (LE, half of a slice) on FPGA for each bit of the
modulus. One is used for the two’s complement adder/substractor, another is
used for the shift right selection and the last one is used for the loading and the
swap of registers.

Since the loading step has been duplicated, we can spare one multiplexor,
implemented by one LE per bit length, between the logical shifter and the reg-
ister.
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The UVstage: The UVstage operative part is shown in Fig. 2. This stage
mainly consumes 4 Logic Elements per bit length. Two are used for two’s com-
plement adder/substractor (M is considered constant), one is used for the shift
right selection and the last one is used for the loading and the swap of registers.

We also spare a multiplexor thanks to the duplication of the loading step. The
reset step (step 3) of the U signal enable resource sharing for the last correction
step (step 4). However, we always right shift the input of the U register. The
shifted bit must be saved in one register to provide the final result.

We should notice that the flags g3, g5 and g6 depend on the 2 LSB computed
by the first adder. An efficient solution is to replicate this 2-bit adder to allow
flags precomputation in the control part.

The P and D counters: The P counter is based on an adder and is negative
allowed (Fig. 3). The end criteria can be checked with only the sign bit. The D
counter is also adder based (Fig. 4). We introduced two additional adder which
always compute D−1 and D−2 to compute all the tests needed in the algorithm.
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4.2 Special Adder

ECC need computation over important length modulus (typically 160 bits). Area
constrained modular division designs are adder based, so it is obvious that the
critical path resides in the carry chain of the simple carry-propagate adders.

Modern FPGA are built to efficiently implement the addition operation. High
speed performance is achieved by the use of a dedicated optimized carry chain.
While FPGAs are structured as an array of programmable logic and routing
resources, the carry chain is physically wired and therefore exhibits very low
delays. It can be used without constraining the routing as long as the carry
chain size does not exceed the column height. For this purpose, adders must be
adapted to keep satisfactory speed performance.

This optimized carry chain explains why well known methods like carry-look-
ahead, carry-bypass, carry conditional, carry-select and carry-save are practically
not really attractive on area constrained reconfigurable devices. Of course, some
of them can speed up work frequency, but it is at the cost of a lot of chip area.

Another solution is the pipelining of the addition. It is simply achieved by
inserting register in the carry chain and by properly handling the operands.
This way, almost no additional hardware is consumed. The drawback is the
number of clock cycles needed to fill the pipeline. Nevertheless, this overhead
can be negligible if the number of repeated additions is great with respect to the
number of pipelined stages. These advantages lead us to choose this method for
our improved design.

4.3 Pipelined Division Architecture

In order to speed up the computation, we choose the pipelined architecture. As
said in the previous section, this method requires small area increase and can
lead to interesting results. It can be used because the flags of the control part
are only LSB for the main loop. MSB are only required for the last correction
step. So, the total overhead will be twice the number of pipeline stages added.
This is negligible compared to the number of clock cycles required for the whole
computation.

Number of pipeline stages: The number of pipeline stages must still be
determined. Putting the overhead aside, we cannot cut the adders in a lot of
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small parts. This is due to the behaviour of the algorithm: the two right shifts
impose that the LSB of the next stage must be available for the MSB of the
current stage. Because the computation is achieved in one clock cycle, we must
bring back the LSB asynchronously. This increases the number of Logic Elements
through the path leading to the computation of the carry-out.

This new design will be quite place & route dependent. So, it is not easy
to theoretically determine the best number of pipeline stages. Nevertheless, ap-
proximation can be made to decide after how many bits the carry chain must be
cut. After inspecting Fig. 5 and Fig. 6, the carry chain propagation time must be
shorter than the delay of the U and V operands arrival plus the carry-in arrival
and three serial Logic Element (two for the adders and one for the conditional
shifter).

Add/Sub/Nop

>>1        >>2
R

Cini+1

Cmds iCmds i+1

ShiftCondi+1

Add/Sub/Nop

>>1        >>2
R

Cout i

ShiftCond i

Stage i+1 Stage i

Fig. 5. Typical pipeline organisation
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Fig. 6. Modification of the
2 MSB input of each stage

Architecture: To improve readability, all stage features are not reproduced in
Fig. 5. The main concern is the conveyance of the shifted bits between pipelined
stages. Indeed, the 2 MSB input of each stage (except the last) must be modified
with the circuit shown in Fig. 6. The two LSB adders and the conditional shifter
have been duplicated to avoid the two serial delays of carry-in arrival and sum
return. These two delays appear when we simply take the output from the next
pipeline stage adder. With this negligible increase of logic element, we expect
to only suffer from the operand arrival delay. All these modifications ensure a
faster working design, with only a small increase of hardware and clock cycles.

5 Results

Speed and area comparison of 64, 128, 160 and 256-bit basic and pipelined
designs are presented in table 2. The VHDL synthesis and place & route have
been achieved on Xilinx ISE 6.2.02i. The first device selected is a Xilinx Virtex-E
XCV2000e-6bg560 FPGA (V-E) to guarantee fair comparison with the design [4].
The second is a Xilinx Spartan3 XC3S200-4pq208 (S3) to exhibit performances
over a small and low cost FPGA. The two operands are loaded by two 32 bits
clocked interface and stored in 32-bit shift registers. The result is registered and
then moved in 32-bit shift registers to access the 32-bit clocked output interface.

As explained in section 4.3, the pipelined stages must have a minimal length
to be interesting. We decided to pipeline 32-bits adders. The pipelining leads
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Table 2. FPGA implementation results

Design Area V-E Freq. V-E Thr./Area Area S3 Freq. S3 Thr./Area
(Slices) (MHz) (Kbits/s. (Slices) (MHz) (Kbits/s.

Slices) Slices)

64-bit 420 (2 %) 77 88.8 424 (22 %) 77 88
32-bit ×2 460 (2 %) 83 86.1 461 (23 %) 83 86
128-bit 778 (4 %) 55 34.8 873 (45 %) 48 27

32-bit ×4 842 (4 %) 75 42.8 927 (48 %) 79 41
160-bit 951 (4 %) 45 23.3 1112 (57 %) 44 19.5

32-bit ×5 1022 (5 %) 77 36.3 1180 (61 %) 78 31.8
256-bit 1457 (7 %) 29 9.8 1920 (90 %) 29 7.5

32-bit ×8 1612 (8 %) 77 23 1847 (96 %) 80 20.9

to great improvements, especially for the 256-bit basic design, where the carry
chain length is too big for the selected FPGA column height.

Throughput/area ratio comparison between our best design and the best
design of [4] is given in table 3. To compute the throughput, we consider the
worst case of (2m − 1) clock cycles for their design and (2m + 4) + 2 ps for our
design, where ps is the number of pipeline stages. Unfortunately, they do not
give the 160-bit design results.

Table 3. Performance comparisons

Design Freq Throughput Area Thr./area Improvement
(MHz) (Mbits/s) (Slices) (Kbits/s.

Slices)

64-bit 45 22.7 1212 18.7
Our 64-bit 83 39.6 460 86.1 360 %

128-bit 31 15.6 2215 7
Our 128-bit 75 36 842 42.8 511 %
Our 160-bit 77 37 1022 36.3

256-bit 27 13.53 5846 2.3
Our 256-bit 77 37 1612 23 900 %

As previously said, it is interesting to compare our modular division imple-
mentation with modular multiplication in terms of design performances. We take
the 120-bit architecture presented in [5] for its reasonable area requirements.

To enable fair comparison, we implemented our design over the same Vir-
tex1000. Our 128-bit design exhibits a frequency of 74 Mhz and an area of 852
Slices but requires, in the worst case, two times more clock cycles. So, we can
roughly say that, with a multiplier work frequency of 88.5 Mhz and an area of
603 Slices, we reached a ratio D/M of 2.5. This result is more than three times
as good as the threshold ratio of section 2.2.
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6 Conclusion

A powerful modular division implementation has been presented. It has minimal
hardware requirements and high work frequency. In addition to the accurate
description of our architecture, we discussed the opportunity to use special adder
structures (e.g. carry-save, carry-look-ahead) and exhibit that a pipelined carry-
propagate adder seems to be the best choice for an area constrained FPGA
implementation of the modular division.

We achieved a throughput/area ratio of 23 kbit/(s.Slices) for a 256-bit design.
It represents an improvement by at least 900 % of the only known design in
Xilinx Virtex-E technology. Using our implementation, affine coordinates for
ECC over GF(p) seem to be attractive for their memory and area requirements
but also for speed reason. This suggests the use of our design in Elliptic Curve
cryptoprocessor of embedded devices.
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Abstract. A novel technique is proposed for the management of a two-
dimensional run-time reconfigurable device in order to get true hardware
multitasking. The proposed technique uses a Vertex List Set to keep track of the
available free area, and of the candidate locations to place the arriving tasks.
Each Vertex List describes the contour of each unoccupied area fragment in the
reconfigurable device. Several heuristics are proposed to solve the problem of
selecting one of the vertices to place the task. The heuristic that gives best
results is based on a novel fragmentation metric. This metric estimates for each
alternative location the suitability of the resulting free device area to accept
future incoming tasks. Finally, we show that our approach, with a reasonable
complexity, gives better results, in terms of device fragmentation and
efficiency, than other techniques.

1   Introduction

The increase in size and density of modern reconfigurable hardware (HW), such as
Field-Programmable Gate Arrays (FPGA), together with the appearance of new
operational facilities that are summarized in [1], such as the partial run-time
reconfiguration (RTR) ability, has made possible in recent years to consider true
hardware multitasking. This HW multitasking would be possible not only through
time-multiplexing, as it happens with usual SW multitasking, but through space
multiplexing. It becomes obvious that resources involved in such HW multitasking
should be managed by the same OS that manages SW resources, and that many of the
problems involved should be alike to those of SW multitasking, though some others
would be specific as [2] adequately shows.

A modern HW resource with partial RTR can be viewed as a large two-
dimensional processing area, capable of holding a set of HW tasks. Each task has
been previously compiled to a relocatable HW bitmap with the available compilation
tools, and can be loaded when asked for execution at a free section of the FPGA. Each
HW task can enter or leave the FPGA without affecting the other executing tasks. If
the task needs parameters or generates results, their transmission to or from the FPGA
should be also dealt with.

One of the main problems stated above is the decision of where to locate each
arriving HW task. This decision must be made on-line, and should take into account
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the resultant area fragmentation to favor the insertion of tasks arriving later-on. In
order to make such a decision, some information on the free device area must be kept,
and some selection criteria to choose among available alternatives must be devised.
The complexity of the techniques used to solve these problems must be kept low in
order to be useful.

Next sections will show the main contributions found in the related work and the
limitations we find in their approaches, a detailed description of our own approach to
RTR HW management and some experimental results that show the validity of our
proposal.

2   Related Work

The problems of managing 2D RTR resources, such as allocation, fragmentation or
relocation, have been dealt with recently by several research teams.

Diessel et al. [3] have developed a quad-tree structure to store the information of
the available FPGA area. Such structure can be travelled and updated quite fast, but it
does not guarantee that an adequate place is found, even if there is enough area to
store the task, but split among different branches of the tree. This solution doesn’t
take into account the resultant free area fragmentation to select the position where the
task is mapped to. On the contrary, it deals with fragmentation by proposing several
alternative high-cost defragmentation processes (local repacking and ordered
compaction).

Bazargan et al. [4] deal with the area allocation problem by using a bin-packing
approach and applying some of the classical algorithms for such theoretical problem.
They propose several strategies for on-line 2D bin-packing of the arriving rectangular
tasks. These strategies differ mainly in the way the free area is managed.

One of them keeps track of all the maximum empty rectangles (MER) where an
arriving task could be placed. Such approach guarantees that, if an adequate place
exists, it can be found. But the complexity of the updating algorithm is too high.

A second approach tries to use heuristics in order to reduce the number of
rectangles considered when updating the rectangle list. When a free rectangle is
selected to store the arriving task, the excess area is divided in only two, non-
overlapping, new rectangles. Bazargan offers several criteria to do this splitting, but
does not decide clearly for one of them. Anyway, by selecting some of the possible
rectangles, situations can arise where existing room cannot be used to store a task,
because it is split among several rectangles.

Finally, Walder et al. use in [5] a typical 2D bin-packing First Fit algorithm, and a
Best Fit using a fragmentation formula that is applied to every available location
when looking for a place for an arriving task. Thus each alternative location is
evaluated, and the one generating the FPGA state with the lowest fragmentation is
chosen. This algorithm is time consuming. As an interesting novelty, they consider
non-rectangular tasks, with a hierarchical task model made of one or several
rectangular sub-tasks, whose relative position can be modified (“footprint transform”)
during allocation. No clear results on the benefits of such transformation on the
algorithm’s performance are given, and in later works as [6] and [7] they substitute
such task model by a rectangular one. In these papers they also propose an enhanced
version of Barzagan’s partitioner with the same efficiency but improved placement
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quality. This enhanced method delays the basic vertical/horizontal split decision and
manages overlapping rectangles in a restricted form.

3   Our Approach

Our approach to RTR HW management will keep track of the available free area with
a vertex-list structure, and will decide where the arriving tasks are mapped to by
selecting one of the vertices of the list. Next we will explain our FPGA and task
models, as well as the main features of the HW manager we propose, placing more
emphasis on the vertex-list structure used to manage the available FPGA area and to
make the task allocation decisions.

3.1   FPGA and Task Models

Our partially reconfigurable FPGA model is an homogeneous two dimensional grid
formed by W*H basic RTR blocks, that we will use as “area units” all along. In our
model we suppose that each block, made of a certain number of CLBs, includes all
the interconnection resources needed for routing and data I/O. A task can be made of
an arbitrary number of such RTR blocks. In order to simplify our algorithms, we
suppose that tasks are always rectangular.

The tasks are relocatable and can be inserted at arbitrary positions with different
row and column offsets. The tasks are independent, with no precedence constrains
between them, but there can be real-time constrains that must be satisfied. Each task
is defined by the following tuple of parameters:
    Ti = { wi, hi, t_exi, t_arri, t_maxi } ,  where:

• wi is the task width,
• hi is the task height,
• t_exi is the task execution time,
• t_arri  is the task arrival time,
• t_maxi is the maximum time for the task to finish execution. It must be

satisfied that  t_arri + t_exi < t_maxi.

3.2   HW Manager Characteristics

Two main goals were set for our HW management algorithm: reduced execution time,
that is, small overhead, and minimal FPGA fragmentation.

As fig. 1 shows, the HW manager is made of three main components: the
Scheduler, the Allocator, and the Area Manager, and uses three important data
structures:

• A Running Task List, L, where the information on the tasks currently
running is stored.

• A Waiting Task Queue, Q where the arriving tasks are stored when there is
not enough room for an immediate allocation.
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• A Vertex List Set, VLS, that describes all the available FPGA free space.
Each component of VLS is a Vertex List VLi describing an independent
fragment of the FPGA free space, or “hole”.

New Tasks

FPGA

t3 t5 tj

Running task list

Waiting task queue

t1 t2 tnt4

Vertex List

Scheduler

Allocator

Area 
Manager

Q

L

VL1

Fig. 1. HW manager structure

The HW manager operates as follows: When a new task arrives, the Scheduler
picks it up and calls the Allocator to check whether a feasible position exists where
the task could be mapped to. The Allocator consults the VLS to perform this
checking.

When a feasible task insertion at a given candidate vertex is selected, the Allocator
calls the Area Manager to update the FPGA free area description with the newly
inserted task and also inserts this task in the list L. If the Allocator can not find a
feasible insertion vertex in any VLi, then the task goes to the waiting task queue, Q.

When the Scheduler detects that a task finishes execution, extracts this task from L
and calls the Area Manager to update VLS. If the freed area is adjacent to an already
existing hole, the corresponding VLi is updated accordingly. If not, a new VLj is
created for the new hole. Section 3.3 will explain the possible situations.

Every time a task finishes execution and there is a free area increment, the
Scheduler tries to insert as many tasks of Q as possible. The queue Q is sorted
according to the timeout value of each task, computed as t_maxi - t_exi. Therefore
when a task extraction happens, the Scheduler first tries to place the task which is
closest to timeout. If timeout happens for a task (current time becomes greater that
t_maxi -t_exi), the task should be rejected.

3.3   Vertex List Set Structure and Management

The problem of allocating the HW tasks inside the 2D FPGA is alike to the classical
2D bin-packing problem, consisting of packing rectangles inside a rectangular bin.
This theoretical problem has been deeply studied and generic solutions with First Fit
(FF) and Best Fit (BF) approaches can be found in [8].
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As fig. 2 shows, the VLS structure is a geometrical description of the whole FPGA
free area perimeter. This figure shows an example VLS with a single VL for the
unique hole available. Some of the vertices are marked as valid candidates for task
placement while others are not. During a task insertion process, the allocation
algorithm travels clockwise each VLi in VLS and looks for a feasible task insertion at
all the vertex marked as candidates, until the VLS is finished. Each VLi contains all
the candidate vertex to locate the task inside hole i, with Bottom-Left (BL), Top-Right
(TR), Bottom-Right (BR) or Top-Left (TL) approaches.

t2 t1

t4
t3

FPGA status
FPGA description
with a Vertex list

BL vertex
candidates

TR vertex
candidate

Vertex List
beginning

TL vertex
candidate

BR vertex
candidate

Fig. 2. Example FPGA status and associated vertex list

To perform the feasibility checking on each candidate vertex, the Allocator looks
for intersections between the VL edges (formed by successive pairs of VL vertices)
and the task edges. When the Allocator detects an edge intersection, it rejects the
candidate vertex and continues searching the VL, looking for the next candidate.

The main aspects of the vertex list management are the task insertion and
extraction processes.

For task insertion, the Allocator passes the candidate vertex and the task data to the
Area Manager to update the hole shape by modifying the corresponding VLi. The
Area Manager shifts then some of the already existing vertices, and creates new
vertices if necessary.

When a task finishes execution, the Scheduler extracts it from L and the VLS is
updated. Several situations can arise then, depending on the number of holes the
leaving task is adjacent to, that must be dealt with separately. Other specific problems
can appear when merging several holes into a single one, or when integrating an
isolated occupied fragment (and “island”) into the perimeter. A more detailed
description of all the Vertex List Set management aspects can be found in [9].

4   Heuristics for Location Selection

Once our basic management algorithm and VLS structure have been explained, the
problem of selecting a given vertex among all the feasible candidates to locate the
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task must be faced. To make this choice, a simple approach can be used based on a
First-Fit criteria as it can be found in [9]. A more interesting alternative, though, is a
Best-Fit approach that tries to find the best location according to a given criterion. We
have developed two different heuristics based on adjacency and fragmentation
criteria, that are shown next. With this new alternative, each VLi is traveled
completely and a value for each Candidate Vertex is computed according to the
selected heuristic. Finally, the task is allocated in the most suitable Candidate Vertex.

4.1   Adjacency-Based Heuristic

This heuristic inserts the task on the vertex position where the arriving task achieves
the higher contact level between the task edges and the envelope defined by the VLi.
This adjacency is computed in terms of RTR block length units.

a) 1º Candidate- BL

Adjacency= 7

New Task 4*5 VertexList

b) 2º Candidate- BL

Adjacency= 8
c) 3º Candidate- TL

Adjacency= 9

d) 4º Candidate- TR

Adjacency= 12

e) 5º Candidate- BR

Adjacency= 9

Fig. 3. Candidate locations in adjacency-based heuristic

Figure 3 shows a simple example to illustrate this heuristic. The FPGA status is
shown on top, with two currently running tasks placed at the bottom and the
corresponding VL. When a new task of 4*5 basic cells arrives, this approach
computes the adjacency value for each feasible candidate position. Therefore a BF
algorithm using the adjacency criteria would place the task at the fourth candidate.

4.2   Fragmentation-Based Heuristic

This heuristic estimates the fragmentation produced in the FPGA free area for each
feasible candidate vertex, and finally inserts the task on the vertex position where a
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lower fragmentation level is produced. The fragmentation level is estimated with the
following metric:

F = 1  - Πi  [ (4/Vi) * (Ai/AF)] (1)

Where the term between brackets represents a kind of “suitability” for a given hole
i, with area Ai and Vi vertices:

• (4/Vi) represents the suitability of the shape of the hole i to accommodate
rectangular tasks. Notice that any hole with four vertices has the best
suitability.

• (Ai/AF) represents the relative hole normalized area. AF stands for the whole
free area in the FPGA. That is AF =  Ai.

This fragmentation metric penalizes the proliferation of holes in the FPGA, as well
as the task placements that generate holes with complex shapes and small sizes.

It is important to notice that the algorithm complexity estimation must cover both
the task insertion/extraction method and the updating of the data structure that reflects
the FPGA status. As a general rule, the simpler the task insertion method is, the more
complex is the data structure update. Taking this into account, the global complexity
of our algorithm  is of O(N2),  with N the number of running tasks in the FPGA.

New Task 4*4 VertexList

a) Candidate- TL

Fragmentation= 0,5
b) Candidate-TR

Fragmentation = 0,93

c) Candidate- BR

Fragmentation = 0,5

d) Candidate- BL

Fragmentation = 0,55

Fig. 4. Candidate locations in fragmentation based heuristic

Figure 4 shows an example of this heuristic, with the FPGA status shown on the
top. When a new task of 4*4 basic cells arrives to the FPGA, the fragmentation level
is calculated for all the feasible locations. The A and C candidates produce the lowest
fragmentation of the resultant free area, so one of them would be chosen by this
heuristic for the task insertion.
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5   Experimental Results

To evaluate the quality of our approaches, we have made experiments using four
different algorithms for area management:

a. Classical FF  with BL heuristic(FF_BL). When a new task arrives to the
FPGA, it performs an exhaustive search, from left to right and from bottom
to top, in order to find a feasible location for the arriving task.

b. Vertex List with FF (VL_FF). It uses the Vertex List structure presented in
3.3 and places the arriving  task at the first feasible location.

c. Vertex List with BF-Adjacency heuristic (BF_ADJ).
d. Vertex List with BF-Fragmentation heuristic (BF_FRAG).

An example of how these four different algorithms process a new task by selecting
different feasible locations is shown in figure 5. Additionally, the fragmentation
metric is used to characterize the quality of the placements made by these algorithms.
Notice that the classical FF shown in 5A can consider successful locations inside the
free area perimeter, but not included in our corresponding VL. In this example, the BF
with the fragmentation heuristic produces the lowest fragmentation level.

a) FF_BL
Fragmentation=0,95

b) VL_FF
Fragmentation=0,75

c) BF_ADJ
Fragmentation=0,98

d) BF_FRAG
Fragmentation=0,71

New Task 5*3

VertexList

Fig. 5. Candidate locations for different management algorithms

These four algorithms, developed in C++, have been tested with an FPGA of
100*100 basic blocks, and different data sets of 100 tasks each that have been
randomly generated with a task size range and ratio, similar to others found in many
multitasking environments. These data sets have been classified in four classes,
depending on the task size ranges, maximum waiting times, and arrival frequencies.
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Table 1. Data set classes

Data
Sets

Min. task
area

Max.
task area

Waiting
time

Data Set features

A1, A2 5*5 55*55 1 to 5 High Critical - Medium size

B1, B2 10*10 60*60 1 to 10 Critical - Medium size

C1, C2 15*15 75*75 11 to 21 Low Critical Big - Med size

D1, D2 10*10 80*80 21 to 31 No Critical - Big size

We have used three different parameters to evaluate the results obtained. First, the
computing “volume” rejected by the management algorithms for each data set. This
volume represents all the tasks that were rejected because the manager was not able to
find a proper location in time to meet the task time constraint. For each task, the
volume is the product of the task area and its execution time. As figure 6 shows, the
BF algorithms achieve better results for all the data sets, especially the version with
fragmentation heuristic, that for most data sets is able to allocate all the tasks in time.
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FF_BL
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%

Fig. 6. Computation volume rejected  (%)

 Fig.7. Average FPGA occupation level and algorithm execution times

The other parameters shown in fig 7 are the average FPGA occupation maintained
for each set, and the time used by each algorithm to process the different data sets. As
before, BF algorithm with fragmentation heuristic gives better results. It gets better
FPGA occupation levels for most examples, at the cost of a minimal computing

0

10

20

30

40

50

60

70

80

90

A1 A2 B1 B2 C1 C2 D1 D2

%

0

500

1000

1500

2000

2500

3000

A1 A2 B1 B2 C1 C2 D1 D2

ms



250 J. Tabero et al.

overhead, compared with the other algorithms. Thus, it becomes clear that it is worthy
to use a  fragmentation-based heuristic to decide where the tasks must be placed.

6   Conclusions

We  have  presented a new approach to HW multitasking, with an area manager that
uses a novel approach to task insertion based on a vertex-list structure. Several
heuristics for selecting task locations have been presented, and the heuristic based on
a new fragmentation metric has clearly shown a better behavior.

As an adequate management of the fragmentation problem has revealed itself
crucial, among our future work we are considering the incorporation of
defragmentation strategies for exceptional situations, and of architectural
modifications in order to speed up the defragmentation processes.

Acknowledgements. This work has been supported by Spanish Government research
grant TIC2002-00160.
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Abstract. Hyperreconfigurable architectures adapt their reconfiguration abilities
during run time in order to achieve fast dynamic reconfiguration. Models for such
architectures have been proposed that change their ability for reconfiguration dur-
ing hyperreconfiguration steps and in ordinary reconfiguration steps reconfigure
the actual contexts for a computation within the limits that have been set by the last
hyperreconfiguration step. In this paper we study algorithmic aspects of how to
optimally decide what hyperreconfiguration steps should be done during a compu-
tation in order to minimize the total time necessary for hyperreconfiguration and
ordinary reconfiguration. It is shown that the general problem is NP-hard but fast
polynomial time algorithms are given to solve this problem on different types of
hyperreconfigurable architectures. These include newly introduced architectures
that use a cache to store hypercontexts. We define an example hyperreconfigurable
architecture and illustrate the introduced concepts for three application problems.

1 Introduction

The increasingly higher integration and flexibility of dynamically reconfigurable hard-
ware lead to a large amount of information which has to be transferred onto the hardware
for reconfiguration to define the new state of the system. This large amount of data trans-
fer makes run time reconfigurations time critical operations, especially, for computations
which exploit the full capacity of dynamically reconfigurable architectures by frequent
reconfigurations. Different approaches have been proposed in the literature to cope with
this problem, e.g., compression methods for the stream of reconfiguration bits ([4,6]),
multi-context architectures [1,12]), self-reconfigurability ([8,15,17]) and hyperreconfig-
uration ([9]) which means that the reconfiguration potential of an architecture itself is
reconfigurable.

In this paper we study algorithmic aspects of single task hyperreconfigurable ar-
chitectures as they have been proposed in [9] (algorithmic aspects of multi-task hyper-
reconfigurable architectures are studied in [10]). Such architectures use two types of
reconfiguration steps: i) reconfiguration steps where the reconfiguration potential of the
architecture is defined ii) standard reconfiguration steps which are used to reconfigure
the actual contexts which are used by the algorithm. The first type of reconfiguration
steps are called hyperreconfiguration steps. Moreover, we extend hyperreconfigurable
architectures by introducing a cache for storing hypercontexts.
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c© Springer-Verlag Berlin Heidelberg 2004
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A central problem that emerges on hyperreconfigurable architectures is to determine
when hyperreconfiguration steps should be taken and how the reconfiguration potential
should be defined in these steps in order to minimize the total time necessary for (hy-
per)reconfiguration of a computation. We call this problem Partition into Hypercontexts
(PHC) problem and show that it is NP-hard. We also describe polynomial time algo-
rithms for several variants of PHC on the so called Switch model of hyperreconfigurable
architectures ([9]). Unfortunately, it is also shown that the introduction of a cache for
hypercontexts makes the PHC problem NP-hard even for the Switch model. To illustrate
the ideas in this paper we present an example for the PHC problem on the Switch model.
An optimal solution for the PHC problem is provided when the example architecture has
no cache and a heuristic solution when a cache for hypercontexts is used.

The paper is organized as follows. In the next Section 2 we describe hyperrecon-
figurable architectures and introduce the Partition into Hypercontexts (PHC) problem.
In Section 4 we discuss polynomial time solvable cases of the PHC problem. A vari-
ant of the PHC problem with changeover costs is studied in Section 5. In section 6 we
introduce hyperreconfigurable architectures with a cache for hypercontexts and study
PHC for these architectures. Experimental results for a test architecture are presented in
Section 7. The paper ends with a conclusion in Section 8.

2 The Partition into Hypercontexts Problem

Hyperreconfigurable architectures allow to alter the reconfiguration potential during run
time and use two types of reconfiguration steps ([9]). The ordinary reconfiguration steps
are used to actually define a new configuration of the system. The actual state of the
system that can be changed by reconfiguration is called the context of a computation.
Hyperreconfiguration steps are used for defining the actual reconfiguration potential
of the architecture that is activated for reconfiguration in the ordinary reconfiguration
steps. Thus, a hyperreconfiguration step defines the set of contexts that can potentially be
reconfigured in (ordinary) reconfiguration steps. Such a set of possible contexts is called
a hypercontext. A reconfiguration into a new context might be dependent on external and
internal parameters of the computation and can be characterized by the set of all possible
contexts that it defines depending on the data. Hence, a reconfiguration can in general
only be executed during run time when the machine is in a hypercontext that contains
this set of possible contexts. A set of possible contexts is called a context requirement
and a hypercontexts that contains it satisfies the corresponding context requirement. It is
assumed that a reconfiguration step requires reconfiguration information for all activated
resources (even when the information is that an activated resource is not used in the
corresponding context). Formal models for hyperreconfigurable architectures where the
cost (e.g., the time or the amount of bits necessary to be loaded onto the architecture)
of a reconfiguration step depends on the actual hypercontext have been given in [9] and
are described in the following.

Let C be the set of possible context requirements for a reconfigurable machine and
C = c1 . . . cm, ci ∈ C be the sequence of context requirements that characterizes an
algorithm/computation. A hypercontext is a state of the machine which is characterized
by the subset of C context requirements that are satisfied when the machine is in this
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state.At any time exactly one hypercontext is realized on the machine. LetH be the set of
possible hypercontexts. For a hypercontext h ∈ H let h(C) ⊂ C be the subset of context
requirements that are satisfied by h. The set h(C) is called the context set of h. For a
sequence c1 . . . ck of context requirements and a hypercontext h let c1 . . . ck ⊂ h(C)
denote the fact that for each context requirement ci, i ∈ [1 : k] ci ∈ h(C) holds. In order
to change the machine’s current hypercontext a hyperreconfiguration step is necessary.
For each hypercontext h ∈ H two cost measures are defined: i) init(h) is the cost
of performing a hyperreconfiguration that brings the machine into hypercontext h ii)
cost(h) denotes the cost of an ordinary reconfiguration step when the machine is in
hypercontext h. Then a computation is characterized by a partition of C into substrings
S1, . . . , Sr (i.e. C = S1 . . . Sr) and hypercontexts h1, . . . , hr, r ≥ 1 such that Si ⊂
hi(C) and

∑r
i=1(init(hi)+cost(hi)·|Si|) are the costs where |Si| is the length of Si, i.e.,

the number of context requirements in Si. When the algorithm/computation is executed
the machine performs the following reconfiguration operations: h1S1 . . . hrSr where Si

stands for a sequence of |Si| reconfigurations which use only those parts of the machine
which are available within the hypercontext hi. It is assumed that a hyperreconfiguration
is always performed before the first reconfiguration step.

An important problem that emerges for a hyperreconfigurable machine and a given
algorithm (i.e. a sequence of context requirements) is to define when hyperreconfigura-
tions are done and how corresponding hypercontexts are defined such that the context
requirements of the algorithm are satisfied and the total costs for the hyperreconfiguration
steps and the ordinary reconfiguration steps are minimized. Formally we define,

Partition into Hypercontexts (PHC) problem : Given a hyperreconfigurable machine
(as described above) and a sequence C = c1 . . . cm of context requirements. Find a par-
tition of C into substrings S1, . . . , Sr (i.e. C = S1 . . . Sr) and hypercontexts h1, . . . , hr,
r ≥ 1 swith Si ⊂ hi(C) and minimal total (hyper)reconfiguration.

Two variants of the model for hyperreconfigurable architectures have been introduced
in [9]. The DAG model is for coarse grained reconfigurable machines where different
reconfigurable submachines (hypercontexts) can be defined that can be ordered with
respect to their computational power (this model is not considered in this paper due to
space limitations). The second variant called Switch model is for fine grained machines
where a set of small (similar) reconfigurable units (also called switches) exists. The
reconfigurable machine that is available during a hypercontext is defined by the subset
of available units. For reconfiguration the state of each available switch has to be defined.
Thus the cost for reconfiguration is the number of available units plus some overhead
cost. Formally, let X = {x1, . . . , xn} be a set of switches and define C = H = 2X , i.e.,
the set of possible context requirements C and the set of possible hypercontexts H equal
the set of all subsets of X . For context x ∈ X the relation x ∈ h(C) holds, when x ⊂ h.
Let cost(h) = |h|, where |h| is the size of h, i.e., the number of switches available in
h. Let init(h) = n for h ∈ H, which reflects the fact that for each switch it has to
be defined during hyperreconfiguration whether it is available in the new hypercontext.
A computation is characterized by a partition of C into substrings S1, . . . , Sr, r ≥ 1
(i.e. C = S1 . . . Sr) and hypercontexts h1, . . . , hr such that Si ⊂ hi(C) and the total
(hyper)reconfiguration costs are r · n +

∑r
i=1 |hi| · |Si|.
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PHC-Switch problem: Given a hyperreconfigurable machine in the Switch model
with the set of switches X = {x1, . . . , xn} and a sequence of context requirements C =
c1 . . . cm. Find a partition of C into substrings S1, . . . , Sr, r ≥ 1 (i.e. C = S1 . . . Sr)
and hypercontexts h1, . . . , hr such that Si ⊂ hi(C) and the total (hyper)reconfiguration
costs are minimal. Note that for the PHC-Switch problem there exist 2n hypercontexts
but this number is not part of the size of the problem instance which is n + m.

3 NP-Hardness

In this section we show that the general PHC problem is NP-hard which means it is
unlikely that the problem can be solved in polynomial time.

Theorem 1. The PHC problem is NP-complete.

We only give the proof idea. For a proof one can encode an instance of an NP-hard
problem, say 3-SAT, in a sequence of contexts C. Then a cost function and a set of
hypercontexts can be defined such that there exists a cheap partition into hypercontexts
of C if and only if the partition consists of a single hypercontext and the contexts in C
encode an instance of 3-SAT that is solvable such that there exists no partition of C into
substrings which can be covered by hypercontexts in a cheap way.

4 Polynomial Time Algorithm for PHC-Switch

In this section we describe a dynamic programming solution for the PHC-Switch prob-
lem. The algorithm computes a table M = (Mk,j)k∈[1:m],j∈[k:m] where Mk,j are the
minimal costs for the prefix of length j of the sequence of context requirements c1 . . . cm

when using k hypercontexts. The optimal solution for PHC-Switch can then be derived
from this matrix. This algorithm is designed such that each row of the matrix can be
determined in time O(n · m) so that the total run time is O(n · m2).

In the following let hij be a cheapest hypercontext that satisfies the contexts require-
ments ci, . . . , cj . First, we need some facts and definitions. It is not hard to show for
each k ∈ [1 : m]: i) the value of Mk,p is monotone decreasing in p, ii) for j ∈ [k : m]
the value of cost(hi,j) is monotone decreasing in i. Let j ∈ [k : m]. It follows from
the stated facts that there exists a partition T1, . . . , Th of the sequence of context re-
quirements ck . . . cj such that ck . . . cj = T1 . . . Th and for each string of contexts Ts,
s ∈ [1 : h] holds: For all contexts ct ∈ Ts the hypercontexts ht,j and therefor the costs
cost(ht,j) are the same. Recall, that ht,j for the PHC-Switch problem is defined as the
hypercontext that consists of all switches that are element of at least one of the context
requirements ct, . . . , cj , i.e., ht,j =

⋃j
i=t ci. We call the partition T1, . . . , Th the equal

cost partition of [k : j]. The corresponding intervals of indices of the contexts the equal
cost intervals.

Let [s : t] be an equal cost interval. For index x ∈ [s : t] the values δ ∈ [1 : n]
are determined for which cMk,x−1 + δ · (t − (x − 1)) = min{Mk,y−1 + δ · (t − (y−
1)) | y ∈ [s : t]} holds. Clearly, for each index x ∈ [s : t] the corresponding δ values
form a subinterval of [1 : n]. This interval is called the minimum cost interval of index
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x (within the equal cost interval [s : t]) and is denoted by Ix. It is not hard to show that
Is, . . . , It is a partition of [1 : n] where all elements in Ii are smaller than all elements
in Ii+1 for i ∈ [s : t − 1].

In the following we describe the computation of a single matrix element in the main
step of the algorithm. We assume that all elements in row 1 of Mk,j and all elements
Mk,k = k · w +

∑k
i=1 |ci|, k ∈ [1 : m] have been computed during initialization. It is

enough to consider the computation of an element Mk,j+1 for k > 1 and j ∈ [1 : m−1]
assuming that elements in row k − 1 and element Mk,j have already been computed.

In order to search efficiently for possible good places to introduce the kth hyper-
reconfiguration we introduce a pointer structure over parts of the sequence of context
requirements c1 . . . cm. First we describe the pointer structure over the sequence ck . . . cj

for the computation of Mk,j and then show how it can be extended to a pointer structure
over the sequence ck . . . cj+1 for the computation of Mk,j+1.

The first context requirements in each of the sequences of context requirements
Th, . . . , T1 are linked by so called equal cost pointers, i.e. there is a pointer to the first
context requirement in Th, from there to the first context requirement in Th−1 and so
forth. Moreover, within each equal cost interval the indices x with a minimal cost interval
that is empty or contains only values that are smaller than the actual costs cost(hx,j+1)
are linked in order of increasing value by so called minimum cost pointers. In addition,
there is a pointer from the first context requirement of the interval to the last useful index
in the interval. This pointer is called the end pointer of the equal cost interval. All indices
with an equal cost interval that are linked by minimal cost pointers are called useful.
All other indices are called useless and will be marked as useless by the algorithm. The
following two facts which are not hard to show are used for run time analysis and to
show the correctness of the algorithm (omitted due to space limitations).

Fact 1: It is easy to obtain from the equal cost partition T1, . . . , Th of [k : j] and its
corresponding pointers the equal cost partition U1 . . . Ug of ck . . . cj+1 of [k : j +1] and
the corresponding pointers in time O(n).

To see that this is true observe that each string in U1, . . . , Ug can be obtained by
merging (or copying) neighbored strings from T1, . . . , Th and Ug contains in addition
the context requirement cj+1.

Fact 2: Consider an element Ts of the equal cost partition T1, . . . , Th of [k : j]. Let
cx (cy) be the context in Ts (respectively from the element of the equal cost partition of
[k : j + 1] that contains Ts) for which Mk,x−1 + cost(hx,j) (respectively Mk,y−1 +
cost(hy,j+1)) is minimal. Then it follows that x ≤ y.

To compute Mk,j+1 the algorithm performs the following steps:

i) Extend the equal cost partition of [k : j] by appending the (preliminary) equal cost
interval cj+1 and let [1 : n] be the (preliminary) minimal cost interval for j + 1.

ii) Compute the equal cost partition of [k : j + 1] from the extended equal cost
partition of [k : j] by merging neighbored intervals when they have the same cost with
respect to j + 1.

iii) For each index within a merged interval the new equal cost interval is determined
together with its minimal cost pointers and its end pointer. During this process all indices
that have become useless are marked.
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Clearly step (i) can be done in time O(1). The determination of the intervals that
have the same costs in step (ii) is done in time O(n) by following pointers that connect
the intervals. To determine the time for step (iii) consider an equal cost interval [s0 : sh],
k ≤ s1 ≤ sh ≤ j + 1 that was merged from h ≤ n old intervals [s0 : s1], [s1 + 1 :
s2], . . . [sh−1 + 1 : sh]. We now show that the computation of new pointers and the
marking of useless indices takes time O(h+q) where q is the number of marked indices.

a) For each of the h intervals consider the minimum cost interval of the index to which
the first minimum cost pointer points. If the minimum cost interval does not contain a
value that is at least as large as cost(hs,j+1) then the index is marked as useless and
the first pointer is merged with the next pointer. This process proceeds until every first
minimum cost pointer points to a useful index.

b) Now it remains to update the minimum cost intervals by selecting for each cost
value only the best index from the h merged intervals. This can be done in a left to
right manner starting with the smaller cost values. Thereby always comparing the cor-
responding minimum cost intervals of indices between two neighbored of the h merged
intervals, say [si−1 + 1 : si] and [si + 1 : si+1], i ∈ [1 : h − 1]. For ease of description
we assume here that all values in one minimal cost interval are better than all values
in the other interval. If this is not the case both minimum cost intervals are split so
that each contains only the values for which it is better. Observe that the split value
can be computed in constant time. When the minimum cost interval in the left interval
[si−1 + 1 : si] is better the corresponding index in the right interval is marked useless
and the next minimum cost intervals are compared. When the minimum cost interval in
the right interval [si + 1 : si+1] is better the index in the left interval is marked useless.
Then the minimum cost interval in the old right interval (now the new left interval) is
compared with the corresponding minimum cost interval of its right neighbor interval
[si+1 + 1 : si+2]. During the search for the corresponding minimum cost interval all
indices that are passed are marked useless. The process stops when the best minimum
cost interval with value n is found. During the search a pointer is set from the rightmost
useful index of an interval to the first useful index in its right neighbor. Thereby it might
be necessary to jump over intervals that have no useful index left. The end pointer of the
first interval is set to point to the last useful index of the merged intervals.

Since the total number of intervals in the equal cost partition for [k : j + 1] is at
most n minus the number of merged intervals the time to compute Mk,j+1 is at most
O(n + q) where q is the total number of indices that are marked useless. Since at most
m − k indices exist in row k of matrix M it follows that the computation sum of all
steps (iii) for computing the elements in this row is O(n · m + m).

Theorem 2. The PHC-Switch problem can be solved in time O(n · m2).

5 PHC with Changeover Costs

In this section we study a variant of the PHC problem where the cost for a hyperreconfig-
uration depends not only on the new hypercontext but also on its preceding hypercontext.
Parts of the hyperreconfiguration costs can then be considered as changeover costs and
therefore we call this problem the PHC problem with changeover costs. This problem



The Partition into Hypercontexts Problem 257

is used to model architectures where during hyperreconfiguration it is not necessary to
specify the new hypercontext from scratch but where it is possible to define the new
hypercontext through its difference to the old hypercontext. In the following we con-
sider the problem only for the Switch-Model. For this problem the changeover costs
between two hypercontexts are defined as the number of switches for which the state
has to be changed for the new hypercontext (i.e., the state is changed from available to
not available or vice versa). Formally, the problem can be stated as follows.

PHC-Switch problem with changeover costs: Given an instance of the PHC-Switch
problem, where init(h) = w for h ∈ H, w > 0, the cost function changeover on
H×H is defined by changeover(h1, h2) := |h1�h2| where � denotes the symmetric
difference, and an initial hypercontext h0 ∈ H. Find a partition of C into substrings
S1, . . . , Sr, r ≥ 1 (i.e. C = S1 . . . Sr) and hypercontexts h1, . . . , hr such that Si ⊂
hi(C) and r · w +

∑r
i=1(|hi � hi+1| + |hi| · |Si|) is minimized.

The next result shows that PHC-Switch with changeover costs is polynomially solv-
able (the algorithm is too involved for the available space and omitted).

Theorem 3. The PHC-Switch problem with changeover costs can be solved in time
O(m4 · n).

6 Caches for Hypercontext and PHC

Multi-context devices allow to store the reconfiguration data that are necessary to specify
a set of contexts. Such context caching on the device can lead to a significant speedup
compared to single context devices where the reconfiguration bits have to be loaded
onto the device from a host computer for every reconfiguration. In this section we
introduce multi-hypercontext hyperreconfigurable architectures, which have a cache for
hypercontexts so that they can switch between hypercontexts very rapidly. The concept
of reconfigurable devices with context switching has been introduced a decade ago
(e.g. the dynamically configurable gate array (DPGA) [1] or WASMII [12]). In [14] the
reconfigurable computing module board (RCM) has been investigated which contains
two context-switching FPGAs, called CSRC, where the context switching device can
store four contexts.

A typical cache problem for many reconfigurable architectures is that the sequence
of contexts for a computation is known in advance and the problem is then to find the
best replacement strategies for the contexts that are stored in the cache. On a run time
reconfigurable machine the problem is that the actual contexts might not be known in
advance because they can depend on the actual results of a computation. But what might
be known in advance are general requirements on the contexts, e.g. whether few or many
routing resources are needed. The actual context, e.g. the exact routing, is then defined at
a reconfiguration step. Therefore, it seems a promising concept for hyperreconfigurable
architectures to introduce a cache for storing hypercontexts.

What makes the problem of using a cache for hypercontexts particularly interesting
on a hyperreconfigurable machine is that different sequences of hypercontexts are possi-
ble which can satisfy the sequence of context requirements of a computation. Hence, the
algorithm that computes the best sequence of hypercontexts should take the use of the
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cache into account. In general, it can be advantageous to use fewer but more comprehen-
sive hypercontexts in order to increase the chances that a hypercontext which is to be used
already exists in the cache and can therefore be loaded very fast. Thus, there is a trade-
off between the increasing reconfiguration costs when fewer but more comprehensive
hypercontexts are used and the shrinking costs for loading these hyperreconfigurations.

Here we consider a hyperreconfigurable machine with a cache for hypercontexts that
can store a fixed maximal number of hypercontexts. It is assumed that a hypercontext
has to be loaded from the host only when the hypercontext is not stored in the cache.
Hence, the cost for loading a hypercontext h depends on whether it is in the cache or not.
The value of init(h) is smaller when the hypercontext is in the cache. For a machine
with cache we define the PHC-Switch problem as follows.

PHC-Switch problem (for hyperreconfigurable machines with a cache for hypercon-
texts): Given a cache capacity 2n, a set of switches X = {x1, . . . , xn}, a set of context
requirements C and a set of hypercontexts H defined as C = H = 2X ,i.e., C and H equal
the set of all subsets of X . For a given sequence of context requirements C = c1 . . . cm

find a partition of C into substrings S1, . . . , Sr, r ≥ 1 (i.e. C = S1 . . . Sr) and hy-
percontexts h1, . . . , hr such that Si ⊂ hi(C) and r1 · n + r2 · c +

∑r
i=1 |hi| · |Si| is

minimized where r2 is the number of hypercontexts that can be loaded from the cache,
r2 := r − r1, and c the cost to load a hypercontext from the cache.

We can show the following theorem by a reduction from 3-SAT (the proof is some-
what technical and therefore omitted).

Theorem 4. The PHC-Switch problem is NP-hard on a hyperreconfigurable machine
with a cache for hypercontexts.

7 Experiments and Results

We define a Simple HYperReconfigurable Architecture (SHyRA) as an example of a
minimalistic model of a rapidly reconfiguring machine in order to illustrate our concepts.
As depicted in Figure 1 it features 18 reconfigurable Look-Up Tables each with three
inputs and one output. For storing signals a file of 73 registers is used. The registers are
reconfigurably connected to the LUTs by a 73:54 multiplexer and 18:73 demultiplexer.
The inability of the architecture to directly chain the LUTs for computation poses a bottle
neck for the test applications we run on SHyRA and forces them to make extensive use of
reconfigurations. The test applications therefore naturally lend themselves to profit from
the use of hyperreconfigurations. This, however, does not limit the general validity of
the experimental results, because although SHyRA implicitly imposes reconfiguration
every reconfigurable application follows the same basic design, i.e. having a calculation
phase (LUTs), transferring the information to some registers (DeMUX) and then have
it reinjected into the next calculation phase (MUX). In order to evaluate the caching
model, each reconfigurable component was equipped with a cache of up to 14 cache
lines. Two sample applications (a 4 bit adder and a primitive ALU) were mapped to the
modified SHyRA.

After mapping the design onto the reconfigurable resources (LUT contents, MUX
switching information) a heuristic was employed to determine appropriate hypercontexts
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Fig. 1. Simple HYperReconfigurable Architecture: Principal System Design

Fig. 2. Relative Costs of the Test Case Designs With Cache Size From 1 to 14 Lines

using the same costs as in the Switch model. For the case of not using caches the optimal
hypercontexts were determined with the algorithm described in Section 4. For the case
with caches for hypercontexts we used a greedy strategy which takes the optimal solution
for the PHC-Switch problem without caches as starting point and subsequently improves
this solution by randomly applying one of three operations:

1. Two randomly chosen hypercontexts are merged. 2. Two hypercontexts are chosen
randomly. For each context cj a penalty cost (cost(cj) =

∑
k∈[0,n],cjk=1(|{ci|i �=

j, cik = 0}|)) is determined and the most expensive context is exchanged (this is repeated
as long as the total costs become smaller). 3. One randomly chosen hypercontext is split
into two hypercontexts and the same exchange procedure as in (2) is applied.

Figure 2 shows the resulting total hyperreconfiguration costs for the test designs
without cache and with caches of sizes from one two 14 cache lines. For the test appli-
cations it can be observed that small caches for hypercontexts can significantly decrease
the total hyperreconfiguration costs.
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8 Conclusion

We have investigated a central algorithmic problem for hyperreconfigurable architec-
tures, namely the Partition into Hypercontexts (PHC) problem. It was shown that the
problem in NP-hard in general but can be solved in polynomial time for the Switch model
under different cost measures. We have also introduced hyperreconfigurable architec-
tures that use a cache to store hypercontexts and have shown that PHC becomes NP-hard
even for the Switch model for this architectures. Applications of the PHC problem on
an example architecture have been given. For the case when caches for hypercontexts
are used a heuristic for solving the PHC problem was introduced.
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Abstract. A high-density optically reconfigurable gate array (ORGA) is proposed
to improve the gate density of conventional ORGAs, which are a type of Field
Programmable Gate Array (FPGA). However, unlike FPGAs, an ORGA is recon-
figured optically with external optical memories. A conventional ORGA has many
programming elements, just as FPGAs do. One programming element consists of:
a photodiode to detect an optical reconfiguration signal; a latch, a flip-flop or a bit of
memory to temporarily store the reconfiguration bit; and some transistors. Among
those components, the latch, flip-flop, or memory occupies a large implementation
area on a typical VLSI chip; it prevents realization of a high-gate-density ORGA.
This paper presents a high-density ORGA structure that eliminates latches, flip-
flops, and memory using a dynamic method and a design of an ORGA-VLSI
chip with four optically reconfigurable logic blocks, five optically reconfigurable
switching matrices, and four optical reconfigurable I/O blocks including four I/O
bits. It uses 0.35 μm 3-Metal CMOS process technology. This study also includes
some experimental results.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have been used widely in recent years be-
cause of their flexible reconfiguration capabilities. Moreover, demand for high-speed
reconfigurable devices has been increasing. If circuit information can be exchanged
rapidly between the gate array and memory, an idle circuit can be evacuated into mem-
ory; other necessary circuits at that time can be downloaded from memory into the gate
array, thereby increasing the activity of the gate array.

Nevertheless, it is difficult to realize a rapidly reconfigurable device using a structure
in which a gate array VLSI and a memory are separated into different chips, with both of
them connected by metal wiring, as in an FPGA [1][2]. Presuming that a reconfigurable
device functions at 100 MHz, the total number of reconfiguration bits is 100,000. The
device and the external memory are connected by single wiring, requiring a transmis-
sion rate of 10 Tbps. The transmission rate can not be realized using standard CMOS
processes. Although a wide range of reconfiguration wiring should be used, neverthe-
less, the problem remains because available packages and bonding wiring are limited
to several thousand pins. For those reasons, electrical reconfiguration bandwidth is not
sufficiently large to accommodate the number of configuration bits.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 261–269, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



262 M. Watanabe and F. Kobayashi

On the other hand, high-speed reconfigurable processors have been developed, e.g.
DAP/DNA chips and DRP chips [3][4]. They package reconfiguration memories and
microprocessor array onto a chip. The internal reconfiguration memory stores reconfig-
uration contexts of 3 to 16 banks and the banks can be changed from one to the other on
a clock. This process constitutes the so-called context-switching method. Thereby, the
ALU of such devices can be reconfigured on every clock cycle in a few nanoseconds.
However, increasing the internal reconfiguration memory while maintaining gate density
is extremely difficult.

Recently, new devices that combine various optical and electrical techniques have
been developed to supplement weak points [5]-[8]. In such devices, optically reconfig-
urable (programmable) gate arrays (ORGAs) [9]-[12] and optically differential recon-
figurable gate arrays (ODRGAs) [13][14] have been developed to hasten the reconfigu-
ration time of conventional FPGAs. Such devices are similar to FPGAs, but they can be
reconfigured optically with external optical memories.

For optical reconfiguration, these devices require a photodiode to detect an optical
reconfiguration signal, a latch, a flip-flop, or memory that temporarily stores the recon-
figuration signal, and transistors. Conventional ORGAs and ODRGAs can be considered
to have added photocircuits onto the gate array of FPGAs. However, the implementation
area of the photocircuits of ODRGA reaches 47% of the implementation area of VLSI
chip when the photodiode size is 25 um2 and the gate count is 65 k. The large imple-
mentation area of the photocircuits prevents realization of a high-gate-density ORGA.

Therefore, this study presents a high-density ORGA structure eliminating latches,
flip-flops, or memory using dynamic method and a design of an ORGA-VLSI chip
with four optically reconfigurable logic blocks, five optically reconfigurable switching
matrices, and four optical reconfigurable I/O blocks including four I/O bits using 0.35
μm 3-Metal CMOS process technology. Some experimental results are also explained.

2 ORGA with Dynamic Method

2.1 Dynamic Reconfiguration Circuit

Conventional ORGAs and ODRGAs consist of a VLSI part and an optical part that
allows optical reconfiguration. In the optical part, holographic memories or spatial light
modulators are used as memory. The reconfiguration contexts are stored in it and are read
out by laser. In contrast, the VLSI part consists of gate array similar to that of FPGAs and
a reconfiguration circuit including many programming elements that need photodiodes
to detect the optical reconfiguration context, latches, flip-flops, or memory to temporarily
store the reconfiguration context, and some transistors. However, it is considered that
conventional ORGAs and ODRGAs have an excess function that memory functions exist
on both sides of the optical part and the VLSI part. The memory function of VLSI part
has an important function: keeping the states of gate array while refreshing photodiodes.
However, if the memory function of VLSI part were eliminated, the gate density could
be extremely large.

Therefore, this paper proposes a high-density ORGA that eliminates the static mem-
ory function of the VLSI part and uses dynamic method. The gate array information
is stored in photodiodes instead of latches, flip-flops, or memory. An array of dynamic



A High-Density Optically Reconfigurable Gate Array Using Dynamic Method 263

Fig. 1. Schematic diagram of an array of dynamic reconfiguration circuits eliminating a static
memory function.

Fig. 2. Timing diagram of a reconfiguration cycle.

reconfiguration circuits eliminating the static memory function and a timing diagram of
it are shown in Figs. 1 and 2, respectively. The reconfiguration circuit comprises refresh
transistors, photodiodes, and inverters. Photodiodes not only detect light, but also serve
as dynamic memory. The photodiode states are connected through inverters to the gate
array portion.

The reconfiguration procedure of the reconfiguration circuit is initiated by activating
the refresh signal to charge the junction capacitance of photodiodes. After charging is
completed, a laser irradiates the photodiodes. If laser light penetrates the photodiode,
the junction capacitance of the photodiode is discharged rapidly; if not, the voltage
charged in the junction capacitance of photodiode is retained. The refresh cycle described
above is completed instantaneously. The gate array states can then be maintained for a
certain time before the junction capacitance is completely discharged by leak current.
In the case of using high-density ORGAs, it is natural that the gate array is reconfigured
dynamically so that the above reconfiguration cycle arises automatically. Of course, in
the case where a reconfiguration cycle does not arise while the electric charge of the
junction capacitance is maintained, the gate array must be refreshed with an identical
reconfiguration context before the junction capacitance completely discharges. However,
since the period between refreshes is typically a few dozen milliseconds - which is a
relatively long time, this is not a common problem and such refreshing never affects the
use of high-density ORGAs.
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Table 1. Specification of a designed high-density ORGA with 4 Logic blocks, 5 switching matrices,
and 16 I/O bits.

Technology 0.35 μm double-poly
triple-metal CMOS process

Chip size 4.9 × 4.9 [mm]
Supply Voltage Core 3.3V, I/O 3.3V
Photodiode size 25.5 × 25.5 [μm]
Distance between
Photodiodes h.=99 v.= 99 [μm]
Number of 605
Photodiodes
Number of 4
Logic Blocks
Number of 5
Switching Matrices
Number of 16
I/O bits

When using the high-density ORGA, each I/O bit with the role of an output must have
a flip-flop to retain the output of the gate array while refreshing or reconfiguring, however,
that has already implemented on almost all of currently available FPGAs. Also, all flip-
flops included in I/O bits and logic blocks are synchronized with reconfiguration cycles
to retain the output and internal states of the gate array while refreshing or reconfiguring.
The timing diagram of reconfiguration clock and the outputs of flip-flops are shown in
the lower portion of Fig. 2. As synchronized, internal states are kept in flip-flops of logic
block and I/O bits while refreshing or reconfiguring, invalid states are blocked, and only
valid states are outputted.

Using the dynamic method, the total number of flip-flops, latches, or memory bits
on gate array is dramatically decreased compared to that of conventional ORGAs and
ODRGAs.

2.2 VLSI Design

A high-density ORGA-VLSI chip was designed using 0.35 μm CMOS standard process,
as shown in Table 1. The voltages of core and I/O cells were designed identically with
3.3 V. Photodiode and photodiode cell sizes including a refresh transistor and an inverter
are 25.5 μm× 25.5 μm and 40.5 μm× 33.0 μm, respectively. The photodiodes were
constructed between the N-well and P-substrate. The photodiode cells are arranged at 99
μm intervals in two dimensions. The total number of photodiodes is 605. The CAD layout
of a photodiode cell is shown in Fig. 3. The implementation area of a reconfiguration
circuit using dynamic method is reduced to 74.25 μm2 compared with 618.75 [μm2] of
the reconfiguration circuit of ODRGAs. The implementation area I of the reconfiguration
circuit is determined as follows:
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Fig. 3. CAD Layout of a photodiode cell.

Fig. 4. Block diagram of high-density ORGA.

I = (P +R)×N , (1)

where P and R denote the implementation areas of photodiodes and other circuit com-
ponents including flip-flops, latches, inverters, and other transistors; N is the number of
programming elements. In this design, although photodiodes were designed for large
size to allow easy justification, the positioning between a VLSI part and an optical part,
in near future, the size will be less than 25 μm2. At that time, because the relation P<<R
exists, reducing R becomes important. The circuit reconfigured with dynamic method
has a reduced implementation area: it can be less than 1/8 the conventional size. This
size is very useful to increase gate density.

Next, the block diagram and CAD layout of high-density ORGA-VLSI chip are
shown in Fig. 4 and Fig. 5, respectively. A high-density ORGA-VLSI chip was designed
using the ROHM 0.35μm standard cell library, except for photodiode cells and trans-
mission gate cells. For design, the Synopsys Design Compiler and Apollo were used as
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Fig. 5. CAD Layout of ORGA using 0.35 μm CMOS standard process.

the logic synthesis tool and the place and route tool, respectively. The top metal layer
was used for guarding transistors from light irradiation; the other two layers were used
for wiring.

The gate array of high-density ORGA-VLSI chip consists of 4 Optically Recon-
figurable Logic Blocks (ORLBs), 5 4-direction Optically Reconfigurable Switching
Matrices (4-ORSMs), and Optical Reconfigurable I/O Blocks including four I/O bits
(ORIOBs). All routing channels include the same eight wires connected by 4-ORSMs.
Gate array functionality is fundamentally identical to conventional FPGAs. The basic

Fig. 6. Block diagram of an optically reconfigurable logic block (ORLB).
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Fig. 7. Block diagram of a 4-direction optically reconfigurable switching matrix (4-ORSM).

building units of ORLBs is shown in Fig. 6. The ORLB consists of a 4-input Look-Up
Table (LUT), six multiplexers and a D-Flip Flop (D-FF), and eight tri-state buffers. The
LUT has 16 photodiodes - all the states of which can be programmed optically. Each
bit of input of LUT is connected through a 7:1 multiplexer into the wiring channel. The
multiplexer is connected to a logic 0 and a logic 1 in addition to five inputs from the
wiring channel, the state of which can be optically programmed by three photodiodes.
The inputs of logic 0 and logic 1 are used for converting the optical signal to an elec-
trical signal. Keeping two photodiodes low, the state of other photodiode decides the
multiplexer output state. Consequently, the inputs of LUT can be chosen to be either an
optical signal or an electrical signal. The output of LUT is connected to a multiplexer
and a D-FF. The outputs of LUT and Q,Q̄ of D-FF are selected by the multiplexer.
The output signal of the multiplexer is connected through tri-state buffers into wiring
channel. Consequently, ORLB functionality is fundamentally identical to conventional
FPGAs except for treating optical signals.

The block diagram of 4-ORSM is shown in Fig. 7. Although the structure of the
ORSMs is basically same as those sold by Xilinx Inc., each transmission gate has
an added photodiode and can be reconfigured optically. The transmission gate size of
ORSMs is 99 μm2.

3 Experimental System and Results

A dedicated high-density ORGA-subboard was developed as shown at the left side of
Fig. 8 to evaluate the performance of a high-density ORGA-VLSI chip. The board that
was used in experimentation was a combination of an FPGA board on the market,
to which was implemented a USB2 interface, EP20KC200CF484C8 (Altera Corp.), a
power supply circuit, and so on. The boards generate control signals for a high-density
ORGA-VLSI chip. In addition, the boards are controlled using a personal computer
(PC) through a USB2 interface. Mainly, communication between the PC and boards is
required while fitting the position between an optical illumination system and boards
with a high-density ORGA-VLSI chip.
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Fig. 8. Experimental board with ORGA chip.

Table 2. Results of reconfiguration circuit characteristics.

Reconfiguration circuit characteristics
Reconfiguration Time 20.8 [ns]
Data Retention Time 93 [ms]

An optical illumination system with spatial light modulators for an ORGA is shown
at the right side of Fig. 8. The system consists of a Liquid Crystal Television Panel-
Spatial Light Modulator (LCTV-SLM), a 20 mW He-Ne-laser, a beam-expander, a lens,
and polarizers. The LCTV-SLM resolution is 17 μm× 17 μm. A lens at the front of
ODRGA-VLSI chip is employed for production and scale-down of the image on LCTV-
SLM.

Using the FPGA boards and the optical illumination system, reconfiguration circuit
characteristics were measured as shown in Table 2. The data retention time keeping the
output state of an inverter connected to a photodiode shows the high-density ORGA
refresh period. The refresh period of designed high-density ORGA is satisfied by larger
than 93 ms. Moreover, using 20 mW He-Ne Laser, the reconfiguration time was con-
firmed as less than 20.8 ns. Results show that a high-density ORGA can be used with a
low refresh rate and dynamic RAM; its reconfiguration speed is 1,000,000 times faster
than that of FPGAs.

4 Conclusion

Conventional ORGAs and ODRGAs have an excess function: memory functions exist
on both an optical and VLSI portions. This paper has proposed a high-density ORGA
to improve gate density of conventional ORGAs and ODRGAs. It uses a method by
which its gate array information is stored in photodiodes instead of latches, flip-flops, or
memory in the VLSI portion. A structure using dynamic method could remove excess
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latches, flip-flops, or memory so that the implementation area of a reconfiguration circuit
without photodiodes could be reduced to less than 1/8 its usual size.

A design of an ORGA-VLSI chip with 4 logic blocks, 5 switching matrices, and 4
optical reconfigurable I/O blocks including four I/O bits using 0.35 μm 3-Metal CMOS
technology was presented. In addition, the refresh period and reconfiguration time were
confirmed, experimentally, to be larger than 93 ms and to be less than 20.8 ns, respec-
tively. Results demonstrate that a high-density ORGA can be used with a low refresh
rate as well as dynamic RAM; its reconfiguration speed is 1,000,000 times faster than
that of FPGAs.

Acknowledgments. The VLSI chip in this study has been fabricated in the chip fabri-
cation program of VLSI Design and Education Center(VDEC), the University of Tokyo
in collaboration with Rohm Corporation and Toppan Printing Corporation.
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Abstract. Evolvable systems in silicon are third generation hardware in terms
of flexibility. The first generation was fixed silicon: once a device was fabri-
cated its structure was forever fixed. Reconfigurable hardware came as a sec-
ond generation: new configurations could be downloaded changing the func-
tion of the device and also bypassing faulty areas, if any. The third generation
is that of self-configurable, evolvable hardware (EHW), and adds the automatic
reconfiguration feature, enabling truly adaptive hardware. This paper addresses
current efforts in building and using evolvable chips. The first section refers to
evolutionary algorithms for evolvable hardware. The second section describes
the JPL evolvable hardware testbed and the JPL Field Programmable Transistor
Array (FPTA) chip designed and used for circuit evolution in silicon. The third
section addresses the application of evolvable hardware for signal separation
and noise cancellation. The final section concludes the work.

1   Evolutionary Algorithms for EHW

The application of evolution-inspired formalisms to hardware design and self-
configuration leads to the concept of Evolvable Hardware (EHW) [5]. In the narrow
sense, EHW refers to self-reconfiguration of electronic hardware by evolution-
ary/genetic reconfiguration mechanisms. In a broader sense Evolvable Hardware can
be considered a tool for automatic circuit design.

Conventional design automation techniques explore a small fraction of the design
space, consisting of standard circuit topologies (logic gates, OpAmps). In the case of
digital design, there are many commercially available CAD tools that perform auto-
matic synthesis of complex digital circuits from high level specifications; and it is
based on standard heuristics and algorithms. These techniques used a library of well-
known topologies of logic gates, flip-flops, etc. In the case of analog design, automa-
tion is a more challenging task because analog building blocks are more sensitive to
the fabrication technology.

On the other hand, Evolutionary Algorithms’ representational potential allows the
exploration of a larger fraction of the design space compared to conventional tools.
Instead of using standard topologies for digital gates and analog building blocks,
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evolutionary design can find new topologies and larger circuits can be built based on
this new design library. The main steps for the evolutionary design of electronic cir-
cuits are the circuit representation and evaluation[6]. The genetic search in EHW is
tightly coupled with a coded representation that associates each circuit to a "genetic
code" or chromosome. The simplest representation of a chromosome is a binary
string, a succession of 0s and 1s that encode a circuit. The status of the switches (ON
or OFF) determines a circuit topology and consequently a specific response. Thus, the
circuit topology can be considered as a function of switch states, and can be repre-
sented by a binary sequence, such as “1011…”, where a ‘1’ is associated to a switch
turned ON and a ‘0’ to a switch turned OFF.

The main steps of evolutionary synthesis are illustrated in Figure 1 [5]. First, a
population of chromosomes is randomly generated. The chromosomes are converted
into circuit models for evaluation in SW (extrinsic evolution) or into control bit
strings downloaded to programmable hardware (intrinsic evolution). Circuit re-
sponses are compared against specifications, and individuals are ranked based on how
close they come to satisfying them. In preparation for a new iteration, a new popula-
tion of individuals is generated from the pool of best individuals in the previous gen-
eration. This is subject to a probabilistic selection of individuals from a best individu-
als pool, followed by two operations: random swapping of parts of their chromo-
somes, the crossover operation, and random flipping of chromosome bits, the muta-
tion operation. The process is repeated for several generations, resulting in increas-
ingly better individuals. Randomness helps to avoid getting trapped in local optima.
Monotonic convergence (in a loose Pareto sense) can be forced by unaltered transfer-
ence to the next generation of the best individual from the previous generation [6].
There is no theoretical guarantee that the global optimum will be reached in a useful
amount of time; however, the evolutionary/genetic search is considered by many to
be the best choice for very large, highly unknown search spaces. The search process
is usually stopped after a number of generations, or when closeness to the target re-
sponse has reached a sufficient degree. One or several solutions may be found among
the individuals of the last generation.

2   JPL Evolvable Hardware Testbed

A Stand Alone Board Level Evolvable System (SABLES) was developed as a testbed
for autonomous portable experiments. SABLES is a stand-alone platform, integrating
the Field  Programmable Transistor Array (FPTA) chip and a digital signal processing
(DSP) implementing the Evolutionary Platform (EP) as shown in Figure 2 The system
is stand-alone and is connected to the PC only for the purpose of receiving specifica-
tions and communicating back the results of evolution for analysis.

The evolutionary algorithm was implemented on a DSP that directly controlled the
FPTA, together forming a board-level evolvable system with fast internal communi-
cation ensured by a 32-bit bus operating at 7.5MHz [1]. Over four orders of magni-
tude speed-up of evolution was obtained on the FPTA chip compared to SPICE
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Fig. 2. Block diagram of our stand-alone board level evolvable system (SABLES)

simulations on a Pentium processor (this performance figure was obtained for a
circuit with approximately 100 transistors; the speed-up advantage increases with the
size of the circuit).

The FPTA is an implementation of an Evolution-Oriented Reconfigurable Archi-
tecture (EORA) that is in detail described in reference [2]. The lack of evolution-
oriented devices, in particular for analog, has been an important stumbling block for
researchers attempting evolution in intrinsic mode (with evaluation directly in hard-
ware). Extrinsic evolution (using simulated models) is slow and scales badly when
performed with accurate circuit models e.g. in SPICE. Less accurate models may lead
to solutions that behave differently in hardware than in software simulations.

Several aspects necessary for EORA were considered during the FPTA design. The
granularity of the programmable chip is an important feature. The first limitation of
commercial FPGAs and field programmable analog array (FPAAs) is their coarse
granularity for use in evolution. From the EHW perspective, it is interesting to have
programmable granularity, allowing the sampling of novel architectures together
with the possibility of implementing standard ones. It also allows to choose, depend-
ing of the task, the optimal choice of elementary block type and granularity. Virtual
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higher-level building blocks can be considered by imposing programming constraints.
EORA should also be transparent architecture, allowing the analysis and simulation
of the evolved circuits. It should also be robust enough not to be damaged by any bit-
string configuration existent in the search space, potentially sampled by evolution.
Finally EORA should allow evolution of both analog and digital functions.

The FPTA chips designed at JPL meet the above requirements, and are particularly
targeted for EHW experiments. The first versions of the FPTA (FPTA-0 and FPTA-1)
relied on a cell with 8 transistors interconnected by 24 switches. They were used to
demonstrate intrinsic evolution of a variety of circuits, including logical gates,
transconductance amplifiers, computational circuits, etc [2].

The most recent version, FPTA2, is a second generation reconfigurable mixed sig-
nal array chip whose cells can be programmed at the transistor level [3]. The chip
architecture is described in details in [2]. It consists of an 8x8 matrix of re-
configurable cells. The chip can receive 96 analog/digital inputs and provide 64 ana-
log/digital outputs. Each cell is programmed through a 16 bits data bus/9 bits address
bus control logic, which provides an addressing mechanism to download the bit-string
of each cell. A total of 5000 bits is used to program the whole chip. The FPTA-2 cell
consists of 14 transistors connected through 75 switches and it is able to map different
building blocks for analog processing, such as two- and three- stage Operational Am-
plifier (OpAmps), logarithmic photo-detectors, or Gaussian computational circuits.
Figure 3 shows the details of the cell for the latest version of the FPTA chip.

3   Flexible Evolvable Hardware

This section describes two applications of SABLES in the domain of flexible hard-
ware, encompassing the evolution of signal separators and elimination of noise from a
voice signal in real time. The first experiment demonstrates that our evolvable hard-
ware system is able to design a circuit able to separate two mixed signals using the
knowledge of frequency of both signals to identify the correct circuit. The second
experiment goes one step further by designing a circuit able to filter the noise from an
unknown and dynamic signal.

3.1   Signal Separation Experiments

The goal of this experiment was to design a circuit able to separate two mixed signals,
E1(t) and E2(t), obtained by the linear combination of pure sine waves, e1(t) and e2(t),
of known frequencies. The circuit outputs are the original pure sine waves. We chose
for the frequency of the pure sine wave e1(t), f1 = 10kHz and for the pure sine wave
e2(t), f2 = 20kHz. These signals were linearly combined by a mixing matrix to produce
the chip inputs E1(t) and E2(t) as shown below:
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The GA parameters selected for this experiment were: 70% mutation rate; 20%
crossover rate; replacement factor of 20%; population of 400; and 100 to 200 genera-
tions. These parameters are the results of multiple runs and have given the best result.
A binary representation was used, where each bit determines the state (opened,
closed) of a switch. Each evolution took about 5 minutes in the SABLE system. More
than 20 different GA executions were performed. In order to compute the fitness
function, the fast Fourier Transform (FFT) of the output signal(s) from the FPTA-2
was calculated. The fitness was a measure of the error of the FPTA-2 outputs to the
target values in each experiment, as shown below.
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where N is the number of samples used in the FFT (usually 64), Of(i) is the  mag-
nitude of the ith FFT component of the FPTA-2 output, and Tf(i) is the target magni-
tude of the ith FFT component. Other fitness measures such as the sum of the squared
deviations between the output and the target were tried, without significant improve-
ment.
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Another important feature of these experiments refers to the control voltages for
operation of switches. The switches of the re-configurable chip are implemented as
transmission gates. The control voltages that completely open or close the switches
are 0 and 2V. However, through experimentation, it has been observed that the results
significantly improve when the values of 0.4V and 1.6V are used to control the
switches, meaning that they are now partly opened and closed (partly closed if the
higher and lower control voltages are respectively applied to the NMOS and PMOS
transistors of the switch, and partly opened in the other case).

Finally, another important issue is the search space size. If we allow a completely
unconstrained evolution, we will end up with a very large search space size. One
approach to reduce the search space size is to have the FPTA-2 cells constrained to a
particular topology, so that only the interconnections among the cells are evolved.
Through experimentation, it has been verified that the constrained approach delivered
better results. This experiment was performed using 10 cells of the FPTA-2, and the
cell topologies were fixed to one of inverting amplifiers. Figure 4 depicts a block
diagram of the FPTA-2 chip, showing its 64 cells and the chip corner used in the
experiment, circuit inputs (E1 and E2) and outputs (O1 and O2).

 

E1 
O1 

O2 

  

   

E2 

Fig. 4. Block diagram of the FPTA-2
chip for the signal separation experi-
ment.

 

E2

O1

O2 

E1

Fig. 5. Result of the signal separation
experiment. At the top the inputs E1 and E2
are shown. At the bottom the outputs O1
(10kHz)) and O2 (20kHz) are shown.

Figure 5 depicts the best inputs and outputs of the evolved circuit achieved in this
set of executions. Table 12-1 summarizes the evolved circuit performance in terms of
the FFT and of the values measured in the frequency analyzer for 10kHz and 20kHz
frequency component. The target FFT values used in the fitness function are also
included in the table.
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Table 1. Analysis of the evolved circuits in the signal separation experiment with signal fre-
quencies of 10 & 20 kHz . Amplitude of 10kHz and 20kHz tones as measured by the spectrum
analyzer and calculated by an FFT algorithm used during evolution

10kHz Tone 20kHz Tone

FFT Spectrum
Analyzer

FFT Spectrum
Analyzer

Input E1 33.6 -13dB 8.86 -20dB

Input E2 7.6 -20dB 41.1 -15dB

Output O1 36.9
(Target:
Tf>20)

-13dB 1.07
(Target:
Tf= 0)

-35.3dB

Output O2 0.6
(Target:
Tf= 0)

-30dB 84.5
(Target:
Tf>20)

-13dB

From Table 1, it can be observed (output O1) that the evolved circuit attenuates the
input signal component e2 (20kHz) by –15.3dB (from –20dB to –35.3dB), while
keeping the input signal e1 (10kHz) at the same level. On the other hand (output O2),
the evolved circuit attenuates the input signal component e1 by -10dB (from –20dB to
–30dB), and amplifies e2 by 2dB (from –15dB to –13dB).

This experiment is a first approach to tackle the independent component analysis
problem, which consists of recovering the original source signals from signals ac-
quired by a set of sensors that pick up different linear combinations of source signals.

3.2   Real-Time Noise Elimination

The objective of this experiment was to evolve a circuit that can automatically filter
the noise from a dynamic radio signal. Two signals (radio signal from 0.5kHz to
10kHz and the noise signal at 7kHz) were linearly combined to produce the input
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Fig. 6. FPTA-2 cells used in the noise
elimination experiment
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Fig. 7. Response in the time domain of the
circuit evolved for real-time noise elimina-
tion
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signal E1(t). The challenge of the experiment was to evolve a circuit using a non-
stationary voice signal acquired by the microphone. The evolved circuit must thus be
able to generalize to voice signals not exposed during evolution/training.  The
evolved circuit was obtained in less than 1 minute after 50 generations of evolution
on the SABLES platform. The GA parameters selected for this experiment were: 20%
mutation rate; 70% crossover rate; replacement factor of 10%; population of 500; and
100 to 200 generations.

The fitness is computed by taking the FFT of the circuit output. The 7kHz compo-
nent of the FFT of the circuit output is found and the objective is to minimize it. The
evolution algorithm uses 6 cells of the FPTA-2 as shown in Figure 6.

Figure 8 depicts the platform used in the experiment. Besides SABLES, a Field
Programmable Analog Array (FPAA) chip from Anadigm [4] was used for audio
signal conditioning before applying it to the FPTA chip. The microphone acquires a
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Fig. 8. Platform for real-time noise elimination experiment. Block diagram is on the left and
picture of the apparatus is to the right
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voice signal coming from a radio in real-time which is mixed with a noise signal and
conditioned for the FPTA-2 (shift the DC value). The FPTA-2 is evolved to separate
the two signals.

Figure 7 shows the input and output signals in the time domain. It can be seen that
the FPTA output signal has the 7 kHz noise attenuated compared to the input, while
keeping the audio signal level. Figure 9 displays the same information in the fre-
quency domain, where it can be seen that the 7kHz noise signal is attenuated by -8dB
(from -28.6 to -36.5dB).

These are preliminary results, and there is still some room for improvement, such
as evolving a circuit that can adapt to jamming signals at different frequencies..

4   Conclusion

The main objective of this paper was to demonstrate new capabilities for flexible
electronics using evolvable hardware. We demonstrated the evolution of circuits
using the FPTA cells that can automatically filter the noise signal from a dynamic
radio signal. Evolvable hardware technology is particularly significant for NASA’s
future autonomous systems, providing on-board resources for reconfiguration to self-
adapt to situations, environments, and mission changes. It would enable future space
missions using concepts of spacecraft survivability in excess of 100 years that poses
difficult challenges to current electronics

Acknowledgement. The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology and was sponsored by the
National Aeronautics and Space Administration.

References

[1] Ferguson, M.I., Stoica A., Zebulum R., Keymeulen D. and Duong, V. “An Evolvable
Hardware Platform based on DSP and FPTA”, Proceedings of the Genetic and Evolution-
ary Computation Conference, July 9-13, 2002, pp145-152, New York.

[2] Stoica, A. et al., “Reconfigurable VLSI Architectures for Evolvable Hardware: from
Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips”, IEEE
Trans. on VLSI, IEEE Press , V. 9, N. 1, pp. 227-232, February 2001.

[3] Stoica, A. et al.."Evolving Circuits in Seconds: Experiments with a Stand-Alone Board
Level Evolvable System", 2002 NASA/DoD Conf. on Evolvable Hardware, July 15-18,
2002, IEEE Computer Press, pp.67-74.

[4] Anadigm, Inc., “Evaluation Board User Manual”, (http://www.anadigm.com)
[5] Stoica, A., Lohn J., Keymeulen D., Zebulum R. Proceedings of “NASA/DoD Conference

on Evolvable Hardware”, July 1999 – June 2003. IEEE Computer Society
[6] Zebulum R., Pacheco M., Vellasco M.. “Evolutionary Electronics: Automatic Design of

Electronic Circuits and Systems by Genetic Algorithms”. CRC Press, 2002



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 279–288, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Implementing High-Speed Double-Data Rate (DDR)
SDRAM Controllers on FPGA

Eduardo Picatoste-Olloqui, Francisco Cardells-Tormo1,
Jordi Sempere-Agullo1,2, and Atilà Herms-Berenguer2

1 Hewlett-Packard, R&D Technology Lab, Digital ASICs,
08174 Sant Cugat del Valles (Barcelona), Spain

{francisco.cardells,jordi.sempere}@hp.com
2 University of Barcelona (UB), Department of Electronics,

Marti i Franques 1, 08028 Barcelona, Spain
herms@el.ub.es

Abstract. This paper deals with the FPGA-implementation of a high-speed in-
terface for DDR SDRAMs. We aim to achieve a performance, in terms of
bandwidth, comparable to ASIC implementations. The novelty of this paper is
to present the design techniques that lead to high performance memory con-
trollers. First of all, we compile the specific hardware features available in
FPGA families. In the second place, we depict a memory interface data path ar-
chitecture adapted for implementation on Xilinx and Altera FPGAs. Finally, we
explain the design rules to meet timing requirements (round trip delay) for suc-
cessful operation. The discussion is complemented with timing measurements
for a Virtex-II based memory interface and with timing calculations performed
for Stratix.

1   Introduction

Image processing data pipelines require a large amount of data to be buffered. Mem-
ory is the place where integrated circuits (ICs) hold current data for the pipelines.
Several types of memory could be used for this purpose, yet each has their pros and
cons. Static RAMs (SRAMs) are fast and have reduced power consumption, but their
low density - several transistors are required to store a single bit of data - increases
their cost and limits their use.

On the other hand, Dynamic RAMs (DRAMs) have slower performance and
higher power consumption, but they are denser and cheaper than SRAMs. These
characteristics make them a better choice for the main memory in digital imaging
systems. There are several types of DRAM. Previous types of DRAM include Fast
Page Mode DRAM (FPM DRAM) and Extended Data Out DRAM (EDO DRAM)
that are asynchronous. These are quite slow for current systems. Synchronous DRAM
(SDRAM), Double-Data Rate (DDR) SDRAM, and RAMBus DRAM (RDRAM) are
currently mainstream in the PC industry.
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SDRAM is synchronous, meaning that the device directly depends on the clock
speed driving the device. With SDRAMs, latency is significantly reduced when com-
pared to previous DRAM technologies. Inputs and outputs are simplified in terms of
signal interfacing. SDRAM is still used but is being quickly replaced by DDR
SDRAM.

RDRAM narrows the memory bus to 16-bit, and uses a faster bus operation (up to
800MHz). Although the bandwidth is incremented respect to SDRAM, it has a big
drawback: it is a proprietary technology.

DDR SDRAM is a natural evolution of SDRAM. Data transactions are done in
both edges of the clock, thus doubling the raw bandwidth of the data path. Perform-
ance is improved as with RDRAM but costs are lower. Due to widespread adoption
by the PC industry and improved long-term availability over SDRAM, it makes a
good choice for imaging applications.

With the advent of modern process technologies (13μm and beyond), FPGAs are
being considered for high-volume applications. FPGAs have evolved in terms of
complexity and density and they are now not very far from ASIC performance and
capacity. Therefore they can now be used in demanding applications that were not
possible before. For instance, most of Xilinx and Altera FPGAs include enough fea-
tures to implement a high-speed memory controller design.

FPGAs are now supporting the features needed to interface a DDR SDRAM.
FPGA I/Os are now compatible with the SSTL-II electrical interface, I/Os include
DDR registers, and phase locked loops (PLLs) are flexible enough to allow different
clock frequencies and meet data capture timings. In some Altera families, hard-macro
delay chains for data strobes have been added, a feature reserved to special ASIC
cores [1]. The FPGA based intellectual propriety (IP) cores market offers memory
controllers designed to make the most out of these features.

In conclusion, FPGAs have improved enough to implement DDR interfacing both
for products and prototypes. Modern FPGA families, combined with IP cores, provide
features for achieving a bandwidth comparable to ASIC designs. The goal and nov-
elty of this paper is to compile the design techniques to implement high-speed mem-
ory controllers. In this paper we summarize the features to be taken into account
when choosing an FPGA for high-speed DDR SDRAM interfacing, we depict a
memory controller data path architecture that can be implemented with Altera and
Xilinx FPGAs and we explain the design rules to meet timing requirements. We show
timing measurements of a Virtex-II FPGA interfacing a Samsung K4H560838C DDR
SDRAM device at 60MHz. We perform the read data capture timing analysis for a
Stratix FPGA interfacing a Samsung M470L6524BT0 DDR SDRAM device at
80MHz.

2   DDR SDRAM Operation

The DDR SDRAM [2] operates from a differential clock (CLK and CLKn; the
crossing of CLK going HIGH and CLKn going LOW will be referred to as the posi-
tive edge of CLK). Commands (address and control signals) are registered at every
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positive edge of CLK. A bidirectional data strobe (DQS) is transmitted externally,
along with data, for use in data capture at the receiver. DQS is a strobe transmitted by
the DDR SDRAM during reads and by the memory controller during writes. This
strobe associated with data works like an independent clocking scheme and it is nec-
essary to meet the demanding requirements in terms of timing. DQS is edge–aligned
with data for reads and center–aligned with data for writes. Memory input data is
registered on both edges of DQS, and output data is referenced to both edges of DQS,
as well as to both edges of CK. Therefore, because the interface operates in both
edges, the interface data width (n) is half the memory data size (2n). In figure 1 we
have depicted its operation.

Fig. 1. The figure shows the simulation waveforms for a DDR SDRAM read operation. The
clock frequency used in the simulation is 100MHz. The controller used for the simulation is the
Altera DDR SDRAM Controller MegaCore IP [3].

Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a
selected location and continue sequentially for a programmed number of locations.
Accesses begin with the registration of an ACTIVE command (RAS_n low), which is
then followed by a READ (CAS_n low) or WRITE (CAS_n low and WE_n low)
command. The address bits registered coincident with the ACTIVE command are
used to select the bank and page (row) to be accessed. The address bits registered
coincident with the READ or WRITE command are used to select the bank and the
starting column location for the burst access. A READ command has been simulated
using an Altera DDR SDRAM controller core [3] and it has been depicted in figure 1.

CAS latency
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When a read command is issued data appears on the data bus 1.5 to 3 clock cycles
later. This delay is known as the CAS latency and is due to the time required to read
the internal DRAM core and register the data on the bus. The CAS latency depends
on the speed of the SDRAM and the frequency of the memory clock. The DDR
SDRAM provides for programmable read or write burst lengths of 2, 4 or 8 locations.

A PRECHARGE operation may be enabled to close the bank if a different row
must be accessed. The AUTO-REFRESH command is issued periodically to ensure
data retention.

3   FPGA Features for DDR SDRAM Interfacing

When choosing an FPGA for DDR SDRAM interface, one should check what rele-
vant features are present. First of all, the presence of SSTL II signaling avoids the use
of external buffers, and its associated overhead in terms of cost and delay. Secondly,
the availability of I/Os with DDR registers saves flip-flops from the main logic and
reduces the propagation delays. Thirdly, a 900 delay chain in the DQS path allows a
direct DQS read data capture as opposed to an asynchronous read data capture. The
impact of the data capture scheme in the architecture will be discussed in a later sec-
tion. Finally, system bandwidth is conditioned by both the interface performance and
the maximum data path width. Unfortunately some families have limitations related
to this parameter. We have summarized in table 1 the features embedded in each
family.

Table 1. Available features supporting DDR SDRAM for FPGA families. In the table we
provide the expected performance claimed for each FPGA family (considering the fastest speed
grade, and DQS data capture) by the MegaCore [3] and Northwest Logic [4] IP core docu-
mentation (available on-line) for Altera and Xilinx respectively.

FPGA
Family

Vendor SSTL II
support

I/Os w/
DDR FFs

Delay
Chain

Max. Datapath
Width (bits)

Expected
Performance

APEX II Altera 64 133 MHz
Virtex II Xilinx 64 200 MHz
Cyclone Altera 32 133 MHz
Stratix Altera 64 200 MHz
Spartan 3 Xilinx 64 133 MHz

Although FPGAs have been selectively adding these features to their fabric, still in
modern FPGAs, only high-end FPGAs have all of them. Due to this fact, we have
added a column summarizing the expected performance of the interface. The figures
have been obtained from the IP core datasheets available for each device: MegaCore
[3] and Northwest Logic [4] DDR SDRAM controller cores for Altera and Xilinx
respectively. Table 1 clearly shows that the required performance of the memory
interface conditions the FPGA family of choice. Other families not shown in the table
are not suitable for high-speed operation due to the fact that they do not have dedi-
cated hardware, at most I/Os compatible with SSTL II.
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4   Memory Interface Data Path Architecture

We have depicted in figure 2 the architecture of the data path interface. In this figure
we show from top to bottom the data path for the DQ (data), DQS (strobe) and clock
for both the read and write directions. This architecture can be implemented in any
FPGA family either using dedicated resources, such as IOs with DDR FFs, or general
purpose logic with the consequent cost in terms of resources and performance.

In order for the memory interface to work, we should provide two clocks shifted
90 degrees between them, we will refer the memory nominal clock as  DDR_clk,
while its delayed version as DDR_clk_90. The DDR_clk_90 corresponds to the sys-
tem clock driving the logic within the FPGA. The DDR_clk clock drives the memory
device. We know that the DDR_clk and the DQS signals should arrive with very little
skew to the device. Due to this fact the generation of both signals uses a similar
scheme based on DDR flip-flops. Yet, on writes data should arrive earlier than the
strobes. Due to this fact the DQ output is clocked with DDR_clk.

4.1   DQS Read Data Capture

During read operations, the DDR SDRAM device output DQ and DQS have simulta-
neous edges. To use DQS as a strobe to capture DQ, the DQS signal must be delayed
90º with respect to DQ within the FPGA. This delay could not be applied using a
phase-locked loop (PLL) because the DQS signal does not have the properties of a
clock. Instead, a delay chain should be put between the DQS and the read data
clocking scheme. This scheme is depicted in figure 2.

Cyclone and Stratix families include special delay element chains on the DQS in-
put path, which generates a 90º phase shift of DQS relative to DQ. The Stratix family
also incorporates a DQS phase-shift reference circuit (a delay locked-loop) that con-
tinuously and automatically adjusts the phase shift to keep it at 90º, so this delay is
independent of process, voltage, and temperature (PVT) variations. The circuit re-
quires a reference clock equal in frequency to DDR SDRAM clock. The DQ, DM,
and DQS trace lengths have to be tightly matched within each byte group so that the
edges of the DQ and DQS nominally arrive at the FPGA aligned. Virtex-II and Spar-
tan 3 families do not have a hard-macro performing a delay chain. Nevertheless, it
can be built-up using LUTs.  This scheme is used in the Northwest DDR SDRAM
Controller and Altera DDR SDRAM Controller MegaCore IPs for Xilinx and Altera
respectively.

4.2   Asynchronous Read Data Capture

Less modern Altera FPGAs do not have a delay chain. For Xilinx FPGAs, there might
not be enough logic resources to implement the delay chain using logic cells. Under
those circumstances, data cannot be captured in the FPGA using the DQS signal.
Instead, an internal clock, a 2x version of the system clock, is generated to mimic the
DRAM strobes [5]. This version is typically used for lower operating frequencies
(under 133MHz).
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Fig. 2. Data Path for the DQS Read Data Capture. The dashed rectangle encloses the read data
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5   Timing Analysis

Meeting timing is the most critical part when designing a high-speed interface. Po-
tential variations in timing such as board layout, FPGA placement, and set up of the
clocks in the system, must be taken into account. This section describes the timing
analysis followed in the FPGA-implementation of a memory controller. The meas-
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urements shown in this section correspond to a DDR SDRAM interface implemented
in a Virtex-II and running at 60 MHz. Our clock frequency was limited by the FPGA
speed factor and by another clock domain using a multiple of the DDR frequency.

5.1   Write Data Timing

Two configurations can be used to generate the memory clock. The external clock
could be provided by a dedicated PLL output, with a phase delay to help achieve
resynchronization. In addition, this clock can also be generated using the DDR flip-
flops following the configuration used for the DQS signal generation for memory
writes as in figure 2.

Fig. 3. Measured DQS[0] and CLK signals at the DDR SDRAM device pins. In this figure we
show the write command to first DQS transition time (tDQSS). The measurement obtained
with a Virtex II-based board gives a value for tDQSS of 1.23 tCLK.

The aforementioned delays may cause a mis-alignment between the clock and
DQS at the FPGA pins. Fortunately, the JEDEC standard [2] allows sufficient skew
between the clock and the DQS and given by the following expression:

tDQSS = (1.00±0.25)tCLK . (1)

This condition should be measured as in figure 3. In the FPGA implementation of
figure 2, data strobe signals are generated with the positive edge of the clock
DDR_clk to meet tDQSS requirement.

5.2   Address and Command Timing

DDR SDRAM address and command inputs typically require symmetrical 1ns setup
(tIS) and hold times (tIH) respect to the DDR SDRAM clock. Address and command
outputs can be generated either on the positive or the negative clock edge (internal to
the FPGA). The negative edge should normally be used to satisfy setup and hold
times so the edge is center-aligned with address and commands as depicted in fig-
ure 4.

tDQSS
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Fig. 4. Measured A[0] and CLK signals at the DDR SDRAM device pins. In this figure we
show the address line setup and hold times for both the CLK rising and falling edges. The
measurements were carried out with a Virtex II-based board. We obtain setup and hold times
for both the falling (tIS=4.6ns,tIH=11.4) and rising edge (tIS=5.3ns,tIH=11.6) higher than the
minimum specified by JEDEC (0.9ns).

5.3   Resynchronization of Captured Read Data

In the DQS read data capture, read data is captured into the DDR registers of the
FPGA using DQS signals as a clock. To present data out synchronously at the local-
side interface, data must be transferred from the DQS clock domain to the system
clock (DDR_clk_90) domain in what can be called resynchronization.

Table 2. Delay paths for round trip delay calculation. Point numbers are associated to fig.  2.

Delay path description Name Points in fig. 2
FPGA DDR_clk_90 to Clock FPGA pin tPD 1 to 2
Clock FPGA pin to Clock DRAM pin tPD (trace delay)
Clock DRAM pin to DQS DRAM pin on a read tDQSCK
DQS DRAM pin to DQS FPGA pin tPD (trace delay)
DQS phase shift (~90 degrees + jitter) 3 to 4
From previous to clock in put at register A tPD 4 to 5
From previous to output in register A tCO 5 to 6
From register A output to register B input tPD 6 to 7

From now on we will refer to figure 2. To sample the data output from register A
into register B, the phase relationship between DQS and DDR_clk_90 must be taken
into account in order not to violate setup and hold conditions in register B. By calcu-
lating the round trip delay (RTD) we can obtain the window size before register B.
RTD is the sum of maximum (longest) and minimum (shortest) delays related to the
timing path partially depicted in figure 1 and fully described in table 2. In order to
determine if data can be reliably resynchronized, minimum and maximum RTD val-

tIS tIH
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ues must allow data to be available for register B within its safe resynchronization
window.

We have performed the RTD calculation for a design implemented in a Stratix
FPGA with a target frequency of 80MHz. We have obtained the FPGA internal de-
lays from Quartus II place and route results. Altera provides an Excel file that predicts
the resynchronization margin [6]. It outputs a diagram showing the data capture win-
dow (Fig. 5).

Fig. 5. Read data capture valid window. This figure has been obtained for a Stratix FPGA
using the Altera round trip delay calculator [6].

6   Conclusions

In this paper we have exposed the techniques to design a high-speed DDR SDRAM
memory controller for FPGAs. We have summarized the features that make certain
FPGAs suitable for this application. We have described a DQS read data capture
architecture and that can be implemented with commercial FPGAs from Xilinx and
Altera.  Finally, we have provided the fundamentals for performing the timing analy-
sis and calculations for write and read operations in order to verify the successful
operation of the interface. The timing section encloses measurements from a proto-
type based on Xilinx Virtex II and calculation for a design based on Altera Stratix.
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Abstract. In this paper, we propose a new area-efficient logic module architec-
ture for SRAM-based FPGAs. This new architecture is motivated by the analysis
results of some LUT-level benchmarks. The analysis results indicate that a large
percentage of the LUTs in a LUT-level circuit are permutation (P) equivalent (not
even including input negations or output negations, called NPN equivalences in
the literature, or constant assignments). The proposed logic module utilizes lookup
table sharing among two or more basic logic elements (BLEs) in a cluster, as op-
posed to one LUT per BLE. Preliminary results indicate that almost half of the
LUTs are eliminated in all benchmarks. This great area reduction would reflect
to the cost and prices of FPGAs and also would strengthen the FPGA usage in
applications that have rigid area constraints such as an FPGA within a hearing aid.

1 Introduction

Reconfigurable computing has emerged as a new computing paradigm to bridge the gen-
eral purpose and application-specific computing paradigms [8,12,24]. It is more flexible
than application-specific computing, and much faster than general-purpose computing,
as shown in several application domains including data encryption and cryptography [11,
13,20], and data, video, and image compression [7,14,15,21]. There are many other areas
that benefit from reconfigurable computing due to its performance, flexibility, and so
on. FPGAs are the building blocks of reconfigurable systems. There are various FPGA
architectures with fine- and coarse-grained logic block structures [26,3]. Usually, an
FPGA is a two dimensional array of configurable logic blocks (CLBs) that are intercon-
nected by connection modules, wires, and switch modules. CLBs are logic blocks with
one or more lookup tables (LUTs) where the truth tables of the implemented functions
are stored.

In developing a larger family of FPGAs, the XC4000 family, two issues were en-
countered by the authors of [23]. First, as devices get larger, proportionally more inter-
connection is needed to take advantage of the greater capacity. Second, the number of
gates that can be implemented increases quadratically with length, but the number of
inputs only increases linearly with the length, so there is potential for insufficient inputs.

The authors of [16] proposed a new architecture combining FPGAs based on LUTs
and CPLDs based on PALs/PLAs, which they called Hybrid FPGAs. This was based on
the idea that some parts of circuits are suited for LUTs, while other parts are suited for
the Product term-based structures of CPLDs.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 289–300, 2004.
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Many FPGAs use a clustered architecture where several LUTs are grouped together
inside a configurable logic block. The LUT inputs can be chosen from cluster inputs,
can come from other clusters, or can come from feedback of other LUTs in the cluster.
Previously, these internal connections were assumed to be fully connected, where every
LUT input could come from any cluster input or feedback connection. The authors of [19]
proposed only sparsely populating these internal cluster connections, which succeeded
in lowering the area required without affecting delay.

One important trade-off to study is how large to make clusters, since if the clusters
are too large, the local interconnection would be larger than what was saved from global
interconnection. The authors of [5] explored two questions: how many distinct inputs
should be provided to each cluster, and how many LUTs should be included in each
cluster. It was determined that for a cluster of size N, 2N + 2 inputs were sufficient.
Secondly, any choice between 1 and 8 BLEs per CLB was acceptable, since they all
required an area within 10% of each other.

In [1], the Vantis VF1 FPGA architecture was designed from scratch for perfor-
mance and ease-of-use. This architecture included a new logic block with variable-
logic granularity. It contained three levels of logic hierarchy: a Configurable-Building
BlockTM, a Variable-Grain-BlockTMcontaining four CBBs, and a Super-Variable-Grain-
BlockTMcontaining four VGBs.

Several new FPGA architectures have been proposed in recent years. If assumptions
about CAD tools used in experimentation for these new architectures are incorrect,
incorrect conclusions about these new architectures can be drawn. The authors of [27]
studied the sensitivity of lookup-table size, switch block topology, cluster size, and
memory size and showed that experiments are greatly affected by assumptions, tools,
and techniques used in experiments.

The authors of [2] studied the effect of LUT size and cluster size on the speed and
logic density of FPGAs. It was determined that for a cluster of size N with k-LUTs, the
number of inputs should be k/2 * (N + 1). Also, it was determined that clusters with sizes
between 4 and 10 with LUT sizes of 4 and 6 produced the best results.

Fig. 1. Lookup table (LUT), Basic logic element (BLE), and Clustered Logic Block (CLB)

In this paper, we propose a new cluster configurable logic block to reduce the area of
a traditional cluster CLB, and therefore, the FPGA. In turn, the cost and prices of FPGAs



Logic Modules with Shared SRAM Tables for Field-Programmable Gate Arrays 291

Configure
FPGA

D
es

ig
n

Sy
nt

he
si

s

R
ou

tin
g

Pl
ac

em
en

t

C
L

B
 p

ac
k

Fig. 2. FPGA/CAD flow

would drop substantially: It is well-known that cost of chips/dies grows to the fourth
power of the die area, i.e. cost=(area)4. We reduce the CLB areas by allowing an SRAM
table in a CLB to be shared by 2 LUTs. Our preliminary analysis of the synthesized
benchmarks indicates that a large percentage of many lookup tables are permutation
(P) equivalent. This analysis result motivates us to design a new CLB that would allow
mapping of multiple LUTs to one SRAM table. The remainder of the paper is organized
as follows. Section 2 covers a generic SRAM-based FPGA architecture and its CAD tool.
Section 3 presents the motivation behind this work. Section 4 introduces the architecture
of our new CLB. In Section 5, the FPGA/CAD flow for the proposed architecture is
presented. In Section 6, experimental results are included. Finally, in Section 7, we draw
conclusions from the experimental results and give future directions.

2 Preliminaries for SRAM-Based FPGA Architectures

2.1 Cluster Logic Modules with SRAM Tables

A basic logic block consists of one basic logic element (BLE). Figure 1 depicts the
components of a BLE. The BLE in Figure 1(a) consists of a K-input lookup table (LUT),
a flip-flop, and a multiplexer. The details of a 2-input LUT are shown in Figure 1(b). A
LUT has an array of SRAM cells and a selector controlled by the input literals of the
stored truth table. In this particular example, we store the truth table of an xor function,
(that is z = x⊕ y). Note that in a 2k size SRAM table, we can realize any function of k
inputs. A clustered logic block consists of an array of BLEs as shown in Figure 1(c). The
cluster has M inputs and N outputs and allows sharing of M inputs among the BLEs
as well as feeding the outputs of BLEs back to the inputs of other BLEs.

2.2 Computer-Aided Design (CAD) for FPGAs

There are tools that enable automated implementation of designs/circuits/architectures
on FPGAs. The design can be specified with a hardware description language such
as Verilog and VHDL or a tool that allows schematic capture. The overall CAD flow
is illustrated in Figure 2. In order to map a design onto FPGAs, first the design is
technology mapped using synthesis tools such as SIS [10] and RASP [9] tools. Second,
the synthesized design is placed and routed using tools for this task such as VPR [4].
Finally, the FPGA is configured with a bit stream to implement the functionality.
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3 Motivation

Prior to the introduction of SRAM-based logic modules, researchers investigated uni-
versal logic blocks that would support a great majority of logic functions with minimum
area. The proposed universal logic blocks have the capability of implementing functions
that are negated at the primary inputs, permuted at the inputs and negated at the primary
outputs, referred to as NPN equivalence [6,22]. The definition of P equivalence follows.

Definition 1. (Input permutation) Two functions f1, f2 are said to P equivalent iff there
exists a permutation π, such that f1(xπ(1), ..., xπ(n)) = f2(x1, ..., xn). P (f) represents
the set of all functions which are P equivalent to f .

SRAM-based logic blocks are universal since they can implement any function by simply
loading the truth table of the function into the SRAM table. The new goal is to compact
the SRAMs found in logic blocks. The authors of [17] employ a NOT and OR function
folding method to compact SRAMs found in logic blocks. Their folding method works
as follow, the example taken from the original paper. Let f(a, b, c) and g(a, b, c) be two
logic functions whose truth tables are 00011110 and 10001001, respectively. The truth
table of function f is divided into two parts which are 0001 and 1110. The entire truth
table of function f is constructed from one part as f = a′ · f(0, b, c) + a · f(0, b, c).
Because of this relation, we can keep only half of the truth table and derive the other
half from the first part by simply taking NOT of it. For function g, there is no such NOT
relation. However, there is an OR relation with 0001 part of f . That is, the 1001 part of
g is derived from the bit-wise logical ORing of 1000 of g and 0001 of f . As a result,

g(a, b, c) = a′ · g(0, b, c) + a · {g(0, b, c) + f(0, b, c)}

From this relation, we notice that to realize functions f and g we only need to store
halves of the truth tables of f and g. It is shown that their OR and NOT folding methods
reduce the memory requirement of full adders, comparators, and equality checkers. Note
that their method eliminates some part of SRAMs at the expense of addition of some
extra circuity as shown in their paper. Our method of reducing SRAMs in logic blocks is
different from theirs and is inspired from the previous universal logic module research.
In our approach, we identify P equivalent LUTs and map two P-equivalent LUTs into
the same SRAM table in a cluster.

4 Cluster CLB with Shared SRAM Tables

The proposed logic module allows sharing of SRAM tables within clustered CLBs. The
sharing concept is illustrated in Figure 3. In this figure, one SRAM table is shared by
two basic logic elements. The SRAM table implements two functions at the same time:
f and g, where f(yπ(0), ..., yπ(3)) = g(x0, ..., x3). With this sharing, instead of having
one SRAM table per BLE, we only need one SRAM table per two BLEs. The idea of
sharing can be extended to allow the sharing of one SRAM table among K BLEs.

The transistor counts of old and new CLB blocks are tabulated below. We assume
that Muxes are implemented with nMOS pass-transistor logic, each SRAM cell re-
quires 6 transistors, and the flip-flop is an edge-triggered D flip-flop [25]. With these
implementations our new CLB requires 96 less transistors than the original CLB.
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x[3..0]

g

y[3..0]

Fig. 3. 2 BLEs sharing one SRAM table

Fig. 4. Proposed FPGA/CAD tools

Mux16×1 Mux2×1 D SRAM16 CLBoriginal CLBnew Savings

#Transistors 16 2 22 96 272 176 96

5 CAD Tool for New FPGA Architecture

We explain our approach and tools assuming that the target FPGA architecture has 2
BLEs that share the SRAM table in a CLB. Each cluster has2×4 inputs and2outputs. Our
new tools and their positions in the general FPGA/CAD flow are shown in Figure 4(a).
In a synthesized circuit, we identify P-equivalent classes of LUTs in our Equivalence
Analysis tool, decide which LUTs to pack together in 2-way LUT Merging, and perform
placement of packed CLBs in our Placement tool. Although the LUT Merging and
Placement tasks are shown as discrete steps, in our implementation, they are carried out
simultaneously.

Equivalency Analysis Tool: After synthesis, an equivalency analysis needs to be per-
formed to determine which LUTs are P-equivalent and could potentially be merged
together. Our tool reads in a LUT-level circuit to gather all the necessary information
about the LUTs, (these are the literal names and truth tables of the functions). It then
creates a graph G =< V, E > where vertex vi ∈ V corresponds to LUT Li in the
circuit. If Li is P-equivalent Lj , then there is an edge between Li and Lj , and the edge
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is assigned some non-zero value based on which permutation is required for Li and Lj .
Figure 4(b) illustrates such a graph. For n input LUTs, there are n! possible permutations
to check at most; however, since we only use LUTs with four inputs, there are only 24
possible permutations to check, so a brute force approach is used to determine if two
LUTs are P-equivalent.

2-Way LUT Merging and Placement: After creating a graph of equivalent LUTs, the
next step is to determine which 2 LUTs to actually merge together. For a group of m

LUTs that are P-equivalent, there are m!
(2m/2×(m/2)!) (if m is even) or (m+1)!

2(m+1)/2×((m+1)/2)!
(if m is odd) different ways to pair the LUTs together.

This obviously grows very fast, so a brute force approach would probably not be
the best way to determine which equivalent LUTs to pair together. Since each CLB has
two 4-input LUTs and eight inputs, there are no input limitations on which equivalent
LUTs could be merged together. Because of this, the choice of which LUTs to merge
would have no effect on the total number of CLBs required. The choice of which LUTs
to merge, though, would have an effect on routing, such as channel width and delay;
however, placement also has a large effect on routing.

We devise a simulated annealing algorithm to optimize both which LUTs to merge
in each CLB and the placement of these CLBs. The Simulated Annealing algorithm is
an optimization approach based on the way metals cool and freeze in a minimum energy
structure[18]. The first step is to create an objective function that determines how good a
potential solution is. For our study, the overall goal is to minimize the routing costs. VPR
is used to find the best routing for a given circuit, yielding the required channel width
and the delay. Because the routing takes quite a bit of time (several minutes), the actual
routing is too time consuming to be included as part of the simulated annealing process.
Instead, our algorithm attempts to minimize the length of all the connections between
each of the LUTs, given which LUTs are merged in each CLB and the placement of
each CLB. Our objective function is simply the length of all the wires, both between the
LUTs, and between the LUTs and the IO pads. This program generated a file readable
by VPR for routing. We formulate the objective function (C) in Eq. 3. Let Ln be the
nth LUT, On be the output of Ln and In be the input set of Ln. Also, let Sm be the mth

I/O CLB or CLB. Eq. 1 computes the distance between two CLBs from their physical
coordinates. Eq. 2 measures the distance between I/O cell of On and Ln, if On is not an
output of the design, then outdist(On, Ln) returns 0.

dist(CLBx1,y1 , CLBx2,y2) = |x1 − x2| + |y1 − y2| (1)

outdist(Ln) =
{

dist(On, Ln) On goes I/O CLB
0 On goes to another LUT

}
(2)

C = min

|L|∑
n=1

|In|∑
m=1

dist(Sm, Ln) +
|L|∑

n=1

outdist(Ln) (3)

Once the objective function has been chosen, the simulated annealing algorithm is
ready to proceed. This algorithm is described inAlgorithm 1. The first step is to randomly
create a potential solution. For our study, the algorithm would create a potential solution
by randomly picking which equivalent LUTs would be merged together in each CLB
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and would also randomly pick the placement for these CLBs on the FPGA. The cost
of this solution is then computed, storing off the result as the best solution seen so far.
The following steps can be repeated as often as necessary. Our algorithm stopped after
running for a given number of iterations so that it would stop after a reasonable amount
of time, usually several minutes, but it could have also stopped after the best solution
seemed to converge.

For each iteration, the current solution is slightly mutated, yielding a slightly different
solution. For our study, the algorithm modified the current solution by either swapping
the location of two IO pads, swapping the location of two CLBs, or swapping a pair
of LUTs that were merged. The algorithm determined which of these three mutation
methods to use probabilistically, with the probabilities of each being chosen set ahead
of time. 40% of the time, the placement of two CLBs was swapped. 45% of the time, the
choice of merging two equivalent LUTs was swapped. 7% of the time, the placement of
two inputs was swapped, and 8% of the time, the placement of two outputs was swapped.
These values were determined experimentally and were found to give good results. The
algorithm then computes the cost of this mutated solution and tracks if this new solution
is the best solution seen so far. If this new solution is better than the previous current
solution, i.e. ΔC < 0 where C stands for cost, the swap is accepted, and the current
solution is set to this new solution, ending the current iteration.

Algorithm 1 LUT merging and placement
Current ← CurrentInitialSolution()
Best ← Current
while StoppingCriterion == FALSE do

while Swap not accepted do
Temp ← Swap(Current)
if Temp < Best then

Best ← Temp
end if
if ΔC < 0 then

Accept swap
Current ← Temp

else
P ← Random(0, 1)
if e−ΔC×K/T > P then

Accept swap
Current ← Temp

end if
end if

end while
end while
Return Best

If this new solution is not as good as the current solution, i.e. ΔC > 0, the current
solution could still potentially be set to this new candidate. This is where the benefit
of the simulated annealing approach comes in. Since a worse candidate solution can be
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Table 1. Benchmarks descriptions with LUT permutation equivalence classes and their average
sizes

Circuits #Inputs #Outputs #LUTs 2-inp 2-inp 3-inp 3-inp 4-inp 4-inp ave. ave. ave.
#LUTs #Cls #LUTs #Cls #LUTs #Cls 2-LUT 3-LUT 4-LUT

alu4 14 8 1522 121 6 446 19 955 43 20.17 23.47 22.21
apex2 39 3 1878 117 4 589 10 1172 29 29.25 58.90 40.41
apex4 9 19 1262 23 4 538 9 700 13 5.75 59.78 53.85

ex1010 10 10 4598 66 6 502 19 829 61 11.00 26.42 13.59
ex5p 8 63 1064 129 7 584 26 1037 60 18.43 22.46 17.28

misex3 14 14 1397 53 6 892 11 2745 47 8.83 81.09 58.40
pdc 16 40 4575 190 1 1944 5 2464 10 190.00 388.80 246.40
seq 41 35 1750 84 5 979 20 3512 51 16.80 48.95 68.86
spla 16 46 3690 45 6 227 9 792 21 7.50 25.22 37.71

accepted, the algorithm would not necessarily get stuck in local minima, which is what
happens when using hill-climbing optimization approaches. For our implementation, a
swap was accepted if it was close enough, within a percentage randomly chosen at each
iteration, to the best solution seen so far, as described below:

Select P as a random number in the range (0,1), with K some constant. If
e−ΔC×K/T > P , then new solution is close enough, and the swap is accepted.

Most simulated annealing approaches include the concept of temperature. In the
beginning, the temperature is set very high; meaning the probability of a worse candi-
date being accepted is large. As the algorithm proceeds, the temperature systematically
lowers; meaning the probability of a worse candidate being accepted lessens. A given
number of iterations are usually run for each temperature. For simplicity, our implemen-
tation just used the best cost seen so far as the temperature. Since the best cost lowers as
the algorithm proceeds, this has the same effect as manually lowering the temperature at
a predetermined rate. In the beginning, the iterations proceed extremely fast, but as the
algorithm proceeds, the amount of time required for each iteration grows at a non-linear
rate.

6 Experimental Results

In this section, first, we provide the P-equivalence analysis results of the LUT-level
benchmarks described in Table 1 to backup our motivation for designing new logic blocks
that allow sharing of SRAM tables. Second, for the same benchmarks, we assessed the
performance of our new logic block in terms of area, delay, etc., and also compared
it with the performance of the equivalent logic block that does not allow sharing. The
benchmarks chosen were the sample circuits available with the VPR package. They also
seemed to be commonly used in other FPGA studies in the literature. Out of the 20
available circuits from the VPR package, we have so far only used the 9 combinational
circuits and ignored the 11 sequential circuits. This was done only for simplicity in
writing our tools; the same results should also hold for sequential circuits since we did
nothing to change the behavior of the flip-flops in the CLBs.
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Table 2. 2 BLE/CLB results

Channel Logic delay Net delay Critical path Original
Circuit width #CLBs #CLB/row (×10−9 sec) (×10−8 sec) (×10−8 sec) #CLBs

alu4 17 761 28 4.05 7.10 7.51 761
apex2 20 939 31 5.14 7.86 8.37 939
apex4 21 631 26 4.05 7.26 7.66 631

misex3 19 2299 48 4.05 14.7 15.1 2299
seq 21 532 24 4.05 6.72 7.12 532
spla 19 699 27 4.05 7.34 7.74 699

ex1010 27 2288 48 5.14 15.9 16.4 2288
pdc 20 875 30 3.50 7.70 8.05 875
ex5p 28 1845 43 4.05 14.4 14.8 1845

6.1 P-equivalence Analysis of LUTs in Benchmarks

Our Equivalence Analysis tool performed P-equivalence analysis of the benchmarks as
shown in Table 1. For each benchmark, the average size of each P-equivalence class was
quite large. Table 1 tabulates the number of 2-input, 3-input, and 4-input LUTs in each
benchmark. For example, alu4 has 121 2-input, 446 3-input, and 955 4-input LUTs. For
each input size, the number of P-equivalent classes (#Cls) and the average number of
LUTs (ave. LUT) in a class are also tabulated. For example, alu4 has 6 permutation
equivalent classes of 2-input LUTs and the average size of each class of this type LUTs
is 20.17. It means there are 20.17 2-input LUTs per class on average.

6.2 Performance of New Logic Block

We performed two sets of experiments and collected statistics about the number of re-
quired CLBs, the channel width, logic delay, net delay, and critical path of each bench-
mark. In the first set, we mapped the circuits onto an FPGA with 2 BLEs per CLB.
Tv-pack packed the CLBs, and VPR performed the placement and routing steps. In the
second set, the circuits were again mapped onto an FPGA with 2 BLEs per CLB, but this
time our tool picked two P-equivalent LUTs, included them in the same CLB, and also
performed placement. Also, for the latter set, VPR routed the placed benchmarks. We
then compared the area and routing requirements of the proposed and traditional CLBs.
The results for channel width, logic delay, net delay, and critical path were all obtained
from VPR.

The results of the first and second experiments are tabulated in Tables 2 and 3, respec-
tively. In some benchmarks, there were slight increases in the channel width. The reason
for the increase is because only equivalent LUTs could be placed in the same cluster.
If synthesis was done to maximize the number of Equivalent LUTs, or perhaps if NPN
equivalence was used instead of just P equivalence, more LUTs would be equivalent, so
it would converge on the same channel width as the original method. In addition, there
was also a slight increase in the critical path for some of the benchmarks. However,
we believe that future improvements, such as fine tuning the simulation annealing al-
gorithm to also include the critical path when calculating the objective function, would
eliminate this increase in critical path delay. Finally, we measured the area saving of our
proposed logic block for each benchmark in terms of transistors. Table 3 also tabulates
the area savings by comparing only the utilized CLBs. For example, alu4 requires 761
original CLBs versus 782 new CLBs. With the new CLBs, a saving of 69360 transistors
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was achieved. Note, however, that this only takes into consideration the transitors for
the actual BLEs. It does not take into consideration the size of the multiplexers for the
internal connections of the CLBs, which is dependent on the number of BLEs per CLB,
as well as the number of internal connections allowed.

Table 3. Shared: 2 BLE/CLB results

Channel Logic delay Net delay Critical path Shared Transistor
Circuit width #CLBs #CLB/row (×10−9 sec) (×10−8 sec) (×10−8 sec) #CLBs Savings

alu4 19 782 28 4.60 6.99 7.45 782 69360
apex2 23 952 31 5.14 7.97 8.49 952 87856
apex4 22 638 26 4.05 8.19 8.60 638 59344

misex3 21 2303 48 5.14 14.4 14.9 2303 220000
seq 22 543 24 4.05 8.14 8.55 543 49136
spla 22 728 27 4.05 7.56 7.96 728 62000

ex1010 30 2311 49 5.14 15.4 15.9 2311 215600
pdc 23 901 31 4.60 9.56 10.0 901 79424
ex5p 32 1864 44 5.14 15.0 15.5 1864 173776

Table 4. FPGA area comparison

Original Shared Extra Transistor Extra Wires
Circuit FPGA FPGA #CLB Saving units in # CLBs WLnew/WLorig

alu4 28 × 28 28 × 28 0 75264 3248 0.899
apex2 31 × 31 31 × 31 0 92256 5952 0.925
apex4 26 × 26 26 × 26 0 64896 1404 0.842

misex3 48 × 48 48 × 48 0 221184 9408 0.889
seq 24 × 24 24 × 24 0 55296 1200 0.842
spla 27 × 27 27 × 27 0 69984 4536 0.931

ex1010 48 × 48 49 × 49 97 204112 19992 0.930
pdc 30 × 30 31 × 31 61 75664 8432 0.986
ex5p 43 × 43 44 × 44 87 162192 20768 0.962

Table 4 tabulates the area savings in terms of number of transistors by comparing the
target n× n FPGAs. For example, the original target FPGA architecture of ex1010 has
a total of 48 × 48 CLBs, but only 2288 of them are utilized. For the same benchmark,
the new target FPGA architecture has a total of 49 × 49 new CLBs, but only 2311 of
them are utilized. Although ex1010 requires 97 extra new CLBs, still the new FPGA has
204112 less transistors than the corresponding original FPGA. Moreover, we computed
the wire overhead of our approach. If we assume that the dimensions of the new and
old CLBs are equal, the number of extra wires used in the new FPGA is given under
the Extra Wires column. However, it is clear that due to area reduction of our new CLB,
the dimensions of the new CLB would be lower than those of the original CLB. We
used Eq. 5 to estimate the ratio of new wirelength over old wirelength, which is 0.804.
Also, we give the ratio of the overall wirelengths for the new and the old architectures
(WLnew/WLorig). The total wirelength in terms of the number of CLBs crossed can
be computed by the following formula:

Wirelength = 2 × (#rows + 1) × (#cols) × ChannelWidth (4)

For the wirelength with the shared CLBs, each CLB is only 0.804 as large as the
original CLBs, so the new wirelength is scaled down by a factor of 0.804. As can be
seen in the last column of the table, these ratios are less than 1 in all benchmarks.
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This guaranties that there will be reductions not only in CLB area but also in the total
wirelength. Again, this does not take into account the multiplexers for the internal CLB
connections.

WLnew

WLorig
=

√
176
272

= 0.804 (5)

7 Conclusions and Future Work

In this paper, we proposed a new clustered logic block for SRAM-based FPGAs that
allow sharing of SRAM tables among basic logic elements (BLEs). Our analysis results
indicate that there is a great potential for saving from logic block area when the proposed
logic blocks and tools are used. With the proposed architecture, around half of the SRAM
tables can be eliminated from the existing FPGA architectures when we merged only 2
LUTs. In case of merging more than two LUTs, more than half of the SRAMs tables
would be eliminated. As a result, significant area reduction will reflect to the costs of
FPGAs and will make the proposed architecture an essential choice for applications that
demand very low area. In the light of these results, we will continue this research to
better understand pros and cons of SRAM table sharing in the clustered logic blocks.

As future work, we will physically design the new FPGA architecture and assess
its performance at the layout level. Also, we will investigate new FPGA architectures
which can efficiently utilize new concept of LUT sharing. We plan to study how sharing
SRAM tables is affected by the number of inputs to each cluster as well as the number
of CLBs in each cluster. Another important area to consider is the tradeoff in terms of
power consumption with the new shared architecture.
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Abstract. Field Programmable Gate Arrays (FPGAs) can be used in
Intrusion Prevention Systems (IPS) to inspect application data contained
within network flows. An IPS operating on high-speed network traffic can
be used to stop the propagation of Internet worms and to protect net-
works from Denial of Services (DoS) attacks. When used in the backbone
of a core network, the device will be exposed to millions of active flows
simultaneously. In order to protect the data in each connection, network
devices will need to track the state of every flow. This must be done at
multi-gigabit line rates without introducing significant delays.
This paper describes a high performance TCP processing system called
TCP-Processor which supports flow processing in high-speed networks
utilizing multiple devices. This circuit provides stateful flow tracking,
TCP stream reassembly, context storage, and flow manipulation services
for applications which process TCP data streams. A simple client inter-
face eases the complexities associated with processing TCP data streams.
In addition, a set of encoding and decoding circuits has been developed
which efficiently transports this interface between multiple FPGA de-
vices. The circuit has been implemented in FPGA hardware and tested
using live Internet traffic.

1 Introduction

Including reconfigurable networking technology within the core of the Internet
offers enhanced levels of service to users of the network. New types of data
processing services can be applied to either all traffic traversing the network, or
to just a few selected flows.

This paper presents a modular circuit design of a content processing sys-
tem implemented in FPGA hardware. A circuit has been built that reassembles
TCP/IP data packets into their respective byte streams at multi-gigabit line
rates. The implementation contains a large per-flow state store which maintains
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64 bytes of state information per active flow and supports 8 million bidirectional
TCP flows concurrently.

The technology described in this paper supports the coupling of other FPGA-
based data processing circuits in order to develop larger, more complex process-
ing systems. This technology enables a new generation of network services to
operate within the core of the Internet.

The remainder of this paper is divided into the following sections. Section
2 provides motivation for this work. Section 3 describes related work on high-
performance processing systems. Section 4 describes the design of the system.
Section 5 describes current results. Section 6 outlines future work and section 7
provides concluding statements.

2 Motivation

Over 85% of all traffic on the Internet today uses the TCP/IP protocol. TCP is
a stream-oriented protocol providing guaranteed delivery and ordered byte flow
services. Processing of TCP data flows at a location in the middle of the network
is extremely difficult. Along the way, packets can be dropped, duplicated and
re-ordered. Packet sequences observed within the interior of the network can be
different from packets received and processed at the connection endpoints. The
complexities associated with tracking the state of end systems and reconstructing
byte sequences based on observed traffic are significant [2].

Many types of network services require access to the TCP stream data
traversing high-speed networks. These services may include those which detect
and prevent the spread of Internet worms/viruses, those that detect and remove
spam, those that perform content-based routing operations, and those that se-
cure data. The TCP processing circuit described in this paper enables these
complex network services to operate at gigabit speed by providing an environ-
ment for processing TCP stream data in hardware.

A vast number of end systems communicate over the Internet. This traffic
is concentrated to flow over a relatively small number of routers which forward
traffic through the core of the Internet. Currently, Internet backbones operate
over communication links ranging in speed from OC-3 (155 Mbps) to OC-768 (40
Gbps) rates. Table 1 illustrates a breakdown of common communication links,
their corresponding data rates, and the rate at which packets of different sizes
can be transmitted over those links. It is important to note that with faster
links processing smaller packets, circuits must be able to process millions of
TCP packets per second. Other existing TCP processing circuits are unable to
operate at high bandwidth rates and manage millions of active flows. Instead,
these other network monitors typically operate on end systems or in local area
networks where the overall bandwidth and/or the total number of flows to be
processed is low.

The TCP processing circuit described in this paper handles the complexi-
ties associated with flow classification and TCP stream reassembly. It exposes
network traffic flow data through a simple client interface. This enables other
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Table 1. Optical links and associated data rates

40 byte 64 byte 500 byte 1500 byte
Link type Data rate pkts/sec pkts/sec pkts/sec pkts/sec

OC-3 155 Mbps .48 M .3 M 38 K 12 K
OC-12 622 Mbps 1.9 M 1.2 M .16 M 52 K
GigE 1.0 Gbps 3.1 M 2.0 M .25 M 83 K
OC-48 2.5 Gbps 7.8 M 4.8 M .63 M .21 M

OC-192/10 GigE 10 Gbps 31 M 20 M 2.5 M .83 M
OC-768 40 Gbps 130 M 78 M 10 M 3.3 M

high-performance data processing sub-systems to operate on network content
without having to perform complex protocol processing operations.

3 Related Work

The majority of existing packet capturing and monitoring systems are software-
based and have severe performance limitations that prevent them from effec-
tively monitoring high speed networks. Software-based solutions like Bro [11],
Snort [12], and WebSTAT [15] perform analysis of TCP flows, but are limited
to processing data at rates less than 100Mbps.

FPGA-based network processing systems can process network traffic at much
higher data rates. A hardware circuit developed at Georgia Tech called TCP-
Stream Reassembly and State Tracking can analyze a single TCP flow at 3.2Gbps
[10]. The circuit was tested using a FPGA device which tracks the state of a TCP
connection and performs limited buffer reassembly. Because the circuit operates
only on a single flow, additional copies of the circuit need to be instantiated in
order to process multiple flows simultaneously. Using this scheme, a maximum
of 30 flows can be processed with a Xilinx Virtex 2000E FPGA device.

Another FPGA-based approach to TCP processing was undertaken at the
University of Oslo [7]. This design provides TCP connection state processing
and TCP stream reassembly functions for both client and server directed traffic
on a single TCP connection. A 1024-byte reassembly buffer is maintained for
both client-side and server-side traffic. Packets lying outside of the reassembly
buffer space on receipt are dropped. Portions of the circuit design have been
implemented and are able to process data at 3.06Gbps. A separate instance
of this circuit is required to process each individual TCP connection. A Xilinx
Virtex 1000E FPGA can support a maximum of 8 TCP flows. Thus for hardware,
existing systems are severely limited in the number of flows that they can process.
Additionally, they provide no simple mechanisms to support interfacing with
other types of data processing sub-systems.

Hardware sub-systems have been developed which match patterns in data
streams using deterministic finite automata (DFA) and nondeterministic finite
automata (NFA) circuits. Sidhu and Prasanna implemented a regular expres-
sion matching engine in FPGA logic that constructs NFAs [14]. Franklin et al.
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extended this work by creating FPGA-based regular expressions corresponding
to the Snort rule database [6]. Moscola et al. developed a DFA-based approach
to regular expression processing in hardware [9]. Although the time and space
requirements associated with constructing DFAs can be exponentially long in
the worst case, the authors show that such scenarios rarely occur and that their
DFA implementation on average contains fewer states than a NFA implemen-
tation. Other work has led to the development of content matching systems
implemented with Bloom filters that can scan for very large numbers of strings
[5]. Circuits have been developed which use multiple hashes and probabilistic
matching in order to scan for 35,475 unique signatures on a Virtex 2000E [1].

All of these types of FPGA-based data processing circuits are prime candi-
dates for integration with the modular TCP processing system outlined in this
paper.

4 Design

The TCP flow processing architecture described in [13] has been implemented
in FPGA logic. It is capable of monitoring 8 million bidirectional TCP flows on
an OC-48 (2.5 Gbps) network link. This circuit provides a simple client interface
enabling other FPGA circuits to easily process TCP data streams. Network data
packets are annotated with additional control signals which provide information
about which data bytes correspond to the IP header, the TCP header, and
the TCP payload section. There are also signals that indicate which TCP data
bytes are part of a consistent stream of data and which bytes should be ignored
because they are retransmissions. Signals which indicate the beginning and end
of flow are included along with a unique flow identifier so that the client can
independently manage per-flow context.

The architecture for the TCP-Processor consists of six distinct components.
These include an input buffer, a TCP processing engine, a state store manager,
a routing module, an egress module, and a statistics module. The layout of the
components along with data flow and component interactions can be seen in
Figure 1. There are two additional components, an encode module and a decode
module, which encode and decode data for transport between multiple FPGA
devices. The main flow of data traverses the circuit following the path indicated
by the bold/white arrows. The state store manager stores and retrieves per-flow
context information from off-chip memory. The dotted line through the middle of
the circuit indicates that the ingress and egress portions of the TCP processing
can be separated from each other and placed on different devices.

Data enters the engine as IP data packets from the Layered Protocol Wrap-
pers [3,4] via a 32-bit wide data bus. Packets are initially processed by the input
buffer component which buffers packets if there are any downstream process-
ing delays. These delays can be caused by client applications which can induce
backpressure into the system by sending a flow control signal.

Data from the input buffer flows into the TCP processing engine. Packets are
classified and associated with the appropriate flow context information retrieved
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Fig. 1. Layout of TCP-Processor

via the state store manager. The TCP checksum is validated and other TCP-
specific processing occurs at this time. New flow context information is written
back to the state store manager and the packet is passed on to the packet routing
module.

The packet routing module provides the client interface. Figure 2 shows the
timing diagram of the transmission of a single TCP data packet to the monitoring
application. The DATA and FLOWSTATE busses contain an indication of the
data that would be present at each clock cycle during normal processing. The
components of the IP and TCP headers are shown with the control signals.
Signals are provided which indicate the start of frame (SOF), start of IP header
(SOIP), and the start of IP payload (SOP). The TCP data enable signal (TDE)
indicates that there is TCP stream data on the DATA bus and the BYTES
vector identifies which of the four bytes on the DATA bus contain in-order TCP
stream data. In this example, the NEWFLOW signal indicates that the data
contained within this packet represents the first few bytes of a new data stream
and that the monitoring application should initialize its processing state prior to
processing this data. Additional information can be clocked through the data bus
before and/or after the packet data. This allows for lower-level protocols, such
as VCIs, Ethernet MAC addresses, shims, or packet routing information to pass
through the hardware along with the packet. On the DATA bus of Figure 2, the
AAA and BBB data values represent lower layer protocol and control information
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prior to the start of the IP packet. CCC and DDD represent trailer fields that follow
the IP packet. The AAA, BBB, CCC, and DDD content is ignored by the monitoring
application but is passed through to the client interface of the TCP-Processor
for use in outbound packet processing.
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Fig. 2. Timing Diagram showing Client Interface

The state store manager manages interactions with a large external memory
module to store per-flow context information. By default, 64 bytes of context
information is stored for each flow. When the TCP-Processor is configured for
bidirectional monitoring, 32 bytes of storage are used for each direction of traffic
flow. Because the context information needs to be retrieved and updated when
processing each packet, the circuit that implements the state store manager is
highly optimized.

The statistics module collects and maintains event counts from the other
components in the system. 28 independent counters collect information that in-
cludes the number of packets processed by each module, the number of new
flows, the number of terminated flows, the number of active flows, counts of the
TCP data bytes processed, counts of the total bytes processed, counts of the
out-of-sequence packets and the number of retransmitted packets. This data is
accumulated in separate 16, 24 and 32 bit counters, depending on the expected
frequency of each event. On a predetermined periodic interval, all of the collected
statistics are formatted into a UDP packet and transmitted to an external ap-
plication where the data can be written to disk or plotted in real-time.

This TCP processing architecture includes a mechanism for efficiently trans-
porting signals from one FPGA device to another, which enables the develop-
ment of complex intrusion prevention systems implemented on multiple FPGAs.
Signals on one device are encoded and transported to a second device where the
information is decoded and the original waveform is reproduced. The encoded
format uses an 8-bit header containing a 4-bit type and a 4-bit header length.
This format is both self describing and extensible and therefore enables addi-



A Modular System for FPGA-Based TCP Flow Processing 307

tional information to be added to the encoded data as it is passed from device
to device. This encoded header information is prepended to the network data
packet and sent across the inter-device data path. Older processing circuits can
easily skip past new control headers by examining the common header fields and
advancing to the next control header. Figure 3 shows the encoding and decoding
process.
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Fig. 3. Encoding signals for TCP/IP flows processed by multiple FPGAs

5 Results

The TCP-Processor circuit has been implemented in FPGA logic. When target-
ing a Xilinx Virtex XVC2000E-8 FPGA, the TCP-Processor has a post place-
and-route frequency of 85.565MHz utilizing 59% (95/160) of the block RAMs
and 35% (7279/19200) of the slices. The device is capable of processing 2.9 mil-
lion 64-byte packets per second. A diagram of the TCP-Processor circuit layout
on a Xilinx Virtex 2000E FPGA is shown in Figure 4. The layout is loosely
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divided into regions which correspond to the various processing functions of the
circuit.
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Fig. 4. TCP-Processor circuit layout on Xilinx XCV2000E

The TCP-Processor has been tested on the Field-programmable Port Exten-
der (FPX) platform [8]. The FPX platform contains a Xilinx Virtex 2000E-8
FPGA, two 2.5Gbps interfaces, two 2MB external ZBT SRAM devices and two
512MB external PC100 SDRAM devices. The two network interfaces are posi-
tioned such that devices can be stacked on top of one another. Figure 5 shows
FPX devices in a stacked configuration. A Gigabit Ethernet line card used to
transfer data out of the FPX platform is visible in the foreground.

6 Future Work

By incorporating newer FPGAs, such as the Xilinx Virtex-II Pro, traffic can be
processed at OC-192 (10Gbps) data rates using a circuit like the one described
in this paper. A few additional mechanisms can be employed to increase the
performance of the TCP-Processor for use in OC-768 (40Gbps) networks. In a
faster circuit, memory latency could prevent the circuit from fully processing a
steady stream of minimum length packets. By instantiating two copies of the
TCP processing engine and using an input buffer to route traffic between the
two engines, the memory latency issue can be overcome by threading.

A new extensible networking platform is currently under development at the
Washington University Applied Research Laboratory. This platform will incor-
porate the Xilinx Virtex-II Pro FPGA, Double Data Rate (DDR) memory, a
Ternary Content Addressable Memory (TCAM) and an Intel network processor
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Fig. 5. Stacked FPX devices

to support traffic processing at 10 gigabits per second. We plan to support the
TCP-Processor on this new research platform.

7 Conclusion

This paper described the design and implementation of a high-performance TCP
flow monitoring system called TCP-Processor for use in an extensible environ-
ment. The TCP-Processor was implemented and tested on a Xilinx XCV2000E
FPGA utilizing the FPX platform. The circuit operates at 85MHz and is capable
of monitoring 8 million bidirectional TCP flows at OC-48 (2.5 Gbps) data rates.
This design could be enhanced to monitor higher speed networks by employing
parallel processing circuits and using current FPGA and memory devices.

The TCP-Processor provides a simple client interface for monitoring TCP
flows which annotates existing network data packets with additional signals.
The design of the TCP-Processor is both modular and flexible and can be eas-
ily adapted to other extensible networking environments which employ FPGA
devices.
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Abstract. This paper presents a tool for automatic synthesis of highly
efficient intrusion detection systems using a high-level, graph-based par-
titioning methodology, and tree-based lookahead architectures. Intru-
sion detection for network security is a compute-intensive application
demanding high system performance. This tool automates the creation
of efficient FPGA architectures using system-level optimizations, a rela-
tively unexplored field in this area. The pre-design tool allows for more
efficient communication and extensive reuse of hardware components for
dramatic increases in area-time performance. The tool is available online
for public use.

1 Introduction

Pattern matching for network security and intrusion detection demands excep-
tionally high performance. This performance is dependent on the ability to match
against a large set of patterns, and thus the ability to automatically optimize
and synthesize large designs is vital to a functional network security solution.
Much work has been done in the field of string matching for network security
[1,2,3,4,5]. However, the study of the automatic design of efficient, flexible, and
powerful system architectures is still in its infancy.

Snort, the open-source IDS [6], and Hogwash [7] have thousands of content-
based rules. A system based on these rulesets requires a hardware design opti-
mized for thousands of rules, many of which require string matching against the
entire data segment of a packet. To support heavy network loads, high perfor-
mance algorithms are required to prevent the IDS from becoming the network
bottleneck. One option is to move the matching away from the processor and on
to an FPGA, wherein a designer can take advantage of the reconfigurability of
the device to produce customized architectures for each set of rules.

By carefully and intelligently processing an entire ruleset (Figure 1), our tool
can partition a ruleset into multiple pipelines in order to optimize the area and
time characteristics of the system. By applying automated graph theory and
trie techniques to the problem, the tool effectively optimizes large ruleset, and
then generates a fully synthesizeable architecture description in VHDL ready for
1 Supported by the United States National Science Foundation/ITR under award No.

ACI-0325409 and in part by an equipment grant from the HP Corporation.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 311–321, 2004.
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Fig. 1. Automated optimization and synthesis of partitioned system

place and route and deployment in less than 10 seconds for a set of 351 patterns,
and less than 30 for 1000 patterns.

2 Related Work in Automated IDS Generation

Snort [6] and Hogwash [7] are current popular options for implementing intrusion
detection in software. They are open-source, free tools that promiscuously tap
the network and observe all packets. After TCP stream reassembly, the pack-
ets are sorted according to various characteristics and, if necessary, are string-
matched against rule patterns. However, the rules are searched in software on a
general-purpose microprocessor. This means that the IDS is easily overwhelmed
by periods of high packet rates. The only option given by the developers to im-
prove performance is to remove rules from the database or allow certain classes
of packets to pass through without checking. Some hacker tools even take advan-
tage of this weakness of Snort and attack the IDS itself by sending worst-case
packets to the network, causing the IDS to work as slowly as possible. If the IDS
allows packets to pass uninspected during overflow, an opportunity for the hacker
is created. Clearly, this is not an effective solution for maintaining a robust IDS.

Automated IDS designs have been explored in [1], using automated gener-
ation of Non-deterministic Finite Automata. The tool accepts rule strings and
then creates pipelined distribution networks to individual state machines by
converting template-generated Java to netlists using JHDL. This approach is
powerful but performance is reduced by the amount of routing required and
the logic complexity required to implement finite automata state machines. The
generator can attempt to reduce logic burden by combining common prefixes to
form matching trees. This is part of the pre-processing approach we take in this
paper.

Another automated hardware approach, in [5], uses more sophisticated al-
gorithmic techniques to develop multi-gigabyte pattern matching tools with full
TCP/IP network support. The system demultiplexes a TCP/IP stream into sev-
eral substreams and spreads the load over several parallel matching units using
Deterministic Finite Automata pattern matchers. In their architecture, a web
interface allows new patterns to be added, and then the new design is generated
and a full place-and-route and reconfiguration is executed, requiring 7-8 minutes.
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As their tools have been commercialized in [8], only some of their architectural
components are freely available to the community.

The NFA concept is updated with predecoded inputs in [9]. This paper ad-
dresses the poor frequency performance as the number of patterns increases, a
weakness of earlier work. This paper solves most of these problems by adding
predecoded wide parallel inputs to a standard NFA implementations. The result
is excellent area and throughput performance.

In [2,3], a hardwired design is developed that provides high area efficiency
and high time performance by using replicated hardwired 32-bit comparators
in a pipeline structure. The matching technique proposed is to use four 32-bit
hardwired comparators, each with the same pattern offset successively by 8 bits,
allowing the running time to be reduced by 4x for an equivalent increase in
hardware. These designs have adopted some strategies for reducing redundancy
through pre-design optimization. Expanding their earlier work, [2] reduces area
by finding identical alignments between otherwise unattached patterns. Their
preprocessing takes advantage of the shared alignments created when pattern
instances are shifted by 1, 2, and 3 bytes to allow for the 32-bit per cycle ar-
chitecture. The work in [3] shares the pre-decoded shift-and-compare approach
with our work, but they utilize SRL16 shift registers where we utilize single-
cycle delay flip-flops. Their work also utilizes a partitioning strategy based on
incrementally adding elements to partitions to minimize the addition of new
characters to a given partition.

3 Our Approach

This research focuses on the automatic optimization and generation of high-
performance string-matching systems that can support network traffic rates
while providing support for large pattern databases. The tool generates two ba-
sic architectures, a pre-decoded shift-and-compare architecture, and a variation
using a tree-based area optimization. In this architecture, a character enters the
system and is “pre-decoded” into its character equivalent. This simply means
that the incoming character is presented to a large array of AND gates with
appropriately inverted inputs such that the gate output asserts for a particular
character. The outputs of the AND gates are routed through a shift-register
structure to provide time delays. The pattern matchers are implemented as an-
other array of AND gates and the appropriate decoded character is selected
from each time-delayed shift-register stage. The tree variation is implemented
as a group of inputs that are pre-matched in a “prefix lookahead” structure and
then fed to the final matcher stage. The main challenge in the tree structure is
creating the trees; this is discussed in Section 4.

The notion of predecoding has been explored in [10] in the context of finite
automata, the use of large, pipeline brute-force comparators for high speed was
initiated by [11] and furthered by [12]. The use of trees for building efficient
regular expression state machines was initially developed by [1]. We explored
the partitioning of patterns in the pre-decoded domain in [13]. We utilize these
foundational works and build automatic optimization tools on top.
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Fig. 2. Partitioned graph; by reducing the cut between the partitions we decrease the
number of pipeline registers

With our domain specific analysis and generation tool, extensive automation
carefully partitions a rule databases into multiple independent pipelines. This
allows a system to more effectively utilize its hardware resources. The key to our
performance gains is the idea that characters shared across patterns do not need
to be redundantly compared. Redundancy is an important idea throughout string
matching; the Knuth-Morris-Pratt algorithm, for instance, uses precomputed
redundancy information to prevent needlessly repeating comparisons. We utilize
a more dramatic approach; by pushing all character-level comparisons to the
beginning of the comparator pipelines , we reduce the character match operation
to the inspection of a single bit.

Increasing the number of bits processed at a single comparator unit increases
the delay of those gates. The pre-decoding approach moves in the opposite di-
rection, to single-bit, or unary, comparisons. We decode an incoming character
into a “one-hot” bit vector, in which a character maps to a single bit.

Because intrusion detection requires a mix of case sensitive and insensitive
alphabetic characters, numbers, punctuation, and hexadecimal-specified bytes,
there is an interesting level of complexity. However, each string only contains a
few dozen characters, and those characters tend to repeat across strings.

Using the min-cut heuristic, the patterns are partitioned n-ways such that
the number of repeated characters within a partition is maximized, while the
number of characters repeated between partitions is minimized. The system is
then generated, composed of n pipelines, each with a minimum of bit lines.
The value of n is determined from results; we have found n= 2-4 most effective
for rulesets of less than 400 patterns. Conversely, for the 603 and 1000 pattern
rulesets, the highest time performance is achieved with eight partitions. However,
as the area increases moderately as the number of partitions increases, the area-
time tradeoff must be considered. The tools, on average, can partition a ruleset
to roughly 30 bits, or about the same amount of data routing in the 32 bit
designs of [2,3]. The matching units are least 8x smaller (32 down to 4 bits), and
we have removed the control logic of KMP-style designs such as [14].

Our unary design utilizes a simple pipeline architecture for placing the ap-
propriate bit lines in time. Because of the small number of total bit lines required
(generally around 30) adding delay registers adds little area to the system design.
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First, the tool partitions the patterns into several groups (Figure 2). Each
group of patterns is handled by an independent pipeline to minimize the length
of interconnects. We create a graph representation of the patterns to minimize
the number of characters that have to be piped through each pipeline.

The graph creation strategy is as follows. We start with a collection of pat-
terns, represented as nodes of a graph. Each pattern is composed of letters. Every
node with a given letter is connected by an edge to every other node with that
letter. We formalize this operation as follows:

Sk = {a : a ∈ C | a appears in k} (1)
VR = {p : p ∈ T} (2)
ER = {(k, l) : k, l ∈ T, k �= l and Sk ∩ Sl �= ∅} (3)

Graph creation before partitioning; a vertex V is added to graph R for each
pattern p in the ruleset T and an edge E is added between any vertex-patterns
that have a common character in the character class C

This produces a densely connected graph, almost 40,000 edges in a graph
containing 361 vertices. Our objective is to partition the big graph into two or
more smaller groups such that the number of edges between nodes within the
group is maximized, and the number of edges between nodes in different groups
is minimized. Each pipeline supplies data for a single group. By maximizing the
edges internal to a group and minimizing edges outside the group which must
be duplicated, we reduce the width of the pipeline registers and improve the
usage of any given character within the pipeline. We utilize the METIS graph
partitioning library [15].

One clear problem is that of large rulesets (>500 patterns). In these situations
it is essentially impossible for a small number of partition to not each have the
entire alphabet and common punctuation set. This reduces the effectiveness of
the partitioning; however, if we add a weighting function the use of partitioning
is advantageous into much larger rulesets. The weighting functions is as follows:

WE =
min(|k|,|l|)∑

i=1

[(min(|k|, |l|) − i) if (k(i) == l(i)) else 0] (4)

The weight WE of the edge between k and l is equal to the number of char-
acters k(i) and l(i) in the pattern, with the first character comparison weighted
as the length of the shortest pattern. The added weight function causes patterns
sharing character locality to be more likely to be grouped together.

The addition of the weighting function in Equation 4 allows the partitioning
algorithms to more strongly put patterns with similar initial patterns of char-
acters to be grouped together. The weighting function is weak enough to not
force highly incompatible patterns together, but is strong enough to keep sim-
ilar prefixes together. This becomes important in the tree approach, described
next.
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Table 1. Illustration of effectiveness of tree strategy for reducing redundant compar-
isons.

Number of Prefixes
No. of Patterns First Level Second Level

204 83 126
361 204 297
602 270 421
1000 288 523

4 Tree-Based Prefix Sharing

We have developed a tree-based strategy to find pattern prefixes that are shared
among matching units in a partition. By sharing the matching information across
the patterns, the system can reduce redundant comparisons. This strategy al-
lows for increased area efficiency, as hardware reuse is high. However, due to the
increased routing complexity and high fanout of the blocks, it can increase the
clock period. This approach is similar to the trie strategy utilized in [1], in which
a collection of patterns is composed into a single regular expression. Their DFA
implementation could not achieve high frequencies, though, limiting its useful-
ness. Our approach, utilizing a unary-encoded shift-and-compare architecture
and allowing only prefix sharing and limited fanout, provides much higher per-
formance. Beyond the strategic difference of the shift-and-compare architecture,
our tree approach differs from the trie approach because in that it is customized
for the 4-bit blocks of characters. This produces a lower depth tree as there is
only a new branch for each block of four, making for a smaller architectural de-
scription generation problem. Moreover, the four character prefixes map to four
decoded bits, fitting perfectly within a single Xilinx Virtex 4-bit lookup table.

Figure 3 illustrates the tree-based architecture. Each pattern (of length
greater than 8) is composed of a first-level prefix and a second-level prefix. Each
prefix is matched independently of the remainder of the pattern. After a single-
clock delay, the two prefixes and the remainder of the pattern are combined
together to produce the final matching information for the pattern. This is effec-
tive in reducing the area of the design because large sections of the rulesets share
prefixes. The most common prefix is /scripts, where the first and second-level
prefixes are used together. The 4-character prefix was determined to fit easily
into the Virtex-style 4-bit lookup table, but it turns out that number is highly
relevant to intrusion detection as well. Patterns with directory names such as
/cgi-bin and /cgi-win can share the same first-level prefix, and then each have a
few dozen patterns that share the -bin or -win second-level prefix.

In Table 1, we show the various numbers of first and second-level prefixes
for the various rulesets we utilized in our tests. Second-level prefixes are only
counted as different within the same first-level prefix. For this table, we created
our rulesets using the first n rules in the Nikto ruleset [7]. There is no intentional
pre-processing before the tool flow. The table shows that, on average, between 2
and 3x redundancy can be eliminated through the use of the tree architecture.
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Fig. 3. Illustration of Tree-based hardware reuse strategy. Results from two appro-
priately delayed prefix blocks are delayed through registers and then combined with
remaining suffix. The key to the efficiency of this architecture is that the prefix matches
are reused, as well as the character pipeline stages

However, some of this efficiency is reduced due to the routing and higher fanout
required because of the shared prefix matching units.

5 Performance Results for Tool-Generated Designs

This section will present results based on partitioning-only unary and tree archi-
tectures automatically by our tool. The results are based on ruleset of 204, 361,
602 and 1000 patterns, subsets of the Nikto ruleset of the Hogwash database [7].

We utilized the tool to generate system code for various numbers of partitions.
Table 2 contains the system characteristics for partitioning-only unary designs,
and Table 3 contains our results for the tree-based architecture. As our designs
are much more efficient than other shift-and-compare architectures, the most
important comparisons to make are between “1 Partition” (no partitioning) and
the multiple partition cases. Clearly, there is an optimal number of partitions for
each ruleset; this tends toward 2-3 below 400 patterns and toward 8 partitions
for the 1000 pattern ruleset. The clock speed gained through partitioning can
be as much as 20%, although this is at the cost of increased area. The tree
approach produces greater increases in clock frequency, at a lower area cost. The
602 pattern ruleset shows the most dramatic improvements when using the tree
approach, reducing area by almost 50% in some cases; the general improvement is
roughly 30%. Curiously, the unpartitioned experiments actually show an increase
in area due to the tree architecture, possible due to the increased fanout when
large numbers of patterns are sharing the same pipeline.

Table 4 contains comparisons of our system-level design versus individual
comparator-level designs from other researchers. We only compare against de-
signs that are architecturally similar to a shift-and-compare discrete matcher,
that is, where each pattern at some point asserts an individual signal after com-
paring against a sliding window of network data. We acknowledge that it is
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Table 2. Partitioning-only Unary Architecture: Clock period (ns) and area (slices) for
various numbers of partitions and patterns sets

Number of Patterns in Ruleset
No. Partitions 204 361 602 1000

1 4.18 5.18 5.33 5.41
Clock 2 4.45 4.50 5.60 5.17
Period 3 3.86 4.80 4.55 5.6

4 3.99 4.24 5.06 5.22
8 4.17 5.19 4.60 4.93
1 800 1198 2466 4028
2 957 1394 3117 4693

Area 3 1043 1604 3607 5001
4 1107 1692 4264 5285
8 2007 1891 5673 6123

Total chars in ruleset: 4518 8263 12325 19584
Characters per slice (min): 5.64 6.89 4.99 4.86

impossible to make fair comparisons without reimplementing all other designs.
We have defined performance as throughput/area, rewarding small, fast designs.
The synthesis tool for our designs is Synopsis Synplicity Pro 7.2 and the place
and route tool is Xilinx ISE 5.2.03i. The target device is the Virtex II Pro
XC2VP100 with -7 speed grade. We have done performance verification on the
Xilinx ML-300 platform. This board contains a Virtex II Pro XC2VP7, a small
device on the Virtex II spectrum. We have subsets of the database (as deter-
mined to fit on the device) and they execute correctly at the speeds documented
in Table 2.

In Table 2 and 3, we see that the maximum system clock is between 200 and
250MHz for all designs. The system area increases as the number of partitions
increases, but the clock frequency reaches a maximum at 3 and 4 partitions for
sets under 400 rules and at 8 partitions for larger rulesets. Our clock speed, for
an entire system, is in line with the fastest single-comparator designs of other
research groups. On average, the tree architecture is smaller and faster than the
partitioning-only architecture. In all cases the partitioned architectures (both
tree and no-tree) are faster than the non-partitioned systems.

The smallest of designs in the published literature providing individual match
signals is in [10], in which a state machine implements a Non-deterministic Finite
Automata in hardware. That design occupies roughly 0.4 slice per character. Our
tree design occupies roughly one slice per 5.5-7.1 characters, making it signifi-
cantly more effective. While this approach is somewhat limited by only accepting
8 bits per cycle, the area efficiency allows smaller sets of patterns to be replicated
on the device. This can increase throughput by allowing for parallel streams of
individual 8-bit channels. For a single, high-throughput channel, the stream is
duplicated, offset appropriately, and fed through duplicated matchers, allowing
multiple bytes to be accepted in each cycle. The tool is capable of generating 4
and 8-byte systems as well (results are included in Table 4, descriptions of these
architectures can be found in [13]).
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Table 3. Tree Architecture: Clock period (ns) and area (slices) for various numbers of
partitions and patterns sets

Number of Patterns in Ruleset
No. Partitions 204 361 602 1000

1 4.89 5.25 5.43 5.35
Clock 2 4.18 4.27 4.8 4.22
Period 3 3.99 4.15 4.32 5.08

4 4.1 4.1 4.54 4.69
8 4.3 4.43 4.628 4.9
1 773 1165 2726 4654
2 729 1212 2946 3170

Area 3 931 1410 2210 5010
4 1062 1345 2316 5460
8 1222 1587 2874 6172

Total chars in ruleset: 4518 8263 12325 19584
Characters per slice (min): 6.19 7.09 5.577 6.17

Table 4. Pattern size, average unit size for a 16 character pattern (in logic cells; one
slice is two logic cells), and performance (in Mb/s/cell). Throughput is assumed to be
constant over variations in pattern size

Design Frequency Throughput Unit Size Performance
USC Unary 258 MHz 2.07 Gb/s 7.3 283

USC Unary (1 byte) 223 MHz 1.79 Gb/s 5.7 315
USC Unary (4 byte) 190 MHz 6.1 Gb/s 22.3 271
USC Unary (8 byte) 160 MHz 10.3 Gb/s 32.0 322
USC Unary (Tree) 250 Mhz 2.00 Gb/s 6.6 303

Los Alamos[4] 275 MHz 2.2 Gb/s 243 9.1
UCLA RDL [2] 100 MHz 3.2 Gb/s 11.4 280

GATech (NFA) [9] 218 MHz 7.0 Gb/s 50 140
U/Crete (FCCM) [3] 303 MHz 9.7 Gb/s 57 170

After partitioning, each pattern within a given partition is written out, and
a VHDL file is generated for each partition, as well as a system wrapper and
testbench. The size of the VHDL files for the 361 ruleset total roughly 300kB in
9,000 lines, but synthesize to a minimum of 1200 slices. While the automation
tools handle the system-level optimizations, the FPGA synthesis tools handle
the low-level optimizations. During synthesis, the logic that is not required is
pruned – if a character is only utilized in the shallow end of a pattern, it will
not be carried to the deep end of the pipeline. If a character is only used by
one pattern in the ruleset, and in a sense wastes resources by inclusion in the
pipeline, pruning can at least minimize the effect on the rest of the design.

In the 361 pattern, 8263 character system, the design automation system
can generate the character graph, partition, and create the final synthesizeable,
optimized VHDL in less than 10 seconds on a desktop-class Pentium III 800MHz
with 256 MB RAM. The 1000 pattern, 19584 character ruleset requires about
30 seconds. All of the code code except the partitioning tool is written in Perl,
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a runtime language. While Perl provides powerful text processing capabilities
useful for processing the rulesets, it is not known as a high performance language.
A production version of this tool would not be written in a scripting language.
Regardless of the implementation, the automatic design tools occupy only a
small fraction of the total hardware development time, as the place and route
of the design to FPGA takes much longer, roughly ten minutes to complete for
the 361 pattern, 8263 character design.

6 Conclusion

This paper has discussed a tool for system-level optimization using graph-
based partitioning and tree-based matching of large intrusion detection pattern
databases. By optimizing at a system level and considering an entire set of pat-
terns instead of individual string matching units, our tools allow more efficient
communication and extensive reuse of hardware components for dramatic in-
creases in area-time performance. Through preprocessing, our tool automatically
generates highly area-efficient designs with competitive clock frequencies.

We release the collection of tools used in this paper to the community at
http://halcyon.usc.edu/˜zbaker/idstools
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Abstract. This paper presents a novel approach to interconnect fault
location for FPGAs during power-on sequence. The method is based
on a concept known as fault grading which utilizes defect knowledge
during manufacturing test to classify faulty devices into different defect
groups. A Built-In Self-Test (BIST) method that can efficiently identify
the exact location of the interconnect fault is introduced. This procedure
forms the first step of a new interconnect defect tolerant scheme that
offers the possibility of using larger and more cost effective devices that
contain interconnect defects without compromising on performance or
configurability.

1 Introduction

The area occupied by wiring channel and interconnect configuration circuits
in an FPGA is significant, occupying 50 to 90 percent of the chip area [1].
With current trends aiming to reduce the area occupied by wire segments in
the routing channels, wire width and separation have been reduced. This has
in turn led to higher occurrences of wiring defects, such as breaks and shorts,
and manufacturing yield decrease [2]. As an alternative to increase once again
wire widths and separation, we propose a method to categorize devices exhibiting
similar functional defects, in order to provide a solution to tolerate such physical
defects and increase manufacturing yield.

Our work aims to take advantage of the deep knowledge manufacturers have
of the defects occurrences in their devices [11], while trying not to affect the
user’s load and device performance.

This paper will introduce a new method to categorize faulty devices, as well as
providing test procedures to locate device defects whenever needed. The Built-In-
Self-Test (BIST) requires a relatively small amount of configurations to efficiently
locate and identify a specific type of defect, determined by the defect grade of
the device. Our BIST architecture is easily scalable and can detect multiple
functional faults.

This paper will introduce a new approach to defect tolerance. In Section 2
a brief summary of the relevant work carried in this field is given. We go on to
provide essential background information in Section 3, and introduce the fault
grading concept in Section 4. Section 5 will introduce the testing procedure.
Section 6 provides some details of the implementation, and finally, in Section 7
we give a brief summary and describe future developments of the work.
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2 Previous Work

There are two main strategies to interconnect testing in FPGAs. One is the ap-
plication of BIST approach to interconnects [3,7,8,9]. The BIST technique pro-
posed by Stroud et al. [3] is a comparison based approach. Two WUTs (Wires
Under Test) receive identical test patterns and their outputs are compared by
ORAs (Output Response Analyzers). This approach however fails to detect mul-
tiple faults that have identical faulty behavior in the two WUTs groups. This
BIST technique is also aimed at dynamic faults, and can be used during device
operation. It provides complete fault coverage, however it requires an external
reconfiguration controller.

A similar concept has been proposed by Niamat et al [7]. Two sets of 4 wires
are applied with test vectors and their output compared. The ORA in this case
does not produce a pass/fail indication but a bit sequence. The output response
is then stored in a LUT and used at later stages to locate the position of the
fault.

A different implementation based on parity check was proposed by Sun et al
[10]. In this approach the outputs of the WUTs, connected in snake-like chains,
are checked for parity against the parity from the original test vectors at the
ORA to produce a pass/fail result. This approach however, due to the way par-
ity checking is done, has only 50% error detection efficiency and is very time
consuming. The authors in [8] presented a BIST scheme for cluster-based FPGA
architectures. Based on the concept of test transparency, they define configu-
rations which enable test access to high density logic clusters embedded within
each FPGA tile.

In general, the BIST approaches reported so far require many configurations
and are unsuitable if fast testing is needed. The other strategy is a more classical
approach not using BIST. Various researchers have proposed different models
[4,5,6], based on different assumptions. All these methods, albeit very fast and
compact, are limited in functionality by the number of I/O pins needed to access
the chip at various stages of the testing process. They are thus unsuitable to
applications requiring resource inexpensive testing.

3 Background

3.1 SRAM FPGA Architecture and Physical Layout

The target FPGA architecture is an island-style FPGA. As stated in previous
sections, our work is targeting problems that may arise as devices grow in size.
We are therefore targeting the latest top-end devices [12,13]. These have clear
architectural characteristics, such as hierarchical routing and multiple LUTs
in their configurable logic blocks. Because of their advanced development, the
switch matrices inside these elements are very complex. Unfortunately, not much
is known about the their structure and connectivity. We will therefore assume
a simple switch matrix block, where any incoming wire can connect to only one
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other wire in all 3 directions. This simplified model, while sufficient to demon-
strate basic principles of our method, can easily be extended to cope with com-
plex switch matrices.

Furthermore, we make the assumption that the defect occurs into only one
type of interconnect resource and that all others are functionally faultless. This
in turns leads to the assumption that all wires of the same segment type lie on
the same physical layer. Furthermore, wires of the same type in the horizontal
and vertical channels do not lie in adjacent layers, thus eliminating the issue
of cross-connections between them. All these assumptions can easily be relaxed
without affecting the basic method described.

3.2 Fault Models

Our structural fault model only targets FPGA’s interconnect resources. The in-
terconnect structures of a typical FPGA include wires and programmable switch
matrices.

Typical faults affecting wirings are short and open faults. Switch Matrices
faults are limited to switches being stuck-off or stuck-on. Stuck-off faults are
treated in the same way as wire opens. Stuck-on faults, however, are more diffi-
cult to detect and diagnose. Stuck-on faults mean that two wires are permanently
connected via the switch matrix. In the presence of stuck-on faults the signal is
propagated through an unwanted resource and hence the fault location procedure
has to account for all possibilities. This means that all possible combinations of
switch matrix configuration have to explored. Figure 1 shows all the possible
fault occurrences.

CLB CLB CLB CLB

Length 2 Lines

Length 3 Lines

Stuck-
on

BridgeOpen Stuck-off

CLB CLB CLB CLB

Length 2 Lines

Length 3 Lines

Stuck-
on

BridgeOpen Stuck-off

Fig. 1. Fault Models

4 Fault Grading

Devices undergo a multitude of manufacturing tests at various stages of the
manufacturing process. Some degree of test is performed at the wafer level,
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where defective devices are marked and discarded after cutting. Parametric tests
are performed on packaged devices; failing devices are once again discarded,
whereas devices that pass parametric tests are ”binned” into different speed
categories depending on how they performed during tests. Failed devices are
mainly discarded even though the total amount of resources affected by a physical
defect is minimal. Some of these devices can be used, albeit not in full capacity.
Manufacturers have already looked at ways to reuse faulty devices. One such
solution is offered by Xilinx with their Easypath devices[14]. Easypath devices
are tested only for the resources used for a specified design. This means that
devices do not have to pass all manufacturing tests, but only a limited number
of them. Customers are then offered with devices mapped exclusively for their
design, but at a reduced cost. They however lose the possibility to reconfigure
the devices for future upgrades.

Instead of using the Easypath approach, we propose that devices can be
categorized with respect to the functional fault they exhibit. Functional faults
are independent of physical faults, such as open vias or masking defects found
during manufacturing tests [11]. A specific functional fault only affects part of
the device, and if it can be avoided, the rest of the chip can be made to work with
only slightly altered characteristics. Our fault grading scheme aims to provide
fault categories for defective devices that have failed similar functional tests.

The concept of fault grading is very similar to that of speed grading: devices
will always exhibit different characteristics, and are therefore categorized accord-
ing to specific parameters. Devices are marked and designs compiled according to
those specific parameters. It is therefore possible to generate new categories, and
using this information defective devices can be used to implement the majority
of designs.

The fault grades contain information about the fault the device exhibits. The
amount of information the fault grades contain is a trade-off between what is
needed in order to avoid the fault and generalization of the defect. One extreme
is a fault grade that contains the exact location and type of fault. The other
extreme is a simple tag identifying a faulty device. A good compromise is a
fault grade that indicates what type of resource is affected. This leads to a
limited number of fault grades, that contain enough information to generate
test configurations to locate the fault in the device during power-on.

As an example, consider a Xilinx Virtex II PRO device and its general routing
matrix [12]. This device offers 4 different types of lines: direct connections, double
lines, hex lines, long lines. Four fault grades could be used to categorize fault on
the wire resources. Two grades could be used for switch matrices faults, one to
identify stuck-on faults and one for stuck-off faults. These grades are chosen with
a defect tolerance scheme in mind, and how to avoid certain defects with the
lowest overhead possible. Assuming that all other resources are unaffected, we
can efficiently test all the interconnects of the same type that could possibly be
faulty, during the power-on sequence, in order to provide an alternative design
to avoid the faulty resource.
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5 Testing Strategy

We propose a BIST methodology to detect and diagnose a functional fault on
a known interconnect resource type. Our strategy consists of a point to point
analysis, where a wire is forced to a logical value at one end and observed at
the other. If the observed output is not equal to the input, a fault is present.
A BIST environment consists of the Test Vector Generator(TVG), the Wires
Under Test(WUT), and the Output Response Analyzer(ORA). TVGs select the
pattern of 0’s and 1’s to be applied on the WUTs, while the ORAs compare the
the WUTs response against a predefined sequence and issue a pass/fail signal
accordingly.

Considering the nature of modern FPGAs, where routing channels are con-
siderably large, it is feasible to group the Wires Under Test together and perform
an analysis at the ORA of all grouped wires.

TVGs and ORAs can be implemented using CLBs. As most modern devices
are made of large CLBs (comprising of multiple LUTs) we can implement a TVG
and a ORA using a single CLB. The TVG/ORA combinations are arranged in a
chain that spans the entire width or height of the device.When a fault is detected,
a ’fail’ signal is passed on through to the chain end. The propagation within the
chain is synchronized with a clock, so that an ORA in the N th position in the
chain will only be allowed to access the chain at the N th clock cycle. When a
’fail’ signal is detected at the end of chain, the position of the chain in the array
is found by the BIST controller using simple decoding logic. A diagram of such
a system is shown in Figure 2.
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Fig. 2. Testing Strategy

5.1 WUTs Grouping

Taking into account that 4-input LUTs are the main building block in most
modern FPGA, the simplest ORA implementation is by using one such element.
The TVGs are implemented using multiple LUTs, one for each wire in the set
of WUTs. This allows complete independence of test vectors between wires in a
set of WUTs. As a compromise between TVGs and ORAs implementations, it
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was decided to group the WUT in groups of 4. This arrangement would require
a single 4-input LUT for the ORA, whereas 4 4-input LUTs would be required
for the TVGs. Such quantities are not uncommon in readily available devices
[12]. The implementation can be altered to best fit any device with different
architectural characteristics. The resulting arrangement is shown in Figure 3.
The dotted lines in Figure 3 represent wires from the adjacent set of wires,
which have to be driven with opposite signals as the adjacent WUT to account
for bridging faults across assigned sets. Those wires are not considered at the
ORA but might nonetheless have an effect on the WUT in case of bridging faults.

TVG
TVG/
ORA

TVG/
ORA

ORA

Fig. 3. Grouped WUTs between ORAs and TVGs

5.2 TVG and ORA Operation

TVGs generate bit sequences to account for all possible faults that could develop
in the interconnect resource. They are implemented as simple look-up tables,
where the output is selected from the Test Selector input. The Test Selector
input is generated from the BIST controller, and is a global signal routed to
all TVGs. For wiring faults, four basic test vectors can detect any defective
occurrence. These, defined as the four basic vectors, are:

– 0000 Tests for stuck at 1 faults.
– 1111 Tests for stuck at 0 faults.
– 1010 No two adjacent wires are applied the same value. Tests for bridging

faults.
– 0101 Alternating 1’s and 0’s, in reverse order from the previous test vector.

Tests for bridging faults.

The basic test vectors can identify the set of WUTs that contains a fault. To
correctly identify the exact faulty wire within a given set of WUTs, extra test
vectors can be used. This second set of vectors is dependent upon the result of
four basic test vectors and is decided by the BIST controller. The function of
the second set of vectors is purely to improve the fault resolution.

The ORA function is to generate a pass/fail signal according to some prede-
fined parameters. The ORA is designed to fit in a single 4-input LUT and under
our scheme, it will issue a ’pass’ signal only if the four WUT have logical values
corresponding to the 4 basic test vectors. Under all other circumstances it will
issue a ’fail’ signal.
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5.3 BIST Controller Operation

The BIST controller operation during test is shown in Figure 4. While the test
vectors are being propagated through the chains, the BIST controller checks the
end of all chains for any ’fail’ signal being issued. If such a signal is found, the
current counter value (representing how far along the chain the vectors have been
propagated) and the chain end identifier represent the coordinate of the ORA
that has detected the fault. The output from the BIST controller is a string of
four bits regarding which of the four basic test vectors has found a fault. If, for
instance, the string of results from the BIST controller is 1000, test vector 1 has
caused a fault. This means that the fault present in the system is a stuck-at-1
fault, as test vector 1 could not have caused or detected any other unexpected
behavior.

1. var ChainEnds: array of binary(0 to N-1) :=(all=0);  //Chain Ends 
2. var result: array of binary (0 to 3) := ‘0000’  //Test results 
3. var counter, x_coord, y_coord: integer 
4.  
5. begin 
6.  for ( j in 0 to 3) 
7.       case j is  
8.            when (0) – apply 0000    //Test vectors 
9.            when (1) – apply 1111 
10.            when (2) – apply 1010 
11.            when (3) – apply 0101 
12.       end case 
13.       counter := 0  
14.       for (x in 0 to M-1) 
15.           for (i in 0 to N-1) 
16.                if ChainsEnds(i) = 1 then   //Fault found 
17.                     result(j) = 1    //Fault recorded 
18.                     x_coord := counter   
19.                     y_coord := i  
20.                 end if 
21.           end for 
22.           counter:=counter + 1 
23.       end for 
24.  end for 
25. end 

Fig. 4. BIST operation during test

From the inspection of the test results of the basic test vectors the BIST
controller can determine what type of fault is present in the system and apply
other test vectors to identify exactly which wire in the group of WUTs is faulty.
Note than any fault or combination of faults confined within the set of WUT
would cause at least two tests to fail. The only possible fault not confined within
the set of WUT is a bridge onto adjacent set of wires. This causes only one of
the bridging test vectors to fail. From the combination of failed tests the BIST
controller can reduce the fault resolution to 2 or 3 wires or pairs of wires in the
set of WUTs, as shown in Table 1. The second set of test vectors is designed
purely to increase the fault resolution by selection of any one of the already
selected wires. During propagation of the extra test vectors, the pass/fail signal
from the ORAs are used as selection between wires to identify the faulty one.

If, for example, the combined test results are 1010, the fault is limited between
Wire 2 or Wire 4 being stuck at 1. The next test vector, 1110, is then propagated.
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Table 1. BIST selection

Test Vectors (Wire 1 - Wire 4)
(1) - 0000 (2) - 1111 (3) - 1010 (4) - 0101 Fault Next Vector

0 0 0 0 No Fault N/A
1 0 1 0 Wire 2 or Wire 4 s-a-1 1110
1 0 0 1 Wire 1 or Wire 3 s-a-1 0111
0 1 1 0 Wire 1 or Wire 3 s-a-0 1000
0 1 0 1 Wire 2 or Wire 4 s-a-0 0001
0 0 1 1 Bridge All previous 4
0 0 0 1 Bridge onto next set All previous 4
0 0 1 0 Bridge onto next set All previous 4

All others Multiple faults Composite

As by this point we have eliminated the possibility of any other fault, the ORA
inputs can only be 1110, if Wire 2 is s-a-1, or 1111, if Wire 4 is s-a-1. The first
option will result in a ’fail’ signal from the ORA, whereas the second option will
result in a ’pass’ signal. From the ORA response we can therefore increase our
fault resolution to identify precisely the faulty wire.

6 Implementation

We are proposing a BIST strategy to be used with prior knowledge of the faulty
resource. Our BIST strategy is a point to point one, where test vectors are applied
at one end to a set of WUTs and observed at the other. TVGs and ORAs are
arranged in rows, so that pass/fail results are propagated and read from only
one location for each row. The BIST controller decodes the outputs from the
end of the ORA chains to provide fault location. The WUTs are grouped in sets
in order to offer the highest degree of parallelism considering the architectural
and strategic constraints. The total number of configurations needed to complete
testing is dependent upon the total number of wires of the same type present
in the device. The configurations are grouped into phases, where configurations
belonging to the same phase aim to test different interconnects appertaining to
the same channel.

6.1 Number of Configurations

To fully test a routing channel all lines originating or terminating from a single
CLB have to be tested. If the architecture has L lines of a specific type originate
from any CLB in a channel, then the test of all lines in a channel will need �L/4�
number of configurations. Modern FPGAs rarely have more than 20 lines of any
type generating from any CLB in one channel [12], hence 5 configurations are
sufficient to test all lines in channel. These make up a test phase.
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6.2 Wire Testing Phases

Considering an M × N array , with N CLBs in each horizontal channel and
N CLBs in each vertical channel, N + 1 vertical routing channels and M + 1
horizontal routing channels exist [1]. Testing of each horizontal or vertical routing
channel requires all the CLBs in a row or column, respectively. In the vertical
and horizontal direction, testing of all channels requires at least 2 phases, where
during the first N or M channels respectively are tested, and in the second
the channel left over is tested. The second phase of the vertical and horizontal
channels testing can be combined, as shown graphically in Figure 5. Three phases
are required to test all the lines of the same type in all channels. If �L/4� are
required for each phase, a total of 3 × �L/4� are needed for testing the whole
device.
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6.3 Switch Matrix Testing Phases

To test for switch matrix faults the WUTs signals are routed trough switch
matrices. Stuck-off faults are dealt dealt with just like open faults. In the event
of stuck-on faults, bridges are created within the switch matrix configurations
for detection.

The switch matrix configurations needed to test for all stuck-on and stuck-off
faults ar shown in Figure 6. The diagram shows the routing inside the switch
matrix in order to cause bridging faults under all possible matrix combinations.
At the same time, the routing shown also explores all the possible connections
within the matrix itself. The testing scheme remains unchanged: if an ORA
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Fig. 6. Switch Matrix fault diagnosis phases
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detects an unexpected behavior, a ’fail’ signal is propagated through the end of
the chain. The only tweak to the original scheme is that two TVGs connected
to the same switch matrix produce opposite signals. In the case of stuck-on
switches, this causes a behavior identical to that of a bridging fault.

The diagnosis of stuck-off faults is straight forward, as ’fail’ signal from any
ORA can only be caused by one faulty connection in all routing configurations.
For stuck-on faults, however, a different analysis has to be performed. A per-
manent connection between two terminal will cause all the ORAs connected to
the faulty switch matrix to detect a fault. But any permanent connection will
only be detected during a specific number of routing configurations. From the
analysis of the result of the 4 test phases, the BIST controller can determine
the exact faulty connection. The faults and failures caused are summarized in
Table 2.

Table 2. Stuck-on faults resolution

Faulty Connection Routing configuration detected by
North-East ii,iii,iv
North-West i,iii,iv
South-East i,iii
South-West ii
North-South i,ii
East-West i,ii,iii

6.4 Case Study: Xilinx Virtex II Pro

This FPGA device allows TVG and ORAs to be implemented in a single CLB,
thanks to the high number of 4-input LUTs present. For simplicity purposes we
consider the case where a double line in the general routing matrix is faulty for a
XC2V20 device. The Virtex II Pro has 20 double lines originating from a CLB in
both vertical and horizontal channels. This leads to a total of 5 configurations per
test phase. Therefore a complete test would require 15 configurations. to fully test
all double lines available in the FPGA. Assuming a worst-case scenario of JTAG
download, each configurations requires 249ms, so the total time required for
reconfigurations is 3.74s. This time can be considerably reduced if a SelectMap
interface is used for download. In this case, total download time would be just
over 0.3s. The actual test time, in terms of clock cycles is in both cases much
smaller than the configuration download time and thus it would not affect total
testing time by a great amount.

7 Conclusions and Future Work

We have presented a new framework for FPGA testing for defect tolerance.
The concept of device fault grading has been introduced, together with simple,
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effective testing procedures. Under our scheme it is possible to load testing con-
figurations to the FPGA with the specific aim of locating a fault whose nature
is already known. The testing is done completely on-chip.

This work provides manufacturers and users with a different approach to de-
fect tolerance. The development of this framework is based around the assump-
tion that defective devices will show similar functional faults spread around the
chip area. It is possible to categorize these defects with respect to their functional
faults. In the design process we can account for the fault to be found anywhere
around the chip and limit the usage of a faulty resource to a minimum. The exact
location of the fault can be found by loading the proposed test configurations
during the power-on sequence

The next step in our work will be to integrate the fault grading and fault
diagnostic into a complete defect tolerance framework, offering an alternative
design to the most common defect tolerance problems.
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Abstract. This paper addresses the problem of Test Effectiveness (TE)
evaluation of digital circuits implemented in FPGAs. A Hardware Fault
Simulation (HFS) technique, particularly useful for evaluating the effectiveness
of built-in self-test (BIST) is detailed. This HFS, efficiently, injects and un-
injects faults using small partial reconfiguration files and ascertain (or not) the
BIST to be used in the FPGA circuits. Different fault models are compared
regarding their efficiency and complexity. The methodology is fully automated
for Xilinx Spartan and Virtex FPGAs. Results, using a Digilab2 board,
ISCAS’85 and 89 benchmarks, show that our methodology can be accurate and
orders of magnitude faster than software fault simulation even with more
demanding fault models.

1   Introduction

Stand-alone or embedded FPGA cores in Systems on a Chip (SoC) need to be tested.
Dependable systems require that, during product lifetime, FPGA circuits may be
tested, in particular for the target-programmed functionality. Such system
specification makes the use of Built-In Self-Test (BIST) technology very attractive. In
fact, lifetime testing using BIST may allow a low cost solution, and by using at-speed
testing, it enables the detection of dynamic faults, which are relevant in DSM (Deep
Sub-Micron) semiconductor technologies [1]. BIST technology routinely uses low
cost PR (Pseudo-Random) TPG (Test Pattern Generators), like LFSRs, and signature
analyzers, like MISRs. Random pattern resistant faults may require refined
approaches, e.g., as weighted PR, or re-seeding techniques [2]. The modules under
self-test may be combinational, sequential or reconfigured in test mode. Nevertheless,
test quality needs to be ascertained, during the design phase. Four quality metrics can
be defined: test effectiveness, test overhead, test length (the number of test vectors in
the test session) and test power. The necessary condition is test effectiveness, i.e., the
ability of a given test pattern to detect likely defects, induced during IC
manufacturing or during lifetime operation and aging. Defects coverage is usually
evaluated through the FC (Fault Coverage) metrics, using a fault model, such as the
single Line Stuck-At (LSA) fault model. Typically, BIST solutions lead to low test
overhead (additional hardware resources / speed degradation), large test length
(compensated by at-speed vector application) and moderately high test power (Power
consumption required for the BIST session).
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The major issue addressed in this paper is: how can we, in a cost-effective way,
evaluate the test effectiveness in a FPGA circuit? This question can be divided in two
sub questions: what to test (fault model related) and how to evaluate test effectiveness
(methodology related).

What to test?
The functionality of circuits implemented in FPGAs depends not only on the

absence of physical defects in the device but also on the presence of the right
configuration. As a consequence, there are two possible approaches for testing FPGA
circuits:

1. Test the hardware as exhaustively as possible and afterwards reconfigure
and/or read back the device configuration in order to make sure that it is correct
[3][4];

2. Test the circuit structurally with its configuration;
The first approach has the advantage of being implementation independent but has

serious disadvantages in test overhead, length and power, since the configuration
information needs to be duplicated and exhaustive hardware test requires from the
system the capability of reconfiguring the FPGA. However, those overheads can be
significantly reduced if the reconfiguration hardware is shared by several FPGAs. In
that case the remaining cost is reduced to the duplication of the configuration
information. This solution is not BIST at chip level, since the FPGA cannot test its
own functionality, but can be viewed as system level BIST.

The second approach is the chip level BIST. However, for FPGA circuits, self-test
effectiveness, besides the usual measure of the (physical) defects coverage must also
include an evaluation of the correctness of the configuration. Thus, for test
effectiveness evaluation, structure and configuration faults must be taken into
account.

How to evaluate test effectiveness?
 For complex devices, fault simulation (FS) may be a very costly process, especially

for sequential circuits. In fact, circuit complexity, test length and fault list size may
lead to a large computational effort. Although many efficient algorithms have been
proposed for SFS (Software Fault Simulation) (see, e.g., [5] and [6]), for complex
circuits it is still a very time-consuming task and can significantly lengthen the time-
to-market. Moreover, observability in embedded BIST is not for each vector, but only
for each signature captured after all test vectors are applied. This fact may
compromise fault dropping, routinely used to severely restrict SFS costs.

FS can be implemented in software or hardware [1]. The ease of developing
software tools for FS (taking advantage of the flexibility of software programming)
made SFS widely used. However, the recent advent of very complex FPGAs
components created an opportunity for HFS (Hardware Fault Simulation), which may
be an attractive solution for at least a subset of practical situations. As an example,
BIST effectiveness evaluation may require a heavy computational effort in fault
simulation since long test sessions are needed to evaluate systems composed of
several modules that have to be tested simultaneously in order to evaluate aliasing and
generate fault dictionaries for diagnosis purpose. Another FS task not efficiently
performed by software tools is multiple fault simulation, mainly because of the
enormous number of possible fault combinations. However, multiple fault simulation
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may become mandatory, namely in the certification process of safety-critical
applications [7]. HFS may cope with these issues. In particular, if a FPGA design with
BIST is programmed in the target FPGA, could we use it for fault injection and test
effectiveness evaluation?

In this paper, the classical single and multiple LSA fault models are compared with
the recently proposed [8] CSA (combination stack at) fault model using a highly
efficient HFS methodology and tool for BIST effectiveness evaluation. The HFS is
based on efficient partial reconfiguration with very small bit files used for fault
injection. These bit files are obtained from the full configuration bit file, by means of
its direct manipulation, without requiring any additional software tools.

In section 2, previous work is reported. In section 3, fault models are discussed.
Section 4 details LUTs extraction and HFS using partial reconfiguration. Section 5
describes experimental results. Finally, section 6 presents the conclusions of this
work.

2   Previous Work

Several research works have addressed the test of FPGAs in the recent past. [3] and
[4] are examples of how FPGA hardware can be reconfigured and tested, without
extra dedicated hardware in the FPGA, taking advantage of the reconfiguration
capability. The main focus of research in this area targets on-line test and test time
minimization while assuring exhaustive hardware defects coverage. The configuration
loaded is not tested and external hardware is required to reconfigure the FPGA under
test. In this work it is assumed that the FPGA should be able run BIST without any
external dedicated equipment.

Test effectiveness must be evaluated via fault simulation. Different HFS
approaches using FPGAs have been proposed in the literature, mainly targeting ASIC
prototyping. Dynamic fault injection, using dedicated extra hardware, and allowing
the injection of different faults without reconfiguring the FPGA, was proposed in [9-
12]. The additional hardware proposed for implementing dynamic fault injection uses
a Shift Register (SR) whose length corresponds to the size of the fault list. Each fault
is injected when the corresponding position in the SR has logic “1”, while all other
positions have logic “0”. Upon initialization, only the first position of the SR is set to
“1”. Then, the “1” is shifted along the SR, activating one fault at a time.  This
technique was further optimized in [13]. However, a major limitation of this
technique is the fact that the added hardware increases with the number of faults to
inject, which limits the size of the circuits that can be simulated. In [10], it is shown
that parallelism is possible by injecting independent faults at the same time. This
parallelism is limited to faults in different propagation cones; however, the reported
speedup is only 1.36 times the pure serial FS. In [14], a new approach that included a
backward propagation network to allow critical path tracing [15] is proposed. This
information allows multiple faults to be simulated for each test vector; nevertheless, it
also requires heavy extra hardware. Only combinational circuits have been analyzed.
A serial FS technique that requires only partial reconfiguration during logic emulation
was proposed in [16], showing that no extra logic need be added for fault injection
purposes. The authors show that HFS can be two orders of magnitude faster than SFS,
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for designs over 100,000 gates. More recently, other hardware fault injection
approaches were proposed in [17-19] using the JBITS [20] interface for partial FPGA
reconfiguration. The JBITS software can achieve effective injection of faults on
Look-Up-Tables (LUTs) [17,18] or erroneous register values [19] requiring the Java
SDK 1.2.2 [21] platform and the XHWIF [22] hardware interface.

3   Fault Models

3.1   Structural Faults

In the HFS works mentioned in previous section, FPGAs are used for ASIC
prototyping purposes and their possible faults are not the main target of the test.

In order to test a circuit implemented in a FPGA, ensuring that its functionality is
correct with a certain degree of confidence (measured by test efficiency), not only
structural faults must be modeled, but also configuration must be tested.

Most efficient HFS methods are based in LUT fault injection since it is possible to
inject/un-inject LUT faults very efficiently and LUTs are used to implement a
significant part of the circuit’s logic (for prototyping purposes a significant sample of
the fault coverage can be evaluated).

LSA faults are the type of faults commonly modeled in LUTs. The reconfiguration
vector that corresponds to the LUT input A stuck at value v is obtained by copying the
values yvBCD to y¬vBCD for each BCD combination. For instance, the vector for the fault
input A LSA-1 is obtained, as illustrated in Figure 1, by copying y1000 to y0000, y1001 to
y0001, y1110 to y0110, …, y1111 to y0111. Fault collapsing can be made easily by identifying the
faults that require the same faulty LUT contend.

001/01/010

100111

010/11/001

101/0100

10110100AB/

CD

001/01/010

100111

010/11/001

101/0100

10110100AB/

CD

A=1

Fig. 1. Computing the 16 bits for LUT injection of fault “input A LSA-1”.

This LUT LSA fault model significantly evaluates if the structure of the circuit is
tested since the logic implemented in LUT gives an over 70% sample of the CLBs
structural faults [23].

Routing configuration bits are also partially tested in this structural LUT test since
LSA are modeled in all LUT ports (a significant sample of the CLB used logic) and
routing faults may be detected as incorrect values at LUT’s inputs. However, it is
possible that the wrong connected node exhibits a correct logic value each time it is
observed. The probability of this undesired aliasing is reduced when the number of
observations is increased.
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3.2   Configuration Faults

In the example of Figure 1 there are five LUT input combinations that can produce an
erroneous output in the faulty LUT (corresponding to five changes in the LUT
contents). If the test sequence includes one of them, and the corresponding output is
observed, this fault is considered detected by the test.

In order to test each LUT position content and reduce the aliasing probability of
routing faults the Combination Stuck At (CSA) fault model [8] must be used. The
number of faults, for this model, is identical to the possible combinations of LUT
active inputs. Each fault is injected by inverting only the LUT bit position that
corresponds to one input combination. The total coverage of CSA faults corresponds
to the exhaustive LUT functionality test for the programmed configuration. Thus,
CSA is a functionality driven fault model instead of a line driven fault model. It
models configuration faults and also structure faults since LSA fault model can be
viewed as multiple CSA fault modeling.

Note that CSA test requires half the vectors needed for testing each LUT position
with both logic values (exhaustive LUT testing). Table 1 compares the number of
CSA faults with the number of LSA faults for different LUT types. The column “LSA
colap.” presents an approximate number of collapsed LSA faults based on the
experiments that are reported in section 5. This Table shows that, when the CSA fault
model is used, it leads to an increase in the fault list size, especially for LUTs with 4
active inputs. As these are the most used LUTs, CSA fault lists are around 50% bigger
then LSA fault lists. This increase reflects linearly in the fault simulation time, since
in HFS faults are injected consecutively. Nevertheless, since partial reconfiguration
based HFS is very fast, this increase in the fault list size is an affordable price to pay
for the increase of accuracy granted by the CSA model, as it will be demonstrated in
section 5.

Table 1. Number of LSA faults and CSA faults.

LUT type LSA faults LSA colap. CSA faults
LUT0 2 1 1
LUT1 4 2 2
LUT2 6 4 4
LUT3 8 5 8
LUT4 10 8 16

4   LUTs Extraction and Fault Injection

4.1   LUT Extraction

Xilinx Virtex [24] and Spartan FPGA components were used in this work, due to the
fact that partial reconfiguration of these components is possible and documented [25].
The proposed methodology is an extension of the work reported in [8]. As shown in
[25], the binary file for configuration of these FPGAs can be divided in 6 major parts:
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1. Header with project and target FPGA id.    4.   BRAM configuration.
2. Enable program mode.                                 5. Error detection code (crc).
3. CLB configuration.                                      6. Enable normal operation mode.

Each configuration file (total or partial) consists on sequences of commands and
frames. Each command contains two 32 bit word: the first word is an operation code.
The second word is an operand. Frames are the smallest amount of data that can be
read or written with a single command; frame size depends on the specific FPGA
number of rows: 18 times the number of rows, rounded up to a multiple of 32. CLBs
(Configurable Logic Blocks) are the building blocks for implementing custom logic.
Each CLB contains two slices. Each slice contains two 4 input LUTs, 2 flip-flops and
some carry logic. In order to extract the LUT’s configuration, the software tool
developed analyses the part of the frames that describes the CLBs configuration, as
depicted in Figure 2.

Each LUT can be used to implement a function of 0, 1, 2, 3 or 4 inputs. The
number of inputs relevant for each used LUT must be identified, for the target
functionality, in order to include the corresponding faults in the fault list.

16 fram es 16 fram es 16 fram es
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configuration
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configuration

interconnect
configuration

1 co lum n: 48 fram es of C LBs configuration
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fram e16
set o f 18

bits
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each set o f 18 bits
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00 01 10 11ab
cd

LUT

Fig. 2. Positions in the frames of the LUT configuration bits.

Since each LUT has 4 inputs, the LUT contents consist of a 16-bit vector, one
vector for each combination of the inputs. The LUT configuration 16-bit vector can
be denoted y0000, y0001, y0010, …, y1111, where each bit position corresponds to the LUT
output value for the respective combination of the inputs i3, i2, i1 and i0. If one input
has a fixed value, then an 8 bit vector is obtained. For instance, if we have always
i3=0, then the relevant 8 bit vector is y0000, y0001, y0010, y0011, y0100, y0101, y0110, y0111.
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After retrieving the information of each LUT from the bit file, the relevance of
each input ix (x=0,1, 2 and 3) is evaluated, by comparing the 8-bit vectors
corresponding to ix=0 and ix=1. If these two vectors are identical, then the input ix is
not active. This is how we extract the LUT types, e.g., LUT2, LUT3 or LUT4,
according to their number of relevant inputs.

4.2   Fault Injection and Simulation

In order to inject a fault, the LUT content must be changed. This change depends on
the fault to inject and on the LUT fault free information. LUTs with identical fault
free configurations require fault injections with the same faulty LUT contend. In order
to increase efficiency, the faulty LUT contend is pre-computed for each possible fault
in the fault-free LUT configuration.. The definition of fault model is made in a file
that associates one or several LUTs faulty contents to each possible combination of
the 16 bits that correspond to the fault free LUT configuration. The simulation tool,
after loading this file, sequentially injects the faults using bit files that reconfigure
only the minimum number of frames required to un-inject the previous fault and inject
the next one. The binary file for partial reconfiguration requires the faulty frames and
a restricted number of commands, which we don’t find clear in [25], and we have
identified as:

1. Header - 32 bits “1”.
2. Synchronization command.
3. CRC reset command.
4. FLR – spec. of the frame size.
5. COR – start-up enable command.
6. MASK – en. writing the CTL reg.
7. ASSERT HIGH
8. FAR – add. of initial CLB frame.
9. write – en. configuration writing.
10. FDRI – nbr of conf. words to send.
11. CLBs configuration words

12. CRC
13. LFRM – type / add. of last frame
14. FDRI – number of configuration

words to send for the last frame.
15. Config. words for the last frame.
16. START-UP – start-up enable.
17. CTL – Memory read enable and

config. pins use specification.
18. CRC
19. Termination bits.

    This partial reconfiguration is repeated during the FS process. In order to start each
FS, the developed tool sends a start-BIST commands and waits for BIST-end to read
the signature in the multiple input shift register (MISR). At present, this interaction
between the software that controls the fault simulation process and the FPGA is
accomplished using the JTAG 200 Kb parallel III port. Xilinx USER1 instruction is
used as the start-BIST command. USER2 instruction is the read signature command.
The validation of the tool was carried out in a DIGILAB 200 E board with a Xilinx
Spartan 200 E FPGA. However, the developed software tool supports every board
with JTAG interface with Virtex or Spartan FPGAs, including the E type.
The developed tool delivers a fault simulation report. This report includes, for each
fault, the target LUT type and location, equivalent faults, detection result and MISR
signature. The LUT inputs and output are also identified, using information from the
LUT extraction.
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    In order to enable fault dropping and increase performance, a twin implementation
of the circuit under test is configured. Faults are injected in one of the circuits and
each output response is compared instead of BIST signatures. Besides fault dropping,
this approach enables FC tracing.

5   Results

In Table 2, the collapsed number of faults is given, for the CSA, single and multiple
LSA fault models, for ISCAS’85 and 89 benchmark circuits [26] C7552, S5378 (with
full scan). Multiple LSA faults include all combinations of 2, 3 and 4 LSA faults in
the LUT inputs. In this table HFS times are also reported for the simulation of one
million PR test vectors with each fault list. Fault collapsing is more relevant, as it can
be seen, for multiple faults model. HFS was carried out at 25MHz.
    A commercial SFS tool required 4261 seconds in order to simulate 65535 vectors
in the C7552 with the 4298 prime LSA faults on a Sun ultra10/440 workstation with 1
GB RAM.
The fault coverage results, presented for different seeds, in Figures 3 and 4 show
clearly that, when including configuration LUT bits, single or multiple LSA fault
models are too optimistic. Thus, the CSA fault model must be used in order to
evaluate test effectiveness of FPGA implemented circuits – it evaluates structure and
configuration. Additionally, the development of new methodologies to improve CSA
coverage is required since after a significant number or random vectors the CSA FC
does not approach 100%: the S5378 was simulated with 16 million vectors (in 560
seconds) and FC=88,89%.

Table 2. Fault lists and simulation times.

CSA Single LSA (collapsed) Multiple LSA (collapsed)
# faultsTime [s] # faults Time [s] # faults Time [s]

C7552 6065 221 4243   121 26720    297
S5378 5205 194 3843 91 22560 204

Fig. 3. S5378 HFS FC results with 1 million test vectors (zoomed on the right).
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Fig. 4. C7552 FC HFS results with 1 million test vectors.

Figures 3 and 4 show also that the selection of seeds for BIST purposes can be
efficiently accomplish using HFS.

6   Conclusions

Single or multiple LSA fault model in LUT terminals leads to optimistic results when
the configuration of LUTs must also be evaluated. The CSA fault model, including
each possible bit flip in each used LUT position is a much more demanding model
and can be used to evaluate the test effectiveness of FPGA implemented circuits:
evaluating the test of their structure and configuration.
    BIST test effectiveness evaluation of FPGA cores using software fault simulation
tools is a costly process. Hardware fault simulation can, very efficiently evaluate test
quality even with more demanding models such as the CSA (the S5378 benchmark is
simulated with 5205 faults and 16 million vectors in 560 seconds).
    The LUT extraction and partial reconfiguration processes were detailed in this
work.
    Additional research in BIST methodologies is required in order to increase CSA
fault coverages.
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Abstract. This paper proposes an architecture that combines a context-
switching virtual configware/software SAT solver with an embedded processor 
to promote a tighter coupling between configware and software. The virtual 
circuit is an arbitrarily large clause pipeline, partitioned into sections of a 
number of stages (hardware pages), which can fit in the configware. The 
hardware performs logical implications, grades and select decision variables. 
The software monitors the data and takes care of the high-level algorithmic 
flow. Experimental results show speed-ups that reach up to two orders of 
magnitude in one case. Future improvements for addressing scalability and 
performance issues are also discussed. 

1   Introduction 

Definitions and motivation. The satisfiability (SAT) problem — given a Boolean 
formula F(x1,x2, ..., xn), find an assignment of binary values to (a subset of the) 
variables, so that F is set to 1, or prove that no such assignment exists — is a central, 
NP-complete computer science problem [1], with many applications in a variety of 
fields. Typically F is expressed as a product-of-sums, which is also called conjunctive 
normal form (CNF). The terminology is reviewed via an example: in the formula 
F=(x1+x2)(¬ x1+ x2)( x1+¬x2), we have two variables, x1 and x2, and three clauses, 
each with two literals; the literals in the third clause are x1 and ¬x2, where x1 is a non-
inverted literal and ¬x2 is an inverted literal. The assignment (x1=1, x2=1) is a 
satisfying assignment, as it sets F=1. Hence F is satisfiable. The formula 
G=(x1+x2)(¬ x1+ x2)( x1+¬x2)(¬x1+ ¬x2) is unsatisfiable. The number of variables in a 
formula is denoted n and the number of clauses m. A k-clause is a clause that has k 
literals. A k-SAT problem is one where clauses have at most k literals. 
 
Previous work. In recent years, solving SAT using reconfigurable hardware 
(configware) has become a major challenge for Reconfigurable Computing (RC) 
experts. It is well known that, to become a generally accepted computing paradigm, 
RC has to prove itself able to tackle important computer science problems such as 
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SAT, competing with advanced software SAT solvers such as GRASP [4], CHAFF 
[5] and BERKMIN [6]. 
 
Several research groups have recently explored different approaches to implement 
SAT on configurable hardware [8-17], as an alternative to software SAT solvers. The 
satisfiers implement variations of the classical full search Davis -Putnam (DP) SAT, 
algorithm [18]. More recently, incomplete, local search SAT algorithms like WSAT 
or GSAT have also been contemplated with configware implementations [14,19]. An 
interesting survey comparing the various approaches that have been proposed in the 
literature is given in [20]. 
 
The most important problems addressed by the various proposals are the following: 
(1) the method used to select the next decision variable and its value to be tried 
[8,16,17]; (2) the compilation time spent in preparing the FPGA -based circuit to be 
emulated [14,16,17]; (3) the ability to solve problems of an arbitrary large size 
[12,16,17]; software-hardware partitioning [13,14,16,17]. 
 
Main contributions and organization of the paper. This paper presents a hard 
evidence analysis of our approach to configware-software SAT solving. The main 
contributions are the following: 

1. Proposes the use of an embedded processor (Microblaze from Xilinx [21]) 
to create a tighter coupling between configware and software, eliminating 
expensive communications between the two. 

2. Proposes the use of a decision variable pipelined comp arator tree, to select 
the next decision variables. 

3. Publishes the first experimental results obtained with the actual (non 
simulated) configware/software SAT solver system proposed in [16] and 
refined in [22], which is also used to indirectly derive results for the 
architecture proposed in this paper. 

 
The remainder of this paper is organized as follows. Section 2 presents an overview of 
the predecessor of the SAT solver system being proposed. Section 3 presents the new 
system. Section 4 presents experimental results and their analyses. Finally, Section 5 
outlines our conclusions and describes our current and future work. 

2   Overview of the Predecessor System 

Our current system evolved from a previous architecture already published in 
[16,22,23], which is summarized in Figure 1. The SAT solver runs partly in software 
and partly in configware. The software runs on a host computer and communicates 
with the configware via the PCI bus. The configware resides in a board containing an 
FPGA, a control CPLD and two single port RAMs, M1 and M2. After the configware 
architecture is loaded in the FPGA, it may be used to process any SAT problem 
instance, totally avoiding hardware instance-specific computation. The architecture 
can be outlined as a virtual pipeline of clause data processors. Each clause data 
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processor represents a clause of the SAT instance. The virtual circuit is partitioned in 
several hardware pages. Each page implements a pipeline section of D stages and M 
clauses per stage. The board memories store the programming of the hardware pages 
(context), which specify the clauses in each page and their data, and the latest state of 
the SAT variables. Each memory position has N variables, and each variable is 
represented by a K-bit word (K is  even), having 2 fields, P0 and P1, of K/2 bits. L 
memory addresses are used to store a total of LN variables. Therefore, the configware 
architecture is perfectly characterized by the parameters (D,K,L,M,N). The processing 
consists of streaming the variables through the pipeline, back and forth between M1 
and M2. 

 
Fig. 1. High-level view of the previous system. 

 
The algorithm starts when the software reads the SAT problem instance from a file in 
the CNF format, and maps it to the configware structure as a 3-SAT problem. If the 
original problem is k-SAT (k>3), it is converted into a 3-SAT problem. The whole 
formula compilation process runs in polynomial time, in a matter of seconds, much 
faster than any FPGA compilation flow. If the resulting circuit model is larger than 
the available configware capacity, it is partitioned in P virtual hardware pages able to 
fit in the configware. Thus the number of stages of the virtual clause pipeline is PD. 
 
After the hardware pages are generated, the processing of variables in the clause 
pipeline can start. While moving the variables through the clause pipeline back and 
forth between M1 and M2, the values of their fields P0 and P1 are updated, until they 
reflect the number of clauses that would be satisfied if the variable had the value ‘0’ 
or  ‘1’, respectively. This is because each field Pb is incremented whenever the 
variable is processed by one of its unresolved clauses that is satisfied for value b. The 
incrementing saturates when Pb reaches the value 
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22| 2/
_ −= K

SCOREMAXbP  

The maximum possible value, Pb|ASSIGNED, is reserved to represent an implied or 
assigned variable: 

12| 2/ −= K
ASSIGNEDbP  

 
Our SAT solver implements a variation of the DP algorithm, and can be thought of as 
having three engines: the deduction, diagnosis and decision engines. The deduction 
engine assigns variables in unit clauses (computes logical implications) and grades 
unassigned variables according to the heuristic described above. When one or more 
clauses are falsified, the deduction engine reports the existence of conflicting 
assignments (conflicts). The diagnosis engine checks if a solution has been found, or 
if the last decision variable assignment has resulted in a conflict. If a conflict 
happened, the decision engine returns to the last decision variable (chronological 
backtracking), and sets it to its untried value. If no conflict is found the decision 
engine chooses the variable with the best heuristic score to be the next decision 
variable. If after a conflict there is no backtrack point then the formula is 
unsatisfiable. A flowchart summarizing the operation of the system is shown in Figure 
2, where the filled areas represent tasks implemented in configware and the unfilled 
areas represent tasks implemented in software. 
 
The operation of the virtual hardware scheme is as follows. Suppose the variables rest 
initially in memory M1. The first virtual hardware page is programmed, and all 
variables are streamed from M1, processed through the virtual hardware page, and 
stored in M2. If no conflict is detected, the next hardware page is loaded, and the 
processing of variables continues now from M2 back to M1. This process goes on for 
all virtual hardware pages sequentially, so that all sections of the virtual clause 
pipeline get to process all variables. Running all hardware pages on all variables is 
denoted a pass. During a pass new implications are generated and new clauses are 
satisfied - these are called clause events. For as long as new clause events are 
generated in a pass, another one is started, until no more events arise (this situation is 
denoted stasis) or a conflict is found. For the variables not yet assigned, P0 and P1 are 
recomputed during each pass so that their values are up to date when stasis is reached. 
After stasis, the configware informs the software on the latest location of the 
variables, either memory block M1 or M2. Then the software runs the diagnosis and 
decision engines. 

3   The New System 

After implementing and evaluating the system described in the previous section, we 
were not surprised to find out that its performance was far from what the simulation 
results in [23] had predicted — this is usually the case with a first prototype. Hence, 
we proceeded to analyse the causes of the discrepancies between simulated and actual 
results, and two major causes have been identified: 
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1. The communication between software and hardware was slow due to the 
latency of the PCI bus. 

2. The software processing time was high, since the decision engine required 
all variables to be read, to find the one with the highest heuristic score. 
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Fig. 2. Configware/Software SAT Solver Algorithm 

To address these problems  we came up with the improved architecture depicted in 
Figure 3, whose main new features are: 

1. An embedded processor, MicroBlaze (MB) from Xilinx [21], was introduced 
to create a tight coupling between software and configware. 

2. Comparator stages were introduced in the pipeline to select the variable with 
the best heuristic score, relieving the software of this burden. 

 
MB uses the On-chip Peripheral Bus (OPB, inherited from IBM’s CoreConnect 
infrastructure) to communicate with the clause pipeline, and to access the memories 
via the control CPLD. This way, MB and the clause pipeline share the same memory, 
and there is no need to move the variables elsewhere. In the predecessor system, 
where the host PC was running the software, all variables were transferred via DMA 
to the PC’s central memory to be processed there, and then transferred back to the 
board memory. This had to be done for every decision variable, which, due to the 
high latency of the PCI bus, was still less expensive than accessing the variables one 
by one from the board memory. 
 
To select the next decision variable a tree of variable comparators has been 
introduced. To preserve the frequency of operation, each level of the tree is placed in 
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a pipeline stage. The number of levels (height of the tree) is log2(2N), which creates a 
constraint for the minimum pipeline depth D. However, since N is not a large number, 
the tree is quite short anyway, and this new constraint is irrelevant. 
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Fig. 3. High-level view of the proposed system. 

 
The compilation of the SAT problem instance is still performed on the host PC for 
convenience and speed, since it is only done once as a pre-process step. Work to 
incorporate the decision variable comparator tree and the Xilinx’s MicroBlaze soft 
processor is currently under way. 

4   Results 

All experimental results have been obtained using the system described in Section 2, 
whose prototype has been finis hed recently. The results for the proposed architecture 
have been derived by carefully measuring the DMA communication time and the 
elapsed time of the decision variable selection software routine, and subtracting these 
two terms from the total elapsed time obtained with the predecessor system of Section 
2. The results obtained in this way are valid for an FPGA 30% larger, which is the 
hardware overhead estimated for the added variable comparator tree and the 
MicroBlaze embedded processor. This is no problem since FPGA devices much 
larger than the ones used in our experiments are commercially available. 
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Experimental setup. The software runs on a Linux Suse 8.0 host PC with a Pentium 2 
processor, at 300.699 MHz and 192 Mbytes of memory. The configware architecture 
is implemented in a Celoxica’s RC1000 board [2] with PCI interface, featuring a 
XCV2000E device with 4 SRAM banks of 2 Mbytes and 32 bits wide. The memory 
blocks M1 and M2 are implemented using 2 SRAM banks each, so the variables are 
accessed as 64-bit words. The clause pipeline programming data (hardware pages or 
contexts) are stored as 128-bit words in the 4 SRAM banks simultaneously. The 
configware architecture is characterized by the parameters D=17, K=8, L=1024, M=4, 
N=7, as described in Section 2 and optimized according to [22]. Thus the system 
implemented can process SAT formulae of complexity up to 7168 variables 165036 
clauses. The hardware occupies 96% of the FPGA area, so it has a complexity of 
1.92M system gates and works at 40 MHz.  
 

 A0 and A1 GRASP 

Example Variables Clauses Decisions Variables Clauses Decisions 

aim-50-1_6-no-2 50 80 10141 50 80 13390

aim-50-1_6-no-3 50 80 37363 50 80 100471
aim-50-1_6-no-4 50 80 2883 50 80 2332
aim-50-2_0-yes1-3 50 100 2022 50 100 2170
aim-50-2_0-yes1-4 50 100 135 50 100 6164
aim-100-1_6-yes1-1 100 160 1287235 100 160 14384
aim-100-1_6-yes1-2 100 160 2119121 100 160 3916671
dubois20 60 160 25165823 60 160 12582911
ssa432_3 561 1405 3911 435 1027 3115
hole6 63 196 5883 42 133 3245
hole7 96 324 49405 56 204 21420
hole8 126 459 674595 72 297 378343

hole9 150 595 7520791 90 415 4912514

Table 1. Benchmark SAT instances used. 

Experimental results. Our results have been obtained using a subset of the well-
known benchmark set from DIMACS [7]. The results are compared to those obtained 
with GRASP, a well-known and publicly available SAT solver. Its options have been 
set to implement the same DP search algorithm we use in our system. Our k-SAT to 
3-SAT decomposition technique augments the size of the formula, which may alter 
the number of decisions comparatively to using the original formula; GRASP is 
always run on the original formula. Table 1 shows the number of variables, clauses 
and decisions when running our algorithms, denoted A0 and A1, and GRASP. Note 
that a larger formula does not necessarily mean more decisions, since a different 
direction of the search may change the number of decisions dramatically. In Table 2, 
execution time results are presented. TGRASP is the total time taken by GRASP for 
each instance. TA0 is the total time taken by our predecessor system, and TA1 is the 
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time taken by the system proposed in this paper. SUA1 is the overall speed-up, and 
SUA1PD is the speed-up per decision.  
 
These results show that the predecessor system (algorithm A0) can not obtain any 
speed-ups compared to GRASP (see columns TGRASP and TA0), while the proposed 
system (algorithm A1) can in fact obtain an acceleration against GRASP (see columns 
TGRASP, TA1 and SUA1). For the aim-50-2_0-yes1-4 example the overall speed-up 
against GRASP is almost 250, which is a 2 orders of magnitude acceleration. 
However, comparing the execution times without taking in consideration the number 
of decisions shown in Table 1 is imprecise. In fact, the aim-50-2_0-yes1-4 benchmark 
has a significantly lower number of decisions (135) when using the 3-SAT formula 
(A0 and A1) than when using the original formula (6164 decisions with GRASP). 
Therefore, a more fair comparis on is to use the execution time per decision rather than 
the total elapsed time. These results are shown in column  SUA1PD, which shows 
more modest speed-ups reaching one order of magnitude. On the other hand, many 
more examples show speed-ups greater than one, when using the SUA1PD metric. 
 

EXAMPLE TGRASP TA0 TA1 SUA1 SUA1PD 

aim-50-1_6-no-2 1,830 3,461 0,340 5,382 4,076
aim-50-1_6-no-3 10,510 14,165 0,874 12,025 4,472
aim-50-1_6-no-4 0,250 1,264 0,248 1,008 1,246
aim-50-2_0-yes1-3 0,350 0,847 0,030 11,667 10,871
aim-50-2_0-yes1-4 1,000 0,220 0,004 249,988 5,475
aim-100-1_6-yes1-1 2,600 787,969 85,081 0,031 2,735
aim-100-1_6-yes1-2 614,310 1312,940 164,268 3,740 2,023
dubois20.cnf 1040,400 6751,870 561,789 1,852 3,704
ssa432_3.cnf 1,300 39,810 10,817 0,120 0,151
hole6.cnf 0,260 2,325 0,372 0,699 1,267
hole7.cnf 4,340 24,830 6,003 0,723 1,668

hole8.cnf 56,450 408,494 136,194 0,414 0,739

hole9.cnf 825,120 6225,630 1932,090 0,427 0,654

Table 2. Execution time results for GRASP, A0 and A1. 

Comparing Tables 1 and 2 we can observe that the speed-ups drop with the size of the 
instance, reflected in the size of the virtual clause pipeline. The explanation for this is 
the still immature virtual hardware scheme that has been implemented. In our current 
approach for every new variable assignment all clauses are evaluated, no matter if the 
new variables assigned are present in the evaluated clauses or not. This is inefficient 
and makes the assignment evaluation time O(mn). Ideally the number of evaluated 
hardware pages  should depend only on their having clauses to update with new 
assignments. Also, all variables are updated in the process, when there is only need to 
update variables in clauses that have been updated themselves. We have current plans 
to optimize this aspect, which will considerably boost the performance and prevent 
degradation when the problem scales up. 
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5   Conclusion 

In this paper we have proposed a novel architecture of a SAT solver that combines a 
configurable hardware device with a small size embedded processor. The configware 
device implements a section of a virtual clause pipeline circuit (hardware page). The 
large virtual circuit embodies the SAT instance to be solved, and is operated by 
context -switching, where each context is a hardware page and its data. 
 
The configware computes logical implications, grades decision variables using a 
heuristic score, and selects  the next decision variable based on this figure. The 
software manages the search process (decision tree). 
 
Experimental results have been obtained using a host PC to implement the software, 
and an FPGA to implement the configware. The performance of the proposed 
architecture has been derived by subtracting the PCI communication time and the 
elapsed time of the decision variable selection routine from the total elapsed. Work to 
incorporate the MicroBlaze embedded processor and the proposed comparator tree to 
select the next decision variable is under way. Our results show that speed-ups up to 2 
orders of magnitude can be obtained with the proposed system. 
 
Future work. We now have an architecture flexible enough to implement 
sophisticated algorithmic improvements, such as non-chronological backtrack and 
clause addition, like in modern software SAT solvers. 
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Abstract. We present an evaluation of accelerating fault simulation by hard-
ware emulation on FPGA. Fault simulation is an important subtask in test pat-
tern generation and it is frequently used throughout the test generation process.
In order to evaluate possible simulation speed possibilities, we made a feasibil-
ity study of using reconfigurable hardware by emulating circuit under analysis
together with fault insertion structures on FPGA. Experiments showed that it is
beneficial to use emulation for circuits/methods that require large numbers of
test vectors, e.g., sequential circuits and/or genetic algorithms.

1   Introduction

Test generation is today one of the most complicated and time-consuming problems
in the domain of digital design. The more complex the electronics systems are get-
ting, the more important will be the problems of test and design for testability, as the
costs of verification and testing are becoming the major component of design and
manufacturing costs of a new product. This fact makes the research in the area of
testing and diagnosis of integrated circuits (IC) a very important topic for both indus-
try and academy.

As the sizes of circuits grow, so do the test costs. Test costs include not only the
time and resources spent for testing a circuit but also time and resources spent to
generate suitable test vectors. The most important sub-task of any test generation
approach is the suitability analysis of a given set of test vectors. Many techniques
exist to perform such an analysis. Circuit structure analysis gives good results but it is
rather time consuming. Fault simulation is the most often used way of analysis and it
is frequently applied throughout the entire test pattern generation cycle. Many tech-
niques exist to speed up simulation, e.g., simulating multiple bits in parallel [1] or
replacing the circuit model with a corresponding Binary Decision Diagram (BDD)
[2]. Unfortunately, this approach is limited by the bit-width of processors, which
limits the number of bits processed in parallel, and it requires additional circuit opti-
mization to make use of the potential parallelism.

At the same time, reconfigurable hardware, e.g., FPGAs and PLDs, has been found
useful as system-modeling environments (see, e.g., [3]). This has been made possible
by the availability of multi-million-gate FPGAs, e.g., Virtex series from Xilinx. For
academic purposes, both for research and education, cheaper devices with rather large
capacity, e.g., new Spartan devices, can be used.
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Taking into account the advances in the field of reconfigurable hardware, the next
natural step to speed up fault simulation would be to emulate circuits on a chip. The
availability of large devices allows to implement not only the circuit under test with
fault models but also test vector generator and result analysis circuits on a single
reconfigurable device. To study the possibility of replacing fault simulation with
emulation, we first had to solve some essential issues – how to represent logic faults,
how to feed the test vectors into the circuit, and how to analyze the results. Then we
created the corresponding experimental environment, and finally performed experi-
ments with some benchmark circuits.

The experiments showed that for circuits that require large numbers of test vectors,
e.g., sequential circuits, it is beneficial to replace simulation with emulation. More
work is needed to integrate the hardware part with the software part of the test gen-
eration environment. The emulation approach is planned for use in cooperation with
diagnostic software Turbo Tester.

The paper is organized as follows. In Section 2, related work is discussed. The di-
agnostic software, Turbo Tester, is described in Section 3. The emulation environ-
ment is introduced in Section 4. In Section 5, the results of experiments are presented.
Section 6 is dedicated for conclusions.

2   Related Work

A number of works on fault emulation for combinational circuits has been published
in the past. They rely either on fault injection (see, e.g., [4, 5]) or on implementing
specific fault simulation algorithms in hardware [6]. Recently, acceleration of combi-
national circuit fault diagnosis using FPGAs has been proposed in [7]. However, the
need for hardware fault emulation has been driven mainly by large sequential designs
whose fault grading run-times could extend to several years.

In many of the papers for sequential circuits, faults are injected either by modify-
ing the configuration bitstream while the latter is being loaded into the device [8] or
by using partial reconfiguration [9, 10, 11]. This kind of approach is slow due to the
run-time overhead required by multiple reconfigurations. Other options for fault in-
jection are shift-registers and/or decoders (used in this paper). A paper relying on the
shift-register-based method was presented in [12]. Shift-registers are known to re-
quire slightly less hardware overhead than the decoders do. However, in [12] injec-
tion codes and test patterns are read from a PC and only 10-30 times speed-up in
comparison to the software based fault simulation is achieved. Furthermore, it is un-
clear whether synthesis times are included to the results or not.

In addition to merely increasing the speed of fault simulation, the idea proposed in
current paper can be used for selecting optimal Built-In Self-Test (BIST) structures.
In an earlier paper [13] a fault emulation method to be used for evaluating the Circu-
lar Self-Test Path (CSTP) type BIST architectures has been presented. Different from
the current approach, no fault collapsing was carried out and fault-injecting hardware
was inserted to each logic gate of the circuit to be emulated.
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In this paper, we propose an efficient FPGA-based fault emulation environment for
sequential circuits. The environment has interfaces to the digital test package Turbo
Tester [14, 15] developed at Tallinn University of Technology and described in Sec-
tion 3. The main novelty of the emulation approach lies in implementing multiplexers
and a decoder for fault injection that, unlike the shift register based injection, allows
to activate faults in an arbitrary order. This feature is highly useful when applying the
presented environment in emulating the test generation process. In addition, we use
an on-chip input pattern generator as opposed to loading the simulation stimuli from
the host computer. It is also important to note that the time spent for emulator synthe-
sis is included to the experimental results presented in Section 5.

3   Overview of Turbo Tester

Turbo Tester (TT) is a test software package developed at the Department of Com-
puter Engineering of Tallinn University of Technology [14, 15]. The TT software
consists of the following test tools: test generation by different algorithms (determi-
nistic, random and genetic), test set optimization, fault simulation for combinational
and sequential circuits, testability analysis and fault diagnosis. It includes test gen-
erators, logic and fault simulators, a test optimizer, a module for hazard analysis,
BIST architecture simulators, design verification and design error diagnosis tools (see
Fig. 1). TT can read the schematic entries of various contemporary VLSI CAD tools
that makes it independent of the existing design environment. Turbo Tester versions
are available for MS Windows, Linux, and Solaris operating systems.

Fig. 1. Turbo Tester environment

The main advantage of TT is that different methods and algorithms for various test
problems have been implemented and can be investigated separately of each other or
working together in different work flows.
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Model Synthesis. All the tools of TT use Structurally Synthesized BDD (SSBDD)
models as an internal model representation. TT includes a design interface generating
SSBDD-s in AGM format from EDIF netlists. The set of supported technology li-
braries can be easily extended.

Test Generation. For automatic test pattern generation (ATPG), random, determi-
nistic and genetic test pattern generators (TPG) have been implemented. Mixed TPG
strategies based on different methods can also be investigated. Tests can be generated
both for combinational and sequential circuits.

Test Pattern Analysis. There are concurrent and parallel fault simulation methods
implemented in the system. In current paper, we have experimented only with "Fault
Simulation" part (black in Fig. 1). In the future, also the other simulation-related parts
might be considered (gray in Fig. 1).

Test Set Optimization. The tool is based on static compaction approach, i.e. it
minimizes the number of test patterns in the test set without compromising the fault
coverage.

Multivalued Simulation. In Turbo Tester, multi-valued simulation is applied to
model possible hazards that can occur in logic circuits. The dynamic behavior of a
logic network during one single transition period can be described by a representative
waveform on the output or simply by a corresponding logic value.

Design Error Diagnosis. After a digital system has been designed according to its
specification, it might go through a refinement process in order to be consistent with
certain design requirements, e.g., timing specifications. The changes introduced by
this step may lead to undesired functional inconsistencies compared to the original
design. Such design errors should be identified via verification.

Evaluation of Built-In Self-Test (BIST) Quality. The BIST approach is repre-
sented by applications for simulating logic BIST and Circular Self-Test Path (CSTP)
architectures.

4   Emulation Environment

The emulation environment was created keeping in mind that the main purpose was
to evaluate the feasibility of replacing fault simulation with emulation. Based on that,
the main focus was put on how to implement circuits to be tested on FPGAs. Less
attention was paid how to organize data exchange between hardware and Turbo
Tester (or any other test software). For the first series of experiments, we looked at
combinational circuits only. This could be done because when comparing how test
vectors are fed into combinational and sequential circuits, the only principal differ-
ence is the need of set/reset signals for sequential circuits. Results of experiments
with combinational circuits were presented in [5].

For sequential circuits, most of the solutions used for combinational circuits can be
exploited. Few modifications were related to different testing strategies of combina-
tional and sequential circuit. For instance, an extra loop was needed for the controller
because sequential circuits require not a single input combination but a sequence
consisting of tens or even hundreds of input combinations. Also, instead of hard-
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coded test sequence generators and output analyzers, loadable modules were intro-
duced.

Before building the experimental environment, we had first to solve some essential
issues – fault insertion, test vector generation, output data analysis and exchange with
software part, and design flow automation. The issues, used solutions and discussions
are presented below.

Fault insertion. The main problem here was how to represent non-logic features –
faults – in such a way that they can be synthesized using standard logic synthesis
tools. Since most of the analysis is done using stuck-at-one and stuck-at-zero fault
models, the solution was obvious – use multiplexers at fault points to introduce logic
one or zero, or pass through intact logic value. Also, since a single fault is analyzed at
a time typically, decoders were introduced to activate faults. In the right side of Fig.
2, a fault point and multiplexer inserted into that point are shown. Some of the decod-
ers are shown in the left side of Fig. 2. The fault insertion program takes TT gener-
ated netlist and list of faults as input, and outputs modified netlist. It also adds distrib-
uted fault selection decoder(s) and extra ports to control fault modeling.

Fig. 2. Fault point insertion and fault activation decoders

The inserted multiplexers will add extra gates to the circuit and will make it
slower. It should be noted that the increase both in size and delay is 5 to 10 times
depending on the size of the original circuit and the number of fault points (see also
Table 1). It is not a problem for smaller circuits but may be too prohibitive for larger
designs – the circuit may not fit into target FPGA. Inserting not all of the fault points
but only selected ones can solve this problem. Selection algorithm, essentially fault
set partitioning, is a subject of future research.

Compared against shift-register based fault injection approaches (see, e.g., [12]),
the use of multiplexers has both advantages and disadvantages. The main disadvan-
tage is small increase both area and delay of the circuit. Although the delay increase
is only few percents, execution time may increase significantly for long test cycles.
The main advantage is that any fault can be selected in a single clock cycle, i.e., there
is no need to shift the code of a fault into the proper register. Combining both ap-
proaches may be the best solution and one direction of future work will go in that
direction.

Test vector generation and output data analysis. It is clear that not all genera-
tion and analysis approaches can be used, especially these ones that use large lookup
tables and/or complex algorithms. Here we relied on a well-known solution for BIST
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– Linear Feedback Shift Register (LFSR) is used both for input vector generation and
output correctness analysis (see, e.g., [14, 16]). This is very beneficial because LFSR
structures have been thoroughly studied. Also, their implementation in hardware is
very simple and regular – only flip-flops and XOR gates. This simplifies data ex-
change with the software part – only seed and feedback polynomial vectors are
needed to get a desired behavior. Output correctness analysis hardware needs first to
store the expected output signature and then to report to the software part whether the
modeled fault was detected or not. Fig. 3 illustrates a stage of used LFSRs. The input
‘coefficient’ is used for feedback polynomial. The input ‘result’ is used only for result
analysis and is connected to zero for input vector generation.

Fig. 3. Single stage of LFSRs

Design flow automation was rather easy because of the modular structure of the
hardware part. All modules are written in VHDL that allows to parameterize design
units. The structure consists of the following parts (see also Fig. 4):
• CUT – circuit under test, generated by the fault insertion program;
• CUT-top – wrapper for CUT to interface a specific module with generic test envi-

ronment without changing the later, generated by wrapper program;
• CUT-pkg – parameters of CUT like the number of inputs and outputs, the length of

test sequence and the number of fault points, generated by the wrapper program;
• Two LFSRs – one for test vector generator and one for output signature calcula-

tion; a generic VHDL module, used two times;
• Three counters – one to count test vectors, one to count test sequences (not used

for combinational units), and one to count modeled faults; a generic VHDL mod-
ule, used three (or two) times;

• Test bench with state machine (FSM) to connect all sub-modules, to initialize
LFSRs and counters, and to organize data exchange with the external interface; a
generic VHDL module; algorithms implemented by the state machine are depicted
in Fig. 5; and

• Interface to organize data exchange between the test bench and the software part,
FPGA type/board and host PC platform/OS dependent.
The interface is currently implemented only in part as further studies are needed to

define data exchange protocols between hardware and software parts. The design
flow for hardware emulator consists of three steps:
1. Fault insertion based on netlist and fault list;
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2. Wrapper and parameter file generation based on the modified netlist; and
3. FPGA bit-stream generation using available logic synthesis tools, e.g., ISE from

Xilinx [17].
4. Resulting bit-streams are loaded into FPGAs and controlling state machines are

activated. In principle, any suitable FPGA board can be used but supporting inter-
faces should be developed.

Fig. 4. Emulation environment structure

5   Results of Experiments

For experiments, two FPGA boards were used:
• A relatively cheap XSA-100 board with Spartan II chip XC2S100 with 600 CLBs

from XESS [18], that can be used with any PC; and
• A powerful RC1000-PPE board with Virtex chip XCV2000E with 9600 CLBs and

supporting software from Celoxica [19].
The first one is good for small experiments and to test principles of the environ-

ment but it does not fit any design of reasonable size.
Test circuits were selected from ISCAS’85, ISCAS’89 and HLSynt’91 benchmark

sets to evaluate the speedup when replacing fault simulation with emulation on
FPGA. Results of some benchmarks are presented in the paper to illustrate gains and
losses of our approach. Synthesis results are presented in Table 1 to illustrate how the
fault point modeling makes the circuits more complex. Columns “initial” and “faults”
illustrate the increase both in size in equivalent gates and delay before and after fault
point insertion (CUT only). The “FPGA” columns illustrate the size in FPGA logic
blocks and clock frequency of the whole test bench.

Performance results are presented in Table 2 where the columns #I, #O, #ff, and #F
represent the number of inputs (clock and reset are excluded), outputs, flip-flops, and
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Fig. 5. Algorithms implemented by the state machine

Table 1. Synthesis results

# of gates Delay [ns] FPGAcircuit
initial faults Initial faults CLBs MHz

c17 7 69 1.9 17.8 36 100
c2670 533 3315 25.4 67.6 951 25
c3540 727 4290 28.6 93.6 974 15
c5315 1285 8871 28.6 200 1784 15
c6288 2632 15.6k 97.6 509 3223 5
s5378 4933 12.4k 21.8 268 2583 10
s15850 17.1k 29.4k 66.8 633 6125 5
GCD (16-bit) 926 3331 16.6 74.0 588 25
GCD (32-bit) 2061 8513 20.0 203 1738 10
prefetch (16-bit) 796 2264 14.5 52.4 478 40
prefetch (32-bit) 1698 4608 20.0 72.7 941 25
diff-eq (16-bit) 4562 22.4k 25.7 566 4672 5
TLC 290 1089 9.5 39.0 215 50

fault points, respectively. For sequential circuits, the number of test vectors is given
in two columns – the number of test sequences ("# of seq.") and the length of a test
sequence ("seq.len."). The column SW gives the fault simulation time basing on the
parallel algorithm running on a 366 MHz SUN UltraSPARC 20 server and "HW
emul" emulation time for the same set of test vectors. Additionally, synthesis times
have been added for comparison ("HW synt").

As it is shown in Table 2, the hardware emulation was in average 17.8 (ranging
from 6.7 to 53.4) times faster than the software fault simulation. It should be noted
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Table 2. Fault simulation: SW versus HW

that when considering also synthesis times, it might not be useful to replace simula-
tion with emulation, especially for smaller designs. Nevertheless, taking into account
that sequential circuits, as opposed to combinational ones, have much longer test
sequences, the use of emulation will pay off. Our preliminary experiments show that
for this type of circuits an average speed-up of about 70 times is expected. It is im-
portant to keep in mind that simulation-based test pattern generation for a sequential
design of roughly 10 kgates takes tens of hours. Future research will mainly focus on
test generation for sequential circuits using genetic algorithms.

6   Conclusions

The experiments showed that for circuits that require large numbers of test vectors,
e.g., sequential circuits, it is beneficial to replace simulation with emulation. Al-
though even for combinational circuits the simulation speedup is significant, there
exist rather large penalty caused by synthesis time. Based on that, it can be concluded
that the most useful application would be to explore test generation and analysis ar-
chitectures based on easily reprogrammed structures, e.g., LFSRs. This makes fault
emulation very useful to select the best generator/analyzer structures for BIST.

Another useful application of fault emulation would be genetic algorithms of test
pattern generation where also large numbers of test vectors are analyzed. Future work
includes development of more advanced on chip test vector generators and analyzers.
Analysis of different fault point insertion structures is another direction of future
work. Also, an automated synthesis flow development and integration into Turbo
Tester environment, together with hardware-software interface development, has been
initiated. For academic purposes where expensive state-of-the-art hardware can not be
used, partitioning methods should be developed to enable emulation of fault list par-
titions.
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Abstract. Function evaluation is at the core of many compute-intensive applica-
tions which perform well on reconfigurable platforms. Yet, in order to implement
function evaluation efficiently, the FPGA programmer has to choose between a
multitude of function evaluation methods such as table lookup, polynomial ap-
proximation, or table lookup combined with polynomial approximation. In this
paper, we present a methodology and a partially automated implementation to se-
lect the best function evaluation hardware for a given function, accuracy require-
ment, technology mapping and optimization metrics, such as area, throughput
and latency. The automation of function evaluation unit design is combined with
ASC, A Stream Compiler, for FPGAs. On the algorithmic side, MATLAB designs
approximation algorithms with polynomial coefficients and minimizes bitwidths.
On the hardware implementation side, ASC provides partially automated design
space exploration. We illustrate our approach for sin(x), log(1+x) and 2x with a
selection of graphs that characterize the design space with various dimensions, in-
cluding accuracy, precision and function evaluation method. We also demonstrate
design space exploration by implementing more than 400 distinct designs.

1 Introduction

The evaluation of functions can often be the performance bottleneck of many compute-
bound applications. Examples of these functions include elementary functions such as
log(x) or

√
x, and compound functions such as (1−sin2(x))1/2 or tan2(x)+1. Hardware

implementation of elementary functions is a widely studied field with many research
papers (e.g. [1][10][11][12]) and books (e.g. [2][8]) devoted to the topic. Even though
many methods are available for evaluating functions, it is difficult for designers to know
which method to select for a given implementation.

Advanced FPGAs enable the development of low-cost and high-speed function eval-
uation units, customizable to particular applications. Such customization can take place
at run time by reconfiguring the FPGA, so that different functions, function evaluation
methods, or precision can be introduced according to run-time conditions. Consequently,
the automation of function evaluation design is one of the key bottlenecks in the further
application of function evaluation in reconfigurable computing. The main contributions
of this paper are:

– A methodology for the automation of function evaluation unit design, covering table
lookup, table with polynomial, and polynomial-only methods.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 364–373, 2004.
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– An implementation of a partially automated system for design space exploration of
function evaluation in hardware, including:
• Algorithmic design space exploration with MATLAB.
• Hardware design space exploration with ASC.

– Method selection results for sin(x), log(1 + x) and 2x.

The rest of this paper is organized as follows. Section 2 covers overview and back-
ground material. Section 3 presents the algorithmic design space exploration with MAT-
LAB. Section 4 describes the automation of the ASC design space exploration process.
Section 5 shows how ASC designs can be verified. Section 6 discusses results, and
Section 7 offers conclusion and future work.

2 Overview and Background

We can use polynomials and/or lookup tables for approximating a function f(x) over a
fixed range [a, b]. On one extreme, the entire function approximation can be implemented
as a table lookup. On the other extreme, the function approximation can be implemented
as a polynomial approximation with function-specific coefficients. In our work, we use
Horner’s rule to reduce the number of multiplications.

Between these two extremes, we use a table followed by a polynomial. This table
with polynomial method partitions the total approximation into several segments. In
this work, we employ uniformly sized segments, which have been widely studied in
literature [1][3][5]. Uniform segmentation performs well for functions that are relatively
linear, such as the functions we consider in this paper. However, for highly non-linear
functions, non-uniform segmentation methods such as the hierarchical segmentation
method [4] have been found to be more appropriate.

In [7] the results show that for a given accuracy requirement it is possible to plot the
area, latency, and throughput tradeoff and thus identify the optimal function evaluation
method. The optimality depends on further requirements such as available area, required
latency and throughput. Looking at Figure 1, if one desires the metric to be low (e.g. area
or latency), one should use method 1 for bitwidths lower than x1, method 2 for bitwidths
between x1 and x2, and method 3 for bitwidths higher than x2. We shall illustrate this
approach using Figures 13 to 15, where several methods are combined to provide the
optimal implementations in area, latency or throughput for different bit-widths for the
function sin(x).

The contribution of this paper is the design and implementation of a methodology to
automate this process. Here, MATLAB automates the mathematical side of function ap-
proximation (e.g. bitwidth and coefficient selection), while A Stream Compiler (ASC) [6]
automates the design space exploration of area, latency and throughput. Figure 2 shows
the proposed methodology.

3 Algorithmic Design Space Exploration with MATLAB

Given a target accuracy, or number of output bits so that the required accuracy is one
unit in the last place (1 ulp), it is straightforward to automate the design of a sufficiently
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accurate table, and with help from MATLAB, also to find the optimal coefficient for a
polynomial-only implementation. The interesting designs are between the table-only and
polynomial-only designs – those involving both a table and a polynomial. Three MAT-
LAB programs have been developed: TABLE (table lookup), TABLE+POLY (table with
polynomial) and POLY (polynomial only). The programs take a set of parameters (e.g.
function, input range, operand bitwidth, required accuracy, bitwidths of the operations
and the coefficients and the polynomial degree) and generate function evaluation units
in ASC code.

TABLE produces a single table, holding results for all possible inputs; each input is
used to index the table. If the input is n bits and the precision of the results is m bits, the
size of the table would be 2n ×m. It can be seen that the disadvantage of this approach
is that the table size is exponential to the input size.

TABLE+POLY implements the table with polynomial method. The input interval
[a, b] is split into N = 2I equally sized segments. The I leftmost bits of the argument x
serve as the index into the table, which holds the coefficients for that particular interval.
We use degree two polynomials for approximating the segments, but other degrees are
possible. The program starts with I = 0 (i.e. one segment over the whole input range)
and finds the minimax polynomial coefficients which minimize the maximum absolute
error. I is incremented until the maximum error over all segments is lower than the
requested error. The operations are performed in fixed point and in finite precision with
the user supplied parameters, which are emulated by MATLAB.

POLY generates an implementation which approximates the function over the whole
input range with a single polynomial. It starts with a degree one polynomial and finds
the minimax polynomial coefficients. The polynomial degree is incremented until the
desired accuracy is met. Again, fixed point and finite precision are emulated.
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4 Hardware Design Space Exploration with ASC

ASC [6] enables a software-like programming of FPGAs. ASC is built on top of the
module generation environment PAM-Blox II, which in turn builds upon the PamDC [9]
gate library. While [6] shows the details of the design space exploration process with
ASC, we now utilise ASC (version 0.5) to automate this process. The idea is to retain
user-control over all features available on the gate level, whilst automating many of the
tedious tasks involved in exploring the design space. Therefore ASC allows the user to
specify the dimensions of design space exploration, e.g. bitwidths of certain variables,
optimization metrics such as area, latency, or throughput, and in fact anything else that
is accessible in ASC code, which includes algorithm level, arithmetic unit level and
gate level constructs. For example, suppose we wish to explore how the bitwidth of a
particular ASC variable affects area and throughput. To do this we first parameterize the
bitwidth definition of this variable in the ASC code. Then we specify the detail of the
exploration in the following manner:

RUN0 = −XBITWIDTH = {8, 16, 24, 32} (1)

which states that we wish to investigate bitwidths of 8, 16, 24 and 32.At this point, typing
‘make run0’ begins an automatic exploration of the design space, generating a vast array
of data (e.g. Number of 4-input LUTs, Total Equivalent Gate Count, Throughput and
Latency) for each different bitwidth. ASC also automatically generates graphs for key
pieces of this data, in an effort to further reduce the time required to evaluate it.

The design space explorer, or “user”, in our case is of course the MATLAB program
that mathematically designs the arithmetic units on the algorithmic level and provides
ASC with a set ofASC programs, each of which results in a large number of implementa-
tions. EachASC implementation in return results in a number of design space exploration
graphs and data files. The remaining manual step, which is difficult to automate, involves
inspecting the graphs and extracting useful information about the variation of the met-
rics. It would be interesting to see how such information from the hardware design space
exploration can be used to steer the algorithmic design space exploration.

One dimension of the design space is technology mapping on the FPGA side. Should
we use block RAMs, LUT memory or LUT logic implementations of the mathematical
lookup tables generated by MATLAB? Table 1 showsASC results which substantiate the
view that logic minimization of tables containing smooth functions is usually preferable
over using block RAMs or LUT memory to implement the table. Therefore, in this work
we limit the exploration to combinational logic implementations of tables.

5 Verification with ASC

One major problem of automated hardware design is the verification of the results, to
make sure that the output circuit is actually correct. ASC offers two mechanisms for this
activity based on a software version of the implementation.

– Accuracy Graphs: graphs showing the accuracy of the gate-level simulation result
(SIM ) compared to a software version using double precision floating point (SW ),
automatically generated by MATLAB, plotting:
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Table 1. Various place and route results of 12-bit approximations to sin(x). The logic mini-
mized LUT implementation of the tables minimizes latency and area, while keeping comparable
throughput to the other methods, e.g. block RAM (BRAM) based implementation.

ASC memory 4-input LUTs clock speed latency throughput

optimization type [MHz] [ns] [Mbps]

latency block RAM 919 + 1BRAM 17.89 111.81 250.41

LUT memory 1086 15.74 63.51 220.43

LUT logic 813 16.63 60.11 232.93

throughput block RAM 919 + 1BRAM 39.49 177.28 552.79

LUT memory 1086 36.29 192.88 508.09

LUT logic 967 39.26 178.29 549.67

max.error = max(|SW − SIM |), or
max.error = max(|SW − FPGA|)
when comparing to an actual FPGA output (FPGA).
Figure 3 shows an example graph. Here the precisions of the coefficients and the
operations are increased according to the bitwidth (e.g. when bitwidth=16, all co-
efficients and operations are set to 16 bits), and the output bitwidth is fixed at 24
bits.

– Regression Testing: same as the accuracy graph, but instead of plotting a graph,
ASC compares the result to a maximally tolerated error and reports only ‘pass’ or
‘fail’ at the end. This feature allows us to automate the generation and execution of
a large number of tests.
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6 Results

We show results for three elementary functions: sin(x), log(x+1) and 2x. Five bit sizes
8, 12, 16, 20 and 24 bits are considered for the bitwidth. In this paper, we implement
designs with n-bit inputs and n-bit outputs. However, the position of the decimal (or
binary) point in the input and output formats can be different in order to maximize the
precision that can be described. The results of all 400 implementations are post place
and route, and are implemented on a Xilinx Virtex-II XC2V6000-6 device.

In algorithmic space explored by MATLAB, there are three methods, three functions
and five bitwidths, resulting in 45 designs. These designs are generated by the user
with hand-optimized coefficient and operation bitwidths. ASC takes the 45 algorithmic
designs and expands them into over 400 implementations in the hardware space. With
the aid of the automatic design exploration features of ASC (Section 4), we are able
to generate all the implementation results in one go with a single ‘make’ file. It takes
around twelve hours on a dual Athlon XP 2.13GHz PC with 2GB RAM.

The following graphs are a subset of the full design space exploration which we
show for demonstration purposes. Figures 4 to 15 show a set of FPGA implementations
resulting from a 2D cut of the multidimensional design space.

In Figures 4 to 6, we fix the function and approximation method to sin(x) and
TABLE+POLY, and obtain area, latency and throughput results for various bitwidths
and optimization methods. Degree two polynomials are used for all TABLE+POLY
experiments in our work.

Figure 4 shows how the area (in terms of the number of 4-input LUTs) varies with
bitwidth. The lower part shows LUTs used for logic while the small top part of the bars
shows LUTs used for routing.We observe that designs optimized for area are significantly
smaller than other designs. In addition, as one would expect, the area increases with
the bit width. Designs optimized for throughput have the largest area; this is due to
the registers used for pipelining. Figure 5 shows that designs optimized for latency
have significantly less delay, and the increase in delay with the bitwidth is lower than
others. Designs optimized for area have the longest delay, which is due to hardware
being shared in a time-multiplexed manner. Figure 6 shows that designs optimized for
throughput perform significantly better than others. Designs optimized for area perform
worst, which is again due to the hardware sharing. An interesting observation is the
fact that throughput is relatively constant with bitwidth. This is due to increased routing
delays as designs get larger with increased precision requirements.

Figures 7 to 9 show various metric-against-metric scatter plots of 12-bit approxi-
mations to sin(x) with different methods and optimizations. For TABLE, only results
with area optimization are shown since the results for other optimizations applied are
identical. With the aid of such plots, one can decide rapidly what methods to use for
meeting specific requirements in area, latency or throughput.

In Figures 10 to 12, we fix the approximation method to TABLE+POLY, and obtain
area, latency and throughput results for all three functions at various bitwidths. Optimum
optimization methods are used for all three experiments (e.g. area is optimized to get
the area results).

From Figure 10, we observe that sin(x) requires the most and 2x requires the least
area. The difference gets more apparent as the bitwidth increases. This is because 2x
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is the most linear of the three functions, hence requires fewer number of segments for
the approximations. This leads to a reduction in the number of entries in the coefficient
table and hence less area on the device.
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Figure 11 shows the variations of the latency with the bitwidth. We observe that all
three functions have similar behavior. In Figure 12, we observe that again the three func-
tions have similar behavior, with 2x performing slightly better than others for bitwidths
higher than 16. We suspect that this is because of the lower area requirement of 2x, which
leads to less routing delay.

Figures 13 to 15 show the main emphasis and contribution of this paper, illustrating
which approximation method to use for the best area, latency or throughput performance.
We fix the function to sin(x) and obtain results for all three methods at various bit
widths.Again, the optimum optimization is used for a given experiment. For experiments
involving TABLE, we have managed to obtain results up to 12 bits only, due to memory
limitations of our PCs.

From Figure 13, we observe that TABLE has the least area at 8 bits, but the area
increases rapidly making it less desirable at higher bitwidths. The reason for this is the
exponential increase in table to the input size for full lookup tables. The TABLE+POLY
approach yields the least area for precisions higher than eight bits. This is due to the
efficiency of using multiple segments with minimax coefficients for each. We have
observed that for POLY, roughly one more polynomial term (i.e. one more multiply-
and-add module) is needed every four bits. Hence, we see a linear behavior with the
POLY curve.

Figure 14 shows that TABLE has significantly smaller latency than others. We expect
that this will be the case for bitwidths higher than 12 bits as well. POLY has the worst
delay, which is due to computations involving high-degree polynomials, and the terms of
the polynomials increase with the bitwidth. The latency for TABLE+POLY is relatively
low across all bitwidths, which is due to the fact that the number of memory accesses
and polynomial degree are fixed.

In Figure 15, we observe how the throughput varies with bitwidth. For low bitwidths,
TABLE designs result in the best throughput, which is due to the short delay for a single
memory access. However, the performance quickly degrades and we predict that at bit
widths higher than 12 bits, it will perform worse than the other two methods due to rapid
increase in routing congestion. The performance of TABLE+POLY is better than POLY
before 15 bits and gets worse after. This is due to the increase in the size of the table
with precision, which leads to longer delays for memory accesses.

7 Conclusions

We present a methodology for the automation of function evaluation unit design, covering
table lookup, table with polynomial, and polynomial-only methods. An implementation
of a partially automated system for design space exploration of function evaluation in
hardware has been demonstrated, including algorithmic design space exploration with
MATLAB and hardware design space exploration with ASC.

We conclude that the automation of function evaluation unit design is within reach,
even though there are many remaining issues for further study. Current and future work
includes optimizing polynomial evaluation, exploring the interaction between range re-
duction and function evaluation, including more approximation methods, and developing
a complete and seamless automation of the entire process.
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Abstract. This paper focuses on a class of problem relating to the mul-
tiplication of a single number by several coefficients that, while not con-
stant, are drawn from a finite set of constants that change with time.
To minimize the number of operations, we present the formulation as a
form of common sub-expression elimination. The proposed scheme avoids
the implementation of full multiplication. In addition, an efficient imple-
menation is presented targeting the Xilinx Virtex / Virtex-II family of
FPGAs. We also introduce a novel use of Integer Linear Programming
for finding solutions to the minimum-cost of such a multiplication prob-
lem. Our formulation results in area savings even for modest problem
sizes.

1 Introduction

For Digital Signal Processing (DSP) or arithmetic intensive applications, multi-
plication is considered as an expensive operation. This is because, typically, the
main part of the area consumed in their implementation comes from multipliers.
For a constant coefficient multiplication, instead of using a full multiplier, a gen-
eral method to efficiently reduce the hardware usage is to use a series of binary
shifts and adders. A shift operation may have almost negligible cost since it is
hard-wired. Therefore, the total hardware cost is approximately corresponding
to the area of adders required.

Reducing the number of adders in constant multiplication is an optimization
problem. The key point of most existing research is the minimization of this
quantity, which is an NP-hard problem [1].

By contrast, our approach introduces a form of the common sub-expression
(CSE) elimination problem, which we refer to as multiple restricted multiplica-
tion (MRM). This refers to a situation where a single variable is multiplied by
several coefficients which, while not constant, are drawn from a relatively small
set of values. Such a situation arises commonly in synthesis due to resource
sharing, for example in a folded implementation of a FIR filter [2] or a poly-
nomial evaluation using Estrin’s method [3,4]. Recent FPGA architectures have
included dedicated multiplier blocks. By exploiting our technique, these blocks
are freed to be used for true general multiplications.

Existing approaches to CSE are unable to take advantage of such a situation,
resulting in the use of expensive general multipliers, as shown in Fig. 1. Fig. 1(a)
shows a Data Flow Graph (DFG) with input x tied together, input sets of
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constant multiplicands labelled as {c11, c12, . . . , c1T } and {c21, c22, . . . , c2T }. The
first subscript here refers to the spatial index and the second to the time index,
i.e. cit is the value of multiplicand i at time t. A standard technique using ROMs
and multipliers is depicted in Fig. 1(b) and our approach performing equivalently
is shown as a “black block” in Fig. 1(c).

x

{c11, c12 ,… ,c1T} {c21, c22 ,… ,c2T}

y1 y2

x

y1 y2

c21

c22

...
c2T

c11

c12

...
c1T

ROM ROM

Our
approach

x

y1 y2

(a) (b) (c)

Fig. 1. (a) A DFG with only multiplier nodes, one input x, and other two inputs of
multipliers. (b) The standard implementation with ROMs and Multipliers. (c) A black
box interpretation of our approach.

In this paper, it is shown that the MRM problem can be addressed through
extending the basic unit of operation from an addition, used in multiple constant
multiplication (MCM) [7,8], to a novel adder-multiplexer combination. It is fur-
ther demonstrated that for Xilinx-based implementations, the Xilinx Virtex /
Virtex-II slice architecture [9] can be used to implement such a basic compu-
tational unit with no area overhead compared to the equivalent adder used in
MCM.

A similar technique was previously presented by R.H. Turner, et al. [5] for
implementing multipliers with a limited range of coefficients, which we extend
by making use of the dedicated AND gate presented in the slice. The key is to
exploit the set of primitive components: the supplementary logic gates, next to
each LUT, and the dedicated carry-chain logic. Full utilization of these allows
the implementation of an adder and/or a substractor along with a multiplexer
in a novel configuration. This can be applied to constant multiplication using
sub-expression sharing to achieve efficient FPGA implementation. A recent work
by S.S. Demirsoy, et al. [6] has begun to address this problem using the type of
computational node demostrated in [5].

Since MCM is NP-hard [1] and is a special case of MRM, it follows that
MRM is NP-hard. Thus in order to find the area-optimal implementation of a
given MRM block, a novel formulation of the optimization problem as a class of
Integer Linear Program (ILP) is proposed. This approach allows us to leverage
the recent advances in the field of ILP solution.

This paper therefore has the following novel contributions: 1. the introduc-
tion of the MRM problem, and its solution using a novel extension of adder-
multiplexer cells. 2. the formulation of the minimum-area MRM as ILP for-
mulation. 3. an efficient use of the Xilinx Virtex / Virtex-II slice structure to
implement MRM.
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This paper has the following structure. Section 2 describes the background
of MCM. Section 3 describes the proposed architectural solution to the MRM
problem, and Section 4 demonstrates that this solution can be efficiently im-
plemented in the Xilinx Virtex family of FPGAs. Section 5 formulates the op-
timization problem in ILP, Section 6 collects and discusses results from MRM,
and Section 7 concludes the paper.

2 Background

2.1 Multiple Constant Multiplication

MCM, a special case of the MRM problem address in this paper, has been used
in many research fields, especially in DSP applications. A common use of MCM
is within the design of fully unfolded digital filters [2]. The main idea of this
technique involves removing the redundancy inherent in the re-computation of
common sub-expressions. Applying this approach provides a significant reduction
of area necessary to implement multiple constant multiplications. Even within
a single multiplication, common sub-expressions exist. As an example, consider
integer multiplication with constant coefficient 10100101. Let us denote left-shift
as <<. Instead of performing (x << 7) + (x << 5) + (x << 2) + x where x
is an input variable, we can perform (y << 5) + y where y = (x << 2) + x.
Hardware is then saved due to the elimination of the 101 (x << 2) + x sub-
expression. Sharing such sub-expressions across several coefficients results in
significant savings.

2.2 Representing Multiplicands with Data Flow Graphs

DFGs are the basis of a computational model used extensively in DSP. A DFG
is a directed graph, with nodes in one to one correspondence with operations
and edges in one to one correspondence with data flow. We shall consider edge-
weighted DFGs, where the edge weight corresponds to a shift operation. For
example, the CSE case considered above may be represented as a DFG in Fig. 2.

2

5

0

0

0

Fig. 2. DFG representation of coefficient 10100101

The topmost and bottommost nodes are the initial node (input node) and
terminal node (output node), respectively. In general, a DFG may have more
than one terminal node, corresponding to the different constant coefficients.
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Each intermediate node (an adder in standard MCM), has two input edges and
at least one output edge. Each DFG represents a way of sequencing addition
operations such that the required coefficients are produced. We may then ask
the optimization question: What is the minimum number of nodes required to
compute a given set of constant coefficients? This is the problem addressed by
existing work on MCM [7,8], which we extend here to the case of MRM.

3 MRM with Adder/Multiplexer Nodes

We now extend the DFG model from using adder nodes to using adder/multi-
plexer nodes. Each node’s internal structure now consists of not only an adder,
but also a 4-1 multiplexer, as shown in Fig. 3.

ba

s

0

Fig. 3. An adder/multiplexer node

Using such circuit provides operations that perform adding (a + b), passing
one of two input values (a, b) through the multiplexer, and generating a zero
to output value. Each operation is selected by a 2-bit selector s. Applying this
technique provides the flexibility to move from MCM to MRM. Each node may
perform a different operation at each different time frame. For instance, when
applied to Fig. 2, the multiplicand can be 10100101 (lower node and upper node
adding), 10000100 (lower node adding, upper node passing through the left-hand
input) or some other coefficients; depending on what the selectors are. The DFG
structure, and the shift quantities, remain constant over all time steps. This
means that the structure can be directly mapped into a circuit, and the shifts
remain cost-free.

4 An Efficient Xilinx Virtex / Virtex-II Implementation

This section describes an efficient adder/multiplexer implementation in a Xil-
inx Virtex / Virtex-II device. The Virtex series utilizes a Configurable Logic
Block (CLB) architecture. Each CLB consists of two slices, each containing two
logic cells (LCs). A diagram shown in Fig. 4 is a simplified Virtex-II architec-
ture; more information can be found in [9]. An LC has several logic components
including one 4-input look-up table (LUT), some MUXes and some dedicated
logic, including one MUXCY, one XORCY, and one MULT AND gate.

The adder/multiplexer node is designed using a similar idea to the way a
ripple-carry adder is implemented using the Virtex carry chain. A full adder/mul-
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REGISTERXORCY

MULT_AND

MUXCY

0

1

1

A4

A3

A2

A1

4-input
LUT

from ORCY output

Carry-out

Carry-in

Fig. 4. Simplified Virtex-II structure (top half of a slice)

tiplexer can be efficiently implemented using the same logic hardware resources
as a common adder. The key is leveraging MULT AND gate, an additional
2-input dedicated AND gate (typically used to implement an efficient 1-bit mul-
tiplier), and the carry-chain logic.

Fig. 5(a) illustrates a simple 1-bit full-adder which performs addition two
inputs a, b and carry-in ci, and results the summation s and carry-out co. We
can extend this structure to perform a bit-slice of the entire function shown in
Fig. 3. The four operations are controlled by a 2-bit selector (sel1, sel0) absorbed
into the 4-input LUT. A 1-bit adder/multiplexer can fit in one LC as depicted
in Fig. 5(b).

MUXCY

XORCY

a
b s

ci

co4-input
LUT

MUXCY

XORCY
a
b

ci

co
4-input

LUT

MULT_AND

sel1

sel0
10

10

1

01

0

s

sel1 sel0 Function

b

a

a+b

zero

0 0

0 1

1 0

1 1

Truth Table

(a) full adder (b) adder/multiplexer (c)

Fig. 5. 1-bit adder and adder/multiplexer implementation in an LC

In order to obtain the operation of generating logic “0” at all bit outputs of
an adder/multiplexer node, an extra AND gate is required. Two selector signals,
sel1 and sel0, are the inputs of this gate. When both signals are “1”, we make use
of a “1” on its output to force on the carry-in of LC that computes the LSB of
adder/multiplexer, and thus also on an input of the XOR gate (XORCY) in the
carry-chain logic. Meanwhile, a logic “1” is obtained on LUT output connected to
the other input of each XORCY gate. This yields “0” at the output s. The logic
of LUT output also selects carry-in value pass through multiplexer (MUXCY)
for forcing the carry-in of the next upper cell to operate in a similar manner.
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B one-bit adder/multiplexers are implemented vertically providing a B-bit
adder/multiplexer to perform fast carry-chain addition and multiplexing. The
carry-in signal is applied to at the bottom LC of the structure, and is cascaded
upwards by the Virtex architecture. This allows the design to have minimum
propagation delay.

The proposed structure is an efficient implementation on the Virtex device
by fully utilizing the resources of the cell. This provides more functionality with
minimal extra cost required. Although an additional AND gate is required, this
is a very small logic overhead compared to the size of B-bit add/multiplexer.

5 Transformation into ILP Formulation

A given set of MRMs may or may not be implementable using a fixed number N
of computational nodes. In this section, we propose an ILP model, the solution
to which corresponds to a time-ordered sequence of multiplexer select lines to
implement the required behaviour, if one exists.

5.1 Representing General DFGs

Fig. 6(a) depicts a general structure for describing all computations containing
three adder/multiplexer nodes (higher node structures can be developed in a
similar fashion). For clarity, we use a square box to represent each input and
output node, and a path with a big black dot to perform shift operation. The
multiplexers in Fig. 6(a), labelled “model multiplexers”, will not be realized in
the final circuit; they provide a model for ILP problem thus allowing all DFGs
of N nodes to be modelled. Once implemented, these multiplexers are replaced
by wires, as only one value of the select lines is active, for all time. The proposed
model therefore contains three main components: shifter, adder/multiplexer and
model multiplexer. This structure can perform various operations depending on
path selection of all adder/multiplexers and model multiplexers. The number of
outputs, which we shall denote C, corresponds to the number of sets of time-
varying coefficient(s).

5.2 Encoding the Problem

An instance of the problem is encoded as a T × C matrix, where T is the
number of rows corresponding to the number of time steps and C is number
of columns representing outputs. This implies that a 1 × C matrix corresponds
to the standard MCM problem. For example, Fig. 1 is a T × 2 problem. Since
the MRM problem includes a time element, the first step of our algorithm is to
unroll over time. This is accomplished by repeating the general graph. For T -time
steps, we require overall T repetitions; all signals that control each corresponding
shifter and model multiplexer are tied together. This ensures that shifting and
routing for all graphs (all T ) are the same. The only select line allowed to change
with the time is the select line internal to each adder/multiplexer node, which
can be changed to achieved the desired output values.
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 output nodes

an input node

adder/multiplexer node

model multiplexer

shifter

mi,r

qi,k

ci,t

ai,t bi,t

xi,t

...
x0,t x1,t x(i-1),t

oi,t,p

(a) (b)

Fig. 6. (a) A general DFG of three adder/multiplexer nodes. (b) A portion of general
structure.

5.3 ILP Modelling

ILP models are able to provide a formal method to describe and solve the MRM
problem. Our approach is to model the N -node problem as an ILP for fixed N ,
and then to iterate ILP solver to find the lowest value of N resulting in a feasible
solution. For minimizing the T ×C matrix problem, suppose that there are total
N add/multiplexer nodes operating in a B-bit number system.

A portion of the general structure is depicted in Fig. 6(b) and its notations,
described below, will be required for understanding the ILP model.

Both integer and binary variables are used within the model:

– The integer variables ai,t and bi,t are the inputs of ith adder/multiplexer
node at step t and its output is represented by variable xi,t. The model
multiplexer has i inputs, corresponding to the previous node outputs, and
its own output is represented by variable ci,t.

– The binary decision variables oi,t,p represent which of the four operations
to be performed at adder/multiplexer node i during time step t, where
p ∈ {0, 1, 2, 3}. Variables mi,r represent the selection of input xr,t to the
model multiplexer, where r ∈ {0, 1, . . . , i − 1}. Finally, variables qi,k repre-
sent the degree of shifting : qi,k = 1 means that this input of node i should
be shifted left by k bits, where k ∈ {0, 1, . . . , B − 1}.

We therefore have the following constraints, which are not yet in linear form:
1. Model multiplexer function

ci,t = xr,t if mi,r = 1. (1)

2. Shifter function
ai,t = 2kci,t if qi,k = 1. (2)
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3. Adder/multiplexer function

xi =

⎧⎪⎪⎨
⎪⎪⎩

bi,t

ai,t

ai,t + bi,t

0

if oi,t,0 = 1 (operation 0)
if oi,t,1 = 1 (operation 1)
if oi,t,2 = 1 (operation 2)
if oi,t,3 = 1 (operation 3).

(3)

A problem now arises since all above constraints are nonlinear problems, due
to the “if” selectors. However, these constraints can be reformulated as linear
constraints in the following way. For example, in the model multiplexer,

ci,t = xr,t if mi,r = 1 ⇒ ci,t − xr,t = 0 if mi,r = 1 (4)

which is equivalent to
ci,t − xr,t ≤ α(1 − mi,r) (5)

and
ci,t − xr,t ≥ β(1 − mi,r). (6)

where α and β are known finite lower and upper bound on the left-hand side
of (5) and (6), respectively. For the unsigned binary number system, α = 2B − 1
and β = −2B + 1 are sufficient. We can see that m = 1 reduces (5) and (6)
to (4). When m = 0, ci,t and xr,t can be any values (0 to 2B − 1) and still
satisfy (5) and (6). Extending this approach to other constraints results the
reduction of (1)– (3) to linear constraints problem to be an ILP.

There are a number of additional equality constraints that need to be added:

For all nodes i,

i−1∑
r=0

mi,r = 1 (7)

For all nodes i,
B−1∑
r=0

qi,k = 1 (8)

For all nodes i and time steps t,
3∑

p=0

oi,t,p = 1 (9)

where constraint (7) states that multiplexer has to select only one input, (8)
states that shifter must be shifted by only one k, (9) states that only one oper-
ation has to be performed at any one time step.

The minimum area solution for a T × C problem can be obtained by pro-
ceeding as follows:
1. Set N = 1.
2. Determine whether a feasible solution exists.
3. If it does, terminate the process, otherwise increase N and repeat from step 2.
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6 Results

We compare our approach to two methods: the ROM and general multiplier ap-
proach shown in Fig. 1(b), and the unfolded use of MCM. The latter approach
consists of using MCM to create the optimum implementation of all TC coeffi-
cients (for T × C problem), and then using T -to-1 MUXes to select the output
at each time step.

Note that both comparative approaches can be considered as special cases of
the general MRM structure used. N ×M general multiplier can be considered as
a cascade of M N -bit adder/multiplexer nodes, where the shift is always unity
and the select line, controlled by the equivalent bit in the multiplicand, selects
between options 1 and 2 in (3). The MCM-MUX comparative approach is also a
special case, where MCM is performed by adder/multiplexer nodes always fixed
at option 2 of (3), and the multiplexing is performed by adder/multiplexer nodes
which can choose between options 0 and 1 of (3).

These approaches were tested using sets of 4-bit coefficients generated ran-
domly. All ILP models are solved using the MOSEK optimization software [11].
Table 1 shows the synthesis results of average area and delay targeting Xilinx
Virtex-II XC2V1000-4 device [9].

As with the MCM problem, it is expected that the area improvement grows
with problem size [8]. However, even for the small benchmarks, our approach
compared to MCM-MUX provides less area for the larger instances shown in
Table 1. Compared to ROM and multiplier, the crossover point occurs at the
3 × 3 problem which results in a 24% improvement. It is likely that for large
problems, even greater saving will be possible.

Table 1. Average area and propagation delay. The upper figure is the area (in slices),
the lower figure is the delay (nanoseconds)

ROM & Multiplier our approach MCM-MUX
Number of outputs C Number of outputs C Number of outputs C

1 2 3 1 2 3 1 2 3

Number of 1
3.3,
12.27

4.7,
11.66

6.4,
11.71

5.9,
16.65

6.5,
16.51

8.9,
17.71

5.9,
16.59

6.5,
15.92

8.9,
17.32

time steps T 2
6.6,
15.22

11.4,
17.18

19.4,
16.91

10.2,
18.26

12.6,
19.14

21.1,
19.99

11.2,
18.15

15.7,
18.17

23.6,
19.15

3
9.9,
17.05

18.7,
16.82

29.5,
18.04

10.8,
18.89

18.7,
20.47

22.3,
20.70

14.0,
18.53

23.0,
18.24

30.5,
18.02

Since we do not explicitly target delay, the maximum average delay of our ap-
proach is 51% longer than that of ROM and general multiplier and 22% of MCM-
MUX approach. However, it would be straight-forward to incorperate DFG path
length based delay into the ILP objective function, if this were a problem.
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7 Conclusion

To our knowledge, there is no existing algorithm to directly deal with the MRM
problem. We introduce a new approach to optimize this multiplication problem
by formulation into ILP one and employ an efficient ILP software to find the solu-
tion. Although such technique have limitations when the problem becomes very
large, the results obtained give us important measures of optimality for future
developments of a heuristic approach. We also present how to take advantage of
all of the hardware present in the Virtex / Virtex-II family to ensure optimal
area results. Our further work aims to develop such heuristic approaches, and
to exploit dedicated registers for further time-step based optimization.
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Abstract. Field-programmable logic devices (FPLDs) are on the verge of
revolutionizing the digital signal processing (DSP) industry as programmable
DSP microprocessor did nearly two decades ago. Historically, FPLDs were
considered to be only a rapid prototyping and low-volume production technol-
ogy. FPLDs are now attempting to move into the mainstream DSP as their den-
sity and performance envelope have steadily improved. While evidence now
supports the claim that FPLDs can accelerate selected low-end DSP applica-
tions, the technology remains limited in its ability to realize high-end DSP so-
lutions. This is primarily due to systemic weaknesses in FPLD-facilitated
arithmetic processing. It will be shown that in such cases, a modified carry save
adder (MCSA) arithmetic can become an enabling technology for realizing em-
bedded high-end FPLD-centric DSP solutions. This thesis is developed in the
context of a demonstrated MCSA/FPLD synergy and the application of the new
technology to  communication signal processing. Design synthesis results for
Xilinx and Altera FPLDs are provided and show 22-164% speed improvement
compared to 2C designs and require lower costs (A*T) in most study cases.

1   Introduction

Compared to a cascaded collection of multirate FIRs, a Hogenauer [1] channelizer
design (sometimes called, a cascade integrator comb (CIC) filter) can potentially run
at a high input data rate and be of lower complexity. CIC filters are popular commu-
nication “building blocks” and are available as two’s complement arithmetic designs
as Xilinx IP block [2] and as a COST IC by Harris/Intersil as HSP43220 [3]. A typi-
cal communication configuration for the use as a high decimation rate filter is shown
in Fig. 1. The Hogenauer channelizer is well understood but, unlike their simple FIR
counterparts, represents a significant design challenge because CIC filters require that
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Fig. 1. The Harris/Intersil HSP43320 Hogenauer decimating filter used in IF conversion.

all arithmetic, which can often exceed 66-bits word-widths, be exact. Large arithmetic
word-widths immediately create a barrier to (non-pipelined) implementation which
are generally relegated to low-precision applications (e.g., 8-bits). The design of such
a filter using traditional methods and an ASIC/FPLD would be compromised due to
the bandwidth and latency problems associated with high precision arithmetic. Our
previous attempt [4,5] to solve this design problem involved the use of the residue
number system (RNS) arithmetic. Although the RNS implementation improved the
speed of the design, the overall cost measured as a product of area and time
(area*time) was not favorable. We designed for instance a 3-stage CIC decimator
using 26 bits. The 2C design cost metric was 343 LCs/49.3 MHz = 6.9, while the
RNS metric was 559 LCs/76.3 MHz = 7.3. In addition the RNS design had benefited
from the following two assumptions:

− A second pole at ω=π was introduced to improve the speed of the modulo adders.

− The output conversion from RNS arithmetic to two’s complement was not in-
cluded in the area calculation of the design,

while the first assumption may be valid due to the mandatory anti-aliasing filter in
front of the CIC, the second assumption is only valid if the next processing step is
also done in RNS. If the CIC filter is used as an embedded filter application within a
two’s complement arithmetic system, input and output conversion need to be included
in the cost (i.e. area*time product) of the design.

A carry save adder (CSA) concept, however, provides a potential solution to this
dilemma because CSA does not only provide essential speed improvement, via the
absence of any carry propagation in the CSA design and the area penalty for CSA
systems is less when compared with the RNS system, yielding an overall better cost
measured by the area*time product.
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2   Hogenauer CIC Filter Theory

A CIC filter devised by Hogenauer [1] is a multiplier free structure.  The principal
blocks of a CIC filter are an integrator and a comb or a differentiator with a rate
changer in between. The transfer function of a CIC decimation filter with S stages is
given by,

SRD
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where D is the number of delays in the comb section and R is the down-sampling
factor. From the above equation it can be seen that even though the integrators by
themselves have an infinite impulse response, a CIC filter as a whole is equivalent to
“S” moving average FIR filters. Figure 2 shows the step response of a single stage CIC
filter without the rate changer. It can be seen that although the response of the inte-
grator is infinity and shows overflow, but the final output y[n] is as expected due to
the comb. Hence the filter's response is a moving average defined over D contiguous
sample values. Such a moving average is a very simple form of lowpass filter.

Fig. 2. Step response of the first order Hogenauer filter without decimation.

Due to the presence of integrators and differentiators, register growth is a very impor-
tant factor. In order to insure that no data is lost due to register overflow, the total
internal word-width is calculated using the formula,

growthinputintern
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BBB

RDSBB

+=

×+=
(2)

Thus the adder in the CIC filter design is crucial as it has to perform exact arithm-
etic with this word width at all levels so that no run-time overflow occurs at the out-
put.
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2.1   Hogenauer Filter Design Using Carry Save Adders

Carry Save adders (CSA) are popular in array multipliers due to the reduced latency
provided with equivalent or superior speed performance. We have employed three
different adder designs for the 5-stage, 16 bit input CIC filter design with a rate
change factor of 1000 available as commercially IC from Harris/Intersil HSP43220.
Each of these designs is synthesized for Xilinx’s and Altera’s FPLD and the results
are tabulated.  The CIC filter with two’s complement adder uses the least number of
logic cells but with the increase in the number of stages and the number of input bits,
the adder becomes very slow due to carry ripple. Several techniques for multiple
operand addition that attempts to lower the carry propagation penalty have been pro-
posed and implemented [6]. Among these, the CSAs are the fastest since there is no
carry propagation until the last stage, while in the other stages a partial sum and a
sequence of carries are generated separately.  A CSA is nothing but a parallel counter
employing parity function, i.e., the kth significant output bit is the parity function of

one-bit k2 tuples in the vector [7,8]. We have incorporated these adders only in the
integrator section in our design for study purpose however we have used two’s com-
plement addition in the comb section. Due to the presence of the feedback in the
integrator, the parallel counter design grows bigger with the number of stages in the
CIC design. The first stage has a (3,2) CSA, the second stage has a (5,3) CSA and the
third and the consecutive stages will have (6,3) CSAs as shown in the CIC structure in
Fig. 3.

Fig. 3. Cascaded integrator comb filter using carry save adders.

Thus, with increase in the number of stages, the performance of this adder deterio-
rated using more silicon resource and decreased speed of computation. This drawback
was overcome by the use of “Modified CSA” (MCSA) which is obtained by combin-
ing multiple (3,2)CSAs in a so-called Wallace tree [6]. In this tree, the number of
operands is reduced by a factor of 2/3 at each level. Putting different, the number of
operands in level (k+1) can be at most Nk3/2 . Starting with the level 1 with one (3,2)
CSA it follows that the maximum number of operands at level 2 is 9/2 =4. The re-
sulting sequence is therefore 3,4,6,9,13,19,28 etc. For the CIC design 2 levels of CSA
are sufficient. Fig. 4 shows the resulting MCSA structure.
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Fig. 4. Cascaded integrator comb filter using modified carry save adders.

In general, input and the output bit width of a CIC filter are in the same range. Hence
two different methods are employed in order to make the input and output word-width
the same, pruning in the final stage and by pruning some LSBs at the previous stages.

2.2   Hogenauer’s Pruning Theory for Two’s Complement

The quantization introduced through pruning in the final stage is very large when
compared with the quantization introduced in the output by pruning some LSBs at the

previous stages. If  12,
2

+STσ is the quantization noise introduced through pruning in
the output, Hogenauer suggested to set it equal to the sum of the (truncation) noise

2
,kTσ introduced by all previous sections. For a CIC filter with S integrator and S comb

sections, it follows that,
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where 2
kP  is the power gain from stage k to the output. Compute next the number of
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The power gain 2
kP  for k=S,S+1,....2S for the comb sections can be computed using

the binomial coefficient,
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2.3   CSA Pruning Technique

From Figures 3 and 4 it can be seen that the CSA and MCSA designs introduce more
noise sources than the original two’s complement design. More precisely, the MCSA
introduces one additional noise source in all integrator sections, i.e., a total of S addi-
tional noise sources. The CSA configuration has one additional noise source in the
first integrator, while all other CSA integrator sections have two additional noise
sources, or a total of (2S-1) additional noise sources. We can take care of this addi-
tional noise source by adjusting (4) in Hogenauer’s pruning equations. There seemed
to be two viable approaches that remove the degradation through the additional noise
sources.
In the error distribution technique we distribute the additional S or (2S-1) noise
sources for MCSA and CSA, respectively, over all stages, including the comb sec-
tions, i.e., we replace (4) with
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In the second approach (the direct quantization noise adjustment), we reduce the
extra noise in each stage by scaling all noise sources to the allocated noise margin for
that stage. We would then replace (4) by
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The comb section will be unchanged in this case.
The cic.exe program from [9] was modified in order to compute the modified bit
width for the CSA and MCSA designs using the above two methods. The program
provides the maximum bit growth as well as the number of bits to be retained at each
stage for the CIC design using pruning. For the 5-stage design with 16 bit input and
output bit width and a rate change factor of 1024, Bmax is 66. The result of executing
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this program is tabulated below in Table 1. We note that one more guard bit in the
integrator section and comb sections is sufficient to implement the (M)CSA design
with the same quantization error as the two’s complement design. Comparing the error
distribution techniques with the direct method we see that error distributions yield
larger required bit width in the comb sections and therefore we used the direct quanti-
zation method (shown bold in Table 1) without error distribution for our designs.

Table 1.  Carry save adder pruning data.

Integrator sections Comb sectionsType
 

Distribute
Error 1 2 3 4 5 1 2 3 4 5

2C No 63 53 43 35 26 22 21 20 19 19
CSA Yes 63 53 44 35 27 23 22 21 20 19
MCSA Yes 63 53 44 35 27 22 22 21 20 19
CSA No 63 53 44 35 27 22 21 20 19 19

MCSA No 63 53 44 35 27 22 21 20 19 19

3   Synthesis Results

Circuits for 5-stage CIC filters using 2C, MCSA, and CSA arithmetic in full bit width
and pruning technique have been developed using generic VHDL coding. Circuits
have then been synthesized from their VHDL descriptions and optimized for speed
and area using synthesis tools from Altera and Xilinx. To have an first impression on
the possible performance gain we have compiled the data for single adders using
CSA, MCSA, and 2C which are graphically interpreted in Fig. 3. We note the speed
improvement especially for large bit-width adders of the CSA and MCSA when com-
pared with the two’s complement adder (2C).

Fig. 5. Result of synthesis of the adder designs on Xilinx’s FPLD.
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3.1   CIC Xilinx Synthesis Results

The synthesis results for the Xilinx Virtex Device XCV300e-pq240-6 compiled with
the ISE web-pack tool set shows similar results as with Altera devices and software.
Because the Xilinx logic cells have two 4-input and one 3-input tables, the design
area used is the equivalent number of gates from the Xilinx “Mapping Report File.”
To have reliable timing data we use the “Post Place&Route Static Timing Report”
rather than the map time estimations.  As mentioned before, when designed using a
two’s complement adder, the number of inputs to each stage remains the same re-
gardless of the number of stages. Whereas, when designed using a CSA, the  first
stage has (3,2) CSA, the next stage uses (5,3) CSA and the third (6,3) CSA and for
further stages it remains the same. When used with MCSA, the first stage has (3,2)
CSA, the second stage uses (4,2) MCSA and this remains the same for all the further
stages.

Table 2. Synthesis data of 5-stage CIC filter on Xilinx’s FPLD.

The design field indicates the CIC filter design with the best synthesis option using
CSA (with parallel counter logic), MCSA (as in Modified CSA) and CIC (using two’s
complement adder).

We notice the speed improvement both for the CSA as well the MCSA design with
and without pruning. The cost measured by the time*area product is improved only
for the MCSA design without pruning. Table 2 also includes the required minimum
sampling rate reduction between the integrator and comb section as measured by the
quotient of integrator clock and comb clock, i.e., ceil(clkI/clkC). For all designs the
required minimum sampling rate reduction is 3, which is most likely well below the
usual high decimation rate factor CIC are used in communication systems.
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3.2   CIC Altera Synthesis Results

The synthesis results of 5-stage CIC filters using the above mentioned means of arith-
metic is shown in Table 3. The designs are synthesized for Altera’s FPLD device
EPF10K130EQC240-1. The designs include both the pruning methods mentioned
above.  The best performance of each of these designs for the different speed and style
options is tabulated.  LCs gives the number of logic cells used, Fmax is the Regis-
tered Performance, and Cost = LCs/Fmax(10-6) gives the cost of the design.
From the above table it can be seen that pruning at each stage decreases the total LCs
used and thereby improves the speed. CIC filter design using two’s complement adder
uses minimal resource but at the same time the speed is the least compared to other
designs. Though MCSA uses twice the number of LCs, the speed is three times faster
than the design using two’s complement adder, thereby making the design more cost
effective.

Table 3. Synthesis data of 5-stage CIC filter on Altera’s FPLD.

Table 3 shows only the best results regarding cost metric area*time. For a complete
listing including the optimum synthesis results for maximum speed optimization we
reference to [10].

4   Conclusions

The Hogenauer’s [1] design of two’s complement cascade integrator comb filter was
extended to carry save adder design. Using a digital signal processing scheme with
CSA provides fast filter building blocks. These filters are of low complexity and are
multiplier free, so that fast compact decimators and interpolators can be implemented
without the high cost of RNS implementation as previously proposed [4,5].

The quantization error analysis for CSA shows that no more than one additional
guard bit precision is needed when compared with Hogenauers pruning for two’s
complement.

Synthesis results for a typical design example used in the Harris/Intersil HSP43220
have been compiled and show an improvement in speed from 84% to 164% and up to
31% costs improvements for Altera FPLDs. Improvements in speed from 22% to
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106% and up to 41% for costs metric (A*T) for Xilinx Virtex FPLDs when compared
with the conventional two’s complement design are reported.
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Abstract. This work addresses the design of a novel complex steerable
wavelet construction and its implementation on reconfigurable logic. The
wavelet decomposition uses pairs of bandpass filters that display symme-
try and antisymmetry about a steerable axis of orientation. The design is
targeted for implementation in hardware, thus one of the desired proper-
ties is the small number of unique kernels. A detailed description of the
implementation of the design in hardware is given. Moreover, results re-
garding the speed of our design compared to a software implementation,
and the error in the filter responses due to fixed point representation, are
reported. To show the applicability of the design to real life situations,
a corner detection algorithm is illustrated.

1 Introduction

The applications of wavelets to signal and image compression are well researched
[1,2,3]. The work described here contains several points of departure in both the
construction and application of steerable filters to feature detection. The main
point of departure is that the filter kernels are specified by separable angular and
radial functions in the frequency domain which have not been jointly reported in
a multi-rate scheme. In addition, an implementation of the algorithm in hardware
is performed, targeting real-time applications.

The need for more flexibility and fast prototyping of signal processing al-
gorithms has lead the FPGA community to investigate tools for easy mapping
of signal processing algorithms to FPGAs. One approach is to provide the de-
signers with building blocks that are common in DSP applications [5]. Another
approach is to provide tools that allow the engineers to describe their design in
a high level language [6]. In this work, Handel-C [9] is used as the main tool to
describe the steerable complex wavelet pyramid on hardware. Handel-C is based
on the syntax of ANSI C with additional extensions in order to take advantage
of the specific characteristics of the hardware. It is independent of the targeting
platform which makes the design easily transferable to other hardware plat-
forms. The originality of this work is in the design of a novel steerable wavelet
construction and the investigation of mapping such a design to reconfigurable
logic, targeting real-time applications.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 394–403, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The paper is organized as follows. In section 2.1 the motivation for imple-
menting a complex wavelet decomposition is given. In section 2.2 a detailed
description of the pyramid is given as well as how this design differs from other
constructions. In section 3, the application of the pyramid to feature detection is
demonstrated using as example a corner detection algorithm. The implementa-
tion of the design on FPGA is described in section 4. Finally, the impact of the
quantization of the variables on the overall performance of the algorithm and a
comparison between the hardware implementation to the software implementa-
tion of the algorithm regarding the speed is given.

2 The Pyramid Design

2.1 Motivation

The motivation for a new pyramidal decomposition has been a subband decom-
position of images into orientation and scale-selective channels that can then be
used for analysis purposes. Although there are numerous decompositions that
satisfy such a requirement, we are seeking a construction that utilises polar sepa-
rable functions, so that the orientation selectivity can be specified independently
of radial frequency (or scale selectivity), and at the same time a small number
of unique kernels for construction is required for implementation of the design
in hardware. To provide a variety of scale-selective channels, we have chosen to
rely on standard multi-rate techniques, which enhance the computational and
representational efficiency of such decompositions. Within each orientation and
frequency channel, we wish to estimate the local image symmetry/antisymmetry
about an axis. Using a small number of kernels, the axis should be tunable, de-
pending on the local image content. These requirements are met by a steerable
quadrature wavelet decomposition, of which some examples can be found in
[3,7].

2.2 Design Overview

The design of the pyramid employs decimation in the lowpass channel in order
to achieve the scaling of filter response through repeated application. The nature
of the decomposition is illustrated in Figure 1. The decomposition is repeated
four times in order to detect symmetric and antisymmetric regions in the image
in different scales. The design of the filter kernels is performed in the Fourier
domain and the inverse two-dimensional Fourier Transform is applied to com-
pute the spatial impulse responses. For convenience in tuning angular and radial
characteristics of the filters, we impose Fourier domain polar separability, so
that a filter G0,k(ω, φ) in the kth direction in a filter set can be specified as the
product of a radial frequency function Ω0(ω) and an angular frequency function
Φ0,k(φ), i.e. G0,k(ω, φ) = Ω0(ω)Φ0,k(φ).
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Fig. 1. Pyramid layout. The boxes with the dotted lines illustrate a single level of
decomposition. The full decomposition consists of four levels. The responses of the
bandpass filters detect symmetric and antisymmetric features in the image.

2.3 Radial Frequency Response

For the isotropic lowpass radial frequency response we have used the following
function in the radial frequency domain on the interval −π < ω ≤ π.

H0(ω, φ) = H0(ω) =
1

1 + (ω/ωc)6
(1)

where ωc = 3π/8. It was chosen to provide a reasonably flat power response,
when used in combination with the bandpass radial frequency response, defined
later, for radial frequency components in the range [0, ωmax]. ωmax is the peak
frequency of the bandpass radial frequency response.

The radial response of the bandpass filters, Ω0(ω), is based on Erlang func-
tions which are one sided, smooth, and have the property that Ω0(0) = 0. The
joint localisation of Gaussian kernels in both spatial and frequency domain causes
transform coefficients to fall off in magnitude as scale is increased [4]. This is un-
desirable for a hardware implementation since more coefficients are required to
represent the kernels of the pyramid. Using an α value smaller than one (Poisson
and Erlang, α = 0.5) biases the localisation towards the frequency domain and
provides an increased stability of transform coefficients across scales. The filters
employed here have radial frequency response

Ω0(ω) =
( e

14

)7
ω7e−ω/2U(ω) (2)

where U(ω) is the unit step function.
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2.4 Angular Frequency Response

The prototype general angular frequency characteristic

Ω0(φ) = cos3(φ)rect(φ/π) (3)

has been used, where rect(φ) = U(φ+ 1
2 )U( 1

2 −φ). This is a generalization of the
sin and cosine angular characteristics used in derivative of Gaussian processing,
but with tunable angular selectivity. The prototype angular frequency is rotated
to generate the angular characteristics of oriented filters for a full filter set by
the following:

Φ0,k(φ) = Ω0(φ − φk) (4)

In our design four orientations are used at 0, π/4, π/2 and 3π/4.

2.5 Filter Kernels

For each of the filter prototypes in the Fourier domain, a sampling on the two-
dimensional interval [−π, π]× [−π, π] was performed, with a grid spacing of π/64
in each cartesian direction. The choice of an odd matrix size for constructing the
Fourier domain representation is tied to the symmetry of the filter kernels, which
we have observed to be better on odd-sized grids.

The inverse two dimensional discrete Fourier Transform was computed to
extract 65 × 65 spatial frequency responses. These responses were each truncated
to fit a set of four 7 × 7 complex arrays. The larger the size of the kernels the
better the properties of the filters are preserved, but more area is required to
implement these kernels on hardware. The kernels thus extracted are illustrated
in Figure 2. The first row corresponds to the real component of the kernels
which detect even-symmetric features in the image such as lines. The second row
corresponds to the imaginary component responsible for detecting the parts of
the image with odd-symmetric content, such as edges. The symmetry properties
of the filters fall into various classes. We have identified five classes of coefficient
symmetries. More details about kernel construction, the symmetry classes of the
filters and the coefficients of the filter blocks can be found in [10,11]. However, the
current hardware design has not been optimized with respect to these symmetric
properties. Future work will take into account these properties in order to reduce
the computational load in the FPGA.

3 Generating Feature Maps

3.1 Corner Likelihood Response

The output of the filters may be used to generate a measure that may be treated
as being proportional to the likelihood of a particular location in an image being
the corner of some structure. We construct the following feature map

C�(m, n) =
∏3

k=0 |f
(�)
k (m, n)|

p +
∑3

k=0 |f
(�)
k (m, n)|4

(5)
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0 π/4 π/2 3π/4

Fig. 2. Real and Imaginary parts of complex bandpass filter kernels. Top row shows
the real part of the kernels, where the bottom row shows the imaginary part.

f
(�)
k (m, n) denotes the response of the filter k of level �. m, n denote the in-

dexes inside the image. p is fixed to be 4% of the maximum pixel intensity
in the image preventing the feature map to take large values for small val-
ues of

∑3
k=0 |f

(�)
k (m, n)|4. The denumerator normalizes the response to a local

anisotropic energy. Moreover, we may choose to weight the corner response by
anisotropic energy computed at the same, or another scale.

4 Implementation on FPGA

The complex steerable wavelet was designed to be “hardware-friendly” by tar-
geting to a minimum number of distinct and symmetric kernels. A hardware
implementation using reconfigurable logic was investigated to accelerate the de-
composition part of the algorithm which leaves “high-level” decisions such as
the implementation of the feature maps to the host CPU. Only one level of
the pyramid is implemented in hardware, and the full decomposition is realised
through reuse of the same hardware, having as input the decimated image from
the previous iteration.

The target board that is used for implementation is the RC1000-PP from
Celoxica. It is a PCI bus plug-in card for PC’s with a Virtex V1000 FPGA and
four memory banks of 2 MBytes each. All four memory banks are accessible by
both the FPGA and any device on the PCI bus. However, at any time instance
only one device can access a memory bank. The Handel-C language is used to
describe the design.

4.1 FPGA Design

The quantization of the variables in the design is as follows: eight bits are used
to represent a pixel in the image and ten bits are used to represent the coeffi-
cients of each filter and also the output of each convolution. The impact to the
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final accuracy of the algorithm by selecting these numbers of bits to represent
the variables is discussed in section 4.3. In order for the decomposition to be
performed as fast as possible, the whole design is pipelined in order to produce
three convolution results per clock cycle.

Figure 3(a) shows an overview of the design. The pixels are stored in a raster
scan in sets of four in the memory allowing the FPGA to fetch four pixels per
read cycle. The ManageBuffer process is responsible to buffer the data such as
to provide a region of the image to the next process in the design. The FIFOs are
mapped to block RAMs in the FPGA for a more effective use of resources. The
next process, the ProcessWindow, performs the convolution between a window in
the image and the appropriate masks. It contains three programmable processes
FilterBankA (FBA), FilterBankB (FBB) and FilterBankC (FBC) that each one
can apply three different filters by loading a specific set of coefficients. A shift
register and a RAM to store the coefficients is selected to form the appropriate
masks for each level of the pyramid. The final results are concatenated and stored
in the external RAM. Figure 3(b) shows a detailed diagram of the FilterBank
process. Moreover, the result from the last filter, which represents the input
image for the next level of the pyramid, is decimated, saturated in the range
[0, 255] and stored in the external memory by the NextLevelImage process.

ManageBuffer
ProcessWindow

FBA FBB FBC

RAM
0

RAM
1

RAM
2

RAM
3

SelectRAM 0/1 SelectRAM 2/3

NextLevel
Image

FIFO
147x10 7

7

coefficients

address
counter

Filter mask

(a) (b)

Fig. 3. (a) shows the top level diagram of the design. (b) shows the FilterBank process.
The FIFO contains the coefficients for the three kernels that are realised in the filter
bank.

4.2 Host Control

The CPU controls the operation of the FPGA by a handshake protocol. Due
to the associated latency of each transfer through the PCI bus, the data are
transferred using DMA access between the CPU and the board [12]. In order to
speed up the process, the decomposition of the image and the transfer of the
data to/from the host are performed in parallel. The following scheme is used.
Out of the four memory banks, the first two are used to store the new frame that
is sent by the host for processing, the previous frame that is being processed by
the FPGA, and the decimated images that are used for the different levels of the
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pyramid. The other two banks are used by the FPGA to store the result of the
convolutions. The handshake protocol operates as follows. When a new frame is
available, the CPU sends the data to RAM 0 or 1 and signals to the FPGA that
a new frame is waiting for processing. In the meantime, the FPGA processes the
previous frame from RAM 1 or 0 respectively. The results from the convolutions
are stored in RAMs 2 and 3. The output data are distributed between RAMs 2
and 3 such that while the FPGA writes the results from a convolution to one
RAM the CPU performs a DMA transfer to the already calculated results from
the other RAM. The distribution of the results is necessary, since the design
should be able to handle images with size 640 by 480 pixels.

4.3 Implementation Analysis

Experiments were performed to investigate the impact of the number of bits
that are used to represent the kernel coefficients (Nc) and the bits that are
used to represent the result of the convolution (No) to the filter responses. The
mean square error of the estimation of each filter response between full precision
and fixed point for each combination of Nc and No is estimated using the Lena
image. Figure 4 shows the average mean square error over all filters using the
same combination of Nc and No. In our design, No is set to 10 in order to be
able to store the results of three parallel convolutions by performing only one
32-bit access to the external memory. From the figure, it can be concluded that
the number of bits used for the coefficients has a small effect on the error of
the response compared to the number of bits used to represent the result of
the filters. Also, it should be mentioned that the error in the filter responses
increases after changing levels since the decimated result of the low-pass channel
is reused for the next bandpass decomposition.
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Fig. 4. Mean square error in the filters’ response using the Lena image between fixed-
point and floating-point arithmetic.

The overall design uses 12,286 slices. Due to the large size of the design
compared to the available space in Virtex V1000, the optimum clock rate can not
be achieved. The synthesis results of the design using Xilinx ISE 6.1 gives 99%
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usage of slices. It is clear that there is not enough available space for optimum
routing, which reduces the optimal clock frequency. Furthermore, the slow RAMs
that are available on the board reduce the effective speed of the design. Due to
the nature of the decomposition, the data that are generated correspond to an
equivalent size of 14.6 times the input image. This amount of data cannot be
stored in the internal memory of the FPGA and should be transferred to the
external RAMs. The available bandwidth to the external memories reduces the
effective speed of the current design. The required memory bandwidth by the
design for VGA resolution (640x480) at 25 frames per second is 109 MBytes/sec,
where the available bandwidth is 66 MBytes/sec assuming only one available
memory bank. A rate of 16.6MHz was achieved giving 13.1 frames per second in
VGA resolution.

5 Results

5.1 Performance Analysis

Experiments were performed to compare the speed of the new design to a soft-
ware implementation. A decomposition with four orientations and four levels is
performed on two test images with size 256x256 and 512x512. Table 1 shows
a summary of the results. The first row of the table corresponds to a machine
with Dual Hyperthreading Xeons at 2.66GHz with 2GB of RAM. The software
runs under MATLAB and it is optimized using the Intel SIMD Integrated Per-
formance Primitives library which also takes advantage of multiprocessors. The
second row corresponds to a similar machine but without hyperthreading tech-
nology. The software version of the design was implemented using single, dual
and quad threads. The RC1000-PP board is placed on a Dual Pentium III ma-
chine at 450MHz and 512MB of RAM. The results for the software is the average
over 40 frames, where for the hardware the results is the average of 4000 frames.
The timing for the FPGA include the DMA transfers. In both cases the required
time to read the data from the hard disk is excluded. The speed up factor is
calculated with respect to the best performance of the software implementation
in each row. It can be seen that an average improvement of 2.6 times in the speed
can be achieved. Moreover, we placed our design in an XC2V6000 to investigate
how fast the current design can be clocked without any restrictions from the
size of the FPGA device or by the timing constraints of the external memories.
The synthesis tool showed that the design can be clocked up to 50MHz giving
an average speed up factor of 8 compared to the software implementations.

5.2 Corner Detection

Further experiments are performed to assess the performance of the design to
real-life situations. The application under consideration is corner detection using
the algorithm described in section 3. We investigate how precisely the corner of a
structure in the image is detected given the limited number of bits that are used
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Table 1. Comparison results in speed between software and hardware implementation.
Using a XC2V6000 device a speed up factor of 8 is achieved.

Image size HT Single Thr. Dual Thr. Quad Thr. FPGA Accel. Speed up factor
Lena 256x256 Yes 0.06035s 0.04897s 0.05088s 0.0170s 2.88

No 0.05953s 0.04737s - 2.78
Boats 512x512 Yes 0.21074s 0.21281s 0.16113s 0.0653s 2.46

No 0.20720s 0.15724s - 2.40

to represent the coefficients and the response of the filters. Figure 5 shows the
performance of the above design compared to a software implementation. The
image on the left is the result of the corner detection when the whole algorithm
is implemented in software. The image on the right is the result of the corner
detection when the decomposition of the image is performed in the FPGA. It
can be seen that most of the features have been detected correctly except of 8
mismatches. Further investigation revealed that by assigning 16 bits to represent
the output of the filters gives zero mismatches. However, a 16 bit representation
for the results would involve access to two memory banks simultaneously, forcing
the FPGA to wait for each DMA transfer to finish. This results in a reduction
in performance by a factor of 1.5, using the RC1000-PP board.
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Fig. 5. (a) shows the result of the corner detection using software. (b) shows the same
result using the hardware implementation.

6 Conclusions

In this paper we have presented a novel steerable pyramid for image decomposi-
tion and feature detection. For speeding up the algorithm, a mapping to recon-
figurable logic was performed. We investigated the impact of the quantization
of the variables to the filter responses and pointed out potential problems in the
design of such multi-level transforms. Due to the nature of the algorithm, a huge
amount of data is produced and can be stored only in the external RAMs. The
current design is limited by the available bandwidth to the external memories.
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The current prototype will be used as a platform for research in word-length
optimization [8] over multiple coefficient masks that use the same paths. More-
over, future work involves the investigation of automated tools that optimize the
design of wavelet transforms taking into account the symmetry properties of the
filters in the case where the same part of hardware is used by different kernels.
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Programmable Logic Has More Computational Power
than Fixed Logic

Gordon Brebner

Xilinx Research Labs, San Jose, U.S.A.
gordon.brebner@xilinx.com

Abstract. In 1964, Elgot and Robinson introduced the Random-Access Stored
Program (RASP) machine model “to capture some of the most salient features of
the central processing unit of a modern digital computer.” After four decades of
progress in computer science, this model is now somewhat outdated. Intriguingly
though, the 1964 paper presented two theorems showing that programs of ‘finitely
determined’ instructions are properly more powerful if modification of addresses
in instructions is permitted during execution than when it is forbidden. In this
paper, we celebrate the 40th birthday of these results by using them to prove that
allowing programmability of circuits during execution adds extra computational
power. To do this, we accord front-line computational status to programmable cir-
cuitry, and conduct a theoretical study based on a tradition dating back to Gödel,
Turing and Church in the 1930s. In particular, we introduce a new Local Access
Stored Circuit (LASC) model of programmable circuitry, intended to form a solid
basis for a broad range of future computational research.

1 Introduction

As explained in the abstract, the Random-Access Stored Program (RASP) machine
model was introduced by Elgot and Robinson in 1964 [1], their aim being to provide
a framework for “the rational discussion of programming languages.” It would be fair
to say that the RASP model has not maintained any dominant status, either in the area
of formal semantics of programming languages, where there has been a move toward
abstractions that are higher level than machine code execution, or in the area of com-
putational complexity, where there has been a focus on simpler machine models with
more easily quantifiable behavior. A further nail in the RASP coffin has been its specific
incorporation of support for program modification at run time, deemed an anathema in
the software engineering community.

It is, however, this particular feature of the RASP model that attracted our atten-
tion. The current state of research involving field-programmable logic is that the bene-
fits or otherwise of run-time reconfiguration are much debated. Moreover, researchers
lack any notable higher-level abstractions of the basic functionality of programmable
logic devices. Thus, an investigation at the level of modifiable machine code is very
apt at present. To this end, we define the Local Access Stored Circuit (LASC) model,
a surprisingly close but non-artificial relative of the RASP model, and thus are able to
replicate Elgot and Robinson’s proof of a proper difference in computational power,
depending on whether run-time programmability is allowed or not.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 404−413, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Background RASP Results

In this section, we set the scene for the two main RASP results of interest. The necessary
and sufficient definitions are given in the original mathematics of Elgot and Robinson,
accompanied by our layman’s interpretations in English. This extensive background
review is necessary to bring it to a wider audience, in order to convey a full understand-
ing both of the main results and of the potential for translating the RASP model to a
machine model for programmable circuitry.

2.1 Basic RASP Definition

The definition of a random-access stored program machine (RASP) is in Section 3 of
[1]. We present the relevant parts of the definition here, and include in-line some earlier
definitions from Section 2 of the paper.

A RASP is defined as an ordered sextuple P = (A, B, b0, K0, h
1, h2), where A

and B are (usually, countably infinite and, possibly, overlapping or coinciding) sets of
abstract objects called addresses and words, respectively; and b0 is an element of B,
called the empty word. K0 is a subset of K, the set of all functions k(x) which are
defined on A and take values in B. Finally, h1 is a mapping from Σ0 × B into K0
and h2 is a mapping from Σ0 × B into A, where Σ0 = K0 × A. These mappings are
combined into a mapping h = (h1, h2) from Σ0 × B into Σ0, and then for any b ∈ B,
the mapping hb, where hb(x) = h(x, b) for all x 1, is called an (atomic) instruction.

Interpreting this, the RASP machine has a random-access memory, with A being
the set of addresses of individual storage locations in the memory and B being the set
of values that can be stored in a memory location. The contents of the memory at a
specific time are represented by a function k(x) from A into B, with unused memory
addresses being mapped to the ‘empty word’ value b0. The computational state of a
RASP at a specific time is represented by a pair (k, a) in Σ0, k being the contents of the
memory and a the memory address of the current instruction (i.e., a program counter).
The effect of executing a RASP instruction represented by the word b ∈ B is captured
by a mapping hb, which maps a computational state σ ∈ Σ0 to a new state σ′.

Note that this execution semantics does not force the instruction executed to be the
one stored at the current instruction address in memory, which is the expected case in
practice. To capture this, Section 3 of [1] defines a mapping g from Σ0 into Σ0 by
g(k, a) = h((k, a), k(a)) 2. Thus, g captures the movement from a current memory
state to the next memory state, after executing the current instruction.

2.2 Finitely Determined Instructions

One particular property of instructions is crucial to the main result of interest. As de-
fined in Section 3 of [1], for a given b, an instruction hb is said to be finitely determined
if for every a there exists a finite sequence Aa,b = (a1, . . . , aj) of elements of A such

1 Beware that there two different meanings of placeholder variable x in this paragraph, as in [1].
2 To be precise, Section 3 defines mappings g1 and g2 in terms of the mappings h1 and h2, and

then the definition g = (g1, g2) is carried forward from Section 2.
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that for any b1, . . . , bj in B there exist elements a′, ai1 , . . . , ai�
of A and bi1 , . . . , bi�

of
B (� a natural number which also depends on a, b1, . . . , bj) for which the following con-
dition is satisfied. If (k, a) is an element of Σ0 for which k(a1) = b1, . . . , k(aj) = bj ,
then h2

b(k, a) = a′, and h1
b(k, a) = k′ where k′(aim

) = bim
for m = 1, . . . , � and

k′(x) = k(x) for all other x.
Interpreting this, the effect of a finitely determined instruction hb is that control

moves from address a to address a′, and the next memory state k′ is obtained from the
current state k by making a finite number, �, of changes. These depend on the current
address a and on the value of k at a finite number, j, of places. The key feature of this
definition is to say that the execution of an instruction involves reading from a finite
number of fixed memory addresses and writing to a finite number of memory addresses.
Note that the particular choices of fixed memory addresses read from are allowed to be
different at different current execution addresses a.

2.3 RASP Computations

Section 2 of [1] defines a computation of a RASP3. An infinite sequence of states
comp(σ0) = (σ0, σ1, . . .), where each σi = (ki, ai), of a RASP is called a compu-
tation if σi+1 = g(σi) for i = 0, 1, . . .. Now, if E is a finite subset of A, then define
compE(σ0) = comp(σ0) if for all i, ai /∈ E; and define compE(σ0) = (σ0, . . . , σn) if
an ∈ E and for all i < n, ai /∈ E. In the latter case, compE(σ0) is said to be successful
and to terminate in σn. When E is a singleton set {e}, define the shorthand notation
compe = compE .

Interpreting this, a computation of a RASP machine is the set of states that it
passes through as instructions are executed. The set of addresses E represents a set
of exit points in the computation, introducing the notion of execution continuing until
it reaches one of the exit addresses.

2.4 RASP Programs

Section 4 of [1] contains the fairly difficult definition of a RASP program. Let H
be the set of all instructions of the RASP. Then a program π is the (m + 2)-tuple
(p, a0, e0, . . . , em−1). p is a mapping from a finite subset Dπ (also Dp) of A (the do-
main of π and of p) into H∪B (here assuming that H and B are disjoint sets), a0 ∈ Dp,
p(a0) ∈ H , i �= j implies ei �= ej , and ei ∈ A−Dp for 0 ≤ i < m. Let k holds π (and
also p) mean: for all a ∈ p−1H , hk(a) = p(a) while for all a ∈ p−1B, k(a) = p(a).
If k holds π, compE(k, a0) is called a computation of π, where E = {e0, . . . , em−1}.
Finally, p must satisfy the property that, if ((k0, a0), . . . , (kn, an)) is a successful com-
putation of π then ai ∈ p−1H for all i < n and, if ((k0, a0), (k1, a1), . . .) is an unsuc-
cessful computation of π then ai ∈ p−1H for all i.

This definition requires interpretation. A stored program consists of instructions and
parameters, and is represented by the mapping p. Instructions are stored at the addresses
a where p(a) is in H, and parameters are stored at the addresses a where p(a) is in B.

3 In fact, Section 2 defines this for the IMP, a less general machine model than the RASP, but
the definition is inherited in this case.
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The starting execution address is a0, and must contain an instruction of the program.
The set of exit addresses is {e0, . . . , em−1}. These addresses are constrained to be out-
side the set of addresses containing the program, to ensure certain properties of pro-
grams that we need not consider here. The final property guarantees that the sequence
of instruction addresses during execution all contain instructions of the program.

A program π is called fixed if whenever (σ1, . . . , σn) is a successful computation
of π, then k1, . . . , kn all agree on Dπ, where σi = (ki, ai). This captures the situation
where the stored program is not changed at all during execution.

2.5 RASP Functions

The preceding definitions of a RASP, its computations and its programs allow progres-
sion to the definition of the functions that can be computed by a RASP, which is also
in Section 4 of [1]. Given a RASP P and a program π = (p, a, e) for P , f , a function
from a subset of Br into Bs, d0, . . . , dr−1, v0, . . . , vs−1, a finite sequence of distinct
elements of A, then π is said to compute f at datum locations d0, . . . , dr−1 and value
locations v0, . . . , vs−1 provided that di /∈ Dp, 0 ≤ i < r, and the following condition
holds. If k holds π, k(d0) = b0, . . . , k(dr−1) = br−1 and letting b = (b0, . . . , br−1),
σ = (k, a), σi = (ki, ai), then (i) if f is defined for b and f(b) = (b′0, . . . , b

′
s−1) then

compe(σ) is successful and if it equals (σ, σ1, . . . , σn) then kn(vi) = b′i, 0 ≤ i < s;
and (ii) if f is not defined for b, then compe(σ) is unsuccessful.

Interpreting this, the function f computed by program π has r input arguments,
which are stored in the datum memory locations, and s output results, which are stored
in the value memory locations. The datum memory locations are disjoint from the pro-
gram (instruction and parameter) memory locations. Note that there is no explicit input
and output in this machine model. The main part of the definition says that the compu-
tation starts with the input arguments in memory, and then terminates with the output
results in memory if f is defined for these input arguments, and does not terminate oth-
erwise. The alert reader will notice that this formal definition from [1] overloads the
variable name b0 here, but there is no real confusion introduced.

2.6 Sequential Functions

Before proceeding to the theorems of interest, some final definitions are required to
introduce the notion of sequential functions, the subject of Section 7 of [1]. A sequential
function over B is a mapping f from a subset of B∞ =

⋃∞
i=1 Bi into B∞, where Bi

is the set of all i-tuples of elements of B. The intention behind defining sequential
functions was to capture the notion of computing a function that takes as input a finite
sequence of arguments that has arbitrary length, as opposed to taking a fixed number
of arguments. Similarly, the output can be a finite sequence of arbitrary length. It is
then necessary to generalize the definition of the functions computed by a RASP, to
accomodate this more general class of functions.

Definition 7.1 of [1] states that a program π = (p, a, e) of a RASP P is said to
compute a sequential function over B′ = B − {b0} at (the infinite sequence of dis-
tinct) datum locations d0, d1, . . . and (the infinite sequence of distinct) value locations
v0, v1, . . ., vi �= dj , provided that di /∈ Dp for i ≥ 0 and the following condition
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holds. If k holds p, k(di) = bi ∈ B′ for 0 ≤ i < r, k(di) = b0 for i ≥ r and (i)
if f is defined for b = (b0, . . . , br−1), f(b) = (b′0, . . . , b

′
s−1), k(vi) = b0 for i ≥ s,

then compe(k, a) is successful and if it terminates in state (kn, an), then an = e and
kn(vi) = b′i, 0 ≤ i < s and kn(vi) = b0 for i ≥ s; and (ii) if f is not defined for b, then
compe(k, a) is unsuccessful.

Interpreting this, there are now an infinite number of non-overlapping datum loca-
tions and value locations. For a particular input sequence of length r, the first r datum
locations contain the r input values, and all of the others contain the empty word b0.
Similarly, for a particular output sequence of length s, the first s value locations contain
the s output values, and all of the others contain the empty word. Aside from these in-
put and output conventions, the definition of the function computation as presented in
Section 2.5 is unchanged. Note that the variable name b0 was again overloaded in [1],
here in a potentially confusing sense.

3 Main RASP Results

In this section, we present the two theorems (7.4 and 7.5) from [1] that establish a
proper difference in computational power between RASPs with fixed programs and
RASPs allowed to modify their programs during execution. The proofs of the theorems
are given here in English interpretion only, as a precursor to examining their relevance
to programmable circuitry.

3.1 RASPs with Fixed Programs

Theorem 7.4 of [1] shows that not all (recursive4) sequential functions are computable
by fixed programs of RASPs with finitely determined instructions. It states that, if

(a) the program π = (p, a, e) computes the sequential function f (in the sense of
Section 2.6 above) at d0, d1, . . . and v0, v1, . . .

(b) the instructions of π are finitely determined (in the sense of Section 2.2 above) and
(c) π is fixed (in the sense of Section 2.4 above)

then there exists r such that if b, b′ ∈ B′
∞, b = (b0, . . . , bs), s ≥ r − 1, b′ =

(b′0, . . . , b
′
s′), s′ ≥ r − 1, bi = b′i when 0 ≤ i < r, then f(b) = f(b′).

The theorem is saying that, for a RASP with a fixed program containing finitely
determined instructions, there is some r such that the sequential function computed by
the program ignores all but the first r arguments in cases where there are more than r
arguments. Thus, a simple example of a sequential function that cannot be computed is
the function which takes (x1, . . . , xn), xi > 0 for all i, into

∑n
i=1 xi for arbitrary n.

The proof of the theorem hinges on the finitely determined property of the program’s
instructions. One can therefore define a finite set A′ containing all of the memory ad-
dresses that can be read by all of the instructions. Then, r can be chosen such that
di /∈ A′ for all i ≥ r, thus ensuring that datum locations dr, dr+1, . . . are not taken into
account5. In summary, this theorem shows the restricted memory addressing available
in fixed programs containing instructions with fixed memory addressing.

4 Defined precisely, albeit implicitly, in Section 7 of [1], but the details are omitted here.
5 In [1], a smaller value of r is chosen in the proof, but we believe that our choice here is safer.
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3.2 RASPs with Modifiable Programs

While Theorem 7.4 of [1] is the key negative result, Theorem 7.5 is the key positive
result, which shows that all (partial recursive6) sequential functions over the positive
integers are computable by a RASP which is not subject to the restriction that its pro-
gram π is fixed.

The proof uses a particular RASP P0 defined in Section 4 of [1], and an explicit
program for it which is illustrated as a flowchart in Figure 2 of [1]. We will skip all of
the programming detail here, both the recursion theory setting and the instruction me-
chanics, and just point out how program modification is used. The necessity is to ensure
that all datum locations can be read and all value locations can be written. Initially, the
program packs all of the input arguments into a single argument, using a loop in which
an instruction is modified to point at each datum location in turn. Finally, the program
unpacks a single result into the separate output arguments, using a loop in which an
instruction is modified to point at each value location in turn.

This is of course a highly theoretical piece of programming, relying on an infinite
word size for the packing and unpacking of inputs and outputs respectively. However,
the practical technique used is in fact just the emulation of an index register for memory
access, through treating part of the modified instruction as such a register. As pointed
out by Elgot and Robinson [1], if the basic RASP model is augmented so that instruction
capabilities are extended to include some type of indirect or indexed memory access,
then “it appears rather clear” (their words) that all (partial recursive) sequential func-
tions can be computed by fixed programs, thus rendering Theorem 7.4 redundant.

4 The LASC Programmable Circuit Model

We define the Local Access Stored Circuit (LASC) machine as a computational model
of programmable circuitry, following the spirit of the RASP machine. The essence of
our model translation is to move from ‘computing in time’ to ‘computing in space’,
a familiar concept in the field programmable logic world. We seek to ensure that the
essential properties required for the computational differentiation supplied by Theorems
7.4 and 7.5 of [1] are preserved, without making our new model artificial. To stress
the correspondence, our LASC definition closely follows the RASP definition, though
in the future, we envisage devising an equivalent definition that is more elegant, both
structurally and notationally. Our presentation here follows the ordering of Section 2.

4.1 Basic LASC Definition

We retain the RASP random-access memory model intact. Interpreted in terms of pro-
grammable circuitry, this memory will hold both programming information (corre-
sponding to circuit configuration memory) and data values (corresponding to registers
and other stores). The main change is to add new LASC structure for the parallel circuit
style of computing in space, and remove RASP structure for the sequential program
style of computing in time.

6 Defined precisely in Section 7 of [1], but the details are omitted here.
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Specifically, we introduce the notion of nodes, which represents the connected gates
or processing elements in a programmable circuit, each one computing a function from
inputs to outputs at each time step. Each node has a disjoint set of local memory ad-
dresses associated with it, precisely one of which contains an instruction. The empty
word b0 will now also be used to represent a null instruction, allowing a node to be idle.
A node’s instruction is allowed to access any memory addresses as inputs, but only local
node memory addresses as outputs. Note that this model means that memory addresses
not associated with any node will be unmodifiable.

In tandem with adding nodes, we remove the now redundant notion of the current
instruction address being part of the machine state.

We define a LASC as an ordered septuple P = (A,B, b0,K0, N, c, h), where A, B,
b0 and K0 are as in the RASP definition. N is a (usually, countably infinite and, possi-
bly, overlapping or coinciding with A and/or B) set of abstract objects called nodes, and
c is a mapping from N into (2A −∅)×A. Finally, h is a mapping from (Σ0 ×N)×B
into Σ0, where Σ0 = K0. For any b ∈ B, the mapping hb, where hb(x) = h(x, b) for
all x, is called an (atomic) instruction.

In this definition, the mapping c represents the non-empty set of memory addresses
associated with a node, together with the distinguished address that holds the instruction
for the node. We finalize the capture of the node concept with three defined implications.
For any n ∈ N if c(n) = (A′, a) then: (i) a ∈ A′; (ii) for any k ∈ K0, if hb(k, n) = k′

then k′(a′) = k(a′) for all a′ /∈ A′; and (iii) for all n′ �= n if c(n′) = (A′′, a′) then
A′′ ∩ A′ = ∅. The first implication ensures that the instruction address is local to the
node; the second ensures that the instruction only affects addresses local to the node;
and the third ensures that there are no local address overlaps between nodes.

Finally, we can define a mapping g from Σ0 into Σ0 that is entirely analogous to the
same-named mapping in the RASP model, and captures the movement from a current
global memory state to the next global memory state. For any k ∈ K0, for each ni ∈ N
let c(ni) = (Ai, ai), k′

i = h((k, ni), k(ai)) if k(ai) �= b0 and k′
i = k otherwise, and

define g(k) = k′ where k′(a) = k′
i(a) if a ∈ Ai for some i and k′(a) = k(a) for all

other a. This definition expresses the fact that all of the changes to the global memory
state arise from the collective changes to the local memory state at nodes.

4.2 Finitely Determined Instructions

We can directly carry forward the definition of a finitely determined instruction from
Section 2.2, with just a small modification (indeed slight simplification) to shift from
the notion of execution of an instruction at the current instruction address to the notion
of execution of an instruction at a node.

Thus, for a given b, we say that an instruction hb is finitely determined if for every
n there exists a finite sequence An,b = (a1, . . . , aj) of elements of A such that for
any b1, . . . , bj in B there exist elements ai1 , . . . , ai�

of A and bi1 , . . . , bi�
of B (� a

natural number which also depends on a, b1, . . . , bj) for which the following condition
is satisfied. If k is an element of Σ0 for which k(a1) = b1, . . . , k(aj) = bj , then
hb(k, n) = k′ where k′(aim

) = bim
for m = 1, . . . , � and k′(x) = k(x) for all other x.
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4.3 LASC Computations

A computation of a LASC, comp(σ0) can be defined exactly as in Section 2.3. However,
we must change the notion of termination. In the RASP model, termination occurs when
the current execution address reaches any address e in a set E. In the LASC model,
termination will occur when the contents of any memory location with its address e in
a set E becomes not equal to b0. Thus, the set E models a set of ‘done’ flags.

Let comp(σ0) = (k0, k1, . . .). If E is a finite subset of A, then define compE(σ0) =
comp(σ0) if for all i, ki(e) = b0 for all e ∈ E; and define compE(σ0) = (k0, . . . , kn)
if kn(e) �= b0 for some e ∈ E and for all i < n, ki(e) = b0 for all e ∈ E.

4.4 LASC Programs

A LASC program differs from a RASP program because, rather than one instruction be-
ing executed at each time step, all non-null instructions at all nodes are executed at each
time step. Also, the structure of the LASC model incorporates the addresses of the in-
structions through the mapping c. Given this, the definition of a program can be defined
analogously to (and slightly more simply than) the RASP definition in Section 2.4.

Let H be the set of all instructions of the LASC. Then a program π is the (m + 1)-
tuple (p, e0, . . . , em−1). p is a mapping from a finite subset Dπ (also Dp) of A (the
domain of π and of p) into H ∪ B (here assuming that H and B are disjoint sets),
p−1H ⊆ ∪n∈N{a|c(n) = (A′, a)}, and i �= j implies ei �= ej . Let k holds π (and also
p) mean: for all a ∈ p−1H , hk(a) = p(a) while for all a ∈ p−1B, k(a) = p(a), and
k(a) = b0 for all a such that c(n) = (A′, a) for some n and a /∈ p−1H . If k holds π,
compE(k) is called a computation of π, where E = {e0, . . . , em−1}.

A program π is called fixed if whenever (k1, . . . , kn) is a successful computation of
π, then k1, . . . , kn all agree on Dπ.

4.5 LASC Functions

We can define the functions computed by a LASC almost directly using the definition
for a RASP from Section 2.5, the only change being to remove the current execution
address a wherever it appears in the definition.

Given a LASC P and a program π = (p, e) for P , f , a function from a subset of Br

into Bs, d0, . . . , dr−1, v0, . . . , vs−1, a finite sequence of distinct elements of A, then π
is said to compute f at datum locations d0, . . . , dr−1 and value locations v0, . . . , vs−1
provided that di /∈ Dp, 0 ≤ i < r, and the following condition holds. If k holds
π, k(d0) = b0, . . . , k(dr−1) = br−1 and letting b = (b0, . . . , br−1), then (i) if f is
defined for b and f(b) = (b′0, . . . , b

′
s−1) then compe(k) is successful and if it equals

(k, k1, . . . , kn) then kn(vi) = b′i, 0 ≤ i < s; and (ii) if f is not defined for b, then
compe(k) is unsuccessful.

4.6 Sequential Functions

We can define the sequential functions computed by a LASC almost directly using the
definition for a RASP from Section 2.6, the only change again being to remove the
current execution address a wherever it appears in the definition.
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A program π = (p, e) of a LASC P is said to compute a sequential function over
B′ = B − {b0} at (the infinite sequence of distinct) datum locations d0, d1, . . . and
(the infinite sequence of distinct) value locations v0, v1, . . ., vi �= dj , provided that
di /∈ Dp for i ≥ 0 and the following condition holds. If k holds p, k(di) = bi ∈ B′

for 0 ≤ i < r, k(di) = b0 for i ≥ r and (i) if f is defined for b = (b0, . . . , br−1),
f(b) = (b′0, . . . , b

′
s−1), k(vi) = b0 for i ≥ s, then compe(k) is successful and if it

terminates in state kn, then kn(vi) = b′i, 0 ≤ i < s and kn(vi) = b0 for i ≥ s; and (ii)
if f is not defined for b, then compe(k) is unsuccessful.

5 Main LASC Results

We now present LASC versions of the two main RASP theorems, plus an extra new the-
orem, in order to establish a proper difference in computational power between LASCs
with fixed programs and LASCs allowed to modify their programs during execution.

5.1 LASCs with Fixed Programs

Theorem 1. Not all (recursive) sequential functions are computable by fixed programs
of LASCs with finitely determined instructions. Specifically, if

(a) the program π = (p, e) computes the sequential function f at d0, d1, . . . and
v0, v1, . . .

(b) the instructions of π are finitely determined and
(c) π is fixed

then there exists r such that if b, b′ ∈ B′
∞, b = (b0, . . . , bs), s ≥ r − 1, b′ =

(b′0, . . . , b
′
s′), s′ ≥ r − 1, bi = b′i when 0 ≤ i < r, then f(b) = f(b′).

The proof of this theorem follows exactly the proof of Theorem 7.4 in [1], as
sketched in Section 3.1, both in terms of the basic idea and the actual mathematics.
All that is required is simplification by crossing out all references to the current exe-
cution address component of the state in the RASP model. This very direct mapping
of the proof follows from the care we have taken to define the LASC model and its
surrounding computational concepts entirely analogously to the RASP model.

5.2 LASCs with Modifiable Programs

Theorem 2. All (partial recursive) sequential functions over the positive integers are
computable by a LASC which is not subject to the restriction that its program π is fixed.

The proof of Theorem 7.5 in [1] involves demonstrating a particular program for
a particular RASP. The proof of this LASC theorem can follow in at least two ways:
because there is an equivalent program for a particular LASC, or because any RASP
machine P can be simulated by a LASC machine P ′.

Space limitations preclude a presentation of the technical detail needed to justify
either of these claims. Therefore, to confirm concretely here the extra power derived
from the LASC program not being fixed, we end by presenting an existence theorem
for the integer summation function, which is a sequential function not computable by a
LASC with a fixed program, for the RASP-based reason given in Section 3.1.
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Theorem 3. There is a non-fixed LASC program which computes the sequential func-
tion that takes (x1, . . . , xn), xi > 0 for all i, into

∑n
i=1 xi for arbitrary n.

With A,B the non-negative integers and b0 = 0, a suitable LASC has one node
with three local addresses {0, 1, 2} and instruction at 0. For datum locations 3, 4, . . .
and value location 2, a suitable program has e = 1 and: (i) a (finitely determined)
instruction at 0 that is ([3] = 0)?([1] ← 1) : ([2] ← [2] + [3]; [0] ← φ([0])), where [] is
memory access, ()?() : () is a C-style conditional, ← is assignment and φ increments
both of the “[3]” addresses in this instruction; and (ii) parameters at 1 and 2 equal to 0.

6 Discussion

An immediate practical qualm about the LASC model might concern the potentially
infinite features. However, these have always been present in such models — since
the dawn of the Turing machine in 1936 — because if everything is made finite, all
models collapse to be finite state machines and lose their computational subtlety. We
must regard infinite notions as capturing the practical idea of arbitrarily large. Note
also that here we focused on finitely determined instructions, thus ruling out one fairly
dubious infinite possibility that imbues instructions with essentially unlimited power.

Regarding the practicality of our specific LASC model, we note four points. First,
the one-instruction node seems a good model for both fine-grain (logic gate) and coarse-
grain (processing element) programmable circuitry. Second, allowing arbitrary inputs
to nodes represents a ‘programmable netlist’ scheme, as a generalization of, say, a more
restricted ‘programmable array neighbor’ scheme. We feel that this is not unreasonable.
Third, there is no explicit notion of input or output (as normal for such models), which
may seem unnatural for circuits. Note that fixed programs do not become all-powerful
if input data are allowed to arrive successively at the same address (e.g. consider the
function

∑n
i=1 xixi+n that forces arbitrary buffering of inputs in memory). Fourth, our

least practical feature is the model of programmability during execution, both because
it is allowed at each time step and because of the programmable netlist scheme.

As mentioned in Section 3.2, for the RASP model, the separation in computational
power collapses if the practical notion of indirect or indexed addressing is added. Some
good news for LASC is that, due to the restrictive support for run-time reconfigurabil-
ity in practical programmable circuitry devices, there is no direct practical equivalent
of an index register. The nearest equivalent would be adding a separate memory with
address register beside the programmable circuitry, in an extended LASC model. Such
a modification would then remove the separation in computational power.

In terms of our main result, we did not find it a surprise that the program modi-
fication during execution concerns the interconnection of the circuitry rather than the
node functionality in the circuitry. As a general opinion, we feel that the true power and
interest of programmable circuitry lies in the interconnection.
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Abstract. This paper introduces JHDLBits, the integration of two
prominent FPGA design tools: JHDL and JBits. JHDLBits offers the
low-level access and control provided by JBits with the high-level struc-
tural circuit design of JHDL. Furthermore, the JHDLBits flow provides
greater control of resource manipulation, placement, and routing, and
gives researchers a “sandbox” to explore advanced interactions with
FPGA bitstreams. This paper presents the overall architecture of the
open-source JHDLBits project. Details are provided on how the core
components - JHDL, JBits3 for Virtex-II, and the ADB connectivity
database - are linked together to provide a cohesive design environment.

1 Introduction

Investigators involved in FPGA-related research often require a testbed for ex-
ploring and evaluating new tools, new algorithms, and new ways to interact with
FPGA bitstreams. Historically, this has often proven to be a difficult task. Ex-
ceptional exploratory environments have been created, such as VPR by Betz and
Rose [1] that provide realistic models of FPGAs. With the infrastructure cre-
ated by VPR, researchers could determine the effects of, for example, placement
enhancements on wire length. The relevance of such exploration was sometimes
diminished since the results from the experimental environment could not be
definitively confirmed on a real FPGA since FPGA vendors tend to be secretive
on the low-level architectural details of their products. Many languages, IDEs,
and compilers have emerged in recent years that offer interesting environments
for creating FPGA bitstreams, but most rely on the FPGA vendors’ implemen-
tation flows to map, place, and route the final design.

The authors of JBits [2] addressed this problem to a certain degree by pro-
viding an API to the FPGA bitstream. As a result, researchers were empowered
with the ability to manipulate FPGA resources at the lowest level. With JBits,
researchers could develop, say, their own FPGA router, and test it on real de-
vices. JBits also enabled researchers to interact with FPGAs in ways prohibited
by the vendor’s prescribed implementation tool flow.

While JBits was in many ways an “enabling technology” for exploring non-
traditional uses of FPGAs, the abstraction presented to the developer was at a
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fairly low level (at least in early versions of JBits), and sometimes required de-
tailed architectural knowledge. In contrast to this, tools such as Brigham Young’s
JHDL [3] use a much higher level of abstraction, often making it a more con-
ducive environment for large application development.

JHDLBits is an open-source endeavor striving to merge the salient features of
these two prominent FPGA research environments. JHDLBits blends the low-
level control of JBits with the high-level design abstractions of JHDL. Users
can take advantage of the run-time and partial reconfiguration features of JBits
without having to work entirely at the bitstream level. Furthermore, full control
over placement and routing is still possible. The JHDLBits project consists of
a collection of tightly integrated components that together provide an end-to-
end pathway for creating, manipulating, and debugging FPGA bitstreams. More
importantly, because most of the components of this project are open-source, re-
searchers investigating architecture-specific placers/planners/routers/compilers
have the advantage of replacing the stock JHDLBits components at will.

JHDLBits integrates JBits low-level bit manipulation capabilities into the
JHDL integrated development environment. The extensible JHDL netlister has
been modified to produce bitstreams directly. The JHDL debugger communicates
to a target FPGA through JBits XHWIF [4]. JHDL is naturally extended so that
instead of generating an EDIF file, which is run through the traditional vendor
tools to generate a bitstream, the primitive and net information is extracted
into a database that is suitable for JBits to process. A bitstream is created by
elaborating, placing, and routing the corresponding JBits primitives all within
the JHDLBits environment. Figure 1 illustrates the components that collectively
make up the JHDLBits project.

Fig. 1. Relationships of the open source constituents of JHDLBits

This paper presents the overall architecture of the JHDLBits project. Details
are provided on how the core components - JHDL, JBits3 for Virtex-II, and the
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ADB connectivity database [5] - are linked together to provide a cohesive design
environment. Sections 2, 3, and 4 provide background information on JHDL,
JBits, and ADB, respectively. Section 5 introduces the FPGA device simulator
that can be used to verify the JHDLBits design. The architecture of JHDLBits
is discussed in Section 6. A JHDLBits design implementation and results are
included in Section 7 and Appendix A.

2 JHDL

JHDL is a Java-based design language for FPGAs developed at Brigham Young
University. Java was selected because it is object-oriented, easy to use, has built-
in documentation capabilities, is portable, and has a rich set of GUI APIs that
are integral to the language. The primary distinction of JHDL is the creation of
a single integrated API that allows the designer to express circuit organizations
that dynamically change over time [3].

JHDL [10] is a structural HDL - that is, circuits are described by structurally
instantiating lower-level building blocks. In JHDL, two basic Java classes form
the basis for all circuits: Logic and Wire. Designers create a new logic cell in
their design by extending Logic (creating a new class), defining a cell interface
(essentially a VHDL entity declaration), and defining the architecture of the
cell (essentially a VHDL architecture body). Wires support an API for creation
and manipulation: users can create single- or multi-bit wires, and concatenate
or extract wires from existing wires.

The body of a design instantiates predefined circuit modules selected from
the JHDL design libraries. The JHDL design libraries were created in a layered
fashion and range from a library of Xilinx primitives such as gates and flip
flops, to parameterized logic generator methods, to technology-independent and
technology-specific module generators for the creation of larger elements (such as
counters, memories, floating point arithmetic modules, CORDIC units, FFTs).
JHDL circuit descriptions are based on Java; thus the full range of Java language
features are available to construct the circuit. These features include file I/O,
recursion, control flow constructs (for, while, do loops), functions, user-defined
types (objects), and reflection.

A key feature of JHDL is its ability to operate in either simulation or hard-
ware mode. When in simulation mode, the values of all elements in the circuit
data structure are computed by the JHDL simulator. However, JHDL also sup-
ports a hardware-in-the-loop mode of execution. In this case, starting execution
of the circuit downloads a bitstream to the FPGA platform, and stepping the
clock triggers a clock step on the actual hardware. Between clock steps, bitstream
readback extracts the hardware state, which is back annotated into the circuit
data structure for graphical display. As a result, the same GUI interface and
tools can be used for debugging in either in simulation mode or hardware exe-
cution mode. This simplifies the transition from simulation to hardware debug,
and streamlines the development process. Figure 2 presents a screen capture of
the JHDL GUI.
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Fig. 2. JHDL graphical user interface screen shot

3 JBits Background and Enhancements

JBits is a collection of Java classes that build upon an API that provides access
to every configurable resource in a Xilinx FPGA. The JBits3 SDK [9] is the
latest release from Xilinx that provides support for the Virtex-II FPGA family.
This API permits device resources to be programmed and probed individually
at run-time, even with the FPGA active in a working system. This interface
operates on either bitstreams generated by Xilinx design tools, or on bitstreams
read back from actual hardware. Through this mechanism, JBits supports the
run-time reconfiguration of Xilinx FPGAs.

For JHDL to function with JBits, several extensions and enhancements were
needed. A bridging object, called the Bitstream class, was created to allow
abstract access to both the JBits and router objects, enabling the creation of
primitives without dependencies on architecture-specific classes. The Net class
was extended to allow the connection of primitives by maintaining a list of the
source and sink pins that form a net.

To bridge the gap between JHDL and JBits, a library of primitive cores
was created that map the JHDL primitives directly to the FPGA fabric. For
completeness, each JHDL primitive requires a corresponding JBits primitive.
The primitives created for JHDLBits have one constructor specifically designed
for the JHDL-to-JBits flow, with the other constructors catering to a JBits-only
design flow. A primitive requires two pieces of information to be implemented:
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a list of input and output nets, and placement information. The primitive uses
the placement location to assign source and sink pins to the associated nets, and
then accesses the JBits object from the Bitstream class to configure the internal
logic and resources using JBits calls.

4 ADB Background

ADB is an alternate wire database for Xilinx Virtex, Virtex-E, Virtex-II, and
Virtex-II Pro FPGAs [6]. Its purpose is to provide exhaustive coverage of device
wiring and connectivity, while remaining fast, compact, and compatible with
JBits. The exhaustive coverage is derived from the same proprietary data that
the Xilinx mainstream tools use, and presents an improvement over the coverage
available in past and present JBits wire databases. In addition, the database
files used by ADB are more than an order of magnitude smaller than their
counterparts in the mainstream tools.

Although ADB is primarily a wire database, it also includes support services
for routing, unrouting, and tracing. These interfaces are publicly exposed, so they
can be extended or replaced as necessary by the user. An ADB-based router is
included with JHDLBits, and is based on a robust search algorithm enhanced
with heuristics suited to each FPGA family. The unrouter provides services not
normally found in static tool flows, by allowing the user to disconnect existing
nets, in order to reconnect other nets at runtime. This may be especially useful
in embedded systems that have to dynamically reconfigure themselves [7]. The
tracer may also be used to support reconfiguration, by inferring connectivity
information from a configuration bitstream, in order to safely modify designs
without causing contention.

Because JBits 3.0 ships without a router, ADB currently provides the only
routing option available to JBits users. However, ADB may also be of interest to
researchers wanting to evaluate routing algorithms with wiring data from com-
mercial FPGAs. In the context of JHDLBits, the ADB router simply implements
RouterInterface as defined by JBits, which makes it reasonable to plug ADB
into the project without concern for its inner workings.

5 FPGA Device Simulator

Included in the JHDLBits project is the design of a Virtex-II device simulator
(VTsim) [11]. Initially, a functional simulator has been created using a globally
synchronous event-driven model with CLB granularity. The simulator can be
used as part of the JHDLBits design flow, but can also function independently
because it only requires a bitstream as input.

The simulator first invokes the ADB tracer on the bitstream to be simulated.
After the tracer builds a database of all internal connections, the simulator
constructs the netlist from this information. An optional JHDLBits simulation
file can be used to provide the simulator with specific information such as net
names and placement information. A simulation cycle begins with the evaluation
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of all clocked elements within the CLBs, followed by the evaluation of all non-
clocked elements. Upon completion of a simulation cycle, the simulator can either
write the updated results back to a bitstream, or allow GUI access to the modified
information. It should be noted that this simulator can simulate any Virtex-II
bitstream, regardless of the flow used to create the bitstream.

6 JHDLBits Design Flow

The traditional JHDL design flow produces an EDIF file, which is used by the
Xilinx implementation tools to generate a bitstream. The JHDLBits flow in-
stead relies upon JBits extensions to generate a bitstream. A high-level design is
created and simulated with JHDL libraries and graphical debugging tools. The
JHDL primitives, instances, and nets are extracted and mapped to equivalent
JBits primitives and nets. JBits primitives are placed using either placement
directives or an extendable placement algorithm, and then routed using ADB.
A bitstream is generated, along with net and simulator files. Figure 3 shows the
steps involved in the JHDLBits design flow.

Fig. 3. JHDLBits design flow

The first step in the JHDLBits design flow is the JHDLBitsTechMapper.
The JHDLBitsTechMapper extends the JHDL Virtex2TechMapper by overrid-
ing the netlist method, which invokes the JHDLBitsExtractor instead of the
EDIFNetlister. Overriding device specific helper methods, such as add and
subtract, allows for more optimized primitives.

The JHDLBitsExtractor uses JHDL libraries such as the Cell and Net
classes to extract primitive, instance and net information, which are stored in
HashMap collections. The primitive HashMap contains the ports and directions,
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and the instance HashMap contains the associated primitive, nets, and dimen-
sions. The net HashMap contains ports of the net and a JBits net of the same
name. The instance HashMap is then iterated in order to specify placement of
the instances.

The default placement algorithm stores the assigned CLB, slice, LUT, and
LE (logic element) to the instance HashMap. The assigned coordinate information
is also maintained for an instance that is ExternallyUpdateable, which refers
to a JHDL cell (flip-flops, memories, etc.) that changes value and can be read
back using the JHDL simulator in hardware execution mode. A JBits primitive
is now created for each instance. Once all of the JBits primitives have been
created, a router utilizing the connectivity information in ADB routes all nets
connected to the JBits primitives. After the design has been successfully routed,
JBits is used to generate a bitstream.

JHDLBits and VTsim tie into the JHDL simulator through the JHDL
HardwareInterface. VTsim is given the bitstream generated, along with co-
ordinate information for the cells that are ExternallyUpdateable, and returns
values for these cells after each clock cycle. The updated values are displayed in
the JHDL GUI interface.

Partial reconfiguration will be supported in JHDLBits through an incremen-
tal design flow. In an incremental design methodology, a user has completed part
of a design, and would like to “lock it down” by no longer having to repeatedly
place and route this part of the design. This would be accomplished by including
a reserved area with defined inputs and outputs into the current JHDL design.
This design is run through the JHDLBitsExtractor, but the placer and router
are constrained to avoid the reserved area. At a later time, the user can then
include additional logic into the reserved area, and once again run through the
JHDLBitsExtractor in order to generate a bitstream.

7 JHDLBits Implementation and Results

JHDLBits has been used to generate bitstreams for simple JHDL designs such
as the following partial NBitAdder code:

1 // Simple model of a simple parameterized n-bit adder:
2 Wire carries = wire(width); // Intermediate ’carry’ wires
3 for (int i=0; i < width; i++) {
4 if (i==0)
5 new FullAdder(this,a.gw(i),b.gw(i),gnd(),
6 sum.gw(i), carries.gw(0));
7 else
8 new FullAdder(this, a.gw(i), b.gw(i), carries.gw(i-1),
9 sum.gw(i), carries.gw(i));

10 }

Once the above design is compiled, the user needs to “wire” the NBitAdder
design into the top-level system as shown below:
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1 public class tb nbitadder extends Logic implements TestBench {
2 static JBitsTechMapper tm;
3 static Cell mynadd;
4 static HWSystem hw;
5
6 public static void main(String args[]) {
7 hw = new HWSystem(); // create a new system
8 tb nbitadder tb = new tb nbitadder(hw);
9 tm.netlist(mynadd, true, "testnbitadd.txt");

10 }
11 public tb nbitadder(Node parent) {
12 super(parent);
13 tm = new JBitsTechMapper();
14 Logic.setDefaultTechMapper(tm);
15 Wire a = wire(4, "a");
16 Wire b = wire(4, "b");
17 Wire sum = wire(4, "sum");
18 mynadd = new NBitAdder(this, a, b, sum); // connect
19 } // NBitAdder design
20 }

Lines 2 and 13 indicate how JHDLBits is invoked from a JHDL design. As
previously mentioned, the JHDLBitsBitsTechMapper netlist method calls the
JHDLBitsExtractor instead of the EDIFNetlister. The JHDLBitsExtractor
obtains all the information required from the JHDL design to create, place and
route JBits primitives. A bitstream is then generated. The output generated
for this sample run is included in Appendix A. As shown at the start of the
output file, the ADB database is imported for the Virtex-II XC2V40 device.
Next, the JHDLBitsExtractor begins traversing the hierarchical logic blocks at
the top-level NBitAdder cell, and then through all successive children. When a
new gnd or and2 primitive is encountered, the ports and directions are stored.
The specific instance information of the gnd and and2 primitives is also retained.
This is done recursively for all primitives and instances. Next, the b<1> net, then
all remaining nets are extracted and converted to JBits nets. The placer assigns
CLB, slice, LUT, and LE (logic elements) locations for each instance. After
placement, JBits primitives are created, such as the and2, and associated nets
are assigned source and sink pins. An example is the FullAdder-3/and_out-2
net, which is assigned to pin CLB.X1[0][2]. This pin refers to the X output
in CLB row zero, column two, slice one. Once all JBits primitives are created
and pins assigned, ADB is invoked to route the nets. Finally, a bitstream is
generated.

A few pertinent statistics are placements per second, and routes per second.
The average placement rate is 512 primitives in 11 milliseconds, or 46,545 prim-
itives per second. Please note that this design was run using a simple placer. A
100% utilization stress test on a Pentium 3.2 GHz processor running Sun Java
HotSpot(tm) Client VM (build 1.4.2 04-b05, mixed mode) yielded the ADB rout-
ing results in Table 1. The stress test consisted of a design that filled up every
LE in the FPGA device with logic gates, which were then routed in a random
fashion.

8 Conclusions and Future Work

A major goal of the JHDLBits project has been to retain the properties and
philosophies of JBits. Following this principle, it is essential to provide the abil-
ity to reconfigure the device through the JHDLBits design flow. This area is
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Table 1. ADB routing performance for a 100% utilization stress test

Device Route Time Total Nets Total Wires Nets/sec Wires/sec
XC2V40 5,462 ms 511 37,213 94 6,813
XC2V500 80,865 ms 6,143 495,774 76 6,130
XC2V3000 419,080 ms 28,671 2,479,424 68 5,916

important and will be addressed in the near future. Another goal is to allow for
partitioning of the design, so that the user can run part of the JHDL design
through the mainstream tools and part through JBits via the JHDLBits extrac-
tor. The developers would like to investigate using JHDLBits in an embedded
system, possibly using a small subset of JHDL and ADB rewritten in a language
other than Java to reduce memory usage.

In the current version of JHDLBits, placement is performed in a greedy sub-
optimal manner. Placement directives inherent in JHDL along with cell prop-
erties are currently being investigated and may possibly need refinement. Con-
trolled placement will allow the user to identify a specific location in the device,
permitting easier debugging as well as optimizing performance. The placer could
potentially benefit from the use of previously designed placement algorithms,
such as a core-based incremental placement algorithm [8].

Additional work is also needed to complete the JBits primitive library. The
net interaction with the router must be improved to decrease memory usage
and reduce routing time. The device simulator will continue to be developed in
order to become more robust. It has been successfully applied to small static
designs. The next step in the simulator design is to decrease memory usage,
improve execution time, and provide a more flexible interface between JHDL
and the router. The JHDLBits source code along with additional information
can be found at http://sourceforge.net/project/jhdlbits.

Acknowledgements. This project is supported by a grant from Xilinx, Inc.;
JBits (Xilinx and Virginia Tech) and JHDL (Brigham Young University) were
both funded under the DARPA ACS program.

References

1. V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for
FPGA Research,” International Workshop on Field Programmable Logic and Ap-
plications, pages 213–222, September 1997.

2. S. A. Guccione and D. Levi, “XBI: A Java-based interface to FPGA hardware,”
Configurable Computing Technology and its uses in High Performance Computing,
DSP and Systems Engineering, Proc. SPIE Photonics East, J. Schewel (Ed.), SPIE
- The International Society for Optical Engineering, volume 3526, pages 97–102,
Bellingham, WA, November 1998.

3. B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and M. Rytting,
“A CAD Suite for High-Performance FPGA Design,” Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, pages 12–24, Napa, CA,
April 1999.



JHDLBits: The Merging of Two Worlds 423

4. D. Levi and S. A. Guccione, “BoardScope: A Debug Tool for Reconfigurable Sys-
tems,” Configurable Computing Technology and its uses in High Performance Com-
puting, DSP and Systems Engineering, Proc. SPIE Photonics East, J. Schewel
(Ed.), SPIE - The International Society for Optical Engineering, volume 3526,
pages 239–246, Bellingham, WA, November 1998.

5. N. Steiner, “A Standalone Wire Database for Routing and Tracing in Xilinx Virtex,
Virtex-E, and Virtex-II FPGAs,” Master’s thesis, Virginia Tech, August 2002.

6. N. Steiner, “An Alternate Wire Database for Xilinx FPGAs,” Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines, Napa,
CA, April 2004.

7. R. Fong, S. Harper, and P. Athanas, “A Versatile Framework for FPGA Field
Updates: An Application of Partial Self-Reconfiguration,” Proceedings of the 14th
IEEE International Workshop on Rapid System Prototyping, pages 117–123, San
Diego, CA, June 2003.

8. J. Ma, “Incremental Design Techniques with Non-Preemptive Refinement for
Million-Gate FPGAs,” Doctoral dissertation, Virginia Tech, January 2003.

9. The JBits SDK, Xilinx, Inc., http://www.xilinx.com/products/jbits/
10. The JHDL Home Page, Brigham Young University, http://www.jhdl.org/
11. J. Hunter, “A Device-Level FPGA Simulator,” Master’s thesis, Virginia Tech, June

2004.

Appendix A: Sample JHDLBits Run (Partial Listing)

1 Opening ADB database ...edu\vt\ADB\Virtex2\XC2V40.db...
2 In JBitsExtractor expand function.
3 cell NBitAdder
4 In JBitsExtractor expand function.
5 cell gnd
6 In JBits extractPrimitive function.
7 (port GROUND (direction 1))
8 In JBits extractInstance function.
9 Instance Name gnd-1

10 cellRef gnd
11 In JBitsExtractor expand function.
12 cell and2
13 In JBits extractPrimitive function.
14 (port i0 (direction 0))
15 (port i1 (direction 0))
16 (port o (direction 1))
17 In JBits extractInstance function.
18 Instance Name FullAdder/andX g/andX/and2
19 cellRef and2
20
21 Net name b<1>
22 portName: i1 instanceName: FullAdder-1/xor3
23 portName: i1 instanceName: FullAdder-1/andX g-2/andX/and2
24 portName: i0 instanceName: FullAdder-1/andX g/andX/and2
25
26 Placing in progress...
27 Instance 18 FullAdder-3/andX g-2/andX/and2
28 Port 0: Xwire<2>
29 Port 1: b<3>
30 Port 2: FullAdder-3/and out-2
31 Creating JBits and2 Object...
32 Adding SINK on Net(Xwire<2>): CLB.F1 B1[0][2]
33 Adding SINK on Net(b<3>): CLB.F2 B1[0][2]
34 Adding SOURCE on Net(FullAdder-3/and out-2): CLB.X1[0][2]
35
36 Calling router...
37 Net name = FullAdder-3/and out-2
38 Sourcepin = CLB.Y2[0][4]
39 Sinkpins:
40 CLB.G1 B1[0][2]
41 Routing this connection...
42
43 Evaluated 71 groups in 8 tiles.
44 Bitstream Generated.
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Abstract. High level modeling tools make it possible to synthesize a high per-
formance FPGA design directly from a Simulink model.  Accurate estimates of
the FPGA resources required provides the system designer important feedback
on area and cost, which is valuable even during early design iterations.
Previous approaches to hardware resource estimation suffer a combination of
inaccuracy, slowness, and/or high complexity, which limits their practicality at
the algorithm definition stage.  We address these restrictions with a fast
resource estimation tool incorporated in the Xilinx System Generator.  Imple-
mented using MATLAB code, the estimator run time is proportional to the
Simulink compilation time, and typically takes from seconds to minutes de-
pending upon the size of the Simulink model.  Estimates are conservative, and
accurate to within 10% of the post-mapping implementation report.  In this pa-
per, we explain how block resource information is characterized in a MATLAB
function.  This characterization also estimates logic that will be trimmed during
synthesis and mapping. Finally, we describe how these estimation functions are
integrated within Simulink in a user-friendly and automated infrastructure. This
approach has been incorporated in System Generator since version 3.1.

1 Introduction

Field-programmable gate arrays (FPGAs) have become increasingly important
components of digital signal processing (DSP) systems such as digital communica-
tions and multimedia applications. FPGA resources most often used for DSP func-
tions include look-up tables (LUTs), flip-flops (FFs), block memories (BRAM), tri-
state buffers (TBUFs), input/output blocks (IOBs), and dedicated hardware
multipliers (18x18 bit multipliers are commonly available) [9]. A top-down design
methodology has been recognized to dramatically speed-up the design process with-
out substantially compromising the performance of the hardware implementation [1-
4]. In fact, with high level hardware-cost estimation tools, top-down design flows
open the possibility of global optimization at the system level, which often leads to
more hardware-efficient designs (see, e.g. [5,6]). FPGA resource usage is an impor-
tant measure of hardware-cost (others include critical path delay and active-power
consumption).  Minimizing resource usage is particularly important when the goal is
to find the best behavioral system performance (such as signal-to-noise ratio) with a
device cost constraint, or when the goal is to find the fewest resources meeting a per-
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formance specification. As another example, it is sometimes necessary to partition a
large system to multiple FPGA chips.  Resource estimates for sub-systems assists in
this partitioning. Optimization processes such as automatic precision adjustment [5-6]
further require numerous iterations of resource estimations. This motivates a fast re-
source estimation tool at high level.

Among available CAD tools for FPGA design [2-4], System Generator for DSP 1

[4,7] is a successful example for modeling and designing Xilinx FPGA-based signal
processing systems in Simulink and Matlab2 [8]. Section 2 begins with a brief de-
scription of the System Generator environment. We then describe existing or possible
resource estimation methodologies, followed by our proposed method. Our method
requires only a Simulink compilation stage to compute an estimate (since data types
are propagated during compilation, this step is necessary). It differs from prior work
in requiring complete understanding of how the underlying IP-cores are designed, and
by its ability to estimate logic that will be trimmed by synthesis and mapping tools.
We then describe how the methodology can be integrated with a Simulink GUI and
Matlab command line to form a user-friendly infrastructure, which facilitates estima-
tion for selected parts of a system.  Section 3 validates the fully implemented resource
estimator by studying the estimation results of a couple DSP designs. A few possible
future developments are summarized in Section 4.

2 Resource Estimation in System Generator

Our resource estimation is implemented in the System Generator design environment
that is described in Section 2.1. Though the methodology is portable to other plat-
forms, the architectural description of a DSP system, as System Generator does natu-
rally, is indeed necessary for accurate estimation.

2.1 System Generator Design Environment

At simulation level, System Generator for DSP maintains an abstraction level very
much in keeping with the traditional Simulink blocksets, but at the same time auto-
matically translates designs into hardware implementation [4,7]. The system model
and hardware implementation are bit-true and cycle-true. Besides some synthesized
blocks, the implementation is also made efficient through the instantiation of high-
speed and area-efficient intellectual property (IP) cores that provide a range of func-
tionality from arithmetic operations to complex DSP functions. In System Generator,
the capabilities of IP cores have been extended transparently and automatically to fit
gracefully into a system level framework. For example, although the underlying IP
cores operate on unsigned integers, System Generator provides logic wrappers that
allow signed and unsigned fixed-point numbers to be used, including saturation
arithmetic and rounding. While providing functional abstraction of IP cores, the Sys-
tem Generator blocks also provide the FPGA-literate designer access to key features
in the underlying silicon, which is often necessary to achieve the highest performance

                                                          
1 System Generator is a registered trademark of Xilinx Inc.
2 Simulink and Matlab are registered trademarks of Mathworks Inc.
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implementation in an area-efficient manner. For example, the System Generator mul-
tiplier block has an option to target embedded high-speed 18x18 multipliers in the
Virtex-II family of FPGAs.

Fig. 1. Resource estimation methods

2.2 Resource Estimation Methodologies

The hardware resources needed for a design are of course provided in the post
technology mapping report.  However, as shown in Fig.1, this information becomes
available only after Simulink compilation, netlisting, IP-Core generation, synthesis
and mapping stages.  This entire process can take minutes or even hours, depending
on the size of the system.  The Simulink compile consumes only a small fraction of
the time.

Fig. 1 also shows an estimator can simply sum the resource information available
at each core after core-generation. However, because core generation is a significant
fraction of the overall time (logic synthesis is the other major contributor), the method
is relatively slow—often only a couple times faster than to map-report method. Also,
all of the synthesized logic other than the IP cores are not considered, making the re-
sults inaccurate as well.

There are several straightforward approaches to pre-netlisting resource estimation.
One is to build a database listing the resources given all the possible combination of a
particular block. Each entry of in the database is obtained by a complete design ex-
periment. However, an initial implementation3 of this methodology showed that many
blocks involved so many parameter combinations that the tests would have easily

                                                          
3 This was tried by C. Shi under Prof. Robert W. Brodersen’s advice at University of Califor-

nia, Berkeley.
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taken months or more of computing time to complete. Even were this done, the data-
base for some blocks would consume hundreds of Megabytes and no longer be practi-
cal. Therefore, for only a few blocks with a small number of parameter combinations
was this method is useful (it is indeed used sparsely in our current estimation tool).

An alternate approach is to build database for IP-cores only, while estimating all
other synthesized logics by simple functions [3].  This method still suffers from the
complexity resulting from highly parameterizable cores that make exhaustive elabo-
ration impractical. One way to reduce the complexity is by ignoring selected block
parameters or parameter ranges, but doing so leads to less accurate estimation (e.g. up
to 30% or more [2]).

A common problem associated with all these “IP core as black box” estimation
methods is the lack of understanding of IP-core design. Our methodology  is based on
essentially complete reverse-engineering the IP-core designs. Logic trimming caused
by synthesis and mapping tools are accounted for by applying detailed knowledge of
the synthesis and mapping algorithms, validated by benchmark experiments.

Fig. 2. A simple System Generator design with block output data-type displayed. Here
UFix_20_10 means an unsigned signal with 20 bits in total and 10 bits of them are fractional.
UFix_15_7 is defined accordingly. Fix_8_4 is a 2’s-complement signed signal with 8 bits in
total and 4 of them are fractional. This design shows the trimming effects.

2.3 Resource Estimation at the System Level

Fig. 2 shows a simple design in System Generator composed by some basic blocks.
To estimate the resources of one type of blocks, such as adders, a MATLAB function
in the following framework is written and called:

function tarea=get_BlockType_area(system)
% find all blocks in system of a particular masktype
r = find_system(system, ‘masktype',…)
% Initiate a Simulink compilation if needed
for i=1:length(r),
    % Get data-types of block inputs and outputs

% and other block parameters to pass to subfunction
    get_param(r{i},…);

% Use a dedicated function to get the resource
[area(i,:), input_type]=BlockType_area(...);
% update the resource info for block r{i}

end
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% End the Simulink compilation if it has not been done
% Get the total area of the particular type
tarea=sum(area,1);

The functions find_system() and get_param() are Simulink model construc-
tion commands [8]. They allow the control of Simulink system using Matlab scripts,
which makes the design automation possible. Simulink compilation is needed to re-
trieve signal (port) data-types and to compute those formula-based or hierarchically
defined mask parameters.

In Fig. 2, a full-precision adder would grow its input data-type to UFix_21_10
(with one more integer bit than the input to accommodate overflow). But as the user
defines that only 15 bits of the adder output are needed, some of the adder logic will
be trimmed away during synthesis or mapping. This trimming effect is referred as
block-level trimming and is further studied in section 2.4. Furthermore, if the Convert
block uses truncation mode at the LSB side and wrap-around mode on the MSB side,
the synthesis tool or the mapper will directly propagate its output word lengths back-
ward to its input, making the true output of the adder block as UFix_8_4 instead of
UFix_15_7.  As a result, more adder logic will be trimmed away during synthesis.
This trimming mechanism is referred as global trimming. In the current version of the
tool, the global trimming effects are not implemented.

2.4 Block-Level Resource Estimation

A MATLAB function is written for each type of block, initiated as
Function [area,input_type]=

                   BlockType_area(block_params).
Normally, each BlockType_area() function is written in the following steps,

− case-divide the following steps according to block parameters;
− understand the data-types for output wrapper and all the sub-cores;
− calculate resources for the wrapper and each sub-core accounting for trimming ef-

fects;
− sum different resources together;
− get input data-types after backward trimming effects .

Whenever possible, MATLAB vectors are used to speed-up the calculation.
Particular attention is paid to take care the block-wise trimming effects. The last step
of this procedure is necessary for global trimming. Even a detailed understanding of
the algorithm for a block function is usually not sufficient; extensive testing using
mapping reports is done to ensure the estimation function gives less than 5% relative
error. The following two subsections illustrate these steps using two examples.

2.4.1 Resource Estimation for an Adder/Subtractor Block
The adder/subtractor block (AddSub), is used as the first example. In the
get_addsub_area() function, the following function is called
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Fig. 3. A possible realization of a 32-bit adder. The blank boxes denote pipeline flip-flops. The
logics in the dashed box would be trimmed away if output Q<7:0> is truncated at the output.

function [area, input_type]= addsub_area(at_a, wa,wfa,
at_b, wb, wfb, at_o, wo, wfo, prec, q, o, latency,
use_core, use_rpm, pipeline, mode)
% This particular function contains about 200 lines of
% Matlab code that are not shown here.

As can be seen, even a simple block has a significant number of parameters that affect
block resource usage.  The variable at_a is the arithmetic type of input a; wa is the
total wordlength of input a; wfa is the fractional wordlength of input a; at_b, wb, and
wfb are similarly defined for input b; at_o, wo, and wfo are similarly defined for the
output; q and o are the output quantization and overflow  modes; latency is the excess
latency at the output; use_core indicates whether the add/sub block is generated using
IP-core or synthesized from an RTL module; use_rpm indicates whether the block
uses placement information (a Relationally Placed Macro); pipeline indicates whether
the block is pipelined internally to the greatest extent; mode indicates the block is an
adder, subtractor or add/sub combination. All these block parameters are obtained in
get_addsub_area() function before it calls addsub_area().

Experiments show that using an RPM results slightly higher resources, but usually
negligible. The three modes—subtractor, add/sub or adder—usually take similar re-
sources; the difference is negligible except that when two unsigned numbers add each
other, some logic LUTs will be replaced by route-through LUTs.

There are three main cases for the AddSub. They will be described in turn, fol-
lowed by several key observations.

The first case is the pipelined AddSub using an IP-core. In this implementation, the
adder is divided into pipelined sessions depending on the latency chosen. The main
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challenge in this case is to determine the implementation style of the core, based on
the choice of latency and output width.  This was a surprisingly non-trivial task, ac-
complished by reverse-engineering the core.

The second case is the non-pipelined AddSub using an IP-core. Here, the challenge
was to determine the LUT count including route-though LUTs. The slices containing
LUTs absorb one level of latency, and the excess latency is handled by an SRL17
(SRL + output register) implementations.  All LUTs on the most-significant-bit side
are trimmed away when these bits are not needed, whereas only the flip flops and
shift-register LUTs are removed in the least significant parts, as shown in Fig. 3.

The third case is the RTL AddSub, which is similar to the non-pipelined IP core,
with an important difference. First, all latency are handled by SRL17s.  Second, some
of the least-significant-bit logic can be trimmed when one input has trailing zeroes.

Summarizing the approach to estimating a LUT-based block, the area function is
designed according to the algorithm used to implement the function, the logic wrapper
that provides the fixed-point arithmetic abstraction, and taking into account logic
trimming that occurs due to parameters that include input and output data types.

Finally, possible trimming on input bits is described in the addsub_area()
function, as needed for handling global trimming effects in the future, when the com-
piler is able to handle backward data-type propagation.

2.4.2 Resource Estimation for the Usage of 18x18 Embedded Multipliers
As another example of writing block level resource estimation function, let’s look at
the usage of 18x18 embedded multipliers that are currently available in Virtex-II
family FPGAs. When the target multiplier is less than 18x18 size, it can be fit into
one embedded multiplier. Otherwise, multiple embedded multipliers are needed, each
of which generates a partial product, followed by adder logic to sum the partial prod-
ucts into the final output.

By understanding the way the embedded multiplier is used, the usage of these em-
bedded primitives can be written as a simple function of the parameters of the target
multiplier, that is,

+×+
=×

17
1)-  Unsigned (NCeil17

1)-  Unsigned (NCeil

 era Multipli in  Mults Embedded1818 ofNumber 

BBAA (1)

where subscripts A and B denote the two inputs of the multiplier, NA denote the num-
ber of bits of input A, UnsignedA is either 1 or 0 representing signal A is unsigned or
signed, similarly for B. and ceil() is the ceiling function as defined in MATLAB. The
total number of 18x18 multiplier primitives used in a model is simply the sum of the
numbers for each parallel multiplier.

2.5 User Interface and Design Automation

As shown in Fig. 4, every Xilinx block that requires FPGA resources has a mask pa-
rameter that stores a vector containing its resource requirements. The Resource Esti-
mator block can invoke underlying functions to populate these vectors (e.g. after pa-
rameters or data types have been changed), or aggregate previously computed values
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Fig. 4. System Generator design and the Resource estimation utilities for the Cordic divider
demo using distribute memory [4]. The bottom left pane shows the mask parameters of the
ROM; the bottom right pane is the block parameter dialog box of the Resource Estimator block
that shows the estimation result of the current subsystem.

that have been stored in the vectors. Each block has a checkbox control "Use Area
Above for Estimation" that short-circuits invocation of the estimator function and
uses the estimates stored in the vector instead.

In Fig. 4, by clicking “Estimate Area” button of the parameter dialog box of the re-
source estimator block, a Simulink compilation is initiated. When the compilation is
done, the get_BlockType_area() resource estimation functions are called for
every block in the subsystem containing the resource estimator, which in turn calls the
BlockType_area() core functions to get the estimated area. The results are then
displayed in the dialog box of the Estimator. Furthermore, the resource vector of each
individual block, such as the ROM in Fig. 4, is also updated and displayed. More de-
tailed information is available in [4].
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3 Experimental Results

The MATLAB function BlockType_area() for each block type has been tested
extensively, sometimes exhaustively, against the mapping report result under various
block configurations. In this section, the complete resource estimation tool is further
tested against a number of complicated DSP designs, two of which are reported here.
One design is an additive-white-Gaussian-noise (AWGN) simulator that generates
pseudo-random AWGN noise. The other one is a stage-based Coordinate rotation
digital computer (CORDIC) system. Table 1 shows the results on the 7 aspects of the
FPGA resources, as well as the time required to get the estimations.

Table 1. Compare the proposed resource estimation tool (new tool) with map-report (previous
tool) on a couple designs. AWGN is an additive-white-Gaussian-noise simulator.

Slices FFs BRAMs LUTs IOBs
18x18
Mults TBUFs

Time
(min)

AWGN (Prev. tool) 1571 760 0 1595 27 1 0 15

AWGN (New tool) 1606 760 0 1612 27 1 0 .5

11-stages CORDIC
(Prev. tool) 453 952 1 773 101 0 0 10

CORDIC (New tool) 471 982 1 794 101 0 0 .3

The results in Table 1 are representative of many other tests. Every aspect of the
resources obtained from the new resource estimation tool4 agrees with the map-report
within 10% (usually within 5%). Yet, the estimation time speeds up by 1-2 orders of
magnitude comparing with map-report method. This acceleration is accomplished by
the elimination of time-consuming netlisting, synthesis, and mapping stages required
to get a map-report.

As long as a System Generator design can be compiled by the Simulink compiler,
the proposed resource estimation tool is able to estimate. In this way, resource esti-
mation can be obtained for early designs iterations that cannot even pass the rest of
the design flow to reach the map-report stage.

4 Conclusion

A novel pre-netlisting FPGA resource estimation tool in System Generator has been
developed. The estimation is accurate because the architectural information of a de-
sign is available in System Generator.  Is also because IP-core implementations and
trimming effects are understood. Automation of the tool is realized in MATLAB
functions by taking advantage of the Simulink model construction commands. Verifi-
cations on real designs show excellent agreement with map-report.

                                                          
4 Comparisons of the new estimator were performed against a previous version implemented

by the first author as part of his graduate research.
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Further developments can be done in several possible areas. First, a dominant por-
tion of the estimation time is spent on Simulink compilation to obtain the data-types
at signal nodes, so, more a efficient compiler would speed-up the estimation tool.
Secondly, the global trimming effects could be important in some designs, and can be
computed by a smarter Simulink compiler that can propagate signal data-types both
forward and backward. Thirdly, it would be desireable to develop similar estimation
tools for power-consumption and signal path delays.
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Abstract. In this paper, we report on the backend C compiler developed
to target the Virtex II Pro PowerPC processor and to incorporate the
Molen architecture programming paradigm. To verify the compiler, we
used the multimedia video frame M-JPEG encoder of which the Discrete
Cosine Transform (DCT*) function was mapped on the FPGA. We ob-
tained an overall speedup of 2.5 against a maximal theoretical speedup of
2.96. The performance efficiency of 84 % is achieved using automatically
generated but non-optimized DCT* hardware implementation.

1 Introduction

Reconfigurable computing (RC) is becoming increasingly popular as it bears the
promise of combining the flexibility of software with the performance of hard-
ware. Some concern can be expressed because the current state of the art assumes
that the developer has a deep understanding of both software and hardware de-
velopment before the benefits of this technology can be exploited. This justified
concern underlines the necessity to intensify research and development efforts to
support the designer in this process. The Delft Workbench is an initiative that
investigates the integration and development of tools supporting the different de-
sign phases starting at code profiling, synthesis and ending at the generation of
binary code. The idea is to automate as much as possible the design exploration
and the final development process. This paper addresses an important part of
the tool chain, namely the construction of a backend compiler that targets such
a hybrid platform. The compiler allows on the basis of function annotations, the
automatic modification of applications to generate the appropriate binaries.

The current paper reports on the completed compiler targeting the Molen
implementation on the Virtex II Pro platform FPGA. The contributions of the
paper can be summarized as follows :

– A compiler backend targeting the PowerPC processor included in the Molen
prototype has been developed.

– The theoretical compiler extensions presented in [1] have been implemented
and adjusted to the target Field-programmable Custom Computing Machine
(FCCM) features.

– Software/hardware development tools have been integrated to automatize
the design flow phases.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 434–443, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The application that was used for experiments is M-JPEG encoder. Mea-
surements show that the resulting code executed on the implementation of the
Molen organization on the Virtex II Pro board, allows to obtain overall speedups
of 2.5 when compared to the software only execution. We emphasize that the
goal of this experiment is not to study multimedia extensions but rather to
provide a proof of concept of the compiler toolset targeting FCCMs. We also
stress that in contrast to the work discussed in [1], the presented paper bases all
experimentation on a real Molen prototype rather than estimations.

The paper is organized as follows. In the next section, we present the Molen
organization and discuss related work. In section 3, we present the compiler
extensions required for the PowerPC processor and the Molen prototype. We
then present the case study where the computation intensive DCT function is
mapped on the reconfigurable fabric and show that speedups of 2.5 are achieved.

2 Background and Related Work

In this section, we briefly discuss the Molen programming paradigm [2], describe
the Molen machine organization that supports it and discuss related work.

The Molen programming paradigm [2] is a sequential consistency paradigm
for programming FCCMs possibly including a general-purpose computational
engine(s). The paradigm allows for parallel and concurrent hardware execution
and is intended (currently) for single program execution. For a given ISA, a one
time architectural extension (based on the co-processor architectural paradigm)
comprising 4 instructions (for the minimal πISA as defined in [2]) suffices to
provide an almost arbitrary number of operations that can be performed on the
reconfigurable hardware. The four basic instructions needed are set, execute,
movtx and movfx. By implementing the first two instructions (set/execute)
an hardware implementation can be loaded and executed in the reconfigurable
processor. The movtx and movfx instructions are needed to provide the
communications between the reconfigurable hardware and the general-purpose
processor (GPP). The Molen machine organization [3] that supports the Molen
programming paradigm is described in Figure 1. The two main components in
the Molen machine organization are the ‘Core Processor’, which is a GPP and
the ‘Reconfigurable Processor’ (RP). Instructions are issued to either processors
by the ‘Arbiter’ by means of a partial decoding of the instructions received from
the instruction fetch unit. The support for the SET/EXEC instructions required
in the Molen programming paradigm is based on reconfigurable microcode. The
reconfigurable microcode is used to emulate both the configuration of the Custom
Computing Unit (CCU) and the execution of implementations configured on the
CCU. A detailed description of how the Molen organization and programming
paradigm compare with other approaches is presented in [1].

An overview of research that aims to combine GPPs and reconfigurable hard-
ware and to provide software support for programming these FCCMs and a
discussion of how they relate to research reported in this paper includes the
following:



436 E. Moscu Panainte, K. Bertels, and S. Vassiliadis

Fig. 1. The Molen machine organization

Reconfigurable Architectures Performance: Several reconfigurable ar-
chitectures have been proposed in the last decade (see [4] for a classification).
The reported performance improvements are mainly based on simulation (see
for example [5]) or estimation (e.g. [6] [7]) results. Eventhough some implemen-
tations exist [8], in most cases the performance is just estimated. In this paper,
we present the validation of the Molen approach based on a real and running
implementation of the Molen reconfigurable processor platform.

Compilers for Reconfigurable architectures: When targeting hybrid ar-
chitectures to improve performance, the applications must be partitioned in such
a way that certain computation intensive kernels are mapped on the reconfig-
urable hardware. Such mapping is not simple as it assumes deep understanding
of both software and hardware design. Several approaches (e.g. [5] [7]) use stan-
dard compilers to compile the applications to FCCMs. As standard compilers do
not target reconfigurable architectures, the kernel computations implemented in
hardware are manually replaced by the appropriate instructions for communica-
tion with and controlling the reconfigurable hardware. This replacement is done
manually and it is a time-consuming [9] and error-prone process. In order to
facilitate the design and development process, much effort is put in the develop-
ment of automated tools (compilers) to perform such tasks [10] [6] [11]. However,
the extensions of the cited compilers mainly aim to generate the instructions for
the reconfigurable hardware and they are not designed to easily support new
optimizations that exploit the possibilities of the reconfigurable hardware. The
Molen compiler presented in this paper, is based on a a flexible and extensible in-
frastructure that allows to add easily new optimization and analysis passes that
take into account the new features of the target reconfigurable architecture.
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Compiler Support for Hiding the Reconfiguration Latency: One of
the major drawbacks of the reconfigurable hardware is the the huge reconfig-
uration latency [12] [4]. Different techniques such as configuration caching and
prefetching (e.g. [3]) have been proposed to reduce the reconfiguration latency.
These hardware techniques should be combined with compiler optimizations
that provide an efficient instruction scheduling to use the available parallelism
between different FCCMs components in the hardware reconfiguration phase.
Nevertheless, many FCCMs do not expose a specific instruction for hardware
reconfiguration (see [4] for FCCMs classification), thus impeding compiler sup-
port for hiding reconfiguration latency. We schedule the SET instruction (which
performs the hardware configuration) as early as possible from the hardware
execution phase, resulting in exploiting the parallelism between the GPP and
the FPGA during the configuration stage.

3 The Molen Compiler

The Molen compiler comprises the Stanford SUIF2[13] (Stanford University In-
termediate Format) Compiler Infrastructure for the front-end and the Harvard
Machine SUIF framework[14] for developing compiler backends and optimiza-
tion. In [1], the theoretical compiler extensions target a virtual Molen recon-
figurable architecture including an x86 processor as a GPP. In this section we
present the implemented compiler backend and extensions required for the Molen
hardware implementation on the Virtex II Pro platform FPGA which includes
a PowerPC processor.

PowerPC Backend: The first step is to have a backend C-compiler that
generates the appropriate binaries to be executed on the PowerPC processor
integrated on the Virtex II Pro board. Current MachineSUIF backends excluded
the backend for PowerPC architecture. In consequence, we developed a PowerPC
compiler backend and implemented the PowerPC instruction generation, Pow-
erPC register allocation, PowerPC EABI stack frame allocation and software
floating-point emulation (not completed). Additionally, in order to exploit the
opportunities offered by the reconfigurable hardware, the PowerPC backend has
to be extended in several directions, as described in the rest of this section.

Hiding Configuration Latency: Due to the lack of support for dynamic
reconfiguration in the current Molen implementation ( there was not sufficient in-
formation about the Virtex II Pro platform) and taking into account that in our
experiments there is only one function (DCT*) executed on the reconfigurable
hardware, the Molen compiler generates in advance only one SET instruction
for DCT* at the application entry point. The SET instruction does not stall
the GPP implying that the compiler can issue this instruction as far ahead as
possible from the hardware execution phase. This scheduling allows the GPP to
execute in parallel with the FPGA during the configuration stage. This is partic-
ularly useful for the cases when the SET instruction is initially included in a loop.
Thus, issuing the SET instruction at the application entry point avoids unneces-
sary repetitive hardware configuration. The cases when multiple operations are
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sequentially executed on the reconfigurable hardware and do not simultaneously
fit on the target FPGA are not covered by this scheduling.

Compiler Extensions for Molen Implementation: First of all, a general
purpose reconfigurable architectural scheme (presented in [3]) has been adopted.
We implemented the minimal instruction set extension, containing the following:

– SET/EXECUTE instructions are included in the MIR (Medium-level Inter-
mediate Representation) and LIR (Low-level Intermediate Representation)
of the Molen compiler. In order not to modify the PowerPC assembler and
linker, the compiler generates the instructions in binary form. For exam-
ple, for the instruction exec 0x80000C the generated code is .long 1A000031
where the encoding format (presented in [15]) is recognized by the arbiter.

– MOVTX/MOVFX: The equivalent PowerPC instructions are mtdct/mfdcr.
Moreover, the XRs (exchange registers) are not physical registers but they
are mapped at fixed memory addresses.

la 3, 12016(1) #load the address of the first param
la 12, 12016(1) #load the address of the second param
mtdcr 0x00000056,3 #send the address of the first parameter
mtdcr 0x00000057,12 #send the address of the second parameter
sync #
nop #synchronization
nop #
nop #
bl main. label0 #instr. required by the arbiter impl.
main. label0:
.long 0x1A000031 #exec 0x8000C
nop #synchronization

Fig. 2. Code generated by the Molen compiler for the reconfigurable DCT* execution

In Figure 2, we present the code generated by the Molen compiler for the
DCT* function call executed on the reconfigurable hardware. In order to cor-
rectly generate the instructions for hardware configuration and execution, the
compiler needs information about the DCT* hardware implementation. This
information is described in an FPGA Description File, which contains for the
DCT* operation the fields presented in Figure 3. Line 2 defines the start memory
address from where the XRs are mapped. In line 3, the compiler is informed that
there is a hardware implementation for the DCT* operation with the microcode
addresses for SET/EXECUTE instructions defined in lines 4-5. The sync instruc-
tion from Figure 2 is a PowerPC instruction that ensures that all instructions
preceding sync in program order complete before sync completes. The sequences
of sync and nop instruction are used to flush the processor pipeline. The SET
instruction is not included in the above example because it has been scheduled
earlier by the Molen compiler previously presented.
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1: NO XRS = 512 # number of available XRs
2: START XR = 0x56 # the memory address of the first XR
3: OP NAME = dct # info about the DCT* operation
4: SET ADDR = 0x39A100 # the address of the DCT* SET microcode
5: EXEC ADDR = 0x80000C # the address of the DCT* EXEC microcode
6: END OP # end of the info about the DCT* operation
................................. # info about other operations

Fig. 3. Example of an FPGA Description File

4 M-JPEG Case Study

In this case study we report the performance improvements of the Molen im-
plementation on the Virtex II Pro for the multimedia video frame M-JPEG
encoder.

Design Flow: The design flow used in our experiments is depicted in
Figure 4. In the target application written in C, the software developer in-
troduces pragma annotations for the functions implemented on the reconfig-
urable hardware. These functions are translated to Matlab and processed by
the COMPAAN[16]/LAURA[17] toolchain to automatically generate the VHDL
code. The commercial tools can then be used to synthesize and map the VHDL
code on the target FPGA. The application is compiled with the Molen compiler
and the executable is loaded and executed on the target Molen FCCM.

COMPAAN

LAURA

VHDL Synthesizer

}

MATLAB

encoder
C  application

M−JPEG

DCT.c
Main.c

Quantize.c

VLE.c

#pragma call_fpga dct

SW Implemention HW Implemention

VIRTEX II Pro Platform FPGA

[16]

[17]Assembler
Linker

MOLEN COMPILER

void dct(TBlock *in, 
Tblock *out ) {

................

FCCM405
MOLEN FPGAPowerPC

Fig. 4. The design flow
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Table 1. M-JPEG video sequences

Name # frames Resolution Format Color/BW
[pixels]

tennis 8 48x48 YUV color
barbara 1 48x48 YUV color
artemis 1 48x48 YUV color

M-JPEG, Software and Hardware Implementations: The application
domain of these experiments is the video data compressing. We consider a real-
life application namely Motion JPEG (M-JPEG) encoder which compresses se-
quences of video frames applying JPEG compression for each frame. The in-
put video-frames used in these experiments are presented in Table 1. The M-
JPEG implementation is based on the public domain implementation described
in ”PVRG-JPEG CODEC 1.1”, Portable Video Research Group, Stanford Uni-
versity. The most demanding function in M-JPEG application is 2D DCT with
preshift and bound transforms (named in this paper as DCT*). In consequence,
DCT* is the first function candidate for hardware implementation. The only
modification of the M-JPEG application that indicates the reconfigurable DCT*
execution is the introduction of the pragma annotation as presented in Figure
4. The hardware implementation for execution of the DCT* function on the
reconfigurable hardware is described in [9]. The VHDL code is automatically
extracted from the DCT* application code using COMPAAN[16]/LAURA[17]
tools. The Xilinx IP core for DCT and the ISE Foundation[18] are used to syn-
thesize and map the VHDL code on the FPGA. After the whole application is
compiled with the Molen compiler described in the previous section, in the final
step we use the GNU assembler and linker and the C libraries included in the
Embedded Development Kit (EDK) [19] from Xilinx to generate the application
binary files. The target FCCM is the implementation of the Molen reconfigurable
architecture on the Virtex II Pro platform FPGA of Xilinx described in [15]. In
this implementation, the GPP is the IBM PowerPC 405 processor immersed into
the FPGA fabric.

Performance Measurements: The current Molen implementation is a pro-
totype version, which imposes the following constraints:
– the memory size for text and data sections are limited to maximum 64K. In

order for the M-JPEG executable to fulfill these limitations, we rewrote the
original application preserving only the essential features for compressing
sequences of video frames. Moreover, these limitations also restrict the size
of the input video frames to 48x48 pixels (Table 1, column 3).

– dynamic reconfiguration is not supported (yet) on the Molen prototype. In
consequence, we could not measured the impact on performance of repetitive
hardware configurations.

In addition, the performance measurements have been performed given the
following additional conditions:
– the input/output operations are extremely expensive for the current Molen

prototype, due to the standard serial connection implemented by UART at
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38400 bps between the Molen prototype and the external environment; this
limitation can be removed by the implementation of faster I/O system. We
therefore did not include the I/O operation impact in our measurements as
they are not relevant for RC paradigm

– the DCT* hardware implementation requires a different format for the in-
put data than the software implementation. Consequently, an additional
data format conversion is performed in software before and after the DCT*
execution on reconfigurable hardware.

– taking into account that the target PowerPC processor included in the
Virtex-II Pro platform does not provide hardware floating-point support and
that the required floating-point software emulation is extremely expensive,
the integer DCT is used for both software and hardware implementation to
allow a fair comparison.

The execution cycles for M-JPEG encoder and comparisons are presented in
Table 2. As we considered a sequence of 8 video frames for tennis input sequence,
we present only the minimal and maximal values for each measurement in order
to avoid redundant information.

Pure Software Execution: In Table 2(a), we present the results of our
measurements performed on the the Virtex II Pro platform, when the M-JPEG
application is entirely executed on the PowerPC processor. In row 1, the number
of cycles used for executing the whole M-JPEG application is given. In row
2, the cycles consumed by one execution of the DCT* function are given and
the next row contains the total number of cycles spent in DCT*. From these
numbers, we can conclude that 66% of the total execution time is spent in
the DCT* function, given the input set. This 66% represents the maximum
(theoretical) improvement that can be obtained by hardware acceleration of the
DCT* function. The corresponding theoretical speedup - using Amdahl’s law -
is presented in Table 2(c), row 2.

Execution on the Molen prototype: In Table 2(b), we present the num-
ber of cycles for the M-JPEG execution on the Molen prototype. From row 1
we can conclude that an overall speedup of 2.5 (Table 2(c), row 1) is achieved.
The DCT* execution on the reconfigurable hardware takes 4125 cycles (row 2)
which is around 300 times less than the software based execution on the Pow-
erPC processor (Table 2(a), row 2). However, due to the data format conversion
required by the DCT* hardware implementation, the overall number of cycles
for one DCT* execution becomes 102,589 (Table 2(b), row 3), resulting in a
10 fold speedup for DCT* and a 2.5 speedup globally. The performance effi-
ciency is about 84% as presented in Table 2(c), last column. It is noted that this
efficiency is achieved even though i) the hardware implementation has been auto-
matically but non-optimally obtained (using COMPAAN[16]/LAURA[17] tools)
and ii) additional software data conversion diminished the DCT* speedup in
hardware. From these measurements, we can conclude that even non-optimized
implementation can be used to achieve considerable performance improvements.
In addition, taking into account that only one function (DCT*) is executed on
the reconfigurable hardware, we consider that an overall M-JPEG speedup of
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Table 2. M-JPEG execution cycles and comparisons

tennis [0-7] barbara artemis
MIN MAX

M-JPEG 33,671,821 33,779,813 34,014,157 34,107,893
Pure DCT* 1,242,017 1,242,017 1,242,017 1,242,017

Software DCT* 22,356,306 22,356,306 22,356,306 22,356,306
Execution cumulated

(a) Maximal 66.18% 66.39% 65.73% 65.55%
improvement

Execution on M-JPEG 13,443,269 13,512,981 13,764,509 13,839,757
Molen DCT* HW 4,125 4,125 4,125 4,125

prototype DCT* HW + 102,589 102,589 102,589 102,589
(b) Format conv.

Practical 2.50 2.51 2.47 2.46
speedup

Comparison Theoretical 2.96 2.98 2.92 2.90
(c) speedup

Efficiency 84.17% 84.65% 84.70% 84.91%

2.5x from the theoretical speedup of 2.96 x confirm the viability of the presented
approach.

5 Conclusions

In this paper, we presented the implemented compiler support for the Molen
implementation on the Virtex II platform FPGA. The compiler allows the auto-
matic modification of the application source code using the extensions following
the Molen Programming Paradigm. The experiment evaluated the effectively re-
alized speedup of reconfigurable hardware execution of the DCT* function of the
M-JPEG application. The generated code was executed on the Molen prototype
and showed a 2.5 speedup. This speedup consumed 84% of the total achievable
speedup which amounts to 2.9. Taking into account that hardly any optimiza-
tion was performed and only one function ran on the reconfigurable fabric, a
significant performance improvement was nevertheless observed. We emphasize
that we do not compare the RC paradigm to other approaches for multimedia
applications boosting performance (such as MMX, 3DNow!, SSE). The focus of
this paper was rather on the compiler support for the Molen FCCM under the
RC paradigm. Further research on the compiler will address optimizations for
dynamic configurations and parallel execution on the reconfigurable hardware.
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Abstract. Dynamic task scheduling and online placement are two of the main
responsibilities of an operating system for reconfigurable platforms. Since these
operations are performed during run-time of the applications, these are overheads
on the execution time. There is a need to find fast and efficient algorithms for
task placement and scheduling. We propose an integrated online scheduling and
placement methodology. We maintain empty area as a list of maximal empty rect-
angles which allows us to explore solution space efficiently. We defer scheduling
decisions until it is absolutely necessary to accommodate dynamically changing
task priorities. We propose task queue management data-structures for in-order
and out-of-order task scheduling strategies. One of our queuing strategies guaran-
tees the shortest execution time for in-order task execution and the other strategy
results in better FPGA area utilization for out-of-order task execution. We provide
experimental evidence of improvement our methodology yields over the previous
approaches.

1 Introduction

FPGA performance has increased manifold in past few years. Underwood analyzed
FPGA performance data between 1997 and 2003 to show that FPGA performance im-
provement trend is better than what is predicted by the Moore’s law [1]. With the increase
in the FPGA capacity, a multi-user multi-tasking FPGA is not a very distant possibility.
In such a reconfigurable system, more than one application can concurrently run on the
same FPGA device. A host is responsible for managing the reconfigurable resources and
for execution and scheduling of the applications. The system services provided by the
host constitute a reconfigurable operating system (ROS).

Users can log on to the host and submit applications represented in a high level
language. These applications share the reconfigurable resources with some already ex-
ecuting applications. Each application is synthesized and temporally partitioned into a
set of tasks. The tasks are scheduled and placed on the FPGA using partial reconfigura-
tion. Each task needs a finite amount of reconfigurable resources for its execution. The
reconfigurable resources can be modeled as a contiguous rectangular area on the FPGA.
When a task finishes execution, the area is reclaimed by the ROS and can be reused for
execution of subsequent tasks.

Though shape, size and lifetime of the tasks is known after synthesis, the execution
flow of an application depends upon input data (e.g. non-manifest loops) and is decided

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 444–453, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



An Integrated Online Scheduling and Placement Methodology 445

only at the run-time. Further, a number of applications may be competing for the FPGA
area resources. So the tasks need to be scheduled and placed at the run-time of the
applications. Placement in such an environment is called online placement. Time needed
for the scheduling and placement is an overhead and it delays execution of the application.

In a typical reconfigurable embedded system, a set of tasks compete for a limited
number of resources. Scheduling is the process of assigning the resources to the tasks
and to assign a start time and finish time for execution of a task. In this work, we fo-
cus on non-preemptive integrated online scheduling and placement methodology. We
argue that online scheduling and online placement should be tightly integrated. Unlike
previous approaches, our placement algorithm guarantees to find a placement location,
if there exists one. We describe our task queue management data-structure for in-order
and out-of-order task scheduling. One of our queueing strategies guarantees the short-
est execution time for in-order task execution and the other strategy results in better
FPGA area utilization for out-of-order task execution. We present detailed performance
characteristics for both the scheduling methodologies.

2 Related Work

Scheduling of tasks on a multi-processor system or scheduling of data packets on a
network is a well studied research area. A survey of online scheduling algorithms can be
found in [2]. FPGAs are fast becoming an integral part of a typical embedded system.
So, task scheduling for a reconfigurable system is fast becoming an important research
area. Mei et al. [3]presented a genetic algorithm based approach for task assignment
and scheduling on multi-FPGA embedded systems. Dick and Jha [4] presented a pre-
emptive multi-rate scheduling algorithm that performs dynamic task reordering based
upon FPGA reconfiguration time. Noguera and Badia [5] discussed a dynamic run-time
scheduler for the tasks with non-deterministic execution time. Shang and Jha [6] pro-
posed a two-dimensional, multi-rate cyclic scheduling algorithm which calculates the
task priorities based upon real time execution constraints and reconfiguration overhead
information. Task location is assigned based upon a number of factors that include task
prefetch, pattern reutilization and fragmentation. Steiger et al. [7] presented an efficient
methodology for online scheduling. We propose and non-preemptive integrated online
scheduling and placement methodology. We use an efficient and fast online placement
algorithm that improve placement quality as compared to previous approaches. Also,
we delay the scheduling decision to accommodate dynamic task priority better then the
previous approaches.

3 Motivation

There is a fundamental difference between scheduling of tasks for a FPGA and a multi-
processor system. In conventional multi-processor systems, availability of a resource
can be determined trivially. If no task is assigned to a resource at a particular time, the
resource can be considered un-utilized and can be assigned to a task during that time.
On the contrary, in case of an reconfigurable systems, a single FPGA is used to execute
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a number of tasks concurrently. Due to fragmentation of the area resources, there is no
guarantee that resources will be available for execution of a task.

In the partially reconfigurable systems,

T5

T2 T4

T3

T1

D
C

BA

Fig. 1. Modeling the reconfigurable area

each task uses a set of contiguous area
locations for the duration of its execu-
tion time. The contiguous reconfigurable re-
sources used by an task can be modeled by a
rectangular area on the FPGA surface [8,9,7,
10]. Figure 1 shows four tasks T1-T4 mod-
eled as rectangles placed on the FPGA rep-
resented by the rectangle ABCD.

The area on the FPGA may be frag-
mented due to already placed tasks. Even if

the empty area on the FPGA is more than the area of the task, the area may not be
contiguous. As an example, task T5 in Figure 1 can not be placed on the FPGA because
enough empty contiguous area is not available to accommodate that task. Therefore, in
addition to assigning a start time, the scheduler need to assign a placement location to the
task. So, the scheduler for reconfigurable systems need an integrated online placement
engine. If the scheduler ignores the placement requirements of the task, the task may
not find a placement location and may not start execution at the start time assigned to it.
Our framework uses an efficient online placement engine for task scheduling.

Speed and efficiency are very important attributes of a good online scheduling
methodology. Placement and Scheduling are performed at the run-time of the appli-
cations. So, time taken by these operations is an overhead on the execution time of the
application. In dynamic reconfigurable systems, no compile-time optimization can be
performed. So, quality of online placement engine tends to be inherently poor as com-
pared to the offline approaches like simulated annealing and the force-directed place-
ment. This calls for an efficient task placement strategy that ensures least degradation in
the placement quality.

Our dynamic scheduler uses a fast online placement algorithm for assigning place-
ment location to the tasks. Our placement algorithm guarantees to find a placement
location if there exists one. This leads to efficient use of the reconfigurable resources.

4 Task and Scheduler Models

In this section, we discuss the task model we use for this work. In addition, we describe
our integrated scheduler model and compare it with other contemporary approaches.

A task is assumed to be rectangular is shape. Besides the functionality, the heigh
and the width of a task, it is characterized by three time-related integers. Each task has
an arrival time (a). This is the earliest time a task can start execution. Due to limited
amount of resources, a task may not start execution at its arrival time. Start time (s) is
the time of start of execution of the task. Execution Time (e) of a task is the time it takes
to finish its execution. In addition, every task has a priority associated with it. Priority
of a task denotes execution preference of a task over the other tasks. A task with higher
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priority is meant to be executed before other tasks with lower priority. Task priority can
change dynamically.

In the previous non-preemptive task scheduling methodologies, scheduling and
placement are treated as different steps. Tasks are scheduled as and when they arrive. So
scheduling is performed according to the arrival time of the tasks. This scheme is shown
in Figure 2.

Online Online
Placement

Tasks

Scheduling

FIFO Priority Queue

Fig. 2. Separate Scheduling and Placement

Online Placement
and

Online Scheduling

Integrated

Priority Queue

Tasks

Fig. 3. Integrated Scheduling and Placement

The main problem with this scheme is that this scheme prioritizes the tasks according
to task arrival time and Task priority is not respected. If a low priority task T1 has earlier
arrival time, the task is scheduled at a particular time. If a high priority task T2 arrives
later, in spite of its high priority, that task will be scheduled after T1 because T1 is already
scheduled before the arrival of T2. Also, once a task is scheduled, change in priority of
that task will not make any effect in its execution order. Our methodology defers the
scheduling decision until it is absolutely necessary. Our model of scheduler is shown in
Figure 3. We perform online scheduling and placement in a single step.

5 Online Placement Algorithm

Finding and maintaining empty area on the FPGA is an important part of an online
placement algorithm. We maintain empty area as a list of maximal empty rectangles 1.
Our algorithm [8] can list all the maximal empty rectangles on the FPGA by processing
less than about 15% of the total number of cells. Details of our algorithm to find a list
of overlapping maximal empty rectangles can be found in [8]. We choose the empty
rectangle with least area for placement of a task (best fit placement strategy). In addition
to being fast, our algorithm can handle dynamic addition and deletion of tasks efficiently.
Number of maximal empty rectangles on the FPGA changes after addition and deletion
of every task. So, the list of maximal empty rectangles needs to be updated after every
addition and deletion of a task. This is performed by running our algorithm [8]. However,
we do not need to run this algorithm on the whole FPGA after each addition and deletion.

The full list of the MERs is not required to be updated after addition or deletion of a
new task. Let (m,n) is the top left corner of the added or deleted task and L be list of all

1 A maximal empty rectangle is a empty rectangle that cannot be covered fully by any other
empty rectangle
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maximal empty rectangles. We define the area to the bottom right direction of (m-1,n+1)
as the perturb area. perturb area for a task M1 is shown by the dotted line in Figure 4.

(0,0)

(m −1,n +1)

(m,n)

M1
C

B

A

Fig. 4. Perturb Area

Note that all maximal empty rectangles
that do not lie in perturb area of a task are not
affected by addition or deletion of that task.
All the rectangles in L that have their bottom
right virtex in perturb area are deleted. So, in
Figure 4, rectangles B and C will be deleted
after addition or deletion of M1. A list of max-
imal empty rectangles is found in the perturb
area using our algorithm discussed in [8] and
added to L.

6 Scheduling Methodology

Online placement and online scheduling are tightly integrated operations in a partially
reconfigurable system. Benefits of the integrated approach is that tasks get executed in
order of their dynamic priority and not according the precedence of their arrival time. We
assume that the time taken for partial reconfiguration of a task is negligible as compared
to the execution time of the tasks.

In our model, all tasks need to be executed on the FPGA. Further, our scheduling
scheme is non-preemptive. In between their arrival time(a) and start time(s), tasks are
placed inside an input priority queue. Tasks with high dynamic priority are placed at the
top of the input priority queue as compared to those with low priority. Tasks with same
priority are sorted according to their arrival time. Since all the tasks stay in the same
priority queue before their execution starts, dynamic change in their priority is reflected
in their execution order. The tasks may or may not be data dependent upon the other
tasks. So, there are two possible queues: in-order and out-of-order.

6.1 In Order Processing

Tasks in the input priority queue may be data dependent upon each other. So, the tasks
need to be processed in-order. In case of in-order execution, we maintain one other
priority queue called the deletion queue in addition to the input queue. The deletion queue
contains task deletion events. Events in the deletion queue are prioritized according to
their time. If a task starts its execution, we place a corresponding task deletion event
in the deletion queue, with the time stamp of the sum of task start time and the task
execution time.

Task processing is performed by execution of task placement and task deletion events.
At every time tick, we check status of both input queue and the deletion queue. If present
time is equal to the time of deletion event at the head of the deletion queue, we delete
that event from the FPGA. If there is an event to be placed in the input event, we try to
place that event by finding a suitably large empty rectangle by searching through the list
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of maximal empty rectangles(MERs). The list of MERs is updated after every addition
and deletion event as explained in Section 1.

We try to schedule execution of each task at its arrival time, but this is not possible
due to limited area resources (Section 3). If a task T cannot be placed at some time, we
have to delay start of execution of all the tasks below T because the tasks are executed in-
order. In such a situation, the input queue is said to be locked. If the input queue is locked,
we cannot place any other task until one of the already placed tasks finishes execution
and is removed for the FPGA. Also, if placement of subsequent tasks is delayed because
of queue lock, we do not want to delay the time of task deletion event from the FPGA.
This goal is achieved because the deletion queue is separate from the input queue. The
queue lock is released after execution of a delete event.

Our in-order processing methodology guarantees minimum delay in execution of the
tasks because only the input queue is delayed for the time that is absolutely necessary
for placement of the tasks and the deletion of tasks is not delayed.

6.2 Out of Order Processing

In out-of-order processing, the tasks are not data-dependent upon each other and can
be executed in any order. This relaxation can be used to schedule tasks for better area
utilization.

As in the in-order processing case, the incoming tasks are placed in a input queue
till they are ready to start execution. In the out-of-order processing, both task addition
event and task deletion events are maintained in the same queue. If an event at the top of
the queue is the delete event, deletion operation is performed. If the event corresponds
to an task addition event, the list of MERs is searched to find a suitable empty rectangle
for task placement. If no suitable rectangle is found, the task is re-scheduled after the
first deletion event in the queue. The algorithm then proceeds to the next event in the
queue to see if that is a delete event or an add event. This procedure is repeated at every
time tick.

In this strategy, if an task is too large to be placed on the FPGA, it is tried to be placed
again after deletion of an task. Note that even second time, there may not be enough
space for placement of an event. The event is rescheduled again after the first deletion
event in the queue and so on.

As we will see in Section 7, this scheduling methodology results in better area
utilization than the in-order processing. Also, in this case, there is no or minimal delay
involved in total execution time because this methodology can use the time between
delete event and next addition event to place previously unplaced tasks.

7 Results

In this section, we present results of our online scheduling and placement experiments.
In first set of results, we show efficiency of our online placement algorithm as compared
to a previous approach. Next, we compare both scheduling strategies in terms of FPGA
area usage.
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In our experiments, we generated tasks with their dimensions (length and width)
generated randomly between 1 and a maximum number L. Each task has a finite life-
time. Delay between two consecutive tasks is generated randomly between two bounds.
Delay-factor is defined as the ratio of maximum delay between two tasks and maximum
life-time of tasks. Effectively, delay-factor serves purpose of “normalized” delay between
two tasks. A high delay factor means that a set of two tasks have more delay between
their start time and a low delay factor value means that a set of two tasks are very near
to each other as compared to their life-times. In our experiments, tasks are generated
with their delay factor between 0 and a maximum value D. All experiments have been
performed on a 96×64 FPGA. Each data point in the graphs is generated by conducting
an independent placement run with 1000 macros.

7.1 Online Placement Results

In order to show effectiveness of our online placement algorithm, we compare it with
another state-of-the-art online placement algorithm proposed by Bazargan et al. [9].2

Each task is tried to be placed at its arrival time and if the task can not be placed,
it is assumed rejected. We call this no-queue scheduling. Note that the improvement in
online placement strategy is reflected directly as the efficiency of the dynamic scheduling
methodology. We measure effectiveness of the algorithms in terms of area utilization
and acceptance of the tasks. Area utilization is measured in terms of empty area per
unit time (EAPT). Empty area is calculated as number of free CLBs. Task acceptance is
measured as percentage of task accepted and placed by an algorithm.

Our algorithm maintain empty area as a list of maximal empty rectangles while
Bazargan [9] uses heuristics to maintain empty area as non-overlapping empty rectangles.
In this section, we compare our algorithm with Large Empty Rectangle (LER) heuristic
as discussed in [9]. We chose this heuristic because it produced best placement quality
among all the heuristics discussed in [9].

In the Figures 5, 6, 7 and 8, the graphs with legend "Non-Overlapping Empty Rect-
angle" are generated using Bazargan’s methodology.

Figures 5 and 6 show task acceptance and EAPT as a function of maximum size
L. Delay factor D is kept constant at 0.05 for these experiments. As maximum size
increases, tasks become larger. As a result it becomes more difficult to place those tasks
on the finite FPGA surface. So, percentage of accepted tasks decreases. On the other
hand, larger tasks utilize more area. So, the empty area per unit time (EAPT) decreases,
showing better device utilization.

Figures 7 and 8 shows acceptance and EAPT as a function of maximum delay
factor D. Maximum size of tasks, L is kept fixed at 25 for these experiments. As delay
between two consecutive tasks increases, percentage acceptance of tasks increases. This
is because, if next tasks comes at a larger delay, there are more chances of one of the
executing tasks to finish execution and release area for the incoming task. Also, the area
utilization decreases (increase in EAPT) with increase in delay factor.

2 We want to thank Dr. Kiarash Bazargan for letting us use their software [9] for comparison
purposes.
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tion of Task Delay

As shown in the Figures, our algorithm performs better than [9] in terms of area
utilization and task acceptance. As shown in these figures, our algorithm has about
14% less empty area per unit time (EAPT) as compared to [9]. Due to better area
utilization, our algorithm can accept about 10% more tasks than [9]. Our algorithm
performs better because we maintain empty area as maximal empty rectangles. This
decreases fragmentation of area resources and results in better utilization.

7.2 Scheduling Results

In this section, we present experimental results of our integrated scheduling and place-
ment strategy. We use the same benchmarks that we used in the last section. We compare
both in-order processing and out-order processing strategy with no-queue scheduling
strategy as described in previous section.

Figure 9 shows empty area per unit time as a percentage of the full FPGA area.
Area utilization of the out-of-order scheduling strategy is best among all. Since, in-order
scheduling methodology wait for tasks to be removed to place a larger task, the area
utilization is poor than the no-queue scheduling case.
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Figure 10 shows rejection of task placement request by the placement engine. no-
queue scheduling has minimum task rejection rate because once a task is not placed, no
other attempt is made to place that task. The in-order scheduling has more rejections of
task placement requests. The difference between the two widens as the maximum task
size increases. Rejection of the task placement requests is highest in case of out-of-order
scheduling. This is because, in this case, a task may be re-scheduled multiple times due to
non-availability of resources. Also, rejection of task placement request increases sharply
with increase in maximum task size (as shown in Figure 11) because it is difficult to
place larger tasks and these tasks are rejected multiple times.

Figure 12 shows the delay in in-order processing as a percentage of execution time of
the 1000 tasks in each benchmark. The delay increase with task size because placement
of larger tasks may require removal of a large number of other tasks already executing
on the FPGA.

There is no delay in case of out-of-order processing as time between successive tasks
is used to place previously rejected tasks. But queue maintenance overheads are very
large in case of out-of-order processing as a larger number of task rejections are handled
(as evident by the Figure 11).
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8 Conclusion

In this paper, we propose an efficient integrated online scheduling and placement strategy.
We argue that by designing proper queueing strategy, task scheduling can be simplified in
the dynamically reconfigurable systems. We propose two queueing strategies for in-order
and out-of-order task processing and discussed their characteristics in details.

Acknowledgments. This work is sponsored in part by the DaytonArea Graduate Studies
Institute (DAGSI) and the Air Force Research Laboratory (AFRL) research program
under contract number IF-UC-00-07.
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Abstract. Microcontrollers and ASICs have become a dominant part during the
last years in the development of embedded applications like automotive control
units. As described in our previous contribution we presented an alternative
approach exploiting the possibilities of partial run-time reconfiguration of state-
of-the-art Xilinx Virtex FPGAs. Our approach used a run-time system software
for controlling reconfiguration and message handling. This paper presents some
new extensions introducing dynamic priority measures as a first approach for
adaptive reconfiguration decisions.

1 Introduction

As the number of deployed engine control units (ECUs) in the automotive domain
grows it will become an increasing problem for many automobile manufacturers since
they complain about their handling and the growing costs of development, production
and maintenance (e.g. storage of spare parts etc.). 30 years ago an automobile was
equipped with only a few (analog) control devices, which could be handled by hobby
car mechanics. But today the (now digital) ECU equipment has become very complex
and error-prone because of the new functions interdependencies and their local
distribution inside the automobile. Additionally as the number of control units and
services desired by customers increases, electrical power dissipation will grow to
keep all devices working.

During the last years the sector of control devices was dominated by micro-
controllers and ASICs so that every function was implemented by a dedicated control
unit. Today upper class automobiles contain up to 100 control units and even in
inactive mode their total power consumption may discharge the battery which can
result in a disabled automobile. Additionally the devices become sooner obsolete and
the product life cycle decreased from 5 years down to 2 years [16].

We proposed a different approach by applying reconfigurable hardware devices
which could solve partially the problems described above. Our approach is based on
the assumption that not all ECU functions must be available at the same time, so it
should be possible to identify an adequate subset of functions which can be operated
on the same reconfigurable resource by applying a kind of flexible demand-driven
time-multiplex [15]. We developed a new flexible FPGA (Xilinx Virtex II) based
hardware architecture supporting partial run-time self-reconfiguration and a first
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version of a run-time system (RTS) which performs reconfiguration, message
handling and a first rather simple resource management approach. It’s obvious that
not all types of ECU-functionalities can be operated on such an architecture because
of redundancy and security demands so we restricted at this stage to less critical
automotive comfort functions like seat adjustments, compartment lightning or power
windows.

The feature of partial run-time reconfiguration might make such new FPGAs
attractive for embedded systems because it enables for hardware-based task switching
and there exist different academic approaches wherein they try to exploit these novel
features [3], [4], [9], [10], [14]. Hardware-based task switching enables for a dynamic
function multiplex at run-time where hardware mapped function-blocks can be placed
at run-time on different (on-chip / off-chip) execution locations [8], [12]. Run-time
task management is not a trivial job so that many approaches adopted solutions from
operating system theory [6], [11], [13]. Some researchers implemented complex
operating systems by adapting LINUX-based system kernels to their needs so that
their systems can do a migration of software-based tasks to hardware and vice versa
[7]. Although we conceive a real-time operating system integration of our run-time
system at a later stage as well we believe that at present it’s a more important task to
optimize its run-time behavior. This paper presents some improvements concerning
the run-time system’s reconfiguration and demand handling of our latest approach as
presented in [15]. The paper is structured as follows. In the following we give a short
description on the basic hardware architecture supporting run-time reconfiguration,
bitstream decompression & placement and on-chip/peripheral communication. Later
we describe the most essential parts of the structure of our proposed run-time system
and describe the improvements that we added to our run-time system. The paper
closes with some preliminary results and a preview on our future work to be done.

2 Target Hardware Architecture

Our implemented target hardware architecture was mapped on a Xilinx XC2V3000
FPGA. As depicted in Fig. 1 it consists of a Xilinx MicroBlaze soft-core processor
where the run-time system software is located on. The MicroBlaze processor is
connected to an external Controller Area Network (CAN)-Controller device, which
handles external bus communication. Additionally MicroBlaze is internally connected
to a bus-arbiter device and a decompression/reconfiguration unit. The bus-arbiter
controls the internal communication between MicroBlaze and function-modules
which are located in predefined reconfiguration-slots on FPGA.

The decompressed automotive function-modules can be reloaded from external
Flash-memory separately into the given module slots on FPGA by using the
possibilities of internal partial run-time reconfiguration in combination with run-time
decompression where the former is initiated via the internal configuration port (ICAP)
[3]. The physical separation between single functions on FPGA was realized by a bus
macro, which connects the signal lines between the functional blocks and the
arbitration/ run-time-system module. More details about used tool-chains, our bus-
macro approach and decompression unit can be found in [1], [5], [15]. As mentioned
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above the run-time system is implemented as static software part on a Xilinx
MicroBlaze soft-core processor. Designed with Xilinx Embedded Development Kit
(EDK) the run-time system is connected via the on-chip peripheral bus to peripheral
functions like the decompressor module and the arbiter. This core handles the
incoming and outgoing messages of the complete system. Messages from peripheral
devices will be decoded, processed and sent to the bus arbiter which controls the on-
chip-bus-lines connecting the currently available functions (see Fig. 1). Messages
from the function-modules will be received by the arbiter and redirected via
MicroBlaze to the external devices. The implemented structure is also capable of
saving states and all necessary parameters if a function-module has to be substituted
by another. This context-save mechanism is administrated by the run-time system but
the context-data is transmitted via the bus lines and controlled by the arbiter.

The next section will give a short overview on the basic functions of the run-time
system and the approach for a function request management. Details on the decision
strategy of module substitution can be found in section 4.
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Fig. 1. Run-time system with FPGA partial run-time reconfiguration support and soft-processor

3 On Demand Run-Time System

It is the run-time system’s basic job to handle time-constrained communication of the
function-modules with the corresponding sensors and actuator components by
translating and forwarding the messages. It is relevant to preserve the order of
incoming and outgoing messages for every function-module. Furthermore the run-
time system manages and controls the reconfiguration process of the function-
modules and in this context it performs a resource management on the FPGA as well.
The run-time system also stores the state information of the available function-
modules which are currently inactive and not physically available on FPGA.

One could conceive a stand-alone conventional FPGA-system as well which offers
all needed functions in parallel. But we have found that often not all functions are
needed at the same time so we have the possibility for saving hardware resources by
applying a reconfiguration-based demand driven multiplex which offers the same set
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of functions on smaller and cheaper reconfigurable devices which consume less
power as well [2]. The presented system may also be reusable for different scenarios
and other fields of application like home area (e.g. windows, lights, heating). To take
into account the different sizes of function-modules and FPGA types the run-time
system must be scalable for a changing number of function-modules and FPGA-slots
(resp. FPGA sizes).

3.1 Modular Structure

The run-time system consists of four major modules:
a) Management of incoming messages: This part receives the incoming messages,

translates them into an internal message representation and forwards them to the
function-modules specific input buffers. If the dedicated function is not available
on FPGA a reconfiguration request will be generated which is attempted to be
processed in the next and following iteration cycles by b).

b) Reconfiguration process: It selects a function/reconfiguration request from the
reconfiguration-request-buffers for re-activation and one inactive/idle function
slot on FPGA. It saves the state information of the depending function-module,
initiates the reconfiguration of the FPGA’s module slot to be replaced and
reloads the state information of the new module into the replaced slot. More
details on the reconfiguration mechanism and decompressor hardware unit used
here can be found in [15].

c) Message-buffer management unit: It stores and forwards after reactivation
messages which could not be delivered to their destination function-module-
units after these have been deactivated and removed by reconfiguration.

d) Management of outgoing messages: This unit receives the messages from the
FPGA-slot-modules by checking its corresponding buffer, translates them into
external messages and initiates their transmission to the external environment
(e.g. via CAN-bus).

As shown in Fig. 2 these four parts are executed sequentially in a pseudo parallel
way by defined context switches between the software parts to guarantee a fast
message handling. Additionally there exist interrupt triggered handling functions,
which buffer all messages incoming from external (CAN-) bus and internal FPGA-
bus into the run-time system’s message buffers so that the latter may access and
process them later when ready. For further details please see at [15].

The allocation and control of FPGA-slots and handling of incoming messages will
be done by using tables. The message-module tables are needed for assigning the
messages to the corresponding function-modules and for translating them into internal
bus-messages. There exist two tables where the first one keeps informations about
individual dedicated messages for modules and the second one keeps handling-
informations on common/public messages which can involve different function-
modules who need input from the same external source(s). The function-module table
stores the state information of the inactive function-modules, the start- and end-
addresses of the function’s bitstream Flash-memory location and further module-
specific informations, like the previously sent message. The slot table is a further data
structure, which stores information about the currently allocated slots and its history
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which can be evaluated for slot selection/reconfiguration purposes. Beside these
tables there exist several buffers for the communication’s management between the
run-time system’s main parts and for buffering messages and demands of modules.
Additional buffers are needed for the interrupt service routines, which store incoming
messages for the run-time system arriving from the external Controller Area Network
(CAN) -bus and internal FPGA-bus (via bus-arbiter).

d) Message handling 
outgoing messages

b) Rekonfiguration of 
FPGA

a) Message handling 
incoming messages

Bus-Arbiter
(FPGA)

CAN-Controller

Int. Msg.

Ext. Msg.

In
t./

E
xt

. B
us

 M
sg

. -
B

uf
fe

rs

Quarter cycle step

Message 
processing tables

Function module
table

Deferred message 
buffers

Run-time statistics 
etc.

Interrupt-
handlers

Data

Executable Code

CAN-Bus access via ext. CAN-Controller

c) Message buffer 
handling

FPGA-Bus (via Arbiter)

FPGA- slot 
allocation table

Fig. 2. Major parts of the run-time system, showing one iteration cycle

4 On Demand Function Management

The set of targeted automotive functionalities was restricted to less critical passenger
compartment functions. Although there are no critical motor-management/security
functions involved (e.g. ignition, brakes etc.) other functions like windshield wiper,
central locking system or garage door remote control must be immediately at disposal
if they are needed because depending on the current situation they might be of
importance.

As a consequence priority metrics must be introduced which help selecting the
most important function from a set of function-demands to be executed. At this point
it should become aware that one has different possibilities to define a priority
measure. Incoming and outgoing messages may contain priority information which
causes a preferred treatment at the destination side. The developed run-time system
does not completely support this feature, since it differs only between common and
individual messages, where common messages may have many recipients which
might not be seriously affected by the message even if they are inactive and not
available. Details on that topic can be found in [15]. If the run-time system would
forward a prioritized individual message to a target function on FPGA whereby older
queued messages are still waiting, this out-of order forwarding could cause an
unpredictable function behavior since the older queued messages might be of
importance to get the correct results. Additionally we need different measures for
making appropriate reconfiguration decisions.
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4.1 Priority Management

We decided to define at design time for each function type a static priority which can
be an integer number in the range of [0(low), k(high)]. We grouped similar functions or
functions of same subjective importance level into a priority hierarchy. As shown in 0
we placed the burglary & anti-theft functionality into the top level where seat
adjustment, power windows or sunroof adjustment were placed into the lowest
priority level. Additionally it is of importance how far there are any interdependencies
between functions. Some similar functions can not be used at the same time (e.g.
parking aid vs. cruise control/distance control) so they are candidates to be set at the
same priority level. The defined static priorities will help to find some idle/inactive
function slots so that the function-slot with lowest assigned static function-priority
will be selected for exchange. After defining static priorities the problem of dynamic
function assignment has to be solved. One could conceive a static assignment for
messages as well, so that messages with same target will receive the same priority
value like their target function. As long as there are enough system resources (free
available slots) and the number of requested functions is rather small there won’t be
large problems but static message priorities may cause that unprocessed messages of
lower priority won’t be served and delivered to their recipients. So as consequence
static function priorities can be used for reconfiguration-slot selection but dynamic
run-time priority assignments are necessary to select the proper incoming message for
further processing.

Fig. 3. Exemplary possible static priority predetermination at design-time

The order of processing requests for reconfiguration should be free of starvation.
Otherwise some functions will never become active. Already active functions will
receive at least one pending buffered message each, so that the order of forwarding
buffered messages to all active FPGA-functions within on iteration cycle plays no
role. But in case that there are several reconfiguration requests pending including
some filled message buffers for each requested inactive function one has to consider
response deadlines and limited resources (free buffer-memory, allocated buffer
elements) as well. So we need additional metrics which give us at run-time
information how to select a reconfiguration request for re-activation on FPGA. Most
functions have defined response time deadlines until the desired function has to send
its reaction on the received message to the external periphery. So we will need to
know for every requested inactive function how many unsuccessful reconfiguration
request & check cycles were performed since it was requested for activation &
reconfiguration on FPGA. The number of request-repetitions can be counted for every
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requested function each time the run-time system repeats its resource check cycle
where all active functions are checked for their idle state. Since that resource check
cycle takes a nearly fixed amount of time (depending on system clock) the number of
repetitions corresponds approximately to the wait-for-service-time of each function.
The targeted automotive comfort functions have in general a demanded response time
of about 100 ms where the user won’t perceive a delay. This time can be seen as
upper limit which corresponds to a certain number of run-time system iteration cycles
(see Fig. 2, system timing results can be found in section 6). So one can define a set of
dynamic priority measures:

Reconfiguration-request-ratio. We define this ratio as quotient of skipped
reconfiguration-requests and maximum RTS -repetition cycles for a certain function-
activation-request Fx where the maximum number of cycles can be derived from the
function’s deadline and cycle-time of the reconfiguration-task-module (see Fig. 2).

This ratio is denoted as Pskipped_rec(Fx) (see also equ. (1)). Pskipped_rec(Fx) will produce
values in the range of [0, 1] where a value close to 1 means that it becomes very
urgent to activate the function as soon as possible so that corresponding buffered
messages can be processed.
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Communication / activity rate. Every function receives and transmits messages
within a certain time period. So it is possible to define for every active function a
counter which is incremented each time a dedicated message was received or sent.
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The number of received/sent messages can be set into relation to a fixed number of
iteration cycles (e.g. Max_Cycles from equ. (2)) and the maximum number of
messages per function which can be handled within one cycle by the system (k∅RX-

TXMsg). We denote this ratio as Pact_rate(Fx) (see equ. (2)). At the current stage of
development every active function receives and sends for each RTS-cycle one
buffered message (k∅RX-TXMsg=2), so this ratio produces again values in the range of
[0, 1]. This ratio can be used as secondary criteria for the selection from FPGA-slots
containing functions of same static priority. The larger Pact_rate(Fx) becomes the higher
the probability will be that the corresponding function will be needed in future.

Input-buffer-load ratio. Each function offered by the run-time system has its own
input message buffer, where all specific incoming messages are buffered and wait for
further processing. All function-buffers share the same memory which is organized as
dynamic free-buffer-element-list, where allocated buffer elements are concatenated by
pointers to their corresponding message buffer chain and moved back later to the free-
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list buffer-chain after their content was forwarded. So we can define again a dynamic
ratio of used buffer-elements to the sum of used and free elements.

( ) ( )
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P F
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The larger Pbuff_load(Fx) becomes the more urgent it will be to empty the buffer,
otherwise other incoming messages have to be discarded.

Weighted priority measure. Depending on predefined preferences it is possible to
order the dynamic priorities by importance. It should be noted that measure
Pact_rate(Fx) correlates in a complementary way with Pbuff_load(Fx). Active functions
with a rather high activity may have a lower number of buffered messages since they
become more frequently processed whereas inactive/waiting functions will have a
rather full input buffer. By applying the found measures one can define a dynamic
priority measure as heuristic approach for activation-selection which is the weighted
sum of Pstatic(Fx), Pskipped_rec(Fx) and Pbuff_load(Fx). The weights reflect the importance of
each measure and have to be given by the designer.

( ) ( ) ( ) ( )_ _
.
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5 Application Scenario

This section describes an exemplary scenario which may occur during operation. As
depicted in Fig. 3 (left) four functions are configured on FPGA. Where the
compartment lightning control and window control are currently inactive and
candidates for replacement. We assumed static priorities in the range of [0, 5] which
we normalized for easier comparison by dividing through max{Pstatic}. Additionally
we introduced Pslot=½·(Pstatic_n+Pact_rate ) for selecting the slot with lowest priority. As
result slot 3 is selected here for reconfiguration (see Fig. 3).

As next step all queued reconfiguration requests have to be checked. For the
calculation of Pdyn we chose as weights α=0.2, β=0.5, γ=0.3. Fig. 3 shows the results
for a set of four requested function-reconfigurations of different static priority. The
results demand to select the Rear-view Mirror function since it produced the highest
priority Pdyn. Although Wiper and Central-Locking functions have a higher static
priority it is more urgent to select the Rear-view Mirror function since its deadline
becomes closer because of its larger number of skipped reconfigurations. One should
note that depending on the weights which relate to the designer’s subjective
preferences, others results are possible.
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Fig. 3. Application scenario with dynamic selection for reconfiguration (α=0.2, β=0.5, γ=0.3)

6 Conclusions and Outlook

At the current stage the described hardware architecture and run-time system are
already operational. Details on synthesis and implementation results (code sizes etc.)
can be found in [5], [15]. At the moment we are adapting our run-time system
approach concerning the dynamic decision criteria as described in section 4. So
detailed results on performance and its real-time-capabilities are not available at this
moment. We have tested our system with different function request scenarios and
found an average response time (without partial reconfiguration) below 1 ms and
reconfiguration time for every slot of about 15 ms (at 66 MHz system clock). The
system proved to be able to handle a set of complex functions like seat adjustments,
compartment lightning and power windows, whereas a pure microcontroller
reference-implementation (25 MHz system clock) was swamped with the load caused
by the processing and additional CAN-bus communication handling of only a subset
of all functions. We will have to evaluate the system’s behavior on real-time
constraints and its performance. Our current results are promising and we intend to
improve the system’s set of features e.g. we think about a self optimization were the
system can find the weighting parameters at run-time for given example scenarios.
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Abstract. Virtual hardware is difficult to implement even on recent
dynamically reconfigurable processors when the loop body of the tar-
get application cannot be stored in the set of quickly switch-able con-
texts. Here, techniques for such tough cases are proposed. Differential
configuration which changes only different parts of similar contexts can
drastically reduce the time for re-configuration. Pairwise context assign-
ment policy can hide the overhead of configuration with double buffering.
Out-of-order context switching enables execution of available context in
advance. Through an implementation example on NEC’s DRP-1, it ap-
pears that the virtual hardware can be executed with practical speed by
combining the proposed techniques.

1 Introduction

Virtual hardware is a small scale reconfigurable system which executes a large
scale hardware by dynamically changing its configuration[1][7]. Since the time
for re-configuration of common FPGAs takes a few milliseconds, it has been
difficult to build a practical virtual hardware except for the logic emulators
used for design verification. Recent dynamically reconfigurable processors with
high speed re-configuration enable practical virtual hardware that can replace
a certain size of process dynamically during execution[2][4][5][6]. Many parts of
the stream processing application consist of a sequence of tasks, and by replacing
such tasks on demand, the total job can be executed with a small amount of
hardware[9]. However, even with such dynamically reconfigurable processors, the
performance is severely degraded by the time for context replacement if (1) the
size of the single task is beyond the hardware context or (2) the set of contexts
cannot be replaced with a clock.

Here, such a tough case for executing a large single task with a small scale
dynamically reconfigurable processor is covered. Three techniques: “differential
configuration”, “pairwise assignment” and “out-of order context scheduling” are
proposed for this purpose, and a simple application is implemented on the NEC’s
dynamically reconfigurable processor DRP-1 as an example.
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2 Virtual Hardware

2.1 Task-Level Virtual Hardware

Reconfiguration methods used in recent dynamically reconfigurable processors
are classified into two categories: (1) quick configuration delivery from on-chip
configuration memory [5][6] and (2) selecting a contexts from the on-chip mul-
tiple contexts[1][11][3][2][4].

The former type called “configuration delivery” holds a large number of con-
figuration sets in the on-chip configuration memory, and delivers configuration
to processing elements and interconnects with dedicated buses. The time for
re-configuration is a few microseconds, faster than common FPGAs which often
require a few milliseconds. Such devices are useful for task or loop level virtual
hardware. For example, when multiple encryption methods are used in a pro-
tocol, the decryption hardware can be replaced dynamically according to the
header information. Although the service is suspended for a few microseconds
for re-configuration, most of the applications will allow it if the system provides
enough amount of packet buffer. This style of virtual hardware is a realistic
approach using such devices.

On the contrary, the latter type called “multicontext” switches the contexts
in one clock, but the number of physical contexts is limited. For example, NEC’s
DRP-1[2] provides sixteen contexts, and IPFlex’s DNA[4] provides four. In such
a device, a single task is usually implemented with multiple contexts for area-
efficient implementation by making the best use of quick context switching ca-
pability. When the number of contexts is not enough, the configuration data
can be loaded onto the unused contexts from on-chip or off-chip configuration
memory during execution. Using such multicontext reconfigurable devices, vir-
tual hardware mechanisms have been researched from early 1990’s[1][12][14][13].
The results of WASMII project[1] suggested that the configuration overhead of
task level or loop level virtual hardware can be hidden by providing two sets of
hardware contexts.

Fig. 1 is a context switching diagram which describes this concept. If a task
A including a loop with a certain number of iteration can be stored in a set of
contexts, the configuration data corresponding to the next task B can be loaded
to the unused context set during execution. After finishing the task A, task B
can start without any overhead if the execution time of task A is longer than
that of configuration loading time for task B. While task B is being executed,
the configuration data corresponding to the next task C can be loaded to the
area which was used for the task A. This “double-buffer” policy works well if the
context number of each task is not beyond each context set, and the next task
for execution can be predictable. Fortunately, most stream processing applica-
tion satisfies these conditions, and the task-level or loop-level virtual hardware
without any overhead is quite realistic.
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Fig. 1. Task-level virtual hardware Fig. 2. Inner loop virtual hardware

2.2 Inner Loop Virtual Hardware: The Tough Case

However, the task level virtual hardware is realistic only when the target task
or loop can be stored in a certain number of context set which can be changed
in a clock. That is, a large task consisting of a long processing sequence and
complicated branches between contexts cannot be executed with such a method.
Fig. 2 describes such a situation. Since the loading time of configuration data
(tload) is much longer than the interval of context switching (tivl) in the diagram
shown in Fig. 2, the execution time becomes almost tload × m, where m is the
number of contexts replaced in a loop (marked context in Fig. 2.). tload takes a
few microseconds. On the contrary, the context switching interval without loop is
usually several clock cycles, and the execution clock of reconfigurable processors
is at least 10’s MHz. That is, the execution time is more than 100 times slower
than the case with enough number of contexts.

In order to reduce the configuration time, compression methods of configura-
tion data [15] have been researched. However, our previous research[16] revealed
that the compression cannot drastically reduce the configuration data of the
coarse grain architecture.

3 Target Model: NEC’s DRP-1

Although the methods proposed here can be applied to most multicontext re-
configurable devices, we introduce NEC’s DRP-1 (Dynamically Reconfigurable
Processor)[2] for practical discussion. Note that, for inner-loop virtual hardware,
some additional mechanisms that are not realized in the current DRP-1 must be
assumed.

3.1 DRP Overview

DRP is a coarse-grain reconfigurable processor core which can be integrated
into ASICs and SOCs. The primitive unit of DRP Core is called a ‘Tile’, and
DRP Core consists of arbitrary number of Tiles. The number of Tiles can be
expandable, horizontally and vertically.
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Fig. 3. Structure of a Tile Fig. 4. Structure of a PE

The primitive modules of Tile are processing elements (PEs), State Transition
Controller (STC), 2-ported memories (VMEMs: Vertical MEMories), VMEM
Controller (VMCtrl) and 1-ported memories (HMEMs: Horizontal MEMories).
The structure of a Tile is shown in Fig. 3.

There are 8×8 PEs located in one Tile. The architecture of PE is shown in
Fig. 4. It has an 8-bit ALU, an 8-bit DMU, an 8-bit×16-word register file and
an 8-bit flip-flop. These units are connected by programmable wires specified by
instruction data, and their bit-widths range from 8Bytes to 18Bytes depending
on the location. PE has 16-depth instruction memories and supports multiple
context operation. Its instruction pointer is delivered from STC.

STC is a programmable sequencer in which certain FSM (Finite State Ma-
chine) can be stored. STC has 64 states, and each state is associated with the
instruction pointer. FSM of STC operates synchronized with the internal clock,
and generates the instruction pointer for each clock cycle according to the state.
Also, STC can receive event signals from PEs to branch conditionally. The max-
imum number of branch is four.

As for the memory units, a Tile has eight 2-ported VMEMs on its right and
left sides, and four 1-ported HMEMs on upper and lower boundary. The capacity
of a VMEM is 8-bit×256-word, and four VMEMs can be handled as a FIFO,
using VMCtrl. HMEM is a single-ported memory and it has a larger capacity
than the VMEM. It has 8-bit×8K-word entries. Contents of these memories,
flip-flops, register files of PE are shared with the datapath of all the contexts.

DRP Core, consisting of several Tiles, can change its contexts every cycle by
instruction pointer distribution from STCs. Also, each STC can run indepen-
dently, by programming different FSMs.

DRP-1 is the prototype chip, using DRP Core with 4×2 Tiles. It is fabricated
with 0.15-um 8-metal layer CMOS process. It consists of 8-Tile DRP Core, eight
32-bit multipliers, an external SRAM controller, a PCI interface and 256-bit
I/Os. The maximum operation frequency is 100-MHz. Although DRP-1 can be
used as a stand-alone reconfigurable device, Tiles of DRP can be used as an
IP (Intellectual Property) on ASIC with an embedded processor. In this case, a



468 H. Amano et al.

number of Tiles can be chosen so as to achieve the required performance with
minimum area.

3.2 DRP Configuration

Although DRP-1 can be configured in a number of ways, the most commonly
used method is configuration through the PCI interface. Configuration data cor-
responding to PEs in all Tiles, switches, memory modules and other interfaces
is mapped into a single logical address with 20bit address and 32bit data. It can
be accessed as a simple byte-addressed 32bit memory from the host, and the
configuration data is transferred through PCI bus usually in the burst mode.

According to one evaluation[16], loading configuration data for a context
requires at least 1,000 clocks, or 15μsec using the 66MHz PCI bus.

4 Techniques for Inner Loop Virtual Hardware

4.1 Differential Configuration

A large scale application often includes contexts which are similar to each other.
For example, in the inverse MDCT implemention on the DRP-1[17], context 4,5
and 11, context 12, 13 and 14, context 9 and 10 are almost the same structure,
respectively. In the discrete system simulator shown later, a large number of
contexts can be classified into some groups whose member has a similar structure.
The difference between such structures comes from the following reasons:

– The location and accessing address of the distributed memory VMEM.
– Parameters or constant numbers used in calculations.
– Structural difference for exceptional operations.

Let us assume that A1, A2 and A3 are similar, and a common part (A) and
different parts (a1, a2, and a3) can be divided as A1 = A + a1, A2 = A + a2 and
A3 = A + a3. By only replacing the configuration data for different parts (a1, a2
and a3), the structure can be therefore changed. This way of configuration is
called “differential configuration”. Here, A1, A2 and A3 form a context group.

For differential configuration, the specialized mode is required to the config-
uration mechanism of the current DRP. That is, in the differential configuration
mode, the bit ‘1’ in the loading configuration data reverses the corresponding
data bit of the target context memory. That is, the bit ‘1’ in the loading data
changes ‘0’ in the current configuration into ‘1’, and ‘1’ into ‘0’. Using this mech-
anism, only different part of the configuration data is changed without changing
the common part.

4.2 Pairwise Assignment Policy for Differential Configuration

Differential configuration reduces the configuration time drastically if the com-
mon part is always in the context memory. Therefore, the double buffer policy for
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Fig. 5. An example of assignment Fig. 6. Timing chart for the example

a task-level virtual hardware must be applied in order to save the common part
in the context memory as possible. For this purpose, we propose a context as-
signment policy called “pairwise assignment” for allocating logical contexts into
a physical context for differential configuration. The basic steps are as follows.

1. Assign each context group into a pair of physical contexts.
2. If physical contexts remain, logical contexts in the loop structure are selected

and assigned into physical contexts until a pair of physical contexts remain.
Here, the logical context with longer loading time should be selected with
higher priority.

3. The last pair of physical contexts called single dormitory are used for all
remaining unallocated logical contexts.

Fig. 5 illustrates an assignment example. Contexts in group A and B are
assigned into each pair of contexts. Then, context II and X are assigned into
their own physical contexts because they are iteratively executed. Other contexts
I, XI and XII are assigned into single dormitory. The context diagram shown
in Fig. 5 works as shown in Fig. 6 after the initialization. In the figure, each
context is asumed to be executed several clocks and differential configuration
can be also done with the similar number of clocks. In this case, the loop can be
iterated without overhead by using context pair as the double buffer.

4.3 Out-of-Order Context Switching

In the virtual hardware proposed in WASMII[1], the context switching is dy-
namically controlled in a data-driven manner. However, this method is difficult
to implement[18] because of the hardware overhead for detecting the executable
context. In most applications, the state transition control mechanism used in
DRP is advantageous compared with data driven control.

However, for the inner-loop virtual hardware, out-of-order context switching
is sometimes advantageous for executing contexts in the current context memory.
Assume that the differential configuration time is longer than the execution time
of a context in group A (Fig. 5) and contexts in group A can be executed in
arbitrary order. If the execution order of contexts in group A is fixed, every
state transition causes a stall to wait for the differential configuration loading
(Fig. 7a). On the contrary, if contexts in the group can be executed in the reverse
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order, the stall can be reduced by executing the current available contexts first
(Fig. 7b). In this case, context VI and V in group A, and context IX and VIII
in group B are loaded by the previous iteration, and they do not have to be
loaded in this iteration. That is, this technique is useful for reducing the number
of re-configuration.

Unlike the heavy overhead for complete data driven operation[18], this mech-
anism can be implemented with a small additional hardware by limiting the
out-of-order context switching in the following case. That is, the execution order
can be changed only:

– between contexts in a group, and
– when current available contexts can be executed in advance.

Fig. 7. Timing chart when differential configuration takes longer time than execution

5 An Implementation Example: Discrete System
Simulator

5.1 Discrete System Simulator on the DRP-1

As an example of large scale applications, a discrete system simulator (DSS)
is implemented on the DRP-1. DSS represents a queuing model consisting of
several queues, call generators and servers linked together. In such a model, a
call is generated by a source according to some distribution probability, and
distinguished according to its type. Calls move around the network, and branch
or join at junctions. The simulator is equipped with a component library cor-
responding to calls, servers, branch junctions and joining junctions which can
form a queuing network. Direct mapping with a single clock execution policy
proposed in [19] is used, and the target system represented with the library is
executed directly on a reconfigurable system.

As a target of the simulator, a switch connected parallel machine shown in
Fig. 8 is adopted. Four call generators (CGENs) which represent processing units
are connected with four servers which correspond to memory modules (SRVs)



Techniques for Virtual Hardware on a Dynamically Reconfigurable Processor 471

Fig. 8. Target parallel machine of DSS Fig. 9. Context assignment

with 2-stage interconnection networks (SWs). CGEN provides a random number
generator, state controller, and an output queue with four entries. It changes its
state according to the parameter and the generated random number, and issues
write or read requests to SRVs. SW provides input queues and a switch consisting
of branch/join junctions. It receives requests from CGENs, and transfers them
to SWs in the next stage or SRVs. If conflicts occur, a request is selected, and the
other is enqueued. SRVs receives requests through the input queue, and returns
the data for read request after a fixed interval.

In this implementation, each component of CGEN, SW and SRV is imple-
mented in its own context. Thus, a system shown in Fig. 8 consists of sixteen
contexts. The queues and state of each component is allocated into VMEMs on
DRP-1. Each component reads VMEM for checking the queue entry, obtains
the random number, manages the queue, and decides the next state. For the
operations, 4 or 8 clocks are required. CGENs, SWs and SRVs form their con-
text group, thus, the DSS consists of three context groups. Table 1 shows the
maximum delay (Delay: nsec) and required clock cycles for the operation (That
is, the context switching interval: titv) of each component. This table shows that
the maximum operating frequency of the DSS is 44MHz.

The difference of structure in a context group is mainly caused by the posi-
tion of VMEMs and parameters. That is, the configuration data for interconnect
between VMEMs and logics in the common part is the main source of the dif-
ference. The difference of words corresponding to required clocks for differential
reconfiguration(D-Reconf) is also shown in Table 1.

Table 1. Specification of each group

Component Delay (nsec) titv (clocks) D-Reconf (clocks)
CGEN 22.5 4 6
SW 19.7 8 45
SVR 19.7 8 35
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Fig. 10. Clock cycles for 1 DSS unit time

5.2 Inner-Loop Virtual Hardware for the Discrete System Simulator

Although the simulator corresponding to Fig. 8 with sixteen contexts is available
on DRP-1, the inner-loop virtual hardware requires extended mechanisms that
are not provided in the current DRP-1. So, the model shown in Fig. 8 is assumed
to be executed on an extended DRP model with only eight contexts but one that
provides the required functions for inner-loop virtual hardware. The execution
clock cycles are also calculated.

The state transition diagram for context control of the discrete system sim-
ulator is shown in Fig. 9. According to the pairwise context assignment, three
pairs of physical contexts are assigned into the context group for CGENs, SWs
and SRVs, respectively; six contexts are thus used for this purpose. In this case,
the remaining two are assigned into SW0 and SW1 as shown in Fig. 9, since
SWs require the longest time for the differential reconfiguration.

Fig. 10 shows required clock cycles for a DSS unit time of DSS. Since an
enormous number of iteration is required for this kind of DSS, the influence of the
initialization is omitted. Here, the DSS is assumed to work at its maximum speed
(44MHz) while the configuration data is loaded with double frequency, or 88MHz.
A dedicated external memory is assumed for storing reconfiguration data, and
the overhead by the PCI protocol is omitted. Fig. 10 shows that the overhead of
reconfiguration is not negligible only with differential configuration (DC only),
since the configuration time is larger than the execution time even when double
frequency loading clock is used. The out-of-order context switching (DC+OO)
reduces the overhead by executing current available contexts in advance, and
improves performance by 50%. However, if the DSS is executed by only eight
contexts without the virtual hardware support mechanisms proposed here, a
large overhead (14,090 clocks) is suffered (Without Techniques). Therefore, the
proposed mechanism can drastically reduce the overhead so that the inner-loop
virtual hardware can be implemented to work at a practical execution time.

6 Conclusion

Techniques for inner-loop virtual hardware, a tough case of virtual hardware
implementation, are proposed and discussed. Through the implementation ex-
ample on NEC’s DRP-1, it appears that the virtual hardware can be executed
with practical speed by combining the proposed techniques. The DSS imple-
mented here is not a typical application of dynamic reconfigurable processors.
We will implement practical stream processing application for demonstrating the
efficiency of the techniques proposed here in the near future.
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Abstract. This paper analyzes the evolution of DRIP image proces-
sor from a statically reconfigurable design to a fast dynamic approach.
The focus is in the overhead introduced by new programmable mod-
ules needed for RTR support and in the methodology used to redefine
the basic processor elements. DRIP can perform a huge set of digital
image processing algorithms with real-time performance, attending the
requirements of contemporary complex applications.

1 Introduction

Recently, several implementations of complex CSoCs (Configurable Systems on
Chip) have been proposed and realized. This approach presents an attractive
solution to the exponential increase of CMOS mask costs and to the fast changes
in algorithms and standards of contemporary applications. Flexibility is now
an essential issue for the commercial success of a digital system. New mobile
telecommunication systems (3G), as an example, will have to be prepared to
provide the processing rates demanded by complex algorithms and to offer the
required adaptability to support new services emerged after product release [1].

Run-Time Reconfigurable (RTR) systems, in special, play an important role
in this scene. Dynamic reconfiguration allows the implementation of virtual hard-
ware strategies, making it possible even the development of circuits with more
logic resources than are physically available. Moreover, RTR architectures can
adapt to the instantaneous needs of an application. This means more efficiency,
once we have an extra opportunity to obtain specialization during the execution
of the task. In the dynamic reconfiguration approach the designer can achieve
outstanding benefits from the custom computing paradigm by creating mecha-
nisms to hide the reconfiguration latency with the overlap of computation and
configuration.

However, all this power comes with a cost. It’s necessary to build control logic
capable to manage all the necessary data transfers and the entire reconfiguration
process. It’s important to analyze the design parameters and understand the
effects of the overhead introduced by the run-time reconfiguration.
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In this paper we analyze the impacts of dynamic reconfiguration in the re-
configurable neighborhood processor DRIP (Dynamically Reconfigurable Image
Processor) [2], presenting a first statically reconfigurable design and the steps
taken to offer the hardware support for run-time reconfiguration (DRIP-RTR).
DRIP can efficiently implement low-level image processing algorithms. It’s ap-
plication domain includes filtering tasks for multimedia operations that require
heavy real-time processing. Image analysis and machine vision solutions such
as robotic, security, medical imaging, and scene inspection. All these comput-
ing problems have regular characteristics and an inherent level of parallelism
that can be exploited by the reconfigurable system. Complete infrastructure for
relocating tasks in hardware in a run-time environment for a complete SoC is
presented in [3], specifically targeting image processing applications as a first
demonstrator

This work is organized as follows. Section 2 discusses important concepts
about dynamic reconfiguration presenting possible reconfiguration models. Sec-
tion 3 presents the general processor structure and the processing elements of
the statically reconfigurable DRIP. It also describes the enhancements made in
the basic cells for the implementation of the dynamic reconfiguration mecha-
nisms, presenting the methodology used to generate the RTR design. Section
4 give performance results achieved for important image processing algorithms,
showing the overheads, advantages and disadvantages between the statically and
dynamically reconfigurable approaches. Conclusion and future work are drawn
in Section 5.

2 Dynamic Reconfiguration Strategies

A clean and unified taxonomy for reconfigurable architectures (RA) classification
has not emerged from the literature. The active and fast-moving applications
field for RA have led to some confusion as to what dynamic reconfiguration
really means.

A possible division introduces three different classes. A static design exists
when the circuit has only one configuration and it never changes. In a statically
reconfigurable design the circuit has several configurations, but the reconfigura-
tion process occurs only at the end of each processing task. Finally, in a dynami-
cally (run-time) reconfigurable design the reconfiguration takes place during the
algorithm execution [2].

Run-time reconfiguration allows the designer to better exploit the flexibil-
ity of reconfigurable architectures. Besides minimizing the reconfiguration over-
heads of statically reconfigurable architectures, dynamic reconfiguration brings
the possibility to a better exploration of the design space with virtual hardware
strategies (as mentioned previously) and stream computations. The SCORE
(Stream Computations Organized for Reconfigurable Execution) [4] employs this
approach, a program can be seen as a graph of computation nodes and memory
blocks linked together by streams, new operators are loaded in the hardware as
demanded by the execution flow.
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2.1 Reconfiguration Models

To efficiently implement dynamic reconfiguration designs, different reconfigura-
tion models have been proposed and can be found in the literature [5]. Dynamic
partial reconfiguration, multicontext and pipelined reconfiguration are possible
approaches.

Partial dynamic reconfiguration is related to the redefinition of parts of a cir-
cuit mapped to a reconfigurable fabric through modifications in the configuration
bitstream. Static parts of the array may continue execution, what leads to the
overlap of computation with reconfiguration, hiding some of the reconfiguration
latency.

Xilinx Virtex FPGAs family [6] is among the programmable devices that al-
low the implementation of this model. Its internal structure is divided in columns
that correspond to an entire vertical slice of the chip. It is possible to per-
form transformations in the logic of a dynamic module mapped to one of these
columns through modifications in the configuration file. As an example in [7]
the Recats architecture is presented. Recats is a run-time reconfigurable ATM
switch that uses partial reconfiguration to dynamically download pre-compiled
hardware modules to a Virtex FPGA.

A potential disadvantage of the partial model is that address information
must be supplied with configuration data, increasing the total amount of bytes
transferred. To avoid considerable overheads, compression techniques can be
used. On of these techniques is wildcarding hardware [6], which provides a
method to program multiple logic cells with a single address and data value.

In the multicontext dynamic reconfiguration model, a context represents a
possible configuration of the device. In this environment, there are multiple pro-
gramming bits for a given configurable resource and these memory bits can be
seen as different configuration planes. The reconfiguration controller can switch
between the different contexts according to the application needs.

In the Chameleon reconfigurable communication processor [8] there are two
configuration planes. The active configuration controls the fabric, and the back-
ground plane is used to hold another configuration. The controller can load a
new configuration into the background plane while the fabric is running with
the active plan. The entire system can be reconfigured in one clock cycle. Other
systems exploring similar styles can be found in [9] and [10]. A drawback of
multicontext reconfiguration is the amount of bytes necessary to store each con-
figuration, what can make prohibitive a large number of different planes in hard-
ware reducing the overall flexibility. Multicontext dynamic reconfiguration is the
model followed by DRIP-RTR as will be seen in section 3.

Finally, we have the pipelined dynamic reconfiguration model. Through dy-
namic reconfiguration a pipeline structure implemented in hardware can sup-
port more stages than are physically available. In a first step the pipeline stage
is adapted to compute part of the application, in the sequence, the processing
effectively occurs. This happens in the PipeRench [11] and makes performing
the computation possible even if the entire configuration is never present in the
fabric at the same time.
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3 DRIP Architecture

The DRIP structure is inspired in the functional programming (FP) paradigm
[12]. A great advantage of this approach is the ability to express complex prob-
lems with simple basic functions, allowing the efficient implementation of a large
number of image processing algorithms.

3.1 Reconfigurable Datapath

The datapath is composed by a bidimensional (9x9) matrix of processing el-
ements (PEs). The structure of the pipeline follows a data flow graph repre-
sented by a class of non-linear filters widely used in digital image processing
[13]. The hardware implementation of this filter is based on a parallel sorting
network, more specifically on the odd-even transposition sort algorithm [14],
which achieves a good trade-off between parallelism, regularity and execution
time. Figure 1 presents a high level view of the datapath.

Fig. 1. Dapath overview

3.2 Processor Elements

The processor element is the basic programming block of the processor. In spite
of being a simple cell, provides all the flexibility needed to implement entire
classes of digital image processing algorithms. A processor element can execute
only two basic operations: MAX representing the class of non-linear operations
and ADD representing the class of linear algorithms. Each PE receives two input
pixels and to increase its logical capabilities a restrict integer weight (-1, 0 or 1)
is associated to each input.

Datapath (re)configuration consists in the customization of the PE network.
According to the mentioned parameters we are allowed to apply 18 different
configurations to a single PE. However, many of them are symmetrical, for ex-
ample MAX(X1*1,X2*0) is the same as MAX(X1*0,X2*1) what defines a set of
11 really distinct functions, each one corresponding to one row of table 1.

In the statically reconfigurable DRIP, the PE is a super-specialized cell. Each
PE is mapped to only one of the functions of Table 1 and can not be repro-
grammed. The reconfiguration strategy demands the end of the processing task
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Table 1. Possible PE configurations

Configuration Function
Add(0,0); Max(0,0) 0
Add(0,X); Add(X,0) X

Add(-X,0); Add(0,-X) -X
Add(X1,X2) addition

Add(-X1,X2); Add(X1,-X2) subtraction
Add(-X1,-X2) -X1 - X2

Max(0,X2); Max(X1,0) If X1(2) > 0 then X1(2) else 0
Max(0,-X2); Max(-X1,0) If X < 0 then X else 0

Max(X1,X2) Max(X1,X2)
Max(-X1,X2);Max(X1,-X2) If X1(2) > X2(1) then X1(2)

Max(-X1,-X2) -Min(X1,X2)

in order to rebuild the processor elements in the bit level. The loading of the
new configuration introduces considerable reconfiguration overhead.

The complete design flow is managed by our CAD system called VDR (Visual
Interface for Dynamic Reconfiguration [15]). It receives the algorithm definition
provided by the designer and optimizes it generating a VHDL model as the final
result. As this process is repeated, a configuration library is formed and these
different algorithms can be mapped to the reconfigurable fabric as needed, but
always after the end of the processing task.

3.3 Datapath Support for RTR

Considering this design flow, a new level of programmability for RTR support
is required. Therefore, DRIP processor element received new hardware elements
and control signals increasing the PE grain size and including the necessary flex-
ibility for dynamic algorithm switching. Besides programmability, larger grain
size can bring other benefits such as less routing complexity [16]. An impor-
tant point is that the term granularity, in this work, is being used to define the
complexity of a cell. Thus, an increase in the granularity of a PE means that it
has more hardware resources than before, however, it still processes 8-bit pixels.
Figure 2 shows a new RTR PE. Some extra circuit blocks (hardware overhead)
were introduced like the necessary multiplexers.

Analyzing successive algorithms mapped on the datapath it is important to
recognize that the less modifications needed from one configuration to another
the less reconfiguration time overhead. Besides, all possible algorithms are com-
posed by only 11 different basic PE functions, what results in a considerable PE
reuse.

In reconfigurable architectures based on partially reconfigurable FPGAs
great part of the design effort is concentrated in reducing the amount of hard-
ware to be reconfigured. In this context, three different types of blocks can be de-
fined: static, dynamic and semi-static. Static blocks remain unchanged between
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Fig. 2. DRIP-RTR PEs

configurations. Dynamic cells are the ones that change completely or almost
completely, while semi-static cells present very few structural differences.

These concepts can be extended to the processor element network. Analyzing
the different digital image processing algorithms mapped on DRIP datapath, it
is readily seen that a significant similarity level exists, what reflects in a huge
number of static and semi-static PEs. Therefore, we can map only the really
needed elements to the reconfigurable fabric reducing resources usage significa-
tively and, at the same time, minimizing the logic depth of the cells what leads
to higher operational frequencies. DRIP specific CAD tool performs similarity
analysis through a topological comparison between target algorithms. As re-
sult an optimized VHDL model for the application is generated in design time.
To minimize the overhead for RTR, only the necessary resources are generated
during synthesis stage.

3.4 Complete DRIP-RTR Architecture

A neighborhood processor simulates an array processor. It processes an input
image, generating a new image, where each output pixel is an image function of
its correspondent in the input image and the nearest neighbors. Using a standard
neighborhood (e.g.: 3x3, 5x5 or 7x7 pixels), it scans the image line by line. The
general architecture of the RTR processor can be seen in figure 3.

Fig. 3. DRIP-RTR architecture
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The I/O processor is responsible for the communication with the host system.
It comprises the neighborhood generator that provides 3x3 pixel windows to the
datapath. Moreover, the I/O processor receives new configurations to be stored in
the MCMU. Each configuration is a very compact (405 bits only) representation
of a whole program that can be loaded in the reconfigurable fabric.

The multicontext management unit (MCMU) is the responsible for the re-
configuration process. It includes the context buffers where complete datapath
configurations are stored. An entire program requires 405 bits, divided in 9 slices
of 45 bits to configure each of the 9 pipeline stages of DRIP-RTR. Each slice
contains the configuration of an individual column. The replacement of a config-
uration can be performed in parallel or in a pipelined fashion. In parallel mode
the configuration data is transferred from a context buffer to the datapath in
one clock period. In pipelined mode the reconfiguration simulates the data flow,
changing at each clock cycle the configuration of a single column. The MCMU
is prepared to receive new configurations from the I/O processor. This allows
the inclusion of new algorithms extending the processor functionalities. In this
situation the context buffers can be seen as a background configuration plane
that can store new algorithms while the current active program is still running.

4 Statically Reconfigurable Versus RTR

As explained previously, DRIP can perform a large number of image processing
operations. Some examples include: linear (convolution), non-linear and hybrid
filters, binary and gray-level morphological operations (dilation, erosion, thin-
ning and thickening algorithms, morphological edge detectors, gradient), binary
and gray-level geodesic operations, etc. Table 2 shows the maximum datapath
frequency achieved for five of these algorithms using two different Altera FPGA
families.

Table 2. Maximum pipeline frequency

Algorithm FLEX10K (MHz) APEX20K (MHz)
Median Filter 32.89 77.05

Morph. Edge Detector 48.78 110.45
Erosion 39.84 78.74
Dilation 44.12 84.18

Separable Median Filter 46.30 105.9

These numbers assure real-time performance even for significant image reso-
lutions. The parallelism and regularity of the datapath and the characteristics of
image processing applications make DRIP well suited for low-level multimedia
tasks.

Figure 4 shows the frame throughput (in frames/sec) for 3 different situations.
The morphological edge detector and the median filter represent, respectively,
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the fastest and the slowest configurations when considering only one algorithm
mapped to the datapath at a given time, as in the statically reconfigurable
approach. The inferior line in figure 4 (triangle style line) represents DRIP-
RTR, in a configuration that supports faster reconfiguration, in order to run up
to 5 different image processing algorithms. All implementations have considered
the DRIP hardware processing in VGA (640 x 480), SVGA (800 x 600 and 1024
x 768), and SXVGA (2048 x 1536) image resolutions.

Fig. 4. Pixels versus frames/s for some image resolutions

As said before, the values in table 2 were achieved considering a datapath
implementation that can support only the synthesized algorithm (statically re-
configurable), it is a maximum performance table. Due to the overheads natu-
rally added when allowing run-time reconfiguration, a datapath implementation
where it is possible to perform RTR reconfiguration between the five algorithms
of table 2 needs 1830 Altera logic cells. For this DRIP-RTR pipeline the maxi-
mum frequency is 68,2 MHz.

Table 3. DRIP and DRIP-RTR speedup over a general purpose processor

Algorithm Speed-up SR DRIP Speed-up DRIP-RTR Image Size
Dilation 0,94 0,76 256 x 256
Dilation 3,06 2,4 512 x 512
Dilation 17,4 14,15 1024 x 1024
Erosion 11,55 9,4 256 x 256
Erosion 45,9 37,2 512 x 512
Erosion 206,4 167,3 1024 x 1024

The area overhead of DRIP-RTR with respect to the statically reconfigurable
version is about 65%. This increase is the price paid for the extra programmabil-
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ity introduced by control logic and on-chip configuration contexts, but it is not
a serious penalty once the total RTR implementation still fits well in modern
programmable devices.

Table 3 presents a comparison between two digital image processing algo-
rithms running in three different architectures. The base platform for this com-
parison is a Sun Blade station with 512Mb memory and running at 650 MHz
(UltraSparc II processor). The algorithms were developed in C language, using a
scientific image processing library called DipLib [17]. As the image size increases,
the larger is the speedup achieved. The statically reconfigurable DRIP, again, is
faster than the RTR version.

4.1 Reconfiguration Time

As can be seen in Figure 4 and tables 2 and 3, DRIP-RTR is slower than the dat-
apath implementations that can support only one algorithm. However, the great
advantage of the RTR approach is based on the reconfiguration time. FPGA
devices, even in parallel configuration mode, take dozens and even hundreds of
milliseconds for a complete reconfiguration. Partially reconfigurable FPGAs can
provide faster reconfiguration. However, the support for a great number of dy-
namic modules is still restricted and the configuration latency keeps on being
prohibitive for high-performance architectures.

Thanks to the modifications introduced in the DRIP-RTR, it can be com-
pletely reconfigured in one clock cycle (15 nanoseconds). This is a very large
speedup of about 107 (million times) with respect to the reconfiguration time of
the entire device in the statically reconfigurable design.

5 Conclusions

Reconfigurable architectures are extending products life cycles through real time
in-system debugging, field-maintenance and remote upgrades. This flexibility
comes together with characteristics of special purpose designs such as high per-
formance and low power consumption. In this context, we presented the evolution
of the DRIP image processor. From a statically reconfigurable design a new flexi-
ble run-time reconfigurable system was developed. Increasing the processor basic
building block grain size, we added the extra hardware to support a new level of
programmability. Our CAD tool is used to determine the right amount of hard-
ware needed by each PE in the reconfigurable datapath. DRIP-RTR achieves
a significant performance with very little reconfiguration latency. The MCMU
can efficiently handle the reconfiguration process and is also suited to support
the extension to new algorithms. This can be done for data-flow oriented tasks
that allow for highly parallel and highly reconfigurable datapaths. The results
showed that the datapath and control overheads introduced in the development
of the run-time reconfigurable strategy is a price worth paying. There is a 11%
difference in the performance in favor of the statically reconfigurable approach
(considering its worst case), however, due to the RTR version programmability



Throughput and Reconfiguration Time Trade-Offs 483

and the on-chip context buffers, it can be reconfigured in one clock cycle. Hence,
million times faster than reprogramming the entire FPGA. Considering the de-
velopment of configurable systems-on-chip, DRIP-RTR can be an efficient core
specialized in general image filtering applications.
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Abstract. In this paper, we propose a string matching method for high-
speed multi-stream packet scanning on FPGA. Our algorithm is capable
of lightweight switching between streams, and enables easy implementa-
tion of multi-stream scanners. Furthermore, our method also enables high
throughput. Using Xilinx XC2V6000-6 FPGA, we achieved 32Gbps for
a 1000 characters rule set, and 14Gbps for a 2000 characters one. Rules
can be updated by reconfiguration, and we implemented a converter that
from given rules automatically generates the matching unit.

1 Introduction

Recent technology has realized fast networks such as 10Gbit Ethernet and OC-
768. To take advantage of such high-speed networks, it is necessary to accelerate
network applications. Part of the applications requires intensive packet payload
scanning. For example, in network intrusion detection systems (NIDS), payload
scanning to find suspicious patterns occupies the major part of the computa-
tion time[1]. Other examples include Content-based billing, SPAM filtering, and
HTTP request distribution. To accelerate them, fast string matching is necessary.
In the matching, a set of byte strings (rules) is statically given, and occurrences
of the strings in input packet streams are checked.

When matching speed alone is important, hardware implementation is better
than software implementation. However, it is also necessary to change pattern
rules. For example, in NIDS, rules are frequently updated to cope with the
patterns found in new intrusion methods. Therefore, we cannot hard-wire rules
because the rule update is impossible without replacing the hardware. FPGA
based implementation is a solution for string matching in hardware while allow-
ing the rules to be changed. When FPGAs are used, the rules can be changed by
reconfiguration. There are studies of string matching using FPGAs such as com-
parator based methods[2][3], CAM based methods[4], non-deterministic automa-
ton(NFA) based methods[5][6][7], deterministic finite automaton(DFA) based
methods[8], Bloom Filter based methods[9], and Knuth-Moris-Pratt(KMP) al-
gorithm based methods[10]. They enabled high-speed string matching while al-
lowing the rules to be changed. For a high throughput under a limited clock
speed, it is important to process multiple input characters at once[2][3][7].
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a t s a t f e ca k
: stream B

: stream A

stream A stream B match states

packets

Fig. 1. An example of match state switching

In TCP, a communication data stream is split into packets. Therefore, a
target pattern may span multiple packets. Such fragmented pattern cannot be
discovered by a per-packet scan. This is a serious problem in applications such
as NIDS that require a complete scan. To avoid the problem, it is necessary to
scan TCP streams. However, existing FPGA based methods cannot be used for
scanning multiple streams because of the difficulty in switching between streams.

In this paper, we propose a string matching method called suffix based
traversing (SBT). SBT is an extension of the Aho-Corasick algorithm[11], that
uses table lookup in state transition. Since a small number of state bits are used
in the SBT method, lightweight stream switching is enabled. The main points of
extension for SBT are (1)processing multiple input bytes at once, and (2)table
size reduction. When the Aho-Corasick algorithm is naively extended to pro-
cess multiple bytes, a large lookup table is necessary. We solved this problem
by reducing the number of table input patterns. As a result, the large table is
converted into smaller tables and over 10Gbps scanning is enabled. In addition,
we implemented a converter that automatically generates VHDL files of SBT
matchers from given rules. Therefore, the rules can be updated easily.

In Section 2, we explain requirements for string matchers. Section 3 describes
the SBT method. In Section 4, we present an implementation of SBT on FPGAs.
In Section 5, we evaluate the SBT method using a Xilinx XC2V6000 FPGA.
Section 6 presents related works, and we conclude this paper in Section 7.

2 Requirement for String Matchers

Per-stream String Matching. When a per-packet scanner is used, a target
pattern is overlooked when it is split into multiple packets as shown in Fig-
ure 1. In the figure, a per-packet scanner cannot discover the pattern “at-
tack” because it is split into three packets. This problem is serious espe-
cially in security applications because crackers intentionally split packets to
evade scanners[12]. To discover such fragmented patterns, TCP-stream-level
matching is necessary. To scan each stream separately using one matching
unit, the match states must be swapped appropriately as shown in Figure 1.
Note that if multiple scan units are used to support multiple streams, either
the size of rules or the bandwidth per stream is reduced.
With existing pattern matching methods, O(n) bits have to be saved at
each switching[3][6][8], or the last k characters of each stream must be saved
and re-scanned when it is restored[4]; where n is the total length of rules
and k is the length of the longest rule. This reduces the performance and
complicates the implementation for practical rules because their n and k are
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Fig. 2. Example of trie and lookup table used in the Aho-Corasick Algorithm

large. For example, Snort[13] uses rules of n ≥ 1000 and k ≥ 100. Therefore,
an alternative method is necessary to enable lightweight switching.

Processing Multiple Bytes in One Clock. To match strings at high speed,
it is necessary to increase the number of input bytes processed in one clock.
For example, when a string matcher processes one byte in one clock, it must
operate at 1.25GHz to realize 10Gbps, which is impossible for current FP-
GAs. Furthermore, in future, the number of parallel bytes must be increased
because network speeds are growing faster than clock speeds of FPGAs.
Note that using stream-level parallelism is not a substantial solution because
bandwidth depends on the number of active TCP streams.

3 SBT – Trie Based String Matching

3.1 The Aho-Corasick Algorithm

In the Aho-Corasick algorithm [11], a trie is built that contains all the rule byte
strings p1, · · · , pn. Then, an automaton is generated whose state is the node
position of the trie that corresponds to the longest pattern matched to the input
byte sequence up to this time. Each time a byte is received, the next state is
calculated using a lookup table that receives the current state and the byte as
input. When a match state is reached, the algorithm reports that the match has
occurred. Figure 2 shows an example of the trie and the lookup table. In the
example, match states are numbered first because it is necessary in the SBT
algorithm.

3.2 Processing Multiple Bytes at Once

In a naive implementation of Aho-Corasick, the lookup table tells the state
transition when one character is received. Therefore, k sequential lookups are
necessary to calculate state after k characters. As a result, it is impossible to
process multiple input characters at once. On the other hand, in our method, we
use lookup tables which tells the state transition when k characters are received.
Therefore, we can calculate state change after multiple characters by single table
lookup. In our method, w bytes are processed at once, where w is a power of 2.

Specifically, we use lookup tables NS1, NS2, NS4, · · · , NSw for state calcu-
lations. A table NSk tells the state transition when k byte(s) are received. NS1
receives a byte as an input. However, NSk(k ≥ 2) receives an identification
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Fig. 3. NSk table examples when w = 4

number (IN) of the suffix which characterizes the input pattern rather than the
original bytes. This is because the table becomes too large when raw byte pat-
terns are use for the lookups. For example, NS4 tables must hold the elements
for all the 2564 raw byte patterns.

In the static preparation, for each NSk, a set of the necessary suffixes are
identified from the rules, and INs are assigned to them. Each time a k–bytes
pattern is received, the IN of its longest suffix in the set is calculated, and used
for the lookup. Figure 3 shows NS2 and NS4 for the rules in Figure 2. In the
NS4 table of Figure 3, when a pattern ′bbab′ is received, its longest suffix is
′ ∗ ∗ab′. Therefore, the new state is 5( ′ab′) regardless of the old state.

Using the tables, state is calculated by a circuit similar to the right-hand
side (state manager) of Figure 5. The signal S holds r(0), the state at a 4-bytes
boundary of the input stream. Each time a 4 bytes chunk is input, S is updated
using the NS4. At the same time, r(1)–r(3), the states at (4n + 1)th–(4n + 3)th
bytes, are calculated from S using NS1 and NS2. Since we number the match
states of the trie first, the match flags mt(∗) can be calculated using comparators.
Delay registers are necessary to output all r(∗) and mt(∗) in the same cycle.

We denote the input suffix set for NSk as Ik, which is calculated statically. It
is a set that consists of all the k bytes substrings of pi(∈ P ), and all the prefixes
of pi(∈ P ) that are shorter than k bytes. In the example in Figure 2, the suffix
sets and an IN assignment example are I2 = {0 : ′′, 1 : ′a′, 2 : ′aa′, 3 : ′ab′, 4 : ′bb′},
and I4 = {0 : ′′, 1 : ′a′, 2 : ′aa′, 3 : ′ab′, 4 : ′aaa′, 5 : ′abb′, 6 : ′abbb′, 7 : ′bbbb′}.

At run time, lookup tables C2, C4, · · · , Cw are used for longest suffix calcula-
tion. C2 returns the IN of the longest suffix of a 2-bytes string. Other Ck return
the IN of the longest suffix of a concatenation of two suffixes of up to k/2 bytes.
Figure 4 shows C2 and C4 for the rules in Figure 2. The IN of the longest suffix
of a w-bytes input is calculated from those of its sub-patterns as shown in left-
hand side (suffix calculator) of Figure 5. In the Figure, m(2, 0) and m(2, 2) are
the INs of the longest suffixes of the 2 bytes sub-patterns, and m(4, 0) is the IN
of the longest suffix of the 4 bytes input.

3.3 Formal Algorithm Description

We denote the w input bytes as a w bytes string pin. Let P be the set consisting
of all the rule strings pi. The character indices of strings start from 0. The length
of the string p is written as |p|. We write the concatenation of strings p and p′ as
p :: p′. substr(p, i, j) is the j characters substring of p starting from position i,
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and prefix(p, k) = substr(p, 0, k). We write p � p′ when the string p is p′ itself
or a suffix of p′. IN(X, p) is the IN of the longest string p′ in X which satisfies
p′ � p. The correctness of the algorithm is proved in [14].

Variables and Tables. T = {p | p � pi(pi ∈ P )} .

Ik =
{

all the byte characters when k = 1⋃
i,j,l(l<k)(substr(pi, j, k) ∪ prefix(pi, l)) when k = 2, 4, 8, · · · , w

for k = 2, 4, 8, · · · , w and p, p′ ∈ Ik/2,

Ck(IN(Ik/2, p), IN(Ik/2, p
′)) =

{
IN(Ik, p′) when |p′| < k/2
IN(Ik, p :: p′) when |p′| = k/2

for k = 1, 2, 4 · · · , w and i = 0, k, 2k, · · · , w − k and p ∈ Ik and s ∈ T ,

m(k, i) =
{
IN(I1, substr(pin, i, 1)) when k = 1
Ck(m(k/2, i), m(k/2, i + k/2)) when k ≥ 2

NSk(IN(T, s), IN(Ik, p)) =
{
IN(T, p) when |p| < k
IN(T, s :: p)) when |p| = k

T is the nodes of the rule string trie. Ik is the input suffixes for NSk table.
Table Ck tells the IN of the longest suffix of given 2 suffixes’ concatenation.
m(k, i) is IN(Ik, substr(pin, i, k)), the IN of the longest suffix of a portion
of pin. Table NSk tells the state change after k characters.

Static Preparation. Make T , Ik from given P and assign INs. The INs of the
elements in I1 are their character codes. In the IN assignment of T , the
elements which match some pi (i.e. {p | p ∈ T and pi � p for some pi})
are numbered first, and then the other elements are numbered, in increasing
order. Let u be the maximum IN of the elements in T which match some pi.
Then, calculate lookup tables Ck and NSk.

Input. In each cycle, w characters of stream data are input. Let pin(t) be the
w input characters of the t-th clock cycle.

Output. Let qi = pin(0) :: · · · :: pin(t− 1) :: prefix(pin(t), i). In each cycle, for
each qi, the following are output: (1) r(i) : IN(T, qi), i.e. the IN of the longest
string in T that matches qi, and (2) mt(i) : A match flag which indicates
whether qi matches some pj .

Algorithm Procedure. Let S be a state variable which holds IN(T, pin(0) ::
· · · :: pin(t − 1)). In each clock, do following using lookup tables:
1. Calculate each m(k, i) from the input pin(t).
2. Calculate r(i) (i = 0, ..., w − 1) recursively: r(0) = S,

r(k(2i + 1)) = NSk(r(2ki), m(k, 2ki)) k = 1, 2, 4, · · · , w
3. mt(i) = true if r(i) ≤ u. Otherwise, mt(i) = false.
4. Assign the next state NSw(S, m(w, 0)) to S
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3.4 Memory Size Reduction

When the total length of rules is n, T and Ik contain O(n) strings. Therefore,
O(n2) size of memory is necessary for 2D-tables Ck and NSk. However, the
number of valid elements in each 2D-table is at most O(nk). Therefore, table
size can be reduced using indirect pointers as shown in Figure 6. The 2D-table
is decomposed into rows, and then packed into the linear array. Each entry of
the linear array has a row number to identify the owner row of the entry. When
the 2D-table lookup fails, the default value of each column is returned.

Note that unused elements may exist in the linear array because of frag-
mentation of the free area. We define packing density as the value (# of valid
elements in the linear array)/(total linear array length). When the packing den-
sity is 100% (i.e. rows are packed without a gap), the maximum size of each
table is O(nk). The number of tables for each k is w/k for k = 1, 2, 4, · · · , w.
Therefore, total table size is O(

∑
k nk · w/k) = O(nw log w). However, as we

show in Section 5, typical memory usage is about O(nw). This is because the
typical size of each table is O(n) rather than O(nk).

Actual table size depends on the packing density, which can be improved by
converting the indices of the 2D-table using appropriate functions. The worst-
case usage of the linear array and the best conversion function are not yet estab-
lished; with complex analyses being necessary to identify them. This problem
constitutes a future work focus. In the evaluation here, we used a simple conver-
sion that consists of 3-input binary functions selected by heuristics.

4 Implementation on FPGA

The left diagram in Figure 7 shows an outline of our implementation of Ck and
NSk functions. These circuits are pipelined and the latency is 3 clocks. The ID1
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table holds the default output for each ID1. The base table holds the indirect
pointers used in the 2D-table lookup. When the 2D-table lookup fails, the output
of the ID1 table is selected. These three tables are implemented using on-chip
RAMs of generic FPGAs. The number of RAMs used for each table is minimized
based on the table size. As mentioned in Section 3.4, in Ck and NSk functions,
ID0 and ID1 are actually converted before the 2D-table lookup.

The bandwidth of SBT depends on the calculation latency of the next state
S. When the latency is l cycles, the resulting bandwidth is w/l. The latency
of the naive implementation of NSk is 3 clocks. So we used a special circuit to
update S in 1 clock latency as shown in the right side of Figure 7. In the circuit,
state S and its indirect pointer (base) are calculated simultaneously. The latency
from m(w, 0) input to S output is 2 cycles. The circuit has selectors and signals
to switch states. The matcher can switch between streams with no dead cycle.
In fact, we used an optimized version of the circuit of S to improve clock speed.

The critical path consists of C1, C2, C4, · · ·, Cw, S, NSw/2, NSw/4, · · ·, NS1.
Therefore, the calculation latency is 3 · log w + 2 + 3 · log w = 6 log w + 2 cycles.

5 Evaluation

We made a converter that generates VHDL files of SBT matchers for Xilinx
XC2V FPGAs from given rules. The tables in Ck, NSk, and S are implemented
using on-chip 18Kbit 2-port Block RAMs. Each Block RAM is shared by two
instances of the same Ik or NSk function if possible to save Block RAMs.

The converter generated SBT units for an XC2V6000-6 FPGA, and they are
evaluated using timing analyzer of Xilinx ISE6.1i. We use the three rule sets
shown in Table 1 which are generated by randomly choosing patterns from the
rules of Snort[13]. Because of a restriction in our tool, the total size of the rules
is limited, and w must be greater than or equal to 4. Therefore, we used rule
sets of less than about 2000 characters, and evaluated configurations of w ≥ 4.

5.1 Size of Tables

Figure 8 shows the number of bits and Block RAMs used in each configuration.
Total of 144 Block RAMs are available on an XC2V6000. Set3 did not fit in the
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Table 1. Pattern sets used in the evaluation

set1 set2 set3
# of patterns 40 72 180
total size(bytes) 523 1003 2178
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Fig. 8. Table size and number of Block RAMs

XC2V6000 when w = 32 because it ran out of Block RAMs. We can see that the
total table size is proportional to w. This result is better than the theoretical
worst case value O(w log w). The packing density of each 2D-table was always
100% because most of the rows of 2D-tables contained at most 1 valid element.
The maximum slice usage was 7%.

Theoretically, the table size is proportional to the total rule size. However,
the actual table size grows irregularly as the rule size increases. This is because
the size of each table grows discretely since its depth is limited to a power of 2.

5.2 Impact of Multiple Streams

At each stream switching, S and its indirect pointer have to be saved and re-
stored. Their total bit width is theoretically O(log n). In the experimental result,
bit width was 24 bits at maximum and about 20 bits in typical cases. In this
case, 512 streams can be supported using the 2K-bytes on-chip RAM, and 256K
streams using a 1M-bytes SRAM. Therefore, in terms of state switching, multiple
streams can be supported with small switching overhead and memory usage.

5.3 Bandwidth

The throughput of the SBT method is 8wf bps, where f is the operating fre-
quency. Since the total table size is O(nw) in the experimental result, maximum
value of w is O(M/n), where M is the available memory size. Therefore, when
f is a constant, the maximum bandwidth is proportional to M .

Actually, the clock frequency f is not a constant. Figure 9 shows the evalua-
tion result of maximum clock speed and bandwidth using the post place&route
timing analyzer of Xilinx ISE6.1i. The bandwidth reduction of set3 is due to
the clock speed degradation caused by a high fan-out of address lines shared by
many Block RAMs.
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6 Related Works

Cho et al.[2] realized comparator based string matchers, and Sourdis et al.[3]
achieved 10Gbps using a similar method. In CAM based methods [4], the pat-
terns can be updated dynamically. Since these methods have difficulty in stream
switching, they are not suitable for scanning TCP streams. On the other hand,
our SBT enables simple and lightweight stream switching.

Sidhu et al.[5] proposed a regular expression matching method based on
NFA, and Hutchings et al.[6] applied a similar method to NIDS. Clark et al.
[7] extended the NFA method to process multiple characters in one clock. They
showed that 100Gbps bandwidth is possible if clock frequency is 200MHz and
number of parallel bytes is 64. A DFA based method is used in [8]. Those methods
have an advantage that rules can be described in regular expressions. However,
they have difficulty in stream switching because O(n) state bits have to be
saved at each state switching. On the other hand, our method enables fairly
high throughput while allowing lightweight state switching.

Baker et al.[10] proposed an area efficient string matching mechanism based
on the KMP algorithm. However, it cannot process multiple characters at once,
limiting the throughput. The Bloom Filter method[9] uses a hash to eliminate
redundant searches but has problems in worst case performance and scalability.

7 Concluding Remarks

In this paper, we have proposed SBT, a trie-based string matching method. We
implemented a converter that automatically generates VHDL files of SBT units
from given rules. The SBT method enables lightweight stream switching that
was impossible in existing methods because of higher switching overhead and
larger memory size. In addition, SBT can achieve 10Gbps for practical rules.

Using the SBT method, high-speed TCP scanners can be realized, and more
reliable information can be gathered. The method is especially useful for security
applications. We are developing a multi-port NIC with FPGAs. Using this NIC,
we will realize a high-speed TCP scanner based on the SBT method. However,
to realize a complete TCP packet scanner, a stream reassembler is necessary. For
TCP stream reassembly, other difficult problems exist; these must be resolved.
We intend to work on such problems in our future work.
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Abstract. This paper deals with the design and implementation of a frame, time
and frequency synchronizer for Hiperlan/2 WLAN standard. In a packet ori-
ented system, to perform a quick and correct synchronization it is critical to
avoid severe bit error rate degradation. So, the design of this subsystem is one
of the most challenging tasks to be done in the implementation of a transceiver.
In this paper we give practical solutions to the hardware design problems that
arise when the synchronization algorithm is turned into a digital circuit. We
evaluate the fixed-point realization of the synchronization algorithm and intro-
duce some simplifications to reduce, as much as possible, the cost in area of the
circuit without losing its performance.

1   Introduction

Hiperlan/2 is a Wireless LAN (WLAN) standard from ETSI BRAN [1,2] which
works in the 5 GHz band and achieves data rates up to 54 Mbps. For the physical
layer, Orthogonal Frequency Division Multiplexing (OFDM) is used, since it allows
getting high bit rates in highly dispersive fading environments. To prevent inter-
symbol interference (ISI) a cyclic prefix is added to the OFDM symbol, this prefix
can also be employed to have some tolerance for symbol timing errors.

This paper presents part of the work carried out at the Universidad Politécnica de
Valencia for the design and implementation on Xilinx FPGAs of an OFDM based
WLAN transceiver. This paper deals with the frame, time and frequency synchroni-
zation stage for Hiperlan/2 standard.

In Hiperlan/2 systems data is transmitted in bursts, always preceded by a preamble.
So, the acquisition stage at the receiver must be quick enough to get all the data in the
burst.

Most of the practical solutions for frame and time synchronization based on a pilot
preamble that can be found in the literature are based on the autocorrelation of the
received signal, as it was proposed by Schmild and Cox [3]. For example, in [4] a
hardware architecture of a time OFDM synchronizer is presented. This is similar to
[3] but some simplifications have been carried out on the algorithm. First, in [4] the
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branch that calculates the energy of the received signal is removed. We have checked
that if the signal amplitude varies and the input signal energy is not calculated, the
synchronizer performance is drastically reduced. Besides the autocorrelation scheme,
it is possible to perform the time and frame synchronization using the cross-
correlation between the received and the known preamble, but this solution has
smaller performance [5] and bigger hardware cost [6].
This paper describes in detail the hardware implementation of a frame, time and fre-
quency synchronizer for Hiperlan /2. This paper is organized as follows. Section 2
presents an overview of the physical layer. Section 3 deals with frame detection,
Section 4 with symbol time estimation and Section 5 with CFO estimation and CFO
compensation. In Section 6 complete synchronizer is commented and in Section 7
hardware results are summarized. Lastly, in Section 8 some conclusions are pre-
sented.

2   Physical Layer

In Hiperlan/2 the baseband signal is built using a 64-IFFT. Then a cyclic prefix of 16
samples is added to make the system robust to multipath. Each symbol is 80 samples
long, that gives a duration of 4μs with a sampling frequency of 20 MHz.

During the broadcast phase, the access point transmits a preamble that is used by
mobile terminals (MT) to perform frame synchronization, time synchronization, auto-
matic gain control (AGC), frequency synchronization and channel estimation. There-
fore, the synchronization phase in an MT can be divided in three parts: detection of
the broadcast preamble; time synchronization, that consists in estimating the sample
when the OFDM symbol starts; and carrier frequency offset (CFO) estimation. These
tasks should be done using the broadcast preamble structure (Fig. 1). In this structure
we can distinguish 3 sections: A, B, and C. A and B sections are intended for frame
detection, time synchronization, AGC and coarse CFO estimation; section C can be
used for fine CFO estimation and channel estimation.

A AIA AIAIB B B B BI CP C C

Section A Section B Section C

4us 4us
8us

Fig. 1. Broadcast preamble

3   Frame Detection

Frame detection is the first phase of the whole synchronization process, and the most
important, since a false detection could cause that an MT transmission begins at a
wrong instant [5].
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3.1   Detection Algorithm

We will work with one of the algorithms proposed in [5], this makes use of the auto-
correlation of the received signal in a similar way as in [3]. In Fig. 2 it is shown the
block diagram of this algorithm. The received signal is correlated with a delayed (16
samples) version of itself. Then, the obtained signal is averaged over 48 samples
giving the autocorrelation signal R and scaled by the mean power (signal P) of the
input signal.

Delay ( )*

2

Rcx 
signal Average

Average

R

P

Fig. 2. Block diagram of the autocorrelation scheme

Fig. 3 shows the output, without any channel distortion, of the autocorrelation
scheme (magnitude, and phase scaled by π) for Hiperlan/2 broadcast preamble. This
result is compared with the output obtained when an uplink long preamble is intro-
duced, since the frame detection algorithm must distinguish between both kinds of
preambles. On the one hand, the broadcast preamble has two peaks in the magnitude
plot, one in section A (sample 64) and another in section B (sample 144). Also, the
phase is ±π during section A and 0 during section B. On the other hand, the uplink
preamble has a magnitude of 1 between samples 64 and 144 and has a phase of 0.

20 40 60 80 100 120 140 160 180 200

-1

-0.8
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0.8

1

samples

mag uplink long
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Fig. 3. Output of the autocorrelation scheme for Hiperlan/2 broadcast and uplink preambles.

The detection algorithm sets a magnitude threshold THRMAG and a phase checking.
After threshold is exceeded, the phase of the 30 previous samples is checked. If they
are grater (in magnitude) than π/2, the algorithm assumes that a broadcast preamble is
present. In order to detect the phase condition it is enough to look at the sign of the
real part of the autocorrelation scheme output (it should be negative).

To evaluate the performance of this algorithm we have measured the probability of
detection failure (DF) and of false alarm (FA) under these conditions:
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• Channel model A (delay spread of 50 ns), since it represents a typical indoor
office environment [7].

• Number of test frames: 10.000
• Signal clipping (preamble): 5 dB below the rms, 5 dB above the rms and no clip-

ping (10 dB above the rms).
• SNR: 10 dB.  This is a worst case since to achieve an acceptable packet error rate

(10-2), the SNR should be at least 12 dB, for a 6 Mbit/s bit rate [8].
The implementation of the scheme presented above would require one complex

multiplier (3 real multipliers and 5 adders) to calculate the autocorrelation, two real
multipliers to obtain the input signal energy, two dividers to scale the real an imagi-
nary autocorrelation output, and a CORDIC [9] to estimate output magnitude. All this
operators will require a lot of hardware resources in the FPGA. In this paper we pro-
pose to modify the synchronization algorithm, insofar as possible, in order to reduce
the hardware cost, but without reducing the performance (without increasing prob-
ability of DF or FA).

Some simplifications of the initial algorithm have been studied. For this algorithm,
the threshold magnitude condition [3] is modified as follows:

222
PTHRRTHR

P

R
MAGMAG ⋅>→>

(1)

The main purpose of this modification is to eliminate the dividers, since their
hardware design is complicated and their cost is high. We have replaced two divisors
by two multipliers, one to calculate the squared energy and another to multiply it by
the squared threshold. Also we obtain the squared modulus of the averaged and scaled
signal instead of the modulus: the use of a CORDIC, which has a high hardware cost,
is avoided. This is replaced by two multipliers and one adder.

The performance of this modification has been compared with the one of the origi-
nal algorithm. Fig. 4 illustrates the obtained results in Hiperlan/2 for a signal clipping
of 5 dB below the rms. Floating-point data has been considered, and magnitude
thresholds between 0.1 and 0.9 have been evaluated. In original algorithm, which
works with THRMAG, DF probability is very small for thresholds below 0.75. Simpli-
fied algorithm works with THR2

MAG, for this reason the magnitude threshold is lower
than before. The DF probability is lower than 10-3 for thresholds under 0.55 and FA
probability is lower than 10-3 for thresholds over 0.4. Finally, we have decided to use a
threshold of 0.5 because it provides a good performance and avoids the use of one
multiplier (multiply by 0.5 is performed as a hardwired shift).

3.2   Finite Precision Analysis and Hardware Implementation

A Matlab finite precision model of the whole synchronizer has been performed. The
quantization has been applied to each block of the system, meanwhile the others
blocks keep the ideal behavior. The aim has been to reduce the precision keeping the
same performance as in the floating-point solution. This study has been carried out
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with a signal clipping of 5 dB under the preamble rms and without signal clipping
(10 dB above the preamble rms).
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Fig. 4. DF and FA probability in Hiperlan/2

Fig. 5. Implemented synchronizer

The average circuit has been implemented with an accumulator and a subtractor. In
each cycle, the accumulator adds a new sample and the subtractor eliminates the sam-
ple 48th. Phase condition is fulfilled if the real part of the autocorrelation output is
negative during 30 cycles. Their most significant bit (MSB) is registered with 29 flip-
flops, and then multiplied (with an AND gate) with the MSB of the last sample. Only
one comparator is needed to check the magnitude condition. It is assumed that a
broadcast preamble is present if phase and magnitude conditions are met (another
AND gate is used). Finally, a low cost circuit has been implemented to reduce FA
probability: magnitude and phase condition must meet during more than 8 cycles.
With these circuits we have obtained DF and FA probability (in %) of the imple-
mented synchronizer, for 10000 test frames, 10dB SNR and channel model A. Table 1
summarizes the obtained results.
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Table 1. Implemented synchronizer performance

Clipping 10dB rms 5dB rms -5dB rms

DF 0.05% 0.03% 0.64%
FA 0.20% 0.14% 0.08%

4   Time Synchronization

After frame detection is accomplished, it is necessary to estimate the first sample of
the broadcast preamble. This estimation must be as accurate as possible to avoid ISI
with previous or later symbols when the FFT window is taken. Multipath channel,
analog filters required in transmitter and receiver, and interpolate and decimate filters
distort 6 or 7 samples of the cyclic prefix [10]. So, there is a window of 9 samples
where the FFT can begin without introducing ISI.

In Hiperlan/2, after detection of the maximum magnitude value en section A, sec-
tion B peak is searched in order to perform time synchronization. An average of the
autocorrelation scheme output has been made and a low cost maxima detection is
used: actual and previous samples are compared. If actual sample is smaller than
previous sample during 2 cycles, we assume that there is a maximum.

Fig. 6 illustrates the deviation between the symbol timing estimator and the ideal
initial sample using the implemented synchronizer when there is not signal clipping
(we assume that AGC has finished during A phase). It can be seen that 95% of the
estimated initial samples fall in the range between 0 and 4, and that the maximum
deviation is lower than 9, which was the maximum width of the valid window. So,
this solution is valid and would not degrade the performance of the receiver due to
ISI.
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Fig. 6. Deviation from initial sample
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5   CFO Estimation and CFO Compensation

One of the main drawbacks of OFDM is its sensitivity to carrier frequency offset
(CFO). In Hiperlan 2, section B peak is used for coarse CFO estimation. The angle of
correlator output ( )(R∠ ) is calculated with a circular vectoring mode CORDIC and

the estimated frequency offset ( of̂ ) can be calculated by [3]:

TN

R
f

c
o ⋅⋅⋅

∠=
π2

)(ˆ , (3)

where T is the sampling period and Nc is 16. Next, the estimated frequency will be
used to remove this CFO from de signal, by using the same CORDIC processor, con-
figured as circular rotation mode.

The maximum frequency error that can be estimated depends on the delay (D) in
the autocorrelation scheme [11]:

TD
fo ⋅⋅

=
2

1ˆ
max

, (4)

The autocorrelation scheme used to detect B peak has D=16, so maxôf =625kHz.

This frequency offset is higher than 212kHz (20ppm) frequency offset allowed in [1].
The effect of carrier frequency error on the performance can be measured by the

SNR loss. For relatively small frequency errors, can be calculated by [11]:

( ) ,
10ln3

10

0

2 dB
N

E
TfSNR S

Loss Δ= π (5)

where Δf is the frequency error as a fraction of the subcarrier spacing (SSP) and T is

the sampling period. The performance varies strongly with the modulation used. For
example, 64-QAM can not tolerate more than 1% error in the carrier frequency for a
SNR loss of 0.5dB, while QPSK can tolerate up to 5% for the same SNR loss. On the
other hand, 64-QAM needs at least 30dB SNR to achieve an acceptable packet error
rate (10-2), whereas BPSK only needs 12dB [8]. A higher SNR improves the perform-
ance of the CFO estimator [11].

First, a floating point analysis has been made. It can be supposed that in section B
there is not clipping. Multipath channel model A is used. It has been obtained that the
worst case is 64-QAM (30 dB SNR). An error less than 1.6% can not be reached. For
this error we have an SNR loss of 1.6dB. If less SNR loss is desired, a fine frequency
offset technique must be also used. In BPSK (10dB SNR) there are not problems: the
error is less than 5% and, therefore, the SNR loss is less then 0.5dB.

In order to reduce errors in CFO estimation, section C of the broadcast preamble is
used. First, the estimated coarse CFO must be compensated from samples of Section
C. To do this we reuse the same CORDIC that was employed for coarse CFO estima-
tion. Next, corrected Section C is autocorrelated using a delay of 64 samples and an
average of 96 samples. Then, the obtained peak is used to calculate fine CFO with the
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same CORDIC as before. The autocorrelation can be performed with the same struc-
ture used in A, B sections. Only some multiplexers in the delay block and in the aver-
age block must be included.

The autocorrelation scheme used to detect C peak has D=64, so maxôf =156,25kHz.

This frequency offset is lower than the worst case of 212kHz. For this reason, first it is
necessary to perform a coarse CFO estimation and, after compensation a fine CFO
estimation. In this, standard deviation for 30dB SNR (64-QAM) is less than 0.3% in a
floating point analysis.
Now, a fixed point analysis has been made. Our frame and time synchronizer only
needs 5 bits in the input. We have checked that this input precision it is not sufficient
for the coarse and fine CFO estimator. At least 6 input bits are needed. Moreover, the
output of the multipliers and the output of the average must have complete precision.
The inputs of the CORDIC need 8 bits precision and the output must have also 8 bits.
In Fig. 7 final synchronizer is shown. The CORDIC used in the CFO estimation can
be reused in CFO correction, so the required hardware is reduced. A standard devia-
tion of 0.35% is reached with the implemented fine CFO estimator, so SNR loss is less
than 0.5dB, as shown in Fig. 8.

Fig. 7. Final synchronizer

Once fine CFO is calculated, Section C must be corrected before being used for
channel estimation. The received OFDM symbols must be corrected with a combina-
tion of the coarse and fine CFO estimation.

6   Complete Synchronizer

Figure 9 shows complete synchronizer. It is composed of three blocks: frame detec-
tion, time synchronization and CFO estimation & compensation. Frame detection
block is based on an autocorrelator and a circuit that finds Section A peak of the
broadcast preamble. With this information, frame detection block generates an output
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Fig. 8. Measurement of SNR loss due to residual CFO

 (final_cond) that indicates where Section B peak can be found (±20 samples). Time
synchronization block searches Section B peak of the autocorrelator output when
final condition is accomplished. This peak is used to enable CFO estimation. Once
coarse CFO is estimated, CFO in Section C is compensated using this information
and, next, fine CFO is estimated (autocorrelation of Section C is done with frame
detection block, and then Section C peak is found with time synchronization block).
Finally, input OFDM symbols are compensated with coarse and fine CFO estimation.

Fig. 9. Complete synchronizer

7   Hardware Results

The design of all necessary circuits has been done using the tool System Generator
from Xilinx [12], this tool is integrated in the Matlab-Simulink environment and al-
lows rapid prototyping. The synchronizer has been implemented on a Spartan-3 Xilinx
FPGA. These devices have slices composed by look-up tables to implement logic and
arithmetic resources to propagate carries, and embedded multipliers which simplify
our design. In table 2 are summarized the resources that are required by each block.

So, the whole synchronizer requires 827 slices and 10 embedded multipliers and
runs at 20MHz. The design fits in a XC3S400-4 Spartan-3 device (4775 slices, 16
BRAM and 16 embedded multipliers).
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Table 2. Hardware resources

Slices Mults

Frame Detection 411 8
Time Synchronization 64 0
CFO Estimation & Compensation 310 2
Control Logic 42 0

8   Conclusions

In this paper we have presented a hardware design of a frame, time and frequency
synchronizer for Hiperlan/2. We have taken one of the algorithms proposed in [5] and
have introduced some simplifications to reduce the area cost of the final circuit. The
objective has been that these simplifications and the fixed point design maintain the
performance achieved by the original floating-point algorithm. Finally we have im-
plemented all the necessary circuits in a Xilinx FPGA to validate the process.
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Abstract. Alignment problems in computational biology have been fo-
cused recently because of the rapid growth of sequence databases. Many
systems for alignment have been proposed to date, but most of them
are designed for two-dimensional alignment (alignment between two se-
quences), because huge amount of memory and very long computational
time are required by alignment among three or more sequences. In this
paper, we describe a compact system with an off-the-shelf FPGA board
and a host computer for three-dimensional alignment using Dynamic
Programming. Through our approach, high performance are attained by
“two phase search” with reconfigurations of an FPGA and co-processing
the FPGA and software. Furthermore, in order to achieve higher par-
allelism in the FPGA, we use a payoff matrix for matching elements in
sequences and the matrix is divided into sub-matrices which are mini-
mized. In comparison to a single Intel Pentium4 2.53GHz processor, our
system with a single XC2V6000 enables more than 250-fold speedup.

1 Introduction

Alignment problems in computational biology, namely homology search, have
been focused recently because of the rapid growth of sequence databases[1,2,3].
By computing alignment, we can investigate true similarity among the sequences.
Dynamic Programming (DP)[4,5] is a technique which is applied to finding the
optimal alignment among sequences. In DP, the search space is expressed as
d-dimensional lattice, where d stands for the number of sequences. The method
requires traceback pointers which indicate connections to its neighboring 2d − 1
sites. We need to store all the traceback pointers so that the optimal align-
ment is obtained. Hence, its computational complexity is very high (O(Nd), to
make comparisons among d sequences with a length N), so it is not realistic
to use algorithms based on DP even for alignment between two sequences on
desk-top computers. In order to reduce the computational time, many heuris-
tic algorithms[6,7,8] and hardware systems [9,10,11,12,13,14,15,16] have been
proposed. Most of them, nevertheless, are designed for two-dimensional align-
ment (alignment between two sequences) because huge amount of memory and
very long computational time are required by alignment among three or more
sequences.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 505–515, 2004.
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In this paper, we describe a compact system which consists of an off-the-
shelf FPGA board and a host computer for three-dimensional alignment using
DP. In our approach, high performance is attained by “two phase search” with
reconfigurations of an FPGA, and co-processing the FPGA and software. In the
first phase, only the final result (score of the optimal alignment) is calculated
by the FPGA. In this phase, no traceback pointers are output. Here, the system
achieves maximum performance which depends only on the size of the FPGA.
Then, if the first phase gives good scores, the circuit for the second phase is
reconfigured on the FPGA, and the optimal alignment is obtained by the co-
processing the FPGA and software. The total number of traceback pointers
could be very large. Thus, it is not realistic to output all of them under the
limited memory bandwidth of current FPGAs. To address this program, a part
of scores obtained during the search are output by the FPGA, and sent to the
host computer. These outputs are utilized in our technique for a deduction of the
search space in three-dimensional DP, thereby the optimal alignment is obtained
on the host computer efficiently.

Furthermore, in order to achieve higher parallelism in the FPGA, three-
dimensional payoff matrix used for matching elements in sequences is divided
into several sub-matrices, and each of them is minimized.

This paper is organized as follows. Section 2 describes the overview of three-
dimensional DP. Then, the details of the approach are described in Section 3. In
Section 4, processing units implemented on an FPGA are shown. Current status
and future works are given in Section 5 and Section 6.

2 Three-Dimensional Dynamic Programming

2.1 Overview

Dynamic Programming (DP) takes account of all possibility in search space and
always finds the optimal result. In this principle, the complexity in finding the
optimal result is minimized when we have all the traceback pointers. However,
computational time required for obtaining all the traceback pointers is long. As
an attempt to reduce the computational time, stochastic algorithms are exten-
sively used[6,7,8], but they may miss the optimal result.

Fig.1 shows search space of three-dimensional DP, and how alignment is
searched in the space. The length of three sequences is N so that the size of the
space is N ×N ×N . For each lattice site in the space, a score is calculated by a
procedure shown in Fig.2, which is illustrated in Fig.1(right). A single site has
its 7 subsequent sites connected by the traceback pointers (the arrows with xyz,
xy, yz, zx, x, y, z). Then, each score through the seven connections is calculated
using a payoff matrix.

Suppose that the address of a lattice site is (x, y, z), the payoff matrix is
accessed using three elements (seq X[x], seq Y[y] and seq Z[z]) as an address.
For all sites in the search space, their scores and their traceback pointers which
give the scores, are stored in memory. These traceback pointers are traced back
from the final site to the start site by dereferencing connections. A path given
by this dereferencing provides the optimal alignment.
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The computational order is N3 for calculation of all scores in the search
space. Also, memory size amounts to O(N3). On the other hand, only O(N) is
required to trace back.

Search Domain (cube, N on a side)

(x,y,z)

(x+1,y+1,z+1)

N

N

N(x,y,z)

Seq.X

Seq.Z

Seq.Y xyz

zx

x
y

yzz
xy

New payoff is computed from 7 directions. 

Fig. 1. The overview of three-dimensional DP

char Sequence_X[Length_of_Sequence_X];
char Sequence_Y[Length_of_Sequence_Y];
char Sequence_Z[Length_of_Sequence_Z];

int Score[Length_of_Sequence_X][Length_of_Sequence_Y][Length_of_Sequence_Z];

int 3D_Payoff_matrix[Num_of_elements][Num_of_elements][Num_of_elements];
int 2D_Payoff_matrix[Num_of_elements][Num_of_elements];

Calculate_Score(x, y, z){
xyz = Score[x][y][z]+3D_Payoff_matrix[Sequence_X[x]][Sequence_Y[y]][Sequence_Z[z]];

zx = Score[x][y+1][z]+2D_Payoff_matrix[Sequence_Z[z]][Sequence_X[x]]+gapcost_y();
yz = Score[x+1][y][z]+2D_Payoff_matrix[Sequence_Y[y]][Sequence_Z[z]]+gapcost_x();
xy = Score[x][y][z+1]+2D_Payoff_matrix[Sequence_X[x]][Sequence_Y[y]]+gapcost_z();

x = Score[x][y+1][z+1]+gapcost_y()+gapcost_z();
y = Score[x+1][y][z+1]+gapcost_z()+gapcost_x();
z = Score[x+1][y+1][z]+gapcost_x()+gapcost_y();

Score[x+1][y+1][z+1]=selecting_maximum_score(xyz, xy, yz, zx, x, y, z);
}

Fig. 2. Computation of the score on a node (processing unit)

2.2 Parallel Processing of Three-Dimensional DP

Fig.3 illustrates how three-dimensional DP can be processed in parallel. In Fig.3,
the length of sequence(X), sequence(Y), and sequence(Z) are N , w, and w, re-
spectively, where w � N . Here, w is a number which is determined from the
size of FPGA. The computation starts from the top left corner in the far side of
the N × w × w rectangular parallelepiped (we call it bar object), and progresses
along X axis. In this case, w ×w lattice sites in the bar object can be processed
in parallel at maximum. By this parallel processing, the computational time of
the bar object can be reduced from O(w2N) to O(N). In our current implemen-
tation, 64 processing units can be implemented on a single XC2V6000. Thus,
the maximum number of w becomes 8. In general, the length of sequences (N)
are much longer than 8.



508 Y. Yamaguchi, T. Maruyama, and A. Konagaya

w

2w-1

w

Nx

Y

Z

starting site

Fig. 3. Parallel processing of three-dimensional DP (small size)

In order to compute alignment among long sequences with a limited number
of processing units, we have extended the technique. To carry out this technique,
the search space (N×N×N) is divided into sub-spaces (w×w×N) to which the
above procedure is sequentially applied. Fig.4 illustrates how the search space is
divided into sub-spaces, and how the bar objects are processed in parallel with
w×w processing units. The computational procedure of this search in Fig.4 are
described below.

B(0,0)

H(0,0) V(0,0)

B(0,1)

H(0,1) V(0,1) H(0,2)

B(0,2)

Stored data when
B(0,0),B(0,1),B(0,2)
are finished

Stored data when
B(1,0),B(1,1),B(1,2)
are finished

generate
refer

P(0)

P(1)

B(1,0)

H(1,1)H(1,0) V(1,0)

B(1,1)

V(1,1) H(1,2)

B(1,2)

B(2,0)

V(2,0)

B(2,1)

V(2,1)

B(2,2)

Fig. 4. Parallel processing of three-dimensional DP (large size)

B(0,0): The shaded bar object B(0,0) is processed first. Scores on the two rect-
angles (H(0,0) and V(0,0)) are stored.

B(0,1): B(0,1) is processed subsequently. Here, V(0,0) is used as boundary con-
ditions to B(0,1). Then, H(0,1) and V(0,1) are stored.

B(0,2): In the same way, B(0,2) is processed using V(0,1). In this case, only
H(0,2) is stored. At this point, P(0) (namely H(0,0), H(0,1) and H(0,2)) are
stored for the following computation (namely B(1,0), B(1,1) and B(1,2)).
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B(1,0): B(1,0) is processed using H(0,0) as boundary conditions. Then, H(1,0)
and V(1,0) are stored.

B(1,1): B(1,1) is processed using H(0,1) and V(1,0) as boundary conditions.
H(1,1) and V(1,1) are stored.

B(1,2): B(1,2) is processed using H(0,2) and V(1,1). Then, only H(1,2) is stored.
At this point, P(1) (namely H(1,0), H(1,1) and H(1,2)) are stored for the
following computation (namely B(2,i)).

B(2,i): The B(2,i) is computed in the same way as B(1,i).

3 High Speed Computation with Two-Phase Search

Suppose that N is 1000, and w is 8. In order to obtain the optimal alignment
by tracing back, we need to store

Rc: all traceback pointers to the final result, which amounts to 10003×3b (3-bit
is required for directions), and

Rs: V(i,j) and H(i,j) in Fig.4.

Thus, the factors that arise serious bottle-necks of time to be output both data
(Rc and Rs) from an FPGA to external memory banks on a FPGA board,
and time to transfer the data for the traceback pointers (Rc) from the external
memory banks to the host computer.

In order to avoid these bottle-necks, two phase search is used in our approach.

1. In the first phase, data for H(i,j) are output to external memory banks (data
for V(i,j) are cached on an FPGA). The performance of the system depends
only on the size of the FPGA.

2. In the second phase, if the first phase gives scores which exceed user-defined
threshold, the circuit for the second phase is reconfigured on the FPGA. In
this phase, only H(i,j) and V(i,j) are sent to the host computer, and the
optimal alignment is obtained by the co-processing the FPGA and software.
Then, they are used in a reduction of the search space on the host computer.

3.1 The First Phase

Taking into account calculations of the optimal score, we need to output scores
of the lattice sites on V(i,j) and H(i,j) in Fig.4 for each bar object. The size of
V(i,j) and H(i,j) are both 1000 × 8 × 16b (no output for the connections). As
shown in Fig.4, V(i,j) is used only for the calculation in the next bar object. It
means that V(i,j) can be overwritten by V(i,j+1), thus, V(i,j) can be reduced to
a simple plane V. Likewise, H(i,j) is used for the computation in the next row.
It means that H(i,j) can be overwritten by H(i+1,j), thus, H(i,j) can be reduced
to N/w planes. Therefore, we need 1 + N/w memory planes that are

1. one memory plane (called V) for V(i,j), plus
2. N/w memory planes (called Hj) for H(i,j).
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As shown in Fig.5, V can be overwritten during the computation of the next bar
object, while Hj can be overwritten during the computation of every N/w bar
objects. One memory plane (V) can be configured with BRAMs in an FPGA.
However, N/w memory planes (Hj) are too large to be implemented in the
FPGA. Therefore, BRAMs can be used for V, while we need to use external
memory banks for Hj .

The processing time for one bar object by 8 × 8 processing units is approx-
imately 1000 (8 � 1000) clock cycles. Therefore, in order to achieve maximum
performance, we need to output all scores in Hj within 1000 clock cycles. That
is, we need to output eight 16-bit data at every clock cycle. Our FPGA board
(ADM-XRC-II by Alpha Data) has eight external memory banks (including two
memory banks on additional SRAM board). The data width of each memory
bank on the FPGA board is 32 bit. In four memory banks, we can store eight
16-bit data at every clock cycle. Therefore, eight banks can be used to store and
load the data for Hj (data for H(i,j) are stored to the four banks, while data for
H(i-1,j) are read from another four banks).

H(0,1) H(0,2)

B(0,0)

V(0,0)

B(0,1)

H(0,1)

V(0,1)

B(0,2)

generate
refer

B(1,0)

V(1,0)

B(1,1)

V(1,1)

B(1,2)

B(2,0)

V(2,0)

B(2,1)

V(2,1)

B(2,2)

H(0,0) H(0,0)

H(0,1)

H(0,0)

H(0,2)

H(1,1)

H(1,0)

H(1,2)

H(1,1)

H(1,0)

H(0,2)

H(0,1)

H(1,0)

H(0,2) Overwritten
Overwritten

Overwritten

H(0,0)

H(1,1) H(1,2)H(1,0)

Fig. 5. Procedure in the first phase

3.2 The Second Phase

In order to store all traceback pointers which become necessary to obtain the
optimal alignment, we need to reduce the speed of the processing units, be-
cause all of the eight memory banks are already used to store only H(i,j) at the
speed of the processing units. In order to store all traceback pointers, the slow
down is estimated to be no less than 1/3. Data transfer rate becomes another
serious bottle-neck, because the data of the traceback pointers are too large to
store in the FPGA board, and have to be sent to the host computer during the
computation.

In the second phase, instead of storing the connections, data for V(i,j) as well
as H(i,j) are stored in the external memory banks on the FPGA board. Fig.6
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B(1,0),B(1,1),B(1,2) are finished B(2,0),B(2,1),B(2,2) are finishedB(0,0),B(0,1),B(0,2) are finished

Fig. 6. Storing lattice shaped output data for software computation

N
N

N
w

w

N

Fig. 7. Back tracing for the specification of the optimal alignment

illustrates H(i,j) and V(i,j) stored in the memory. Each of H(i,j) and V(i,j) is
stored to different positions on the memory banks. The speed of the processing
units has to be reduced to 1/2 in order to store H(i,j) and V(i,j).

Then, the data of H(i,j) and V(i,j) are sent to the host computer, and three
dimensional DP is executed on the host computer. Here, we have a search space
which was reduced by the procedure in this phase. Due to this reduction, the
optimal alignment can be found efficiently. As shown in Fig.7, three dimensional
DP is executed from the bar object containing the final site using the data as
boundary conditions. Then, by tracing back the connections in the bar object,
we can find a point of intersection on a surface of the bar object and the path of
the optimal alignment. The next bar object which shares a plane including the
intersection is chosen as next target, and three-dimensional DP is executed. In
the host computer, this procedure is performed repeatedly until the path arrives
at the starting site. This path corresponds to the optimal alignment.

By storing only a part of V(i,j) and H(i,j) (i mod k = 0 and j mod k = 0), we
can reduce the amount of memory which have to be stored (and sent to the host
computer), and achieve higher performance on the FPGA. However, this makes
three-dimensional DP on the host computer slower. We need to decide value of
k, taking account of the balance of the performance of the FPGA and the host
computer.
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4 Processing Unit

4.1 Optimization of the Payoff Matrix

Payoff matrix used in DP can be divided into two kinds of sub-matrices (one
three-dimensional matrix for xyz in Fig.1(right) and Fig.2, and three two-
dimensional matrices for xy, yz and zx). In order to achieve higher parallelism it
is very important to minimize these payoff matrices.

We show a technique to reduce the size of the three-dimensional matrix as
follows. Concerning the two-dimensional matrix, we have already discussed in
[16]. The range of values in the matrices are −128 to +127 (8-bit). Therefore,
a table of 32KBytes ((25)3 × 8-bit) is required for a three-dimensional matrix,
because three 5-bit characters are used to access the matrix of 8-bit width.
Only 18 matrices can be implemented on a single XC2V6000 with this naive
implementation.

The payoff, however, is not affected by the permutation of the three 5-bit
characters. For example, each (A, L, C), (A, C, L), (C, A, L), (C, L, A), (L,
A, C), and (L, C, A) gives the same payoff. In addition, only 24 characters are
used in the sequences. Hence, the size of the matrix can be reduced from (25)3

to 24H3 if we can find a method to generate addresses to the minimized matrix
from three 5-bit characters. That is why only 4KBytes are required for each
table (on a single XC2V6000, we can implement up to 144 matrices).

The circuit for address generation is shown in Fig.8(upper left corner). In
the circuit, two conversion tables are used to generate the optimal addresses
from three 5-bit characters. We could not find a general algorithm to make the
conversion tables at present, and the tables are designed by hand-coding. In the
current implementation, 64 matrices are implemented on the FPGA, because we
need to use some of BRAMs for other circuits.

4.2 Pipelined Processing

Fig.8 shows the details of the processing unit. As described in Section 2.1, there
are seven traceback pointers toward each lattice site in the search space. In each
processing unit, seven scores through those connections are calculated, and the
maximum of them is chosen as the score of the site. The processing unit consists
of 3 pipeline stages.

First Stage. A score is calculated using the three-dimensional payoff matrix
and the score of previous node (x, y, z).

Second Stage. Three scores are calculated using two-dimensional payoff matri-
ces, i.e. (seq.X, seq.Y, gap), (seq.X, gap, seq.Z), and (gap, seq.Y, seq.Z), and the
maximum of the three scores and one score from the first stage is chosen. Each
payoff matrix is also minimized[16]. The following equation shows Gap-cost in
the second stage. In this equation, Sopeningcost and Sconsecutivecost are constants,
and k is the number of consecutive gaps.

gapcost() = Sopening + Sconsecutive × k (1)
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Fig. 8. Processing unit

Third Stage. Three scores are calculated, i.e. (seq.X, gap, gap), (gap, seq.Y,
gap), and (gap, gap, seq.Z), and the maximum of the three scores and one score
from the second stage is chosen as the output. The following equation shows
Gap-cost in the third stage.

gapcost() = 0Sopening + 0Sconsecutive × 0Numconsecutive0

+ 1Sopening + 1Sconsecutive × 1Numconsecutive1 (2)

5 Results

We implemented our method on an off-the-shelf FPGA board (ADM-XRC-II
by Alpha Data with a single XC2V6000). Table1 shows computational time and
speedup gain in the first phase as compared with a single Pentium4 2.53GHz.
The number of processing units is 8 × 8, and they run at 66MHz. Almost 90%
of hardware resources in the FPGA is used for the implementation. As shown in
Table1, the performance gain in the first phase is 250 times higher.

Table 1. The comparison of performance between hardware and software (first phase)

N3 P4 2.53GHz XC2V6000 speedup gain
2563 1.280s 0.005s 256
5123 10.340s 0.034s 304

10243 83.720s 0.259s 327
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In the second phase, the performance of the system depends on the balance
of w, N , I/O data width, operating frequency, size of FPGA, data bandwidth
between FPGA, and host computer, the ability of the host computer, and so on.
These parameters have been tuned up for higher performance.

6 Conclusions

In this paper, we presented an approach for high speed computation of three-
dimensional DP. The novelty of our approach is in the use of two-phase search
with reconfigurations of an FPGA, co-processing the FPGA and the host com-
puter, and optimization of all payoff matrices. It allows user to obtain the optimal
result in reasonable time.

In the result, 64 units, which operate at 66MHz, can be implemented on a
single XC2V6000. It achieves more than 200-fold speedup as compared with a
desktop computer (Pentium4 2.53GHz, 2GB DDR-SDRAM).

The performance of the present system is limited by memory band-width
of the FPGA board. Using an FPGA board with DDR memory banks and a
single larger FPGA (those types of FPGA board are already on the market), the
performance in the first phase can be dramatically improved. We estimate that
the system with the FPGA board can achieve more than 1000-fold speedup.

This high performance makes it possible that the search time by three-
dimensional DP is comparable with stochastic algorithms for three-dimensional
alignment.
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Abstract. This paper presents a hardware algorithm for finding a max-
imum clique of a given graph, and shows experimental results of the
proposed algorithm running on an FPGA. The proposed algorithm is
constructed according to a given instance of graph, and can find a maxi-
mum clique efficiently based on branch and bound search. The proposed
algorithm is designed to be implemented on FPGAs, and realizes an ef-
ficient branch and bound search with parallel and pipeline processing.
Experimental results showed that, compared with the software solver,
the proposed algorithm produced a maximum clique in a very shorter
running time even if the time for circuit synthesis and configuration of
FPGA was taken into account.

1 Introduction

Reconfigurable computing with Field Programmable Gate Arrays (FPGAs) has
become popular as a new approach to combinatorial problems[4]. In particular,
problem solving by instance-specific accelerators has been widely noticed such as
the Boolean satisfiability problem, the minimum cover problem, etc[3,6,8]. In this
approach, instance specific accelerators are generated on the fly, depending on
problem instances rather than problems. It has been shown that they outperform
software solvers, provided compilation time of the circuit description is kept short
and the computation time is large.

In this paper, we focus on the problem of finding a maximum clique of an
undirected graph. This problem is one of the important fundamental problems
in graph theory, and it has various practical applications[1]. Since the maximum
clique problem is an NP-hard problem, no efficient algorithms could be devised.
For this reason, many approaches to solve the problem have been proposed,
including branch & bound methods [5,7] and various meta-heuristics methods
such as Simulated Annealing (SA) and Genetic Algorithm (GA). However, none
of meta-heuristics can guarantee to generate an optimal solution. In addition,
when exact methods are realized by software, an optimal solution cannot be
obtained for a large problem within a practical computation time.

In this paper, we present a novel approach to the maximum clique problem
based on reconfigurable computing. In the proposed method, for a given instance
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of the problem, an HDL description of an instance-specific accelerator is gener-
ated to produce an optimum solution of the problem. The proposed instance-
specific accelerator is based on branch & bound search with various pruning
techniques. Furthermore, pipeline and parallel processing are introduced to speed
up the computation time. As far as we know, this is the first approach based
on instance-specific reconfigurable computing to the maximum clique problem.
Moreover, we develop a system, which generates the Verilog HDL description
of the accelerator automatically for a given problem instance. The generated
Verilog description is compiled and downloaded to an FPGA as configuration
data to solve the maximum clique problem by hardware. Experimental results
showed that, compared with the software solver dfmax [2], the proposed algo-
rithm produced a maximum clique in a very shorter running time even if the
time for circuit synthesis and configuration of FPGA was taken into account.

The remainder of this paper is organized as follows. After formulating the
maximum clique problem in Section 2, in Section 3, we present a new hardware
oriented algorithm to solve the maximum clique problem using FPGAs with
instance-specific information. Section 4 explains the hardware implementation
of the proposed method. Section 5 shows the experimental results, followed by
a conclusion in Section 6.

2 Preliminaries

The maximum clique problem is defined as follows. Let G = (V, E) be an
arbitrary undirected graph, where V is a non-empty vertex set of G and
E ⊆ V × V is an edge set of G. Let n = |V | and m = |E|. For G = (V, E),
let Γ (v) = {w ∈ V |(v, w) ∈ E} denote a set of vertices adjacent to vertex v
in G. The number of vertices adjacent to vertex v, denoted |Γ (v)|, is called the
(vertex) degree of v. In addition, we assume that for the vertex set V of G, the
ordering of vertices is given. In the following, without loss of generality, we rep-
resent the i-th vertex in the set V as vi (1 ≤ i ≤ n). Given a vertex v, we denote
the order of v as ord(v). That is, if v is the i-th vertex in V , then ord(v) = i.
Furthermore, for any subset of V , its ordering of vertices is also specified, that
is inherited from the ordering of the original vertex set V .

For a subgraph G(Q) = (Q, E(Q)) of graph G is called an induced subgraph
of G on Q ⊆ V , if E(Q) = {(v, w) ∈ E|v, w ∈ Q}. G(Q) is called a clique of
G if every two vertices are adjacent. A clique with the size being maximal in G
or maximum is called a maximal or maximum clique. The number of vertices
of a maximum clique of G is expressed with ω(G). This problem is an NP-hard
problem, and no polynomial time algorithms could be devised.

3 The Algorithm

3.1 Overview

The proposed algorithm is based on branch & bound search. Overview of the
algorithm is given below. As already noted, for an undirected graph G = (V, E)
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with n vertices, we assume that the vertex set V is given a total order in advance,
and the order of a vertex v is represented as ord(v), 1 ≤ ord(v) ≤ n. Let Vi be
{vi, vi+1, vi+2, . . . , vn}.

In the algorithm, the candidate vertex set, in which a maximum clique is
currently searched, is stored in the array R(∗). For an induced subgraph G(Vi),
the algorithm of finding a maximum clique of G(Vi) is given below.

Algorithm mq for finding a maximum clique in G(Vi)

Step0 (Initialize) R(0) = Vi, Q = ∅, Mi = ∅, sp = 0.
Step1 If R(sp) = ∅, then goto Step8. Otherwise, select a vertex p ∈ R(sp) such

that ord(p) is minimum.
Step2 Rp = R(sp) ∩ Γ (p). Add p to Q, and delete p from R(sp).
Step3 (Judgment) If Rp = ∅, or Rp is a clique of G(Vi), then goto Step6.
Step4 (Bound) If Rp ∪ Q contains no clique with size larger than |Mi|, goto

Step7.
Step5 (Branch) Let R(sp + 1) = Rp, sp = sp + 1. Goto Step1.
Step6 (Update) If |Rp ∪ Q| > |Mi|, then Mi = Rp ∪ Q.
Step7 Eliminate a vertex p such that ord(p) is maximum.
Step8 (Terminate) If sp = 0, then terminate. Otherwise, sp = sp − 1, goto

Step1. �

In the proposed algorithm, Q always contains a clique (not necessarily max-
imal or maximum) of G(Vi), and any vertex in Rp is adjacent to all vertices
in Q. Thus, when Rp becomes empty, or Rp becomes a clique (i.e., G(Rp) is a
complete graph), then Rp∪Q becomes a maximal clique of G(Vi). The algorithm
proceeds the search until a maximal clique is found in Step3, or it becomes clear
that no maximum clique of G(Vi) will be found in the current candidate vertex
set. R(sp) can be implemented as a stack, and sp is a stack pointer.

The total order of the vertex set affects the efficiency of the proposed algo-
rithm, although any total order can be specified. In this paper, we use the total
order defined as follows. First, we approximately solve the vertex coloring prob-
lem on the given graph. Then, the vertex set is partitioned into a set of classes
so that each class consists of vertices with the same color. Finally, for each class,
vertices are sorted according to their vertex degrees in the decreasing order.

In the following, we show the proposed algorithm, mqr, for finding a maximum
clique in a graph G. In the algorithm, cmax(i) represents the size of a maximum
clique of the induced subgraph G(Vi), and cub(i) represents its upper bound.

Algorithm mqr for finding a maximum clique of G

Step0 (Initialize) i = n, cub(n) = 1, M = {vn}.
Step1 i = i − 1. If i = 0, then terminate. Otherwise, if it isn’t necessary to

search for G(Vi), then cub(i) = cub(i + 1). Repeat Step1.
Step2 Using algorithm mq, a maximum clique Mi of G(Vi) is found.
Step3 If cmax(i) > cub(i + 1), then M = Mi.
Step4 cub(i) = cmax(i). Goto Step1. �
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3.2 Bounding Conditions

Effective vertex degree
The vertex degree of vertex v, denoted d(v), is the number of vertices adjacent

to v, that is, d(v) = |Γ (v)|. During the search of the proposed branch & bound
method, the vertex set R, for which the search is performed to find a maximum
clique, is called the candidate vertex set, and each element of the set is called
the candidate vertex. The number of vertices in R adjacent to v is called the
candidate vertex degree, denoted d′(v).

For each candidate vertex v in R, let Γ ′(v) be a set of candidate vertices
adjacent to v, and let F be a subset of Γ ′(v) such that no two vertices in F are
adjacent to each other, that is, F is an independent set of G(v ∪ Γ ′(v)). Then,
from the definition of a clique, at most one vertex in F can be an element of
a maximum clique. Using this property, we can realize an efficient pruning of
branch & bound search as follows. First, Γ ′(v) is partitioned into a set of vertex
sets, F0, F1, . . ., Fk, such that for each i(1 ≤ i ≤ k), |Fi| > 1 and no two vertices
in Fi is adjacent to each other, and F0 consists of vertices not belonging to any
Fi(1 ≤ i ≤ k).

For each vertex v, the effective vertex degree of v, denoted deffective(v), is
defined as follows.

deffective(v) = d′(v) −
k∑

i=1

(|F (i) − 1|)

= |F0| + k

During the search, cmax represents the number of vertices of the maximal
clique found so far. For each vertex v, if deffective(v) < cmax holds, then this
vertex can be eliminated from the candidate vertex set R, since v will not become
an element of a maximum clique.
[Bounding condition 1] For the candidate vertex set R, if there exists at most
cmax candidate vertices in R whose effective vertex degree is larger than or equal
to cmax, then there is no need for further search in R. �

For each vertex v in R, if deffective(v) = |R| − 1 holds, then R is a clique.
Note that the problem of finding (k +1) vertex sets, Fi(0 ≤ i ≤ k), is an NP-

hard problem if we want to find an optimal solution of this partitioning problem.
However, a good heuristic solution is enough to realize an efficient pruning in
the proposed method. Thus, we construct them efficiently in a greedy manner.
Due to the lace of space, we omit the details from here.

Bounding conditions on subgraphs
There are several cases that there is no need for further search in a subgraph

of G.
[Bounding condition 2] In Step1 of the proposed method mq, vertex p is
selected from the current candidate vertex set R, and Rp is defined as a next
candidate vertex set. In this case, if there is another vertex q in R such that
Rq ⊆ Rp holds, then there is no need to search in Rq. �
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Fig. 1. Stack and the behavior of the method

[Bounding condition 3] For the candidate vertex set R, for each vertex p ∈ R,
if sp + cup(ord(p)) ≤ cmax holds, then there is no need to search in Rp. �

[Bounding condition 4] For vertex set Vi, assume that the maximum clique
size of G(Vi) is cmax(i), and the maximum clique contains vi. For any vj(j < i),
if vj has no connection with vk(j < k ≤ i), then there is no need to search in
G(Vj). �

The bounding conditions 1, 2 and 3 are applied in Step 4 in algorithm mq,
and the bounding condition 4 is applied in Step1 in algorithm mqr.

4 Hardware Implementation

4.1 Candidate Vertex Set

The proposed method will be implemented by hardware. The matrix R(∗) for
storing the candidate vertex set is realized by a memory, whose memory word
consists of n = |V | bits. R[a]i represents the i-th bit of address a. In the proposed
method, if vi ∈ R(a), then R[a]i = 1, otherwise R[a]i = 0. In the circuit, each
bit in memory can be written with a binary value independently. Figure 1 shows
the stack and the behavior of the proposed method.

4.2 Calculation of the Effective Vertex Degree

In the proposed method, it is important to calculate the effective vertex de-
gree of each vertex in an efficient manner. In the following, using an exam-
ple, we show how to calculate it by hardware. Assume that for vertex v,
Γ (v) = {u1, u2, u3, . . . , u8}, and let F0 = {u6, u7, u8}, F1 = {u1, u2, u3}, and
F2 = {u4, u5}, where F1 and F2 are non-adjacent vertex sets (i.e., independent
sets of G(v ∪ Γ (v))), respectively. For each ui, if it is a candidate vertex, then
ui = 1, otherwise ui = 0. Then, the effective vertex degree of v is calculated as

deffective(v) = OR(u1, u2, u3) + OR(u4, u5) + u6 + u7 + u8,
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Fig. 2. A circuit for calculating an effective vertex degree.

where OR is a logical OR operation, and operation + is an arithmetic addition.
Logical values of 0 and 1 are treated as binary numbers of 0 and 1 in arithmetic
additions, and vice versa.

Figure 2 shows the circuit for calculating the effective vertex degree of a
vertex, whose expression consists of 64 terms, each of which is either the output
of an OR gate, or the output of the memory word, which represents that the
corresponding vertex is either included in the current candidate vertex set or not.
The entire circuit has a quad-tree structure to reduce the height of the adder
tree. To shorten the critical path delay, registers are inserted in appropriate
levels in the tree. Input signals are firstly put into 4-1 selectors, and then its
output is fed to the adder tree. The output of the tree is fed to an accumulator.
To reduce the whole computation time of calculating the effective vertex degree,
the circuit realizes the pipeline processing, and registers inserted in the tree are
used as pipeline registers. As a result, for the case of calculating the effective
vertex degree shown in Figure 2, 6 clocks are required to generate the final result.

After calculating the effective vertex degree of each vertex in parallel, the
result is compared with the maximum clique size currently hold in the circuit,
and all vertices, whose effective vertex degree is smaller than the current maxi-
mum clique size, are eliminated from the current candidate vertex set in parallel.
When some vertex is eliminated from the current candidate vertex set, then it
may affect the effective vertex degree of another vertex. Thus, we repeat the
calculation of effective vertex degrees until no update on the candidate vertex
set is occurred. In general, a few times of repetition are required.
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4.3 Search for the Starting Vertex

In the proposed method, in each step of branch, we have to find a vertex with the
smallest value of ord(p). In the straightforward implementation, it would require
an O(n) computation time, and this could cause an unacceptable degradation of
the circuit performance. Thus, we introduce an mechanism, which is similar to
the carry look-ahead in the adder, so that the length of the critical path of the
circuit becomes O(log n).

4.4 Circuit Generation of Instance-Specific Hardware

We developed the system which generates an instance-specific HDL code from
a design template and a given instance of the problem. The code generation
system uses Verilog-HDL code templates, which describes the non-instance spe-
cific parts of the circuit, and adds this with a code generated specifically for the
given instance, e.g., the circuit treating edge information among vertices. In this
system, the adjacency list and the design template are given as inputs, and the
HDL code of the circuit tailored to the given instance of the problem is produced
as output. This system was developed with Perl. A generated HDL code is then
given to the FPGA design tool to compile it. From an obtained compiled code
(i.e., the gate level description of the circuit), place and route is performed to
produce a configuration data of the target FPGA.

5 Evaluation

5.1 Experiments

The proposed method was implemented on an FPGA evaluation board to be
evaluated. Environment of experiments was shown below. Verilog-HDL was used
to describe the RTL description of the proposed method. A translation program
from an instance of a graph and the template file to a circuit description was
written with the Perl language. A translated code was then compiled and a
configuration code was generated with the FPGA design tool Altera Quartus
II version 3.0, which was executed on a PC (OS: Windows 2000, CPU: Pen-
tium 4 2.4GHz). The FPGA board (Mitsubishi MYCOM Co. Ltd., PowerMedusa
MU200AP1500) used in experiments consists of an FPGA, Altera EP20K1500E,
which contains 2.39 million system gates. We also developed a simulation pro-
gram of the proposed method with the C language, which simulates the behavior
of the proposed method.

In the experiment, we used the benchmark software dfmax, which was
published from DIMACS as a benchmark program for the maximum clique
problem[2], and compared it with the proposed method. dfmax was written in
the C language, and compiled with gcc 2.9.5 (O2 option was used), and executed
on a PC with Pentium 4 2.4GHz and Linux 2.4.

As the benchmark data of the problem, we used the set of benchmark data
published from DIMACS for the maximum clique problem. From the limitation



An Instance-Specific Hardware Algorithm for Finding a Maximum Clique 523

Table 1. Experimental results.

Data n m(ρ) ω dfmax[sec] mqr[sec] #LE Tool[min] #branch
brock200 1 200 14834 (0.745) 21 22.05 6.32 39593 (76%) 137 5218530
brock200 2 200 9876 (0.496) 12 0.04 0.007 28609 (55%) 91 9014
san200 0.7 1 200 13930 (0.7) 30 3738.69 1.08 33191 (64%) 97 11463
san200 0.7 2 200 13930 (0.7) 18 24192.73 0.02 24925 (48%) 73 47443
san200 0.9 1 200 17910 (0.9) 70 >24h 0.0018 47464 (91%) 148 62510
san200 0.9 2 200 17910 (0.9) 60 >24h 0.07 42302 (81%) 138 112205
san200 0.9 3 200 17910 (0.9) 44 63886.94 55 46445 (89%) 146 23157650
san400 0.7 1 400 55860 (0.7) 40 >24h 1611252
san400 0.7 2 400 55860 (0.7) 30 >24h 3790818

of the number of gates on FPGA, all the benchmark data implemented on FPGA
consist of 200 vertices. For reference, we also used the benchmark data with 400
vertices, and for those data, we show the simulation results.

All the circuits of the proposed method were running on FPGA with a 40
MHz clock frequency. Execution time of the proposed method was measured by
the hardware counter, which was embedded in hardware. The CPU time of the
software program was measured by the time command of Linux. Execution time
of the FPGA design tool was obtained from the tool. For each data to be solved
on FPGA, additional time of translating the graph data into a Verilog code by
the Perl program and downloading the configuration data to the FPGA chip was
also required. For each data, this additional time in total was about 2 minutes
on average, and at most less than 4 minutes.

5.2 Experimental Results

Table 1 show experimental results. In this table, n and m are the number of
vertices and the number of edges of a graph, respectively, and ρ is the edge
density of a graph(ρ = 2×m

n×(n−1) ). ω is the size of a maximum clique. dfmax

and mqr are the CPU time of the software solver dfmax and the execution time
of the proposed method mqr, respectively. >24h means that no solution was
obtained in 24 hours. #LE shows the number of logic elements of FPGA used for
constructing the circuit. “Tool” shows the execution time of the FPGA design
tool, including the compilation, placement, and routing. #branch shows the
number of branches (i.e., the number of execution of step 5 in mq), which was
obtained by the software simulation.

From the experimental results, the proposed method always produced the
result in a shorter execution time compared with the software solver dfmax. In
particular, for san200 0.7 2, san200 0.9 1, san200 0.9 2, and san200 0.9 3, the
proposed method was faster, even if the compilation time was taken into ac-
count. From the simulation results for the data with 400 vertices (san400 0.7 1,
san400 0.7 2), we predict that if we will use a larger FPGA, or we will imple-
ment the proposed method on multiple FPGAs, then the proposed method will
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be able to produce the results for those data in a short execution time (maybe,
less than 10 seconds).

5.3 Discussion

In this section, we give some remarks and considerations on the proposed
method. First, we consider the ability of finding a solution. From the results,
for most data, the proposed method produced the better results in computation
time than the existing method dfmax, and it shows that the proposed method
realizes the efficient branch & bound search. However, for the data brock200 1,
the efficiency of the proposed method was worth compared with the other cases.
It shows that there may still be room for improvement of branch & bound search
of the proposed method.

To improve the branch & bound search of the proposed method, we have to
devise more effective methods of pruning the search. Another possibility of im-
provement is to introduce pipeline processing in search. For example, let u and
v be different vertices in G. Then, for subgraphs G(u ∪ Γ (u)) and G(v ∪ Γ (v)),
search for the maximum clique of those subgraph can be performed in paral-
lel. Performance of this kind of parallel search may be improved if appropriate
information such as the size of maximum clique of a subgraph is shared.

In the experiments, due to the size of an FPGA used in the experiment,
graphs with more than 200 vertices were not used as benchmark data. However,
as the rapid progress of semiconductor technology, we expect that FPGAs with
10 times larger number of gates, working with more than 200 MHz clock, will
be available soon. Furthermore, if one FPGA is not enough to implement the
circuit, multiple FPGAs may be used to implement the circuit. Thus, within a
next few years, we believe that the maximum clique problem for any graphs, for
which the exact solution can be obtained with the proposed branch & bound
method in a practical time, will be solved on FPGAs.

Note that as the problem size becomes large, the advantage of the proposed
method becomes large compared with the ordinary software solvers. The reason
is as follows. As explained in Section 4, each step of branching in the proposed
method requires O(log n) clock cycles. On the other hand, any state-of-the-art
software solution proposed so far such as [5] and [7], each step of branching
requires at least O(n) time. Thus, the property above mentioned holds, even
when the circuit compilation time is considered as the part of computation time
of the proposed method.

Note also that, it is very difficult to implement the proposed method as
an ordinary instance-independent circuit. For example, consider the circuit for
calculating the effective vertex degree of of each vertex. The expression of the
effective vertex degree of each vertex depends on a given instance of the graph.
Thus, if we want to design a circuit for calculating the effective vertex degree
for any graph, the circuit would become tremendously complicated, and even if
it could be designed, the size of the circuit would be quite large. Nevertheless, it
is very interesting to develop an instance-independent circuit for the maximum
clique problem.
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6 Conclusion

In this paper, we proposed a hardware algorithm for finding a maximum clique of
a graph, and showed its effectiveness from experiments. In the proposed method,
a circuit dedicated to an instance of the problem is automatically produced, and
a maximum clique is found by branch & bound search. Experimental results
showed that, compared with the software solver dfmax [2], the proposed algo-
rithm produced a maximum clique in a very shorter running time even if the
time for circuit synthesis and configuration of FPGA was taken into account.

As future work, we improve the proposed method so as to find a maximum
clique in a shorter running time. Instead of using the design template of HDL
code, using the hardware macros may be effective to reduce the circuit compila-
tion time, and this is also interesting. To develop an instance-specific hardware
algorithm for another combinatorial problems is also important.
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5. Österg̊ard, P. R. J.: A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics 120 (2002) 197–207

6. Suyama, T., Yokoo, M., Sawada, H.: Solving satisfiability problems on FPGAs.
Proc. 6th International Workshop on Field-Programmable Logic and Applications
(FPL’96) (1996) 136–145

7. Seki, T., Tomita, E.: Efficient branch-and-bound algorithms for finding a maximum
clique. Technical Report of the Institute of Electronics, Information and Communi-
cation Engineers, COMP2001-50 (2001) 101–108, in Japanese

8. Zhong, P., Martonosi, M., Ashar, P., Malik, S.: Using configurable computing to
accelerate Boolean satisfiability. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 18, 6 (1999) 861–868



IP Generation for an FPGA-Based Audio DAC
Sigma-Delta Converter

Ralf Ludewig1, Oliver Soffke1, Peter Zipf1, Manfred Glesner1,
Kong Pang Pun2, Kuen Hung Tsoi2, Kin Hong Lee2, and Philip Leong2

1 Institute of Microelectronic Systems
Darmstadt University of Technology, Germany.

{ludewig,soffke,zipf,glesner}@mes.tu-darmstadt.de
2 Department of Computer Science and Engineering
Chinese University of Hong Kong, Shatin NT HK.
{kppun,khtsoi,khlee,phwl}@cse.cuhk.edu.hk

Abstract. In this paper we describe a parameterizable FPGA-based
implementation of a sigma-delta converter used in a 96kHz audio DAC.
From specifications of the converter’s input bitwidth and data sampling
frequency, VHDL generic parameters are used to automatically generate
the required design. The resulting implementation is optimized to use
the minimum internal wordlength and number of stages. We prototyped
the converter on an FPGA board for verification purposes and the results
are presented.

1 Introduction

With recent improvements in the density of field programmable gate array
(FPGA) devices, systems with an increasingly higher level of integration are
possible. Digital signal processing is an important application area for FPGAs
and such systems often require data converters to provide analog outputs from
digital domain representations. Sigma-delta modulator based digital to analog
converters (DAC) can be efficiently implemented on FPGA devices since they
are entirely digital. Including such converters in the FPGA provides a high de-
gree of flexibility and reduces costs and time to market. Moreover, it becomes
possible to develop single chip, customized converters which are not available
commercially, e.g. an application may require a mix of different converters of
different orders operating at different frequencies. Including such converters into
the FPGA provides a high degree of flexibility and reduces costs and time-to-
market. In this paper, a flexible sigma-delta converter for an audio frequency
DAC as proposed in [1] is described. It is modeled as a parameterizable IP core
description which can be used to generate the actual implementation of convert-
ers accepting 16-, 20-, and 24-bit input values at data sampling rates between
32 and 96 kHz. Compared with the design in [1] which was made in Handel-C,
the IP core presented in this paper is more modular, automatically determines
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the required internal bitwidths to avoid overflow, is written entirely in VHDL
and is approximately two times faster yet occupies less resources.

The paper is structured as follows: Section 2 describes the basic principle
of operation of ΣΔ-converters. The architecture of the implemented DAC is
discussed in Section 3. Section 4 deals with the system-level simulation of the
model and in Section 5 the experimental results of an implemented prototype
are shown. Finally, we end up with some conclusions in Section 6.

2 Basics of ΣΔ-Converters

The basic task of a ΣΔ-converter is to quantize the input signal, which can
be either continuous or discrete in time. This applies for both the analog-to-
digital and the digital-to-analog conversions. 1-bit quantization is most popular
for simple circuit design [2]. The one-bit signal is perfectly suited as the input
or output of a digital system.

The quantization with one bit resolution can be achieved without signifi-
cant quality loss, by oversampling the signal by a factor of M and shifting the
quantization noise to high frequencies where no signal frequency components are
present. This is usually referred to as noise shaping.

The signal and the noise can then be separated with a lowpass filter of the
appropriate order. This lowpass works in the digital domain for analog-to-digital
converters and in the analog domain for digital-to-analog converters. As this
paper deals with a digital-to-analog converter we will focus our considerations
on this type, but the basic theory can be applied for both types.

Figure 1 shows a simple ΣΔ-converter which accepts a discrete time, con-
tinuous value input signal and outputs a discrete time, discrete value output
signal with one bit resolution shifting the quantization noise to high frequencies.
For the analysis of this ΣΔ-converter a linearized model can be constructed as
shown in Figure 1(b) by replacing the quantizer by an injection of additive noise.
The output Y (z) is the superposition of the input signal X(z) transformed by
the system and the noise signal N(z) also transformed by the system:

Y (z) = Hx(z)X(z) + Hn(z)N(z) , (1)

where Hx(z) denotes the signal transfer function and Hn(z) denotes the noise
transfer function, which can be derived from

Hx(z) =
Y (z)
X(z)

∣∣∣∣
N(z)=0

(2)

Hn(z) =
Y (z)
N(z)

∣∣∣∣
X(z)=0

(3)

This is depicted in Figure 2. From figure 2a we find that

Y (z) = H(z)
(
X(z) − Y (z)

)
, (4)
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Fig. 1. Simple discrete time ΣΔ-converter quantizing continuous value input signals
with one bit resolution (a) and a system theoretic model of it with the quantizer
replaced by additive noise injection (b).

+X(z) H(z) Y (z)
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+

-1

H(z) Y (z)
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Fig. 2. Models for deriving the signal transfer function Hx(z) (a) and the noise transfer
function Hn(z) (b).

which finally yields the signal transfer function Hx(z):

Hx(z) =
Y (z)
X(z)

=
H(z)

1 + H(z)
. (5)

Using the same procedure we also find the noise transfer function Hn(z) from
figure 2b:

Y (z) = N(z) − H(z)Y (z) (6)

⇒ Hn(z) =
Y (z)
N(z)

=
1

1 + H(z)
. (7)
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An integrator is used for H(z) to implement the first order noise shaping. To
avoid an algebraic loop due to the feedback in the ΣΔ-converter, the integrator
is chosen to have no direct feedthrough. Thus, it can be described in the time
domain by

yn = yn−1 + xn−1 . (8)

Transforming this difference equation in the z-domain yields the transfer function
H(z):

Y (z) = z−1Y (z) + z−1X(z) (9)

⇒ H(z) =
Y (z)
X(z)

=
z−1

1 − z−1 . (10)

This finally gives the ΣΔ-converter depicted in Figure 3 with the transfer func-
tions for the signal and the noise:

Hx(z) =
z−1

1−z−1

1 + z−1

1−z−1

= z−1 (11)

Hn(z) =
1

1 + z−1

1−z−1

= 1 − z−1 . (12)

+
ONE BIT

QUANTIZER+X(z) 1
z

Y (z)

Fig. 3. ΣΔ-converter with H(z) = z−1

1−z−1 .

These transfer functions are depicted in Figure 4. As intended, the quantiza-
tion noise is shifted to high frequencies, so that an analog lowpass at the output
will suppress this noise and reconstruct the input signal.

Note, that the noise transfer function Hn(z) is a first order highpass. Thus,
the slope will be only 20 dB per decade. This can be improved furthermore by
increasing the order of the ΣΔ-converter as outlined in the next section.

3 Implementation of ΣΔ-Converter

The ΣΔ-converter can be used within a complete audio DAC as proposed in [1].
The structure of such a DAC is shown in Figure 5. It consists of the interpolator,
the sigma-delta modulator, and the 1-bit DAC. The audio DAC accepts PCM
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Fig. 4. Signal and noise transfer function of the ΣΔ-converter depicted in Figure 3.
As intended, the quantization noise is shifted to high frequencies.

input data at sampling rates of 32/44.1/48/88.2/96 kHz. The interpolation ratio
of the interpolator can be configured to 64x, 128x, and 192x. For 44.1/88.2 kHz
input signals, the interpolator gives the output data rate of 5.6448 MHz by
setting the interpolation ratio as 128x/64x respectively. For 21/48/96 kHz input
signals, the interpolator gives the output data rate of 6.144 MHz by setting the
interpolation ratio as 192x/128x/64x respectively.

fclock = 
5.6448MHz/ 
6.144MHz 

64x/128x/192x 
Interpolator 

3rd/5th Order  
Sigma Delta 
Modulator 

PCM input @ 
44.1kHz/88.2kHz/ 
32kHz/48kHz/96kHz 

1-bit 
DAC 

to analog lowpass 

Fig. 5. Block diagram of the audio DAC.

The configurable ΣΔ-converter proposed in this paper can be freely config-
ured and can be used for the ΣΔ-converter of the complete audio DAC. Our
approach was to create a soft core which is based on a VHDL description that
can be configured to produce a ΣΔ-converter of arbitrary order.

As a starting point we used the architecture (see Figure 6) as proposed [1] for
the ΣΔ-converter which can be configured as either 3rd order and as 5th order
modulator. The modulator coefficients were designed by using a Matlab tool-
box [3]. As it can be clearly seen the modulator is composed of two basic blocks
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Fig. 6. Architecture of the ΣΔ-converter. The stages are generated using a
for-generate-loop, so the number of stages can be adapted to the desired signal-
to-noise-ratio.

++

X(z)

Y (z)

1
z

an

bn

cn

(a)

+ +

X(z)

Y (z)

1
z

an

bn

cn

(b)

Fig. 7. Basic stages of ΣΔ-converter

(see Figure 7). Each of the two basic blocks is composed of a register for the
delay and 3 multipliers. In VHDL, the constants an, bn, cn can be specified as a
generic for every block separately. Everything is combined to the final architec-
ture in the top-level design that uses a generate-loop to create a ΣΔ-converter
of the specified order.

While the system level simulation uses floating point numbers, a fixpoint
implementation had to be derived for the FPGA realization. For a ΣΔ-converter
with a bitwidth of n at the input, the parameters of the stages have to be scaled
by 2n−1−1. Due to the integrating nature of the delay stages, it is not sufficient
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to use n as internal bitwidth. So the number of bits in the middle section of each
stage (adder, delay and multiplication with cn) must to be increased to avoid
overflows.

As the VHDL description of the model is fully generic, a ΣΔ-converter IP-
core of the desired order can be generated very easily by changing the value
of the generics. The design parameters like the number of stages, the fixpoint
bitwidth, the internal bitwidth and the converter coefficients are specified in a
single configuration file.

4 System-Level Simulation

System level simulations were conducted using Matlab Simulink. Figure 8(a)
shows the output spectrum for the 5th order configuration of the DAC, given a
20.48 kHz sinusoidal input signal (at the upper edge of the audio band), sampled
at 96 kHz. It is then interpolated to a 6.144 MHz sampling rate using a two-
stage sinc interpolator. The quantized 1-bit output of the sigma-delta DAC is
then passed through an FFT to obtain the output frequency spectrum. The
fifth-order noise shaping function is clearly observed. The audio-band SNR for
this simulation is 138 dB. Figure 8(b) shows the output SNR versus the input
signal level. From this figure, a maximum SNR of 140dB is obtained from the
formula:

Effective number of bits (ENOB) =
SNR − 1.76

6.02
,

so this DAC configuration can operate on inputs with word lengths of up to 23
bits. The SNR performance versus input SNR for the 3rd order configuration of
the DAC is shown in Figure 9. The maximum SNR is 96.4 dB, which corresponds
to an ENOB of 15.7 bits. The system-level simulations verify the correctness of
the DAC architecture.

5 Experimental Results

The complete design has been prototyped using an FPGA board with a XILINX
XC2V1000-4 Virtex II FPGA. In order to produce some reasonable output, a
24-bit look up table containing one period of a 10 kHz sine wave sampled at
6 MHz has also been mapped on the FPGA to provide a periodic input signal
for the ΣΔ-converter. In some designs (like in [1]) the cn parameters of the ΣΔ-
converter are set to one so that the corresponding multipliers can be omitted. We
have optimized our generic VHDL model so that the multipliers with a coefficient
of one are automatically left out.

Table 1 shows the implementation details of our design. For a comparison
with the results from the Handel-C implementation of [1] the first two values
show the hardware resources and the maximum clock frequency for a coefficient
set with cn = 1. The other values are for a ΣΔ-converter with all coefficients
not equal to 1.
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(a)

(b)

Fig. 8. System level simulation results for the 5th order configuration of the DAC. (a)
output spectrum (b) output SNR versus input level.

It can be clearly seen that all the implementations meet the required 6 MHz
operating frequency. Furthermore, using the cn = 1 case for comparison with [1],
this design uses the multipliers of the Virtex II device in order to achieve a
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Fig. 9. Output SNR versus input level for the 3rd order configuration of the DAC.

Table 1. Details of the implementation of a 5th order ΣΔ-converter with 24 bit input

Design Slices Multipliers max. Clock
5th order SD (cn = 1) 362/5120 20/40 51 MHz
5th order SD with LUT (cn = 1) 967/5120 20/40 27 MHz
5th order SD (cn �= 1) 566/5120 39/40 19 MHz
5th order SD with LUT (cn �= 1) 1163/5120 35/40 16 MHz

large reduction in slice utilization (362 compared with 3167) as well as a higher
operating frequency (51.7 MHz compared with 27 MHz). Even in the case of
cn �= 1, only a modest number of slices are required. When synthesizing the
design without the multipliers of the Virtex II device we also achive a lower slice
utilization of 2757 compared to 3167 of the Handel-C approach (for cn �= 1).

To validate our implementation the spectrum of the output signal of the
VHDL implementation was compared with the spectrum generated by the sys-
tem level simulation. Furthermore we connected an analog low pass filter to the
FPGA output and observed a very smooth and stable sine wave with a frequency
of exactly 10 kHz.

6 Conclusions and Future Work

A ΣΔ-converter-IP-core has been presented, that can be adapted easily to dif-
ferent requirements. This adaptation includes the selection of the bitwidth of
the input signal and of the internal signals, the configuration of the coefficients
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and the ΣΔ-converter core can be generated with an arbitrary number of stages.
Additionally we included some automatic optimizations to remove unnecessary
hardware (like a multiplication with one). With our VHDL ΣΔ-converter-core
we achieved much better results than with the Handel-C implementation.

The ΣΔ-converter has been studied using simulink and both the system
level simulation and the RT-level simulation results have been presented. The
model has been prototyped on an FPGA board and the reconstructed sine wave
generated by a LUT which has been also mapped onto the FPGA, could be
observed using an simple analog low pass filter.

The next step is to replace the LUT with an interpolator in order to provide
the required oversampling. Using an interpolator the output of some conventional
digital signal processing block (e.g. a MP3 decoder or a S/PDIF-receiver) can be
used as input of the interpolator. Then it will be possible to listen to the output
of the ΣΔ-converter and judge the quality subjectively.
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Abstract. Many System-on-a-Chip devices would benefit from the inclusion of
reprogrammable logic on the silicon die, as it can add general computing
ability, provide run-time reconfigurability, or even be used for post-fabrication
modifications. Also, by catering the logic to the SoC domain, additional
area/delay/power gains can be achieved over current, more general
reconfigurable fabrics. This paper presents tools that automate the creation of
domain specific PLAs and PALs for SoC, including an Architecture Generator
for making optimized arrays and a Layout Generator for creating efficient
layouts.  By intelligently mapping netlists to PLA and PAL arrays, we can
reduce 60%-70% of the programmable connections in the array, creating delay
gains of 15%-30% over unoptimized arrays.

1 Introduction

As device scaling continues to follow Moore’s Law, chip designers are finding
themselves with more and more real estate to work with. This is true in the design
realm of System-on-a-Chip (SoC), where individual, pre-designed subsystems
(memories, processors, DSPs, etc.) are integrated together on a single piece of silicon
in order to make a larger device.  Moore’s Law can be seen as providing us with more
silicon space to use, and one solution for SoC designers is to add reconfigurable logic
to their devices.

Reconfigurable logic fills a useful niche between the flexibility provided by a
processor and the performance provided by custom hardware. Traditional FPGAs,
however, provide this flexibility at the cost of increased area, delay, and power. As
such, it would be useful to tailor the reconfigurable logic to a user specified domain in
order to reduce the unneeded flexibility, thereby reducing the area, delay, and power
penalties that it suffers.  The dilemma then becomes creating these domain specific
reconfigurable fabrics in a short enough time that they can be useful to SoC designers.

The Totem project is our attempt to reduce the amount of effort and time that goes
into the process of designing domain specific reconfigurable logic.  By automating the
generation process, we will be able to accept a domain description and quickly return
a reconfigurable architecture that targets that domain.

Previous work in Totem has focused on using a 1-D RaPiD array [1-4] in order to
provide reconfigurable architectures for domains that use ALUs, Multipliers, RAMs,
and other coarse grained units. But many domains do not benefit from the use of
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coarse-grained units, and would require a finer-grained fabric. An appealing solution
for these domains would be to create reconfigurable PALs and PLAs, which are
efficient at representing seemingly random or non-regular logic functions. Providing
SoC designers with reconfigurable PALs and PLAs will give them the ability to
support many different fine-grained functions, perform run-time reconfiguration, or
even perform bug fixes or other post-fabrication modifications.

2 Background

Reconfigurable PALs and PLAs have existed for many years in commercially
available CPLDs, and are produced by companies including Xilinx, Altera, and
Lattice.  CPLDs are typically reprogrammable PALs or PLAs that are connected by
fairly rich programmable routing fabrics, with other hardware added to increase the
functionality of the devices. These commercial CPLDs, however, suffer from the
same drawbacks as commercial FPGAs: their generality, while allowing them to be
used in many domains, costs them in terms of area, delay, and power.

Additionally, many papers have been published with respect to PAL and PLA
architectures.  The most applicable of these was by A. Yan and S. Wilton [5].  In this
paper they explore the development of “soft” or synthesizable programmable logic
cores based on PLAs, which they call product term arrays.  In their process they
acquire the high-level requirements of a design (# of inputs, # of outputs, gate count)
and then create a hardware description language (HDL) representation of a
programmable core that will satisfy the requirements.  This HDL description is then
given to the SoC designer so that they can use the same synthesis tools in creating the
programmable core that they use to create other parts of their chip.

Their soft programmable core has the advantages of easy integration into the ASIC
flow, and it will allow users to closely integrate this programmable logic with other
parts of the chip.  The core will likely be made out of standard cells, however, whose
inefficiency will cause significant performance penalties.  As such, using these soft
cores only makes sense if the amount of programmable logic required is small.

Our process differs from [5] in that we will create and provide domain-specific
“hard” cores to be used in SoC. Our tools will intelligently create a PLA or PAL
architecture that fits the specifications provided by the designer, and it will then use
pre-optimized layouts to create a small, fast, low-power layout of the array that can be
immediately placed onto the SoC. This will result in area, delay, and power
improvements over pre-made programmable cores or soft cores, and it is automated in
order to provide very fast turnaround time.

Another related work presents highly regular structures which provide ease of
design and layout of PLAs for possible use in SoC [6]. Their proposal is to stack
multiple PLAs in a uni-directional structure using river routing to connect them
together, resulting in a structure that benefits from both high circuit regularity and
predictable area and delay formulation. Their focus on circuit regularity and
area/delay predictability prevent them from obtaining high performance, however.
Our arrays will be tailored to the specifications of the designer, allowing us to both
better suit their exact needs and to make modifications that will result in better area,
delay, and power performance.
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In regards to software, much work has been done on the concept of minimizing
sum-of-products style equations so that they will require smaller PLA or PAL arrays
for their implementation.  To date, the most successful algorithm for minimizing these
equations is ESPRESSO, which was developed at Berkeley in the 1980s [7].
ESPRESSO’s basic strategy is to iteratively expand its terms (in order to encompass
and remove other terms) and then reduce its terms (to prepare for a new, different
expansion).  This expand and reduce methodology results in a final equation that has a
near-optimal number of product terms. ESPRESSO also reduces the number of
literals in the equation, which is equivalent to minimizing the number of connections
that need to be made in the PLA or PAL array.

3 Approach – Tool Flow

We envision the tool flow to be as follows. The input from the customer will be a
specification of the target domain, most likely containing a set of netlists that the
architecture will need to support.  These netlists will first be processed by ESPRESSO
in order to minimize the number of product terms and literals that they contain.

The resulting minimized netlists will be fed into the Architecture Generator, which
attempts to create the smallest single PLA or PAL array that is capable of being
configured to every netlist. Only one netlist must be supported at any given time. The
Architecture Generator will then output a description of this array.

The array specification from the Architecture Generator is fed to the Layout
Generator, which creates a full layout of the array.  This layout includes the PAL/PLA
array as well as all the remaining logic that is necessary for programming the array.

3.1 Architecture Generator

The Architecture Generator must read in multiple netlists and create a PAL/PLA array
capable of supporting all of the netlists.  The tool is written in C++.

The goal of the Architecture Generator is to map all the netlists into an array that is
of minimum size and which has as few programmable connections as are necessary.
For a PLA, minimizing the number of inputs, outputs, and product terms in the array
is actually trivial, as each of them is simply the maximum occurrence seen across the
set of netlists.  For a PAL we minimize the number of inputs and outputs the same
way as for a PLA, and we minimize the number of product terms in the array by
making each output OR gate as small as is possible.

Having minimized the number of inputs, outputs, and product terms in the array,
the next goal is to minimize the number of programmable connections that are
necessary in order to support each netlist. Figure 1 displays the problem that we face
when trying to minimize the number of programmable connections. In this example
we are trying to fit two netlists (one grey and one black) onto the same array. A
random mapping of the product terms is shown to require 16 programmable
connections, while an intelligent mapping is shown to require only 8 programmable
connections - a 50% reduction.
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Fig. 1. On the left, two netlists are mapped randomly.  This requires 16 programmable bits.  On
the right, they are mapped intelligently, requiring only 8 programming bits

For our application, simulated annealing has proven to be very successful at
mapping netlists to an array.  The algorithm’s goal is to minimize the number of
programmable connections.  We define a basic “move” as being the swapping of two
product term rows within a netlist (we will introduce more complicated moves later),
and the “cost” of a mapping is the number of programmable bits that it requires.  For
our annealing we use the temperature schedules published in [8].

The development of a cost function requires serious consideration, as it will be the
only way in which the annealer can measure netlist placements. At first glance, the
cost of an array location is ideally either a 1 (programmable bit present) or a 0
(programmable bit not present).  Using a simple 1/0 cost function, however, would
hide a lot of useful information from the annealer. The degree to which a
programmable bit is required (how many netlists are using it) is also useful
information, as it can tell the annealer how close we are to removing a programmable
connection.

Figure 2 displays this notion. In this example, we have one programmable
connection used by two netlists and another connection used by five netlists. Both
locations require a programmable bit, but it would be much wiser to move to situation
A) than to situation B), because situation A) brings us closer to freeing up a
connection.

Fig. 2. A move to A) puts us closer to removing a programming bit than a move to B)

The cost function that we developed captures this subtlety by adding diminishing
costs to each netlist that uses a programmable connection.  If only one netlist is using
a connection the cost is 1; if two netlists use a connection it costs 1.5; three netlists is
1.75, then 1.875, 1.9375, and so on.  Referring back to Figure 2 and using this cost
function, a move to figure A has a Δcost of -.45 (a good move) while a move to figure
B has a Δcost of .19, which is a bad move.  Mathematically, the cost function is:

COST = 2 - .5(x – 1)
where x is the number of netlists that are using a position. As seen, each additional
netlist that loads a position incurs a decreasing cost, such that going from 7 to 8 is
much cheaper than going from 1 to 2, for example.
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Because PALs and PLAs are structurally different, we need an annealing algorithm
that can work on both types of arrays. Additionally, we don’t know what hardware
might exist on the SoC at the periphery of our arrays. The existence of crossbars at the
inputs and outputs to our arrays would allow us to permute the input and output
locations between netlist mappings. Considering this, we are presented with a need
for four annealing scenarios: using a PLA with fixed IO positions, using a PLA with
variable IO positions, using a PAL with fixed IO positions, and using a PAL with
variable IO positions.

The differences between the annealing scenarios are shown in Figure 3. Given a
PLA with fixed IO positions, the only moves that we can make are swaps of product
terms within a netlist (A). Given variable IO positions (B), however, we can also
make swaps between the inputs of a netlist or between the outputs of a netlist.

Fig. 3. Allowed annealing moves for the four scenarios

The outputs in a PAL put restrictions on where the product terms can be located, so
the PAL with fixed IO positions only allows product terms to be swapped within a
given output OR gate (C). In the PAL where we can vary the IO positions, we
actually order the outputs by size (number of product terms) for each netlist such that
the larger output gates appear at the bottom.  This minimizes the overall sizes of the
output OR gates. We are then permitted to make three types of moves: swapping input
positions, swapping product term positions, and swapping outputs positions of equal
size, as shown in (D).

For the PLA with variable IO positions, 50% of the moves are product term swaps
and 50% are IO swaps, with the ratio of input to output swaps equal to the ratio of
inputs to outputs. For the PAL with variable IO positions, 50% of the moves are
product terms and 50% are input moves, with the output moves not currently
considered because early results showed no gain from including them.

When the Architecture Generator is done annealing, it creates a file that completely
describes the array.  This file is then read by the Layout Generator so that a layout of
the array can be created.

3.2 Layout Generator

The Layout Generator is responsible for taking the array description created by the
Architecture Generator and turning it into a full layout.  It does this by combining
instances of pre-made layout cells in order to make a larger design. The Layout
Generator runs in Cadence’s LayoutPlus environment, and uses a SKILL routine that
was written by Shawn Phillips.  We are currently designing in the TSMC .18-micron
process.

Figure 4 shows a PLA that our Layout Generator created (a very small array has
been shown for clarity, the arrays we create are often orders of magnitude larger).
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Pre-made cells exist for every part of a PLA or PAL array, including the decoder
logic needed to program the arrays.  The Layout Generator simply puts together these
pre-made layout pieces as specified by the Architecture Generator, thereby creating a
full layout.

Fig. 4. The PLA is created by tiling pre-made, optimized layout cells

Currently, the PLAs and PALs are implemented using a pseudo-nMOS logic style.
PALs and PLAs are well suited to pseudo-nMOS logic because the array locations
need only consist of small pull-down transistors controlled by a programmable bit,
and only pull-up transistors are needed at the edges of the arrays.

4 Methodology

The use of PALs and PLAs restricts us to the use of .pla format netlists. The first
source of netlists is the ESPRESSO suite (the same netlists on which the ESPRESSO
algorithm was tested).  A second set of netlists comes from the benchmark suite
compiled by the Logic Synthesis Workshop of 1993 (LGSynth93). As a whole, these
netlists are commonly used in research on programmable logic arrays.  The netlists
are generally fairly small, but this suits our needs as we are currently only using
single arrays to support them.

From these sources we found netlists with similar numbers of inputs, outputs, and
product terms and we put them together in groups (1 through 4). The netlists are
grouped according to size, as this will be a factor in how well our algorithms perform.
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5 Results

The Architecture Generator uses simulated annealing to reduce the total number of
programmable bits that the resultant array will require. While tools like VPR can have
annealing results where costs are reduced by orders of magnitude, the best cost
function improvement that our annealer can obtain is actually bounded. For a two
netlists anneal, the cost function can never improve more than 25% and the number of
programming bits required can never improve more than 50%.  A three netlists anneal
has a maximum cost function improvement of 41.7%, while the optimal reduction in
the number of programming bits is 66.7%. Similar analysis can be performed on
groups of four or more netlists. Since reducing the number of bits is our final
objective, the results that we present will show the number of bits required for a
mapping rather than the annealing cost.

We do not have a method for determining the optimal bit cost of an arbitrary
mapping, but we can know the optimal mapping of a netlist mapped with itself: it is
simply the number of connections in the netlist, as all the connections from the first
netlist should map to the same locations as the connections from the second netlist.
This can be done with any quantity of the same netlist, and the optimal solution will
always remain the same. By doing this we can see how close our annealing algorithms
come to an optimal mapping.

We applied this self-mapping test to five random netlists using each of the four
algorithms: PLA-fixed, PLA-variable, PAL-fixed, and PAL-variable. The results
showed that when two netlists are mapped with themselves using the PLA-fixed
algorithm that the final mapping is always optimal. The PLA-variable had difficulty
with only one netlists, shift, which was 15.21% from optimal. Note that for this
example the random placement was 92.49% worse than optimal, so our algorithm still
showed major gains.

For the PAL-fixed algorithm, all of the tests returned an optimal result.  The PAL-
variable algorithm had a similar result to the PLA-variable algorithm, as the shift
netlist was only able to get 13.28% from optimal (vs. 92.23% from optimal for a
random placement).  These near optimal results give us confidence that our annealing
algorithms should return high quality mappings for arbitrary netlist mappings as well.

Table 1 shows the results of running the PLA-fixed and PLA-variable algorithms
on the different netlist groups that we created. The reduction in bit cost is the
difference in the number of programmable connections needed between a random
mapping of the netlists and a mapping performed by the specified algorithm.  In the
table, all possible 2 netlist mappings were run for each specific group and the results
were then averaged.  The same was done for all possible 3 netlist mappings, 4 netlist,
etc., up to the number of netlists in the group.

There are some interesting things to note from the results in Table 1. Firstly, the
PLA-variable algorithm always finds a better final mapping than the PLA-fixed
algorithm.  This is to be expected, as the permuting of inputs and outputs in the PLA-
variable algorithm gives the annealer more freedom. The resulting solution space is
much larger for the variable algorithm than the fixed algorithm, and it is intuitive that
the annealer would find a better mapping given a larger search space. The practical
implications of this are that an SoC designer will acquire better area/delay/power
results from our reconfigurable arrays by supplying external hardware to support
input and output permutations.
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Table 1. Average improvement in programming bits for PLA-Fixed and PLA-Variable
algorithms over random placement as a function of netlist count.

Another thing to notice is that the reduction always increases as the number of
netlists being mapped increases. This, too, is as we would expect, as adding more
netlists to a mapping would increase the amount of initial disorder, while the final
mapping is always close to optimally ordered.  Note that this does not say that we end
up with fewer connections if we have more netlist, it only says that we reduce a
greater number of connections from a random mapping.

Table 2 shows the results of running the PAL-fixed and PAL-variable algorithms
on netlist Group 3.  We see the same results from the PAL algorithms as from the
PLA algorithms: increasing the number of netlists in a mapping increases the
resulting bit reduction, and allowing input and output permutations always results in a
better mapping than requiring fixed input/output locations.

Table 2. Average cost improvement for PAL-Fixed and PAL-Variable algorithms over random
placement as a function of netlist count.

Another important concept is how well netlists match each other: higher reductions
will be possible when the netlists being mapped have similar sizes or a similar
number of connections.  With regards to array size, any netlists that are far larger than
another netlist will dominate the resulting size of the PLA or PAL array, and we will
be left with a large amount of space that is used by only one or few netlists, resulting
in poor reduction.  Results showed that arrays of similar sizes showed better
reductions than arrays of disparate sizes.

Mapping netlists with a similar number of connections also results in better
reductions.  If netlist A has far more connections than netlist B then the total number
of connections needed will be dominated by netlist A: even if we map all of the
connections from netlist B onto locations used by netlist A we will see a small
reduction percentage because B contained so few of the overall connections.  It is
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intuitive that having a similar number of connections in the netlists being mapped will
allow a higher percentage of the overall programmable connections to be removed.
This concept was also verified by experimentation.

One reason that we’re trying hard to reduce the number of programmable bits is
that it will allow us to use less silicon, and this will allow us to have a smaller array.
The original array we create will be the same size but with empty space where
programmable bits are not needed, and running a compactor on the layout will allow
us to obtain more area savings. Additionally, the removed silicon will result in delay
and power gains.

We used hspice to develop delay models of both the PLA and PAL arrays that we
create.  Table 3 shows the delay and programmable bit results obtained for several
runs of the algorithms, along with average improvements over the full arrays and the
random arrays (netlists randomly placed and unneeded connections removed).

Table 3. Reductions obtained in number of programmable bits and delay for PLA algorithms

All algorithms show improvements in delay over the full and random placements.
Additionally, as more netlists are mapped to the array, the delay gains tend to
increase.

The PLA-Variable algorithm does significantly better than the PLA-Fixed
algorithm with respect to programmable connections, but this does not scale to delay,
as the PLA-V and PLA-F algorithms perform very similarly. This is because the
algorithms have no concept of path criticality, and the connections that they are able
to remove are often from non-critical paths. Thus further reduction in connections
does not directly lead to further reduction in delay.

The PAL-Variable algorithm performs better than the PAL-Fixed algorithm in
terms of both programmable connections and delay.  This is largely because the PAL-
V algorithm is able to permute the outputs (and therefore the output OR-gates),
resulting in smaller OR-gates in many circumstances. And while the variable
algorithms perform better than the fixed algorithms, more research would be required
in order to determine whether the gains obtained would offset the cost of requiring a
crossbar at the periphery of the array.

On average, the PLA-Fixed and PLA-Variable algorithms improved upon the delay
of a full PLA array by 16.0% and 16.1% respectively. The PAL-Fixed and PAL-
Variable algorithms improved upon the delay of a full PAL array by 26.0% and
31.3% respectively. Overall, delay improvements of 5.0% to 11.4% were achieved vs.
a random placement.
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6 Conclusions

In this paper we have presented a complete tool flow for creating domain specific
PALs and PLAs for System-on-a-Chip.  We have presented an Architecture Generator
that, given netlists as an input, maps the netlists onto a PLA or PAL array of minimal
size which uses a near-optimal number of programmable connections. Results show
that higher reductions are possible if the inputs and outputs are permutable,
suggesting that an SoC designer would want to have crossbars at the inputs and
outputs of our arrays. Also, as the number of netlists being mapped to an array
increases, the bit reduction between a random mapping and an intelligent mapping
increases.

We also presented a Layout Generator that takes PLA or PAL descriptions from
the Architecture Generator and successfully creates optimized layouts by tiling pre-
made layout units.
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Abstract. In this paper we discuss several key agile Camellia implementations.
The New European Schemes for Signatures, Integrity, and Encryption
(NESSIE) selected Camellia in its portfolio of strong cryptographic algorithms
for protecting the information society. In order for an encryption core to be key
agile it must be able to accept new secret keys as well as data on every clock
cycle. We discuss the design and implementation of the Camellia algorithm for
a FPGA.  We obtain a throughput of 17.4 Gbit/sec when running on a Virtex-II
XC2V4000 FPGA device.

1   Introduction

At the end of February 2003 NESSIE (New European Schemes for Signatures, Integ-
rity, and Encryption), a project with in the Information Society Technologies (IST) of
the European Union, announced that the symmetric block cipher algorithm Camellia
[1] was to be included in its portfolio of strong cryptographic algorithms [2]. The
NESSIE project selected 12 encryption algorithms from the 42 that were submitted,
which included digital signatures, identification schemes, block ciphers, public-key
encryption, MAC algorithms, and hash functions. Only 3 block ciphers were chosen
out of these 12, which were MISTY1, SHACAL-2, and Camellia. Five well estab-
lished encryption algorithms were also added to the NESSIE portfolio and one of
these five included the AES (Advanced Encryption Standard).

The Camellia algorithm is a 128-bit block cipher jointly developed by NTT and
Mitsubishi Electric Corporation. The algorithm has also been submitted to other stan-
dardisation organisations and evaluation projects such as ISO/IEC JTC 1/SC 27,
IETF, TV-Anytime Forum, and has also been included in the list of cryptographic
techniques for Japanese e-Government systems selected by CRYPTREC (Cryptogra-
phy Research and Evaluation Committees) in Japan.
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The current fastest Camellia FPGA implementation is by Ichikawa [3] that pro-
poses a pipelined architecture.  The implementation targets a VirtexE device and runs
with a throughput of 6.75Gbits/sec.  The core takes up 9,692 slices and it is assumed
that no block-RAM was used.

In this paper we discuss the implementation of three Camellia fully pipelined en-
cryption architectures: a key agile architecture, a key agile sub-pipelined architecture,
and the other where the key schedule is off-chip. Currently the architectures have
been targeted to a specific Xilinx FPGA, and do use the features of the FPGA archi-
tecture to provide very fast implementations. Section 2 describes the Camellia algo-
rithms including its decryption process. In Section 3 we discuss the implementation.
Section 4 discusses the performance results.  Finally Section 5 concludes the paper.

2   The Camellia Algorithm

The Camellia algorithm processes data blocks of 128-bits with secret keys of lengths
128, 192, or 256 bits.  Note that Camellia has the same interface as the AES.  In our
implementation we focus on the algorithm using a key length of 128-bits.

Using a key length of 128-bits results in an 18 round Feistel structure.  After the 6th

and 12th rounds FL/FL-1 function layers are inserted to provide some non-regularity
across rounds. This should provide some extra security against future attacks [4].
There are also two 64-bit XOR operations before the first round and after the last,
also known as pre- and post-whitening. The top-level structure of the algorithm can
be seen in Figure 1. The key schedule, discussed later in this section, generates
subkeys for each round, FL/FL-1 layers, and pre- and post-whitening.

The FL-function is defined by:

YR(32) = ((XL(32)  klL(32)) <<< 1) ⊕ XR(32), (1)
YL(32) = (YR(32)  klR(32)) ⊕ XL(32), (2)

where YL(32) are the 32 most significant bits of the 64-bit output and YR(32)  are the 32
least significant bits.  The FL-1 function is just the inverse of FL.

Each round can be composed of a F-function with an XOR.  This can be seen in
each 6 round phase structure shown in Figure 2.  A different subkey is applied to each
F-function and the output is XORed with the previous but one result.

The F-function is defined as

Y(64) = P(S(X(64) ⊕ k(64)). (3)

The P-function is constructed only of XOR components and is a linear transformation
from 8 input bytes to 8 output bytes.  The S-function represents a substitution using
one of 4 s-boxes.  All 4 s-boxes are closely related and defined by:
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S1(x)  =  h(g(f(x XOR a))) XOR b, (4)
S2(x)  =  S1(x) <<< 1, (5)
S3(x)  =  S1(x) >>> 1, (6)
S4(x)  =  S1(x <<< 1),  (7)

where f and h are linear mappings, g is an inverse over GF(28), and a, b are fixed
constants

2.1   Key Schedule

The Camellia key schedule for a 128-bit key produces twenty-six 64-bit subkeys, for
use in the 18 rounds, pre- and post-whitening and FL/FL-1 function layers. The key
resembles that of MISTY [5] and is composed of two steps. The first involves deriv-
ing a 128-bit variable KA(128) from the original secret key K. Then the second step in-
volves generating further round keys by cyclic rotating either K (now KL) or KA by 15
or 17.  The structure for generating KA can be seen in figure 3. Σi(64)(i = 1,2,3,4) are
64-bit key constants.

k1(64)

k2(64)

k3(64)

k4(64)
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Fig. 2.  Inner Structure of 6 Rounds
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Fig. 1.  Top-level procedure of Camellia
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Fig. 3.  Key Schedule for 128-bit Cipher Key

Each subkey variable is cyclic shifted left by 15 for rounds 3 to 12, and the first
FL/FL-1.  Then cyclic shifted left by 17 for the rest of the rounds, the second layer of
FL/FL-1 and the post-whitening.  It must be noted that the key schedule for a 192-bit
or 256-bit key differs slightly in that an extra subkey variable KB(128) is also produced
from the procedure, which is then interleaved with KL and KA.

2.2   Camellia Decryption

The Camellia decryption procedure is exactly the same as the encryption, it does not
have any inverse functions like with in the AES algorithm, but the keys are needed in
reverse order.  So the subkey that was needed to encrypt the data block in round 18 is
now needed to decrypt in round 1. This can cause a delay in the overall decryption
process if the subkeys need to be produced first, before decryption can take place.
This can be overcome when the decryption receives the pre-computed subkeys from
the sender.
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3   Implementation

Here we describe three fully pipelined encryption architectures. The first architecture
is key agile with only pipeline registers added between the rounds. The second archi-
tecture has had some sub-pipelining applied to the F-Function. The final architecture
is non-key agile and has removed the key schedule from the FPGA. It is assumed that
a microprocessor will work out the required subkeys for each data session and not
each clock cycle. Although Camellia has several modes of operation we only consider
the ECB (Electronic Code Book) mode in our implementation because there is no
feedback in the datapath.

3.1   Key Agile Fully Pipelined Architecture

A key agile fully pipelined architecture provides very high security and throughput as
new data blocks can be encrypted on each clock cycle with a different key. Most fully
pipelined implementations of other encryption algorithms insert shift registers be-
tween each encryption round. An efficient way to delay data samples in a Virtex
FPGA is to use the SRL16E or ‘Shift Register Look-Up Table of 16-bits with clock
Enable’. For delays greater than 17 cycles the SRL16E can be chained together and
address inputs of the LUT are hard-wired to select the appropriate tapping point of the
delay line.  For the Camellia algorithm delays are inserted after each round, as shown
in figure 4 below.

Fig. 4.  Pipelined Registers In Between Camellia Rounds

Each round has its own associated F-function, as described earlier, and each function
utilises 4 different s-boxes for byte substitution. For both implementations we have
chosen to use block-RAMs for the s-boxes.  Each block-RAM can be pre-configured
with the appropriate substitution values.  Each F-function makes 2 calls to the same s-
box. This can be seen in Figure 5. As we are targeting the encryption core to a Virtex-
II device it is possible to use dual-port block-RAM, which allows simultaneous reads
of the same memory location and because we are only reading memory locations,
treating the memory like ROM and not updating the s-box values we do not need to
worry about the other contentious conditions with regards to writing to the memory.
Therefore we can utilise the dual-port block-RAMs in each F-function.  The new F-
function structure for the Virtex-II can be seen in Figure 6.

For a key agile architecture each new subkey must be available on every clock cy-
cle for each round.  To achieve this, the key schedule must be unrolled and pipelined
so that a new key can be accepted on each clock cycle. For the Camellia algorithm the

Round 1 Round 2 Round 3 Round 18

64

64
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structure of Figure 3 is used to find the first subkeys for round 1 and 2, and for the
following rounds each subkey is shifted either by 15 or 17.  The key agile architecture
can be seen in Figure 7.  Note that the thicker lines between each of the subkey mod-
ules represents the two subkey variables KA and KL.

Fig. 7.  Key Agile Single Pipelined Camellia Architecture

3.2 Sub-pipelining

For the sub-pipelining architecture we have added pipelining registers as described in
the section above, but we have also added registers in to the F-Function. These regis-
ters have been added between the S-Function and the P-Function. Further sub-
pipelining can be achieved by adding registers between the S-Function and the XOR
of the F-function, but this has not been done in our implementation.
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3.3 Non-key Agile Fully Pipelined Architecture

The non-key agile fully pipelined architecture is achieved by allowing the same key
for each data transfer, thus the frequency of changing the cipher key is much lower.
The subkeys can be either pre-computed on or off chip, but each subkey must be
stored locally for the encryption pipeline until the arrival of a new cipher key.  For
our implementation we are allowing the subkeys to be pre-computed off the chip but
are stored locally for each round.  In terms of security this is the least secure option
because the key schedule is off chip.  This does mean though that there is less logic
on the FPGA so a higher throughput should be obtainable.

4   Performance Results

We have implemented all the pipelined architectures on a Virtex-II XC2V4000.  The
cores were designed graphically using Xilinx’s System Generator 3.2.  The tool pro-
duced the associated VHDL and project files, which were then synthesised using ISE
5.2.  Both cores were verified using the Camellia test vectors that were submitted to
NESSIE.

The key agile core can run up to a frequency of 127Mhz, which results in a
throughput of 16.3Gbits/sec.  The core requires 5368 slices (23%) of the FPGA and
uses 88 block-RAMs (73%).  By partial sub-pipelining we can increase the through-
put to 17.4Gbits/sec.  This core requires 7837 slices (34%) and 88 block-RAMs
(73%).  Generally comparisons against other encryption cores can be difficult and can
depend on architecture, device, use of such IP as block-RAM, key agility, on-chip
key scheduling, and other such criteria.  Compared to Ichikawa’s [3] implementation
that achieved 6.75Gbits/sec we are nearly 10Gbits/sec faster. The purpose of our non-
key agile core was to find out the throughput cost associated with key scheduling on-
chip but the more important results are the fully pipelined key agile architectures, as
these cores have more of a practical usefulness.

Table 1 shows a list of other known high throughput pipelined block cipher archi-
tectures of the winners put forward by NESSIE as well as the finalists with in the
project.  For implementations that have used block-RAMs we have not included the
efficiency.  It is possible to calculate the extra number of slices that the block-RAMs
would occupy if distributed memory was to be used like in [11], but this sort of cal-
culation doesn’t take into account the extra routing, which would have an effect on
the total throughput and therefore the efficiency.  Also it must be noted that efficiency
measured in Mbps/slice is a measure of how well an implementation uses the slices to
obtain throughput. It is not a measure of how well an implementation efficiently util-
ises the resources with in a FPGA device.  A comparison against the winners and
finalists shows that our implementation is comparable with other implementations.
With regards to the finalists a SHACAL-2 implementation has yet to be done, al-
though we expect the result to be near the SHACAL-1 implementation [8]. Both
MISTY1 [6] and AES [10] provide high throughputs. When the AES uses RAM
based substitution boxes the throughput is lower than the Camellia at 11.77Gbit/sec,
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but is higher when s-boxes are implemented using LUTs.  MISTY1 has a higher
throughput but also has a 208-pipelined delay, whereas our implementation has a 54-
pipelined delay, which includes the block-RAM delay.

Table 1.  Summary of NESSIE block cipher finalists and winners on FPGAs

With regards to the non-key agile implementation, where the key schedule is com-
pleted off-chip, we get an implementation that has a throughput of 23.38Gbit/sec.
The implementation uses 72 block-RAMs (60%) and 4133 slices (17%). This shows
the cost on throughput with regards to key agility. By having the key schedule on-
chip and key agile, costs us in theory 6Gbit/sec.

5   Conclusions

In this paper we present two key agile fully pipelined Camellia encryption cores.  The
partially sub-pipelined implementation offers the fastest Camellia implementation to
date. New secret keys can be received on every clock cycle. We have utilised the
available dual-port block-RAMs for use in the F-Function. We have also shown the
cost throughput when implementing a key agile core.  Camellia is an important block
cipher for future secure systems and this has been proven by NESSIE. We have not
used any algorithm optimisation but this will be the topic for further work with Ca-
mellia. We also intend to fully sub-pipeline the algorithm to achieve a higher
throughput.
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1 Laboratoire Traitement du Signal et Instrumentation,
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Abstract. The paper presents a high performance True Random Num-
ber Generator (TRNG) embedded in Altera Stratix Field Programmable
Logic Devices (FPLDs). As a source of randomness, an on-chip noise gen-
erated in the internal analog Phase-Locked Loop (PLL) circuitry is used.
In contrast with traditionally used free running oscillators, it uses and
extends a recently developed method of randomness extraction based
on two rationally related clock signals. Although it was developed for
the Stratix family, the principle can be easily employed in other digital
devices containing analog PLLs. We use the large flexibility of PLLs em-
bedded in Stratix family to demonstrate the relationship between PLL
and TRNG configuration, the quality of output random bit-stream, and
the speed of the generator. The quality of TRNG output is confirmed
by applying statistical tests, which pass also for a high-speed version of
the generator giving up to 1M random bits per second. The generator
developed for cryptographic applications helps to increase the system
security, but it can also be used in a wide range of other applications.

1 Introduction

The issue of random number generation is becoming crucial for implementation
of cryptographic systems in Field Programmable Logic Devices (FPLDs). Ran-
dom numbers are needed in particular for key generation, authentication pro-
tocols, zero-knowledge protocols, padding, in many digital signature schemes,
and even in some encryption algorithms [1]. In all these applications, security
greatly depends on the quality of the source of randomness. The quality of gener-
ated numbers is proved by passing statistical tests. In addition to good statistical
properties of the obtained numbers, the output of the generator used in cryptog-
raphy must be unpredictable. For this reason, pseudo-random generators easily
implementable in FPLDs, are not suitable for cryptographic applications.

It is well-known that most attacks are directed at the implementations of the
cryptographic algorithms and not at the algorithms themselves. This means that
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special attention should be paid to avoid weaknesses that help the attacker to
break a system. Our aim was to find a solution completely that can be embed-
ded in a modern FPLD. Digital circuits of modern FPLDs include only limited
sources of randomness, e.g. metastability, frequencies of free-running oscillators,
clock jitter, etc. Usually, reliable and fast True Random Number Generators
(TRNGs) based on metastability are very difficult to implement. Free running
oscilators are typicaly used in known FPLD based TRNGs [2,3]. In principle,
TRNGs based on free running oscilators and intrinsic jitter contained in digital
circuits can be used without any additional FPLD resources. Actual implemen-
tations [3] use off-chip components that generaly decrease the cryptographic
security of the implementation. Implementation [2] requires very careful place-
ment of ring oscillator pairs embedded into Xilinx FPLD. It can provide random
bits at speeds up to 0.5Mbit/s with good statistical characteristics. In [4] we
have proposed a novel method of randomness extraction based on two rationally
related synthesized stable clock signals. It was shown that it is well suited for
modern FPLDs with internal analog Phase-Locked Loop (PLL) circuitry (e.g.
Apex, Cyclone or Stratix FPLDs from Altera [5,6]).

In this paper we present deeper analysis of the possible generator’s configura-
tions. In addition, we describe a detailed methodology for the design of TRNG,
so that a reader will get a complete overview of how to set the parameters of the
TRNG for the given requirements. We use the large flexibility of PLLs embedded
in Stratix FPLDs to demonstrate the relationship between PLL and TRNG con-
figurations, the quality of the output random bit-stream, and the speed of the
generator. Although the TRNG was developed for the Altera Stratix family of
devices, the principle can be easily employed in other digital devices containing
analog PLLs.

The paper is organised as follows: in Section 2 we describe the PLL circuitry
as the source of random jitter. Section 3 is dedicated to the basic principle of our
TRNG. In Section 4 we present a general design methodology and propose several
TRNG configurations for evaluation. In Section 5 we show the experimental
results and discuss the features and possible advantages and limitations of the
proposed configurations. Finally, Section 6 presents conclusions and perspectives.

2 PLL Blocks Embedded in Stratix FPGAs

Recent ASICs and FPLDs generate clock frequencies using PLL circuits to mul-
tiply an external low-frequency crystal by an order of magnitude. The analog
variant of the PLL implemented in Altera FPLDs offers a source of unpredictable
randomness applicable in cryptography. Each PLL block can provide at least one
synthesized clock signal with frequency FOUT [5]:

FOUT = FIN
m

n × k
= FIN

KM

KD
(1)

where FIN is the frequency of the external input clock source. The Altera Stratix
devices include two types of PLLs:
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Fast PLL (FPLL): Stratix devices include up to 8 FPLLs. The FPLLs offer
general-purpose clock management with multiplication and phase shifting.
The multiplication is simplified in comparison to EPLL and uses only m/k
scaling factors with a range from 1 to 32 [5]. Input frequency can vary in
dependency on m (for speed grade -5) from 15 to 717 MHz, output frequency
from 9.4 to 420 MHz, and the frequency of the Voltage Control Oscillator
(VCO) from 300 to 1000 MHz.

Enhanced PLL (EPLL): Compared to FPLL, EPLLs have additional con-
figurable features like external feedback, configurable bandwidth, run-time
reconfiguration, etc. The also have an enhanced range of parameters. The
input frequency can vary for a speed grade -5 device from 3 to 684 MHz,
output frequency from 9.4 to 420 MHz and the frequency of the VCO from
300 to 800 MHz. Reference-, feedback- and post-divider values n, m and k
can vary from 1 to 512 (1024 for k) with a 50% duty cycle [5].

2.1 Jitter Generated in Stratix PLLs

In analog PLLs, various noise sources cause the internal VCO to fluctuate in
frequency. The internal control circuitry adjusts the VCO back to the specified
frequency and this change is seen as jitter. Under ideal conditions, the jitter is
caused only by analog (non-deterministic) internal noise sources, and is noted as
an intrinsic jitter. Other possible frequency fluctuations are caused by variations
of supply voltage, temperature, external interference through the power, ground,
or by the internal noisy environment generated by internal FPLD circuits [7].

The size of the intrinsic jitter depends on the quality factor Q of the VCO,
on the bandwidth of the loop filter and on the so-called pattern jitter introduced
by the phase frequency detector. The intrinsic jitter is often given in a peak-
to-peak value or 1-sigma (RMS) value. The 1-sigma value of the jitter (σjit)
depends on the technology and the configuration of the PLL and it can range up
to 100 ps [5,6]. Since the technology of the PLL and the quality of the VCO are
usually defined, a user can change the output jitter directly by modification of
scaling factors (for FPLL and EPLL) and filter bandwidth (only for EPLL), but
also indirectly by the design of the board (separation of the analog and digital
ground, filtering of the analog power supply, etc.).

Since the size of the jitter is very important for our method, we needed
to measure it for various PLL configurations. To reduce the subjectivity of the
board design strategy, we have selected the Altera DSP Development board with
a Stratix EP1S25F780C5 device [8] for jitter measurements and TRNG imple-
mentation. The jitter has been measured similarly in [9] using Agilent Infiniium
DCA 86100B wide bandwidth oscilloscope. We have found that in comparison
to the Nios board with APEX [10] (used as a reference in [4]) the jitter is signifi-
cantly smaller. For example, for the FPLL and the ratio 12/7 the jitter achieves
1-sigma value of about 10 ps (see Figure 1(a)) and for the EPLL and the ratio
139/133 the 1-sigma value of the jitter is about 16 ps (see Figure 1(b)). Note
that this value depends on the PLL settings and the type of power supply filter
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(a) FPLL (b) EPLL

Fig. 1. Jitter of the clock signal (horizontal scale: 200 ps/div)
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Fig. 2. Basic structure of the TRNG

included on the development board, but is never lower than the internal intrinsic
jitter of FPLD.

3 Principle of the PLL-Based TRNG

The basic principle behind our method is to extract the randomness from the
jitter of the clock signal synthesized in the embedded analog PLL. The jitter is
detected by the sampling of a reference (clock) signal using a rationally related
(clock) signal synthesized in the on-chip analog PLL. The fundamental problem
lies in the fact that the reference signal has to be sampled near the edges in-
fluenced by the jitter. The basic structure of the random bitstream generator is
depicted in Figure 2.

Let CLJ be an on-chip PLL-synthesized rectangular clock waveform with
the frequency

FCLJ = FCLK
KM

KD
(2)

where CLK is a reference clock signal and parameters KM and KD defined in
(1) are related to the PLL structure. Signal CLJ is sampled into the D flip-flop
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using a clock signal with frequency FCLK . There are KD rising edges of CLK
signal and 2KM edges (rising and falling) of CLJ waveform during time period

TQ = KDTCLK = KMTCLJ . (3)

It has been shown in [4] that if KM and KD are relative primes, the set of
samples creates an equidistant set of values. The worst-case distance between
the two closest edges of CLK and CLJ during the period TQ is given as

MAX(ΔTmin) =
TCLK

4KM
GCD(2KM , KD) =

TCLJ

4KD
GCD(2KM , KD) (4)

where GCD means Greatest Common Divisor. If KM , KD, and FCLJ are chosen
so that

σjit > MAX(ΔTmin) (5)

we can guarantee that during TQ the sampling edge of CLK will fall at least
once into the edge zone of CLJ (the edge zone means the time interval around
the edge with a width smaller than σjit). Therefore during the period TQ, KD

values of CLJ will be sampled into the D flip-flop and at least one of them will
statistically depend on the random jitter, so the output value q(nTclk) of the
flip-flop will be nondeterministic. In [4] we used delay elements to increase the
probability of overlapping of CLK and CLJ edge zones. In [9] we showed that the
delay line is not needed for known values of jitter, when σjit � MAX(ΔTmin).

The decimated output signal

x(nTQ) = q(nTQ) ⊕ q(nTQ − TCLK) ⊕ . . . ⊕ q(nTQ − (KD − 1)TCLK) , (6)

which is generated at the output of an Exclusive-OR (XOR)-based decimator [11]
as a bit-wise addition modulo 2 (⊕) of samples q(.) sampled with the frequency
FCLK , will be nondeterministic, too.

4 TRNG Architectures Embedded in Stratix FPGAs

As it can be seen in Figure 2, the TRNG can be designed using one or two PLLs,
depending on the position of the switch. Our implementation strategy was to get
the fastest and the best quality generator using a minimum amount of resources
(PLLs). Since the Stratix family contains two types of PLLs, several configura-
tions are possible. Although the most economic solution would be based on the
use of one FPLL (since there are four FPLLs in the selected device), multipli-
cation and division factors of a single FPLL cannot fullfil the implementation
condition (5). However, the extended range of parameters of the EPLL enable
one to build a single-PLL TRNG. For this reason, the following four architectures
of the TRNG implemented in Stratix devices are possible:

1. Two FPLLs (referenced further as configuration A)
2. One FPLL and one EPLL (configuration B)
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3. One EPLL (configuration C)
4. Two EPLLs (configuration D)

To follow our implementation strategy, we have analyzed the influence of
individual parameters of PLLs on the output bit rate and on the sensitivity to
the jitter expressed through the parameter MAX(ΔTmin) defined in (4). Next,
we present relations between the TRNG parameters, which are important in the
TRNG design (note that for a single-PLL configuration, MCLK and DCLK are
equal to one). The PLLs’ output frequencies can be expressed as:

FCLK =
MCLK

DCLK
FCLI (7)

FCLJ =
MCLJ

DCLJ
FCLI =

MCLJDCLK

DCLJMCLK
FCLK =

KM

KD
FCLK . (8)

Since the TRNG requires at least

MAX(ΔTmin) ≈ σjit (9)

or better
MAX(ΔTmin) � σjit (10)

then the first practical design condition is (see equation 4):

GCD(2KM , KD) = 1 . (11)

If condition (10) is not fulfilled, the quality of the random bitstream output can
be enhanced to some extent by the use of the delay elements and D flip-flops
depicted in dashed lines in Figure 2.

Now, let us characterize the relationship between the jitter and the output
bitrate of the TRNG. For the jitter we get:

FCLIMAX(ΔTmin) =
1

4MCLKMCLJ
, (12)

so decreasing MAX(ΔTmin) for fixed FCLI requires maximization of MCLK and
MCLJ . Coefficients DCLK and DCLJ have no influence on it. For the output
bitrate R = 1/TQ = FCLK/KD we get the condition

R =
FCLI

DCLKDCLJ
(13)

so increasing R for fixed FCLI requires minimization of DCLK and DCLJ . Of
course, optimization of (12) and (13) cannot be done independently. There are
system limits expressed by the condition

R

MAX(ΔTmin)
= 4FCLKFCLJ . (14)

The application of the presented analysis of the TRNG design will be illustrated
by several implementation examples given in the following section.
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5 Experimental Results

TRNG architectures presented in Section 4 were tested on an Altera DSP board
with Stratix EP1S25F780C5 FPLDs [8]. Acquired bits were transmitted to the
PC through a parallel port. The complete TRNG design including 1024 x 8-bit
FIFO and a parallel interface controller needs up to 120 Logic Elements (LE)
from about 25000 LEs available in the device. The signal CLK was used as a
clock signal for the control logic and was therefore limited to about 250 MHz
(although the output frequency of the PLL can be higher). The TRNG archi-
tectures were described in VHDL and implemented using the Altera Quartus II
development system, version 3.0 SP2. Because the jitter depends on an analog
process, the real TRNG output cannot be simulated. In order to test the basic
quality of different versions of TRNGs, we evaluated the following parameters
(all of them were computed for the record length of N = 1, 000, 000 bits):

1. Bias computed as

bias = E[b(n)] − 0.5 = E[b] − 0.5 ∼=
N1

N
− 0.5 (15)

where N1 is the number of b(n) = 1 for n = 0, 1, . . . , N − 1. For a good
TRNG, the bias should converge to 0 (with deviation ≈ ±3/

√
N ).

2. Maximal autocorrelation coefficient computed as

ρmax = max{|corr(bk)|, k = 1, 2, . . . , 100} (16)

where

corr(bk) = corr(b(n), b(n − k)) = (17)

=
E

[{
b(n) − E[b(n)]

}{
b(n − k) − E[b(n − k)]

}]
√

var(b(n))var(b(n − k))

var(b(n)) = var(b) = E[{b − E[b]}2] = E[b]{1 − E[b]} (18)

Based on [1,11] it can be shown that for a good TRNG (with bias → 0 ) and
a finite record length N the corr(bk) follows standard normal distribution
N(0, 1) and the following condition should be fulfilled (value χ = 2.576 is
from P (X > χ) = α = 0.01/2 valid for N(0, 1) distribution)

ρmax → 2.576√
N

= 0.002576 (19)

3. Standard FIPS140-2 statistical tests [12] that analyze 20, 000 bit records
and define thresholds to assess TRNG randomness. FIPS140-2 tests in-
clude Monobit, Poker, Run and Long runs tests [1,13]. We analyzed 100
sequences for each tested TRNG architecture and evaluated relative number
(tM , tP , tR, tL) of sequences that passed each test. A good TRNG should
pass all FIPS140-2 tests so that tNIST = tM tP tRtL = 1.
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Table 1 includes parameters and results for selected TRNG architectures.
As could be expected, the best output bitrate and quality (expressed through
the bias, ρmax and tNIST ) are obtained using a TRNG configuration with two
EPLLs. Since the use of the delay line (from Figure 2) could hide quality differ-
ences between configurations, it has not been used to generate the results.

Table 1. Configuration parameters and quality evaluation of the tested TRNGs

MAX
Conf. PLL1 PLL2 Final ΔTmin R σjit Bias ρmax tNIST

Type KM KD Type KM KD KM KD [ps] [kb/s] [ps]

A Fast 12 7 Fast 25 12 144 175 10.4 952.4 10 -0.358 0.043 0
B Enh. 43 7 Fast 25 12 516 175 2.9 952.4 23 0.054 0.023 0
C Enh. 212 207 - 1 1 212 207 14.7 386.5 12 -0.003 0.012 0.96
D Enh. 43 7 Enh. 31 10 430 217 2.3 1142.9 13 0.002 0.003 1

To emphasize the effect of the number of delay elements on the quality of
the generated bitstream, we have chosen a lower quality TRNG (configuration
A). The results presented in Table 2 show that if more than two elements are
used, the bias and correlation coefficient are significantly reduced. Statistical
parameters expressed through the parameter tNIST are less stable (below seven
delay elements), because MAX(ΔTmin) in configuration A and the jitter have
comparable size.

Table 2. Quality evaluation of configuration A for different number of delay elements

# of elements Bias ρmax tNIST

0 -0.358 0.0433 0
1 0.175 0.011 0
2 0.024 0.002 0.007
3 0.030 0.003 0
4 -0.001 0.002 1
5 -0.021 0.003 0.014
6 -0.027 0.002 0
7 0.000 0.002 1
8 0.007 0.003 0.98
9 0.000 0.003 1

The influence of the parameter MAX(ΔTmin) (sensitivity to the jitter) on
the quality of generated bitstream can be seen in Table 3. We use configuration
A with eight delay elements as a reference, but by changing multiplication and
division factors of both FPLLs we obtain various sensitivities and speeds of the
generator. It can be seen that, in spite of the use of the delay line, the quality of



High Performance True Random Number Generator in Altera Stratix FPLDs 563

the output bitstream is lower if MAX(ΔTmin) is bigger than the jitter (see last
two lines of the Table 3).

We can conclude that the best performance TRNG in Stratix family can be
obtained using two EPLLs. Usage of the delay elements can further improve the
quality of the output. The final speed of the generator (more than 1Mbit/s) is
much higher than that presented in [4], while the quality remains comparable.

Table 3. Quality evaluation of configuration A with eight delay elements for different
multiplication and division coefficients

MAX
Conf. PLL1 PLL2 Final ΔTmin R σjit Bias ρmax tNIST

Type KM KD Type KM KD KM KD [ps] [kb/s] [ps]
A1 Fast 12 7 Fast 25 12 144 175 10.4 952.4 10 0.000 0.002 1
A2 Fast 12 7 Fast 23 12 120 161 11.3 1142.9 12 0.002 0.003 1
A3 Fast 12 7 Fast 17 12 72 119 15.3 1904.8 11 -0.007 0.003 0.98
A4 Fast 12 7 Fast 11 12 60 77 23.7 2285.7 14 0.133 0.032 0
A5 Fast 10 7 Fast 9 12 50 63 34.7 2285.7 15 -0.144 0.003 0

In order to demonstrate the quality of the proposed TRNG, we performed
more strict statistical tests for the best version of the TRNG - configuration D,
with eight delay elements. There are some well-documented general statistical
tests that can be used to look for small deviations from an ideal TRNG [12],
[13]. A very good TRNG should pass many of these tests. We performed testing
with the NIST test suite [12] including the latest known corrections [14]. Our
NIST statistical tests were performed on 1 Gigabit of continuous TRNG output
records and followed the testing strategy, general recommendations, and result
interpretation described in [12]. We have used a set of 1024 1-Megabit sequences
produced by the generator and we have evaluated the set of P -values at a signifi-
cance level α = 0.01. We did not find any detectable deviations for the ensemble
of 1024 1-Megabit records. Results of these tests are not included in the paper
due to space limitations.

6 Conclusions

In this paper we have described the methodology and design of high performance
PLL-based true random number generators embedded in modern FPLDs. We
used the large flexibility of the analog PLLs embedded in the new Altera Stratix
FPGA family to demonstrate the relationship between PLL parameters and
TRNG configuration, the quality of the output random bit-stream, and the speed
of the generator. The high quality of TRNG output was confirmed by applying
special statistical tests, which are passed even for the high-speed version of the
generator delivering more than 1M random bits per second. For the first time it
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was experimentally confirmed that delay-line elements can improve the quality
of TRNG output if PLL jitter is very small.

The proposed solution is very cheap, uses few logic resources and is faster
than comparable methods. Although the functionality of the proposed solution
has been demonstrated for the Altera Stratix family, the same principle and
design methodology can be used for all recent high-performance ASICs or FPLDs
that include an on-chip reconfigurable analog PLL. The generator developed for
embedded cryptographic applications helps to increase the system security, but
it can also be used in a wide range of other applications.

Acknowledgments. This work has been done in the frame of the project
CryptArchi included in the French national program ACI Cryptologie (project
number CR/02 2 0041) and the project VEGA 1/1057/04.
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Abstract. In this article we present a compact and efficient co-processor
that calculates the Advanced Encryption Standard (AES). It implements
the whole functionality of the AES algorithm: all key lengths (128-bit,
192-bit, and 256-bit) are supported for both, encryption and decryption.
Furthermore, it supports the Cipher Block Chaining mode. Due to an
innovative AES State representation the complete AES co-processor is
well suited for low-end FPGAs. The integrated AMBA interface facili-
tates the integration of the co-processor in System-on-Chip designs too.
An implementation on a Xilinx Virtex-E FPGA device uses only 1,125
CLB slices and no block RAMs. Our FPGA implementation reaches a
throughput of 215 Mbps at a clock frequency of 161.0 MHz.

1 Introduction

The National Institute of Standards and Technology (NIST) selected the
Rijndael algorithm among several other algorithms as the Advanced Encryption
Standard (AES) in October 2000. In winter 2001, the AES algorithm became
the Federal Information Processing Standard FIPS-197 [1].

Due to the increasing importance of reconfigurable devices, numerous FPGA
AES implementations have been published within the last years. These imple-
mentations mainly focus on high throughput rates [4,5]. By using techniques
like loop unrolling and pipelining, they are able to report throughput rates up
to 12,160 Mbps [4]. Applying such techniques leads to AES hardware implemen-
tations that require a huge amount of FPGA resources that are only available
for expensive devices and can only be used for high-end applications. Consid-
ering low-end applications, high throughput rates are not always required (e.g.
wireless communications) and high-end FPGAs are too expensive.

In this article we present a new AES architecture that is supported by most
of the FPGA product-families and can be implemented using inexpensive low-
end FPGAs. It is the first known AES FPGA implementation that does not
require on-chip block RAMs. Besides supporting the complete AES standard,
it features the Cipher Block Chaining mode (CBC). The design relies on an
� The work described in this paper has been supported [in part] by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
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unconventional but effective hardware architecture that was conceived to map
efficiently on reconfigurable hardware like FPGAs from Xilinx [12]. An innovative
AES State representation and highly optimized VHDL code—without target
specific extensions—helped to obtain a small circuit with a high maximum clock
frequency.

The remainder of this article is structured as following: a short description
of the AES algorithm is given in Section 2 and Section 3 presents the proposed
architecture and discusses design considerations. Section 4 introduces the basic
features of FPGAs we exploited for our implementation. Finally, we present
results in Section 5 and conclusions are drawn in Section 6.

2 The AES Algorithm

The AES algorithm is a symmetric block cipher that encrypts 128-bit plaintext
data with a 128-bit, 192-bit, or 256-bit cipher key [1]. As other symmetric ciphers,
AES applies a so-called round function iteratively to the plaintext to compute
the ciphertext. The number of iterations (Nr) depends on the key-length: 10
rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit
keys. The round function consists of the transformations SubBytes,ShiftRows ,
MixColumns, and AddRoundKey . An extra round key for each round is used for
the key-dependent transformation AddRoundKey . The round keys are derived
from the cipher key with the key-expansion function. Figure 1 depicts the AES
dataflow, the round-function transformations for encryption, and reveals that
the 128-bit State is organized as a 4 × 4 matrix of bytes.
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Fig. 1. AES dataflow (left) and round-function transformations (rigth) for encryption

The plaintext input to the AES algorithm becomes the initial State. During
the initial key addition the plainttext is added with the cipher key. This is
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followed by iteratively applying the round function to the State (normal round).
The last step of the AES algorithm it the final round that differs slightly from the
normal round by omitting the MixColumns transformation. After transforming
the State during the final round, the State holds the according ciphertext that
is the output of the algorithm.

All intermediate 128-bit results are called State too. Each transformation of
the round function transforms the 128-bit State into a modified 128-bit State.
SubBytes, the only non-linear operation of AES, is a multiplicative inversion in
GF (28) followed by an affine transformation. This function is applied to each
byte o the State individually. ShiftRows rotates each row of the State by an
offset equal to the row index, and MixColumns is a constant coefficient multi-
plication of each column with coefficients that are elements of GF (28). Finally,
the AddRoundKey transformation is the bit-by-bit addition of data and round
key. This addition corresponds to an XOR-operation.

Each iteration of the round function requires a 128-bit round key for the
AddRoundKey transformation. The round key is derived from the cipher key
by applying the key-expansion function [1]. This function is based on the Sub-
Bytes transformation and simple XOR-operations. Obtaining the initial round
key requires no transformations: the first 128 bits of the cipher key are used for
the initial key addition. All subsequent round keys are iteratively derived from
its predecessor.

Decryption is done by inverting the process of encryption: the round itera-
tions are executed in the reverse order. This requires to generate round keys in re-
verse order too. Even the sequence of the round functions (SubBytes, ShiftRows ,
MixColumns, AddRoundKey) is reversed and their inverse functions are applied:
AddRoundKey , InvMixColumns, InvShiftRows, and InvSubBytes. AddRound-
Key requires no extra inverse function because the XOR-function is its own
inverse.

Several modes of operation are defined for symmetric block ciphers [2]. Two
common modes are the Electronic Codebook mode (ECB) and the Cipher Block
Chaining mode (CBC). ECB is the simplest mode. It applies the cipher function
to the plaintext blocks individually. This mode is not recommended to encrypt
large quantities of data because repeated input blocks will produce the same
output for a given key. The CBC mode alters each input block by combining the
result of the previous cipher block with the current input block. This prevents
repeated blocks to produce the same output.

3 Architecture of the AES Co-processor

This section describes the architecture of the AES co-processor. Starting with a
swift overview, we will present details to highlight some innovative improvements
that make it possible to come up with an efficient AES FPGA implementation.
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3.1 Related Work

Gaj et al. [4] published the fastest known FPGA implementation. For encryption
and decryption with 128-bit keys, a throughput of 12,160 Mbps on a Xilinx Vir-
tex XCV1000BG560-6 device is reported. McLoone et al. [5] achieve a through-
put of 6,956 Mbps for 128-bit keys only. They also presented encryption engines
for 192-bit or 256-bit keys with accordingly lower throughput. Their combined
encryption and decryption implementation can handle 128-bit keys and achieves
a throughput of 3,239 Mbps on a Xilinx Virtex-E XCV3200E-8CG1156 device.
The third implementation published by Dandalis et al. [7] also provides encryp-
tion and decryption for 128-bit keys. They achieve a throughput of 353 Mbps
on a Xilinx Virtex XCV1000BG560-6 device. Fischer et al. [6] published a non-
pipelined design supporting encryption and decryption for 128-bit keys. They
report a throughput of 451 Mbps of their fast configuration and 115 Mbps for
an economic configuration. A drawback of their design is the missing on-chip
round-key generation. Chodowiec et al. [8] presented an implementation for low-
end devices. Using only few resources they achieve a throughput from 139 Mbps
up to 166 Mbps depending on the used FPGA device.

All implementations (except [6,8]) use a considerable amount of hardware
resources. For instance, [5] requires 138 block RAMs for 256-bit keys. This de-
mands the use of expensive million-gate FPGA devices.

As shown above, most published hardware implementations focus on high
throughput rates and do not provide a non-parameterizable design to support
the complete AES standard. Furthermore, the high throughput implementations
[4,5] do not support the Cipher Block Chaining mode (CBC).

3.2 Architecture

Basic components of the AES co-processor, as shown in Fig. 2, are the AMBA
APB interface [3], the data unit, the key unit, and the control unit. The key
unit calculates the key-expansion function. All round keys are pre-calculated
and stored in the key unit. Pre-calculated round keys allow fast encryp-
tion/decryption of different data blocks for the same cipher key because no
additional key expansion is required. The data unit holds the State and performs
all AES transformations: AddRoundKey , (Inv)SubBytes, (Inv)ShiftRows and
(Inv)MixColumns. When encryption or decryption has completed, the ciphertext
(plaintext in case of decryption, respect.) is stored in the data unit. The control
unit receives commands from the AMBA interface and generates control signals
for all other modules. In addition to control round-key calculation, encryption
and decryption, it also sequences data loading and unloading.

The architecture is similar to the architecture presented in [9]. Differences are
a modified State representation and a modified round-key calculation scheme.
Due to a non-pipelined approach, the same performance for all modes of oper-
ations (ECB and CBC) is reached. Next, we describe the AES data unit, the
AES State representation, and the key unit in detail.



A Universal and Efficient AES Co-processor 569

AMBA 

Interface

(APB)

Data 

Unit
Key

Unit

Control Unit

data in

data out

Fig. 2. Architecture of the AES co-processor

Data Unit. The data unit, schematically depicted in Fig. 3, stores the State, all
intermediate results of the round function applied to the State and the output
data when encryption or decryption has completed. The major difference to all
other published AES implementations is the innovative State representation that
consists of two States. One State contains the actual State values and the other
State stores newly calculated values. Figure 3 depicts the two States, referred to
as StateA and StateB. In each cycle, 32 bits (one row or one column) of either
StateA or StateB are altered. Using a second State provides a lot of benefits
without the need of additional recourses: (Inv)ShiftRows comes for free and no
State transposition between column and row operations is required.

Storage elements in FPGAs can be efficiently implemented by using syn-
chronous RAMs because the basic logic elements of FPGAs, called slices, can be
configured as 16 × 1 bit synchronous RAM. Two slices provide 16 × 1 bit syn-
chronous dual-port RAM functionality (see Section 4). Dual-port RAMs allow
concurrent reading and writing to the RAM. Due to these technology features,
the State-RAM as depicted in Fig. 3 is implemented as four slices of 8 × 8 bit
synchronous dual-port RAMs to allow addressing the slices independently.

The data unit performs all transformations of the round function: (Inv)-
ShiftRows, (Inv)SubBytes, (Inv)MixColumns and AddRoundKey . AddRound-
Key and (Inv)MixColumns are applied to the State column-by-column, whereas
(Inv)ShiftRows and (Inv)SubBytes are applied to the State row-by-row. Due to
the slice architecture of the RAM that holds the State, it is not possible to
read/write from/to the RAM column-by-column. Hence, a transposition of the
State is necessary if a row-oriented operation follows a column-oriented oper-
ation, or vice versa. Transposition would require a reorganization of the State
before further operations can be performed. By using two States, transposition
can be implemented by accordingly addressing the State-RAM. Furthermore,
(Inv)ShiftRows can be combined with transposing the State. As a consequence
of this, (Inv)ShiftRows and transposition come for free. In the sequel we describe
the memory organization and State transposition for encryption. The same ap-
proach can easily be modified for decryption.

When a row-oriented operation follows a column-oriented operation (or vice
versa), the State must be transposed. Combining row and column transforma-
tions minimizes the number of required transpositions: ShiftRows is combined
with SubBytes and AddRoundKey is combined with MixColumns (see Fig. 3).
This approach requires only one transposition per round. Encryption requires
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Fig. 3. Architecture of the data unit and State-RAM

SubBytes followed by ShiftRows . Since ShiftRows does not affect the byte val-
ues and SubBytes is applied to each byte of the State individually, the order of
both operations does not matter. This fact eases the address generation for the
State-RAM.

For explaining the State transposition we consider the State as 4 × 4 matrix:
S = (si,j)i=0..3

j=0..3. The ShiftRows transformation described in [1] can then be
expressed as follows:

S′ = ShiftRows(S) = (si,j−i mod 4)i = 0..3
j = 0..3 . (1)

If we replace the State by the transposed State, we obtain:

S′T = ShiftRows(ST) = (si+j mod 4,j) i =0..3
j = 0..3 . (2)

With the result of (2) the addressing of the StateB-RAM can be determined: the
indices (i, j) must be substituted with (i + j mod 4, j). Due to the even number
of AES rounds for all key lengths, ShiftRows is always applied to StateB only.
Thus, the resulting index tuples can be directly mapped to the RAMs. The first
part of the tuple index specifies the RAM slice and the second part specifies the
RAM address. Since we operate on StateB, we must add an offset of 4 to the
index value to get the correct address. Figure 4 shows the transposition of the
State, including ShiftRows and SubBytes for encryption.

Implementation of (Inv)SubBytes and (Inv)MixColumns. The (Inv)-
SubBytes transformation is based on [10]. One difference is that the
byte inversion in GF(28) is implemented by using a synchronous ROM.



A Universal and Efficient AES Co-processor 571

4

5 5

6 6 6

7 7 7 7

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

+

SubBytes

S
ta

te
A

S
ta

te
B

4 4 4 4

5

6 6

7 7 7

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 5

SubBytes

4 4 4

5 5 5 5

6

7 7

0 1 2 3

4 5 6 7

2 2 2 2

3 3 3 3

SubBytes

4 4

5 5 5

6 6 6 6

7

0 1 2 3

4 5 6 7

8 9
1

0

1

1

3 3 3 3

SubBytes

Fig. 4. ShiftRows and SubBytes for encryption

(Inv)MixColumns is similar to the architecture presented in [11]. For further
details refer to [10,11].

Key Unit. The key unit holds the round keys and performs the key-expansion
function. For each new cipher key, the round keys are pre-calculated to allow
rapid encryption of subsequent data blocks for the same cipher key—no further
key expansion has to be done. Because decryption uses the encryption round-
keys in the reverse order, the key-expansion function must only be calculated
once. Hence, the round keys stored in the key store are used for both, encryption
and decryption.

The key-expansion function needs the SubBytes functionality. To keep the
required hardware resources small, SubBytes is shared between key unit and
data unit (multiplexor-input sbox o in Fig. 3). This can be done easily because
the four SubBytes units are not used by the data unit during the calculation of
the round keys.

The memory of the key unit is separated from the memory of the data unit,
because the access of a common memory would be a throughput bottleneck. The
key store is implemented as a 64 × 32 bit synchronous single-port RAM.

An innovative aspect of our implementation is that the key unit can han-
dle 128-bit, 192-bit and 256-bit keys with minimal additional hardware require-
ments. Supporting all key lengths increases the needed hardware resources for
the key unit by only 7.8%. The size of the key memory for 256-bit keys is the
same as for 128-bit keys. For 128-bit keys, the key-expansion function derives 44
32-bit round-key parts from the cipher key. This requires a 64 × 32 bit RAM.
256-bit keys produce 63 32-bit round-key parts fitting the 64 × 32 bit RAM.

4 Exploiting FPGA Features

The basic building blocks of Xilinx FPGAs are Configurable Logic Blocks (CLBs)
[12]. CLBs are arranged in a rectangular matrix and are wired by programmable
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interconnect. A CLB contains four logic cells (LUTs) that can be programmed to
have different functionality: combinational logic (an arbitrary Boolean function
of four inputs), logic and a register, or synchronous 16 × 1 bit RAM. Combin-
ing two logic blocks allows to implement a 16 × 1 bit dual-port RAM. Besides
CLBs, Xilinx FPGAs offer block RAM that can store 4096 bits. Block RAM
can be configured at ratios between 4096 × 1 and 256 × 16 and may have dual-
port functionality. Block RAMs are also suitable for implementing synchronous
ROMs.

When multiple, fast, and small RAMs are required, distributed (LUT-based)
RAMs offer an ideal solution. The benefit is that the RAM cell is adjacent to
the logic and thus, the wiring from the logic to the RAM is negligible. This
improves the timing behavior. Multiple distributed RAMs can be merged to
either enlarge the address space or the word width. Enlarging the word width
is unproblematic (LUTs in parallel), but enlarging the address space can cause
performance loss. For instance, a 32 × 1 bit RAM requires two 4-input LUTs
whose outputs need to be multiplexed. This leads to a worse timing behavior
and an increased amount of hardware resources. In such cases it makes sense to
use block RAMs instead of using distributed RAMs.

When customizing hardware for FPGAs, it is in general more efficient to
use RAM instead of registers for storage because the cost of RAM is relatively
low in comparison to storing information in registers. For instance, the State-
RAM (see Section 3.2) would require 31.2 times more hardware resources when
implemented with registers. As stated in Section 3.2, the second State of the
State-RAM comes for free. This is due to the fact that a RAM with a depth
between 1 and 16 requires always one 4-input LUT. So, the second State causes
no additional cost.

Using synchronous RAMs and ROMs provides more flexibilities for the imple-
mentation. Depending on the target technology and available on-chip resources,
it can be chosen whether distributed RAM or block RAM should be used for
implementing the storage elements.

ALTERA devices do not support distributed RAM but provide Embedded
System Blocks (ESBs) that provide the same functionality as block RAMs in
XILINX devices. Hence, our design is also suitable for ALTERA FPGAs.

5 Implementation Results and Comparisons

This section compares the proposed AES co-processor with the works referred
to in Section 3.1. In order to provide comparable results, we implemented our
co-processor on a Xilinx Virtex-E XCV1000EBG560-8 device.

The performance results given in Table 1 are for the ECB mode. Most of these
implementations claiming high throughput rates will have similar performance
figures when operating in CBC mode. The CBC mode is strictly recommended
and commonly used for encrypting high-speed data streams (e.g. as it is used
for encrypting data transfers over networks) and hence, the above-listed high
throughput rates lose their significance.
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Table 1. Hardware resources and throughput comparison

ECB mode
Work Device #CLB-slices #BRAM Throughput

[Mbps]
Gaj et al. [4] Xilinx XCV1000 12,600 80 12,160
McLoone et al. [5] (I) Xilinx XCV812E 2,222 100 6,956
McLoone et al. [5] (II) Xilinx XCV3200E 2,577 112 5,800
McLoone et al. [5] (III) Xilinx XCV3200E 2,995 138 5,000
McLoone et al. [5] (IV) Xilinx XCV3200E 7,576 102 3,239
Dandalis et al. [7] Xilinx XCV1000 5,673 ? 353
Fischer et al. [6] (I) FLEX 10KE200-1 2,530 24 451
Fischer et al. [6] (II) ACEX 1K50-1 1,213 10 115
Chodowiec et al. [8] Xilinx XC2S30-6 222 3 166
Our proposal Xilinx XCV1000E 1,125 0 215

[5]: enc.: (I)AES-128, (II)AES-192, (III)AES-256, enc./dec.:(IV)AES-128
[6]: AES-128 enc./dec.: (I) fast configuration, (II) economic configuration

As shown in Table 1 our implementation is the only one that does not require
any block RAMs and in contrast to most of the other implementations, it sup-
ports the complete AES standard. Furthermore, the presented AES co-processor
supports the CBC mode and is equipped with a 32-bit AMBA APB interface
that eases the integration with processors used in System-on-Chip designs [3]. If
we do not consider the CBC mode and the AMBA bus interface, our approach is
still comparable with the above-listed works but we would require less hardware
resources (-26 %).

Our implementation utilizes 9.16% of the available logic cells on a Xilinx
Virtex-E XCV1000EBG560-8 device. 90.8% of the logic resources and 100% of
the on-chip BRAMs can be used by other circuits like a LEON2 or an ARM
processor. For a stand-alone application a low-end FPGA (e.g. Xilinx SpartanII
XC2S100-6) is sufficient for implementing the complete AES co-processor— the
other approaches (except [8]) do not fit on a SpartanII device. The high through-
put designs do not support this flexibility and require expensive million-gate
FPGAs.

The maximum clock frequency on a XCV1000 FPGA is 161 MHz. At this
frequency, a throughput of 215 Mbps for AES-128, 180 Mbps for AES-192, and
156 Mbps for AES-256 is achieved for both ECB mode and CBC mode.

6 Conclusion

In this article we presented a compact AES co-processor for low-end FPGA
devices. It implements the whole functionality of AES. In addition to covering
the complete AES standard it supports the Cipher Block Chaining mode (CBC).
We have shown that due to an innovative State representation the co-processor is
well suited for inexpensive low-end FPGAs—most of the competing approaches
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require expensive multi-million gate FPGAs. An implementation on a Xilinx
Virtex-E device uses only 1,125 CLB-slices and no block RAMs. Our FPGA
implementation reaches a throughput of 215 Mbps at a clock frequency of 161
MHz for encryption and decryption. The AES co-processor has a convenient
32-bit interface that facilitates the integration in System-on-Chip designs too.
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Abstract. Field-Programmable Gate Arrays (FPGAs) have lately be-
come a popular target for implementing cryptographic block ciphers, as
a well-designed FPGA solution can combine some of the algorithmic flex-
ibility and cost efficiency of an equivalent software implementation with
throughputs that are comparable to custom ASIC designs. The recently
selected Advanced Encryption Standard (AES) is slowly replacing older
ciphers as the building block of choice for secure systems and is well
suited to an FPGA implementation. In this paper we explore the design
decisions that lead to area/delay tradeoffs in a single-core AES FPGA
implementation. This work provides a more thorough description of the
defining AES hardware characteristics than is currently available in the
research literature, along with implementation results that are pareto
optimal in terms of throughput, latency, and area efficiency.

1 Introduction and Motivation

Cryptography is one of the strongest tools for controlling against many kinds
of security threats [1]. These algorithms and techniques form the basic building
blocks of secure systems that serve a variety of purposes, including cryptographic
hashing, secure key exchange, and digitally signing documents. Secure storage
and transmission solutions are needed for all types of platforms, ranging from
embedded devices where area is key to massively parallel machines that empha-
size high performance. Such a diversity of requirements motivates the exploration
of a wide range of cryptographic implementation characteristics.

Field-Programmable Gate Array (FPGA) technology is becoming a popular
target for designing cryptographic ciphers, as witnessed by the wealth of recent
research [2,3,4,5,6] and commercial [7] implementations. This increased interest
in FPGAs from the cryptographic community has been driven by several factors:

– the individual operations required by this class of algorithms are generally
simple in terms of required logic; as such any hardware implementation can
increase efficiency by reducing the overhead introduced by software.
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Fig. 1. Top-down block cipher design methodology

– the development process for FPGAs is extremely effective in terms of time-
to-market and overall cost when compared to that of custom ASIC designs.

– the reconfigurable nature of FPGAs is especially attractive to cipher design-
ers as it gives them the ability to apply modifications to the implemented
algorithm after the initial time of programming [8]. This feature can be used
to switch between a set of cryptographic algorithms at runtime [9], to ad-
dress a freshly-discovered flaw in the cipher algorithm, or to optimize the
architecture for a fixed range of inputs [5].

Much recent work in this field has focused on maximizing the theoretical
throughput for these cryptographic block ciphers, including both the Data En-
cryption Standard (DES) [4] and the newly-introduced Advanced Encryption
Standard (AES) [2,3,6]. The key distinction between the contributions of this
paper and those implementations proposed previously stems from our top-down
design methodology (Fig. 1) that allows for area and delay tradeoffs to be man-
aged at several levels of the design hierarchy using a single parameterizable AES
core.

As can be seen in Fig. 1, many current block ciphers can be described as a
series of logic operations (rounds) that are repeated in an iterative fashion. At
the inter-round level, decisions can be made as to how each round is laid out in
terms of classical optimizations such as unrolling, tiling, and pipelining. Internal
to each round structure there are intra-round decisions, which can include trans-
formation partitioning and internal pipelining. Also, when considering FPGA
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hardware, technology mapping is especially important, as these decisions can
greatly influence designs by allocating specialized resources towards individual
computations. Ultimately, making these decisions at each level of the design hi-
erarchy provides much additional control over the performance and area charac-
teristics of the resulting AES FPGA implementation. Our experimental results
using Xilinx Virtex-II technology demonstrate that the careful application of
this concept can lead to different designs with small area, high throughput, and
low latency. One such implementation obtained a maximum throughput of 23.57
Gbps, which to the authors’ knowledge is greater than any previously published
value.

The remainder of this paper is organized as follows. In Sect. 2, an overview
is provided of the AES encryption algorithm, with an introduction to the or-
ganization and functionality of the individual transformations from a hardware
designer’s perspective. Section 3 explores the key design decisions that are pos-
sible at various levels in the AES FPGA implementation process, discussing
how these choices can result in significant area and delay tradeoffs. Experimen-
tal results are presented in Sect. 4, demonstrating how a single soft core can
be fine-tuned to implement optimized designs in terms of performance, area,
and efficiency metrics. Finally, the paper is concluded in Sect. 5 with a broad
summary of some relevant ideas that require further exploration.

2 Overview of AES

In 1997, the U.S. National Institute of Standards and Technology (NIST) an-
nounced an open international competition for cipher designs to replace the aging
DES as the federal information processing standard. The fifteen submissions to
become the new AES standard were publicly evaluated based on algorithmic
security, simplicity, and suitability to both hardware and software implementa-
tions. Among these submissions was the Rijndael algorithm, which was devel-
oped by Vincent Rijmen and Joan Daemen [10]. As it was well fitted to the
above factors, Rijndael was selected as the AES competition winner in 2000.

AES is what is known as a symmetric key block cipher, block cipher meaning
that it operates on fixed-length blocks of data at a time, symmetric key meaning
that the same key is used during encryption and decryption [1]. Although the
original Rijndael specification allowed for both blocks and keys of various lengths,
AES is restricted to 128-bit blocks and keys of 128, 192, or 256 bits. In symmetric
block ciphers, the algorithms for encryption and decryption using various key
lengths often contain quite a large amount of similar features. Consequently,
little context will be lost by restricting our focus for the remainder of this paper
on AES encryption using a 128-bit key (AES-128E).

The structure of AES-128E is as follows (see Fig. 2). The initial 128-bit key
is fed into the KeyExpansion function which produces separate keys for each of
the 10 required rounds. These rounds combine their scheduled keys with a two
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Fig. 2. Algorithmic view of AES-128E

dimensional representation of the input (the “state”) using various transforma-
tions [11]:

– SubBytes calculates a non-linear function independently on each byte of
the state. The substitution used by this transformation can be more simply
represented as a lookup table which is referred to as an “S-box”.

– MixColumns separately modifies each column of the state in what is essen-
tially a matrix multiplication operation. Fortunately, in the 8-bit finite math-
ematical field relied on by this class of block ciphers, multipliers can be
replaced with simpler fixed-length shifts and XOR operations.

– ShiftRows cyclically shifts the bytes in the last three rows of the state. As
this function requires no computational hardware it can be implemented on
an FPGA as simple wiring.

– AddRoundKey adds the round key to the state using a bitwise XOR operation.

For those interested in a more thorough description of the AES algorithm,
both the official AES standardization documentation [11] and the developers’
own writings [10] are informative reads.

3 Design Space Exploration

As the effects of FPGA design decisions on performance and area are often
specific to individual architectures, it is necessary to further refine the FPGA
target before proceeding in the analysis. For our experiments, we selected the
Xilinx Virtex-II device family [12]. Like most Xilinx FPGAs, the Virtex-II de-
vices can be best described as a two-dimensional array of Configurable Logic
Blocks (CLBs) that are surrounded by I/O resources and routed together using
a programmable interconnect mesh. These CLBs contain functional elements for
implementing both combinatorial and synchronous logic, and also include some
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Fig. 3. AES-128E design decisions: unrolling, pipelining, and partitioning

sequential storage. Apart from the CLBs, Virtex-II FPGAs also contain a dedi-
cated amount of dual-ported Block SelectRAM (BRAM) memory modules, each
of which can hold up to 18 Kbits of data.

Given a target FPGA similar to the Virtex-II, the first design decision that
needs to be made is in regards to the KeyExpansion routine. While the op-
erations required to generate a key schedule from the original input key are
not complicated, it makes intuitive sense to consider splitting this functionality
into smaller KeyExpansion modules that would be placed alongside the actual
round operations, in what is known as online key generation. This is due to the
fact that the round key is not used until the final operation in each round (the
AddRoundKey operation).

3.1 Inter-round Layout

Given that AES-128E is, at its highest level, essentially an iterative looping
structure, it is interesting to look at the effect of some classical loop layout
optimizations. Unrolling replaces a loop body with N copies of that loop body
(Fig. 3). As the AES-128E algorithm is a single loop that iterates 10 times, any
unrolling amount 1 ≤ N ≤ 10 is valid, with N = 1 corresponding to the original
looping case and N = 10 specifying a fully unrolled implementation.

Unrolling the rounds makes them highly amenable to pipelining, which is a
technique that increases the number of blocks of data that can be processed
concurrently. As can be seen in Fig. 3, pipelining in FPGA designs can be
implemented by inserting registers between the modules that need to operate
independently. Different implementations can be created that split the unrolled
rounds into a certain number of pipeline stages, with a similar restriction as
before that each stage should be of equal length.

The main advantage of unrolling and pipelining is that it increases the par-
allelism of the AES encryption algorithm, which should have a positive effect on
throughput. It is also possible that a fully unrolled but not pipelined implemen-
tation will have a lower latency than in its iterative form. These performance
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advantages do not come without a price, as unrolling will increase the required
FPGA resources by approximately a factor of N ; registers used for pipelining
will also consume CLBs.

3.2 Intra-round Layout

The clock frequency that FPGAs can operate at is dependent on the critical
logic path of the design. As such, the unrolling and pipelining of the rounds as
discussed in the previous section will have little positive effect on the critical
path when compared to an iterative round structure. In general, this maximum
delay will be dependent on the individual transformations inside each round.

Fortunately, these sub-modules are also eligible for pipelining. Figure 3 shows
an example of this transformation pipelining, where each of the AES transfor-
mations are represented by their initials (e.g. SB for SubBytes). This will reduce
the critical path to that of the individual transformation with the greatest delay.
We can improve upon this value even further by partitioning some of the trans-
formations. Assuming that the KeyExpansion operation is performed online, it
becomes a prime candidate for partitioning as it has the most slack between
the time of its valid input and expected output. After that point it is likely
that the maximum delay path will shift to another transformation, which can
often also be partitioned. The level of partitioning can be tuned by initially cre-
ating highly-partitioned versions of the AES block transformations, and then
connecting them with a variable number of pipeline registers.

When combined with round pipelining, transformation partitioning can lead
to extremely large gains in throughput, with a relatively small increase in area
due to the additional registers that would be needed. However, these heavily
pipelined configurations will have extremely long latencies when compared to
the base iterative version of AES-128E.

3.3 Technology Mapping

While the majority of the computations needed for the round transformations
can be directly mapped to CLBs using the proper synthesis tools, the SubBytes
operation, or more specifically the S-box tables found in SubBytes, can be im-
plemented in one of several ways using Virtex-II technology:

– Block SelectRAM - the values in the lookup table for each S-box can be
loaded onto these memories at configuration time. Since the memories are
dual-ported, each RAM block can implement two separate S-boxes. Block
SelectRAMs are dedicated resources on Virtex-II FPGAs, meaning that there
is a hard upper limit on the number of them in any design.

– Distributed SelectRAM - distributed ROM primitives with the pre-loaded
S-box values can also be synthesized directly using CLBs. These are often
faster than the Block SelectRAMs, but will require additional glue logic.
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– Logic - the lookup table code can be converted to a logical representation to
be implemented on the CLBs. An advantage of this option is that it provides
additional room for the synthesis tools to optimize for area and delay.

Because they are so numerous, the choice of lookup table technology can have
a significant effect on the area/delay profile of the SubBytes operation and of
AES-128E as a whole. Although less in number, these S-box operations are also
needed in KeyExpansion, whether it is performed online or off.

4 Area and Performance Results

4.1 Experimental Setup

The AES-128E algorithm was implemented using a single VHDL core, with a
configuration file to drive preset macros for controlling the round layouts and
explicit synthesis directives to determine the mapping of S-boxes. For synthesis
we used Synplify Pro 7.2.1 from Synplicity, which was configured to target a
Xilinx XC2V4000 FPGA. The XC2V4000 is a medium-sized member of the
Virtex-II device family, containing 5760 CLBs (equivalent to 23040 slices) and
120 Block SelectRAM modules. Xilinx ISE 5.2i was used for the place-and-route
and timing analysis.

For each design we used these tools to measure the maximum possible clock
rate (fclk), the number of utilized slices (Nslice), and the number of Block Selec-
tRAMs (Nbram) From these base statistics we calculated the resultant maximum
throughput using the following equation for a block cipher in non-feedback mode:

Tput =
128 · fclk

blocks per cycle
, (1)

where the number of blocks per cycle is 1 for a fully unrolled implementation, and
greater than 1 for any design that re-uses the round structures to process a single
input. Also, the latency required to encrypt a single block can be calculated as:

Lat =
10 · stages per round

fclk
, (2)

where the number of clock cycles needed to process a single round is an average
and may be a non-integer value. Finally, some idea about the efficiency of an
implementation can be obtained by analyzing the following metric:

Eff =
Tput

Nslice
, (3)

which is measured in throughput rate (bps) per utilized CLB slice.
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Table 1. AES-128E implementation results for a Xilinx XC2V4000 FPGA

Design fclk (MHz) Nslice Nbram Tput (Gbps) Lat (ns) Eff (Mbps
slice )

UF1-PP0B 110.16 387 10 1.41 90.78 3.64
UF1-PP0D 77.91 1780 0 1.00 128.4 0.56
UF1-PP0L 59.00 2744 0 0.76 169.5 0.28
UF1-PP3D 178.09 1940 0 2.28 168.5 1.18
UF1-PP3L 147.75 2909 0 1.89 203.0 0.65
UF2-PP1B 118.57 753 20 3.04 84.34 4.04
UF2-PP2B 150.02 1011 20 3.84 133.3 3.80
UF2-PP2D 119.96 3445 0 3.07 166.7 0.89
UF2-PP3B 173.37 1254 20 4.44 173.0 3.54
UF2-PP3L 118.30 5570 0 3.03 253.6 0.54
UF5-PP0B 72.438 1532 50 4.64 27.61 3.03
UF5-PP1D 68.521 7995 0 4.39 145.9 0.55
UF5-PP2B 169.92 2206 50 10.88 117.7 4.93
UF5-PP2L 76.26 11974 0 4.88 262.3 0.41
UF5-PP3B 173.73 2810 50 11.12 172.7 3.96
UF10-PP1B 95.129 2518 100 12.18 105.1 4.84
UF10-PP1D 50.239 15365 0 6.43 199.0 0.418
UF10-PP2B 179.147 3766 100 22.93 111.6 6.09
UF10-PP3B 183.58 4901 100 23.50 163.4 4.79
UF10-PP3D 184.16 16938 0 23.57 162.9 1.39

4.2 Results

A selection of our experimental results can be found in Table 1. Each design
is labeled UFX-PPYZ, where X corresponds to the round unrolling factor X ∈
{1, 2, 5, 10}. The Y value specifies the amount of transformation partitioning and
pipelining; for Y = 0 the design has no pipelining, for Y = 1 each unrolled round
is pipelined, for Y = 2 each round is split into two stages, and for Y = 3 each
round is split into three stages, with transformations being partitioned across
those stages. The Z value specifies the S-box technology mapping in the design,
where for Z = [B] Block SelectRAM is chosen, for Z = [D] distributed ROM
primitives are chosen, and for Z = [L] logic gates are instantiated. For sake of
brevity, unexceptional results from the set of possible designs were pruned when
forming Table 1.

From these results several trends can be observed. As was expected, unrolling
increased the number of slices by a significant amount. See UF10-PP3D which uses
over 8.7× the amount of slices of its iterative counterpart UF1-PP3D. The gain
in throughput often out-paced this increased area consumption, leading to an
improved area efficiency with the larger unrolling factor. Also, for many of the
designs using the distributed SelectRAM resulted in slightly higher clock rates
when compared to the dedicated Block SelectRAM. The advantage to using the
Block SelectRAM for the S-boxes can be seen in both the area consumption
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and area efficiency – see the UF2-PP2B design which for the cost of 20 BRAMs
saves 71% of the slices that UF2-PP2D requires. Since the performance of the
two designs were fairly similar, this choice leads to a 4.26× increase in effi-
ciency. It should also be noted that using logic gates to directly implement the
S-box transformations was sub-optimal in all measured metrics when compared
to using either SelectRAM type. Finally, aggressive transformation partitioning
was quite effective in improving the clock rate and resultant throughput. This
technique was successful even in the iterative case, illustrated by the UF1-PP3L
design which obtained 2.5× the throughput of UF1-PP0L by partitioning the
critical path.

The bolded values in Table 1 represent the designs which are optimal in terms
of the selected area/performance characteristics. As was expected, the design
that required the least amount of area (387 slices) was UF1-PP0B, an iterative im-
plementation with no transformation partitioning that used Block SelectRAMs.
Without using these SelectRAMs, the smallest design was UF1-PP0D, which re-
quired 1780 slices. Two of the most aggressively unrolled and pipelined designs
(UF10-PP3B and UF10-PP3D) obtained clock rates of over 183 MHz, resulting in
throughputs of over 23.5 Gbps. A design that demonstrates the usefulness of
partial unrolling is UF5-PP0B, which has the lowest latency of all designs (27.61
ns). The UF10-PP2B design had the highest area efficiency (6.09 Mbps/slice).

4.3 Related Results

It is difficult to make direct comparisons between FPGA implementations of any
algorithm since the specific hardware target is often different. However, many
recent AES implementations have provided maximum throughput numbers for
Xilinx FPGAs that can be used as a measuring stick. For example, Helion Tech-
nology reports throughputs of over 16 Gbps [7] for their high-performance com-
mercial AES core. Also, several academic groups have reported high throughput
values for designs that are similar to our most aggressively pipelined version.
Järvinen et al. [6] created a cipher that operated at 17.8 Gbps, while Saggese et
al. [3] reached just over 20 Gbps. Besides ours, the highest reported throughput
for an AES implementation belongs to Hodjat and Verbauwhede [13], who de-
signed a 21.54 Gbps core. Our superior throughput numbers can be explained by
the fact that our top-down design flow motivated the discovery of additional ways
of partitioning transformations, and that doubly packing S-boxes into Block Se-
lectRAMs allowed for a completely unrolled design to fit into a relatively small
device.

As a comparison to non-FPGA technologies, a hand-optimized assembly im-
plementation of AES encryption in feedback mode achieved 1.538 Gbps on a 3.2
MHz Pentium IV processor [14]. An ASIC version of the design from [13] target-
ing 0.18μm technology was able to achieve greater than 30 Gbps [15]. While this
ASIC implementation is far superior to any published FPGA implementation in
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terms of throughput, this shortcoming is tolerable when considering the other
advantages to FPGA technology as listed in Sect. 1.

5 Conclusions

In this paper a top-down methodology for implementing cryptographic block
ciphers on FPGAs was proposed and evaluated. For AES-128E it was shown that
these design decisions can be managed in a fashion that allows for fine tuning
some of the area and delay characteristics. This methodology has been used
to discover implementations that are competitive with others in terms of area,
latency, and area efficiency. For the future, it would be interesting to see what
technology-specific features of other FPGA device families could be exploited to
further optimize AES. This same design methodology should also be extended to
other cryptographic algorithms. Finally, it would be useful to further investigate
how partial reconfiguration can optimize a block cipher given some knowledge
of the input key pattern.
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Abstract. Pervasive networks with low-cost embedded 8-bit processors
are set to change our day-to-day life. Public-key cryptography provides
crucial functionality to assure security which is often an important re-
quirement in pervasive applications. However, it has been the hardest
to implement on constraint platforms due to its very high computa-
tional requirements. This contribution describes a proof-of-concept im-
plementation for an extremely low-cost instruction set extension using
reconfigurable logic, which enables an 8-bit micro-controller to provide
full size elliptic curve cryptography (ECC) capabilities. Introducing full
size public-key security mechanisms on such small embedded devices will
allow new pervasive applications. We show that a standard compliant
163-bit point multiplication can be computed in 0.113 sec on an 8-bit
AVR micro-controller running at 4 Mhz with minimal extra hardware, a
typical representative for a low-cost pervasive processor. Our design not
only accelerates the computation by a factor of more than 30 compared
to a software-only solution, it also reduces the code-size, data-RAM and
power requirements.

1 Introduction

Ubiquitous computing with low cost pervasive devices has started to become re-
ality with RFID applications and smart textiles. These computing devices form
large-scale collaborating networks by exchanging information. Privacy and secu-
rity of this information is important for the overall reliability of these networks
and ultimately to the trustworthiness of pervasive applications. In fact, security
is often viewed as a crucial feature, a lack of which can be an obstacle to the
wide-spread introduction of pervasive applications.

High-volume, low-cost and very small power budgets of pervasive devices im-
plies they have limited computing power, often not exceeding an 8-bit processor
clocked at a few MHz. Under these constraints, secure public-key cryptography
for authentication are nearly infeasible in software and are therefore usually not
available in these systems. On the other hand, public-key cryptography offers
major advantages when designing security solutions in pervasive networks. An
alternative is to use a cryptographic co-processor such as used for high security
applications like smart-cards, but its downside are considerable costs (in terms
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of power and chip area) which makes it unattractive for many cost sensitive
pervasive applications. In addition, a fixed hardware solution may not offer the
cryptographic flexibility (i.e., change of parameters or key length) that can be
required in real-world applications. An instruction set extension (ISE) is a more
viable option because of the smaller amount of additional hardware required and
because of its flexibility. The efficiency of an ISE is not just measured by the
speed-up it achieves, but also in the decrease in code-size, data-RAM and power
consumption.

We use reconfigurable hardware attached to an 8-bit processor to simulate
the ISE and to obtain reliable cost/benefit estimates. However, we view the
reconfigurability not only useful for prototyping purposes, but a small reconfig-
urable hardware extension is also an attractive platform for embedded devices
as the extension can offer many speed and power benefits for computationally
intensive applications as demonstrated in this paper. It should be noted that
public-key operations are typically only needed at the initial or final stage of
a communication session. Hence, it is perceivable that the ISE can be runtime
reconfigured for other applications when public-key operations are not required.

The paper is organized as follows. Section 2 discusses previous work in this
field. In Sect. 3 we describe ISEs and in Sect. 4 the mathematical background
of ECC is discussed. Section 5 discusses our implementation and results.

2 Previous Work

The use of group of points of an elliptic curve in cryptography was first suggested
by Neal Kobilitz [14] and independently by Victor Miller [17]. There has been
considerable work since then on efficient implementation of ECC in software,
typically targeting high end processors [19,21,7,9]. In the following is a discussion
of ECC implementations on constrained environment.

ECC on 8-bit processors have been reported in [5] and [22], both implemented
over Optimal Extension Fields (OEF’s), originally introduced in [2]. It should
be noted that OEFs are not standardized, and their security in conjunction of
ECC is not clear. In [5], the ECC implementation is over the field Fpm with
p = 216 − 165, m = 10, and irreducible polynomial f(x) = x10 − 2. A perfor-
mance of 122 msec at 20 Mhz is reported for a 160-bit point multiplication. The
sub-field multiplication is done using the math co-processor. [22] implements
ECC over GF ((28−17)17) on an 8051 micro-controller without co-processor but
instead uses the internal 8-by-8-bit integer multiplier. The authors achieve a
speed of 1.95 sec for a 134-bit fixed point multiplication using 9 pre-computed
points and 8.37 sec for a general point multiplication using binary method of
exponentiation. In [15], the authors improve the general point multiplication, to
set up an end-to-end wireless ECDH key exchange within 3 sec on a Chipcon
CC1010, which is based on the 8051 architecture. An ECDSA implementation
on a 16-bit microcomputer M16C, running at 10 Mhz, is described in [10]. The
authors propose the use of a field Fp where prime characteristic p = e2c ± 1,
e an integer within the machine size and c a multiple of machine word size.
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The implementation uses a 31-entry table of precomputed points to generate an
ECDSA signature in 150 msec and ECDSA verification takes 630 msec. A scalar
multiplication of a random point takes 480 msec. The authors in [7] describe an
efficient implementation of ECC over Fp on the 16-bit TI MSP430x33x family of
low-cost micro-controllers running at 1 Mhz. A scalar point multiplication over
GF (2128 − 297 − 1) is performed in 3.4 sec without any precomputation.

It should be stressed that all previous ECC implementations on 8-bit proces-
sors have been based on non-standardized ECC parameters in order to overcome
the performance bottleneck. This has two disadvantages: first, such solutions
are incompatible with standardized protocols; secondly, there is always the pos-
sibility that non-standardized parameters have security shortcomings, e.g., new
attacks through special mathematical properties introduced in non-standardized
underlying finite fields.

Another approach has been to add a crypto co-processor to these micro-
controllers. A survey of commercially available co-processors can be found in
[8]. However, a full-size ECC co-processor is may be prohibitively expensive
for many pervasive applications. Hardware assistance in terms of Instruction
Set Extensions (ISE) is more favorable as the cost of extra hardware is quite
negligible compared to the whole processor. Previous attempts in this direction
[6,13] are only reported for ECC with not more than 133-bits.

3 Instruction Set Extension

The Instruction Set Architecture (ISA) of a microprocessor is the unique set
of instructions that can be executed on the processor. General purpose ISA
are often insufficient to satisfy the special computational needs in cryptographic
applications. A more promising method is extending the ISA to build Application
Specific Instruction-set Processors (ASIP.)

There are different ways of extending a processor. We consider an extension
as shown in Fig. 1. Here the additional hardware is closely coupled with the
arithmetic logic unit (ALU) of the processor, reducing the interface circuitry.
The control circuit of the processor is extended to support this extra hardware.
The extension can also directly access the data-RAM which is important if the
computation is done over several data elements. For multi-cycle instructions,
the software has to take special care not to call the custom hardware until the
multi-cycle operation is completed.

An efficient ISE implementation requires a tightly coupled hardware and
software co-design. In a first step, we used a software-only implementation of
ECC to identify the functional elements and code-segments that would provide
efficiency gains if implemented as an ISE. Then, a hardware model of the new
processor determines the effects of the new extension on the parameters running
time, code-size and data-RAM usage.
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Fig. 1. Processor Core with Extension

4 Elliptic Curve Cryptography

Among public-key algorithms, there are three established families: RSA, DL and
elliptic curve cryptography (ECC.) Among them, ECC is considered the most
attractive one for embedded environments [4] due to its smaller operand lengths
and relatively lower computational requirements. ECC is also standardized [18,
1,11,12] and has become a commercially accepted method. ECC is an universal
public-key family, allowing mechanisms such as digital signature, key exchange
and data encryption. The vast majority of modern protocols, including wireless
protocols attractive for pervasive applications, require these public-key functions.
A more detailed description of the main operations for an ECC realization can
be found in, e.g., [3].

4.1 Elliptic Curves

An elliptic curve over F2m is of the form y2 + xy = x3 + ax2 + b, where a, b ∈
F2m and b �= 0. (x, y) satisfying this equation is called a point P on the curve.
Together with O, the identity element, they constitute an abelian set E(F2m).
For our implementation, we use a NIST-recommended 163-bit random curve [18].

The main EC cryptographic operation is the scalar point multiplication, Q =
k · P, where P,Q are points on the elliptic curve and k is an m-bit integer.

4.2 Elliptic Curve Point Arithmetic

For the implementation of the scalar point multiplication, k ·P, we need to im-
plement the group operations point addition and point doubling. The arithmetic
is described in detail in [19]. For our implementation, we use the projective co-
ordinates where the projective point (X, Y, Z) with Z �= 0 corresponds to the
affine point (x, y) where x = X

Z and y = Y
Z . This projective co-ordinate is chosen

because we use the Montgomery point multiplication introduced in [16].
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The efficiency of EC group operations depends largely on the efficiency of
the underlying field arithmetic. We use the polynomial basis representation
(am−1...a1a0) with the reduction polynomial F (x) = x163 + x7 + x6 + x3 + 1. In
our implementation, an element from F2163 is represented as an array of 21 eight
bit words, with the five last most-significant bits being ignored.

Field Addition is the simplest of all operations, since it is a bit by bit addition
in F2 which maps to word-level XOR operation in software.

Field Multiplication of two elements is a polynomial multiplication followed
by reduction modulo F (x). The polynomial multiplication can be implemented
in software efficiently using the comb method.

Field Squaring is a simple expansion in F2m in polynomial basis which is effi-
ciently implemented as a table-lookup.

Field Reduction. Multiplication and squaring require reduction of the poly-
nomial of degree not greater than (2m − 1). Reduction is effectively done using
a table-lookup for the 8-bit locations in a byte.

5 Implementation

Our development platform is the Atmel Inc.’s AT94K family of FPSLIC devices
(Field Programmable System Level Integrated Circuits). This architecture in-
tegrates an AVR 8-bit micro-controller core (used widely in smart-cards and
micromotes), FPGA resources, several peripherals and 36K bytes SRAM within
a single chip. The platform is appealing for simulating an ISE. The implemen-
tations are done on the ATSTK94 FPSLIC demonstration board clocked at 4
Mhz.

We first implemented the ECC algorithm on the 8-bit AVR processor in
assembly. The results of the software only implementation is given in Table 1.
It is important to mention that the multiplication routine based on the comb
method that we used is among the fastest known software algorithms for Galois
field multiplication.

The analysis of the software-only implementation shows that
F2mmultiplication is the most costly operation with respect to execution
time and memory requirement. Moreover, in the Montgomery algorithm
(Sect. 4.2), field multiplications are extremely frequent making it the bottleneck
operation for ECC. A closer look at the multiplication block showed that the
major part of the time was spent for load/store operations because of the small
number of registers which cannot hold the large operands. Therefore an ISE
for this functional block which also reduces the memory bottleneck can greatly
speed-up ECC.
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Table 1. F2163 ECC software-only performance on an 8-bit AVR μC (@4 Mhz)

Operation Time (clocks) Code-size (bytes) Data RAM (bytes)
Addition 151 180 42
Multiplication 15044 384 147
Squaring 441 46 63
Reduction 1093 196 63
Point Multiplication (k.P ) 4.14 sec 8208 358

The popular approach to multimedia extensions has been to divide a large
32/64-bit data-bus into smaller 8-bit or 16-bit multimedia variables, and to run
those in parallel as an SIMD instruction. But for public-key cryptographic appli-
cations the reverse is true: The operands are much larger than the data-path, re-
quiring many bit operations on long operands. For such applications, bit-parallel
processing is required where multiple data-words are operated upon simultane-
ously. One important issue here is the provision of the ISE with the operands.
We approached this situation by implementing a complete F2163 multiplier with
minimum possible area.

A or C

B

Multiplier

Memory

load/

store

Registers

RAM

FU

control

ISE

uP control 

signals

Fig. 2. ISE Interface and Structure

Figure 2 shows the general layout of functional unit (FU) of the ISE we
are simulating. Four processor registers are initially loaded with the memory
addresses of the two operands A and B. The ISE is then initiated by a control
signal to the FU control (FUC) along with the first memory address byte. In
our proof-of-concept implementation, this behavior is achieved by sending the
byte over the data-lines from the processor to the FPGA, and confirming its
reception through interrupt-lines from the FPGA to the processor. After the
last memory address byte is received, the FUC initiates the memory load/store
circuit within the ISE to load both the 21-byte operands directly from the SRAM
in 21-cycles each. Then, the FUC runs the multiplier for 163-cycles to get the
result C. During this period, the processor loads the memory address of C,
sends it to the FPGA and goes into polling state for the final interrupt from
the FPGA. After the result C is obtained, the ISE stores it back directly in the
memory in another 21-cycles and then sends the final interrupt signalling the
completion of the multiplication. This method of handshaking leads to extra
control overheads which can be reduced by having a more tightly coupled ISE to
the processor without requiring confirmation interrupts. During the idle polling
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state, the processor could also be used in other computational work which is
independent of the multiplication result. Memory access conflicts during such
computation between the processor and the ISE is avoided by using a dual
ported SRAM.

5.1 Bit-Serial Multiplier

A bit-serial F2m hardware multiplier is the most simple solution and requires the
least area. The core of the multiplier is as shown in Fig. 3. The reduction circuit
is hardwired here. A modification for implementing a more general reduction
polynomial or variable size multiplication is discussed in Sect. 5.3. A 163-by-163
multiplication is computed in 163 clocks, excluding data input and output. In our
implementation, control and memory access overheads lead to a total execution
time of 313 clocks. Since the multiplier is much faster than the squaring in
software, we use the multiplier also for squaring by loading A = B. The results
(Table 2) show a drastic speed-up using this multiplier. It should be noted that
the control overhead can be considerably reduced when the hardware is more
tightly coupled within the processor, e.g., in an ASIC implementation of our
architecture.

Accumulator

Ax mod F(x)

Shift Register

b162 b1 b0

163B

a162 a1 a0

163A

+
+ +

c162 c1 c0

xxx

163

C =AB mod F(x)

Fig. 3. Bit-Serial LSB Multiplier
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4
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Shift Register

b160 b4 b0

163B

a162 a1 a0

163A

c167 c1 c0

xxx

168

C =AB mod F(x)

b159 b7 b3

163

168

   mod F(x)

163

Fig. 4. Digit-4 Serial LSD Multiplier

5.2 Digit-Serial Multiplier

Another trade-off between area and speed is possible by using digit-serial multi-
pliers [20]. Compared to the bit-serial multiplier where only one bit of operand
B is used in each iteration, here multiple bits (equal to the digit-size) of B are
multiplied to the operand A in each iteration (Fig. 4). We use a digit size of
4 as it gives a good speed-up without drastically increasing the area require-
ments. A 163-by-163 multiplication with reduction requires 42 clocks. In our
implementation, the control overheads leads to a total of 193 clocks.
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Table 2. ICE-based ECC point multiplication (@4 Mhz)

Multiplier Type CLBs Time (sec) Code-size (bytes) Data RAM (bytes)
Software-only 4.14 8208 358
163*163 multiplier 245 0.169 2048 273
163*163 digit-4 498 0.113 2048 273

5.3 A Flexible Multiplier

Flexibility of crypto algorithm parameters (especially operand lengths) can be
very attractive because of the need to alter them when deemed insecure in the
future, or for providing compatibility in different applications. Considering the
high-volume of pervasive devices, replacing each hardware component seems im-
probable. We discuss here how the multiplier can be made more flexible to satisfy
these needs.

Support of a generic reduction polynomial with a maximum degree of m of
the form F (x) = xm +G(x) = xm +

∑m−1
i=0 gix

i requires storage of the reduction
coefficients and additional circuitry as shown in Fig. 5 (a similar implementation
for a digit-serial multiplier is straightforward). The reduction polynomial can
be initialized once in the beginning of the point multiplication. Thus the total
number of clocks required for multiplication remains the same.

a162 a1 a0

x

g1

x

x

g0

x

g162

x

Ax mod F(x)

163A F 163

Fig. 5. Bit-serial reduction circuit

Different bit-length multipliers for different key-length ECC can also be sup-
ported using this structure. We show as an example, how the 163-bit multiplier
could be also used to multiply two 113-bit operands A′ and B′ with 113-bit
reduction polynomial G′.

The operands A, B and the reduction polynomial are initially loaded as

A = (a′
112...a

′
1a

′
00...0) = A′x50

B = (0...0b′
112...b

′
1b

′
0) = B′

G = (g′
112...g

′
1g

′
00...0) = G′x50

If C ′ = A′ · B′ mod F ′(x) then

A · B mod F (x) = A′x50 · B′ mod (F ′(x)x50) = C ′x50
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Thus the result is stored in the most-significant bits of operand C after 113
clock cycles. The memory load/store circuit and the FU control unit takes care
to load the operands appropriately and to fetch the result after the required
number of clocks from the multiplier and store it back appropriately in memory.

6 Conclusions

Huge performance gains are possible in small 8-bit processors by introducing
small amounts of extra hardware. The results show 1–2 orders of magnitude
increase in speed-up for the ECC implementation. The hardware costs are in
the range of 250–500 extra CLBs. There is also saving in the code size and data
RAM usage for the algorithm. The performance gain due to the ISE can be
used to reduce the total power consumption of the devices by running the whole
device at a lower frequency, which can be a major benefit in wireless pervasive
applications. The proof-of-concept implementation can also be used directly as a
reconfigurable ISE. Since public-key exchange is done only in the initial phase of
the communication, the FPGA can be run-time reconfigured for an ISE suitable
for a different application (like signal processing) running later on the device.
Thus two different sets of ISEs can be run on the same constrained device,
accelerating both applications without increasing the total hardware cost.
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without precomputation. In Ç. Koç and C. Paar, editors, Workshop on Crypto-
graphic Hardware and Embedded Systems — CHES ’99, volume LNCS 1717, pages
316–327, Berlin, August 1999. Springer-Verlag.

17. V. S. Miller. Use of elliptic curves in cryptography. CRYPTO ’85, pages 417–426,
1986.

18. NIST. Recommended Elliptic Curves for Federal Government Use, May 1999.
19. R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange

with elliptic curve systems. In D. Coppersmith, editor, Advances in Cryptology —
CRYPTO ’95, volume LNCS 963, pages 43–56, Berlin, 1995. Springer-Verlag.

20. L. Song and K. K. Parhi. Low energy digit-serial/parallel finite field multipliers.
Journal of VLSI Signal Processing, 19(2):149–166, June 1998.

21. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A
fast software implementation for arithmetic operations in GF (2n). In Asiacrypt
’96, volume LNCS 1233, pages 65–76, Berlin, 1996. Springer-Verlag.

22. A. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart
cards without coprocessors. In CARDIS 2000, Bristol, UK, September 20–22 2000.
Kluwer.



Dynamic Prefetching
in the Virtual Memory Window

of Portable Reconfigurable Coprocessors
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Abstract. In Reconfigurable Systems-On-Chip (RSoCs), operating sys-
tems can primarily (1) manage the sharing of limited reconfigurable
resources, and (2) support communication between reconfigurable ac-
celerators and user applications. It has been shown in previous work
that the operating system can dramatically simplify the interface to re-
configurable coprocessors and isolate the programmer from all details
of the hardware. A further potential of the operating system is devel-
oped here: the operating system can observe accelerators at runtime and
dynamically take actions which improve their execution. The strength
of involving the operating system consists in achieving better perfor-
mance without any information from the end user and without changes
either in the coprocessor hardware design or in the software application.
Specifically, this paper presents an operating system module that moni-
tors reconfigurable coprocessors, predicts their future memory accesses,
and performs memory prefetching accordingly; the goal is to hide com-
pletely memory-to-memory communication latency. The module uses a
lightweight hardware support to detect coprocessors memory access pat-
terns. The effectiveness of the technique is demonstrated for two applica-
tions on an embedded RSoC board running the Linux operating system.
Significant speedup is achieved compared to the nonprefetching version,
and the improvement is obtained in a manner completely transparent to
the application programmer.

1 Introduction

Reconfigurable accelerators, running on behalf of user applications, exploit the
potentials of spatial computation in reconfigurable logic. It is a natural task for
the Operating System (OS) to control the reconfigurable logic and facilitate its
use. Reconfigurable resources can be shared, physically and virtually partitioned
between applications [3,4,14]. By supporting the virtual memory address space
sharing between an application and its coprocessor [12], the OS can enable a
transparent way of interfacing: it hides the actual interface and automatically
copies data from user memory to the coprocessesor memory and back.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 596–605, 2004.
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Fig. 1. Simple execution. The processor and coprocessor change in turn.

The OS is not only limited to providing resource sharing and transparent
interfacing: it can survey the execution of the coprocessor, optimise communica-
tion, and even adapt the interface dynamically. A virtualisation layer makes such
improvements possible without any changes in the application and coprocessor
code. Although it is intuitively expected that the additional layer brings over-
heads, it is shown here that it can also lower execution time by taking advantage
of run-time information. In this paper, the strength of delegating the interfacing
tasks to the OS is presented. As opposed to the simple execution model shown
in Figure 1, where the main processor is idle during the coprocessor busy time,
we explore the scenario where the idle time is invested into anticipating and
supporting future coprocessor execution: with simple hardware support, the OS
can predict coprocessor memory accesses, schedule prefetches, and thus decrease
memory communication latency.

This paper is organised as follows: In Section 2, the basic concepts of Virtual
Memory Window (VMW) for reconfigurable coprocessors are presented. Sec-
tion 3 discusses related work. The OS memory prefetching concept, its hardware
and software design elements are presented in Section 4. Section 5 shows the
measurements that prove the benefits of prefetching. Finally, some conclusions
are given in Section 6.

2 Virtual Memory Window

Nonstandard programming paradigms and HW/SW interfacing models have cer-
tainly hindered the acceptance of reconfigurable computing. The Virtual Mem-
ory Window (VMW) addresses these problems [12] by reusing the simple and
well-known concept of virtual memory. The VMW enables the coprocessors to
share the virtual memory address space with user applications, thus simplifying
the programming paradigm and hardware interfacing.

Figure 2 shows how a reconfigurable coprocessor is interfaced with the main
processor. The OS provides a uniform and abstract virtual memory image hiding
all details about the physical memory. The fast translation from virtual to phys-
ical addresses is enabled by hardware accelerators: (1) Memory Management
Unit (MMU) in the main processor case, and (2) Window Management Unit
(WMU) in the coprocessor case. The Virtual Memory Manager (VMM) and
Virtual Memory Window (VMW) Manager in the OS ensure that the transla-
tion is transparent to the end users. In the same manner as the VMM copies
pages between the mass storage and the main memory, the VMW manager copies
pages between the main memory and the window memory. Both managers do
the tasks transparently from the end user.
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Fig. 2. Virtual Memory Window for reconfigurable coprocessor. The coprocessor and
user application share the virtual memory address space. The Window Management
Unit supports the address translation, which is managed by the OS.

Benefits of unifying the memory pictures from the main processor and the
coprocessor side are: (1) programming software and designing hardware is made
simpler—calling a coprocessor from a user application is as simple as a com-
mon function call, and designing the coprocessor hardware imposes no memory
constraints but only requires complying to the WMU interface; (2) application
software and accelerator hardware are made portable—hiding platform-related
details behind the VMW manager and the WMU deliberates applications and
coprocessor designs of platform dependence.

3 Related Work

Different approaches for virtualisation of reconfigurable resources are pro-
posed [3,4]. The tasks of management and sharing the resources are delegated
to the OS [7,14]. An orthogonal approach [12] that involves the OS to support
interface virtualisation is used as the basis of the work presented in this paper.

Hardware and software prefetching techniques were originally developed for
cache memories to support different memory access patterns. Stream buffers [5]
were introduced (and later enhanced [8]) as an extension of tagged-based
prefetching to improve sequential memory accesses. Other techniques exist
that cover nonsequential memory accesses (e.g., recursive [9], and correlation-
based [11] where a user-level thread correlation prefetching is shown). Hardware
prefetching techniques have also been used for configurable processors [6]. Be-
sides caching, prefetching techniques have been used for efficient virtual memory
management: in hardware (e.g., speculatively preloading the TLB to avoid page
faults [10]) and in software (prefetching virtual memory pages for user applica-
tion [2]).

The technique presented in this paper is in its essence a dynamic software
technique with limited hardware support. Its strongest point is the transparency:
neither user applications nor hardware accelerators are aware of its presence.
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Fig. 3. The OS module (OS) activities related to coprocessor execution (CP). The OS
manages VMW data structures (Management Time—MT) and copies pages from/to
user memory (Copy Time—CT). When finished, it sleeps (Sleep Time—ST). The co-
processor executes (Hardware Time—HT) until it finishes or misses a page. In both
cases, it waits for the OS action. The OS responds after some time (Reponse Time—
RT). Instead of sleeping, the VMW can fetch in advance pages that may be used by
the coprocessor. This results in uninterrupted coprocessor execution.

Even more importantly, an OS module is developed to optimise execution of
coprocessors, and it is not limited to the presented prefetching technique.

4 OS-Based Prefetching

In this section, the basic motivation for applying OS-based prefetch techniques
is presented. Afterwards, hardware and software requirements to implement a
prefetching system for a VMW are discussed in detail.

4.1 Memory Copy Overhead

The sequence of the OS events during a VMW-based coprocessor execution is
shown in Figure 3. Assuming a large spatial locality of coprocessor memory
accesses (e.g., stream oriented processing), it can be seen in Figure 3a that the
OS sleeps for a significant amount of time. Once the management is finished,
the manager goes to sleep waiting for future coprocessor requests.

During idle time, the VMW manager could instead survey the execution of
the coprocessor and anticipate its future requests, thus minimising the number
of page misses. Figure 3b shows hardware execution time overlapped with the
VMW management activities. During coprocessor operation, the WMU informs
the manager about the pages accessed by the coprocessor. Based on this informa-
tion, the manager can predict future activities of the coprocessor and schedule
prefetch-based loads of virtual memory pages. If the prediction is correct, the
coprocessor can use the prefetched pages without generating miss interrupts.
In this way, the involvement of the operating system may completely hide the
memory communication latency. The approach requires no action on the software
programmer nor on the hardware designer side.



600 M. Vuletić, L. Pozzi, and P. Ienne

Fig. 4. Page access detection. On a hit in the Content Addressable Memory (CAM),
1-hot bit lines will set the corresponding bit in the Access Indicator Register (AIR). If
the mask (Access Mask Register (AMR) allows the access, an interrupt is raised.

4.2 Hardware Support

The WMU provides hardware support for the translation of the coprocessor vir-
tual addresses and for accessing the window memory. The window memory is
divided into pages that map onto the different regions of the user memory. The
optimal number of pages depends on the characteristics of the coprocessor mem-
ory access pattern. The WMU supports multiple operation modes—i.e., different
page sizes and number of pages. A simple extension—two 32-bit registers and
few tens of logic gates—to the WMU is introduced that supports the detection
of a page access. Figure 4 contains the internal organisation of the WMU related
to address translation. As in typical MMUs, address mapping is performed by
a Translation Lookaside Buffer (TLB). If there is a match in the Content Ad-
dressable Memory (CAM), the 1-hot bit lines are used to set the appropriate
bit in the Access Indicator Register (AIR). If the OS wants to detect the first
access to a particular page, it simply sets the correct mask in the Access Mask
Register (AMR). When the access appears, an interrupt is raised requesting OS
handling. Nested interrupts are prevented by the OS resetting to 0 the appro-
priate mask bit. While the interrupt is being handled, there is no need to stop
the coprocessor: interrupt handling and coprocessor run in parallel—space is left
for speculative work. The OS actions need not be limited to this simple access
detection mechanism. A more sophisticated but still reasonably simple hardware
can be employed in order to support detection of more complex memory access
patterns.

4.3 VMW Module

The three main design components of the VMW module are: (1) initialisation
and interrupt handling, (2) prediction of future accesses, and (3) fetching of
pages from main memory.

Interrupt Handling. Once invoked, the OS service first initialises the in-
ternal data structures and the WMU hardware. It then goes to sleep awaiting for
interrupts. There are three possible interrupt types coming from the WMU: (1)
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Fig. 5. Stream Buffer (SB) allocation and the AMR. On a miss, a pair of pages (SB)
is allocated. The miss page is active (A); it is being accessed by the coprocessor; the
prefetched page is speculative (S). The AMR helps to detect accesses to (S) pages.

finish, (2) miss, and (3) access. When finished, the module returns control back
to the user application. If a miss appears, the load of the miss page is scheduled
into the fetch queue. Afterward, the predictor is called to attempt predicting
future page accesses and speculative pages are also scheduled for loading. The
coprocessor is resumed by the fetcher, once all miss-related requests are satis-
fied. If an access appears, it indicates that the coprocessor accessed a page for
which this information had been requested. The predictor is called to validate or
confute its past predictions and schedule future page loads into the fetch queue.
During access handling, the coprocessor is active.

The Predictor. It attempts to guess future memory accesses and to sched-
ule page loading. The only input parameters to the predictor are miss addresses
and access page numbers—i.e., there is no information about the state of the co-
processor. The approach is similar to classic prefetching techniques where no in-
formation is available about the instructions issued by the main processor [8] but
only the addresses on the bus. The current predictor assumes that for each miss a
new stream is detected; thus, it requires a stream buffer allocation (i.e., a pair of
window memory pages, refer to Figure 5) and it schedules a speculative prefetch
for the page following the missing one. By setting appropriately the AMR, it
ensures that the WMU hardware will report the first access to the speculatively-
loaded page. When the access is reported, the predictor is invoked again and,
with this information confirming the correct speculation, further prefetches are
scheduled. Each speculative prefetch is designated to its corresponding stream
buffer. Ideally, for a correctly-guessed memory access stream and good timing
of the prefetching, only one miss per stream should appear: all others misses
should be avoided through prefetching.

Since the number of stream buffers is limited, the coprocessor may require
more streams than it can be provided. In this case, a stream buffer should be
selected for deallocation, to satisfy a new allocation request. For the moment, a
simple eviction policy is implemented; yet, since the predictor is a software-only
component, more sophisticated eviction policies can be easily added. Further-
more, potential trashing and deadlocks (due to the capacity problems of the
window memory) can be resolved dynamically and transparently for the end-
user simply by changing the operation mode of the WMU.
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The Fetcher. The fetcher is responsible for loading pages from/to user space
memory. The memory requests are scheduled by the miss handler and by the pre-
dictor, with miss-generated requests being always scheduled before speculative
ones. The fetcher executes the fetch queue, until all the requests are serviced. It
determines the type of fetch (mandatory or speculative), its destination in the
window memory, and whether it requires a stream buffer allocation. If the desti-
nation is occupied by a dirty page, it is copied back to the user space. The page
is then fetched from user memory and the request is deleted from the queue.
The coprocessor can be resumed if needed—if the fulfilled request is miss-based
and there are no outstanding miss-based requests.

5 Experiments

The system described is implemented on an Altera Excalibur based board with
the EPXA1 device [1]. The device consists of an ARM processor with basic
peripherals and a reconfigurable part. The ARM processor is running on 133MHz
and executes user applications under the GNU/Linux OS. The WMU with access
indication support, is synthesised from VHDL code (less than thousand lines) to
reconfigurable logic and interfaced to the ARM processor using the Avalon bus
[1]. A dual-ported 16KB on-chip memory is used for the VMW window memory.
The VMW manager with prefetching support is implemented as a loadable kernel
module (in a couple of thousands lines of C-code).

5.1 Results and Comparisons

Two applications are ported to the system: (1) IDEA cryptography application
and (2) ADPCM decoder from MediaBench. For both applications, coprocessors
have been designed (IDEA running at 6MHz and ADPCM running at 40MHz)
complying to the WMU interface and implementing critical parts of the algo-
rithms in hardware. Even without OS controlled prefetching, both applications
achieve significant speed up compared to their software-only versions [12]. Notice
that no change whatsoever has been made to the user C and VHDL code to take
advantage of prefetching—the code is exactly the same that was developed in
previous work [13,12], and only the WMU and the VMW manager differ.

Figure 6 compares total execution times of ADPCM decoder with and with-
out prefetching in the VMW module. Although running at the same speed, in the
prefetching case the coprocessor finishes its task almost twice as fast compared
to the nonprefetching case. As indicated in Figure 3, the sleep time reduces:
the module handles access requests in parallel with the execution of the copro-
cessor. Counterintuitively, the management time slightly decreases, because the
number of miss-originated interrupts is dramatically lower (e.g., in the case of
32KB input data size it goes down from 48 to only 2). Meanwhile, multiple
access-originated interrupts may appear within a relatively short time interval
(e.g., two streams usually cross the page boundary at about the same time) and
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Fig. 6. ADPCM decoder: Total execution times with/without prefetching. The execu-
tion time consists of sleep time (ST), copy time (CT), and manage time (MT).

Fig. 7. IDEA encryption: total execution times with/without prefetching.

the VMW manger services them at the same cost. This is not the case for the
misses: for a miss to appear, the previous miss needs to be already serviced.

The ADPCM decoder has a specific access pattern: the decoder is producing
four times more data than it consumes. Due to the simple FIFO policy used
for page eviction in the non-prefetching case, it may happen that a page still
being used gets evicted: the page will need to be reread before the coprocessor
continues execution. On the other hand, the prefetching approach with stream-
buffer allocation is less sensitive to the applied page eviction policy because
distinct stream-buffers are allocated for input and output streams.

Figure 7 shows the total execution times of IDEA encryption for different
number of window memory pages. A significant improvement in the IDEA ex-
ecution time is achieved with prefetching. Management time increases with the
increasing number of window memory page, since larger data structures are
managed. In the prefetching case, the management time is slightly larger than
without prefetching. With smaller page sizes, manage and copy time intervals
become comparable to the hardware execution intervals: increasingly often, the
coprocessor generates a miss while the missing page is already being prefetched.
This miss is called a late miss, and it is less costly than a regular one. Still,
the VMW manager needs to acknowledge it once its corresponding prefetch
is finished—hence the slight increase in the management time. Table 1 shows
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Table 1. Interrupts by the IDEA coprocessor. In the prefetching case, beside misses,
there are accesses (used to trigger prefetching) and late misses (when the missing page
is already being transferred).

Number Page Nonprefetching Prefetching
of pages size Misses Misses Late Misses Accesses

4 4KB 32 2 0 15
8 2KB 64 2 2 31
16 1KB 128 2 24 63
32 0.5KB 256 3 53 131

how the number of miss-originated and access-originated interrupts grows with
smaller page sizes. It also shows how late misses start to appear.

Although it seems costly to manage larger number of window memory pages,
in some cases the flexibility of the WMU and the VMW manager may be re-
quired, since the WMU operation mode can affect the performance. For example,
supposing only two window memory pages, and prefetching, the coprocessor ex-
periences memory trashing problems and performs dramatically slower then the
non-prefetching one (e.g., for the IDEA encryption, on 16KB input data and two
8KB pages in the window memory, 757ms vs. 7ms, and 1366 vs. 6 misses!). It
is the task of the VMW module to detect this misbehaviour and change to the
operation mode that corresponds better to the coprocessor needs.

6 Conclusion

This paper presented an OS module supporting the execution of reconfigurable
coprocessors running within the VMW framework. Not only it allows the copro-
cessors to share transparently the same address space with user applications, but
it also makes possible advanced and yet simple runtime optimisations, without
any intervention by the end user.

In order to demonstrate the presented concept, a stream-based memory
prefetch technique was implemented within the OS module (with a simple
hardware support in the WMU). A significant execution time improvement is
demonstrated for two application-specific reconfigurable coprocessors, without
any change in either application software or coprocessor hardware.

Future extensions of this work are not limited to implementing other prefetch
techniques (e.g., recursive and correlation-based prefetching): the involvement of
the OS enables novel runtime optimisations (e.g., changing the number and size
of window memory pages in order to fit better application needs).
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Abstract. A previous study [1] demonstrates the advantages of replacing
registers by FPGA embedded memories during the storage allocation phase of
High-Level Synthesis.  The trend in new FPGAs to have large amounts of on-
chip embedded memories motivated this proposition and resulted in substantial
area decrease in the synthesized designs. This paper elaborates further on the
various possibilities involved during storage allocation onto embedded
memories, and presents new memory binding techniques. These techniques
include modifications to the memory mapping procedure presented in [1] and
cater to various memory specifications. The embedded memories differ in their
assumptions of the number of memory banks, the number of ports on each
bank, and the read/write types of each port. The paper highlights the benefits of
the new techniques and discusses the pros and cons involved in each case. The
Discrete Cosine Transform (DCT) benchmark illustrates the area improvements
obtained in the new approaches compared to conventional register binding (up
to 47%). The results are evaluated through an analysis of both area and delay
performances.

1   Introduction

Datapath Synthesis in Field Programmable Gate Arrays (FPGAs) is currently an
important and wide area of research.  Synthesis of digital systems includes the two
main tasks of scheduling and allocation.  The scheduling step consists of deciding on
the number of functional units (FUs) needed in the design, determining the total
number of control time steps needed, and specifying which control step corresponds
to each operation. The datapath allocation step achieves three objectives: first, register
allocation binds variables to registers or register files, then operation assignment
assigns operations in the design to functional units, and third, interconnection
allocation determines interconnections between registers and functional units whether
in form of buses or multiplexers ([2], [3], [4], [5], and [6]). Conventional register
allocation techniques ([9] and [10]) try to minimize the number of registers used for
storage in the design; however, since all new FPGAs contain large amounts of
embedded memory, new high-level synthesis techniques are sought to efficiently
utilize these memories.  Therefore, the goal of storage allocation should not be limited
to minimizing the number of registers, but to mapping the design variables onto the
embedded memories.  Thus, flip-flops in the FPGA logic elements would be saved for
use by the functional units of the design. This paper discusses various choices for
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storage allocation onto memories by motivating the need for new techniques; by
performing a literature survey on related work; by introducing the concepts of the new
techniques; by presenting the implementations of the new approaches illustrated with
an example; by discussing the results obtained; and finally, by a conclusion.

2   Motivation

A previous research effort demonstrated the possibility of using memories instead of
registers in storage allocation [1] especially with the current trend that all new FPGAs
contain a large amount of embedded memory.  There are many reasons why binding
to the on-chip memory banks is needed to replace register binding such as the
following:
- The need for larger storage area increases with larger designs that have more

variables, but registers do not provide these required large areas.
- Registers use the flip flops or latches of FPGA logic elements whereas using the

embedded memories saves these logic resources for the functional unit allocation
needs and reduces placement and routing congestion on the logic elements.

- Memory allocation improves performance because its criteria for binding change
from those for registers.  Register binding imposes restrictions like accepting only
variables with non-overlapping lifetimes, whereas memories accept overlap and
check only for simultaneous read or write conflicts.

- Memory mapping also reduces interconnection complexity and area cost because a
memory bank can incorporate more variables at a time than one register which
decreases the number of multiplexers used at storage inputs in the design.

- In the case of multi-port memories, parallel access to variables from the same
memory is possible which could not be achieved from the same register.

3   Related Work

Several studies were previously conducted in the field of using embedded memory
banks as storage units in datapath synthesis. Stok [7] presented a method for grouping
variables before assigning them to registers and thus generating memory modules.
The technique starts with an edge coloring algorithm, and after the variables are
grouped, the total interconnection is minimized by using simulated annealing. This
technique limits its use of memories to single port memories, but it showed that when
variables are grouped into register files and operations are assigned to modules,
savings in the number of interconnections are observed but at the expense of
additional register area. Tseng and Siewiorek [9] presented a method for memory
allocation that is based on building a graph to represent the concurrent access
requirements of the variables and then finding a clique partition of the vertices of the
graph. This technique follows at first the same sequence of steps used to map
variables to registers.  In other words, it takes the same assumptions for the variable
lifetime condition and maps variables to registers, and at the end of this process it
tries to group registers into sets of scratch pad memories provided that variables
having disjointed access times can be grouped together. This method does not take
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into account minimizing interconnection costs and is also limited to single port
memories.

Other techniques were developed that target multi-port memories.
Balakrishnan [12] elaborated on the use of multi-port memories in datapath allocation
where registers were grouped based on a 0-1 integer linear programming formulation.
Memories with read ports, write ports, and read/write ports were considered. Ahmad
and Chen [2] extended this work to find the minimal number of multi-port memory
banks required. This technique also minimizes the interconnection costs using a 0-1
ILP formulation while minimizing the total design area. Kim and Liu [8] used multi-
port memories stressing on the importance of minimizing interconnection costs before
grouping variables into memories. This approach also does not allow multiple copies
of variables to get mapped to more than one location. The goal is to minimize the cost
function that includes interconnection cost as well as memory cost. A common goal
for these memory binding techniques is to occupy a minimal number of memory
banks. This objective, although essential in ASIC designs, is not as important in
FPGA designs where the number of available banks is fixed.

Luthra et al. [14] presented a memory mapping methodology that assigns
large data elements to shared memories. The target is to place data in the FPGA
embedded memories so that it can be easily accessed by both hardware and software.
These HW/SW co-designs among general purpose processors and FPGA platforms
are used for compute-intensive tasks.  However, the approach focused on showing the
speedup obtained through acceleration in hardware over software. No performance
evaluation was done to compare the implemented memory binding with conventional
register binding.

Al Atat and Ouaiss [1] proposed a technique for memory binding that allows
variables to be assigned to the same memory if they are accessed in different
scheduled time steps. The technique capitalizes on the limitation of register binding
where variables cannot be assigned to the same register if their lifetimes overlap. In
memory binding, even if the lifetimes overlap, the variables can still be assigned to
the same memory bank provided that the access times do not overlap. Furthermore,
the technique highlights the savings in multiplexer area and reduction in logic area
occupied by registers. The approach, however, is limited to banks with one read port
and one write port. Moreover, the goal to minimize the number of memory banks
utilized, as described above, might yield sub-optimal solutions in terms of both area
and delay.

4   Memory Binding Implementations

This paper elaborates on the memory binding technique presented in [1]. The
technique was based on the assumption that embedded memories have exactly one
read port and one write port. It starts by assigning variables to the first available
memory bank. For each memory, two lists keep track of the time steps in which
variables are read and the time steps in which variables are written. Thus, when a
variable is assigned to a memory, its read and write times should not conflict with any
of the items in these two lists. When there are no more variables satisfying that
condition, variables would be assigned to another memory bank for which two new
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lists would be created. The process is repeated until all the variables are assigned to
memories. At that point, the interconnection between the memories and the functional
units would be determined according to the read and write times of the variables. The
behavior of that technique is illustrated through an example Fig. 1 and the results are
shown in Fig. 2. Fig. 1 shows the Scheduled Control Data Flow Graph (CDFG) for a
resource bag of three adders and two multipliers as functional unit resources. The
labels add# and mult# on the figure show the results of the FU assignment.  The
implementations of all subsequent techniques will be shown on this example. In all
the figures showing the output of memory binding: the FUs consist of the adders and
multipliers of the example with their outputs named according to FU numbers; labels
next to FUs show the operations allocated to each corresponding FU; the memory
banks show the variables mapped to them and their outputs are named according to
the memory number and the port number in the case of multi port memories; and the
multiplexers take for inputs variables, FU outputs, or memory outputs and have their
outputs connected to memory or FU inputs.
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This paper discusses two new memory binding techniques that target various
memory specifications: dual-ported memory banks are first targeted in a technique
that is different from the one used in [1] since it distributes the variables on all banks
of the FPGA. Second, the general case of multi-read and multi-write port memory
banks is presented. This latter approach also targets banks with single R/W ports as
well as multi bi-directional R/W port memories.

4.1   Distributed Mapping onto Dual-Ported Memories

This proposed algorithm extends the memory mapping technique presented in [1].
Although it caters to the same type of memory structures (one read and one write
ports), it assigns variables using a different approach. The algorithm takes advantage
of all embedded memory banks on the target FPGA by trying to intelligently
distribute the variables onto all available banks. In the distributed memory mapping
approach variables are assigned to different memory banks. If there are more
variables than memory banks, the algorithm assigns the remaining variables provided
their write and read access times do not conflict with pre-assigned variables in the
contemplated bank. The drawback of this approach is that it can complicate the chip
routing since all on-chip memory banks are utilized. Such a technique would be
useful if only one design was implemented on the FPGA. However, if multiple
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designs or cores were to be mapped onto the FPGA, the target would be to optimize
the number of used memories. On the other hand, the number of multiplexers at the
inputs of the memories is reduced since fewer variables are assigned to each bank.
Furthermore, at the output of the memory units, the interconnection complexity
depends on the datapath implementation. For implementations with large resource
bags (light FU re-use), the number of multiplexers at the output of the banks is
reduced to a minimum. However, if the datapath implementations include small
resource bags (heavy FU re-use), the mapping algorithm would generate additional
interconnection since variables distributed on different banks need to connect to the
same functional unit. For the example of Fig. 1, the output of distributed memory
mapping is shown in Fig. 3.
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Fig. 3. Result for Distributed Memory Mapping

4.2   Multi-read/Multi-write Port Memory Mapping

The second mapping variation targets memory banks with each M read and N write
ports. This technique, multi-port memory mapping, allows more variables accessed in
the same time step to be allocated in each memory bank. However, the complexity of
allocating variables to specific ports becomes evident. For each port, the implemented
technique assigns a subset of mapped variables while ensuring that there are no
conflicts between the variables’ read and write access times and that the number of
read and write ports do not exceed M and N, respectively. The assignment of a
variable occurs in one step: the target memory bank and the target port within that
memory bank are selected.

Fig. 4 shows the distributed memory mapping algorithm. VarList is a list of
all variables in the scheduled CDFG where each variable has a write_time and a list of
read_times.  The algorithm allocates for each memory bank a list of write ports and a
list of read ports to keep track of the variable accesses for each of the ports. The
procedure iterates through all variables in VarList trying to fit variables that do not
conflict with each other in the same memory.

The algorithm shows how the variables are mapped to ports as part of
mapping the variables to memories. First, a search is performed to find one write port
where all variables assigned to it do not conflict with the write time of the current
variable. Then, for every read time of the current variable, a search is performed to
find one read port with no read time conflict. If the necessary ports are found, the
variable is assigned to the memory. This process repeats for as many memories as
needed until all variables in VarList are assigned.
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Fig. 4. Multi Port Memory Mapping Algorithm
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Fig. 5. Result for Multi Port Memory Mapping

At the end of this algorithm, the number of multiplexers needed at the inputs
and outputs of each memory can be readily determined. The output of this technique
is illustrated in Fig. 5.
              The general memory mapping approach presented in this section can be
adapted to cater to single-port memory banks (banks with a single read/write port) and
to multiple read/write-port banks (banks with bi-directional ports). The outputs of
these two variations are shown in Fig. 6 and Fig. 7 respectively. The algorithms for
these two variations as well as the one for the technique described in Section 4.1 are
not shown since they can be deduced by refining the algorithm of Fig. 4. However,
their results will be analyzed in the following section.
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5   Results

The Discrete Cosine Transform (DCT) benchmark was used to validate the techniques
implemented in this paper. Specifically, the equation of one of the 4x4 variables in the
DCT matrix was implemented, and it consisted of 35 nodes (or operations).  Area and
speed results presented below were obtained from the Altera MAX+Plus II software
and characterized for the Altera EP1K100FI484-2 device of the ACEX1K family
[13].

5.1   Area Analysis

The results of the four techniques along with the technique presented in [1] were
compared to the results obtained by the Left Edge register binding algorithm [10]. As
seen in Table 1, all techniques decreased the overall area (in terms of logic cells)
occupied by the design.
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Table 1. Gain over Register Binding Using Left Edge Algorithm

+ x
# of

Memories
MUX
Area

Total Area Register Area
MUX
Area

Total Area
MUX
gain

total
gain

Dual Port Memory Mapping [1] Left Edge Register Binding % Area Gain
1 1 20 400 1160 320 880 1960 55 41
4 16 20 752 12552 320 800 12920 6 3

Distributed Mapping
(32 memories)

Left Edge Register Binding % Area Gain

1 1 32 688 1448 320 880 1960 22 26
4 16 32 608 12408 320 800 12920 24 4

Single R/W port Memory Mapping Left Edge Register Binding % Area Gain
1 1 20 496 1256 320 880 1960 44 36
4 16 36 656 12456 320 800 12920 18 4

Multi R/W Memory Mapping
(5 R/W ports)

Left Edge Register Binding % Area Gain

1 1 4 288 1048 320 880 1960 67 47
1 16 8 288 11998 320 864 12894 67 7
4 16 8 688 12488 320 800 12920 14 3
Multi Read Multi Write Port Memory Mapping

(3 Read / 2 Write ports)
Left Edge Register Binding % Area Gain

1 1 10 304 1064 320 880 1960 65 46
4 16 10 784 12584 320 800 12920 2 3

Table 2. Dual Port vs. Distributed Dual Port Memory Mapping

The results of applying the distributed memory mapping technique, shown in
Table 2, display a decrease in the multiplexer area when large resource bags are used.
This gain over the dual port memory mapping technique [1] is due to the use of more
banks.  Since the allocated variables were distributed over more memories, fewer
multiplexers were needed at memory inputs. Thus, the best results appeared with
larger resource bags and reached up to 30 % gain in multiplexer area. Knowing that
with the distributed technique fewer variables are allocated per memory and more
memories are used, it is expected that more multiplexers will be required at the inputs
of the functional units. Accordingly, with the smallest resource bags, the results show
a loss (up to 72%) in the total multiplexer area. With more functional units available,
more operations are executed in parallel and fewer multiplexers are required.
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5.2   Speed Analysis

Preliminary speed estimates were obtained for the memory mapping techniques
through the use of the timing analyzer capability of the MAX+Plus II software and
the reported maximum clock speed was observed. The targeted device has a flip-flop
delay of 0.8ns and a memory delay of 2.8ns, but the effectiveness of using memories
instead of registers despite this additional memory latency will be justified in the
following analysis. Table 3 shows the speed performance of simple designs that
compare use of registers versus use of embedded memory banks. The two used
designs only differ in their implementation of the storage components, where the
registers were solely interchanged with memory banks with a one-to-one register to
memory correspondence. The same design was implemented for 1, 8, 16, 32, and 64
bit operands corresponding to the rows in the table.  As the variable sizes increase, the
delay overhead of using memory accesses vanishes. When single-bit variables are
used, the registers outperform the memories since the placement and routing of logic
is constrained to a very compact section of the device. On the other hand, with
growing variables, the registers tend to spread onto multiple logic cells whereas
memories handle variable width operands (up to 16 bits in this device) within the
same physical block, thus limiting additional interconnection delays.

Table 3. Delays of Register vs. Memory Designs

Number of
Bits

Delays in Register
Designs (ns)

Delays in Memory
Designs (ns)

% Gain of Memory
over Register

1 4 9 -125
8 16.9 19.8 -17

16 36.7 35.7 3
32 76.6 71.9 6
64 145.3 129.8 11

Thus, besides the difference between registers and memory banks, the
functional units and multiplexers used in both designs were the same. Therefore, the
delay gain in the memory design over the register design is only attributed to the
distribution of the registers over multiple logic elements.

An important factor in the acquired delay values is the device used: with
higher RAM density FPGAs, such as the Stratix II, it is expected to obtain better
delay results. This is due to the fact that memory banks are closer to the logic
elements, and hence, the difference in placement delays between register binding and
memory binding should diminish.

In order to compare the effectiveness of the binding techniques, a simple
design was selected, and storage allocation was performed with both register binding
as well as memory mapping.  The memory mapping outperformed the register binding
by an area gain of 35% while a speed loss of 16%. Although the speed loss was
considerable, the preliminary speed performances shown in Table 3 suggest that with
larger bitwidths, the delay overhead disappears. Moreover, an initial timing analysis
of the DCT benchmark shows a speed loss of 19% for 8-bit data compared to about
200% loss for 2-bit data. Due to the limitation of the software used, designs with
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larger bitwidths did not place/route on the largest supported device; however, the
results obtained so far are promising.

6   Conclusion

This paper elaborated on the possibilities of using FPGA embedded memory banks to
allocate storage of variables in a design. Several memory specifications were
considered and corresponding memory binding algorithms were developed. From the
types of memory structures contemplated, single port memories having only one R/W
port, proved to be not viable with scarce resources and caused high interconnection
area and used large numbers of memories; however with enough resources, variables
were distributed over a larger number of memories and thus gave an area gain over
the dual port memory mapping technique [1].

Encouraging results were obtained for delay estimates obtained in memory
mapping. The overhead in time delay introduced due to register accesses being
replaced by memory accesses tends to disappear as the design becomes bigger and
wider signals are used.

Future work involves improving routing and placement costs caused by the
implemented memory mapping techniques. For example, there is need to implement
techniques to reduce wastage of unused bits in memory words by wisely selecting the
memories’ width and depth configurations. Furthermore, when memory mapping is
used, careful consideration should be given to modifying the designs’ controllers in
order to generate memory addresses while not affecting the design’s speed. Finally,
delay analysis is required using higher-density devices or devices from other families
and manufacturers.
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Abstract. We describe an optical flow processing system that works as a virtual
motion sensor. It is based on an FPGA device; this enables the easy change of
configuring parameters to adapt the sensor to different motion speeds, light
conditions and other environment factors. We call it virtual sensor because it
consists on a conventional camera as front-end and a processing FPGA device
which embeds the frame grabber, the optical flow algorithm implementation,
the output module and some configuring and storage circuitry. To the best of
our knowledge this paper represents the first description of a fully working
optical flow processing system that includes accuracy and processing speed
measurements to evaluate the platform performance.

1   Introduction

Optical flow algorithms have been widely described in the literature. Some authors
have addressed a comparative study of their accuracy on synthetic sequences [1].
Their evaluation using real world sequences is difficult to address because the real
optical flow of such sequences is unknown. We have chosen to implement a classical
gradient model based on work done by Lucas & Kanade (L&K) [1, 2]. Several
authors have pointed out the good trade-off between accuracy and efficiency of this
model that is an important factor to decide which approach is more suitable to be
implemented as a real time processing system. For example, in [1] L&K’s algorithm
provides very accurate results. Liu et al. [3] evaluate the efficiency vs. accuracy trade-
off of different optical flow approaches and outline that L&K is a good candidate.
Finally, McCane et al. [4] also give L&K a good score and conclude that this
approach requires an affordable computational power. This has motivated some other
authors to focus on the L&K algorithm [5, 6].

In this paper we describe the hardware implementation of the L&K algorithm.
There are other authors that have described recently the hardware implementations of
optical flow algorithms [7, 8, 9], but most of them do not provide results to evaluate
the performance of the system, i.e. the accuracy and the computation speed. This
approach is a fully working system at conventional camera frame rates of 30 Hz, with
images sizes of 320x240 pixels. To the best of our knowledge, this is the first
description of such a system and therefore represents the state of art in this area.
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2   Optical Flow Model

Although the original algorithm was proposed as a method to estimate disparity map
in stereo pair images [2], we have implemented the Barron’s description of L&K
algorithm that can be applied to optical flow computation [1]. Several modifications
have been added to improve the hardware implementation feasibility. Instead of using
temporal FIR filters, we have implemented IIR filters as described in [10]. A FIR
approach is also feasible in the used prototyping platform because it includes four
independent memory banks. But a IIR approach is much more easy to configure for
different time constants (only a single coefficient needs to be modified). On the other
hand, the FIR approach requires variable memory resources and memory accesses
depending on the constant of the temporal filter.

Other modification is adopted to provide estimations when the aperture problem
appears. In this situation, as described in [11], we can add a small modification that
allows to provide an estimation in the maximum gradient direction.

In the following equations, we describe briefly the computations in which is based
the L&K approach. We will refer to these computational stages when describing the
system architecture. A detailed description of the L&K model is provided in [1,2].
The algorithm belongs to the gradient based techniques that are characterized by
gradient search performed on extracted spatial and temporal derivatives. Making the
assumption of constant luminance values across the time, L&K method constructs a
flow estimation based on first order derivatives of the image. By least squares fitting,
the model extracts the motion estimation based on the hypothesis of similarity of
velocitiy values in a neighbourhood of a central pixel. W(x) is a window that weights
the constraints with higher weights near the centre of the spatial neighbourhood .

The known solution to this problem is:
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An inherent limitation of these models appears in blank wall or aperture problem
situations. In these cases, the problem has no solution (matrix ATW2A is not
invertible) and the model can not provide any motion estimation. For this reason, we
have added a small constant  to the matrix diagonal according to [9] that allows us to
estimate the normal velocity field in situations where 2-D velocity can not be
extracted due to the lack of contrast information. Therefore, the term of equation (1)
is computed with expression (3).
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Summarizing, we have to compute the 2x2 matrix of equation (3), its inverse and
the 2x1 matrix indicated in expression (4).
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The Gaussian smoothing is the pre-processing stage before the computation of the
image derivatives in the matrices elements of equations (3) and (4). It reduces image
noise and generates higher correlation between adjacent pixels. Typically, Gaussian
spatio-temporal filters of 2 pixels variance plus a temporal derivative of 5 pixels are
used. All the temporal operations require storage of 15 images for the entire process.
This is hardly affordable in embedded systems; therefore, as indicated in [10], a more
efficient implementation can be implemented using IIR temporal recursive smoothing
and derivative filters. In this way, the temporal storage requirement is reduced to 3
frames, and the computation time improved, at cost of a slightly reduced accuracy.
For an extensive discussion about how to design the IIR filters see [10].

3   Hardware Implementation

Nowadays software real-time computation of simple optical flow algorithms for small
images is possible due to the outstanding computational power of the PCs. The
drawback is that is difficult to adapt these systems to be used as embedded solutions.
In the presented approach the motion computation chip can be regarded as part of a
smart sensor. Alternatively, several hardware technologies can be used to implement
an embedded system. The use of specific integrated circuits (ASIC) can achieve
sufficient power to allow real-time computation but they are an expensive option.
DSPs represent a valid alternative but if we need considerable computational power,
the DSP solution is not powerful enough and a multiprocessor scheme needs to be
designed [12]. The solution we propose is based on the use of programmable logic
circuits (FPGAs). These circuits allow us to design a customized DSP circuit in a
single chip of high computational power due to an intensive use of their intrinsic
parallelism and pipeline resources. As we will show in later sections, the solution we
propose uses this technology to implement a real-time hardware device capable of
working as a PC coprocessor or smart sensor in embedded applications.

For our design we have used the RC1000-PP board from Celoxica [13] and
Handel-C [14] as the hardware specification language. This board is connected to the
PC by a PCI bus and it can be used as hardware accelerator board or as prototyping
board. It contains a 2 million gates Virtex-E FPGA and four 2 MB SRAM memory
banks accessible in parallel.

3.1   System Implementation Overview

The efficient implementation of the algorithm onto a FPGA device requires the
efficient exploitation of the intrinsic processing parallelism of this kind of device. We
use segmented pipeline architecture as shown in Fig. 1.
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Fig. 1. Coarse pipeline processing architecture.

The basic computational stages in Fig. 1 can be summarised as follows:
S0. Frame-Grabber receives the pixels from the camera and stores them in one of
the external memory banks using a double-buffer technique to avoid
temporization problems.
S1. Spatial Gaussian filters smoothing stage.
S2. IIR temporal filter affords temporal derivative and spatio-temporal smoothed
images.
S3. Spatial derivatives stage.
S4. Construction of least-square matrices of equations (2) and (3).
S5. Custom floating-point unit. Final velocity estimation need the computation of
a matrix inversion, which requires a division operation. At this stage the
resolution of the incoming data bits is significant and expensive arithmetic
operations are required. Fixed point arithmetic becomes then too expensive and
therefore we have designed a customized floating-point unit.

The computation bit-depth increases throughout the pipeline structure. For
example, for a high precision system, with low degradation, we use 8 bits in the two
first stages, 12 bits in the third and fourth stages, 24 in the construction of least-square
matrices and 25 bits for the floating-point unit although a less hardware expensive
approach has been tested with good results. The computation of the least-square
matrices (S4) is the most expensive stage in computational resources. Different
parallelism strategies can be adopted at this point.

Basic parameters of the pipeline structure are latency (L) and the maximum
number of cycles (MNC) required in the longest stage, which is the limiting factor of
the computing speed. The circuit scheme gives us a basic relationship between the
MNC and the system frequency clock (fclk) to know the computing speed in pixels per
second (pps), i.e. pps=fclk/MNC.

Due to the expensive requirements of the stages 5 and 6, the following subsection
focus on their implementation and architectural design strategy.
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3.2   Least Square Matrices Construction

This is a critical stage where the trade-off between efficiency and cost can be widely
studied. Equations (2) and (3) require the generation of five products: Ix

2, Iy

2, IxIy, IxIt,
IyIt. Then we have to make a weighted sum in a window (W) over a neighbourhood of
size w x by w y. Due to memory limitations we save the Ix, Iy, and It values instead of the
five crossed products. Therefore, the operations to do are: a) products computation for
all the elements in a neighbourhood. We need to do 5 x  w x x w y multiplications. b)
Row convolutions operation. We have 5 x w y convolutions to do and c) Column
convolutions operation. It requires the computation of 5 convolutions.
The scheme of these operations can be seen in the Fig. 3.

Fig. 3. Leas squares matrices circuit builder for a 3x3 neighbourhood.

This is an important stage where we can bias the trade-off between efficiency and
hardware cost. The important parameters to choose are: neighbourhood weighted sum
area, number of multiplication units and number of row-column convolution units.

For example, if we use a 3x3 neighbourhood, we can use between 1 to 45
multipliers, 1 to 15 row convolutions unit and 1 to 5 column convolution units. This
choice allows us to compute the weighted sum values in one clock cycle with a highly
parallel hardware unit or to compute it in a sequential way. Results using different
configurations are shown in section 4.

3.3   Final Velocity Calculation Using a Custom Floating Point Unit

At this stage the expression (1) is computed. Until now, the arithmetic operations
have been done using integer or fix point arithmetic with truncation operations.
Convolution operations work well with this representation but when the bit depth is
too high, a floating point data representation become better suited for hardware
implementation. This is done with a customized superscalar floating point unit whose
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architecture is illustrated in Fig. 4. Since at the previous stage, a high bit-depth (24
bits) is used to preserve the computation accuracy, it is a very expensive stage in
terms of hardware resources. Therefore it is a critical stage that highly affects the
accuracy vs. processing speed trade-off.

This stage computes the inverse of a matrix and the multiplication of a (2x2)
matrix by a (2x1) vector. This calculus involves the basic arithmetic operations:
subtraction, multiplication and division. The hardware structure of the unit developed
to compute this is shown in Fig. 4.

Fig. 4. Floating-point unit scheme

When arithmetic operations are done with large bit depth, the signal delays
associated to carry lines degrades the global system performance decreasing the
maximum system frequency. To avoid this, pipeline arithmetic operators or sequential
iterative operators can be used. The first one allows us to make the computation in
few (1 or 2) clock cycles after a given latency at an expensive cost in terms of
hardware resources. The second option takes several clock cycles therefore, degrading
the MNC of the system, but allows us to use the same hardware for each iteration. We
define a system which uses 1 cycle floating point hardware circuits because this
works at the desired maximum clock frequency (without becoming the limiting stage)
for all the operations but the division, because it is a difficult operation. We have used
a hardware sequential divisor instead a pipelined divisor that needs 21 cycles to
compute the division of 25 bits floating numbers therefore, the MNC is too high and it
highly limits the system pipeline performance. The chosen solution uses up to 3–ways
division units and, depending on the system performance required, we can synthesize
more or less ways. Each floating-point unit needs: one to five fix-points to floating
point converter units; one to six 25 bits floating point multipliers; one to three
subtractors; one to two divisor units. If n-ways divisor scheme is used, then we use n
to 2n divisor units. Results using different configurations are shown in section 4.

4   Hardware Resources Consumption Study

The system has been designed in a very modular way. The parallelism and the bit
accuracy at the different stages can be easily modified. Due to the high level of
abstraction that Handel-C provides [14] it is easy to manage the parallelism of the
computing circuits and the bit-depth at the different stages. In table 1 is summarized
the hardware resources of the different stages using a XCV2000E-6 Virtex FPGA for
a concrete implementation (called HSHQ in the following section).
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Table 1. Detail sub-circuits hardware requirements for a Virtex XCV2000E-6. Note that the
sum (% of the device in the first column) is larger than 100%, this can be explained because
these data have been obtained by partial compilations and the synthesis tool makes a wide use
of the available resources. When the whole design is compiled it consumes 99% of the device.

Number of slices /
(% of the device) /
equivalent gates

Computing
cycles

ISE maximum
Clock frequency

(MHz)

Memory
requirements

/ (% of the
device)

Spatial
Gaussian

(17 taps)

220 / (1%) /
270,175

8 29.2 16 / (10%)

IIR filter 134 / (1%) /
51,971 7 38.5 3 / (1%)

Spatial
derivative

convolution

287 / (1%) /
121,296

7 28.0 7 / (4%)

Least square
matrices

construction

15,288 / (79%) /
642,705

10 20.3 24 / (15%)

Superscalar
floating point

unit

5,720 / (29%) /
90,993

10 17.4 0

The last two stages have the larger MNC values. Note that a lower MNC are
possible for other stages but there is no reason to improve them due to the other
existing limiting stages. The results of the Xilinx timing analyser are not always
accurate. In fact, it can underestimate the speed at which a circuit can run, leading to
the place and route tool to take much longer than it needs to; i.e. the maximum
frequency allowed by the system has been experimentally measured and it is 10-20
MHz higher than the very conservative results given by ISE. This arises because the
analyser looks at the static logic path, rather than the dynamic one (see [15]) and
because of that we measure experimentally the maximum working frequency.

One important topic is the system configuration possibilities. We have evaluated
several configurations to explore different trade-offs between accuracy, hardware cost
and computing speed. In all these configurations we have used the same basic
architecture but with different parallelism levels. Table 2 summarises the main
properties of the different configurations. The ones using a 5x5 average window of
the least-square-matrix neighbourhood we call high quality (HQ) approaches, and the
ones using a 3x3 window, medium quality (MQ). Other modifiable parameters are the
smoothing and spatial derivative filter sizes. HQ and MQ models include 5-pixel
derivative filters and 9-pixel Gaussians. A low cost (LQ) version uses 3-pixel
derivatives and a Gaussian filter of the same size.

If we fix the optical flow quality of the system, another factor to take into account
is the performance vs. hardware cost trade-off. If the system works with maximum
parallelism the MNC is 10. Lower cost approaches are possible if we reduce the
parallelism level, thus increasing MNC. For example, we implemented a high-speed
(HS) version with MNC=10 cycles using a three-way division unit and maximum
parallelism. A slower version was implemented reducing the parallelism. We call this
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version medium speed (MS). Finally, we implemented a low-speed (LS) version.
Table 2 summarises the performance of the systems and hardware costs.

Table 2. Performance and hardware cost of different configurations in a Virtex 2000-E FPGA
(2 million gates and 640 Kbits of internal memory). (Kpps  kilopixels per second, Fps 
frames per second). All the performance values were measured using a system clock frequency
of fclk=27MHz. These measurements (Kpps and Fps) are underestimations because the
computing time measured also include data transmission to the prototyping board.

Version
% device

occupation

%
on-chip
memory

Kpps
Image

resolution

Fps
(fclk=27M

Hz)

Max. fclk

(MHz)

HSHQ 99
17
31

177
6

160x120
320x240

95
24

35

HSMQ 65
16
31

177
6

160x120
320x240

97
24

35

MSMQ 43 16 625 160x120 33 35
LSLQ 36 8 400 120x90 38 35

It is important to note that in our experiments data transmission to the prototyping
board using PCI bus takes about 40% of the total processing time, and therefore
higher frame rates are expected using a direct connection between the camera and the
FPGA. For instance, as explained in section 1, the theoretical bit-through of the
HSHQ is 2700Kpps. This topic is widely discussed in [16].

Until now, we have shown the system flexibility and the trade-off between
number of gates and system performance. Other important topic is the scalability at
the level of functional units. All our results make the assumption that only one
computational unit is used. Local image processing algorithm can take advantage of
the FPGA splitting possibilities. We can synthesize some computational units in the
same FPGA or in several of them and compute larger images in real time. If a
memory buffer is used, it is straightforward to assign a small area to each
computational unit and run it in parallel. The computational power is then increased
by a factor equal to the number of computational units running in parallel. Within the
pipeline computing structure, the scalability principles have been used in the floating
point unit design where we have implemented a three ways superscalar division unit.
This has been done to reduce the number of cycles required by this stage from 21 to 7,
therefore obtaining a well balanced pipeline computing architecture.

5   Performance Evaluation

As commented in the introduction, the accuracy of the optic flow computation of real
world sequences is difficult to assess because the real flow of these sequences is
unknown. Therefore to evaluate the accuracy of our design that depends on the bit-
depth of the different stages, we have adopted the test scheme and the synthetic
sequence from the comparative study done by Barron et al. [1]. The results using the
HSHQ approach are summarized in Table 3.

In the first row of Table 3 is compared the accuracy of the L&K algorithm
computed by a standard PC using double precision variables and adopting the IIR
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filters using the error measure proposed in [17,18]. The second row includes the
performance obtained by our hardware implementation. It can be seen that the
accuracy is reasonable taking into account that fixed point variables and restricted bit
depths are used in this approach.

Table 3. Yosemite sequence results using Fleet angle error measure [17,18].

Model Average
Error

Standard
deviation

Density
%

Parameters

LK IIR software vs.
real flow

15.91 º 11.5 º 100 min=0, xy=0.8,
=2, =1

Hardware implementation
vs. real flow

18.30 º 15.8 º 100 min=0, xy=0.8,
=2, =1

We also have compared the performance of the software and the hardware
implementations using sinusoidal grating sequences. We used different stimulus
frequencies (f0=0.02 and f0=0.05) and velocities (V=0.25 ppf and V=1 ppf). With
these tests the hardware obtained results very similar to those of the software
approach (less than 5% of error in the speed calculation). The software
implementation (standard C) runs at a 30 fps of 160x120 pixels on a AMD 1800+.

6   Conclusions and Future Work

The system described here shows how an optical flow estimation circuit can be
implemented using an FPGA platform as a specific purpose DSP to achieve real-time
computation. The paper describes a scalable architecture that can work with large
image data at video-frame rate.

Table 3 summarises the results of a comparison between the software and
hardware results using the Yosemite sequence test and unthresholded results. It can be
seen that the performance of the hardware is only slightly worse (2.48º increment of
error) than the software version with data precision of 64 bits. The results of the
hardware implementation described in this paper are in the range of other software
approaches considered in the study of Barron et al. [1]. Therefore, the performance of
the hardware is of reasonable quality provided that it computes in real time (at a speed
of 1776 Kpps).

In the future, we plan address two main goals. The first one is to study the bit-
depth needed for different applications. Although this hardware approach is being
used with real-world sequences with satisfactory results, it uses a high depth that can
be reduced significantly. The second goal is to use a multiscale computation to detect
faster motion properly. Classical gradient models estimate velocities well for speeds
slower than one pixel per frame but faster motion produces temporal aliasing. The
basic solution consists in computing motion at higher frame rates (that needs special
and expensive cameras). Alternatively, using multiscale approaches the same cameras
can be used.



626         J. Díaz et al.

Acknowledgments. This work has been supported by the V EU research framework
funds through the European Projects ECOVISION (IST-2001-32114).

References

[1] J. Barron, D. Fleet, S. Beauchemin: Performance of optical flow techniques. Internat. J.
Computer Vision, Vol. 12, nº.1, pp 43-77, 1994.

[2] B. Lucas & T. Kanade: An iterative image registration technique with an applications to
stereo vision. Proc DARPA Image Understanding Workshop, pp. 121-130, 1984.

[3] H. Liu , T.H. Hong , M. Herman , T. Camus and R. Chellappa: Accuracy vs. Efficiency
Trade-offs in Optical Flow Algorithms. Computer Vision and Image Understanding. Vol.
72 ,  Issue 3  (Dec) pp. 271 – 286, 1998.

[4] B. McCane, K. Novins, D. Crannitch and B. Galvin: On Benchmarking Optical Flow.
Computer Vision and Image Understanding. Vol. 84, pp 126–143, 2001.

[5] S. Baker and I. Matthews: Lucas-Kanade 20 Years On: A Unifying Framework.
International Journal of Computer Vision, Vol. 56, nº.3, pp. 221 – 255, March, 2004.

[6] Gamal, A. El, Optical Flow Estimation using High Frame Rate Sequences,  Proceedings
of the 2001 International Conference on Image Processing, Vol. 2, pp 925-928, 2001.

[7] P. Cobos, F. Monasterio: FPGA implementation of the Horn & Shunk Optical Flow
Algorithm for Motion Detection in real time Images. Proc of the XIII Design of Circuits
and Integrated Systems Conference, pp. 616-621, 1998.

[8] P. Cobos, F. Monasterio: FPGA implementation of Camus correlation Optical flow
algorithm for real time images. Proc of Int. Conf. on Vision Interface, pp. 7-9, 2001.

[9] S. Maya-Rueda, M. Arias-Estrada: FPGA Processor for Real-Time Optical Flow
Computation. Lecture Notes  in Computer Science, Vol.  2778, pp. 1103-1016, 2003.

[10] D. J. Fleet, K. Langley. Recursive filters for optical flow. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 17, N. 1,  pp. 61-67, 1995.

[11] E P Simoncelli and E H Adelson and D J Heeger. Probability distributions of optical flow.
IEEE Conf on Computer Vision and Pattern Recognition, Mauii, Hawaii. June 1991.

[12] T. Rowekamp, M. Platzner, and L. Peters: Specialized Architectures for Optical Flow
Computation: A Performance Comparison of ASIC, DSP, and Multi-DSP. Proc
ICSPAT'97, 1997.

[13] www.celoxica.com
[14] Handel-C language referent manual. Celoxica 2003.
[15] Celoxica application note AN 68 v1.1: Timing analysis. Timing Analysis and

Optimisation of Handel-C Designs for Xilinx Chips.
[16] D. Benitez, Performance of reconfigurable architectures for image-processing

applications. J. of Systems Architecture: the euromicro journal, vol 49 (4-6), pp. 193-210,
2003.

[17] D.J Fleet, and A. D. Jepson: Computation of Component Image Velocity from Local
Phase Information, International Journal of Computer Vision, Vol. 5, N.1, pp. 77-104,
1990.

[18] D. J. Fleet, Measurement of Image Velocity. Engineering and Computer Science. Kluwer
Academic Publishers, 1992.



Methods and Tools for High-Resolution Imaging

Tim Todman and Wayne Luk

Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2AZ
{tjt97,wl}@doc.ic.ac.uk

Abstract. Film and video sequences are increasingly being digitised,
allowing image processing operations to be applied to them in the dig-
ital domain. For film in particular, images are digitised at the limit of
available scanners: each frame may contain 3000 by 2000 pixels, with 16
bits per colour channel. We investigate the consequences of working with
these high-resolution images on FPGAs. We consider template match-
ing and related algorithms, and derive a performance model to establish
bounds on performance and to predict which optimisations may be fruit-
ful. An architecture generator has been developed which can generate
optimised implementations given image resolution, the FPGA platform
architecture, and a description of the image processing algorithm.

1 Introduction

Film and video sequences are increasingly being digitised, allowing image pro-
cessing operations to be applied to them in the digital domain. For film, high
resolution digital scanners have been developed, giving 3000 by 2000 pixels per
frame, and 16 bits per colour channel. For video, digital formats are increasingly
common: DV, mini-DV, High Definition Television(HDTV). Like film, HDTV
can require large resolutions – the Society of Motion Picture and Television
Engineers (SMPTE) has defined several high-resolution standards.

These high-resolution formats contain much more data than conventional
video. Each image in the SMPTE 374M standard (1920 by 1080 pixels, 30 bits
per pixel) contains some 7.42MB, compared to 1.17MB for VGA video (640
by 480, 24 bits per pixel). Digitised film frames are even larger: 45.8 MB for
3000 by 2000 images with 64 bits per pixel, and higher-resolution scanners are
being developed. Large images are used in medical applications: for example, in
chest radiography a 2048 by 2048 format, with 1024 shades of grey (10 bits per
pixel) [7] has been used; the Digital Mammography Database contains images
up to 5200 by 4000 pixels [2].

In this paper, we consider the use of FPGAs for processing of large-format
images. Our target application is template matching, a convolution of two images
together which has many applications in its own right, and as a component of
larger algorithms.

This paper makes the following contributions:

– We map a generic template matching algorithm to hardware, showing the
memory requirements and the effect of different numbers of memory banks
on the performance.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 627–636, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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– We create a performance model, illustrating the effects of caching on the
performance.

– We propose an architecture generator which takes the basic platform archi-
tecture and image sizes and allows the user to create an optimised configu-
ration.

Many researchers have implemented template matching and related algo-
rithms on reconfigurable hardware, as far as we are aware, none have done so
for large resolutions.

Gause et al. implement Summation of Absolute Differences (SAD) correla-
tion, compiling to a systolic array implementation [4]; they apply this correlation
to template matching at HDTV resolutions. Their implementation resembles our
work for the case when all of the template is cached on the FPGA; however they
do not consider caching just part of the template on the FPGA. Weinhardt and
Luk [8] infer shift registers and memories for loop nests. Diniz and Park [3] also
infer small memories to reduce the bandwidth required to off-chip memory, as
well as parameterizable external memory interfaces for FPGAs [6]. All of these
papers assume that the memories fit into the FPGA along with the rest of the
algorithm. We handle cases when these caches do not fit. Our methods com-
plement these prior approaches, and we would like to explore integrating these
techniques.

The rest of this paper is organised as follows. The next section describes
the template matching algorithms we use, and shows a straightforward mapping
to reconfigurable hardware that is used as a base for comparisons with more
sophisticated techniques in later sections; we also develop the performance model
for this basic mapping. Next, we develop several caching techniques and extend
the performance model to suit. The next three sections describe an architecture
generator, show various specialisations of the basic algorithm, then give some
results for actual hardware implementations. Finally, we conclude and suggest
ideas for future work.

2 Mapping to Reconfigurable Hardware

We consider the problems of mapping image processing algorithms to FPGA
platforms allowing for such large images. We study template matching, a form of
convolution, which is the basis of many image processing functions, for example
correlation, edge detection and blurring, and is used as part of other algorithms
such as image registration. We consider convolutions between two images, which
we refer to as image 1 (I1) and image 2 (I2), producing a resulting image Ic. In
terms of template matching, I1 is the template to match in I2. These images may
optionally have associated masks M1 and M2 respectively, of the same width and
height. We consider convolutions of the following form:

for y = 0 to H2 − H1 do
for x = 0 to W2 − W1 do

Icy,x = f3(
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∑H1−1
i=0

∑W1−1
j=0 f12(M1i,j , I1i,j , M2y+i,x+j , I2y+i,x+j),∑H1−1

i=0
∑W1−1

j=0 f11(M1i,j , I1i,j),∑H1−1
i=0

∑W1−1
j=0 f22(M2y+i,x+j , I2y+i,x+j))

end for
end for

where image 1 is of height H1, width W1; image 2 is of height H2, width W2;
H2 > H1 and W2 > W1 and f3, f12, f11, f22 are pure functions (that is, they
have no internal state and their results depend only on their parameters). The
resulting image Ic has height H2 − H1 + 1 and width W2 − W1 + 1. Note that
image subscripts represent coordinates; thus I1i,j means the pixel at I1’s ith
row and jth column.

This form covers many kinds of correlations and convolutions, for example:

– the SAD correlation of two images would have no M2, f3(a, b, c) = a,
f12(m1, i1, m2, i2) = m1 × abs(i2 − i1) and null f11 and f22.

– the normalised correlation between I1 and I2 would have f3(a, b, c) =
a/

√
b × c, f11(m1, i1) = m1 × i1, f22(m2, i2) = m2 × i2 and

f12(m1, i1, m2, i2) = m1 × i1 × m2 × i2.
– a gaussian blur would have no masks, image 1 as the gaussian kernal and

image 2 as the image to be blurred.

This form of the algorithm has the following properties:

– All pixels of the convolved image are independent; they may be calculated
in parallel or in any order.

– Likewise, each pair of inner and outer summations can be interchanged.

We use these properties in our caching schemes in the next section.
We choose a pipelined design, allowing us to use optmimised hardware li-

braries such as multipliers and square root, as needed for different functions f11,
etc. We show later that as long as the cycle time of the design is less than the
memory access time, the memory access is the limiting factor: the algorithm is
limited by speed of input and output. Each memory bank can be written to at
most once per cycle. Figure 1 is a block diagram of our hardware’s datapath.
It shows each image (I1, I2, M1, M2, Ic) mapped to a separate memory bank.
This assumes that all of each image fits in one bank, and that there are at least
five external memory banks on the FPGA platform.

For each pixel of Ic, we must read all of I1 and M1, and an I1-sized area of
I2 and M2. If the data bit-width is d bytes, and the memory wordsize in bytes
is s, this takes a total of:

(d/s) × (H2 − H1 + 1) × (W2 − W1 + 1) × H1 × W1

cycles.
Table 1 summarises the number of cycles taken by this basic mapping, for

film and HDTV image resolutions and 1-, 4- and 8-byte per pixel image formats.
Note that the memory word-size s = 4 for these results:
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M1

I1

M2

I2

f11

f22

f12

D+

D+

D+

f3 IcInput memory
banks

Output memory
bank

FPGA

Customisable
Functions

Fig. 1. Datapath of our design. Parts inside hatched area are on FPGA device; outside
blocks are external RAM banks. Round blocks are stateless, pure functions; D-type
flip-flops represent registers used to accumulate summations. Functions f11, f12, f22,
f3 set what kind of template matching algorithm is performed.

Table 1. Time taken in seconds to run the straightforward mapping on a platform
with 100MHz RAM, showing times for film (4000 by 3000) and HDTV(1920 by 1080)
resolutions, with two sizes of template.

D H2 W2 H1 W1 cycles time
1 4000 3000 32 32 3.02E+09 30.17
4 4000 3000 32 32 1.21E+10 120.79
8 4000 3000 32 32 2.42E+10 241.81
1 1920 1080 32 32 5.07E+08 5.07
4 1920 1080 32 32 2.03E+09 20.31
8 1920 1080 32 32 4.07E+09 40.66
1 1920 1080 64 64 1.93E+09 19.34
4 1920 1080 64 64 7.74E+09 77.37
8 1920 1080 64 64 1.55E+10 154.79

The first three rows show times for a small image 1, such as a 32x32 gaussian
filter, with image 2 at digitised film resolution; the second three rows repeat this
with image 2 at HDTV resolution. The last three rows show repeat the second
three rows for larger image 2. These results show that the basic scheme may take
a long time for large images.

In the next section we develop our performance model to account for caching.

3 Caching

In the previous section, we developed a formula for the number of cycles taken
by a straightforward implementation of the algorithm. We now:

– extend our performance model to account for caching.



Methods and Tools for High-Resolution Imaging 631

M1
f11

D++

f3 Ic

Input memory
banks

Output memory
bank

FPGA

cache_M1

cache_I1

f11

I1

Hardware for
other memory
banks omitted
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Fig. 2. Datapath of our design, showing caches cache M1 and cache I1 on for the
memory banks containing M1 and I1 respectively; other memories, functions and ac-
cumulators removed for clarity. Data read from memory are cached to avoid re-reading.
An extra instance of function f11 processes cached data; an extra adder sums the data
from external memory with the cached data.

– use the performance model to establish a lower bound on the time taken
assuming perfect caches of infinite and bounded size.

– use the performance model to calculate the performance of practical cache
sizes and configurations.

The straightforward implementation repeatedly reads parts of the images and
masks, suggesting that we can save time by caching these parts using internal
FPGA RAMs. We extend the performance model to account for two mutually-
exclusive caching schemes: perfect caching, where each pixel need only be read
once; caching several columns or rows of I1 and I2.

Figure 2 shows a simple cached version of the basic datapath in fig. 1. The
memories containing masks and images are read as before, but the values they
yield are cached in on-chip memories. These caches can then be read simula-
taneously with the main memory, and save re-reading values that have already
been read.

3.1 Perfect Caching

For perfect caching: the algorithm needs to read all of I1, M1, I2 and M2. We
assume that all the images and masks are read in parallel. As H2 > H1, and
W2 > W1, the time to read I2 will dominate the time to read I1. Assuming the
result image, Ic can be written at the same time, the overall time is just the
time to read image 2, given by:

(d/s) × (H2 × W2)

Table 2 shows the time for the examples using this perfect caching:
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Table 2. Repeat of table 1, adding times for perfect caching; the final column shows
the speedup achieved.

No Cache Perfect Cache
d H2 W2 H1 W1 cycles time cycles time speedup
1 4000 3000 32 32 3.02E+09 30.17 3.00E+06 0.030 1005.81
4 4000 3000 32 32 1.21E+10 120.79 1.20E+07 0.120 1006.55
8 4000 3000 32 32 2.42E+10 241.81 2.40E+07 0.240 1007.53
1 1920 1080 32 32 5.07E+08 5.07 5.18E+05 0.005 978.79
4 1920 1080 32 32 2.03E+09 20.31 2.07E+06 0.021 979.50
8 1920 1080 32 32 4.07E+09 40.66 4.15E+06 0.041 980.46
1 1920 1080 64 64 1.93E+09 19.34 5.18E+05 0.005 3730.73
4 1920 1080 64 64 7.74E+09 77.37 2.07E+06 0.021 3731.42
8 1920 1080 64 64 1.55E+10 154.79 4.15E+06 0.041 3732.33

Comparing the two tables, we note that: using perfect caching, only the size of
I2 bounds the total processing time; for our examples, three orders of magnitude
speedup can be achieved using perfect caching, owing to the application being
IO-bound.

We do not need to cache all of I2 to implement a perfect cache, because not
all of I2 is required to produce any pixel of Ic; we use the scheme of Gause [4].
Figure 3 shows the minimum perfect cache size. Starting at the bottom left of Ic,
we cache pixels of I2 and M2 in row-major order, simultaneously caching pixels
of I1. When we reach pixel I2H1−1,W1−1, we can produce Ic0,0. We continue
scanning, each read of I2y,x producing Icy−H1+1,x−W1+1. The shaded area of
fig. 3 shows the area of I2 and M2 we need the cache to be (H1 ×W1) + (H1 −
1) × (W2 − W1) = (H1 × W2) − W2 + W1 pixels in size. This is just for I2;
we must also store the same area of M2 and all of I1 and M1. Because all the
images are stored on the memory banks, and the outer loops of the algorithm are
interchangeable, perfect caching can also run in column-major order; by analogy
to the above formula for row-major order, the space required for column-major
order is (W1 × H2) − H2 + H1 pixels – column-major order uses less space for
square I1 with any I2 where H2 < W2, which is true of many video formats.

Perfect caching is not practical for large images as it uses much on-chip
memory: for HDTV resolution (I2 of size 1920 by 1080), with I1 of size 32 by 32,
a perfect cache needs 32× 1080− 1080+32 = 33512 pixels. A large FPGA, such
as the Xilinx XC2V8000 can cache that many pixels in an eight-bytes-per-pixel
image format in its dedicated RAM resources (block SelectRAM), but cannot
cache an image 1 more than 45 pixels tall. Moreover, to generate a pixel of Ic
every cycle, we must do the entire summations of the algorithm in that cycle.
This requires H1 × W1 additions and the same number of instances of f11, f12
and f22.
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Fig. 3. Size of cache for perfect caching, shown by shaded area. Ic shown as hatched
box (extends under shaded area). Outer bounding box is the size of I2.

3.2 Practical Caching

If a perfect cache is impractical, some speedup can still be obtained from us-
ing smaller caches. We investigate the effect of caching one or more H1-height
columns of I1, M1, I2 and M2.

Consider the effect of caching N such columns. Once the cache is initialised
with the first N columns, only W1 −N columns of I1, M1, I2 and M2 need be
read to produce the next pixel of Ic, assuming that the cache is read in parallel
with being updated. Since only W1−N columns need be read per pixel, the total
number of reads per row of Ic is H1 ∗W1 for the first pixel, plus H1 × (W1 −N)
for each of the remaining W2 − W1 pixels. The total number of cycles taken is
thus:

(d/s) × (H2 − H1 + 1) × ((H1 × W1) + (W2 − W1) × (H1 × (W1 − N)))

Compared with the case without caching, a cache with N = W1/2 will make
half as many reads, hence it will run twice as fast. N can be usefully increased
until N = W1 − 1; beyond that point the extra cache does not contribute to the
calculations for the current pixel. Substituting N = W1 − 1 into the expression
above shows that the speedup in this case is roughly W1.

Like the perfect cache mentioned above, an extra instance of f11, f12 and
f22 are required for each cache read that can occur in parallel with the memory
read. Thus for 0 < N <= W1/2, one extra instance of each are required, for
W1 + 1 < N <= 2W1/3, two extra instances are required, and so on.

4 Specialisations

So far, we have considered the implementation of the general case of our template
matching algorithm. The general case allows one or more of the masks, and
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all but one of the customisation functions f11, f12, f22 and f3 to be absent.
In this section, we consider specialisations of the general purpose algorithm,
and how these may yield further opportunities for optimisation. We list several
specialisations, then explore one in more detail:

– Image I1 may be constant for a number of different image I2s.
– If one or both masks are absent, the memory banks that would have been

used can be saved.
– Mask M1 always multiplied with I1: the host application can premultiply

the mask and image, saving a memory bank.
– Small bitwidth for masks: some applications use boolean mask types; in this

case, the entire mask can be cached on the FPGA as a preprocessing step,
saving a memory bank.

– Small I1: recognising a small input image would allow us to use some of the
existing methods such as [8].

– Sharing memory banks between images: sometimes, Ic and I1 will fit in
the same memory bank. Ic is only written every H1 × W1 cycles in the
straightforward algorithm.

– Use of saturating arithmetic: some applications can tolerate the use of satu-
rating arithmetic, which clamps a value to a maximum level if calculations
exceed that level.

– Compression of input images: this can also be done by the host, perhaps
allowing a modest increase in the size of image that can fit in one bank.

We deal with a constant I1 in more detail. This situation can happen in sev-
eral ways: I1 is being used as a filter, for example a Gaussian blur; one template
is being matched to many other images – for example in factory automation or
security applications.

If I1 is constant, the hardware configuration can take advantage of this.
Instead of caching the image values in registers, they can be encoded in constant
multipliers and adders, taking much less room than the caches and variable
multipliers used in our caching designs, so more of the image can be cached on the
FPGA. This runtime constant propagation could be built into the architecture
generator we describe in the next section.

5 Architecture Generator

In this section we propose an architecture generator that, given image sizes, bit
widths and number of memory banks, generates several cache configurations,
reports the number of cycles taken by each, splitting images across banks if
enough memory banks are available.

The proposed architecture generator produces designs in Celoxica’s DK [1]
tool which instantiate Xilinx Coregen blocks. It generates designs using a spec-
ified pipeline length. It is up to the user to compile the resulting circuits and
verify that they fit on the available hardware, and that the clock cycle time ex-
ceeds that of the memory. Currently, the generator does not support automatic
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Table 3. Device utilisation for various column caches for Sum of Absolute Differences
correlation, H1 = 16, 32, 64, using Xilinx XC2V4000 device.

H1 =16 H1 =32 H1 =64
Number of columns % FF % LUT % FF % LUT % FF % LUT

(no cache) 1 8 1 8 1 8
1 3 13 7 16 13 22
2 7 18 13 24 27 35
3 10 23 20 31
4 13 28 27 39

tradeoffs between pipeline length and available cache size – we also require the
user to do this manually.

We adopt an architecture generator approach, because although languages
like Handel-C offer powerful macros, allowing programs to be parameterised for
bit widths and number of memory banks, such parameterised programs are not
always easy to use.

An architecture generator can:

– handle quirks like pipelined RAM, priority queues to write to memory.
– validate input parameters (H2 > H1, W2 > W1, d = 1, 2, 4, 8).
– store architectural descriptions (currently: number of memory banks,

pipelined memories).
– generate combined mask / image banks (concatenated, or multiplied together

if the algorithm allows it).
– generate multiple cache configurations.

The architecture generator takes as input the parameters of the template
matching algorithm: H2, H1, W2, W1, d, s, list of memory banks and the cus-
tom functions f11, f12, f22 and f3. As output it produces several designs: a
straightforward design, to use as a base for comparisons, various column caches
and a perfect caching design, along with calculations of the number of clock
cycles taken. Users can then synthesise these designs and choose which best suit
their needs.

6 Results

Figure 5 shows utilisation of Xilinx Virtex XC2V4000 for 0- to 4-column caches
for H1 = W1 = 32, SAD correlation.

As expected from section 3.2, the utilisation rises fairly linearly with the
number of columns in the cache.

7 Conclusion

In this paper, we mapped a customisable template matching algorithm to hard-
ware, focussing particularly on large image resolutions and bitwidths, which do
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not allow the entire template image to be cached on the FPGA. We developed a
performance model, allowing us to set an upper bound on the performance avail-
able from caching, and to analyse the performance available from more practical
caching designs. Finally, we proposed an architecture generator, to take the pa-
rameters of a template matching algorithm and generate various caching designs,
to allow the user to explore the design space.

We would like to explore several possible future extensions to this work.
Firstly, the ideas in this paper could be extended to three-dimensional image
processing. Our generic algorithm could be extended to three dimensions fairly
easily, but designing suitable caches is likely to be more challenging [5]. Sec-
ondly, we would like to combine our approach with the related work mentioned
earlier. Thirdly, we would like to use our methods to implement the Fast Fourier
Transform (FFT) method for template matching. The FFT has a lower compu-
tational complexity than our convolution method, but has a butterfly memory
access pattern, making caching rather different. Finally, we would like to explore
runtime constant propagation, as mentioned in the section on specialisation.
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Abstract. In order to use Networks-on-Chip as communication infrastructure
for heterogeneous, reconfigurable Systems-on-Chip, a set of tools are needed that
would allow for an evaluation of the performance of a particular network, and a fast
implementation of the system. In this paper we present two models that can be used
in the design and implementation of the platform and of its applications. The first
model is written in synthesisable VHDL, and it is highly parameterizable allowing
a fast network implementation. The second one is a cycle-accurate SystemC model
that allows a fast exploration of the design space. The models offer complementary
information and help the platform and the application designers to make the best
trade-offs. We present how the two models can be used for platform optimization
and implementation and for application mapping, using a motion JPEG decoder
as a case study. We analyze the system performance as a function of the different
design parameters and we present the implementation results for the reconfigurable
platform that we have built.

1 Introduction

As the complexity of Systems-on-Chip (SoCs) continues to rise, design reuse is more
and more regarded as the only way that allows designers to keep pace with the tech-
nological developments[1]. In this context, the design of the infrastructure insuring the
communication between the different system components (microprocessors, memories,
dedicated hardware blocks, reconfigurable hardware) becomes a key element in system
design. For platforms containing reconfigurable blocks, fixed communication resources
and standard interfaces are the only way to avoid difficult run-time routing problems.
Networks-on-Chip (NoCs) are gaining support as the system-wide communication re-
source, connecting together the major subcomponents of the system (further referred as
IPs)[2,3,4]. The reason is that due to their parallel structure, networks can sustain higher
communication bandwidths and have much better scaling properties than traditional
solutions like buses.
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Platform designers have to dimension the communication according to the applica-
tion domain for which the platform is developed. Besides the application domain, the
designer has to consider also the size, the cost and the power requirements while mini-
mizing the development time. Consequently, the network capacity, latency and services
have to be dimensioned considering all these constraints. On his side the designer can
play with a large number of parameters in designing the network. NoC designs have
been proposed by Guerrier et al. [5] with the SPIN network, Rijpkema et al. with Aethe-
real [6], Kumar et al. [7]. Although all these designs are scalable, the networks size
can be increased only by increasing the number of nodes while keeping a fixed, regular
topology. We believe however that only one topology can not suit all applications. More-
over, support for irregular topologies is important as they allow to make better trade-offs
and permit a smooth transition from the present, mainly bus-based designs. Recently,
Saastamoinen et al. [8] proposed a network design that supports several parameteriza-
tion options including topology. Their approach is to build a library of components that
can be combined in order to realize the different networks. However, for the time being
arbitrary topologies are not supported.

Application designers need to find the best mapping of a given application onto
the platform. In designing programmable or reconfigurable platforms, like the one pre-
sented in [9], the estimation can be based on the needs of typical applications, but it
can not cover all possibilities. Therefore, the designer will need a high-level model
of the network to map the application onto the reconfigurable platform and to assess
its performance. The usual design methodology consists in simulating the application,
determining the communication needs of the different application blocks, separately sim-
ulating the network with a network simulator and tuning the network such that it satisfies
the application requirements. There are many general network simulators available, for
instance OMNet++ [10] and NS-2 [11], both written in C++. We used OMNet++[12]
as the starting point for our network model. Sun et al. [13] have recently used NS-2 for
Network-on-Chip simulation, showing how high-level network models can be used to
tune the different network parameters. However, a network model that could be simu-
lated together with the application blocks would allow a much faster, more accurate and
convenient exploration of the different mapping solutions.

We can therefore identify three different design problems. The design of the platform
for a specific class of applications, the mapping of a certain application to a given
platform or a mixed platform-application design where the platform is optimized for
a certain application. Thus, we have developed two NoC models, a high-level one and
a synthesisable one, in order to support all possible scenarios and to realize a short
development cycle. This paper describes and compares the two models, discusses the
simulation times, and presents a case study illustrating how the two models can be used
in a mixed platform and application design.

This paper is organized as follows: Section 2 presents the VHDL network model;
Section 3 explains the SystemC network model; Section 4 compares the two models;
Section 5 presents the mapping of a motion JPEG decoder on a reconfigurable tile
architecture interconnected through our Network-on-Chip, discusses the impact of the
different network design decisions on the total system performance and presents some
implementation results; finally in Section 6 some conclusions are drawn.
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Fig. 1.VHDL network router structure. The number of input ports can be different from the number
of output ports, and multiple IPs can be connected to the same router.

2 Network-on-Chip – The VHDL Model

As argued in the introduction, different networks will be required for different application
domains. Once the network parameters are determined through simulation, a flexible,
easy to customize VHDL network model provides a fast implementation. If the parame-
ters have to be slightly changed to support more applications, the implementation can be
also quickly adapted. Our Network-on-Chip, further referred as ICN, was designed to
be a very flexible packet-switched network, with routers allowing a variable number of
input and output ports, which in turn allows networks of varioustopologies and capacities
to be easily built [14]. The network router structure is shown in Figure 1.

The network is implemented as a synthesisable VHDL component for which the
following parameters can be specified:

– Network Topology – It is specified as a graph of routers, IPs and links. This notation
allows us to easily build networks with irregular topologies, with a variable number
of nodes and variable number of IPs connected to the same node.

– Routing algorithm – It is specified as a routing table and can be customized at link
level.

– Link Width – It determines how many bits are sent per clock cycle, and therefore
it has a strong impact on the network throughput.

– Output Queue Size – The ICN uses virtual cut-through switching, therefore when
the packets are blocked they are locally buffered in the router. It also uses out-
put queuing, meaning that the buffers are placed in the output, after the switching
element. The larger the queue the higher the throughput, but also the total router
area.

– Maximum Packet Size – The size of a packet is not fixed but it has to be limited,
such that the output queue can be dimensioned.

3 Network-on-Chip – The SystemC Model

At system level, the designer will have to evaluate the performance of a given communi-
cation architecture in the early stages of the design cycle. If the communication between
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the IPs is provided by a network, many parameters can influence the overall system per-
formance, both network related (topology, routing algorithm, buffer sizes . . . ), as well
as application mapping related (number of logical communication channels mapped on
the same physical link). Therefore, we have developed a high-level model of the network
where these parameters can be easily changed, and that can be co-simulated with the IP
models, allowing fast design space exploration.

The high-level network model was written in SystemC, which is an open environment
that can be linked to other simulation environments. The network model is pin and cycle
accurate although the internal structure differs from the real implementation. The node
structure is shown in Figure 2. The IPs connect through an IP interface. The application
layer of the interface offers high-level services to the application like send packet and
receive packet. It also makes the adaptation between the simulation language of the IP
model and SystemC. For instance the application used in Section 5 is written in OCAPI-
xl [15] and required a special interface to make the co-simulation with the SystemC
network model possible. The interface contains also buffers and connects to the router
through a Network Interface Component (NIC) that implements the same low-level
handshaking protocol as the VHDL model.

The router consists of a common routing and arbitration block, a crossbar switch,
input and output controllers. The model parameters are:

– Network Topology – The topology is defined by a graph of all routers, IPs and links.
Variable network sizes as well as irregular topologies are fully supported.

– Routing algorithm – Implemented as a look-up table at router level.
– Switching technique – One can chose virtual cut through or wormhole switching.
– Maximum Packet Size – In the case of virtual cut through switching the output

buffers have to be able to hold at least one maximum sized packet.
– Input Queue Size and Output Queue Size – The SystemC model allows to specify

not only the parameters for the output queue but also for the input one. To emulate
the VHDL model the size of the input port buffers is set to zero.

– Link Handshaking Number of Cycles – This is an extra parameter, specific to the
SystemC model that determines the delay in clock cycles between the request and
the acknowledgment signals implementing the handshaking protocol. It allows to
make the SystemC model cycle level equivalent with the hardware implementation.
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The SystemC model generates two outputs: a signal waveforms file and a packet
trace file. Since the model is cycle-accurate, the waveforms can be compared to outputs
of the VHDL simulation, and they should be identical. The trace file records for every
packet the path it followed through the network, and the timestamps when the packet
left each node.

4 Models Equivalence and Simulation Performance

As the two models are not structurally identical we have designed a testbench to checks
the equivalence in terms of functionality and the accuracy of the VHDL and SystemC
models. The test scenario consists of three parts that grow incrementally in complexity.
The first part checks the basic functionality and the flow control when the packets are
never blocked in the network. The second part checks the flow control in the blocking
case, but only one packet is buffered. The third part is the most complex, it checks the
behavior when multiple packets are blocked, buffers are full and other packets wait for
the same output. The scenario is repeated with different packet lengths and for different
relative timings between the packets.

For this testbench we chose to instantiate a 3x3 mesh network with one IP per node,
XY routing algorithm, 16 bits wide bi-directional links, 544 bytes maximum length
packets and output buffers that can hold up to 3 packets. The testbench runs for about
400 kcycles. The VHDL model simulated with ModelSim SE 5.7 reaches about 110
cycles/s on a Pentium III machine. The SystemC model reaches 33 kcycles/s, a 300
times speed up compared to VHDL.

We have estimated also the simulation speed in the case when the IPs are blocks of
a motion JPEG decoder, which is a much more complex and therefore a more realistic
design. The decoder was modeled in OCAPI-xl [15], from which we generated VHDL.
The decoder was divided into four blocks, and the communication between them was
implemented using the ICN. In this way we have created two simulation models, a
VHDL one combining the ICN and the decoder blocks and a similar SystemC – OCAPI-
xl model that is explained in more detail in Section 5. The simulation speed of the motion
JPEG decoder alone (OCAPI-xl only) was 6.3 kcycles/s. The SystemC – OCAPI-xl co-
simulation reached 5.4 kcycles/s. The simulation of the VHDL model was timed at 18.5
cycles/s, again 300 times slower than the high level model. It can be seen that at equal
complexity the high-level model performs at least 2 orders of magnitude better, which
makes it more suitable for system level design.

5 Motion JPEG Decoder Mapping onto a Reconfigurable Platform

This section goes through all the steps of designing and implementing a tile based recon-
figurable platform interconnected by a Network-on-Chip, and mapping an application
on it. The purpose is to show what kind of information can be obtained from the simu-
lation model and how simulation can be used to provide information about the network
performance for different network parameters. As the application has only an illustrative
purpose we have selected a simple, easy to understand motion JPEG decoder modeled in
OCAPI-xl [15]. We have decided to partition the application in four tiles: a send tile that
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reads an input file and streams it to a second tile that performs the Huffman decoding
and dequantization (Huffman tile). The third tile implements the IDCT and the rest of
the data processing (IDCT tile) and sends its data to the last tile, which writes it to an
output file. We have chosen to split the application in to four tiles because it is a number
that is already high enough to have a realistic traffic volume but yet not too high, so that
the results can be easily understood.

5.1 Platform Design and Performance Appraisal

The goal of the platform designer is to choose an interconnect network that offers the
best compromise between performance and size for a certain application domain. The
application designer has to find out the best mapping of the application blocks to the
platform, such that the application reaches the required performance and makes best use
of the available resources. For a reconfigurable platform such as Gecko2, the commu-
nication requirements change in a dynamic way and depend on what applications are
running on the platform at a given moment. Simulation is thus essential, in choosing the
right ICN and in evaluating the performance of each application in the context of the
whole system. In this section we will do the exercise only for one application, but in
general the designers will have to repeat it ideally for all applications that will run on
the platform, considering also their interaction when they are run concurrently.

The ICN SystemC model provides information over all the packets that travel through
the network and allows us to determine the total travel time of a packet from the sender
to the receiver. As an example, Figure 3 plots the end-to-end delay of each packet sent
during the decoding of a 5 SIF frames sequence, grouped per logical communication
channel. For this simulation, the motion JPEG decoder tiles have been mapped as 4 IPs,
each connected to one router of a 2x2 mesh network. The IPs are mapped in such a
way that the packets have to travel only one link to reach destination and each link is
dedicated to one communication channel only.
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Fig. 3. Packet transmission delay, per communication channel, for a 5 SIF frames sequence

The data rate on the different links is very different. Between the sender and the
Huffman tile there are a lot less packets than between the Huffman and the IDCT tile.Also
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the execution speeds of the different tiles are quite different. The packets from the sender
and the Huffman tiles are blocked and have very long delivery delays, while the packets
from the IDCT tile are almost immediately consumed. The frame based periodicity of
the decoding algorithm is also clearly visible. It can also be noticed that for the second
frame the packets sent by the Huffman tile have very small delays compared to the
packets of the same channel but for the other frames. It turns out that this frame is very
rich in details, which causes the Huffman tile to run a lot slower, at a speed comparable
to the IDCT tile, and therefore the packets are not blocked any more but are immediately
processed. From this experiment we have concluded that our application runs much
slower than the network and therefore the effect of network parameter variations will be
hidden by the long execution time of the IPs. We have therefore decided to use different
clocks for the network and for the motion JPEG decoder. In all the experiments that
follow the IPs have been clocked 5 times faster than the network.

System performance – Network topology. There are multiple network design param-
eters that can influence performance. We will evaluate the impact of most of them for
our motion JPEG decoder. First and the most obvious one is the network topology. The
choice in topology has a direct impact over the network area as well. Considering that
our decoder has four tiles there are several obvious choices shown in Figure 4. We will
consider four different topologies: a 2x2 mesh, 4x1 torus, balanced binary tree and a 4x4
crossbar. The four tiles are considered as four IPs connected by bi-directional links, one
for each router. Considering the particular nature of our application we could consider
also 3 more topologies: a 3x1 mesh, 3x1 torus and a 3x3 crossbar switch. In this case we
take advantage of the fact that the first tile only sends data and the last one only receives
data and therefore they can share the same bi-directional connection.
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The goal of the simulation is to make sure that the network does not constitute a
communication bottleneck and to assess the performance loss. The different topologies
have been simulated using wormhole switching routers with 2 flits output buffers and
packets of maximum 64 flits. The impact of the different network topologies on the
system performance is shown in Figure 5. The number of frames per second is calculated
assuming that the design runs at the same frequency as the design without the ICN
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clocked to reach 30 frames/s. In this way the loss in performance due to the network
can be rapidly assessed. When the application runs on our platform, the total number of
simulation cycles is larger than in the case of the monolithic implementation, therefore
for the same clock frequency the decoding speed is lower.

This experiment tells us two things. First, the penalty for the network is not negligible.
However, as it will be shown further, it is the wormhole switching that is responsible for
the slow down, because similar networks using virtual cut through switching achieve
much better performances. The reason is twofold, there are many extra cycles lost in
handshaking when packets are blocked and the buffers are smaller. It turns out that similar
performance degradation is observed also in the decoder implementation without the ICN
if the size of the internal buffers is reduced.

Secondly, there is not much difference between the different topologies. This result
was to be expected for such a simple scenario. What it is rather surprising is that the tree
network provides the fastest solution while the crossbar, the slowest. One would have
expected rather the opposite considering the complexity of the two. It seems however
that the amount of available buffer space is more important than the tile proximity, as will
be confirmed by further experiments. In the tree network the channel from the Huffman
to the IDCT tile passes through three routers and an equal number of output buffers. It
can also be noticed that the torus and mesh topologies give identical results, as expected,
and that there is no difference between the cases when the first and the last tile are
connected to the same router or to different ones. This result is particularly interesting
when comparing the 2x2 mesh with the 3x1 one. Although in the last case the packets
have to travel back over two links there is no performance penalty. These results are
explained by the absence of conflicts in the network and by the pipelined nature of our
application.
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Since we can conclude that for this application the topology has little influence on
performance, we can start analyzing the area taken by the different implementations. To
this end we have used the VHDL model, and we have synthesized, placed and routed the
different networks onto a Virtex2Pro FPGA. The results are shown in Figure 6. For the
case of wormhole switch routers the size of output buffers can be kept to a minimum of
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two flits. For virtual cut through switching their size will depend on the maximum packet
size and will have a considerable contribution to the total router size. The buffer size has
to be considered on top of the numbers shown in the figure. The figure shows that mesh
networks have the largest area, followed by the tree the torus while the crossbar is the
smallest.

System performance – Maximum packet length and buffer sizes. As suggested by
the topology experiments the size of the output buffers seems to have a large influence
on the performance. Another related parameter is the maximum size of a packet.

The results of the experiments investigating the influence of these two parameters
are presented in Figure 7. The network topology was kept fixed, a 2x2 mesh with virtual
cut through routers, and the results show the decoding speed that would be reached if
running the design at the same frequency as the implementation without ICN decoding
30 frames/s. The maximum packet size was varied from 1 to 512. In the first case packets
have only one flit of data and three header flits and performance penalty is very large
as expected. The performance improves dramatically as the packet size increases, and
the decoder reaches almost the same speed as the decoder without the ICN. For very
large packet sizes the trend changes, this behavior being explained by the fact that there
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is a balance between the amount of data transferred in one packet, and thus the packet
overhead on one hand, and the packetization delay on the other hand.

The size of the output buffers plays a role as well. Bigger buffers help but the
differences are not spectacular. Figure 7 shows two sets of data both taken in the same
conditions except that we used minimum size buffers for the first one and fixed size
buffers, 512 flits large, for the second experiment. The relative advantage of larger
buffers diminishes therefore for larger packets, such that for packets of 512 flits there is
only one experimental point. This is a more realistic scenario than having buffers that
are a multiple of the maximum packet size, as for very large packet sizes the amount
of required resources would grow prohibitively large. For this application and in the
absence of traffic conflicts, there is however very little advantage to using large buffers,
and the optimum packet length is situated around 32 flits.

System performance – Length of the input sequence. All the above mentioned ex-
periments have been carried out with a fixed length input sequence. Therefore one could
ask how much of the speed decrease is latency and how much is start delay. To this end
we have simulated with sequences of different lengths, for a 2x2 mesh network with
wormhole switching routers, and the results are shown in Figure 8. The figure shows the
extra simulation cycles required by the simulation to complete for the ICN implemen-
tation compared to the non-ICN one as a function of the length of the input sequence in
frames. The results show that the performance loss is for the most part latency and not
so much start delay.

5.2 System Implementation Results

This section presents the implementation results of the motion JPEG decoder on our
Gecko2 [9] reconfigurable platform. The platform consists of a central CPU and a Virtex
II 6000 FPGA. Linux operating system runs on the CPU and manages the entire platform.
The current implementation has nine tiles, out of which eight can be used by user IPs.
One tile is always used by the interface with the central CPU. The communication is
insured by a 3x3 mesh network. Figure 9 shows the implementation results for the case
when two IP tiles have been used to map the Huffman and the IDCT blocks of the motion
JPEG decoder. For the decoder, the CPU interface plays the role of the sender and of
the receiver. The figure shows the relative sizes, in slices, of the different components
of the Gecko2 platform. The VHDL of the decoder was automatically generated from
the OCAPI-xl model. The network and the nine IP interfaces take about 28% of the
total amount of slices. The two tiles of the decoder take 9% and respectively 8%. About
54% of the FPGA remains available for implementing six other IPs. Although it might
seem that the communication infrastructure uses a lot of hardware resources, it offers a
very high communication bandwidth and management services for a relatively complex
system that can consist of up to eight IPs.

6 Conclusions

Designing a Network-on-Chip that meets the requirements of a complex, heterogeneous,
reconfigurable system is a challenging task. It is therefore important to have appropriate
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simulation models that can assist the designer through all the different design phases.
As the trade-offs that have to be made during the process are very complex, the models
need to be as flexible as possible. This paper has showed that our NoC models allow
the designer to do fast and accurate simulations while exploring the system design, and
generate a corresponding implementation in a short time.Applying the whole design flow
to a motion JPEG decoder, we have found that for this application the parameters with
the highest impact on performance were the maximum packet length and the switching
technique. The implementation results on a Virtex II FPGA show that our network
design can provide the required communication resources for a large heterogeneous,
reconfigurable system at an acceptable cost.
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Abstract. This paper presents the hardware realization of a recurrent
scalable sorting network based on Batcher’s bitonic algorithm, which is
very suitable for concurrently accessible data. Firstly, preserving the time
complexity of the original bitonic sorter, the recurrent network yields a
lower area complexity by reducing the communication within the net-
work and minimizes the cost in terms of hardware resources. Secondly,
an enhancement of the input registers allows the reuse of the same ar-
chitecture for different input widths, where the role of each comparator
level is redistributed over the network. Finally, the implementation of
such a sorter has been realized in an FPGA (Field Programmable Gate
Array) and shows how applications treating data block-wise can benefit
from this architecture.

1 Introduction

Sorting is one of the most common task performed by a computer in both paral-
lel and sequential computing systems. One of the best known sorting network is
Batcher’s bitonic merger and sorter [3], discovered in 1968. This sorting network
has the capability of sorting N keys in O(log2 N) time with O(N · log2 N) com-
parators. Though the bitonic sorting network has a very regular architecture, it
is not optimal in terms of area and depth (or in other words delay time). Some
of the fastest sorting network known, also dealing with various input widths,
are described by Knuth in [5]. Ajtai et al. have presented in [2] an algorithm
working in O(log N) delay time for a sorting network processing N keys with a
complexity in O(N · log N). Furthermore, the algorithm of Leighton presented
in [8] for sorting N keys in O(log N) time with N processors is not appropriate
for hardware realizations and is much slower in practice than other parallel sort-
ing algorithms. None the less, Batcher’s bitonic sorter remains the most suitable
for actual implementations in hardware or in multi-processor systems.

Following these observations, section 2 reminds the principles and gives an
overview of a regular bitonic sorter and merger. Section 3 presents the recur-
rent bitonic sorting network including a direct feedback to the input registers.
Section 4 shows how the recurrent sorting network can be transformed into a
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Fig. 1. The basic set of comparing switches including the ascending comparator, the
descending comparator and the neutral element. Their respective representation in a
Knuth diagram is given under each of them
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Fig. 2. Representation of the bitonic algorithm in a Knuth diagram for the sorting of
16 keys. The sorter includes 10 levels grouped in 4 stages and 80 switch comparators

scalable and reconfigurable sorter including partially fulfilled multiplexer lev-
els at the beginning and the end of the basic structure. Section 5 presents the
reconfigurable recurrent bitonic sorting network in its typical System on Chip
(SoC) environment as well as the results of the FPGA implementation of its
architecture regarding various input widths.

2 Batcher’s Bitonic Sorter and Merger

Batcher’s bitonic sorter and merger [3] is based on a comparison network scheme
in which many compare and exchange operations are performed in parallel. It
is an important algorithm facilitating efficient parallel implementations because
the sequence of comparisons is not data-dependent. Described in figure 1, the
switch comparator is the basic element of such a network, which allows two input
keys to be compared and output in ascending or descending order.

A conventional comparator network for a bitonic sorter can be represented
in a Knuth diagram [5], using both ascending and descending comparators, as
seen in figure 2. In the represented sorting network with N = 16 keys, the
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Fig. 4. Functionality and truth table of the controlled switch comparator

N = 2n horizontal lines correspond to the inputs and the arrows to the switch
comparators. This network consists of n successive merging phases i with 1 ≤ i ≤
n, in which pairs of sorted sequences of length 2i−1 are presented in oppositely
sorted order and merged, according to the bitonic principle [3].

Stone showed that a sorting network for N keys with N = 2n can be regularly
constructed by repeating a perfect shuffle pattern [11], as illustrated in figure 3.
This sorting consists of n stages of n steps each where simultaneous operations
are performed on 2n−1 pairs of adjacent elements.

It appears clearly that this network structure can be simplified to a single
column of N/2 special switch comparators executing a predefined sequence of
operations, at the cost of log2 N basically neutral but necessary steps (the ones
performed by the comparators switched in run-through mode). For this reason,
we created a new type of switch comparator, as explained in the next section,
to permit the realization of a recurrent bitonic sorting network.

3 Recurrent Bitonic Sorting Network

3.1 Controlled Switch Comparators

In oder to reduce the regular bitonic sorter seen in figure 3 to only one butterfly
network followed by one level of toggle logic, we need a switch comparator per-
forming the three different kinds of operations described above, depending on
its place p in the network, with 1 ≤ p ≤ N/2.

Figure 4 shows the functionalities of the comparator forming the basic el-
ement of the recurrent bitonic sorting network with the help of a truth table.
The controlled switch comparator is based on the normal switch comparator and
includes a few add-on logic gates allowing two new functionalities:
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Fig. 5. Add-on complementary logic with control signals up dn and enable to transform
the conventional exchange comparator into a controlled switch comparator

enable function: when the enable input is not selected, the switch comparator
is transparent and acts as a run-through gate: x′ = x and y′ = y.

up/down function: when the enable input is selected, the switch comparator
redirects its inputs according to the level on the up dn signal. When up dn is
at a high level, the switch element is set in ascending mode: x′ = max(x, y)
and y′ = min(x, y). When up dn is at a low level, the switch element is set in
descending mode: x′ = min(x, y) and y′ = max(x, y).

Figure 5 shows the internal realization of such a controlled switch comparator.
Two supplementary gates are necessary to decide whether a switch of the input
is performed at the output. Moreover, it is safe to say that the size of the add-
on control logic which does not depend on the width of the input keys x and
y is negligible compared to the size of the comparator and of the swapping
multiplexers. The main difference considering the design of the recurrent bitonic
sorting network remains the additional control signals which have to be generated
by an external dedicated controller.

3.2 Regenerated Butterfly Network

A butterfly network is build symmetrically by connecting regularly the half of
the inputs to each second output, from i = 1 to N/2 and mirrored from i = N
to N/2 + 1. The following program shows the regularity of the mapping of a
butterfly network for N keys or N/2 switch comparators in only a few lines of
code, where the description of the control signal is deliberately omitted.

butterfly_mapping : for I in 0 to (N/2 - 1) generate
SWITCH_COMPARATOR port map(

INPUT_X => NET_IN(I),
INPUT_Y => NET_IN(N/2 + I),
OUTPUT_X => NET_OUT(2*I),
OUTPUT_Y => NET_OUT(2*I +1) );

end generate;

(Extract of VHDL code for the realization of a butterfly network for N keys based on
the generation of N/2 controlled switch comparators in a N keys feedback 1:1 network)
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Fig. 6. A 16-keys recurrent bitonic sorting network

Figure 6 shows the result of the implementation of the previous VHDL code,
by adding a level of registers and mapping directly the entries of the registers
to the outputs of the controlled switch comparators over the feedback network.
This sorter sorts N keys in O(log2 N) time with only N/2 elements.

In the recurrent network, an additional external controller is necessary to
generate the control signal described in figure 4. The enable and up dn signals
are supervised during the sorting procedure which lasts exactly (log2 N)2 clock
periods for the sorting of N keys. Let i be the iteration step in the sorting
sequence where 1 ≤ i ≤ (log2 N)2 = n2 and s the current stage, as described in
figures 2 and 3. Depending on the position p of each comparator with 1 ≤ p ≤
N/2, a sequence of length n is initiated at each re-setting of the enable signal
to control up dn. Let t be a time index over this sequence, with 1 ≤ t ≤ n.

enable = f(i, n) = sign
(
i − (n − 1) · s − 1

)
, with s = �i/n� (1)

up dn = f(p, t, n) =
[
2n − p

2t

]
mod 2 (2)

These equations describe mathematically the value of the control signals and
are not meant to be implemented this way in hardware. The sequences of values
can be read directly from figure 3 for the example of N = 8 keys, where enable
equals 0 for each switch comparator marked with “=” otherwise 1, and up dn
equals 1 for “↑” and 0 for “↓”, otherwise it can be ignored.
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Fig. 7. Internal architecture of an 8 keys reconfigurable recursive bitonic sorter includ-
ing the loading network, the butterfly network, the reconfiguration network, one level
of toggle logic and one level of pipeline registers

Considering that the first run-through comparisons can be disregarded, it is
possible to modify the controller so that it skips the insignificant steps of the first
phase to accelerate the whole sorting. The final remaining time for this model
is then expressed in the following equation:

tBIT REC = (log2 N)2 − log2 N + 1 (3)

While the time complexity of the sorter in O(log2 N) is the same as the
original bitonic sorting network, but its complexity in terms of logic gates and
comparators has been drastically reduced from O(N · log2 N) to O(N).

4 Scalability and Reconfiguration

The recurrent bitonic sorting network presented in the previous sections is scal-
able in the sense that it is adaptable to any kind of bus width, as long as the
number of key to sort is a power of two (N = 2n). Slightly diverging realizations
of redistributing networks for sorting were found in the literature where the main
idea was either to use special design environments to verify the lengths of inter-
mediate wires [4] or to resort to the parity strategy to reduce the communication
within the sorter [7].

Figure 7 gives the example of a reconfigurable recurrent bitonic sorting
scheme adaptable to different widths N/k, with k = 1, 2, 4 . . . N/2. For this
reason, the depicted network includes two additional internal subnetworks, com-
pared to the regular recurrent bitonic sorter seen in figure 6:

The loading network permits a partial loading of a new set of keys and a
reuse of the comparators as if they were pipelined. The equivalent architecture
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remains the one of k recurrent bitonic sorters for N/k keys. The total amount
of multiplexers needed can be calculated with the following equations:

MuxLN (N) =
N/2∑
i=1

N

i
= 2 · (N − 1) (with N = 2n ≥ 4) (4)

The reconfiguration network is controlled by an external register setting the
complete network in a lower configuration, so that the feedback loop completes
the design as if the k sorters of N/k keys were totally independent. The total
amount of multiplexers needed can be estimated with the following equations:

MuxRN (N) = (n − 2) · 2n−1 = (log2 N − 2) · N

2
(with N = 2n ≥ 4) (5)

Table 1. Configuration table of the scalable recurrent bitonic sorting network. The
example is given for a N = 8 key sorter according to figure 7 with divider k varying

div mode reload at loading: settings: input output
(k) (keys) period ld2 ld4 ld8 md2 md4 keys keys

1 1×8 7 clk(†) 1 1 1 0 0 x0−7 x′
0−7

2 2×4 2 clk 1 1 0 1 0 x0,2,4,6 x′
1,3,5,7

4 4×2 1 clk 1 0 0 1 1 x0,4 x′
3,7

(∗)

k k × N
k

1
k
(log2

N
k

)2 ldi ⇐ N
k

≥ i mdi ⇐ k ≥ i {xk·i} {x’k·i+k−1}

Based on figure 7, the example of an N = 8 key sorting network with the
parameter k varying from 1 to the theoretical limit N/2 is given in table 1. The
first line marked (†) corresponds to a special case in which the first run-through
comparisons can be disregarded by the controller, see eq. 3 for explanations.
The penultimate line (∗) of the table is here just for showing the regularity of
the network but is useless because only one step is necessary for comparing 2
keys. For the same reason, the rightmost crossing nodes in the reconfiguration
network part of figure 7 are not meant to be in an 8 keys recursive sorter, but
their aim is to show the distribution of the N/2 multiplexer on each level. The
last line shows the generic case regarding the divisor k for the N keys input bus.

This leads to the generic representation of the bitonic scheme, as seen in
figure 8. It shows a global loop endorsing the direct feedback of N keys within the
sorter and all the necessary elements for making it reconfigurable and adaptable
to different widths. Due to its regularity and symmetry, it is possible to use the
same bus as input and output to feed the network or read the results from the
outside. This feature is important in the realization of systems including a single
master-slave bus for the data exchange, as shown in the next section.
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Fig. 8. Block schematics of a generic reconfigurable recurrent bitonic sorting network.
Note that the register level (z−1 box) can be placed anywhere in the loop

5 Hardware Implementation

The reconfigurable recurrent bitonic sorting network can be seen as a generic
sorter core or as a piece of IP (Intellectual Property) with configuration param-
eters for any custom use. Typical applications for such sorters are for instance
ATM switches [1] [10] or the acceleration of graphics algorithms for rendering and
ray tracing [12], where the amount of data to be ranged in varies significantly.
In each case, a particular attention is given to producing compact layouts.

W/k bit small register
configuration

network
sorting
bitonic

recurrent
reconfigurable

application
W/2 bit

applications

memory
embedded

W bit core
processorapplication

W/2 bit

W bit internal crossbar

Fig. 9. A reconfigurable recurrent bitonic sorting network within a typical SoC envi-
ronment. All the components are connected to the system bus with different widths.
The W bit wide internal crossbar handles in parallel k keys with a length of W/k bit

Figure 9 shows a reconfigurable recurrent bitonic sorting network within a
typical SoC environment. The system is built around a large internal bus allow-
ing the communication and data exchanges between the elements. Though the
processor core remains the main part of the chip, the other blocs are application
specific hardware accelerators providing a significant performance increase. In
this example, W is the width in bit of the internal crossbar which is basically
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a power of two, and k the degree of parallelism, or in other words the number
of keys which can be handled in parallel in the sorting unit. Most of the highly
parallel system architectures like superscalar or vector processor based architec-
tures [6] include many processing elements which can be connected to each other
over different widths, performing tasks involving various data types.

The design of the reconfigurable recurrent bitonic sorter core is based on a
single butterfly network and a small regular reconfiguration network, as seen in
figure 8. To produce an efficient sorting network, it is necessary to implement
the butterfly network on the chip (in this case an FPGA) carefully by placing
thoroughly each element of the design so that the amount of cross connections
is minimized. This task can be performed efficiently by resorting to manual
place and route tools. Four input widths have been implemented in the sorter
presented in the previous section on a Xilinx XCV2000E of the Virtex-E FPGA
series to allow us to evaluate area and speed performance.

Table 2. Implementation of the reconfigurable recurrent bitonic sorting network in a
Xilinx Virtex-E XCV2000E FPGA with different input widths (16 to 128 keys)

N (keys) Max. Period (ns) Max. Speed (MHz) Area (Slices) FPGA usage

16 11.958 83.626 684 3%
32 12.088 82.727 1227 6%
64 12.142 82.359 2694 14%
128 13.588 73.594 5390 28%

Table 2 summarizes the results of the synthesis of the four architectures,
considering N keys having a length of 24 bit. We can appreciate the size of
the designs in terms of look-up tables (LUT) and register pairs. The Xilinx
synthesis tools report the area in “slices”, where a Virtex-E slice contains two
LUT and two registers. As the number of keys N is doubling, so is the area
of the architecture. The maximal speed of the design remains not significantly
affected by this increase for N up to 64 keys.

6 Conclusion and Outlook

The bitonic sorter presented here is an efficient, compact and scalable parallel
sorting network. When it is used in a recurrent architecture where only one
or a few comparator levels are present, this sorter is very appropriated in area
critical applications. The use of a feedback network for a parallel redistribution
thus influences the mapping and the overall flexibility of the architecture but
minimizes the costs in terms of hardware resources.

We showed that the reconfigurability of this sorter allows its utilization in
diverse applications requiring sorting tasks and increases the flexibility of shared
system buses in SoC designs. Moreover, hardware reuse within the reconfigurable
recurrent bitonic sorting network delivers an optimal compromise between delay
time and chip area.
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Abstract. Hybrid reconfigurable systems integrate DSPs and general
purpose processors with an FPGA fabric. These systems may support
features such as efficient start-up and shut-down, dynamic voltage scal-
ing, and reconfiguration, that are exploited for energy-efficient applica-
tion design. Duty cycle is the proportion of time during which a system is
operated. Multi-rate applications consist of tasks that execute at differ-
ent rates. Designing an energy-efficient hybrid reconfigurable system with
duty cycle specification that implements a multi-rate application using
devices with multiple operating states presents several challenges such as
modeling, rapid performance estimation, and efficient design space explo-
ration. We present a design framework that addresses these challenges.
Using our framework, we illustrate the design of two energy efficient
systems: automated target detection and adaptive beamforming.

1 Introduction

Due to dramatic increase in the number of portable and embedded applications,
systems implementing signal processing applications which were formerly lim-
ited by the available computation power are currently limited by the available
energy [11]. Examples of such systems include mobile base stations for software
defined radio [4] and target detection and tracking systems [13]. A system con-
sists of an application and a target hardware that implements the application.
Our target applications, implemented by the systems discussed above, are multi-
rate signal processing applications that can be modeled as data flow graphs [7].
The input is assumed to be a data stream consisting of several frames of data
with a specified frame rate. The target hardware is a hybrid reconfigurable sys-
tem that integrates instruction set architecture (ISA) based processors [5,12]
with a reconfigurable fabric. The tradeoff considered here is high throughput
and relatively higher average power dissipation using the FPGAs vs. compara-
tively lower throughput and power efficient solution using the general purpose
processors. A hybrid reconfigurable system can be a single chip device such as
the Xilinx Virtex-II Pro [15] or a multi-chip device such as, for example, an Actel
ProASIC [1] and a TI DSP [14].

Given a target application, design of a hybrid reconfigurable system involves
(device) selection of suitable processing components (FPGAs and ISA-based
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processors) and memory. Following device selection, the mapping between indi-
vidual application tasks and processing components, appropriate operating state
for each mapping, and the schedule of execution are identified based on the per-
formance requirements specified as an input. The designer also needs to identify
appropriate hardware/software partitioning onto those platforms. In addition,
other capabilities that play a significant role, especially for energy efficient de-
sign, are reconfiguration, dynamic voltage scaling, choice of low-power operating
states, and device activation scheduling based on the duty cycle specification [10].
Duty cycle is the proportion of time during which a system is operated. Such
specification allows modeling of a period of execution as alternate active and
inactive phases. Energy dissipation (e.g. due to leakage current), especially for
systems with low duty cycle, during the inactive phases can contribute signif-
icantly to the overall energy dissipation of the system. Therefore, the tradeoff
between the performance cost of shutting down and starting up a device and
the performance cost of remaining idle needs to be considered during system
design [2]. In addition, an application is defined as multi-rate if the constituent
tasks execute at different rates. For example, an adaptive beamformer processing
up to 105 mega samples per second may need to update the weight coefficients
only once every second [3]. Therefore, tasks performing weight coefficient eval-
uation and update execute once every second. On the other hand, the tasks
that process each data sample are executed 105 × 106 times every second (see
Section 5.2).

In this paper, we present a framework that supports energy efficient design of
multi-rate applications based on duty cycle specifications using a hybrid recon-
figurable system. Our primary focus is system design problems with performance
requirement of minimizing energy while sustaining a given input rate. Further-
more, the task rates affect the quality of the output [3]. Our framework can
also be used to evaluate the target hardware(s) in terms of the task execution
rates supported for multi-rate applications and range of input rates sustained
based on latency requirements. The framework is based on a hierarchical design
technique [10] which involves modeling and a two step design space exploration
(DSE).

The paper is organized as follows. Section 2 discusses related work. The mod-
eling approach is discussed in Section 3. Section 4 discusses the design frame-
work. Two examples demonstrating the framework are presented in Section 5.
We conclude in Section 6.

2 Related Work

There are a number of research and commercial initiatives that address the
design of efficient systems.

The SPADE (System Level Performance Analysis and Design Space Explo-
ration) methodology evaluates embedded system architectures at multiple ab-
straction levels to perform DSE [8]. DSE involves quick evaluation of a large
number of designs using coarse-level architecture models followed by the use of
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Fig. 1. Modeling multiple operating states

more accurate and detailed models as the number of designs reduces. In contrast,
we use a hybrid approach by integrating optimization heuristics and high-level
performance estimation. Because of optimization heuristics, we can rapidly eval-
uate a much larger design space prior to estimation (or simulation) based design
space exploration. Additionally, our augmented data flow (DF) model for appli-
cations enables performance analysis of multi-rate applications based on oper-
ating state transition costs when the target devices support multiple operating
states.

Among the commercial tools, Xilinx System Generator for Simulink provides
a high-level interface for application design using pre-compiled libraries of signal
processing kernels [15]. However, this tools starts with a single conceptual design.
Design space exploration is performed as part of implementation or through local
optimizations to address performance bottlenecks identified during synthesis.
Additionally, these tools [15] are specific to a set of target devices and cannot
be used for device selection problem.

Benini et al. discuss various techniques for dynamic power management such
as turning off system components or moving system components to a low per-
formance operating state [2]. However, to the best of our knowledge, there are
no tools available that take into consideration both multi-rate applications and
duty cycle specifications during system design to reduce energy dissipation.

3 System Modeling and Design Problems

A set of models are used in the design framework to capture the system specifi-
cation (application, target hardware, mapping, performance, etc.).

3.1 Modeling Multiple Operating States

We model a candidate devices based on the operating states supported by the
device. An operating state can be a configuration for an FPGA or a volt-
age/frequency setting for devices supporting voltage/frequency scaling. In addi-
tion, given two operating states A and B, we assume that the transitions from
A to B and B to A are associated with transition costs (latency and energy).

Our model is based on an augmented finite state machine (FSM). Figure 1
shows a sample model for a device with 3 operating states. Each node in an
FSM represents one operating state. Each pair of nodes is connected with a
pair of directed edges. Each edge correspond to a state transition from the state
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represented as the source node to the state represented as the destination node.
Each edge is also associated with a 2-tuple (TL, TE) where TL is the latency
cost and TE is the energy dissipation during the transition. Each operating state
is associated with an estimate of average power consumed while idling (P1, P2,
P3 in Figure 1). The model also indicates a default state (shown in gray).

3.2 Multi-rate Application Modeling and Mapping Specification

To model the application, initially, we create a (data flow) DF model of the
application assuming that all the tasks will execute at the same rate. The rate
is assumed to be 1 which refers one execution of a task per input frame. Rate
of 1 is the maximum rate possible for any task. Afterwards, we associate each
task with their respective rates. A rate of r refers to one execution per r input
frames. Therefore, given a multi-rate application, for some input frames certain
tasks will not be executed. In such cases, we assume that the tasks preceding
and succeeding the task not being executed are connected (Figure 2) and thus
the dependencies between the tasks are maintained.

Fig. 2. Multi-rate application modeling

Based on the serial order (1st, 2nd, · · ·, nth) of the frame being processed, the
data flow graph will change as it needs to model only the active tasks. We define
each distinct DF model for the application as a footprint. Figure 2 shows two
footprints of the same application with three tasks. Each footprint is analyzed
by our framework to identify the most energy efficient design per footprint while
performing a duty cycle based design space exploration. A master footprint is
defined as the footprint of the application when all tasks are active.

In addition, each application task is associated with a set of alternatives. Al-
ternatives refer to the mappings of application tasks on different target devices
operating in different operating states. For example, there will be two alterna-
tives if a task can be mapped on a general purpose processor and a DSP. If each
device has two operating voltages, then there will be four alternatives instead.

3.3 Modeling Duty Cycle

Duty cycle is the proportion of time a system is active. Therefore, based on the
duty cycle specification, system execution can be modeled as alternate active
and inactive phases. Duration of each phase depends on the input rate and the
latency required to process a single input frame. Input rate can be variable. Our
design framework needs the input rates to be statically defined. Variable input
rate is specified as an ordered set of 2-tuples (Ir, Nf) where Ir refers to the
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input rate in Hz and Nf refers to number of frames processed at the above
rate. Given two consecutive 2-tuples, (Iri, Nfi) and (Iri+1, Nfi+1), application
execution is modeled as “process Nfi frames at the rate of Iri Hz followed by
Nfi+1 frames at the rate of Iri+1 Hz”. Our framework assumes that the given
set of 2-tuples can repeat indefinitely to model the processing of large number
of input frames. Similarly, maximum allowed latency to process an input frame
can also be specified. If not specified, the framework derives the constraint based
on the given maximum input rate.

3.4 Constraints

The constraints are divided into two types; performance constraints and design
constraints. Performance constraints are of the form “metric < constant” where
the metric can be latency or energy. The design constraints specify valid com-
binations of task mappings through pairwise relations between two mappings
(e.g. task A1 implemented on device B1 operating in state C1 is not compatible
with task A2 implemented on device B2 operating in state C2, or task X can be
mapped only to device R). Similarly, design constraints also specify valid com-
binations of devices. As our focus is designing a hybrid reconfigurable system,
given one FPGA, two DSPs, and two general purpose processors, one can specify
a constraint that a valid target hardware is a combination of one FPGA, and
one DSP or one general purpose processor only.

3.5 System Design Problems

The models discussed above define a design space. Due to large number of design
choices such as target devices, operating states, mappings, device shut down or
leave on, etc., the size of the design space can be very large (see Section 5.1).
Traversal of such a large design space is not practical using a simulators or even
high-level estimators (see Section 5). Additionally, to estimate the performance of
a candidate design, during estimation, it is required to support duty cycle, multi-
rate applications, and multiple operating states for the devices. Our framework
addresses the above issues using a hierarchical approach towards DSE and an
enhanced high-level performance estimator. The framework supports the two
classes of system design problems (a) device selection: design a system by
selecting a combination of devices from a given set of candidates while satisfying
the performance and design constraints and (b) hardware evaluation: evaluate
a target hardware in terms of the input rates or the range of task execution rates
supported.

4 System Design Framework

The models discussed above form the basis for the system design framework.
The framework supports user friendly visual modeling to specify multi-rate ap-
plications, target devices, duty cycle specifications, mappings, and constraints.
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The system design framework is implemented using MILAN, a Model-based
Integrated SimuLAtioN environment [9].

4.1 Design of the Framework

MILAN is a model based integrated simulation environment for embedded sys-
tem design and optimization through the integration of various simulators and
tools into a unified environment [9]. Using the MILAN environment, the designer
formally models the target application, target devices, and constraints through
a graphical interface. The models are used to drive various tools and simulators
integrated in MILAN. Additional details about the MILAN environment can be
found in [9]. We extended the MILAN modeling paradigm to support the models
discussed in Section 3. Specific extensions were support for multi-rate application
modeling, devices with multiple operating states based on the augmented finite
state machine model, and duty cycle specification. MILAN integrates a heuris-
tic based design space exploration tool, DESERT [6] and HiPerE, a high-level
performance estimator [10].

DESERT supports DSE when the design space is defined by an application
modeled as a data flow graph with alternatives [10]. Alternatives are associated
with a task and refer to different mappings of the task onto devices. Given a
set of performance and design constraints, DSE using DESERT refers to identi-
fication of a set of designs that satisfy the given constraints. DESERT does not
support devices with multiple operating states while performing DSE. We de-
veloped a technique that uses pseudo tasks and additional design constraints to
enable DESERT perform DSE using devices with multiple operating states. This
technique introduces a pseudo task between each pair of connected (via an edge
in the model) tasks to model operating state transitions. The alternatives for this
pseudo task are all possible operating state transitions among the devices. We
specify a set of design constraints to ensure that appropriate state transition is
chosen based on the mappings chosen for the pair of tasks. Thus, when DESERT
performs DSE and selects the designs that meet the design constraints, correct
operating state transitions are also automatically chosen. In addition, operating
state transition costs also get added to the overall performance of each design
while evaluating the designs against the performance constraints.

We enhanced HiPerE to support duty cycle specification, multi-rate appli-
cations, and devices with multiple operating states. Given a system design and
the number of input frames to process, HiPerE estimates the overall latency and
energy dissipation of the system. HiPerE uses the models discussed in Section 3
to extract the required performance estimates for task mapping, operating state
transitions, etc. By default, HiPerE assumes that the devices are idle during
inactive phases. However, HiPerE can be configured to shut down the devices
during the inactive phase in which case HiPerE takes into account the start up
cost as well for the next active phase.
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4.2 Design Flow

The design flow begins with modeling of the application and the target devices.
Target devices are modeled using the augmented finite state machine (FSM)
model. The performance estimates for various components of the augmented
FSM are derived from vendor provided data sheets. Application modeling in-
volves application specification as a data-flow graph with alternatives. Rate of
execution is also specified for each application task. The functional specification
of the target system specifies the structure of the data-flow graph and the choice
of implementations specifies the alternatives. Each alternative is mapped onto
a target device operating in a specific state. Each mapping is associated with
performance estimates in terms of latency and energy dissipation. Constraint
specification follows modeling.

The design framework uses a hierarchical approach for design space explo-
ration (DSE). The basic idea of hierarchical approach is a two step DSE [10].
Step-I uses a heuristic based design space exploration technique to quickly eval-
uate a large design space and identify a set of design that satisfy the given
performance and design constraints. Step-II uses a high-level performance esti-
mator to evaluate the selected designs to identify the most energy efficient design.
In our framework, Step-I is performed using DESERT and Step-II is performed
using HiPerE (Figure 3). The key to fast DSE using the hierarchical approach
is a rapid DSE in Step-I using an approximated model followed by exhaustive
search based on a more detailed model [10].

In Step-I, we do not consider the duty-cycle specification and the multi-
rate specification of the application while performing DSE. We only consider
the multiple operating states of the target devices, the design constraints, and
the latency constraint based on the minimum input rate to be sustained. The
designs rejected by Step-I are the ones which do not satisfy the given design
constraints and the latency constraint based on minimum input rate to be sus-
tained. Therefore, our approach guarantees that none of the rejected designs
would have satisfied the given performance requirement even when duty cycle
and multi-rate are considered. DSE in Step-I using DESERT is fast. Our expe-
rience with DESERT shows that we can prune a design space with 104 ∼ 105

designs in order of minutes on a typical uniprocessor system [10]. If the number
of designs is too large, we can use energy constraint to further evaluate the de-
signs. The energy constraint can be relaxed (tightened) if too few (many) designs
are selected.

Fig. 3. System design approach
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In Step-II, the selected designs are evaluated using HiPerE based on the duty
cycle specification and the multi-rate aspect of the application to identify de-
sign(s) based on the specific system design problem being solved. Using HiPerE,
a designer specifies the duty cycle and the rates of different tasks and evaluates
all the designs. The most energy efficient design is selected manually. In addition,
HiPerE provides automated support to evaluate designs for range of input rates
and ranges of rates supported for each task.

5 Illustrative Examples

We use two problems to demonstrate the flow of our design framework. The
first problem identifies an energy-efficient hardware for a target detection ap-
plication [13] from a set of devices. Target detection is widely used in radar
applications, surveillance videos, and sensor networks to predict position and
velocity [13]. The second problem also solves the device selection problem for
an LMS (Least Mean Square)-based MVDR (Minimum Variance Distortionless
Response) adaptive beamforming algorithm [3] and evaluates the selected target
hardware(s) in terms of the rate of weight coefficient update. LMS-based MVDR
adaptive beamforming algorithm is used in the base station for software defined
radios to design smart antennas [3].

5.1 Personnel Detection Application

The application consists of 5 tasks (Figure 4) [13]. Tasks shown in gray have
rates higher than 1. The hardware needs to be selected from a set that consists
of Xilinx Virtex-II Pro, Actel ProASICPLUS , Intel PXA 255, PowerPC 405, and
TI C6711 DSP. Application modeling involved specification of the application as
an augmented data flow graph (Figure 4). Individual target devices were mod-
eled using the augmented FSM model. Possible mapping choices for each task
were also indicated. For example, inverse and whiten needs to be computed us-
ing floating point arithmetic for which Actel ProASICPLUS is not a suitable
choice (due to a smaller number of gates). Such requirements are indicated by
not allowing inverse and whiten to be mapped onto ProASICPLUS while model-
ing. Additionally, the 4 valid device combinations are, 1) Virtex-II Pro only, 2)
ProASIC + DSP, 3) ProASIC + PXA 255, and 4) ProASIC + PPC 405. The
rate of CVM computation and inverse was specified as 2 and input rate was
specified as 0.5 Hz. The latency constraint was specified as ≤ 2 seconds. We also
consider only DSP as the fifth choice for performance comparison between DSP
and hybrid reconfigurable system. Modeling effort required for this experiment
was approximately 4 hours. Modeling effort does not include simulation or es-
timation necessary to estimate performance of mapping and state transitions.
However, as our framework supports model reuse, simulation performed off-line
can be reused during modeling.

Following modeling, we performed design space exploration using DESERT
and HiPerE. Through several iterations using DESERT, energy constraint of
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Fig. 4. Application model for Personnel Detection

≤ 860 mJ was chosen to have DESERT select 16 designs as output of Step-I.
The size of the initial design space was approximately 73, 000. Once 16 designs
were identified by DESERT, we used HiPerE to perform Step-II to identify the
best design that meets the duty-cycle requirements and dissipates the minimum
energy. From the 16 designs, we chose 3 designs with different target hardwares
for analysis (Table 1).

Table 1. Results for device selection

Designs Scenario 1 Scenario 2
Latency Energy Latency Energy

Virtex-II Pro only 247.33 ms 114.06 mJ 17895 ms 13938.1 mJ
TI DSP only 614.57 ms 670.11 mJ 18286 ms 9692.7 mJ
TI DSP + ProASIC 496.50 ms 538.18 mJ 17166 ms 8652.9 mJ

In Scenario 1, the system processes only one frame (no start up or shut
down cost included) and in Scenario 2, the system processed 10 input frames
(Table 1). Note that though the Virtex-II Pro based design is the most energy-
efficient for Scenario 1, it is the least energy-efficient for Scenario 2. This is
due to high energy dissipation during inactive phases. In both the scenarios,
the hybrid reconfigurable system out-performs the DSP based system. Based on
the above analysis, we selected TI DSP and ProASICPLUS as the target hybrid
reconfigurable system.

DSE using our framework was performed using a PC with a 848 MHz Pentium
III. The use of an optimization heuristic in Step-I allows us to evaluate a design
space of size 73, 000 in less than a minute. Step-II, evaluating 16 designs, also took
about 2 minutes. On the other hand, if we use HiPerE (which runs significantly
faster than low-level simulators), it takes approximately 10 hours to estimate
the performance of all the designs and a tedious manual comparison of all the
estimates to identify the most energy efficient design.

5.2 Adaptive Beamforming for Software Defined Radio

The LMS-based MVDR algorithm consists of three steps. The first step is the cal-
culation of filter output. The second step is the calculation of input signal power,
correlations between the signals, normalization, and the calculation of error sig-
nals. The third step is the update of the weight coefficients of the adaptive filter.
The incoming data rate is approximately 105× 106 samples per second [3]. This
provides us with the latency constraint of ≤ 9.5 ns.
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Typically, the rate of weight coefficient update is once every second [3]. How-
ever, the rate of update depends on the stability of the environment and the
application requirement. For example, an environment with high interference
and path-loss might require a higher rate of update. Therefore, in addition to
device selection, we also use the framework to identify the maximum rate of
update that can be supported without affecting latency. The set of devices con-
sidered includes two Xilinx Virtex-II Pro devices (xc2vp2 and xc2vp20), one
Xilinx Virtex-II (xc2v1500), Intel PXA 255, PowerPC 405, and TI C6711 DSP.
Most of these devices are also used by the system design problem discussed in
Section 5.1. Thus, we were able to reuse the models of the devices defined in
MILAN. The size of the design space was 243.

HiPerE was configured to power down components when idle if it reduces the
overall energy dissipation. Table 2 shows the designs selected by our framework.
Scenario 1 refers to coefficient update rate of once every 105 × 106 samples. In
Scenario 2, the coefficient update rate is the maximum that can be sustained
by a design. We evaluated all the designs based on their performances when the
system executes for a period of 1 second. For each design, Table 2 shows the
energy dissipation per scenario. The last column shows the maximum update
rate that can be supported.

An additional advantage of using our framework is the savings in design time
due to reduction in the simulation time. Cycle-accurate simulation of the proces-
sors and RT-level simulation of the FPGAs are time consuming. For example,
simulation of the task filter using the DSP simulator takes approximately 15
minutes and using ModelSim and XPower takes about 30 minutes. Therefore,
simulating all the 243 designs would take 100+ hours. Using our approach, we
could identify the results in minutes. There are some overheads associated with
computing the performance estimations of different mappings while modeling.
However, in the worst case, the overhead will be 5 simulations (one simulation
of the three stage application per device) as opposed to 243 simulations.

Table 2. Candidate designs and max update rates supported

No. designs total energy dissipated (mJ) max rate
Scenario 1 Scenario 2 supported

1 two xc2vp2 921.6 1113.1 8
2 xc2vp2 + PowerPC 816.6 755.6 12×103

3 xc2vp2 + PXA 255 682.6 839.6 11×103

4 xc2vp2 + TI DSP 490.6 1960 1.5×103

5 xc2v1500 792.3 852.2 8
6 xc2vp20 968.6 1019.6 8
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6 Conclusion

Our framework implements a hierarchical approach for hybrid reconfigurable sys-
tem design based on duty cycle specification and multi-rate applications using
devices with multiple operating states. DSE using our framework is faster than
DSE using only low-level simulators or high-level estimators. In addition, we
provide a user friendly interface for modeling and DSE. We depend on the ven-
dor provided data sheets and third-party simulators to estimate various model
parameters (e.g. task mapping costs, operating state transition costs, etc.). The
quality of estimates affects the quality of the output of our framework. In addi-
tion, our framework does not perform synthesis for which we rely on the design
tools provided by respective vendors [1,15].
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Abstract. In this paper we present a simple yet efficient methodology
for battery-aware task execution on FPGAs in portable Reconfigurable
Computing (RC) platforms. We divide the reconfigurable area on an
FPGA into several fixed reconfigurable slots called Configurable Tiles.
We then schedule real-time tasks onto these tiles. Various schedules using
different number of tiles are calculated off-line. These schedules along
with their execution times are then sent to a run-time scheduler which
dynamically decides, which schedule is the most battery efficient. By
varying the number of tiles used for scheduling tasks, we can vary the
battery usage and lifetime. We tested the methodology by running it on
several different task graph structures and sizes, and report an average of
14% and as high as 21%, less battery capacity used, as compared to non-
optimal execution. Finally, we present a case study where we implement a
real-time face recognition algorithm on the iPACE-V1 [6] platform using
the proposed methodology and observed 1.3 to 3.3 times improvement
in battery life-time.

1 Introduction

The battery is a finite and perhaps the most precious resource in a portable
system: When opportunities of charging it become limited its value becomes
even more elevated. Most of the work on battery-aware task scheduling is in the
area of embedded systems where dynamic voltage and frequency scaling policies
are used extensively [5]. The system can have a single processor where tasks are
executed with varying voltage/frequency assignments [11,14] or the system can
be a mix of heterogeneous processing units such as general purpose processors,
ASICs and analog circuits etc [10]. RC based mobile systems are not only capable
of supporting the traditional methods for improving battery-life reported in [5],
but also it is possible to change the hardware implemented to achieve battery
savings. It has been shown that [12], reconfigurable approach is extremely energy
efficient for DSP and communication processing applications. The methodology
presented in this paper is targeted to portable reconfigurable platforms having
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batteries as their main source of power. The surface of the FPGA is divided
into several virtual Configurable Tiles and real-time task graphs are scheduled
onto these tiles. This is a unique methodology because it tries to dynamically
match the number of tiles being used to the application requirements, with the
goal of efficient battery usage. The results indicate that even without exploiting
the traditional techniques [5], the methodology proposed is capable of delivering
significant battery savings.

The rest of this paper is organized as follows: Section 2 briefly discusses the
battery model used and the target architecture. Section 3 discusses the method-
ology and the scheduler algorithms. We discuss the experiments used to verify
the effectiveness of the methodology and their results in Section 4. Finally, a
real-time face recognition application implementation using the methodology
proposed is discussed in Section 5.

2 Battery Model and Target Architecture

Battery Model: Several factors affect the battery behavior, including the rate
of discharge, profile of the discharge currents, rest periods and temperature etc.
Therefore, batteries are highly non-linear devices. Rated Capacity of a battery is
defined as the capacity of the battery (in mAh) under a nominal constant current
discharge and is reported by the manufacturer. It is observed that higher rates
of discharge tend to reduce the rated capacity significantly (rate capacity effect)
and reducing discharge rates between heavy discharge periods allows the battery
to regain some of its lost capacity (recovery effect) [9].

Battery models are essential for studying the effects of battery-aware method-
ologies because in many cases, it is extremely cumbersome to validate the useful-
ness of a technique using a large number of actual battery-discharge experiments.
Rakhmatov et al. developed a variable load analytical model, based on the laws
of chemical kinetics [13], which takes into account the rate capacity effect and
the recovery effect. We have chosen to use this battery model because of its
high accuracy and low computational complexity. It was shown in [14] that the
maximum prediction error for various constant current and variable current dis-
charge profiles was less than 4%. The authors used an actual Li-Ion battery and
a simulated battery called DUALFOIL [1] for these experiments. This battery
model requires two parameters (α and β) to be estimated by conducting con-
stant current discharge experiments [14]. Intuitively, α represents the battery
capacity and β captures the non-linearities in the battery behavior; the higher
the value of β the more the battery behaves like an ideal source and the effect of
non-linearities is less visible. The values of α and β used in this paper are 40375
(mAmin) and 0.275, respectively.

Equation 1 describes the battery model.

σ =
n−1∑
k=0

Ik

(
Δk + 2

10∑
m=1

(e−β2m2(T−tk−Δk) − e−β2m2(T−tk))
β2m2

)
(1)

The value of σ gives the amount of charge lost by time T , which is the
length of a current discharge profile having n distinct discharge intervals. Ik, tk
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Fig. 1. (a) Methodology Overview, (b) Target Architecture

and Δk are the the current drawn from the battery, start time and duration
of the discharge for kth interval respectively. The battery lifetime is estimated
by evaluating Equation 1 for increasing values of T and stopping where σ ≈ α:
At this point the value to T is taken as the battery lifetime. For further details
please refer to [13,14].

Target Architecture: The target architecture for this methodology is shown
in Figure 1-b. The MAIN FPGA is used to execute user tasks. The Service
FPGA acts as the system controller and is responsible for configuring the system
upon startup and bringing it to a known state. This FPGA also configures the
tasks on the MAIN FPGA using an appropriate schedule generated by a static-
scheduler (discussed in Section 3). This FPGA has access to a Compact FLASH
card which stores all the bitstreams and data for various tasks to be executed.
Most modern FPGAs, including Xilinx Virtex, Virtex II, Virtex II-PRO [4] and
Altera Stratix and Stratix-II [2] have several useful features, such as high logic
capacity, dedicated clock networks and on-chip memories, which can be used
for implementing this battery efficient methodology. Various components of this
methodology are the following:

1. Configurable Tiles: We divide the Main FPGA into several coarse grained,
virtual, fixed sized Configurable Tiles (from hereon simply called: Tiles) as
shown in Figure 1-b. No two tiles can overlap and it is assumed that the
communication between two tiles is via a shared memory. However, the two
major limitations on maximum number of tiles which can be implemented
in an architecture are the availability of dedicated clock lines and mem-
ory bandwidth. Using several independent memory banks can improve the
memory bandwidth.

2. Clock Architecture: Each tile has a dedicated clock line Tile Clock, which
is a copy of a global system clock. Most modern FPGAs (Virtex-II, Startix-
II) have a maximum of sixteen independent, low-skew global clock networks,
which can be used as Tile Clocks. These tile clocks can be turned on and off
to control the participation and power consumption of each tile during the
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execution of a task-graph: this is also called clock gating. When a particular
Tile Clock is turned off, the power consumption of the tile becomes negligible.

3. Memory Subsystem: The tiles are interfaced to fast shared local memories
which are used to store application data. Memory management is performed
by cooperation between the Service FPGA and the Micro-tasks (Explained
in Section 3) A memory management scheme similar to [7] is used.

3 Battery-Efficient Methodology

Task Representation: We define a real-time task in the form of a Directed
Acyclic Graph (DAG), simply called a “Task Graph” from hereon. In [8], authors
use a set of different task-graph types for studying various scheduling algorithms
for multiprocessors. The nodes in a task graph represent Micro-tasks. A Micro-
task is a computational structure which is synthesized and implemented in the
FPGA in the form of a partial-bitstream: It need not be acyclic in nature. In
fact, all the control and loop structures are implemented within a node. If there
is loop structure which cannot be implemented within a node then the loop
is unrolled in space, using multiple identical nodes. The edges in a task graph
convey the precedence constraints upon the nodes for execution. Each node in
the task graph also contains information about the average current consumption,
execution time, node type and in case of a leaf-node, a non-zero deadline.
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3.1 Scheduling Algorithms

The main idea of this methodology is to dynamically match the number of tiles
being used to the application requirements, with the goal of efficient battery
usage. For a four tile system various execution modes using different number of
tiles are shown in Figure 2. For example, the 1-tile execution mode corresponds
to the case where only a single tile is used to execute any particular task-graph.
Alternatively, a 4-tile execution would use all four tiles available for executing a
task-graph.

A top-level diagram of the methodology is shown in Figure 1-a. This method-
ology uses two schedulers: a StaticScheduler and a RuntimeScheduler. The Stat-
icScheduler and RuntimeScheduler algorithms are given in Figure 3. In order to
save battery-power, the StaticScheduler is executed at compile-time at an energy
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1: BatteryEfficientMethodology(T )
2: Definitions:
3: T = the task to be executed
4: M: Total Number of tiles in the system
5: N : is the maximum number of tiles to

be used for scheduling
6: Td = deadline for T
7: Sn = {s1, s2, ..., sn}: set of schedules

for T corresponding to each of the n
tiles used for execution (1 ≤ n ≤ M)

8: S = {S1, S2, ..., SM}: set of schedule-
sets Sn representing each of the M
execution-modes: 1-tile, 2-tiles etc

9: ES = {ES1 , ESs , ..., ESM }: set of ex-
ecution times representing each of the
M execution-modes

10: Sc: Task T chosen to be executed using
c tiles where c ∈ {1, 2, .., M}

11: Inputs: T
12: Begin
13: for q = 1 to M do
14: Sq, ESq = StaticScheduler(T, q)
15: end for
16: RunTimeScheduler(S)
17: End BatteryEfficientMethodology

1: RunTimeScheduler(S)
2: Inputs: S
3: Begin
4: (Sc, c) = ChooseTilesToUse(S, ES , Td)
5: Configure T on the FPGA using Sc

schedule
6: Wait until T has finished execution
7: End RunTimeScheduler

1: ChooseTilesToUse(S, ES , Td)
2: Inputs:S, ES , Td

3: Outputs:Sc, c
4: Begin
5: for k = 1 to M do
6: if ESk

< Td then
7: Return(Sk, k)
8: Break
9: end if

10: end for
11: End ChooseTilesToUse

1: StaticScheduler(T, N )
2: Definitions:
3: Ip, Δp: current consumption and execution

time of the node p
4: D: A dummy node where ID = Isleep

5: Startp, Endp: Execution start time and end
time of node p

6: R: is a set of all nodes p in Tj s.t.
Parents(p, T ) = 0

7: Inputs:T, N
8: Outputs:SN , ESN
9: Begin

10: for i = 1 to N do
11: Vi = 0
12: end for
13: R = RootNode(T )
14: Vold = 0
15: while T is not empty do
16: E = 0
17: for i = 1 to N do
18: if R �= NULL then
19: Choose a node p ∈ T s.t. Ip =

max(Ik) (∀k ∈ R)
20: si = p, Startp = Vold, Endp =

Startp + Δp

21: if Endp > E then
22: E = Endp

23: end if
24: Remove p from T
25: else
26: si = D, StartD = Vold, EndD = E
27: end if
28: end for

Vold = E
29: for each node p scheduled in this itera-

tion, where p �= Dummy do
30: R = u where u is a child of p and Par-

ents (u, T ) = 0
31: end for
32: end while
33: Return(SN , ESN )
34: End StaticScheduler

Fig. 3. Battery-Efficient Task Scheduling Methodology

rich platform. It schedules a given task graph on different number of tiles. Static-
Scheduler also calculates the total execution time of any task graph. If T is a task
to be executed on the portable RC platform then the BatteryEfficientMethod-
ology finds an execution mode which would result in battery-efficient execution.
If M is the maximum number of tiles in the system then the StaticScheduler
produces M schedules of any task graph by scheduling it on 1, 2, 3 . . .M number
of tiles respectively. A simple list based scheduling algorithm is used to imple-
ment StaticScheduler. It was shown in [14] that in the absence of any precedence
constraints the upper bound on battery capacity used is defined by a profile
which uses a strictly increasing current and the lower bound is defined by a
profile using a strictly decreasing current. Therefore, in the list of nodes ready
to be scheduled, the node with the highest current consumption is scheduled to
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be executed first. If two or more nodes are to be executed simultaneously in a
time step, then the StaticScheduler waits until all nodes have finished execution
before starting a new time step.

These schedules along with their execution times are used by the Run-
timeScheduler which then selects the execution mode which uses the least amount
of battery capacity and meets the deadline for the task. We calculate the bat-
tery consumption and battery lifetime by using the battery model discussed in
Section 2.

Each tile reconfiguration poses a battery cost penalty as well as execution
time penalty. Therefore, it is important to minimize the number of reconfigura-
tions as much as possible. If the task execution time granularity is of the order of
milli-seconds then the penalty associated with reconfiguration is extremely high:
it takes 100 msec to fully reconfigure a Xilinx Virtex XCV300 FPGA [4] and
we found by experiments on iPACE-V1 platform, that the associated battery
cost is 0.0125 mAh. It is to be noted that the methodology presented here can
be implemented in conjunction with some of the traditional techniques (Voltage
and Frequency Scaling) [5] to further enhance the battery efficiency.

4 Experiments and Results

Task Graphs Used in Experiments: In [8], authors use a set of different
task-graph types for studying various scheduling algorithms for multiprocessors
including Out-Tree, In-Tree, Fork-Join and Mean-Value-Analysis. An illustrative
example of each of these graph types is shown in Figure 4. These task-graph
types represent a high-level task structure of commonly encountered parallel
applications. For each type we generated five different task-graphs where the size
varied from 20-100 nodes with increments of 20. The out-tree and in-tree graphs
were generated using Task Graphs for Free (TGFF) [3], software. The number of
out-going/in-coming edges from/to any node of the out-tree/in-tree graph was
randomly varied from 2 to 7 and the number of in-coming/out-going edges was
randomly varied from 2 to 4. Similarly, the fork-join and mean-value-analysis
graphs were randomly created, however, TGFF was not capable of generating
these graphs. In fork-join graphs the number of out-going and in-coming edges
were randomly varied between 2 to 8 and for mean-value analysis these numbers
were randomly chosen to be 1 or 2, respectively.

In order to test this methodology we used iPACE-V1 [6], shown in Figure 7-b.
Each node in the task-graphs represented one of the seven different node types
(Figure 4) which were implemented on the iPACE-V1 platform and their aver-
age current consumption was measured. The total current consumption of the
system was used in profiling the current consumption of a task, which included
the cumulative effect of all subsystems running on this system. The execution
time for each node was chosen randomly as well as the deadline for the leaf-
nodes such that it was possible to schedule the graph using at-least one of the
schedules generated by the StaticScheduler. The results in this Section reflect an
architecture which had four tiles only.
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Fig. 4. Different Graph Types and Node Types Used

Experiment 1: Effect of the Number of Tiles Used for Scheduling
Tasks: We wanted to see the effect of the number of tiles used for scheduling
tasks, on the battery cost for each graph type discussed in Section 4. Therefore,
we scheduled the graphs discussed in Section 4 on one, two, three and four tiles
respectively. Four plots were generated and compared for each graph type and
are shown in Figure 5. The battery is discharged at much higher rates when four
tiles are being used instead of just one, consequently the the battery capacity
used for 4-tile execution is more.

Fig. 5. Effect of the Number of Tiles Used for Scheduling Tasks-Graphs
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Fig. 6. (a) Battery Cost for Experiment-2, (b) Battery Life-time for Experiment-2

Experiment 2: Effect of Scheduling Multiple Real-time Tasks on the
Battery Capacity and Lifetime: For each graph type discussed in Section
4 we generated 10 new graphs with 20 nodes each. All leaf-nodes were assigned
a random deadline and each graph was scheduled using the StaticScheduler on
one, two, three and four tiles respectively: The execution times along with the
schedules for the four cases were then passed onto the run-time schedular. The
run-time scheduler chose the schedule which matched the number of tiles being
used to the application requirements, with the goal of efficient battery usage.
The results for each graph type are shown in Figure 6-a, where the battery cost
of the optimal execution is compared with the cost of the case where maximum
surface area of the FPGA is used to ensure that the deadlines would be met. We
report an average of 14.9% and as high as 21.7%, less battery capacity used, as
compared to non-optimal execution.

Instead of looking at the battery capacity used, another way to characterize
the effectiveness of the methodology proposed can be to find out how long the
battery survives after all ten graphs are executed, for each of the four graph-
types. Therefore, we discharged the battery at a constant rate of 500mA, after
the last node was executed, until the battery was exhausted for both cases:
optimized execution and non-optimized execution. The battery lifetime for each
of the four graphs is shown in Figure 6-b. We observed an average of 20.8% and
as high as 23.34% improvement in the battery lifetime when our battery-efficient
methodology was used.

5 Case Study: Battery-Efficient Real-Time Face
Recognition

This section provides the details and results of using the methodology proposed
in this paper on a real-time implementation of the Eigenface algorithm [15] for
face recognition using the iPACE-V1 platform. For details of the algorithm please
refer to [15]. The task graph of the EigenFace algorithm is shown in Figure 7-a.

The most compute intensive part of this task graph is the multiplication
of the Eigenfaces (EF) with the difference face (DF) and accumulation of the
results (Nodes 1 to 4). As the number of Eigenfaces increases the accuracy of
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Fig. 7. (a) Eigenface Task-Graph, (b) iPACE-V1 Platform

Table 1. (a) EigenFace Algorithm run-times (b) Battery life-times Results

Max Tiles 10-EigenFaces 20-EigenFaces
Used Per Frame Per Frame

Exec. Time Exec. Time
(msec) (msec)

1 40.12 72.00
2 23.47 36.72
3 17.92 25.62
4 15.15 20.08

10-EigenFaces 20-EigenFaces
Frame Rate (1/sec) 15 30 15 30

Deadline per
Frame (msec) 66 33 66 33

Battery-Efficient
Lifetime (minutes) 74.01 44.83 39.66 20.12
No-Optimization

Lifetime (minutes) 22.32 22.32 14.64 14.64

the algorithm gets better but the execution time increases. We use two cases for
executing this algorithm: using 10-Eigenfaces and 20-Eigenfaces for face recogni-
tion. Additionally we consider two frame rates for real-time execution: 15 frames
per second and 30 frames per second. As the frame rate increases, the deadlines
become more strict. For the system to remain real-time, the execution time of
the task graph should be less than the deadline associated. The image size was
chosen to be 208 × 208 pixels. The complete system was executed at 13Mhz.

Due to the MAIN FPGA size limitations, we mapped Nodes 0 and 5 to
the Service FPGA and Nodes 1 through 4 were mapped to the MAIN FPGA:
these were the nodes which occupied the four tiles in the main FPGA. Both
FPGAs were configured once at the startup: The execution and participation of
each node was coordinated by dynamic clock gating as explained in Section 3.
The task graph shown in Figure 7-a was scheduled on one, two, three and four
tiles respectively, with 10 and 20-Eigenfaces used for face recognition: Table 1-a
shows the execution times for these two cases. When the frame rate was chosen
to be 15 frames per second (fps) the deadline for execution of the task-graph was
66.7 msec and when the frame rate was 30 fps the deadline was 33.3 msec. As
shown in Table 1-a for 10-Eigenface case the schedule using a single tile can meet
the deadline for 15 fps execution. However, when the frame rate is increased to
30 fps, one has to use 2-tiles or more to meet the deadline. For 20-Eigenface
case, even the deadline for 15 fps cannot be met by the schedule using one tile:
Therefore, for 15 fps we use 2-tile schedule and for 30 fps we use 3-tile schedule
for battery-efficient execution.
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Table 1-b shows the battery life-time observed when 10 and 20-Eigenface
cases were executed at 15 fps and 30 fps frame rates, respectively. The task
graph was executed periodically with period equal to the frame rate, until the
battery was exhausted. The battery life-time improvement of 1.3 to 3.3 times are
reported as compared to the execution where no-optimization steps were taken
and the task graph was executed using the maximum FPGA area.
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Abstract. Complex SoC and platform-based designs require integration of con-
figurable IP cores from multiple sources. Even automatic compilation flows from
a high-level description to HW/SW systems can benefit from having access to
reusable sophisticated hand-optimized IP blocks. This is especially the case in
the domain of reconfigurable computers, which offer core integration directly into
the custom datapath. This work proposes the Parametric C Interface For IP Cores
(PaCIFIC) to allow the automatic embedding of complex IP cores in a high-level
language such as C. PaCIFIC provides for formal description of IP behavior and
interface characteristics as well as an idiomatic programming style natural for SW
developers.

1 Introduction

In many current design styles such as systems-on-chip (SoCs), embedded systems and
platform-based techniques involving hardware-software (HW-SW) co-design, a gap ap-
pears in the design flow at the interface between HW and SW. The individual HW and
SW sub-flows (from RTL to layout and SW to binary code) themselves are quite mature
with regard to tool support, but the interface between both requires significant manual
effort to establish [1][10]. This applies even more strongly if the HW contains IP cores,
as these often feature complex functionality and interfaces. The challenges the designer
has to cope with include large system-specific parameter sets that span a huge space of
possible combinations, not all of them legal. While configuration management is already
well-explored [7][8][9], this paper concentrates on HW/SW interface design. With the
gate capacity of configurable devices reaching into the millions by now, these issues
are also becoming applicable to target platforms such as Adaptive Computer Systems
(ACS). On the other hand, their configurability allows a much tighter integration of
IP blocks into the system at the datapath level than the comparatively coarse-grained
on-chip buses used in the ASIC world.

Two aspects play key roles in this kind of interface design. First, the interface func-
tionality itself has to be partitioned between HW and SW realizations. Second, concrete
interface mechanisms and protocols must be determined (e.g., physical connections,
address ranges, transfer modes, device drivers, etc.). Both of these issues require the
designer to explore a large design space, a time consuming and sometimes tedious task
despite initial efforts at tool support [3].
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This work focuses on the latter aspect in the context of using an ANSI C language
description to tightly embed, compose and interact with IP cores. This language has been
chosen in context of our work of enabling fully automatic compilation from a high-level
programming language to ACS applications. As a solution, we propose the Parametric
C Interface For IP Cores (PaCIFIC). It establishes an automatic design flow presenting
convenient, simple C interfaces (function prototypes) to a SW developer. Our approach
hides the formal descriptions of IP- or platform behaviors and interface characteristics
by encapsulating them together with other IP configuration data in a dedicated repository
[9].

2 Related Work

Tomiyama et. al. [2] compare several Architecture Description Languages (ADL) and
determine the characterizing properties to be behavior- and structure description. They
demand an explicit behavior description of processors for better compiler generation.
However, they consider synthesis-based ADLs or HW Description Languages (HDL)
neither sufficiently easy-to-use nor flexible enough for this task. Balboa [3] is a HW/SW
co-design framework for system models. It abstracts IP interfaces in a twofold inter-
mediate layer consisting of a Component Integration Language (CIL) and the Balboa
Interface Description Language (BIDL) providing automatic data type matching and
interface generation. The IP behavior is implemented as C++ models. The CoWare N2C
suite [10] contains a set of interface behavior descriptions expressed as prototypes or
templates specialized in many detailed descendants. Despite their great number, the
behavior descriptions are not universal and cannot replace a behavior description lan-
guage. Handel-C [11] is an extension to the C language with explicit parallelism, HW
data types and inter-thread communication channels based on the model of Communi-
cating Sequential Processes (CSP) [13]. SystemC and Synopsys Behavioral Compiler
both provide abstract interface modeling, but the HW-oriented constructs in SystemC
have not been embraced by the SW-development community. Traditional HDLs, e.g.,
as used in the Behavioral Compiler, have gained even less ground there. Carloni et. al.
[17] construct an interface mechanism based on latency insensitive protocols. Thronicke
[7] and Zeller [8] present configuration management (CM) methods from HW and SW
domains. At present, there seem to be no attempts to combine CM and ADLs, although
this would appear advantageous when building systems of complex IP cores and SW.

3 Problem Description

Consider a scenario with two IP cores which should be arranged forming a pipeline.
Assume that each core has one input and one output interface.

As shown in Fig. 1, the data path comprising both cores is supposed to be used from
a SW description that also sources and sinks the data. A natural approach for plain SW
would consider the two IP cores to be C functions, leading to the code in Fig. 2.

From such a code description, the HW pipeline shown in Fig. 1 should be automati-
cally inferred. This requires additional information about the HW “functions" compress
and crypt. The SW developer should not have to be aware of the actual mechanisms
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Fig. 1. Hardware pipeline used by software

int *indata, *outdata, *intermediate;
for (n = 0; n < 64; n++) {

compress (indata++, intermediate);
crypt (intermediate++, outdata++);

}

Fig. 2. IP cores as C functions

involved in realizing the structure. To this end, several issues must be addressed when
dealing with HW embedded in a SW description:

• Recognition of IP cores
Since C cannot distinguish between HW and SW, function calls aiming at IP core
instances have to be detected somehow.

• Low-level interface control
In contrast to HDLs, plain C has no notion of timing- or cycle-accurate execution
schedules. Thus, for each IP core, interface parameters like signal timing, handshak-
ing and bus arbitration must be provided in an external representation.

• Data transfer
There are several ways to exchange data between SW and HW. IP cores are often
programmed via register files. Thus, a Programmed I/O (PIO) mode is mandatory
in this case. On the other hand, this is highly inefficient for the large data sets which
are commonly processed by complex IP cores (video, networking). In these cases,
Streaming I/O (SIO) mechanisms are generally employed, often assisted by rate
matching and buffering using FIFOs. We will refer to such a setup as a stream
engine. For each use of an IP core, the appropriate transfer method used has to be
determined based upon data-traffic statistics and interface descriptions delivered by
the IP provider.

• HW events
Some transactions are initiated not by the SW, but by the IP core, e.g., the acceptance
to process the next data block. Asynchronous events such as interrupts or error noti-
fications are beyond the semantics of a C function. The functional synchronization,
such as the indication of the current state of a HW function, must be realized, for
example, to determine the end of a C function call (=IP core execution) and proceed
with the rest of the program.
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4 Proposed Solution

PaCIFIC consists of rules for an idiomatic programming style which must be used when
embedding IP cores in a C source program, and interface control semantics which de-
scribe the interface behavior of an IP core (see Fig. 3). To this end, PaCIFIC includes
a data model and a human-readable description language for the characteristics of in-
dividual IP blocks as well as entire platforms (not shown here). All components are
realized as compiler passes that perform the necessary analysis and synthesis steps for
both HW and SW. These steps access the PaCIFIC descriptions to discover idiomatic
HW function calls in the C source program.As first practical realization, the Compiler for
Adaptive Systems (COMRADE) [4][5] will act as the host compiler. PaCIFIC enables
COMRADE to access and integrate IP cores too complex to be generated efficiently just
from a SW description. For brevity, the details of the COMRADE integration will not
be discussed here.

Fig. 3. Design flow with PaCIFIC

The data models and representations are based on the study of more than thirty
commercial IP blocks that were classified using the attributes of the PaCIFIC interface
template [12]. The aim was the capability to describe all of the IP cores’ interface
semantics with the existing attribute catalog. The majority of the evaluated cores belongs
to the domains of multimedia and networking. The first cores generally presented a data
path oriented interface, with the video or audio stream processing being the main task. In
contrast, the networking IP cores employed a processor-based register interface. More
complex IP blocks even use multiple different interfaces of both kinds.

5 Hardware Interface Description

The PaCIFIC interface description [12] is used to define the static properties for all IP
interfaces as well as the dynamic flow of the interface protocols based on synchronous
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logic operating without a central flow control authority.As usual, properties are expressed
as attributes and values. Some of the many defined attributes are:

• Identification (class, type, version, name).
• Auxiliary information (author, comments).
• Port definitions (transaction type, direction, width, associated clock, abstract data

type, associated address, handshaking protocol, data traffic statistics, bus arbitra-
tion).

• External resources required by the IP core and their allocation modes (shared, exclu-
sive, persistent). This might include external memories or special I/O requirements
(e.g., access to multi-Gbps transceivers).

Port transaction types and handshaking protocols will be examined in more detail in
Section 5.1. A fragment of an interface template for the crypt IP core is shown in Fig.
4 below:

interface crypt
type: custom
version: 1
port INDATA
transaction: data
direction: in
width: 32
sequence repeat: inf
bigendian: 32 bit signed

end sequence
enableout: name ACK_OUT offset 0 latency 0

end port
port ...

...
end interface

Fig. 4. Part of PaCIFIC Interface for the crypt IP

The abstract data type defined by the sequence block of the example (here just a
single scalar integer), plays a central role in the data exchange between SW and HW. It
arranges the nature, order, and count (repeat) of the data items that are transferred over
the port or bus. Every sequence block corresponds to formal parameter of the fictitious
C function representing the IP core.

Interface templates can be used to group and reuse the same or similar interfaces in
a fashion analogous to the classes and inheritance of object-oriented programming.

5.1 Interface Protocol Description

The fundamental interface flow control mechanism in PaCIFIC is a handshaking scheme
which consists of an incoming and an outgoing signal per port. For an outgoing signal,
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the asserted state (selectable as high or low) means that the IP block is ready to consume
data (on an input port) or that data is waiting to be fetched (on an output port). The
incoming signal is the outgoing signal from the connected port at the other end of
the communication. It is not necessary to specify both signals, a one-way handshake
is possible as well as no handshake. A transaction is considered complete when all
specified handshake signals are active at a clock edge. If both signals are specified, it
is illegal to reset the first active signal before the second signal has been activated. For
all handshakes, a time offset or initial latency with regard to another handshake may
be specified. Additionally, an interrupt semantic can be selected for the handshaking
signals. This is useful if no actual data transfer is required during the transaction, e.g.,
to indicate that data must be fetched from a mailbox register.

When such static interface properties no longer suffice to describe the character-
istics of an IP core’s interface, an enhanced version of the FLAME UCODE notation
is employed [6] to describe dynamic behavior. A UCODE block is a list of statements
most of which are executed sequentially. It represents the state machine of an interface
controller. An excerpt of the UCODE statements is shown below:

• The level statement asynchronously sets ports to the values given as arguments of
the form port=value.

• The posedge statement is similar to level, but operates synchronously with a rising
clock edge.

• The continue statement takes three kinds of parameters: an optional timeout: n,
optional error: port=value expressions, and normal port=value expressions
which are interpreted as conditions. The first two branch to the exception block
either if all error conditions are true or the timeout in clock cycles has expired.
If no timeout or error occurs, the control flow is halted until all normal continue
conditions are valid. As stated in [6], multiple conditions in the same continue state-
ment are logicallyANDed, multiple successive continue statements are ORed. The
asynchronous continue statement can be synchronized by a following posedge.

• The exception block, if present, is located at the end of the UCODE block. It
marks the branch target for all error and timeout clauses and puts the interface
or IP block into a well defined error state. The normal control flow terminates, if the
exception block or the end of the UCODE block is reached.

• The mandatory transfer n name block represents the transfer of n sequences to
port name, with the nature of the sequence being defined in the PaCIFIC interface
description. Without a sequence description on a port, transfer indicates n scalar
transfers using the full port width. It acts as a loop in the UCODE control flow. Each
iteration is triggered by the handshaking protocol defined for the port.

6 Software Interface Description

The last sections dealt with the HW realization of the interface to the IP cores. In this
section, the corresponding SW mechanisms will be examined.

From the study of multimedia IP cores it is obvious, that a powerful data streaming
service is needed to source and sink the data path interfaces of the IP. The stream engine
fetches and stores data from respectively to shared memory, which is accessible to the
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SW running on the CPU. The start address of the memory range to be streamed can
be expressed as a pointer to C structures reflecting the composition of the sequences
defined in a PaCIFIC interface.

In all cases, the IP cores also require programming (e.g., for initialization) using
a register interface. This can be realized by simply mapping the registers into a SW
accessible memory region (but not necessarily the main memory space).

To recognize the actual IP core embedding, and establish both communication meth-
ods, an idiomatic C programming style is required: Only two modes of instantiating IP
cores from C are supported by PaCIFIC, but they are sufficient to cover all interface
types under discussion.

First, there is the fully automatic interface generation, which results in the creation
of read and write primitives for access to the ports of the IP core in both direct (register)
and streaming fashions. This method works from the PaCIFIC interface definition, the
IP designer (or more precisely, the author of the PaCIFIC description) does not have to
provide any additional data. However, the SW has to explicitly call the primitives in the
required order to actually get the IP core to perform the desired function.

Second, there are functions which atomically perform complex operations without
requiring incremental prodding by a SW program. For the realization of these monoliths,
the IP designer has to supply an algorithmic description of the control and data patterns
that must be applied to the interfaces of an IP core for the required function.The monoliths
are then generated automatically and their call resembles conventional C library functions
(all individual control steps have been hidden and implemented automatically).

Note that threading models such as the POSIX one are compatible with PaCIFIC,
enabling the parallel execution of HW and SW. This can be beneficial when calling
data-intensive IP cores: E.g., while the HW is still running, the SW prefetches the next
data block into memory and writes processed data to disk.

6.1 Primitives

Consider an input port indata without an associated address that is 32 bits wide (cf.
example in Section 5). For this case, the C function write indata is generated. It
writes 32-bit integers (sequence bigendian: 32 bit signed) and terminates data
dependently (repeat: inf):

void write_indata (int *data);

A best match approach is employed for mapping scalar hardware data to C data
types. The n least significant bits of the next larger C type represent a hardware scalar of
width n. Unrelated to the previous example, an output port with an associated address
that delivers a sequence of composite data items (here mapped to the struct comp)
results in the following function:

void read (int address, struct comp *data);

If the repeat value in a sequence definition equals one, SW wrapper functions may
be used to eliminate the unwieldy pointer in favor of just passing scalar data. Primitives
are most suitable for use with simple register- or memory-style interfaces.



686 H. Lange and A. Koch

6.2 Monoliths

Due to the strictly sequential semantics of C, it is not possible to directly describe
pipelined accesses using primitives. However, this is achievable using monoliths. The
example in Fig. 5 below reconsiders the compress-crypt scenario from Section 3 and
describes the underlying control protocol for the behavior “encrypt” in PaCIFICextended
UCODE [6] (see also Section 5.1).

behavior encrypt
proc crypt(plaintext, ciphertext)

; load key
posedge LOAD_KEY=1

KEY=10027821 ; fixed key
posedge LOAD_KEY=0
; process single data item
transfer 1 INDATA
level INDATA=plaintext

ACK_IN=1
continue timeout: 16

error: INIT=0 ACK_OUT=1
posedge ciphertext=OUTDATA
level ACK_IN=0
endtransfer INDATA

; wait for end of pipeline flush
exception
continue INIT=1
; execution terminates here
end behavior

Fig. 5. UCODE for behavior “encrypt"

Fig. 6. Signal timing for the crypt IP

The function prototype in the proc statement corresponds to the C function, with
variables being passed by reference. Fig. 6 displays the signal timing described by the
transfer block above with INIT := 1.

The following sequence is defined in the PaCIFIC specification for the port INDATA:

; data
sequence
bigendian 32 bit signed

endsequence

From this description, the crypt function in the example of Section 3 can be gener-
ated. The function terminates after encrypting one data word from the memory pointed
to by plaintext and delivering it to *ciphertext:

crypt(int *plaintext, int *ciphertext)

7 Hardware Experimental Results

To evaluate the feasibility and efficiency of the PaCIFIC approach, the Xilinx High-
Performance 16-Point Complex FFT/IFFT [14] of the Core Generator suite was coupled
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to an ANSI C program applying the PaCIFIC algorithms manually, since an automatic
tool flow is not yet available. The FFT expects data to be continuously streamed to its
input buses as well as from its outputs. For simplicity, the 16 bit real and imaginary
buses are combined into 32 bit buses carrying complex numbers. The output data is
available after an initial latency of 82 cycles. To efficiently source and sink data, two
stream engines are employed with a FIFO capacity of 256x32 bit each. The test platform
was an ACE-V ACS [16]. The relevant platform HW used here includes a 100MHz
microSPARC IIep CPU with 64 MB of DRAM and a Virtex 1000 -4 FPGA. The CPU
accesses the FPGA via PCI and a PLX PCI9080 local bus bridge. For comparison, the
FFT was also exercised on a second test platform, an ADM-XRC card attached via PCI
to a standard PC (AMD Duron 800 MHz, 256 MB SDRAM). The ADM-XRC is a subset
of the ACE-V providing the same Virtex FPGA and PLX local bus bridge.

The C program executed by the processor reads the source data from a file into the
DRAM, calls the FFT HW implemented on the FPGA and finally writes the result back
to disk (Fig. 7).

int main(int argc, char* argv[]) {
FILE* infile, * outfile;
int* dram_in, * dram_out;
infile = fopen("time.dat", "r");
outfile = fopen("freqspec.dat", "w");
dram_in = calloc(16384, sizeof(int));
dram_out = calloc(16384, sizeof(int));
fread (dram_in, sizeof(int), 16384, infile);
vfft16(dram_in, dram_out); /*** HW function call ***/
fwrite(dram_out, sizeof(int), 16384, outfile);

...
}

Fig. 7. C program calling FFT HW

Table 1. FFT mapping results (a) and performance results (b) with PaCIFIC

Data for the FFT logic is sourced and sunk by two stream engines co-located on
the FPGA which access the DRAM in bus master mode. The naive approach without
PaCIFIC would require a manual set-up of the stream engines and the control signals
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for the FFT. Instead, all of this is wrapped by PaCIFIC into a single function call. After
application of the PaCIFIC algorithms, the SW part was compiled using gcc, while the
resulting RTL description for the stream engines and interface control logic was synthe-
sized with Synplify 7.3.3. It was subsequently mapped with ISE 6.2.01i, embedding the
FFT core netlist. The achievable clock speed without optimized floorplanning for the
mapping results in Table 1a is 27 MHz.

Table 1b shows the performance results for the FFT processing 4096 words on both
ACE-V and ADM-XRC/PC at 27 MHz FPGA clock. The time spent in SW processing is
not considered here since it depends mostly on the host’s file I/O capabilities rather than
PaCIFIC interface design assuming that a naive approach would also access memory in
master mode.

8 Conclusions and Future Work

We presented PaCIFIC, a strategy for using complex IP cores from within ANSI C pro-
grams as seamlessly as pure C SW functions. The HW-specifics unfamiliar to a SW
developer are encapsulated in the PaCIFIC framework. Instead, the IP provider supplies
the details required for core integration as a machine-readable description. The HW/SW
interfaces are then generated automatically, thus raising design productivity by closing
the gap between the vertical HW and SW design flows. This approach applies not only
to COMRADE or the specific domain of adaptive computing systems, but generally
to all HW/SW co-design environments. The unified notation for IP configuration and
interface protocol description enables (semi-) automatic design composition. Reusable
interface descriptions allow the separation of interfaces and implementation details. Al-
though many of the underlying concepts have already been explored separately, it is
their combination that catalyzes a new and easy-to-use HW/SW co-design flow. Addi-
tionally, reconfigurable platforms such asACSs profit from PaCIFIC’s ability to generate
lightweight native interfaces at the datapath-level between IP and the rest of the system.
This avoids the overhead incurred by requiring on-chip bus-compatible wrappers be-
tween the generic HW blocks. Future work will provide the tool support for PaCIFIC
within COMRADE.
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Systemmodellen unter besonderer Berücksichtigung der Wiederverwendbarkeit. PhD thesis,
University Paderborn, Germany, 2000

8. A. Zeller. Configuration Management with Version Sets. PhD thesis, TU Braunschweig, Ger-
many, 1997 (http://www.infosun.fmi.uni-passau.de/st/papers/zeller-phd/)

9. H. Lange, M. Radetzki. IP Configuration Management with Abstract Parameterizations. Proc.
International Workshop on IP Based SoC Design, Grenoble, France, 2002

10. CoWare Inc. N2C Scenario Library, 2001
11. Celoxica Ltd. Handel-C Language Reference Manual, 2001
12. H. Lange. PaCIFIC. Technical Report, TU Braunschweig (E.I.S.), Germany, 2003
13. T. Hoare. Communicating Sequential Processes. Prentice Hall International Series in Com-

puter Science, 1985
14. Xilinx Inc. High-Performance 16-Point Complex FFT/IFFT V1.0 Product Specification,

http://www.xilinx.com
15. A. Koch. A Comprehensive Prototyping Platform for Hardware-Software Codesign. Work-

shop on Rapid Systems Prototyping, Paris, France, 2000
16. L. Carloni, K. McMillan, A. Saldanha, A. Sangiovanni-Vincentelli. A methodology for

correct-by-construction latency insensitive design. International Conference on Computer-
Aided Design, San Jose, USA, 1999



Increasing Pipelined IP Core Utilization in Process
Networks Using Exploration

Claudiu Zissulescu, Bart Kienhuis, and Ed Deprettere

Leiden Embedded Research Center,
Leiden Institute of Advanced Computer Science (LIACS),

Leiden University, The Netherlands
{claus,kienhuis,edd}@liacs.nl

Abstract. At Leiden Embedded Research Center, we are building a tool chain
called Compaan/Laura that allows us to do fast mapping of applications written
in Matlab onto reconfigurable platforms, such as FPGAs, using IP cores to imple-
ment the data-path of the applications. A particular characteristic of the derived
networks is the existence of selfloops. These selfloops have a large impact on the
utilization of IP cores in the final hardware implementation of a Process Network
(PN), especially if the IP cores are deeply pipelined. In this paper, we present an
exploration methodology that uses feedback provided by the Laura tool to increase
the utilization of IP cores embedded in our PN. Using this exploration, we go from
60MFlops to 1,7GFlops for the QR algorithm using the same number of resources
except for memory.

1 Introduction

To better exploit the reconfigurable hardware devices that are coming to market, a num-
ber of companies like AccelChip and Celoxica and research groups around the world [5,
1] are developing new design methodologies to make the use of these devices more
ubiquitous by easing the way these devices are to be programmed. At Leiden Embed-
ded Research Center, we are developing a design methodology that allows us to do
fast mapping of applications (DSP, imaging, or multi-media) written in Matlab onto
reconfigurable devices. This design methodology is implemented into a tool chain that
we call Compaan/Laura [10]. The Compaan tool analyzes the Matlab application and
derives automatically a parallel representation, expressed as a Process Network (PN).
A PN consists of concurrent processes that are interconnected via asynchronous FIFOs.
The control of the input Matlab program is distributed over the process and the memory
is distributed over the FIFOs. Next, the Laura tool synthesizes a network of hardware
processors from the PN. Laura derives automatically the VHDL communication struc-
ture of the processor network as well as the control logic (interfaces) of the processors
needed to attach them to the communication structure. The computation that has to be
performed in every processor is not synthesized by the Laura tool. Instead, the tool
integrates commercial IP cores in every processor to realize the complete computation.

When pipelined IP cores are used in a PN processed by Laura, new data can be read
without waiting for the finalization of the current computation. Therefore, a network is
seen as a big pipelined system. To maximize the throughput of a network, we need to
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carefully consider how to couple the pipelines of the processors in a network. In this
coupling, one particular characteristic plays an important role. This is the existence of
selfloops.A selfloop is a communication channel that sends data produced by a processor
to itself. Selfloops appear very frequently in PNs and they impact the utilization of IP
cores thus have a great impact on the overall performance of PNs. A pipelined IP core
works at maximum throughput if the network provides as many independent operations
as the depth of the pipeline.

In this paper, we present how we can perform a design space exploration to increase
the utilization of IP cores. Using exploration, we change in a systematic way the size of
the selfloops as they are a measure of independent operations. This measure is obtained at
compile-time by extending Laura with a Profiler option. This provides systematic hints
for further exploration. Using this profiler, we performed an exploration that is presented
at the end of this paper. In this exploration, we realizes a throughput improvement from
60MFlops to 1,7GFlops for a QR algorithm, using the same number of processors.

2 Related Work

There are numerous researchers that recognized the need for fast performance estima-
tion to guide the compilation of a high-level application for deriving alternative designs.
The PICO project [5] uses estimations based on the scheduling of the iterations of the
nested loop to determine which loop transformation lead to shorter scheduling time. The
MILAN project [1] provides a design space exploration and simulation environment for
System-on-Chip architectures. MILAN uses simulation techniques to derive estimates
used in the evaluation of a given application. In [3] the authors use an analytical per-
formance model to determine the best mapping for their processor array. An analytical
model is used also in [8] to derive performance and area for a given nested-loop pro-
gram. Adding more independent streams to increase the efficiency of a design is not new
for hardware designers [7]. All these projects are focused on synchronous systems, and,
therefore, a global schedule of their system can be derived at compile time. However, we
derive estimations regarding the throughput of deeply pipelined IP cores in the absence
of a global network schedule. In [9], we have shown already that we can apply loop
transformations to increase the performance of our networks.

3 The Compaan/Laura Tool Chain

In general, specifying an application as a PN is a difficult task. Therefore, we use our
Compaan Compiler [6] that fully automates the transformation of a Matlab code into
PNs. Subsequently, the Laura [12] tool takes as its input this PN specification and
generates synthesizableVHDL code that targets a specific FPGA platform. The Compaan
and Laura tools together, realize a fully automated design flow that maps sequential
algorithms written in subset of Matlab onto reconfigurable platforms. This design flow
is shown in Figure 1.

In the first part of the design flow, an application specification is given in Matlab to
Compaan to be compiled to a PN representation. The applications Compaan can handle
are parameterized static affine nested loop programs, which can be described using a
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subset of the Matlab language. In the second part of the design flow, Laura transforms a
PN specification together with predefined IP cores into synthesizable VHDL code. The
IP cores are needed as they implement the functionality of the functions calls used in
the original Matlab program. In the third part of the design flow, the generated VHDL
code is processed by commercial tools to obtain quantitative results. These results can
be interpreted by designers, leading to new design decisions. This is done with the
help of Mattransform tool [9] that performs a source-to-source transformation on the
Matlab code. By rewriting the Matlab code, we can explore different mappings. When an
obtained algorithm instance meets the requirements of the designer, the corresponding
VHDL output is synthesized by a commercial tool and mapped onto an FPGA platform.
Recently, we have extended Laura with a ’Profiler’option to provide hints at compile time
that can be used by Mattransform to rewrite the application to increase the performance
of the input algorithm.

To show the relation between a function call in Matlab program and an IP core,
we need to explain the way Laura realizes the functionality of the function call. This
functionality is wrapped and executed in a corresponding processor of the derived PN. To
implement the PN in hardware, Laura uses the notion of Virtual Processors and hardware
communications channels (i.e. FIFOs).

A Virtual Processor is composed of four units: a Read unit, a Write unit, an Execute
unit, and a Controller unit, as shown in Figure 2. The Execute unit is the computational
part of a virtual processor. The Read unit is responsible for assigning all the input argu-
ments of the Execute unit with valid data. The Write unit is responsible for distributing
the results of the Execute unit to the relevant processors in the network. The Controller
of the Virtual Processor synchronizes all the units of the processor. The Read unit and
the Write unit can block the next execution when a blocking-read or a blocking-write
situation occurs, thereby stalling the complete processor. A blocking-read situation oc-
curs when data is not available at a given input port. A blocking-write situation occurs
when data cannot be written to a particular output port. In the Execute unit an IP core

Fig. 1. The Compaan/Laura tool chain Fig. 2. The Virtual Processor model
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is embedded. This IP core implements the functionality specified in the original Matlab
code. The controller automatically fires the execution unit when data is available.

4 Problem Definition

The task to interpret the quantitative results obtained from VHDL traces can be very
difficult in a complex PN network. Therefore, we want to guide the designer using the
tool chain with indications that are obtained from the analysis of the network and prior
knowledge on the IP cores.

Fig. 3. Simple Example

Laura’s Virtual Processor is a pipelined processor. Therefore, the filling and flushing
of the pipeline reduces the throughput below the maximum level achievable. One of the
problems that affect the efficiency of our designs is given by the data availability. Data
availability is affected when selfloops are involved. When a processor has a selfloop, it
can happen that the processor want to read data from the selfloop, but that data is still in
the pipeline. Because the data is in the pipeline, the processor has to wait, reducing the
efficiency of the pipeline of the IP core.

Let us consider a simple example by looking at the dependency graph (DG) in
Figure 3. This DG is folded by Compaan into a single processor that has a single self-
loop, which corresponds to data dependencies in the i direction. In Compaan, the nodes
in the DG are scheduled. In Figure 3, the schedule is given by the p direction (e.g.
1,2,3,4,..,14,15,16). It is obvious that the operations 1,2,3,4 are independent, i.e. there is
no arrow between them and, therefore, no data dependency. Therefore, the processor has
to store the result of these operations into a temporary memory until they are consumed
by the following 4 independent operations (e.g. 5,6,7,8). In our case, this memory is a
selfloop, implemented as a FIFO channel. Hence, the necessary size for the selfloop is
given by the number of independent operations, which is 4 in the case given in Figure 3.
If we consider an alternative schedule given by the i direction (e.g. 1,5,9,13,..,12,16) the
size of the selfloop FIFO is one. In this case, the data is immediately consumed by the
processor after being produced.

Now, let us assume that the processor is pipelined and its pipeline depth is equal to 4.
For the first schedule example, the pipeline achieves the maximum throughput because all
the pipeline stages are filled with independent operations. The processor takes data either
from a source (i.e. the first four iterations) or from itself (i.e. the remaining iterations).
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In the second schedule example, the pipeline is underutilized because the data generated
by the processor is not yet available at its input due to the pipelining. This case should
be avoided as the pipeline of the IP core is used for only 25% of its capacity.

5 Solution Approach

The number of independent operations that can be mapped onto a processor is a key
metric to obtain efficient implementations. Hence, we developed a procedure that reports
the number of independent operations that are mapped onto a Virtual Processor that has
selfloops.We call this the Profiler of Laura. The procedure computes the size of a selfloop,
which represents the amount of independent operations for a processor. The number is
reported back to the designer who may take the necessary decisions to improve the
quality of the analyzed design. Design decisions such as retiming (i.e. skewing), loop
swapping, adding more streams of the same problem and unfolding can be applied to
control the amount of independent operations that are mapped onto a processor. Using
the procedure to compute the size of the selfloop and the given design decisions, we can
close the loop in Figure 1 needed to perform a design space exploration to improve the
efficiency of an input algorithm mapped into a reconfigurable platform.

6 Detecting the Selfloop Size

Normally, we cannot determine the size of a FIFO in a PN as we only specify the partial
order between the processors. To determine the size of each FIFO would require a global
schedule of the network, which cannot be easily determined. The selfloop is, however, a
special case as this kind of communication channel starts and ends on the same processor
and the writing and reading to/from this channel respects the internal schedule of the
processor. We exploit this special case to determine the size of the FIFO channel.

We use the polytopes model [2] to represent mathematically a statical nested for loop
program that is taken as input by our tool chain. Each processor is characterized by a
polytope that represents its iteration space. The original for-loops gives us a schedule
on this iteration space. This schedule is implemented in the Read and Write units of
the Virtual Processor and its responsibility is to communicate the right data with other
processors in the network.

The order in which write and read operations are performed over the selfloop depends
on the local schedule of the processor. The selfloop size is given by the number of write
operations that are done before the first read operation is performed, which defines the
run in period. Due to the schedule of a processor, it is guaranteed that after the first read
is done, other read operations will follow at constant time intervals, which defines the
steady stage. In this stage, the read operations are interleaved with the write operations.
The steady stage is followed by the run out period, which is characterized by performing
only read operations. Hence, to compute the selfloop size, it is necessary to determine
how many write operations were made in the run in period. This is equivalent to counting
the number of integral points in the polytope that defines the run in period. To compute
the points, we made use of the Ehrhart theory [4].
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A processor can have one or more selfloops and each selfloop can have a different
size. The minimum size out of all the processor selfloops represents the minimum amount
of independent operations that are mapped on the IP core. Therefore, we consider this
minimum size for our efficiency analysis.

7 Increasing the Throughput of a Virtual Processor

The Virtual Processor is a pipelined model; reading, executing, and writing are done
in a pipeline fashion, as shown in Figure 2. To process a token, the read unit requires
τread cycles to fetch the token. The execute unit requires δpipeline cycles in the IP core
to execute. The write unit requires τwrite cycles to write a token into an output FIFO.
To achieve 100% utilization for the IP core in an ideal network, the required number of
independent operations Σ that needs to be mapped on the IP core is given by Equation 1.

Σ = δpipeline + τwrite + τread (1)

7.1 Pipelined IP Cores and Independent Operation

To optimize the IP efficiency, we need to look at the number of pipeline stages and the
size of the FIFO selfloop. If the size of the FIFO is smaller than the number of pipeline
stages, then we can increase the number of independent operations. This can be done in
two ways. The first way is to apply an unimodular transformation (e.g., skewing, loop
swapping) on the local schedule of the Virtual Processor local schedule that contains the
IP core. The second way is to add

P = Σ − SizeFIFO (2)

independent streams of the same problem to be processed in a pipeline fashion by our
network (i.e., data-stripping). This gives us the necessary independent operations in the
processors for an optimal throughput. These P independent stream must be interleaved
in a optimal way. We rely on Compaan to do this for us by rewriting the original Matlab
code with one extra for-loop that has as upper bound the value P . This loop must be the
inner most loop to achieve the interleaved execution of the streams. If the size of the
selfloop is larger than the number of pipeline stages, then the core is overloaded with
independent operations. We can take advantage of this surplus of independent operation
by unrolling this processor to increase the number of parallel running resources. An
unrolling operation balances the workload on two or more identical processors, and
may improve the performance for the entire algorithm. The proposed procedures of
independent streams and unrolling do not guarantee an efficiency of 100% of the IP
core. This is because the core efficiency depends also on the data dependencies between
different processors.

7.2 Single Cycle IP Cores and One Independent Operation

A special case exists when the IP core is not pipelined at all. If a selfloop of size 1 is
mapped on the IP core, we have an instance of the classic case of data hazard. In this
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situation the selfloop is replaced with a simple wire between the read and write unit of the
virtual processor. This technique is very beneficial, as the wire increases the throughput
of the processor and requires less hardware resources.

8 QR: A Case Study

To explain the hints the profiler implemented in Laura presented and how that effects
design decisions, we now consider the QR case, which is widely used in signal processing
applications [11]. The Matlab code for the QR algorithm that can be processed by
Compaan is presented in Figure 4. It shows two function calls (bcell and icell) surrounded
by parameterized for-loops. Compaan will generate a PN based on the for-loops and the
variables passed on to the function calls. What happens in the bcell and icell is irrelevant
to Compaan, but not for Laura. The network we obtain is given in Figure 4. Observe
that each function call becomes a process in Compaan and that both the bcell and icell
processes have selfloops.

for k = 1:1:T,
for j = 1:1:N,
[r(j,j), rr(j,j), a, b, d(k) ] =

bcell( r(j,j), rr(j,j), x(k,j), d(k) );
for i = j+1:1:N,
[r(j,i), x(k,i)] =

icell( r(j,i), x(k,i), a, b );
end

end
end

Fig. 4. The QR matlab code and the equivalent PN

The bcell and icell are realized by integrating a bcell and icell IP core on the execute
unit in a virtual processor (See Figure 2) for the icell and bcell function call. The bcell
and icell IP cores are pipelined and have 55 and 42 stages, respectively. To arrive to
an optimal QR implementation each core must, therefore, have 57 and 44 independent
operations, according to Equation 1. We look at QR with the parameters set to the
typically values of N = 7 and T = 21. For the case presented in Figure 4, our profiler
reports for the smallest selfloop of icell a size five and for bcell a size 1. Given the deep
pipelines of the icell and bcell IP cores, both of them are underutilized and the profiler
recommends either to explore a space of additional independent QR streams from 1 to
57, or to perform a skewing operation.

First, we choose to explore the design decision of adding independent streams, and
then we evaluate the design decision of skewing. For each experiment, we derive aVHDL
representation of the algorithm using the Compaan/Laura tool chain that we can simulate
to obtain quantitative data. The execution duration(Nocycles) for each experiment is
measured in cycles. Each of the icell(Noicell) and bcell(Nobcell) operations contain 11
and 16 floating point operations, respectively. The average speed of our QR network
mapped onto an FPGA 1 platform is 100Mhz. We use the next formula to compute how

1 VIRTEX-II 6000, Synplify Pro7.2, Xilinx ISE5.2
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many million floating point operations per second (MFLOPS) can be achieved in each
experiment.

Δ =
Noicell ∗ 11 + Nobcell ∗ 16

Nocycles
∗ 106 (3)

8.1 QR: Adding More Streams

As we input the original QR algorithm in the chain, the profiler reports that we have to
add 57 independent streams to the bcell IP core and 40 independent streams to the icell
IP core by applying Equation 2. Hence, we choose to explore the space made by running
1, 10, 20, 30, 40 and 57 independent streams. In this case, the stream represent complete
instances of the QR algorithm. The results of this exploration are given in Figure 5.

Fig. 5. QR experiments with additional streams Fig. 6. QR experiments with skewing and ad-
ditional streams

We observe that the saturation point is marked by the running 40 QR instances. At
this point, the profiler reports 4.54 times more independent operations than the icell
can handle. Therefore, we choose to unfold the icell twice and four times respectively.
This leads us to 1764MFLOPS and 1767MFLOPS, respectively. The first transformation
gives us an additional 81MFLOPS, while the second one only a difference of 3MFLOPS.
It is obvious that the second operation is not as successful as the first one. We should also
indicate that although we didn’t use more IP cores, we obtained the higher throughput
at the expense of more memory.

8.2 QR: Skewing

A second option to increase the number of independent operations in each processor
is to skew the algorithm in Figure 4. After applying this transformation, the profiler
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indicates 7 independent operations in bcell and 21 in icell. However, these numbers are
not sufficient to fill the entire pipeline.

To achieve a higher throughput for our experiment, we must either increase the
dimension of the input problem or add more independent streams, i.e., QR instances.
For the first case the required parameters will be N = 57 and T = 44. For the second one,
a space of 10 independent QRs is suggested by the profiler. We choose to explore 2, 4,
6, 7, and 10 independent streams. The results are shown in Figure 6. The first bar from
the graph represents the throughput of the original QR, the second bar is the skewed
version and the following bars are the values obtained for the skewed QR algorithm with
increasing number of independent QR streams.

We choose to unroll the QR algorithm running 4 QR instances. In this case, the
profiler reports a 181% utilization for the icell. Unrolling the icell core twice gives us only
6MFLOPS more throughput compared with the non-unfolded algorithm. This shows us
that the decision was not so successful. The reason for this is that the unfolded icell cores
work in a mutual exclusive fashion, nulling the effect of the unrolling operation.

8.3 Discussion

Based on the values given in Figure 6, skewing the algorithm gives us from the beginning
an important amount of independent operations that allows to obtain a higher computa-
tional throughput without adding independent streams. The skew transformation fills the
pipeline with parallel data that belongs to the same input problem. However, it may be
that the skewing transformation doesn’t achieve the maximum throughput of the cores
and, therefore, solutions such as increasing the dimensions of the input problem (i.e.
changing the values of T and N) or adding more independent streams may be required.

The existence of parallel operations that belongs to the original algorithm helps the
designer in achieving the maximum throughput with minimum amount of independent
streams added. These operations are exposed to the architecture through the skewing
transformation. In the non-skewed version the saturation of our architecture is reached
around 40 streams, while in the case of the skewed version the saturation point is given
by 6 streams. In real life, it is more likely that only a small number of independent
instances of an algorithm need to be computed at the same time. Therefore, the skewed
version is more appealing to start with in any design space exploration. The overloading
of an IP core with many streams can be solved either by increasing the clock speed for
that particular processor (i.e., using various clock domains) or by unrolling it. In our ex-
periment, we showed that applying high-level transformations (e.g., skewing, unfolding,
data stripping) as offered by the Laura profiler as hints leads to an increased throughput.
Nevertheless, quantitative simulation data is needed to assess its final usefulness.

9 Conclusions and Future Work

A particular characteristic of the derived networks we obtain from running the Com-
paan/Laura tools, is the existence of selfloops. These loops have a large impact on the
utilization of the IP cores and in the final hardware implementation of a PN. This is
especially the case when the IP cores are deeply pipelined. To improve the efficiency,
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the designer has to make design decisions like skewing, unrolling, loop swapping and
data stripping. To help the designer to in making these decisions, we have implemented
the profiler in Laura. The profiler uses manipulation of polytopes to compute at compile
time the size of selfloops. This size is indicative for the number of independent oper-
ations available in an algorithm. The computed hints provides by the profiler, help to
steer design decisions. Doing this in a iterative manner, a designer can explore options
to improve the throughput of a process network. In this paper, we have shown for the
QR algorithm that we could improve the performance from 60MFlops to 1.7GFlops by
using the hints from the profiler. Using the hints, we could improve the utilization of
mapping the QR algorithm on a FPGA with deeply pipelined IP cores by a factor of 30,
using the same IP cores albeit at the expense of more memory.

To improve the efficiency, the designer has to make design decisions. These opera-
tions can be expressed at the Matlab level using the Mattransform tool. Currently, the
hints provided by the profiler needs to be manually expressed. Future work is to make a
connection between the Mattransform tool and the hints from the profiler.

References

1. A. Bakshi, V. K. Prasanna, and A. Ledeczi. Milan: A model based integrated simulation
framework for design of embedded systems. In ACM SIGPLAN workshop , 2001.

2. U. K. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations. Kluwer
Academic Publishers, 1993.

3. S. Derrien and S. Rajoupadyhe. Loop tiling for reconfigurable accelerators. In FPL 2001,
UK, 2001.
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Abstract. Due to their flexibility, increased logic density and low design
costs, Field-Programmable Gate Arrays (FPGAs) have become a viable
option for implementing many kinds of applications such as custom com-
puting machines, rapid system prototyping, hardware emulation, IP veri-
fication and evaluation. This paper proposes an alternative approach that
allows IP providers to deliver their IP to customers for functional eval-
uation before purchase, by mapping IP cores into SRAM-based FPGA
logic and distributing them as a bitstream file for a particular device so
that customers can use their FPGA boards to try-out the IP as a black-
box, pre-verified design component. This paper also presents a simple
hardware/software infrastructure and its prototype implementation that
allows for seamless integration of hardware IP into an existing simula-
tion environment. In addition, a case study is given to demonstrate the
proposed approach and some security issues concerning bitstream-level
IP distribution are also discussed.

1 Introduction

With the growing design productivity gap and the need for shorter time to mar-
ket, reuse of intellectual property (IP) and rapid system prototyping methodol-
ogy using programmable logic devices have become crucial for System-on-a-Chip
(SoC) and embedded system designs. The design time can be significantly re-
duced if existing IP cores are (re-)used and embedded earlier into the design for
evaluation purposes. IP cores are offered by many vendors and delivered in differ-
ent forms for evaluation and deployment. Traditionally, customers have needed
to rely on data sheets and pre-compiled, encrypted simulation models delivered
by IP providers to evaluate IP before purchase. The idea presented in this work
originates from the question whether it is possible to map IP blocks into FPGA
logic and distribute them as a device programming file with associated software
packages so that customers can test the IP blocks using an FPGA board at their
local sites. Using hardware IP blocks may help speed-up a simulation process
over traditional simulation approaches.

In order to enable customers to evaluate the hardware-mapped IP, they must
be able to incorporate the IP block into their simulation environments. This re-
quires a hardware/software infrastructure that facilitates IP evaluation on the
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customer side with minimal hardware requirements. In addition, due to a large
variety of FPGA prototyping boards among customers, it is difficult to find a
common HW/SW infrastructure that meets such requirements. These problems
hamper the use of bitstream-level IP evaluation approach in practice. To address
such problems, this paper proposes a cost-effective HW/SW infrastructure with
minimal hardware requirements. Customers can evaluate IP blocks either stand-
alone or together with other design components by (i) applying input vectors
to the target IP block, (ii) retrieving output vectors from the device and (iii)
finally sending them back to the host computer for visualization and analysis.
In order to enable a software simulator to control and communicate with one
or more hardware-implemented IP cores, this work makes use of a JTAG (Joint
Test Action Group, the IEEE 1149.1 Standard [1]) link, which is widely used
for system-level testing, debugging and device configuration. To be more spe-
cific, Xilinx’s Parallel Cable III and Altera’s ByteBlasterMV cable are used for
Xilinx and Altera FPGA devices, respectively. Despite its bit-serial nature and
moderate data transfer rate, using a JTAG link has many advantages such as
low cost, low-pin-number requirements, a simple communication protocol, etc.
Another advantage is that the same programming cable can also be used as
a communication channel between the software and the internal FPGA logic,
provided that a built-in JTAG hard-macro is available in the device. Recently,
some FPGA vendors such as Xilinx and Altera have already embedded a built-in
JTAG hard-macro into their devices. All these advantages make the proposed
approach simply applicable to many FPGA boards available today.

The rest of the paper is organized as follows. Section 2 overviews related work.
The hardware and software part of the implemented framework are described in
Section 3 and 4, respectively. An application scenario of the proposed approach is
presented in Section 5. Security issues associated with the use of a bitstream-level
IP distribution approach is discussed in Section 6. Finally, Section 7 provides
the conclusions for this work.

2 Related Work

In order to enable customers to evaluate an IP core in their designs prior to
purchase, some IP providers offer their IP as pre-compiled and/or encrypted
simulation models for functional simulation. An IP core may be developed as
a behavioral, non-synthesizable model or a cycle-accurate, synthesizable model,
written in a Hardware Description Language (HDL) or C/C++, and then com-
piled into a secure simulation model using a model compiler. However, these
models are usually tool-specific or vendor-specific (e.g., Synopsys’s SWIFT In-
terface and SmartModel Library [2] and Summit Design’s Visual IP [3]). Some IP
providers offer encrypted HDL models for FPGA-based designs under a product
evaluation agreement. Such models can be synthesized and mapped into FPGA
logic using vendor-specific design tools (e.g., Altera’s OpenCore evaluation pro-
grams [4] and Mentor Graphics’ Inventra IPX [5] used in Altera encrypted IP
flow) so that customers can obtain more accurate information about the area and
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performance of the IP within their designs. Customers cannot generate the final
bitstream or any output netlist file before purchasing the IP. Altera’s OpenCore
Plus evaluation programs allow customers to evaluate IP and test their designs
in hardware before purchase by using a time-limited programming file. Time-
limited IP cores operate for only a pre-determined number of clock cycles, after
which they are disabled.

Another approach is to use a remote, distributed client-server simulation
environment, for instance, as reported in [7][8][9]. A connection between the
client’s simulator and the server simulator running on a server remotely hosted
by an IP provider must be established for IP evaluation. Customers can select
an IP block, which will be instantiated and simulated by the server simulator.
Through an associated wrapper simulation model, which is responsible for the
secure communication and synchronization with the server simulator, customers
can evaluate the IP block as if it were instantiated and simulated locally on their
computer. IP blocks are protected because they are not delivered to customers.
The main drawback of such a remote IP evaluation approach is that it causes a
large amount of communication and synchronization overhead and the Internet
bandwidth (or traffic) can have a large impact on the overall simulation per-
formance. In addition, sending data through the Internet in a secure manner
requires considerable efforts. In order to serve multiple users concurrently at
the same time, multiple licenses for third-party HDL simulators and additional
computing resources may be required at the IP provider site. Instead of using an
HDL simulator, a hardware emulator or a simulation accelerator can be deployed
on the server side. For example, Aptix’s IP Test Drive [6] offers the capability
to evaluate hardware-mapped IP over the Internet. The user can browse the IP
repository and select an IP core from a catalog for a test run. If the selected
IP core is already mapped into an Aptix FPGA-based emulation system located
remotely on an emulation-services site, then user can verify the IP core using a
testbench. In [10] the authors use Java applets to deliver IP cores for functional
simulation within a Web browser running on the user computer. However, the IP
cores must be described in JHDL, a Java API for circuit modeling, and compiled
as Java classes. JHDL supports only Xilinx FPGA families.

3 JTAG-Based Hardware Infrastructure for IP
Evaluation

As mentioned previously, one needs a hardware infrastructure that facilitates the
control of hardware execution of one or more IP blocks in the FPGA. To this
end, a simple JTAG-based internal scan structure as illustrated in Figure 1 has
been proposed. In this structure, a so-called Virtual I/O Socket, which mainly
consists of a capture/shift register and an input update register, is needed for
each IP block. The output ports of the input update register are connected to the
input ports of the IP block. The output ports of the IP block are connected to
the capture ports of the capture/shift register. The bit width of the capture/shift
register is equal to the maximum value of the total bit width of all inputs and
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Fig. 1. Scan-based hardware structure supporting multiple IP blocks
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Fig. 2. Virtual I/O socket of bit length 4

the total bit width of all outputs of the IP block because this register is shared
by the input and the output vector. The bit width of the input update register
is equal to the number of the input ports of the IP block.

Figure 2 shows an example of a virtual I/O socket, where both the capture-
shift register and the input update register have the same length of 4 bits. As
illustrated in Figure 2, the capture-shift register is built with a chain of flip-flops
and 2:1 multiplexors. The input update register is composed solely of flip-flops.
All virtual I/O sockets are controlled by a controller. This controller uses signals
that are provided by the built-in JTAG TAP unit (e.g. TCK, TDI, SHIFT-DR,
UPDATE-DR, etc.) to generate clock and control signals. Control signals are
used, for example, to select an I/O socket and to control the capture-shift-update
operations.

This hardware structure is very similar to a typical boundary-scan chain.
The key difference is that one or more internal scan paths are built using FPGA
logic resources instead of using boundary-scan cells. Therefore, the length and
the number of scan paths are not limited by the number of available pins of
the device. This allows the user to set or control the value of the input port of
arbitrary bit length and capture the value from the output port of arbitrary bit
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length. The values for all input signals are generated by the software and applied
to the IP block through the internal scan structure.

To apply an input test vector, two capture-shift-update cycles are needed.
In the first cycle, a new input vector is shifted into the capture/shift register of
an I/O socket and then the input update register is updated with the new value
stored in the capture/shift register. Note that the output value that was captured
from the output of the IP block at the beginning of the first cycle and shifted
out during the shift operation is unused and can be ignored. The second cycle
begins with the capture operation, followed by the shift and update operation.
During this cycle the shifted-in value in the capture/shift register is ignored by
the input update register (i.e., the input to the IP block is unchanged and stable).
The time period between these two consecutive cycles must be longer than the
largest propagation delays and clock-to-output delays inside the IP block and
the output is captured when all signals have become stable after applying an
input vector to the circuit. In case the circuit has a clock input to the flip-flops,
it must be ensured that the setup-time condition of the flip-flops is always hold.
This can be achieved by properly delaying the clock input signal to the IP block.
During the capture operation all input signals except the clock signal are applied
directly to the input ports of the IP block, whereas the clock signal is delayed
by a half period of the TCK signal. This value is sufficiently large enough for
the most IP cores if assumed that the TCK frequency is not large than 1 MHz.
The TCK signal is generated by the control software on the host PC. Note that
the proposed hardware structure provides both controllability and observability
at the I/O interface of the IP block. This is sufficient for black-box IP models
whose contents are treated as “invisible”.

4 Integrating IP into Simulation Environment

In order to use the IP cores for simulation, the user needs a bitstream file to pro-
gram the target device. A parameterizable VHDL model of the scan structure
described in Section 3 has been developed. This model must be implemented
together with the selected IP cores. Currently, all these components are instan-
tiated manually and connected together in a VHDL file that serves as the top-
level entity for the final FPGA implementation. All these files are passed to the
standard FPGA design flow to generate the final bitstream. To facilitate device
configuration and communication through a JTAG link, a Java API was imple-
mented. It supports both Xilinx and Altera devices. The Java Native Interface
(JNI) is used to enable the Java API to call low-level C routines to access the
Parallel port attached to the download cable, while trying to keep the platform-
specific part low to reduce platform dependency. The Java-based API supports
both Windows and Linux PC platforms. To demonstrate how to interface an
FPGA-mapped IP core with a simulation environment, a Java-based digital cir-
cuit simulation framework (with an event-driven simulation kernel) has been
developed [11], which is similar to the JHDL framework. It can perform both
EDIF netlist simulation and FPGA-based hardware emulation. For simplicity of
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Fig. 3. A Java wrapper class for the binary counter

explanation, a simple 16-bit binary counter is chosen as an IP block under eval-
uation. This component has four inputs (clk, reset, enable, and updown) and one
output (Q). The counter value is set to 0 if the asynchronous reset is low. Other-
wise, it is either incremented or decremented by one (controlled by the updown
input) at the rising clock edge and when enable is high. To simulate the counter,
a Java wrapper class must be created, as shown in Figure 3. During simulation,
each time when any input of the counter module is changed, the evaluate()
method is invoked, which in turn calls the emulate() method of its superclass.
This method is responsible for applying new input values and retrieving output
values of the IP block in the hardware over the JTAG link.

Fig. 4. A portion of Java code for input stimuli generation

The Java code for input stimuli generation is shown in Figure 4. Input vectors
are generated by assigning values to the Wire object associated with each input
port. The Java testbench code is shown in Figure 5. In this example, the target
hardware platform is an FPGA board with only one Xilinx Virtex device (with
the instruction length of 5 bits) in the JTAG chain.

In addition, an AES core from [12] was used as a more complex IP core. The
Verilog code of the AES core was synthesized into a gate-level EDIF netlist and
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Fig. 5. A Java testbench for the binary counter

a structural VHDL netlist, targeting the Xilinx Virtex-E family. The AES core
(together with the scan structure) was mapped into a Virtex XCV300E chip
using the Xilinx ISE 5.1 tools. The synthesis results are shown in Table 1. The
AES IP block in the last row includes the original AES core, its I/O socket and
the controller. The difference in logic utilization mainly comes from the fact that
extra resources are needed to implement the internal scan structure. In this case
study, the AES core has a very high-pin count, and therefore, requires a very
long capture-shift and input update register.

Table 1. Logic utilization (targeting an XCV300E-PQ240 device)

#Slices #DFFs+Latches
AES Core (original) 1862 (60.61%) 611 (8.59%)
AES IP Block 1995 (64.94%) 1155 (16.23%)

For performance comparison, three simulation approaches were performed us-
ing the same testbench (either in Java or in VHDL, but functionally equivalent):
(i) gate-level simulation using a Java-based hardware simulator, (ii) gate-level
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Table 2. Simulation performance comparison

Runtime (500 cycles) Speed (cycles/sec)
Gate-level Java simulation 475.2 sec 1.05
Gate-level VHDL simulation 182.5 sec 2.74
FPGA-based emulation 3.0 sec 166.67

VHDL simulation using ModelSim and (iii) hardware emulation using an FPGA
board with Java testbench. All experiments were done on a Notebook with an
800MHz processor, running Windows XP. The simulation results are shown in
Table 2. For each experiment, the simulation was run for 500 clock cycles. An
example of the Java testbench can be found in [11]. Although only a Java-based
simulation framework was chosen to demonstrate the functionality of the pro-
posed approach, the described method can be adapted to support other simula-
tion environments. For instance, one may implement the JTAG communication
layer in C/C++ and use it directly with the SystemC or other HDL simulators
(e.g., via the Verilog Programming Language Interface). The proposed approach
can be used with any FPGA board, provided that the FPGA device has enough
logic capacity and a built-in JTAG unit, and can be programmed through a
download cable with JTAG probes. Indeed, many commercially available FPGA
boards fulfill these hardware requirements.

5 Bitstream-Level IP Distribution Scenario

One may envision an application scenario in which an IP provider offers online
IP evaluation services. A user can visit the IP provider’s Web site and request for
one or more IP cores for evaluation that will be distributed in a bitstream for-
mat. Before downloading any bitstream file, the user must first complete the user
registration process and accept some IP evaluation agreements, and after that
he or she has to submit some necessary information like the name and param-
eters (if needed) of the IP core and the target FPGA device. Such information
will be used by the server to generate the bitstream data for the requested IP
core. The selected IP core together with its control and interface logic, which
is required for the communication with the software running on the host PC,
is passed through a standard FPGA design flow, including synthesis, mapping,
placement and routing and bitstream generation, respectively. The IP provider
may provide pre-generated bitstream files for some selected FPGA devices so
that the implementation steps can be skipped, resulting in shorter processing
time on the server. In the next step, the user can download the bitstream file,
together with the software packages that are necessary for interfacing the im-
plemented IP core to the user’s simulation environment. The user can purchase
a license when he or she is completely satisfied with a core’s functionality after
evaluation. After purchase the user will receive the original IP cores, which may
be available in different forms (e.g., RT-level HDL models or technology-specific
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gate-level netlists). In addition, it is possible to generate time-limited versions of
hardware-implemented IP blocks, which operate only for a pre-defined number
of simulation clock cycles. A simple hardware counter associated with each IP
block is implemented in FPGA logic and incremented each time when an input
vector is applied to the IP block during simulation. When it reaches a pre-defined
value, the communication with the corresponding IP block is disabled.

IP providers can offer such a service as an additional means of distributing
evaluation IP to their customers. Another advantage is that a design team can
use this kind of hardware-verified IP from other sources in earlier stages of the
design cycle. This reduces the development time, cost and risks significantly.

6 Security Concerns

IP core protection against illegal use or IP theft is always a major concern of
IP providers when distributing their IP cores to customers. Since IP cores are
wrapped with interface logic and distributed in a vendor-specific, proprietary
bitstream format, they cannot be directly copied and integrated into any design
for final implementations without extracting the circuit netlist and other nec-
essary information from the bitstream data. Although reverse engineering of a
bitstream is possible and can be used to extract the implemented IP cores, it is
an extremely difficult process and requires large efforts (e.g., time and money).
The bitstream by itself does not preserve any design hierarchy or names of in-
stances and nets, so it is hard to decipher anything out of it. While it may be
cost effective to reverse-engineer a small design targeted at a simple FPGA ar-
chitecture, it is a daunting task to extract individual IP blocks from a flat netlist
of a one-million gate design implemented in an FPGA with a more complex ar-
chitecture. Even if someone were able to write a program for reverse-engineering
of bitstreams that extracts the circuit information from a bitstream file, some
technical questions still arise:

– Is the extracted netlist functionally equivalent to the original IP core?
– Does the extracted netlist have any circuit part that does not belong to the

original IP core (e.g. the scan structure in our case) that can be removed or
optimized away while preserving the original functionality of the IP core?
How to locate them in the netlist?

– Can the extracted netlist be converted to other technologies targeting ASIC
or SoC designs and meet given constraints (e.g., area and performance)?

Furthermore, the IP provider may generate a bitstream-evaluation version of an
IP core which has not been optimized against any constraints (e.g., area and
timing) during synthesis. This evaluation version can be considered as a lower-
quality, but functionally-equivalent version of the original IP. In such a case, if
someone could extract the circuit netlist from the bitstream, he or she would get
only an evaluation version.



Distribution of Bitstream-Level IP Cores 709

7 Conclusion

In this paper a methodology has been proposed that allows IP providers to map
their IP cores into SRAM-based FPGA logic and distribute them to customers
for functional evaluation. Customers can evaluate the IP core stand-alone or
together with other components in their design. A HW/SW framework and its
prototype implementation that demonstrates the underlying concept were also
presented. The implemented framework supports both Xilinx and Altera devices
and, therefore, can be used with various FPGA boards. Security issues associated
with the bitstream-level IP evaluation approach were also discussed. Despite
some limitations such as no support for timing simulation, limited visibility (due
to the use of black-box IP models) and moderate security for IP protection, the
proposed approach offers a new opportunity for both FPGA vendors and IP
providers to deliver their IP as hardware executables to customers for functional
evaluation.
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Abstract. We present in this paper a development method for SOC
platforms associating a processor running a RTOS and hardware IP’s.
This method is based on encapsulating IP’s for unifying communications
and resource sharing between software and hardware tasks. A hardware
wrapper that abstracts the IP behaviours through a standard interface
and a software encapsulation (the IP Alter Ego) thereby giving access
to the Operating System functions are presented. Details about imple-
menting this model on two different FPGA platforms are given.

1 Introduction

Today’s demand for highly complex digital systems has lead to the integra-
tion of several complementary often heterogeneous processing modules into a
single chip. Such System-On-Chips (SOC’s) are particularly good candidates
for a wide range of new processing cores in multimedia applications. SOC sys-
tems are generally built around an Instruction Set Processor (ISP) connected
to modules optimized for specific computations. Examples of such modules are
data compression (MPEG-2, JPEG2000) or channel coding/decoding cores in
telecommunication applications (VITERBI, Turbo-Codes, LDPC).

Recent advances in programmable technologies have allowed the integration
of some reconfigurable areas (FPGA nodes for example) in which Intelectual
Properties (IP) can be allocated. These new architectures are, in order of mag-
nitude, faster than processor-only solutions and sustain flexibility. However, ex-
ploiting this flexibility leads to a very complex design flow. Different models and
abstraction levels have to be handled for designing both processor code, ASIC
or FPGA designs and communications between all modules have to be carefully
and efficiently designed (busses, networks, protocols). In addition, an efficient
memory management is also necessary for designing good applications.

Many different methods have been used to speed up the desing flow. One such
method which have received a lot of attention is the hardware and software co-
design methodology. A unified language describes the whole architecture. Compi-
lation, performance analysis, hardware/software partitionning, RTOS targetting
are steps necessary to generate both sequential code for ISP and bit-streams for
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programmable nodes. The Pilot [1] method or OCAPI-XL [2] are good examples
of such methods. The latter uses robust communication methods [3] and targets
dynamic and partial reconfiguration of programmable logic fabrics. However, the
communication and interconnection resources are strongly constrained (for data,
control and configuration streams), and hence, do not seem adaptable to every
SOC or FPGA platforms.

SOC’s can also be considered as heterogeneous multi-processors systems.
Automatic application generation tools [4] can here be used by targetting the
specific architecture. Once again, these tools depends on robust communications
concepts [5] based on high levels of abstraction. However dynamic reconfiguration
of FPGA nodes cannot be taken into account without great efforts.

The operating model presented in this paper covers the development of com-
plex SOC’s with one ISP running a simple multi-task real-time operating system
and several dedicated reconfigurable (or not) hardware modules. The aim of this
work is to target the wider possible range of architectures and to propose a
generic model for handling such systems. This model will allow any hardware
or software module to ask for a system call, to execute any software function,
including communication management functions.

This article is organized as follows: Section 2 presents our model for unifying
communications between heterogeneous IP’s (the Alter-Ego model). Section 3
gives details about the implementation of this model and illustrates its portabil-
ity through two different implementations. Section 4 presents the dynamic and
partial reconfiguration perspectives of this work and Section 5, our conclusions.

2 Software Alter-Ego Model Description

In a real-time operating system a task is a portion of code to which (among
other informations) a unique identifier and a priority is given. The goal of the
scheduler task is to share the processing time (and resources) between all tasks
depending on their priorities. A task can ask for the creation of another task
that will be also executed by the processor. The Alter Ego (AE) model is based
on a simple and portable real-time OS and allows any module in the SOC to ask
for a system call such as task creation, semaphore query, etc. This is done by
encapsulating each IP module within a software task - the Alter Ego - managed
by the OS. An IP can communicate with its corresponding task, this task being
in charge of executing the requested calls.

The objective of this work is to provide a unified level that abstracts hardware
IP’s through software-only tasks. Developing an application under such a model
makes managing hardware tasks simple.

IP encapsulation is done on three levels. The first one is the IP wrapper -
a wrapper between the hardware IP and the SOC communication channel. A
specific Interrupt Service Routine (ISR) constitutes the second level. The third
level being the AE itself. These three levels are presented below.
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2.1 IP Wrapper

Each hardware (or software) IP is encapsulated in a wrapper whose role is to
establish a link between the IP and the main ISP through the SOC communi-
cation channels. The wrapper is composed of three information registers: 1) a
control register, 2) a request register and 3) a data return register. A dedicated
signal is also generated by the wrapper in order to interrupt the ISP. Figure 1
illustrates the wrapper interface.

IP

Control

Return

Bus to 
processor

interrupt signal

Request

Fig. 1. Interface to the IP

1. The control register is used by the AE to initialize the IP (configuring or
transmitting some parameters) and to control the IP (execution start, stop,
suspend). This register gives to the processor the total or partial control over
the IP behaviour. By using the processor interrupt controller, the IP uses its
interrupt signal to request attention to the processor. On activation of this
signal the Interrupt Service Routine wakes up the AE.

2. The request register contains the “instruction” the IP is requesting. This
instruction can be any function identifier along with all of its parameters.
The AE is in charge of interpreting the “instruction”.

3. The data return register is used by the processor to send back to the IP the
results of the requested function (if any).

Depending on the IP the three registers can be implemented in a form more
suitable to the IP behaviour. FIFO memory or shared-memory spaces can also
be used instead of registers for transferring important volumes of data.

2.2 The Alter Ego

The behavior of the AE is as follows (see Figure 2): The first step consists in
transmitting control data to the IP through the control register. This step initial-
izes the IP. Where reconfigurable nodes are concerned, this step is also respon-
sible in the IP configuration phase i.e. transmitting the configuration bistream
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Request Data
return

registerregister

Posting semaphore

Pending

Fig. 2. Hardware/software scheduling

to the FPGA node for example (see Section 4). The AE is then placed in a
sleeping state by waiting for the IP semaphore to be released. At this point, the
consequence is that apart the configuration (if any) and the initialization phase,
the IP AE does not represent any execution charge to the processor. Figures 3
and 4 give examples of coding AE and ISR.

Sem_ptr *sem_array[];

Void alter_ego (void) {
int request;
int result;
func_ptr func_array[];
init_func(func_array);
Init_IP() ;
sem_array[IP_id]=OSSemCreate();
While(1) {
OSSemPend(sem_array[IP_id]); /* Wait for semaphore */
request=Get_Request_Reg(); /* Get request number */
result=Exec_func(func_array[request]); /* Execute function */
Write_Result_Reg(result); /* Send back result */

}
}

Fig. 3. Alter Ego code example

By activating its interrupt request, the IP initiates the execution of the ISR
whose role is to release the semaphore. The AE is then woken up and enters the
communication phase with the IP. This phase comprises three steps:

1. Reading of the requested function ID,
2. Execution of the software function (system call, software library function,

etc),
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Void int_control(void) {
int IP_id ; /* IP identifier */

IP_id=get_IRQ_number( ); /* identify IRQ request */

OSSemPost(sem_array[IP_id]); /* release IP semaphore */
}

Fig. 4. ISR source code

3. Where applicable, transmitting the function results back to the IP through
the data return register.

This model can be used also in a multi-processor operating system context.
However, this model applies only if the IP behaviour can be considered as a
finite state machine.

3 AE Implementations

The AE model was successfully implemented on two different SOPC platforms.
The first one was a Xilinx development board equipped with a VirtexII-pro
FPGA that integrates a PowerPC processor (PowerPC 405) and a 1-million
gates FPGA. The PowerPC processor runs a very simple real-time operating
system: μCOS-II [6]. The OS kernel is very compact and is based on a pre-
emptive scheduler. Classical inter-task communication primitives are included
in this OS: semaphores, mailboxes and signals.

For validation purpose, two software IP’s were linked to the processor in
the form of two 32-bit microBlaze processors running specific code. The two
microBlaze processors were encapsulated as described in the previous Section.
Figure 5 gives an overview of the SOC architecture used in this platform.

The second platform is described Section 3.4.

3.1 Critical Resources Sharing Example

On this platform, our Alter Ego model was employed to share critical resources
between the two IP’s and the central processor. In a multi-task context, sharing
resources can be done by using semaphores. Our model constitutes a way to share
a critical resource (a UART IP on the OPB bus in our case) among multiple
processors without the need of a complex multi-processor operating system. A
mutual exculsion semaphore (MUTEX) was attributed to the UART.

The AE associated to each microBlaze processors works as follows:

1. MUTEX request (OS primitive)
2. use of the UART (IP native code)
3. MUTEX restitution (OS primitive)

MUTEX request and restitution by the microBlaze are done thanks to the
AE running on the PowerPC.
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Fig. 5. Interface to the IP

3.2 Memory Allocation Example

A more complex communication scheme was also available by using the same AE
behaviours when dynamic allocations in central memory are needed by multiple
IPs. In this case, executions of the library function malloc() were requested by
the IP’s. Request registers in the IP wrappers contained here both the prede-
fined malloc() function ID and the size of the memory bloc needed. Data return
registers were filled by AE’s with a pointer on the allocated memory bloc. A
MUTEX was then be used for important data exchanges between the two IPs
and the main processor.

3.3 Implementation Costs

Table 1 gives implementation results of AE and ISR codes. These results were
extracted from a PowerPC405 platform running μCOS-II. Code memory occu-
pation and number of bus transfers are given in 32 bits words. The AE costs
are valid for execution of functions with no parameters and integer return type
(similar to code on Figure 3). More complex functions calls would cost a few
more bus transfers (for parameters and results) and CPU cycles.

As we note in Table 1 both memory and CPU occupation are very restricted.
ISR execution time is strictly constant and predictable thus matches real time
constraints.

3.4 Model Portability

Portability of this model was validated with another programmable platform: an
ALTERA FPGA development board with an Apex20K chip. The central proces-
sor here, was a 32-bit NIOS processor running the same RTOS. Two dedicated
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Table 1. Memory occupation, CPU cycles and bus occupation of AE and ISR

Code memory CPU cycles bus transfers
(32b words)

AE 176 358 2
ISR 52 92 1

IP’s were added: an integer log and a sqrt hardware cores computing respec-
tively the natural logarithm and the square root. Two MUTEXes were used
again for sharing the IP’s between multiple tasks. Despite its simplistic nature,
this example showed the portability of the AE model.

PowerPc
IP

Slot 1 Slot 2 Slot 3

ICAP

Reconfigurable area

Shared OPB bus

Interrupt

partial bitstreams

(SDRAM)

controller

Fig. 6. Implementation of partial and dynamic reconfiguration on a VirtexII-pro plat-
form

4 Partial and Dynamic Reconfiguration Perspectives

Practical partial reconfiguration of IP’s is not yet implemented in our platforms.
However, both the necessary hardware structure and specific OS services were
defined. Figure 6 shows a VirtexII-pro architecture allowing the implementation
of partial reconfiguration. This hardware organization is similar to the one sug-
gested in [7]. Several vertical IP slots (due to the vertical reconfiguration frames)
are created on the FPGA fabric. These slots can be filled with partial configu-
ration bit-streams through the processor ICAP interface. Control, request and
data return registers of IP’s are accessible through a shared bus crossing all slots
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and implemented with bus macros. The IP’s interrupt signals are connected to
a single interrupt controller.

A dedicated OS reconfiguration service will be necessary for a software man-
agement of partial reconfigurations. This service will be invoked by AE in the
initialization phase for i) finding an empty FPGA slot and ii) transferring the
IP bit-stream to the ICAP interface. The development of this specific OS service
and the associated hardware implementation is still under progress.

5 Conclusion

We presented in this paper a development method for SOC platforms. This
method consists in encapsulating IP’s and unifying communications and
resource-sharing between software and hardware tasks. This encapsulation is
twofold: i) a hardware wrapper that abstracts the IP behaviours through a stan-
dard interface – control, request and data return channels – and ii) a software
encapsulation (the IP AE) giving access to the Operating System functions.

Advantages of this method reside in the fact that all hardware IPs are han-
dled as software tasks. Creating, deleting and communicating with IPs is made
possible through classical OS primitives. By using their AE, hardware IP’s can
interface with software functions and ask for system calls. This model was de-
veloped to target real-time embedded systems and thus optimized to use only a
very restricted bus bandwidth, low memory occupation and restricted additional
gate count. This model is portable and may be adapted to any kind of embedded
operating systems.

Dynamic reconfiguration of IPs was taken into account in this model and
constitutes the future development. Based on the Alter Ego model we can argue
that hard-soft migration is also possible by including any software code emulating
the IP’s in the AE tasks. Calls to a dedicated hardware scheduler could manage
reconfigurable resources and distinguish between different hard-soft partitions
depending on quality of service goals.

References

1. Chen, Z., Cong, J., Fan, Y., Yang, X., Zhang, Z.: Pilot- A Platform-Based HW/SW
Synthesis for FPSoC. In: Workshop on Software support for Reconfigurable systems.
(2003)

2. Vanmeerbeeck, G., Schaumont, P., Vernalde, S., Engels, M., Bolsens, I.: Hard-
ware/Software partitioning of embedded system in OCAPI-xl . In: Ninth Interna-
tional Symposium on Hardware/Software Codesign. (2000)

3. Marescaux, T., Mignolet, J.Y., Bartic, A., Moffat, W., Verkest, D., Vernalde, S.,
Lauwereins, R.: Networks on Chip as Hardware Component of an OS for Reconfig-
urable Systems. In: FPL. (2003)

4. Lyonnard, D., Yoo, S., Baghdadi, A., Jerraya, A.A.: Automatic Generation
of Application-Specific Architecture for Heterogeneous Multiprocessor System-on-
Chip. In: DAC. (2001)



718 A. Segard and F. Verdier

5. Svarstad, K., Nicolescu, G., Jerraya, A.A.: A Model for Describing Communication
between Aggregate Objects in the Specification and Design of Embedded Systems.
In: DATE. (2001)

6. Labrosse, J.J.: MicroC/OS-II, The Real-Time Kernel. CMP Books, Lawrence,
Kansas 66046, USA (2002)

7. Blodget, B., McMillan, S., Lysaght, P.: A Lighweight Approach for Embedded
Reconfiguration of FPGAs. In: Proceedings of DATE, (2003) 399–400



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 719–728, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Impact of Pipelining on Energy per Operation in
Field-Programmable Gate Arrays

Steven J.E. Wilton1, Su-Shin Ang2, and Wayne Luk2

1Dept. of Electrical and Computer Eng.
University of British Columbia

Vancouver, B.C., Canada
2Department of Computing

Imperial College
London, England

Abstract. This paper investigates experimentally the quantitative impact of
pipelining on energy per operation for two representative FPGA devices: a
0.13μm CMOS high density/high speed FPGA (Altera Stratix EP1S40), and a
0.18μm CMOS low-cost FPGA (Xilinx XC2S200). The results are obtained by
both measurements and execution of vendor-supplied tools for power
estimation. It is found that pipelining can reduce the amount of energy per
operation by between 40% and 90%. Further reduction in energy consumption
can be achieved by power-aware clustering, although the effect becomes less
pronounced for circuits with a large number of pipeline stages.

1   Introduction

Energy consumption has become a critical concern for Field-Programmable Gate
Arrays (FPGAs).  The programmability of FPGAs is afforded through the use of long
routing tracks and programmable switches laden with parasitic capacitance.   During
high-speed operation, the switching of these tracks causes significant power
dissipation. Hence an FPGA can consume up to two orders of magnitude more power
than an Application-specific Integrated Circuit (ASIC) in the same technology [22].

FPGA power consumption can be reduced by optimizing the architecture of the
programmable fabric or the Computer-Aided Design (CAD) algorithms used to map
circuits onto the FPGA.  Previous work has proposed CAD algorithms that optimize
circuit implementations in an attempt to minimize energy, and achieve energy
reductions of approximately 23% [10].   This improvement is unlikely to be sufficient
to enable FPGA-based hand-held devices, or to significantly reduce the cost of
expensive packaging.  Significant gains are only possible at the algorithm or system
design level.  During algorithm or system design, the designer has considerable
freedom regarding resource allocation and scheduling; correct decisions here are
likely to result in a much larger impact on energy and power consumption than
optimizations performed by logic optimization or physical design CAD tools.

One of the simplest but effective ways of reducing the energy per operation of a
circuit is pipelining. A highly pipelined circuit suffers fewer glitches than an
unpipelined circuit, since it typically has fewer logic levels between registers.  Fewer
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glitches means that less dynamic power is dissipated during each cycle, which reduces
the energy per operation.

The ability of pipelining to reduce glitches in ASICs is well-known [15].  In an
FPGA, pipelining may be even more effective.  Unlike an ASIC, in which signals can
be routed using any available silicon, FPGAs implement interconnects using fixed
metal tracks and programmable switches.  The relative scarcity of programmable
switches often forces signals to take longer routes than would be seen in an ASIC or
custom integrated circuit.  As a result, the potential for unequal delays among signals,
and hence the creation of glitches, is likely more than that in an ASIC. Thus, we
would expect pipelining to be an effective energy reduction technique for FPGAs.

Another reason that pipelining should work well in FPGAs is that commercial
FPGAs contain one or more flip-flops in every logic block. These flip-flops often go
unused. Thus, the additional flip-flops required for pipelining are usually “free” in an
FPGA. On the other hand, FPGA clock trees are large and consume significant power;
pipelining places further demands on the clock tree.

In this paper, we investigate the effectiveness of pipelining on the energy of FPGA
circuit implementations, and compare it to the energy improvements that can be
obtained by lower-level, power-aware synthesis algorithms.  Specifically,

1. we present quantitative measurements of the impact of pipelining on the energy per
operation consumed by datapath circuits in both a 0.13μm CMOS high
density/speed FPGA and a 0.18μm CMOS low-cost FPGA;

2. we approximate the best possible gains that can be obtained by pipelining/retiming
by considering circuits with registers after every logic element;

3. we investigate the interaction between pipelining (a system-level design
optimization) and clustering (a lower-level design optimization), and determine
how the degree of pipelining affects the effectiveness of the lower-level CAD
algorithms in reducing energy.

The results of this study are important for four reasons.  First, they provide guidance
to a system designer designing FPGA circuits for a low-power application.  As we
will show, pipelining can reduce the energy per operation by 40% to 90%; this is the
kind of reduction needed if FPGAs are to be used in handheld applications.  Second,
the results provide guidance to FPGA CAD designers by quantifying the effectiveness
of high-level and low-level energy optimizations. As we will show in the next section,
there has been significant research into power-aware retiming and other related
algorithms; our results give an indication of how useful these optimizations can be at
reducing energy.  Third, pipelining also reduces the time for design tools to estimate
power consumption; current vendor tools can take an excessive amount of time for
power estimation when dealing with designs with a low degree of pipelining. Finally,
there has been work on placing pipeline registers within the interconnect fabric of an
FPGA [17].  Our results suggest that, in addition to increasing the clock rate, these
registers will also be effective at reducing energy.
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2   Preliminaries

Power consumption for circuits in CMOS technology has a static component and a
dynamic component. The static power component is mainly due to leakage current.
The dynamic power component is mainly due to switching activities for charging and
discharging load capacitance. Although static power is becoming increasingly
significant, dynamic power still dominates, even in a 0.13μm technology.

It is well-known that undesirable switching activities are usually caused by
glitches: spurious pulses at the output of a combinational component due to input
signals arriving at different times because of unequal input propagation delays.
Techniques have been proposed to reduce such glitches, for instance by restructuring
multiplexer networks and inserting selective delays [15], by logic decomposition
based on glitch counting and location [4], and by selective gate freezing [1].

Several researchers have applied retiming for power and energy optimization. For
example, different pipelined designs can be obtained by adding flip-flops to circuit
inputs; such flip-flops can then be relocated by the retiming algorithm to reduce
combinational path length and the associated switching activities [13].  Retiming can
be combined with supply voltage scaling [3] and with register disabling [6].

Other techniques for reducing switching activities, including loop folding [8] and
finite state machine decomposition [14], have also been studied. In addition, the effect
of high-level compiler optimizations on system power has been investigated [7].

The power and energy optimizations described above are not developed
specifically for FPGAs. FPGA-specific optimization schemes have also been
reported. These include boolean optimization of multiple lookup tables [9],
perturbation-based word-length optimization [5], implementation of critical loops in
configurable logic [19], empirical energy modeling based on surface-curve fitting
[16], and combination of power-aware CAD algorithms such as technology mapping
and clustering [10].

Many of these optimization techniques rely on the reduction of switching activity
by the insertion of registers.  Yet the effectiveness of doing this in a modern FPGA
has not been quantified.  Our work, therefore, is orthogonal to these previous studies,
since most of the previous studies rely on a significant improvement in power as a
result of glitch reduction.  In our work, we quantify what sort of reduction is possible.

The effect of pipeline granularity on reducing power consumption has been
examined for Xilinx XC3000 [2], XC4000 and Virtex devices [20]; it is shown that
glitch power reduction compensates the synchronization overheads due to pipelining
in these small circuits. Our work is different from these previous studies in several
ways.  First, we consider FPGAs fabricated in modern including a 0.13μm CMOS
technology; the power characteristics of integrated circuits implemented using these
technologies are very different from those of integrated circuits implemented using
older technologies.  Second, we consider the pipeline-aware reductions in the context
of an entire CAD flow, and examine the interactions between pipelining (a system-
level optimization) and clustering, a lower-level power-optimization stage that has
been shown to be effective at reducing power.
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3   Impact of Pipelining

In this section, we quantify the impact of pipelining on FPGA implementations, first
for a high speed and high density 0.13μm CMOS FPGA, and then for a low-cost
0.18μm CMOS FPGA.

3.1 Experimental Methodology

We employ an experimental methodology to investigate pipelining in FPGAs. We use
four benchmark circuits; for each circuit, we create several versions, each with a
different degree of pipelining. For some circuits, we add pipeline stages by modifying
the original hardware description code by hand; for other circuits, we use an
automatic synthesis tool [11] that generates circuits with differing degrees of
pipelining.  In all cases, the function of all versions of each circuit is the same, except
for the additional latency imposed by pipeline stages.  The first three columns of
Table 1 list respectively our benchmark circuits, the number of registers, and the logic
depth in each version of the circuit.

For each design, we also create a version with a pipeline stage after every logic
element.  Unlike all other versions of the circuit, this version is likely to have a
different behaviour from the original circuit, since paths containing different numbers
of logic elements will have different numbers of registers. The results from this
version of each circuit will give an estimate of the best possible optimization
achievable using pipelining. To generate these circuits, we use facilities provided
through the Quartus University Interface Program (QUIP) which allow us to insert
registers after logic synthesis but before place and route.  The rows labeled “Max” in
Table 1 show the statistics for these circuits. For all but the multiplier circuit, the
depth of these “maximally pipelined” circuits is larger than one LE (Logic Element);
this is because we do not insert pipeline registers along the carry and cascade chains.

The circuits are implemented on an Altera Nios Development Kit (Stratix
Professional Edition) which contains a 0.13μm CMOS Stratix EP1S40F780C5 device.
The input pins are not driven externally, since this could consume significant power,
possibly dwarfing the on-chip power we want to measure. Instead, we generate our
test vectors on-chip using a linear-feedback shift register. For the same reason, we do
not drive a pin with each circuit output. Instead, we combine all outputs using a multi-
input exclusive-or gate and feed the result to an output pin. We use an exclusive-or
gate rather than leaving the outputs floating, to ensure that Quartus does not “optimize
away” parts of the circuit not used to drive output pins. The outputs are registered
before the exclusive-or gate, preventing glitches appearing at the inputs to the
exclusive-or gate.  This ensures that the power consumed by the exclusive-or gate is
constant across all versions of a circuit. Finally, we register the output of the
exclusive-or gate to ensure that glitches on the output pin do not overwhelm the glitch
power internal to the FPGA. The clock of each circuit is driven by a scaled version of
the 50Mhz on-board oscillator.
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3.2 Effect of Pipelining on a 0.13μm FPGA

The final two columns of Table 1 show our measured power results. These are
obtained by measuring the current entering the board from the power supply, and
multiplying by the power supply voltage. The first of these columns shows the overall
board (system) power. This system power includes the power of the board’s
transformer.  In this paper, we are interested in the dynamic power of the FPGA itself.
Therefore, we have subtracted the quiescent power when the board is idle, and
recorded the results in the final column of Table 1 – we have found that the power
dissipated by an idle FPGA and board is independent of the configuration of the
FPGA on that board.  This difference between the quiescent power and the total
power represents the dynamic power of both the FPGA and the board.

In our experimental set-up, we have no way of isolating the dynamic power of the
FPGA itself. To estimate this quantity, we have simulated our circuits using the
Quartus simulator and power estimator. These simulation results are shown in the
sixth column of Table 1. We also record the component of the FPGA power that is
due to dynamic switching inside the logic block array; the fifth column of Table 1
shows these measurements.

In gathering the results in Table 1, we use the same clock speed for all versions of
a given circuit. By holding the clock rate constant while varying the amount of
pipelining, we obtain measurements proportional to the total energy per operation for
each circuit. Normally, pipelining is used to increase the clock frequency, thereby
increasing the number of operations per second. However, pipelining can also be used
to reduce power. As we will show, by pipelining a circuit without changing the clock
frequency, power reductions can be achieved without a reduction in operations per
second, provided that the additional latency can be tolerated at the system level.

The results from Table 1 are startling. For the 64-bit unsigned multiplier, the
difference in dynamic system energy between our most pipelined variant and our least
pipelined variant is 81%. For the other benchmark circuits, this difference ranges from
40% to 82%.  When we focus on just the dynamic logic block energy, the difference
is as high as 98%.  In contrast, lower-level physical design optimizations can typically
reduce energy by up to 23% [10]. The results in Table 1 show that, indeed, system-
level optimizations such as pipelining can have a far more significant impact on the
overall energy dissipation.

   Table 1 also shows the results for the “maximally pipelined” variant of each
benchmark circuit, in which a register is used at the output of every logic block. As
the table shows, for all of the benchmark circuits, the energy dissipated by the
maximally pipelined variant is smaller than the energy dissipated by all the other
versions. However, in three of the circuits, the difference in energy between the
maximally pipelined variant and the next-most pipelined variant is small. This implies
that there is little opportunity of reducing glitch energy further by increasing the
number of pipeline stages in these circuits.
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Table 1. Pipelining results for 0.13μm FPGA.

3.3 Effect of Pipelining on a 0.18μm FPGA

The results in Table 1 are obtained using a 0.13μm FPGA. Intuitively, in an FPGA
implemented using a less aggressive technology, we would expect a larger component
of the overall energy to be dynamic energy, and hence glitch energy.  Thus, pipelining
may even be more effective.  On the other hand, an FPGA implemented in a 0.18μm
technology will likely contain fewer logic elements than one in a 0.13μm technology,
hence the user circuits will likely be smaller, and thus the potential for glitches may
be reduced.
   Table 2 shows measured energy results obtained using a 0.18μm FPGA, a Xilinx
Spartan XC2S200 device on a Celoxica RC-100 board.  Since the chip is smaller than
that employed in the previous section, we have scaled down our benchmark circuits
by reducing the bit-width in the multiplier, the number of parallel Cordic modules in
the Cordic circuit, and the number of taps in the FIR filter.  We do not attempt to
reduce the size of the triple-DES circuit.  As the results show, the impact of pipelining
on power – and hence energy per operation – is similar to that for the 0.13μm chip,
although less pronounced.
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Table 2. Pipelining Results for 0.18μm FPGA.

Measured
System Power

Benchmark Circuit Number
    of
Pipeline
 Stages

Total
Power
(mW)

Dynamic
Power (mW)

1 5 124 4 116
2 3 924 2 916
4 3 312 1 304
8 3 192 2 184

16-bit unsigned integer array
multiplier

16 3 168 2 160
1 10 476 9 468
2 9 048 8 040

4-tap Floating Point FIR
filter

4 7 800 6 792
2 5 777 4 408
4 4 094 2 727
8 3 364 1 995

Cordic circuit to compute sine
and cosine of  angle

16 2 888 1 519

4   Interaction Between Pipelining and Clustering

Energy optimization can be performed during high-level system design by techniques
such as pipelining, in addition to optimization during low-level synthesis/physical
design.  Related work has shown that reductions of up to 23% are achievable during
synthesis and physical design [10].  In the previous section, we have shown that larger
reductions are achievable during system design by pipelining the circuit.

A true power-aware CAD flow would likely attempt to optimize power at both the
system design level and the synthesis/physical design level. However, it is
conceivable that fewer power reduction opportunities will exist for the lower-level
tools, if the higher-level tools are power-aware.  In our case, pipelining will tend to
reduce the number of nodes with very high switching activities due to glitches, so that
there are fewer of these nodes for the physical design tools to optimize. At the
extreme, in a very heavily-pipelined circuit, there are no glitches, meaning all nets
will have roughly the same activity.  This means that the physical design tools will
not be able to effectively optimize for power consumption.

In this section, we investigate whether the effectiveness of lower-level tools is
affected by pipelining at the system level. We focus on clustering, since it has been
shown that clustering is more effective at reducing power than other low-level CAD
stages [10].  Commercial FPGAs contain logic elements arranged in clusters; these
are known as Logic Array Blocks in Altera parts and Configurable Logic Blocks in
Xilinx parts. Each of these clusters contains between two and ten logic elements
implemented as lookup-tables. Clustering attempts to pack tightly-connected logic
elements together into clusters.

The power-aware cluster algorithm described in [10] attempts to minimize energy
by encapsulating high-activity nets within a cluster, so that they can be implemented
using low-capacitance intra-cluster connections. It avoids separating the pins of a
high-activity net among several clusters such that the net must be implemented on



726 S.J.E. Wilton, S.-S. Ang, and W. Luk

high-capacitance inter-cluster connections. Intuitively, this will be less effective if
most nets have similar activities; in this section, we investigate whether this intuition
holds.

4.1 Experimental Methodology

We illustrate our methodology by considering the Cordic circuit and the 64-bit integer
multiplier, since these two circuits have the largest number of variants.  Each circuit is
first optimized and mapped to lookup-tables by Quartus. Then, using facilities
provided in the Quartus University Interface Program (QUIP), we feed each
technology-mapped netlist into both the power-aware cluster algorithm described in
[10] and the non-power-aware cluster algorithm described in [12]. Next, each of these
clustered circuits is read back into Quartus, placed and routed, and implemented on
the FPGA. The power consumption, which is proportional to energy per operation, is
then measured as in Section 3.

Note that neither of the clustering algorithms in [10] and [12] uses carry chains or
cascade chains.   As a result, it is not meaningful to compare these results with the
results in Table 1 which are obtained using the Quartus clusterer, since those results
do employ carry and cascade chains where appropriate. Nonetheless, the trends
observed in this section will likely hold in a carry/cascade chain-capable clusterer.

4.2 Results

Figure 1 shows the results for the array multiplier and the Cordic circuits. The
horizontal axis on each graph is the number of pipeline stages, and the vertical axis is
the measured system (board) dynamic power, which is proportional to the energy per
operation of the circuit. The top line in each graph represents the energy obtained
when using the non-power-aware cluster algorithm, while the lower line represents
the energy obtained when using the power-aware cluster algorithm. As the graphs
show, the improvements obtained by pipelining are much more significant than those
obtained by making the cluster algorithm power-aware.

The graph also illustrates the interaction between the two optimization schemes:
the reduction achieved by the cluster algorithm varies as the degree of pipelining
changes. In general, for the array multiplier, the reduction achieved by the cluster
algorithm decreases as the degree of pipelining increases. For both circuits, the
power-aware cluster algorithm is ineffective at reducing power for the most heavily-
pipelined variants, since it has fewer high activity nets to work with.

These results are significant. They indicate that for most circuits, it does make
sense to optimize for power both at the system level as well as during low-level
synthesis and physical design. The results also show, however, that it is not
reasonable for a designer to rely on pipeline-aware synthesis and physical design.
Incorrect system-level design decisions, such as a bad choice for pipelining depth, can
not be “made up for” by low-level CAD tools.
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Fig. 1. Power-aware and non-power aware clustering results.

5   Conclusions

In this paper, we have shown that pipelining has a significant impact on the energy
dissipation in an FPGA.  Pipelining reduces the number of spurious glitches which, in
turn, reduces dynamic power. The primary contribution of this paper is the
quantification of just how effective this technique can be in modern FPGAs. Among
our four benchmark circuits, we have found that pipelining can reduce the amount of
energy per operation required by an algorithm by between 40% and 90%.
     These results are important for a number of reasons. For system designers, it
illustrates the need for careful planning of a datapath and pipelining during system
design. No matter how good the subsequent power-aware CAD tools are, it is unlikely
that they will be able to “make up for” a bad decision during system design.
Although designers have been aware of this before, our results suggest that correct
pipelining is especially critical in modern FPGAs.  For the CAD research community,
these results suggest that more attention needs to be paid to high-level system-level
optimizations, such as pipelining. Traditional power-aware optimization studies focus
on lower-level technology mapping, clustering, or physical design. The gains
achievable at these low level are important, but they will not be enough to make
handheld FPGA devices a reality. On the other hand, the significant energy
improvements shown in this paper can make FPGAs appropriate for a much larger
class of low-power applications than ever before.
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Abstract. A recent trend towards integrating FPGAs with many heterogeneous
components, such as memory systems, dedicated multipliers, etc., has made them
an attractive option for implementing many embedded systems. Paradoxically,
the integration that makes modern FPGAs an attractive computing substrate also
makes the development of energy efficient FPGA designs very challenging in
practice. This is due to the many alternatives available for implementing a de-
sired functionality and a lack of high-level models of FPGA architectures that
can accurately capture the energy dissipation behavior of alternatives. To address
these issues, we propose a methodology for energy efficient FPGA designs using
malleable algorithms. Malleable algorithms are used to expose the architecture-
platform aware specifications of alternate implementations of the desired func-
tionalities. Our methodology consists of three major design steps: domain-specific
energy performance modeling, development of malleable algorithms, and system-
level optimization. Energy efficient designs are realized through close interac-
tion among these three design steps. To illustrate the proposed design method-
ology and demonstrate the benefits of designing using malleable algorithms, we
present the development of a beamforming application through a high-level MAT-
LAB/Simulink based FPGA design tool developed by us. By tuning the design
knobs exposed by malleable algorithms, the design of the beamforming appli-
cation identified through system-level optimization achieves up to 30% energy
reduction compared with other designs considered in our experiments.

1 Introduction

Increasing density and integration of various hardware components, such as embedded
multipliers, memory blocks, and RISC processors, etc., have made FPGAs an attractive
option for implementing many embedded systems. Besides, with the proliferation of
portable and mobile devices, energy efficiency has become increasingly important in the
design of these embedded systems .

Paradoxically, the integration of heterogeneous components that makes modern FP-
GAs an attractive computing substrate makes energy efficient FPGA designs very diffi-
cult in practice. The main reason is that the progress in the design automation at VLSI
level has outpaced the corresponding evolution of high-level abstractions that allow a
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designer to develop applications on such heterogeneous devices.Also, rapid and accurate
energy estimation is challenging for FPGA designs. On the one hand, energy estimation
using RTL (Register Transfer Level) simulation (which can be accurate) is too time
consuming and can be overwhelming considering the fact that there are usually many
possible implementations of an application on FPGAs. On the other hand, the basic
building blocks of FPGAs are look-up tables (LUTs), which are too low-level an entity
to be considered for high-level modeling and rapid energy estimation. No single high-
level model can capture the energy dissipation behavior of all possible implementations
on FPGAs. Lacking such a rapid energy estimation technique would further prevent
optimizing the energy performance of the complete applications.

In this paper, we address the following design problem. The target application is
assumed to be decomposed into a set of kernels with precedence relations between
them. Various hardware implementations of these kernels on the target FPGA device
are also given. Our goals are: (1) to find appropriate high-level abstractions of the given
implementations which enable rapid and accurate energy performance estimation of
a design instance; (2) to traverse the design space populated through the high-level
abstractions and identify energy efficient design(s).

There are two main contributions of this paper. We propose the concept of malleable
algorithms, which are architecture-platform aware specifications of alternate implemen-
tations of a given functionality. Details of malleable algorithms are further discussed in
Section 3. The other contribution is a design methodology for energy efficient FPGA de-
signs based on malleable algorithms. There are three main thrusts in our design method-
ology. First, domain-specific modeling is used to derive analytical models that capture
the high-level energy dissipation behavior of the alternate implementations of the ker-
nels. In [3], we have shown that the energy performance of these implementations can be
obtained rapidly and fairly accurately using these analytical models. Second, malleable
algorithms are developed to encapsulate the various implementations of the kernel as well
as the analytical models obtained using domain-specific modeling. Finally, system-level
optimization is performed by tuning the design knobs exposed by malleable algorithms
to identify energy efficient designs of the target application.

For the sake of illustration, we provide an implementation of our design methodology
based on a start-of-the-art MATLAB/Simulink based high-level design tool. We design
a beamforming application using this tool. By tuning the design knobs exposed by
malleable algorithms, the design of the beamforming application identified through
system-level optimization achieves up to 30% energy reduction compared with other
designs considered in our experiments.

The paper is organized as follows. Section 2 discusses related work. Section 3 intro-
duces the concept of malleable algorithms. Section 4 presents our design methodology
based on malleable algorithms. Section 5 discusses an implementation of the design
methodology using a high-level MATLAB/Simulink based FPGA design tool devel-
oped by us. In Section 6, we demonstrate the development of an adaptive beamforming
application using malleable algorithms. We conclude in Section 7.
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2 Related Work

The Carte compiler [11] contains a library for FPGA implementations of various func-
tionalities, which is used in the hardware and software compilation processes for their
computers. These implementations are represented as RTL netlist files. Different im-
plementations of the same functionality are not captured by their library. Also, energy
performance of the various FPGA implementations is not captured.

High-level design tools are becoming popular for designing using FPGAs. One im-
portant kind of tools are those based on MATLAB/Simulink, such as DSP Builder [1]
from Altera and System Generator [12] from Xilinx. These tools provide a high-level
(arithmetic level) abstraction of the underlying hardware resources and allow the appli-
cation designers to describe the data flow and its hardware realization directly through
this high-level abstraction. While resource utilization can be obtained rapidly using these
MATLAB/Simulink based tool, no energy performance information is associated with
the high-level abstraction provided by these tools. Besides, systematic traversal of the
design space and identification of energy efficient designs are also not supported by the
current versions of the tools.

Other high-level design tools are such as DK2 [4] from Celoxica and Forge [12] from
Xilinx which use high-level languages such as C and Java for designing using FPGAs.
When using these tools, the application designers describe their applications using C
or Java and rely on the compiler to infer the appropriate architecture for implementing
the application and to perform optimizations such as loop unrolling, pipelining, etc. The
output of these tools is either HDL code or EDIF netlist. While these system level design
tools have proved to be capable of simplifying the design complexity and reducing the
design time, the compilers used by these tools do not optimize the energy performance
of the generated FPGA designs.

3 Malleable Algorithms

First of all, we assume that there are two roles, an algorithm designer and an end user,
involved in the design process. An algorithm designer is concerned with providing the
end user with efficient implementations of the set of kernel functionalities that consti-
tute the complete application. For the adaptive beamforming application discussed in
Section 6, Levinson Durbin recursion and FFT are examples of such kernels. An end
user is concerned with designing and implementing an “efficient” hardware solution
for an application, such as the beamforming application discussed in Section 6. Energy
dissipation, latency, throughput, etc., are some of the considerations from the end user’s
perspective. Also, we define a platform as a device provided by a vendor which consists
of a set of hardware components for processing, storage, and interconnection. In this
paper, we focus on platforms with FPGA as the major component on the device. The
Xilinx Virtex-II Pro [12] is such an example platform we are targeting.

Based on the above assumptions and definitions, a malleable algorithm is defined
as an architecture-platform aware specification of alternate implementations of a given
functionality. The availability of such alternatives is due to the large amount of pro-
grammable resources and heterogeneous embedded components found on many mod-
ern FPGA devices (e.g. the platforms of interest), which provide a very high flexibility
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in the hardware implementation. Most importantly, these alternatives would result in
different amounts of energy dissipation for the execution of the same functionality. For
example, there are three possible hardware bindings for implementing storage elements
on Virtex-II Pro, which are registers, slice based RAMs, and embedded Block RAMs
(BRAMs). Our work in [2] shows that registers and slice based RAMs have better energy
efficiency for implementing small amount of storage while BRAMs have better energy
efficiency for implementing large amount of storage. Another example is that matrix
multiplication can be implemented using many architectures including a linear array or
a 2-D array. A 2-D array implementation uses more interconnects and can result in more
energy dissipation compared with a linear array implementation.

A malleable algorithm captures two types of knobs, one describing the high-level
functionalities while the other describing the alternative implementations of the high-
level functionalities on a specific platform. These knobs are identified by the algorithm
designer and are made available to the end user. For example, when developing an FFT
kernel, we identify two kinds of knobs as shown in Table 1 (see Section 6.2). Then, in the
system-level optimization discussed in Section 6.3, we enumerate these knobs to evaluate
the possible implementations of an beamforming application and identify an energy
efficient design for this application. Therefore, malleable algorithms play a key role in
the interaction between the algorithm designer and the end user. They encapsulate the
algorithm designers’understanding of performance modeling and potential optimization
knobs that may or may not be exploited by the end user. By handling the knobs exposed
by malleable algorithms at high-level, the end user can use an available optimization
technique to realize the final implementation.

Besides, malleable algorithms make it possible to model FPGA platforms at high-
level and thus enable rapid and accurate energy estimation for various implementations
on a specific FPGA platform. This is because malleable algorithms relate the perfor-
mance of the various implementations on a specific platform to a set of knobs identified
by the algorithm designer. By restricting the modeling to a well-defined algorithm and
architecture, techniques such as domain-specific modeling (see Section 4) can be applied
to provide high-level abstractions of the low-level RTL implementations. Our experi-
ments have shown that such careful abstractions can lead to rapid and fairly accurate
energy estimation. In this scenario, malleable algorithms can be used to encapsulate the
domain-based knowledge of the kernels identified by the algorithm designer and expose
them to the end user for optimizing the energy performance of the complete application.

Malleable algorithms are loosely analogous to parameterized soft-IP (Intellectual
Property) cores provided by EDA vendors that are instantiated by the end user at logic
synthesis time. However, one of the significant differences between a malleable algo-
rithm and a soft-IP core is that the former is defined at a higher level of abstraction than
the latter, which is typically designed and optimized at the register transfer level. Such
high-level abstractions would bring two major advantages to the designer. One is that
it would not be possible to encapsulate all of these optimization possibilities into a sin-
gle IP core described at the register transfer level. However, by using architecture-level
abstractions, a single malleable algorithm is able to express these optimization possibil-
ities. This ability makes malleable algorithms much more flexible than state-of-the-art
parameterized soft-IP cores. Another advantage is that the high-level abstractions devel-
oped using our techniques enable fast high-level simulation. For example, the arithmetic
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level simulation of the IP cores within MATLAB/Simulink using the high-level repre-
sentations provided by System Generator are usually much faster than the behavioral and
architectural simulations in traditional FPGA design flows [12]. Most importantly, we
have shown in [5] that some important low-level parameters such as switching activities,
etc. can be predicted through such high-level simulation. These predicted parameters are
crucial for obtaining rapid and accurate energy estimation.

Platform based designs are proposed by Keutzer et al. [8] for application develop-
ment on SoCs (System-on-Chips). In their approach, a platform is defined as a layer
of abstraction with two views. The upper view allows an application to be developed
without referring to the lower levels of abstraction. The lower view is a set of rules that
classify a set of components belonging to the platform. Platform based designs distill the
complex world of system-level design into a few core concepts that have the potential of
making the design process more manageable and efficient. However, to the best of our
knowledge, no concrete methodology has been proposed to facilitate algorithm design.
Here, algorithm design is defined as the use of an “exposed” model of the architecture
platform to specify alternate implementations of a specific functionality. In our design
methodology, a malleable algorithm is used to represent such an “exposed” model. The
alternatives of the given functionality are captured by the high-level and low-level de-
sign parameters associated with the malleable algorithm while their performance can be
calculated rapidly using the performance models specified by the malleable algorithm.
Given a target application consisting of a set of kernels, system-level optimization is
performed based on the malleable algorithms for the kernels.

4 Design Methodology

The application is decomposed into a number of kernels. We consider an application
graph as input to our design methodology, which describes the communication and
precedence relationships between the kernels. Based on the application graph, the pro-
posed design methodology for energy efficient FPGA designs is shown in Figure 2(a).

Fig. 1. Domain-specific modeling

In our design methodology, various alter-
native implementations of the kernels are first
developed, which provide design trade-offs re-
garding energy, area and time. Using domain-
specific modeling, analytical energy models
are derived, which can be used to quickly es-
timate the performance of these implemen-
tations. By combining the implementations
with corresponding performance models, mal-
leable algorithms are developed for the ker-
nels. Then, the end user describes the target
application using the developed malleable al-
gorithms. Finally, system-level optimization
is performed based on this high-level descrip-
tion and identifies energy efficient design(s). The three major design steps (the shaded
boxes in Figure 2(a)) are further explained in the following.
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Fig. 2. Design flows

• Domain-specific energy performance modeling: Domain-specific modeling is a
hybrid approach (top-down followed by bottom up) toward performance modeling for
kernels. While more details about this technique can be found in [3], we summarize it
here for the sake of completeness.

As shown in Figure 1, we group implementations of a kernel based on their ar-
chitectures and algorithm families. By doing so, we impose a high-level architecture
onto the FPGA implementations within each domain. For a given kernel within each
domain, performance models are first defined analytically as energy functions of the de-
sign parameters of the kernel. Low level simulations are then performed to estimate the
constants in the analytical models for a specific hardware platform. The performance of
these implementations, such as energy dissipation, latency, etc., can be calculated rapidly
using these (analytical) performance models. We have developed several kernels such
as matrix multiplication, matrix factorization, etc. and have shown that domain-specific
modeling can lead to an average estimation error around 10% for these kernels [5].

• Development of malleable algorithms: The first step in developing malleable
algorithms is to associate the various implementations of the kernels with the analytical
models developed using domain-specific modeling. In addition, malleable algorithms
expose the knobs that describe the high-level functionalities of the kernels as well as those
that control the low level realization. These knobs are identified through domain-specific
modeling and based on the possible application requirements. They are accessible to the
end user during system-level optimization. One way of developing malleable algorithms
is to use the object-oriented mechanism to perform such encapsulation and exposition
as illustrated in Section 5.

• System-level optimization using malleable algorithms: Given an end-to-end
application graph and a set of malleable kernel algorithms for the kernels, the applica-
tion is described using the malleable algorithms. Basically, this includes describing the
interface between the kernels and the design constraints. Then, system-level optimiza-
tion consists of exploring the design space exposed by the malleable algorithms and
identifying the settings of the algorithms which lead to energy efficient designs. Various
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combinatorial algorithms can be applied in the optimization process. For example, con-
sidering the beamforming algorithm discussed in Section 6.3, the application graph can
be described as a linear pipeline. A dynamic programming based algorithm proposed
in [6] can be used to find a design with minimum energy dissipation for executing one
instance of the application.

The proposed design methodology is accomplished through the interactions between
algorithm designers and end users.According to their roles discussed in Section 3, for the
design flow shown in Figure 2(a), the algorithm designer is responsible for developing the
various implementations of the kernels, using domain-specific modeling to analyze their
energy performance, developing malleable algorithms by combining these information
while the end user is responsible for system-level optimization using the malleable
algorithms developed by the algorithm designer.

5 An Implementation of the Design Methodology Based on
MATLAB/Simulink

To illustrate the development of malleable algorithms and our design methodology, we
enhance System Generator [12], a MATLAB/Simulink based high-level FPGA design
tool. This results in an add-on tool called PyGen, which provides additional functionali-
ties. By creating an interface between Python and the MATLAB/Simulink based system
level design tools, our tool allows the use of Python language [10] for describing FPGA
designs within the high-level modeling environment provided by MATLAB/Simulink.

As shown in Figure 3, each block in the System Generator block set is mapped to
the corresponding basic Python classes within the PyGen class library. By manipulating
the basic Python classes, the designer can derive their own extended classes (the shaded
blocks in Figure 3) and develop parameterized designs for the kernels.

We use PyGen to support the development of malleable algorithms. This is realized
using the object-oriented mechanism to encapsulate the various implementations of the
kernels as well as the energy performance models obtained through domain-specific
modeling. As shown in Figure 4, the Python classes encapsulate (1) high-level function-
alities of the kernels which can be for high-level simulation in MATLAB/Simulink; (2)
exposed hardware design knobs which control the generated low-level implementations
on the target device; (3) performance models for rapid energy estimation. See [5] for
more details on the software architecture of PyGen.

The design flow of the proposed design methodology realized using PyGen is shown
in Figure 2(b). Various implementations of the kernels are described as Python classes.
After organizing the class hierarchy and classifying the classes into different domains,
domain-specific modeling is performed within each domain to derive high-level per-
formance models. Malleable algorithms are then developed by associating these per-
formance models with the Python classes. The identified design knobs are exposed as
data attributes of the Python classes. Finally, description of the target applications and
system-level optimization are performed by manipulating these Python classes.
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Fig. 3. Python class library within PyGen Fig. 4. Development of malleable
algorithms in PyGen

6 An Illustrative Example

To illustrate the proposed design methodology and demonstrate its effectiveness in devel-
oping energy efficient FPGA designs, we show the process of developing a beamforming
application. Adaptive beamforming is used by many telecommunication systems such
as software defined radio systems for better utilization of the limited radio spectrum.
Energy efficiency is an important metric when implementing this application as these
systems are usually battery operated.

6.1 MVDR Adaptive Beamforming

We consider a fast MVDR (Minimum Variance Distortionless Response) spectrum cal-
culation application, which is described in [7]. This application uses Levinson Durbin
recursion and saves much computation that is otherwise required by the direct calculation
of the spectrum. It is part of the MVDR adaptive beamforming process. The applica-
tion graph of the beamforming application is shown in Figure 5(a), which consists of
three kernels: Levinson Durbin recursion, correlation of the predictor coefficients, and
spectrum calculation using FFT.

6.2 Development of Malleable Algorithms for the Kernels

First of all, the algorithm designer develops malleable algorithms for the kernels that
compose the beamforming application. A malleable algorithm of the spectrum cal-
culation kernel using FFT is developed as a Python class CxlFFT. It contains two
types of parameters. (1) High-level functional parameters describe the functionali-
ties of the Python class. They are identified by considering the application require-
ments (see Section 6.3). (2) Low-level architecture parameters describe the hardware
design knobs identified through domain-specific modeling on Virtex-II Pro, our tar-
get FPGA platform. All the parameters are associated with the corresponding data
attributes of the Python class, which are shown in Table 1. When this Python class
is instantiated with the specific design parameters, PyGen will generate the cor-
responding hardware implementation. A performance model is obtained using the
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domain-specific modeling technique as described in Section 4. This model is asso-
ciated with the corresponding data attributes of the Python class. Rapid power es-
timation can be performed using this performance model and the switching activ-
ity information estimated through high-level simulation within MATLAB/Simulink.
An average estimation error of 6% is observed by comparing with the results

Fig. 5. MVDR beamforming

from low-level RTL simulation. See [5]
for more details on the various im-
plementations of the FFT kernel, the
derivation of the performance models
and the experimental results.

Using a similar approach, we de-
velop malleable algorithms for the other
two kernels, which are represented by
Python classes CxlLevDur and Cxl-
Corr. The design parameters captured
by these two classes are: Frq (operating
frequency), M (number of antenna ele-
ments in the system), degPar (degree of
parallelism), and Precision (precision of the data). Details of the development process
of these malleable algorithms are not shown due to space limitation.

Table 1. Data attributes of Python class CxlFFT for an FFT kernel

High-level functional parameters Low-level architecture parameters

Frq (operating frequency) Arch (architecture: unfolded or folded)
nPnt (number of frequency points) Sto (hardware binding of storage elements: registers,

slice-based RAM or Block RAM)
Precision (data precision, number of bits) degPar (degree of parallelism)

6.3 System-Level Optimization Using Malleable Algorithms

Using the malleable algorithms developed in Section 6.2, the end user describes the
target application and performs system-level optimization. As shown in Figure 5(b),
description of the beamforming application uses the Python classes that implement the
three kernels. In addition, two interfacing Python classes, CxlLDToCurr and CxlCor-
rToFFT, are developed to describe the data communication between the kernels, such as
the input/output data patterns and the buffering requirements, etc. Description of design
constraints are performed by writing Python code to manipulate these Python classes.
Then, the correctness of the designs described in Python classes can be verified by in-
stantiating them with appropriate design parameters, generating corresponding Simulink
models, and performing arithmetic level simulation in MATLAB/Simulink.

Since the beamforming application can be described as a linear pipeline of ker-
nels, the dynamic programing algorithm proposed in [6] can be applied to find a de-
sign for this application so that the energy dissipation for executing one data sample
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is minimized. First, we create a trellis. The nodes on the trellis represent the var-
ious implementations of the kernels. They are obtained by enumerating the design
knobs exposed by the corresponding Python classes implementing these kernels while

Fig. 6. Energy performance of various designs
of the MVDR application (M denotes measured
data; E denotes estimated data obtained by query-
ing the performance models associated with the
Python classes)

satisfying the application requirements.
Taking the FFT kernel as an example,
while Frg, nPnt and Precision are set ac-
cording to application requirements, we
enumerate the various possible combina-
tions of Arch, Sto and degPar and obtain
five nodes on the trellis representing dif-
ferent possible implementations of this
kernel. The weights of these nodes are
the costs of executing the kernels using
the corresponding implementations rep-
resented by them. The weights can be ob-
tained by querying the performance mod-
els encapsulated by the Python classes.
Besides, there are edges between the
nodes which describe the communica-
tion between the kernels. Similarly, the
weights of the edges can be obtained
from the Python classes that implement
the communication channels between the
kernels. Thus, the identification of the energy efficient design is formulated as an opti-
mization problem, which is to find a traversing path on the trellis with minimum energy
cost. The dynamic programming algorithm identifies such a path in an iterative manner.
See [6] for more details on the problem formulation and the optimization algorithms.

To show the effectiveness of the proposed design methodology, we perform exhaus-
tive search and identify five designs with lowest energy dissipation according to their
energy performance obtained through low-level RTL simulation. We also traverse the
MATLAB/Simulink design space using our PyGen tool and identify five designs with
lowest energy dissipation using the performance models associated with the Python
classes. It turns out that these five designs are the same as the five designs identified
through low-level simulation. Figure 6 shows the measured (through low-level simu-
lation) and estimated energy performance of these designs. For these five designs, the
identified design (e.g. the left most design shown in Figure 6) achieves an energy reduc-
tion of up to 30% compared with the other designs considered. For this identified design,
the FFT kernel is implemented with Arch = unfolded. The FFT implementation using an
unfolded architecture occupies more slices than the one using a folded architecture. The
implementation using an unfolded architecture has less control and storage overheads
and thus improves the energy efficiency of the complete application.

7 Conclusion

The concept of malleable algorithms was proposed. We presented a design methodology
based on this concept for developing energy efficient applications on FPGAs that con-
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tain heterogeneous components. We are currently exploring the potential of malleable
algorithms for application synthesis using FPGAs that integrate embedded processors.
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Abstract. In order to enable efficient integration of FPGAs into cost effective
and reliable high-performance systems as well potentially into low power mo-
bile systems, their power efficiency needs to be improved. In this paper, we
propose a power management scheme for FPGAs centered on a power-driven
partitioning technique. Our power-driven partitioner creates clusters within a
design such that within individual clusters, power consumption can be im-
proved via voltage scaling. We tested the effectiveness of our approach on a set
of LUT-level benchmark netlists. Further we did constrained placement of the
clusters into predefined Vdd

high and Vdd

low regions for a single FPGA. Average
savings in power consumption with our approach is 48% whereas penalty in
channel width and wire length due to constrained placement is 23% and 26%
respectively.

1 Introduction

Despite exponential improvements in logic density and performance, energy efficiency
of the FPGA technology did not keep up. As heat dissipation becomes an increasingly
important concern for wired systems, power consumption of FPGAs needs to match
more stringent standards in order to ensure the performance goals and reliability.
Similarly, inefficiency in power consumption poses a major obstacle to inclusion of
FPGAs in many emerging low power mobile systems.

In this paper, we present a high-level power management methodology for
FPGAs. We propose a power-driven partitioning technique that identifies partitions in
a design, which can be implemented using lower supply voltage levels. Through volt-
age scaling we allow longer delay for parts of a design while the overall latency of the
design is unchanged. In every design, based on the overall timing constraint, there is a
set of critical nodes/operations/gates, while the remainder of the design is non-
critical. Hence, it is possible to identify the inherent time slack possessed by individ-
ual building blocks in a design. We analyze this design metric and systematically
exploit potential relaxation in timing constraints in order to create opportunities for
voltage scaling. Our techniques can be utilized for various FPGA-based systems. In
multi-FPGA systems applications are partitioned among several devices. Using our
partitioning technique voltage scaling can be applied at chip level, using different
supply voltages for different devices. While mapping a design onto a single FPGA
chip, the design is partitioned such that portions identified by our partitioning tech-
nique can be placed within voltage islands at different Vdd levels on the same chip.
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Finally, for dynamically reconfigurable systems, the voltage supply level can be
dynamically adjusted and our partitioning technique can be used to create configura-
tion contexts such that lowering of the supply voltage is feasible for some of the parti-
tions.

Our specific contributions in this paper are as follows:
• We propose a partitioning algorithm that effectively exploits relaxable timing

constraints within a design to trade-off delay against lower supply voltage levels,

• We present experimental results using LUT-level netlists to demonstrate the im-
provement in power using our proposed technique, and

• We present an experimental evaluation of the impact of creating voltage islands
on the physical design stages.
The rest of the paper is organized as follows. In Section 2 we present an over-

view of related work. Section 3 presents the problem formulation and our algorithm.
Our experimental setup and results will be presented in Section 4. We conclude with a
summary in Section 0.

2 Related Work

In the past, various proposed synthesis techniques addressed the problem of power
optimization by improving metrics such as switching activity of a schedule or binding,
total used logic resources, interconnect, etc. to generate the most efficient circuit in
terms of power consumption [1], [2], [3], [4], [5]. In our approach we are addressing a
different power optimization paradigm, namely voltage scaling. Our work is comple-
mentary to the above-mentioned techniques.

Partitioning has been studied for multi-FPGA systems and for dynamically re-
configurable systems [6], [7], [8], [9]. The main objectives for optimization have been
traditionally cut cost, i.e., the number of connections between partitions, and the num-
ber of partitions. In this work, we propose a partitioning scheme that addresses a new
objective, namely availability of time slack in a partition. We investigate the potential
impact of partitioning on power. Depending on the particular application of our tech-
nique, we take other partitioning objectives into account as well.

Voltage scaling is a well-known tool for improving energy efficiency of electronic
systems. It has found applications for a wide variety of circuit technologies and de-
sign styles including microprocessors, ASICs and real time embedded systems [10],
[11], [12], [13]. In this work, we make use of this general optimization technique and
investigate its application on FPGA-based systems.  Investigation of circuit level
issues to implement voltage scaling is beyond the scope of this paper. However, the
feasibility of implementing the necessary hardware for voltage scaling is evident
considering the successful implementations in other technologies. In addition, Chen et
al. reported recent results on the feasibility of dual supply voltage FPGA fabrics [14],
[15].



742        R. Mukherjee and S.O. Memik

3 Power Management Using Voltage Scaling

In this section, we will formulate our power management problem and discuss two
applications of our proposed technique. Next, we will describe our power-driven
partitioning algorithm in detail.

3.1 Problem Formulation

We assume that a LUT-level netlist is represented with a Directed Acyclic Graph
(DAG). The longest path from any of the primary inputs to any of the primary outputs
defines the longest combinational path, i.e., the critical path in the design. Logic
blocks that reside on the critical path are called critical nodes. The rest is referred to
as non-critical nodes. Taking the length of the critical path as our timing constraint
and assuming that all input signals arrive at the same time, we can assign arrival and
required times for each node. The difference between the required time and the arrival
time of a node is called time slack. This entity will be equal to zero for critical nodes,
while it takes a positive value for non-critical nodes. Note that we are estimating the
time slack of each LUT at a high level. Naturally, the timing behavior of a design will
highly depend on the net delays, hence, on placement and routing. An accurate esti-
mation of interconnect delay cannot be made before physical synthesis. Being aware
of this fact, we will evaluate the impact of placement and routing. Details of this study
will be presented in Section 4.3. We would like to stress once again that time slack as
defined above is the best estimation we can have at this early stage of the design flow
to identify the non-critical portions of a design.

Our power management technique relies on the observation that the slack pos-
sessed by individual nodes can be used as a guide to create partitions within which all
nodes would maintain a certain level of timing freedom, which in turn can be ex-
ploited through scaling the voltage supply fed into that partition. It is well known that
the dynamic power reduces by the square of the supply voltage (P ~ Cload Vdd

2 fswitch),
and the delay increases linearly (D ~ Cload /Vdd) as the supply voltage is decreased.
Hence, it is possible to perform a tradeoff between power consumption and perform-
ance by changing the supply voltage.

Our aim is to identify partitions in a design, such that the total power consump-
tion is minimized while resource constraints associated with the partitioning problem
are satisfied. For a given partition, the length of the longest path and the amount of
time slack available along that path will be used to compute the voltage scaling within
a partition. The voltage-scaling factor (Sc_Fac) is then defined as

slackpartitioninlengthpathlongest

partitioninlengthpathlongest
FacSc

+
=

____
____

_

Our partitioning scheme can find applications at various levels. Next we differenti-
ate between two cases and are shown in 0.

3.1.1 Chip-level Voltage Scaling for Multi-FPGA Systems
Many FPGA-based hardware acceleration systems employ multiple FPGAs. Parti-
tioning is frequently used to map a large design onto several FPGA devices. Such
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systems are generally wired; hence, they do not operate under a tight power budget.
However, heat dissipation is becoming a growing concern. Overhead due to cooling
systems can be reduced through effective power management. More importantly,
reliability issues arising due to excessive heat dissipation require closer attention as
the FPGA manufacturing technology reached submicron levels. For multi-FPGA sys-
tems we apply our partitioning technique to create partitions such that some of those
partitions can be assigned to a device operating at a lower supply voltage level.

3.1.2 Localized Voltage Scaling for Single FPGA Systems
A design flow targeting a single FPGA device can also benefit from our power-driven
partitioning technique. In this case, by embedding voltage islands on a chip we can
enable different parts of a design to operate at different voltage levels. Generating
these voltage islands on a single FPGA will incur certain hardware costs. Considering
the overhead of creating voltage islands –additional circuitry for voltage scaling, level
conversion, etc. the number and layout of different voltage islands can be constrained.
We believe that the benefits of voltage scaling will justify the additional hardware cost
in the next generation FPGA architectures. We will elaborate more on this issue as we
present our results in Section 4.

Fig. 1. Application of voltage scaling in two different scenarios. (a) Multi-FPGA system. (b)
Single FPGA containing voltage islands.

3.2 Power-Driven Partitioning Algorithm

Our algorithm takes in a LUT – level netlist. The input buffer connected to the input
port (IBUF) is considered a primary input and output buffer connected to the output
port (OBUF) is considered a primary output. We assume that each LUT has a delay of
1 unit when operating at full supply voltage level.

Our algorithm tries to identify clusters of nodes along a path, which can share the
time slack available along that path. The reasons why we consider only nodes along a
path are twofold. First, since nodes along a path have data dependencies, they are
likely to be placed in the same partition (or be placed close physically in the case of
single FPGA systems) even without voltage scaling considerations. Second, the slack
values on the nodes along a path are usually close to each other. Clearly, a good
power-driven partitioning algorithm clusters nodes with similar slack values together.
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Our algorithm first finds the slack values on the nodes, forms an initial set of
clusters assuming the availability of arbitrary scaling factors. Then, in a refinement
phase the voltage scaling factors of the clusters are adjusted according to the available
supply voltage levels in the target hardware.

The slack at each node is calculated by computing the difference of required and
arrival times of the signals by sorting the nodes in topological order. The algorithm
takes as input the feasible scale factor Sc_Fac – the minimum amount by which volt-
age can be scaled. Then, it selects the nodes in topological order thereby selecting
nodes from the input level and going towards the output. If the node has zero slack it
is added to the non-scaled partition. After choosing a non-zero slack node v, which is
not already added to any partition, it is checked whether

slackpartitioninpathlongest

partitioninpathlongest
FacSc

+
>

___
___

_

If this condition is satisfied, then a new cluster is created and the algorithm tries to
grow the cluster. (As we add the first node to a partition, the delay of the longest path
in the partition is equal to the delay of the node itself.) Iteratively, minimum slack
fanout nodes are selected (not already in another cluster) and added to the cluster if it
is feasible to add a new node and the slack of the path is updated as the minimum of
the slacks of the nodes in the path. Let us call this entity slackPath. Similarly, the length
of the longest path in the partition is updated.

Once we stop adding any more nodes to a cluster ci, we will have the following
information about this cluster: Mi: number of nodes along the longest path in ci, Li:
length of the longest path in ci, slackPath: available slack along the longest path in ci.
(Without violating any overall timing constraints of the circuit, we can slow down the
longest path in this cluster by slackPath time units.), node_delay: amount of time by
which each individual node in ci can be slowed down. We can formally express
node_delay as follows:

i

Path

M

slack
delaynode =_

Since the same voltage-scaling factor will be applied to all nodes within a parti-
tion, the slowdown of each node will be same. The voltage supply for this cluster can
be scaled down by the factor of

Path
i

icluster

slackL

L
scale i

+
=

Iteratively, clusters are created until all nodes are assigned to a cluster.

3.2.1 Post-processing of Clusters
After creating an initial set of clusters our next goal is to assign these clusters into
voltage scaled FPGAs or individual voltage islands on a single chip. The circuitry
employed for scaling will have a pre-defined sensitivity. In other words, the incre-
mental steps by which we can adjust the voltage level are quantized, e.g. voltage
scaling can be within a range of 0.64 Volts in 8 steps of 0.08 Volts. First, we perform
a pass over all clusters and round up their voltage levels to the nearest feasible level.
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If the number of clusters in the initial partition is less than or equal to the number
of FPGA devices in the system then the assignment is straightforward. For the single
FPGA case, we will identify two distinct voltage levels: Vdd

high and Vdd
low. Hence,

each cluster will be merged to either one of these two levels. For the multi-FPGA
case, we can allow more voltage levels since one voltage regulator will serve one
individual chip. We developed two heuristics to achieve the finalized partitioning of
the netlist into N voltage scaled partitions (N=2 for single FPGA scenario). We refer
to these schemes as Delay Based Merging and Connectivity Based Merging. Delay
Based Merging tries to satisfy the resource constraint while searching for the best
possible merging in terms of power gain. Essentially, this method tries to group nodes
with the most similar slack values together in the same merged cluster. Connectivity
Based Merging puts higher emphasis on reducing the cut cost of the final partitioning
result. It achieves this by merging clusters with highest number of mutual connections
together. We omitted the details of these post-processing heuristics and present only
the results of Connectivity Based Merging due to space considerations. After com-
pleting the partitioning phase, the total power consumption now becomes Pscale. If the
total power consumption without any voltage scaling was P, the ratio is given by

n

knkV

P

P scale
ddscale )()( 2 −+×=

where, n is the total number of nodes in the circuit and k is the number of nodes in the
voltage scaled partition. For an r-way partition into r FPGA devices, we take the same
approach. Assume that the partition sizes are k1, k2, k3,...kr. The ratio of the scaled
power consumption to the non-scaled power consumption is given by

n

kVkVkV

P

P r
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dd
scale
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4 Experiments

We present our experimental results in this section. First, we summarize our experi-
mental setup and the parameters we used. Then, we report achieved reduction in total
power consumption on a collection of benchmarks.

4.1 Experimental Setup and Parameters

The experiments are formed on a set of MCNC combinational benchmarks. Further
we also tested with synthetic benchmarks of 1000, 5000, 10000 and 15000 nodes.
Table 1 summarizes relevant characteristics: number of nodes, edges and critical
nodes - the number of nodes with zero slack in the DAG representation of each
MCNC benchmark. In Table 2 we show the average values of the same for synthetic
benchmarks. It is to be noted that though the results are presented for combinational
circuits, the algorithm is equally applicable to sequential circuits where its combina-
tional block can be partitioned into voltage clusters.
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The LUT level netlist for MCNC benchmarks were in .net format. The power-
driven partitioner reads in an .edif or .net file and produces a partition for N FPGAs in
a multi-FPGA system or N=2 voltage islands on a single FPGA. The initial delay of
each LUT is assumed to be 1unit. We further assumed that voltage scaling is done in
increments of 0.06 Volts and scale factor is 0.62. Finally, we assume that for the
multi-FPGA scenario, all FPGA devices in the system are identical, i.e., all have the
same capacity. Our techniques are independent of the actual values of these parame-
ters; hence, they can operate under different assumptions.

4.2 Results: Power Driven Partitioning

After creating clusters we perform an initial refining, where we round off voltage
scaling values according to the smallest scaling step. Next we perform our post proc-
essing heuristics of Delay Based Merging and Connectivity Based Merging. In both
the merging we generate N-voltage clusters each of roughly the same size. We ob-
serve that while we obtain better power improvement using Delay Based Merging the
cut cost is consistently inferior to the Connectivity Based Merging. Symmetrically,
Connectivity Based Merging always yields better-cut cost at the expense of reduced
power improvement. Hence, the possible trade-off between the cut cost objective and
power improvement is evident. Table 1 and Table 2 shows the results of only con-
nectivity based merging.  We report the cut cost, i.e., the number of inter partition
connections as well as the percentage power improvement obtained. For MCNC
benchmarks, the average power improves 13.4% for 2-way to 14.7% for 8 way
whereas the average cut cost increases from 2389.5 for 2-way to 2530.9 for 8-way.
For Synthetic benchmarks the average power improvement is 27.45% for 2-way and
48.2% for 8-way.

Table 1. Partitioning Results for MCNC benchmarks



Power-Driven Design Partitioning        747

Table 2. Partitioning Results for synthetic benchmarks (average)

Synthetic   2-way 4 way 8-way

Nodes Edges Crit Nodes Cost %Imp Cost %Imp Cost %Imp

1000 1751 129 360 27.2 794 39.4 941 47.6

5000 8323 209 588 29.6 1392 41.8 1662 50.2

10000 16270 276 775 27.8 1962 41.6 2357 48.4

15000 24220 359 1023 25.2 2578 37.6 3087 46.6

 Maximum 1023 29.6 2578.2 41.8 3087 50.2

 Average 686.45 27.45 1681.45 40.1 2011.8 48.2

4.3 Results: Using Power Driven Partitioning in Physical Design

We now present the results of the constrained placement of the clusters identified by
our algorithm onto for voltage islands supplied by different Vdds on a single FPGA.
We propose to use four quadrants as four voltage islands, each of which can be po-
tentially supplied by either Vdd

high (say 1.3V) or Vdd

low (say 0.8V) rather than having
each individual logic block being Vdd programmable. The location voltage islands is
an architectural parameter. Figure 2 shows the 3 possible configurations. We assume
that it is possible to have level converters along the borders of the quadrants. FPGA
having dimensions DX, DY has total ( YX DD × ) logic blocks. Our placement uses ƒ –

the fraction of critical nodes to total logic blocks. Configuration 2(a) is used if is ƒ ¼,
2(b) is used if ¼  ƒ ½ and 2(c) is used if ½  ƒ ¾. Obviously for ¾  ƒ 1, all the
quadrants must be supplied with Vdd

high and there is no power improvement possible by
Vdd scaling.

           (a)            (b)                                        (c)

Fig. 2. Proposed Voltage Island configurations in a FPGA

Our placement works as follows: The cluster of critical nodes identified by power
driven partitioning algorithm presented in Section 3.2 must be placed in a Vdd

high re-
gion – (determined by ƒ) otherwise it would mean slowing down the critical path. The
power improvement is higher if all non-critical nodes get placed in the Vdd

low region
although they have a freedom to move to Vdd

high quadrant if it improves the congestion
cost.

The placement is based on the simulated annealing implemented in VPR [16].
The linear congestion cost function used in VPR is given by

Vdd

high

Vdd

low

Vdd

high

         Vdd

lowVdd

low

Vdd

high
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 where for each net bbi(x) and bbi(y) denote the

horizontal and vertical spans of its bounding box, q(i) is the compensating factor and
Cav,x(i) and Cav,y(i) are average channel capacitances in the x and y directions respec-
tively. Our cost function C is similar to that presented in [16] and is given as:

))(1()(_ jmatchedjmatchedCC conjlinear −+Δ+Δ=Δ γα
where matched(j) returns 1 if the jth logic block is placed in its matching voltage quad-
rant and 0 if not. matched is the difference between matched(j) in the previous
placement and matched(j) in the present placement and penalizes a move that brings a
block  from matched quadrant to unmatched quadrant; (1-matched(j)) penalizes a
move that moves a block in unmatched quadrant to another location in the unmatched
quadrant; ,  are appropriate constants and > .

Fig. 3. Constrained Placement of LUTs clusters of apex2

Table 3. Placement and Routing results for MCNC benchmarks

For FPGAs it is common practice to pack the LUTs into logic blocks. We used T-
Vpack [16] to pack LUTs with clusters of size 4 and 10 inputs per cluster option.
After packing, the power driven partitioner partitions the logic blocks for Vdd

high and
Vdd

low regions. For apex2 benchmark the characteristics are: the smallest FPGA size is

Vdd

high

Vdd

low



Power-Driven Design Partitioning        749

2323 ×  logic array, out of 485 clusters there are 66 critical logic blocks and ƒ is 12%.
The placement is of type shown in Figure 2(a) and the placed circuit is shown in
Figure 3.

Ten MCNC benchmarks were clustered and Table 3 shows their total number of
logic blocks, primary inputs (PI) and outputs (PO), % ƒ and the FPGA size

YX DD × . Wire length (WL) and channel width (CW) are shown for unconstrained

placement vs. power driven partitioning and region-constrained placement. We also
report the number of non-critical blocks in the Vdd

low region and the power improve-
ment over unconstrained partitioning. The results show that it is possible to get an
average power improvement of 48% with 23% penalty in channel width and 26%
penalty in wire length.

5 Conclusions

In this paper, we presented a power optimization technique for FPGA-based systems.
Our proposed approach aims to create opportunities for voltage scaling by grouping
nodes in a LUT-level netlist into clusters. The partitioning approach targets to exploit
the maximum flexibility in timing constraints and convert it into voltage scaling. We
developed a partitioning algorithm to perform this task. Within the general framework
of our algorithm resource constraints can be resolved. Our experimental results reveal
that it is indeed effective. Based on the high-level power improvement estimation, we
did a constrained placement of the clusters onto voltage islands in a single FPGA and
showed power improvement vs. penalty in wire length and channel width increase.
Hence possible tradeoffs between cost function and power improvement is evident.
An immediate extension to our work is to evaluate and actually compare delay after
physical design due to constrained placement and area-power tradeoffs due to the
presence of level converters.

References

1. Boemo, E.I., et al., eds. Some Notes on Power Management on FPGA-based Systems.
Lecture Notes in Computer Science. Vol. 975. 1995, Springer-Verlag: Berlin. 149–157.

2. Chen, C., T. Hwang, and C.L. Liu. Low Power FPGA design – A Re-engineering Ap-
proach. in Design Automation Conference. 1997.

3. Sutter, G., et al. FSM Decomposition for Low Power in FPGA. in Design Automation
Conference. 1998.

4. Chen, D., J. Cong, and Y. Fan. Low Power High-Level Synthesis for FPGA Architec-
tures. in International Symposium on Low Power Electronic Design. 2003.

5. Lamoureux, J. and S.J.E. Wilton. On the Interaction Between Power-Aware FPGA CAD
Algorithms. in International Conference on Computer Aided Design. 2003.

6. Brasen, D.R. and G. Saucier, Using Cone Structures for Circuit Partitioning into FPGA
Packages. IEEE Transactions on CAD of Integrated Circuits and Systems, 1998. 17(7):
p. 592–600.



750        R. Mukherjee and S.O. Memik

7. Chan, P.K., M.D.F. Schlag, and J.Y. Zien. Spectral-Based Multi-Way FPGA Partition-
ing. in International Symposium on Field Programmable Gate Arrays. 1995.

8. Chang, D. and M. Marek-Sadowska, Partitioning Sequential Circuits on Dynamically
Reconfigurable FPGAs. IEEE Transactions on Computers, 1999. 48(6): p. 565–578.

9. Liu, H. and D.F. Wong. Circuit Partitioning for Dynamically Reconfigurable FPGAs. in
International Symposium on Field Programmable Gate Arrays. 1999.

10. Govil, K., E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed
Setting of a Low Power CPU. in MOBICON. 1995.

11. Iyer, A. and D. Marculescu. Power Efficiency of Voltage Scaling in Multiple Clock,
Multiple Voltage Cores. in International Conference on Computer Aided Design. 2002.

12. Yeh, C., et al. Gate-Level design Exploiting Dual Supply Voltages for Power-Driven
Applications. in Design Automation Conference. 1999.

13. Simunic, T., et al. Dynamic Voltage Scaling and Power Management for Portable Sys-
tems. in Design Automation Conference. 2001.

14. Chen, D., et al. Low-Power Technology Mapping for FPGA Architectures with Dual
Supply Voltage. in International Symposium on Field-Programmable Gate Arrays. 2004.

15. Li, F., et al. Low-Power FPGA Using Pre-Defined Dual-Vdd/Dual-Vt Fabrics. in Inter-
national Symposium on Field-Programmable Gate Arrays. 2004.

16. Betz, V., J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs.
Kluwer Academic Publishers, Feb 1999.



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 751–760, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Power Consumption Reduction Through Dynamic
Reconfiguration*

Michael G. Lorenz, Luis Mengibar, Mario G. Valderas, and Luis Entrena

Electronic Technology Department, Microelectronics Group
Carlos III University of Madrid

Avenida. de la Universidad, 30. E-28911-Leganés (Madrid), Spain
{lorenz, mengibar, mgvalder, entrena}@ing.uc3m.es

Abstract. Dynamic reconfiguration optimizes the use of hardware resources,
and therefore may produce important reductions in power consumption.
However, in a reconfigurable system the power consumption produced by the
reconfiguration process itself must be taken into account. In this work the
reconfiguration power consumption is characterized for a SRAM FPGA. In
particular, we show that reconfiguration must be made at the highest frequency
available in order to reduce power consumption. The results obtained allow to
quantify the tradeoff between the energy saved by the use of dynamic
reconfiguration and the energy wasted by the reconfiguration process. In this
way, the power consumption reduction that can be obtained with the use of
dynamic reconfiguration can be estimated.

1 Introduction

Power consumption is becoming a concern in programmable logic design as the size
and performance of modern FPGAs increase. The use of the dynamic reconfiguration
is one of the ways that can be used to reduce the power consumption [1],[2]. Since in
a reconfigurable system the hardware resources are multiplexed in the time, reducing
the size of the device, it can be expected that power consumption is also reduced.

Traditionally, power consumption is divided in static and dynamic power.
Dynamic power consumption depends on the switched capacitance and frequency.
For a particular processing task, it can be reasonably expected that dynamic power
will be similar in a reconfigurable system and in a non reconfigurable system built
with the same technology. Nevertheless, this can only be obtained if the activity of
idle modules in the non reconfigurable system is fully suppressed, which in practice
cannot be fully achieved.

Anyway, the advantage in static power consumption of a reconfigurable system is
undeniable. It must be noted that current FPGAs have very important static power
dissipation [3]. If K is the number of reconfigurations, then it is possible to use a K
times smaller device, and the static consumption will be reduced in the same
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proportion. Actually, the reduction is going to be in an intermediate value between K
and 1, depending on each application and the efficiency of the used reconfiguration.
On the other hand, in a reconfigurable system a new power component appears, that it
is the consumption due to the reconfiguration.

Currently, there are tools that allow to estimate with acceptable accuracy both
static and dynamic power consumption [4]. However, in a reconfigurable system it is
necessary to take into account also the energy wasted by the configuration process
itself. When configuration is performed only once at power-up, the configuration
power consumption can be usually neglected. However, in a reconfigurable system it
may be a primary source of power dissipation when reconfiguration is performed
often. Unfortunately, tools or data for the estimation of the reconfiguration power
consumption are not available.

In order to determine the power savings that can be obtained by using dynamic
reconfiguration, the reconfiguration power must be first estimated. To the best of our
knowledge, this new component of the power consumption has not been evaluated so
far either by manufacturers or researchers, apart from some preliminary works [5].
The main objective of our work is the evaluation of the reconfiguration power
consumption and to study the viability of the reduction of the consumption that can be
obtained by means of dynamic reconfiguration, compensating the increment that takes
place in the power consumption due to the reconfiguration with the reduction that is
obtained in the other power components. To this purpose, the reconfiguration power
has been measured directly for a set of benchmarks that cover the full range of
possible FPGA occupation. Moreover, the variation of instantaneous power
consumption during reconfiguration is analyzed in detail. Finally, a comparison of the
power consumption in reconfigurable and non reconfigurable systems is performed to
determine when a dynamically reconfigurable system is power effective.

The remaining of the paper is as follows. Section 2 introduces reconfiguration
power consumption. Section 3 presents the experimental results of reconfiguration
power measurement and analyze in detail the evolution of reconfiguration power and
energy with time. Section 4 presents a comparison of the power consumption in
reconfigurable and non reconfigurable systems. Finally, section 5 presents the
conclusions of this work.

2 Reconfiguration Power Consumption

Fig.1 shows the supply current to the FPGA during the dynamic reconfiguration. Note
that the current scale (y-axis) is set in a negative range.

The actual mechanism of FPGA reconfiguration is as follows. The process begins
with the configuration of the look up tables, multiplexers and the flip-flops inside
each individual cell. In a second stage all the interconnections paths are configured.
From Fig.1 we can see that most of the energy is wasted in this second stage.
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3 Reconfiguration Power Consumption Measurement

In this section we present the results of a set of experiments devoted to measuring the
reconfiguration power consumption. For these experiments we have chosen a partially
reconfigurable device AT40K20 FPGA from ATMEL. This device can be
dynamically reconfigured for any number of cells. A set of designs has been chosen to
include all the range of possible sizes. This way we tried to obtain estimation for the
power consumption during reconfiguration for designs that go from a low percentage
of the FPGA, to a percentage that practically uses the complete FPGA.

Fig. 1. Power consumption during dynamic partial reconfiguration (Atmel AT40K20 FPGA)

In order to estimate the reconfiguration power consumption, measurements of
instantaneous power consumption have been made. Each of the power consumption
measurements contains a series of data with up to a maximum of 32K measurements.
Average power can be computed using the following equation:

10

1 1t n

m i i
i

P I Vdt I V
t n =

= ⋅ ≅ ⋅ (1)

This equation (1) if just the quantization of the power consumption in a given time
interval. The number of samples and the sampling frequency is tuned in each series in
order to get the greatest possible accuracy.

Power consumption measurements have been performed on a complete set of
parameterized benchmark examples that cover a full range of FPGA occupation, from
2,5% up to 93%. The benchmark examples are library multipliers ranging from 4 bits
up to 40 bits wide, with the inputs and outputs registered.

The example designs are placed and routed automatically by the software tool:
“Integrated Development System” IDS from Atmel. All the examples have been made
in four different versions, for the four reconfiguration frequencies allowed: 1 MHz, 4
MHz 8 MHz and 16 MHz. The energy consumption measurements are shown in
Table 1.

As expected, reconfiguration energy increases with the size of the design at any
reconfiguration frequency. Actually, reconfiguration energy increases linearly with
the length of the bitstream. However, the energy consumption for the design with the
largest number of cells, occupation 93,85%, has a value of 35 mJ at 1 MHz and 1,5
mJ at 16 MHz. This means that the dissipation of the circuit at 1 MHz is 5,2 times
higher than at 4 MHz, 14,6 times higher than at 8 MHz and 23,9 times higher than at
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16 MHz, (1,47 mJ). In order to explain this result, we have analyzed the evolution in
time of the reconfiguration power.

Fig. 2 shows four curves that represent the measure of power consumed by the
FPGA during the reconfiguration process. Each curve corresponds to a different
reconfiguration clock frequency. In order to be able to compare them, the values of
the X-axis have been scaled, so that the different events match in the graph as if they
were made at the same clock frequency. Thus, for instance, the reconfiguration time
at 16 MHz would be 16 times shorter than the reconfiguration time at 1 MHz. For this
reason, we multiplied the curve at 16 MHz by a time scale of 16, the curve at 8 MHz
by a time scale of 8 and so on. This way, the X-axis represents time as a fraction of
the total reconfiguration time.

Table 1. Reconfiguration Energy Consumption

Bits of the
Multiplier

Cells Occupation
Level %

Energy mJ
At 1MHz

Energy mJ
At 4MHz

Energy mJ
At 8MHz

Energy mJ
At 16MHz

4 25 2,44 0,2529 0,1043 0,0792 0,0714
6 48 4,69 0,4027 0,1653 0,1308 0,1120
8 81 7,91 0,8384 0,2676 0,2100 0,1778
10 122 11,91 1,6205 0,3612 0,2670 0,2314
12 173 16,89 2,3679 0,4634 0,3324 0,2816
14 231 22,56 3,6585 0,6712 0,4593 0,3709
16 292 28,52 5,8468 0,8855 0.5670 0,4354
18 364 33,55 9,3900 1,5035 0,7858 0,6089
20 445 43,46 15,020 1,9368 1,0113 0,7511
22 533 52,05 18,296 2,4365 1,1430 0,8210
24 632 61,72 26,942 3,4151 1,4805 1,0174
26 735 71,78 25,679 3,7226 1,5960 1,1003
28 846 82,52 30,725 4,6865 2,0167 1,2937
30 961 93,85 35,109 6,2058 2,3909 1,4705

Fig. 2. Configuration Power Consumption

As it has been described previously, reconfiguration is divided in two phases. The
first phase is the reconfiguration of the cells and can be observed in the left side of
Fig.2. The second phase is the reconfiguration of the interconnection and can be
observed in the right side of Fig.2. In order to analyze the contribution of each of
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these phases to the total power consumption, they are presented separately in Fig.3
and Fig.4.

Looking at Fig.3, it can be clearly seen that the power consumption during this
phase of the reconfiguration at 16MHz is approximately double than at 8MHz, and at
8MHz has double power consumption than at 4MHz as well. If the instantaneous
consumption is reshaped to 1 MHz its power consumption is approximately half than
at 4MHz. In a first approach we can see that the instantaneous consumption is directly
proportional to the frequency.

Fig. 3. Cells Configuration Power Consumption

The well-known equation of consumption in CMOS circuits is:

i
i i

DDiSCDDiDDleak
j

FVCIVKVIP ++= 2
(2)

It is possible to see that during the reconfiguration period, the FPGA follows this
equation very well. At high frequencies, the last term corresponding to the dynamic
consumption prevails, so that power is proportional to the frequency. At low
frequencies, i.e. at 1MHz, static consumption power, which corresponds with first
term of the equation 2, becomes more important.

Fig. 4 shows the power consumption for the interconnection reconfiguration phase.
Most of the total reconfiguration power consumption takes place in this phase, which
shows a large peak of power. In particular, it can be observed that reconfiguration at 1
MHz takes more time and has a much larger peak than at the other frequencies, thus
producing larger power consumption. We will try to explain the reason for this
phenomenon.

First of all, we shall remark that we are measuring power for a partial
reconfiguration process. The reconfiguration process of the interconnections between
the used cells is performed without resetting the existing connections that were
configured previously. Therefore, weak short circuits between different elements from
the FPGA may take place during a short period of time, while different cells elements
are being connected and others become disconnected. This type of consumption is
like a short circuit power consumption that will increase with the time this current
flows through the short-circuit. For this reason, when the FPGA is reconfigured at 1
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MHz this short-circuit current will flow during a period of time up to 16 times greater
than if the reconfiguration was made at 16MHz. This would justify a power
consumption of up to 16 times more at 1MHz than at 16MHz, which is the same order
of magnitude than the measured power increase.

Fig. 4. Configuration Power Consumption of Interconnections

After the reconfiguration process has finished, the power consumption of the
FPGA is identical for all cases and correspond to the static power consumption. For
the FPGA used in the experiments, the static power consumption is approximately 8
mW.

Fig. 5. Configuration Power Consumption of Interconnections

Perhaps it is more significant to study the reconfiguration consumption in energy
terms. This is shown in Fig.6. If the reconfiguration takes place at different clock
frequencies, it is not possible to show in the same x-axis an exact value of the energy
for all the curves, so arbitrary units are used. In this case, the energy consumption for
the reconfiguration at 1 MHz is observed to be much higher than at 16 MHz.
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Fig. 6. Cells configuration Energy Consumption

The energy consumption during the initial phase of the FPGA reconfiguration can
be observed in detail in Fig 7. In this case, the energy consumption at 16MHz is the
smaller of all of them. For the rest of the frequencies, energy consumption increases
in inverse proportion to the frequency. In summary, dynamic energy consumption is
identical for all cases, and the differences are due to the static energy consumption,
which is proportional to the duration of the reconfiguration process.

Fig. 7. Cells configuration Energy Consumption

The second phase of the energy consumption curve during the reconfiguration can
be seen in detail in Fig.8. In this figure it can be observed that the reconfiguration
energy consumption is substantially greater if the reconfiguration takes place at a
frequency of 1MHz than to anyone of the other frequencies. The energy consumption
in this phase is at least ten times smaller if the reconfiguration takes place at 4MHz
than at 1MHz. In the other cases, at higher frequencies, the energy consumption is
even smaller.

In conclusion, experimental results demonstrates that the energy wasted during the
reconfiguration process is mainly dominated by short-circuit and static power
consumption. Since these power components increase with time, the reconfiguration
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must be made at the higher frequency available in order to reduce the power
consumption.

Fig. 8. Interconnections Configuration Energy Consumption

4 Reduction of Consumption with Reconfiguration

After characterizing the reconfiguration power consumption, the power savings
produced by the use of dynamic reconfiguration can be estimated. To this purpose we
will compare the energy required by a reconfigurable system with respect to a
conventional implementation.
The energy required by a reconfigurable system to perform a particular processing is
the sum of static, dynamic and reconfiguration power. If the processing requires
reconfiguring the system K times, then the total energy can be expressed as follows:

Total_Reconfiguratión Static Dynamic ReconfigurationE = E + E + K E⋅ (3)

where E Reconfiguration is the average energy wasted for a single reconfiguration.
In a non-reconfigurable system that performs the same processing, all processing
units will be present at any time. Therefore, the system will be N times larger and the
energy required will be:

DynamicStaticTotal EENE +⋅= (4)

The static power consumption of the FPGA roughly depends on the size of the device.
Hence, it can be estimated that static power consumption will be N times greater than
in the case of a reconfigurable system. For the dynamic consumption, we will
consider the most unfavourable case for the reconfigurable system, this is, identical
power consumption in both systems. In practice, this requires eliminating all
switching for idle modules and can only be achieved by applying some low power
consumption techniques such as clock gating [6],[7]. In any case, these techniques are
not fully effective in practice. Therefore, considering dynamic power consumption
identical in both cases is a conservative assumption.
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In order that the reconfigurable system is more power efficient, the following
equation must be satisfied

_Total Reconfiguration TotalE E< (5)

Operating in the previous equation and replacing values, we get

Static Dynamic Reconfiguration Static DynamicE + E +k E - N E - E < 0⋅ ⋅ (6)

As the dynamic energy can be considered identical for both systems, this term can be
eliminated to get:

Reconfiguration Static

K
E < E

N -1
(7)

For a typical occupation of the FPGA of  70%, the  ratio between K and N results
approximately:

4.1
1

≈≈
− N

K

N

K
(8)

Equation 8 can be rewritten in terms of average power and elapsed times:

Reconfiguration Reconfiguration Static Process1.4 P t < P t⋅ ⋅ ⋅ (9)

This equation shows that the energy savings that can be obtained with a
reconfigurable system depend on the ratio between reconfiguration power and static
power as well as the ration between reconfiguration time and processing time. With
the data presented in the previous section, measured for the Atmel’s FPGAs, we get:

ReconfigurationProcess

Reconfiguration Static

1.4 Pt
> 16

t P

⋅
≈ (10)

For this example, reconfiguration time is 15 ms for reconfiguration at 16 MHz.
Therefore, the reconfigurable system will be power profitable if the processing time
for each process is at least 240 ms. In practice, processing time is usually much larger
than reconfiguration time. For instance, in a typical dynamically reconfiguration
system for image processing such as [8], processing time is about 23 times larger than
reconfiguration time.

5 Conclusions

The use of dynamic reconfiguration may produce important reductions in power
consumption. However, in a reconfigurable system the power consumption produced
by the reconfiguration process itself must be taken into account. In this work, the
reconfiguration power has been characterized in order to determine precisely the
power reduction that can be obtained by using dynamic reconfiguration in a design.
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This study reveals that power savings will be obtained if a sufficient ratio of
processing time to reconfiguration time is achieved.
Although it can be expected that reconfiguration power would be basically
proportional to the length of the reconfiguration bitstream, we have shown that there
are other factors that can produce a dramatic increase in the reconfiguration power. In
particular, we have shown that reconfiguration power is mainly dominated by
transient effects that occur during reconfiguration of the interconnection. In order to
minimize these effects, reconfiguration must be made using the highest frequency
available. Future research should be oriented to develop techniques and technologies
to reduce as much as possible the interconnection reconfiguration power
consumption.
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Abstract. This paper offers an overview of the XPP, a coarse-grained
reconfigurable architecture, and presents a solution for its integration
into a Simulink design flow for rapid prototyping. This includes a system-
level co-simulation followed by the automated code generation for an
embedded target platform. In order to realize this functionality, a custom
Simulink module has been developed. During the co-simulation phase,
it acts as a wrapper for an external simulator, whereas when code is
generated, it is responsible for generating the appropriate function calls
for communicating with the XPP device. Of these two aspects, only the
co-simulation is considered here.

1 Introduction

The eXtreme Processing Platform (XPP) [1] is a runtime reconfigurable ar-
chitecture optimized for parallel data stream processing in applications where
flexibility and fast reconfigurability are demanded. The XPP architecture com-
bines the performance of FPGAs with the flexibility of DSPs and is designed to
support parallel processing through pipelining, instruction-level, data flow, and
task parallelism.

As with every new architecture, software tools have to be developed, which
include design entry, simulation, and technology mapping. The present work
is part of an ongoing effort to extend the software support for the XPP [2]
and provides a solution for integrating this architecture within Simulink. This
helps to reduce the development time in a rapid prototyping flow for embedded
systems, which includes the simulation and the automated code generation for a
specific target platform. In this paper we only deal with the co-simulation aspect
of the Simulink integration.

We start with an overview of the XPP architecture, with emphasis on its
internal structure and its interfacing with the outside world, followed by a pre-
sentation of the XPP development environment. In the next section, we introduce
the XPP simulator working in client/server mode and we analyze the possibil-
ities for extending the functionality of Simulink. A solution is then presented,
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which consists in developing a special module that acts as a wrapper for the
XPP simulator, followed by a short concluding paragraph.

2 XPP Architecture Background

The XPP architecture is structured as a hierarchical array of reconfigurable
Processing Array Elements (PAEs) connected through a packet-oriented com-
munication network [1][3]. The regular array organization, in conjunction with
runtime reconfiguration capabilities, make this architecture particularly suited
for highly parallel stream-based data processing tasks commonly encountered in
multimedia, telecommunications, and graphics applications.

In this respect, XPP has similarities with other coarse-grained reconfigurable
architectures, such as the KressArray [4], RaPiD [5], or Raw Machines [6], which
are also designed and optimized for stream-based applications. However, the
essential difference is the automatic packet-handling mechanism and the runtime
reconfigurability of the XPP.

In a previous paper [7], it has been shown that the XPP architecture can
successfully handle the base-band processing requirements of modern wireless
communication standards. Moreover, thanks to its fast runtime reconfigurability
(coarse-grained architecture), it is possible to switch between different standards
on-the-fly.

An XPP array, shown in Fig. 1, consists of a relatively small number of
different PAEs and has a very simple and homogenous structure, which facilitates
algorithm mapping and routing. The building blocks of the array are enumerated
below, together with a short functional description.

Fig. 1. Organization of an XPP array.

1. ALU PAEs, shown in Fig. 2, which integrate three types of objects with
different functionalities: ALU, Back Register (BREG), and Forward Register
(FREG). The ALU performs typical DSP functions, such as multiplication,
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adition, comparison, sort, shift. The BREG provides vertical routing paths
from bottom to top and an ALU that can be used for addition, barrel shifting,
and normalization. The FREG provides routing paths from bottom to top
and a specialized ALU that performs data stream control like multiplexing
and swapping.

2. RAM PAEs, which provides intermediate RAM data storage. The RAM
blocks are dual-ported, allowing simultaneous read and write, and have a
typical size between 512 and 2K words. More RAM PAEs can be combined
to a larger RAM with a contiguous address space. Moreover, they can also
be configured as FIFOs.

3. Configuration manager, which handles all the configuration tasks of the
array. Initially, it reads a configuration from an external RAM into the inter-
nal cache, then it configures the PAEs (opcodes, routing chanels configura-
tions, constants). As soon as a PAE is configured, it can start its operation
if data is available.

4. I/O elements, which act either as I/O ports or as interfaces to external
RAMs. They will be detailed later in this section.

5. Routing channels, which run horizontally between PAE rows and route
the data and events between PAEs. Individual PAEs are connected to a
routing channel through configurable interconnects. The exact wiring of the
routing network is depicted in Fig. 2, where four adjacent ALU PAEs are
shown.

Fig. 2. ALU PAEs and routing network.

The XPP array is provided as a parameterizable soft core. The number of
PAEs, as well as the width of the data path, can be adapted to different appli-
cation needs. A demonstrator chip – XPP64-A – has been fabricated, featuring
an XPP array of 64 ALU PAEs, 16 RAM PAEs, and 4 I/O elements and has a
data path width of 24 bits.

All PAE objects communicate through a packet-oriented network, which
routes two types of packets: data packets and event packets. PAE objects are self
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synchronizing. An operation is performed as soon as all necessary operands are
available at the inputs, and the result is forwarded to the next PAE as soon as
the previous result has been consumed. A token-oriented data flow is maintained,
while the hardware protocol ensures no data is lost.

Fig. 3. XPP I/O element operating modes

Data is fed to the device and the results read back using I/O elements, a
special type of PAE, connected to horizontal routing channels. Each I/O element
has two I/O ports and can be configured either as streaming port or as RAM
interface. The two configuration modes are detailed in Fig. 3.

In streaming mode, each of the two ports of an I/O element can be config-
ured as input or output, the packet handling being performed through an asyn-
chronous ready/acknowledge protocol, which allows the interfacing with devices
operating on a different clock domains, such as an A/D converter. However, the
entire XPP chip runs on a single clock and is fully synchronous.

In RAM mode, an external synchronous SRAM can be connected to an I/O
element. One of the two ports is configured as output and provides the RAM
address and the control signals, while the other is bidirectional and used for data
transfer. The size of the external RAM is only limited by the data width of the
XPP implementation, e.g. 16 M words for 24 bits.

The operation of an XPP device consists in applying one or more data/event
streams at the input and reading the results as soon as they are available. Due
to the self synchronizing nature of the architecture, no explicit scheduling of
operations is necessary, which simplifies application development significantly.

3 XPP Development Environment

In order to exploit the capabilities of the XPP architecture, the circuit config-
urations are described using Native Mapping Language (NML), a proprietary
language developed by PACT XPP Technologies. NML is a structural language
which includes reconfigurable primitives that give designers full access to all
the hardware features. Configurations are defined by instantiating and placing
(optional) PAE modules then specifying their connections.
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The XPP design flow is shown in Fig. 4. The XMAP tool performs the
placement of the PAEs and the configuration of the routing network as defined
by the NML description. The resulting file (*.xbin) is used as a configuration
for the XPP architecture. The rest of the design flow is for debug purposes and
comprises a simulator (XSIM) and a visualizer (XVIS) that analyzes the state
of the XPP array throughout the simulation process.

Fig. 4. XPP native development chain.

As a further aid in development, a vectorizing C compiler is available [2],
which is able to translate a subset of the C language into NML modules. Par-
ticularly suitable are the computation intensive loops, which can be vectorized
and executed in a pipelined fashion. However, for programs that contain control
statements, the partitioning into control and computation intensive parts has to
be made manually.

The control-oriented code sequences will be mapped on a microcontroller and
will include API calls to functions that exchange data with the reconfigurable
array, which will execute only the computation intensive tasks. The XPP array
is connected to the controller’s main bus and acts as a reconfigurable accelerator
for data-flow algorithms.

Besides the C approach, another popular method for system specification
and design is to use the Simulink environment [8]. Simulink comes with a wide
range of predefined library modules, which accelerates the development of new
algorithms and shortens the development cycle considerably. The simulator is
based on multi-rate time-discrete model of computation.

A typical design flow starts with the simulation and debugging of the new
design and is followed by its implementation on a target system, usually an
embedded processor. The design is then translated to an equivalent C description
using Real-Time Workshop (RTW), a Simulink add-on which generates C code
for embedded target architectures.

In order to integrate the XPP architecture into the Simulink design flow, both
aspects have been considered: co-simulation and code generation for a specific
target platform. The goal is to create a custom IP library of XPP modules
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that implement popular DSP algorithms and can be instantiated like standard
Simulink library modules. This integration will enable designers to accelerate the
development of applications that include blocks mapped on an XPP architecture.

4 XPP Co-simulation in Simulink

Simulink provides a very powerful mechanism for extending its functionality
by supporting user-defined modules to implement new algorithms, which opens
unlimited possibilities of co-simulation with other environments. To allow the
co-simulation of XPP modules within Simulink, such a custom module has been
developed, which acts as a wrapper for the XPP simulator (XSIM).

4.1 Communicating with the XPP Simulator

XSIM is a cycle-accurate simulator for the XPP architecture and can operate
in stand alone interactive mode or as a client in conjunction with a controlling
process (server). When in client mode, it communicates with the controlling
process through TCP/IP to exchange messages, debug visualization data, and
I/O streams, as shown in Fig. 5.

Fig. 5. XPP in client mode.

The following list shows a typical simulation flow with XSIM in client mode:

– Open two TCP/IP servers sockets, one for messages and one for visualization,
start XSIM as a child process, and wait for XSIM to connect to the servers.

– Load a configuration file.
– Define I/O ports and external RAMs in accordance with the configuration

file. A separate TCP/IP connection will be created for each port.
– Write data to input ports, advance the simulation, and read output data

when available. Read also the debug visualization data and write the content
to a file. This step is performed repeatedly.

– At the end of simulation, quit the simulator and close all TCP/IP connec-
tions.

The messages are in human readable format and easy to parse. Part of the
interface are messages for loading configuration files, configuring ports, advanc-
ing and stopping the simulation, controlling breakpoints, set and read port and
RAM data, etc. Visualization data files can become very large during simulation
and can be disabled if not needed.
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4.2 Custom Modules in Simulink

The Simulink library can be extended through the mechanism of S-functions [9].
They define the properties of the new custom module by implementing a number
of callback functions which are called by the Simulink framework at various
stages during simulation. This ensures a standard interface with Simulink and
defines the complete functionality of the module.

Typically, S-functions can be developed using Matlab, C, C++, FORTRAN
or ADA and are compiled as a dynamically linked library which exports functions
called by the Simulink framework. For further details on S-functions, refer to [9].
Because of its high flexibility and efficiency, we have chosen to implement our
XPP wrapper using C++. There are almost no limitations for the functionality
of a module, as long as the standard interface is observed.

For a fixed-step simulation, as it is the case in all discrete systems, a minimum
of four callback functions have to be implemented, as shown in Fig. 6. For more
complex modules with dynamic run-time defined behavior, more functions have
to be implemented. For our XPP wrapper module, we have determined that the
four-function model is sufficient.

Fig. 6. Simulink callback functions

The number of input and output ports, their size and type, as well as the
sampling rates are declared in the initialization phase. The actual functionality
is implemented in the mdlOutput function, which is called repeatedly in the
simulation loop, once every sampling period. If objects have been allocated at
initialization or during the simulation, mdlTerminate is the place to perform
clean-up. More details can be found in [9].

4.3 The XPP Wrapper Module

In order to ensure a consistent interface with the XPP simulator, a C++ class has
been developed, which encapsulates the data exchange and the message protocol,
handling all the interactions between Simulink and the simulator. The class offers
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methods for sending commands to XSIM, reading the status, declaring data and
event ports, read visualization data, and send/receive data and event samples.

In each phase of the simulation – initialization, simulation loop, and termi-
nation – the Simulink framework calls the standard functions in Fig. 6 that the
custom module exports. Besides Simulink-specific code, these functions contain
calls to the methods of the wrapper class to implement the functionality required
for co-simulation. The individual simulation steps are detailed in Fig. 7.

Fig. 7. Detailed simulation dataflow

A potential problem lies in the fact that the XPP architecture processes data
as a stream in a self timed and self synchronizing manner, being natively suit-
able for the integration with an environment that supports an untimed dataflow
model of computation. The processed data becomes available at the output a
certain number of cycles after all necessary data samples have been provided at
the input.

In the case of an 64-point FFT for instance, all 64 complex input samples
have to be provided before the result can be computed and the first result sample
made available at the output. We say in this case that data is processed in blocks.
Moreover, the computation delay is not of concern and the applications should
not rely on a specific value thereof. Everything that needs to be known is the
size of the input and output data blocks, without any reference to timing. For
some applications, the size of the result is not fixed, but depends on the input
data itself.

This aspects pose a problem to the integration with an environment which
only supports a discrete-time model of computation, such as Simulink, where
each module has to generate some output every sampling cycle. Our solution
was to let the XPP array process one block of data every sampling cycle. Block
sizes greater than one are supported by using vector signals.

In the case of a digital filter, the block size is one, since one input sample is
enough to produce one result sample. For an FFT, the block size is the number



The XPP Architecture and Its Co-simulation 769

of points on which the FFT is performed. No result samples are produced unless
all input samples are available. Since port sizes in Simulink are fixed during a
simulation, the block sizes of the data expected and generated by the XPP array
have to be design-time constants. XPP modules that produce dynamically sized
output data, e.g. a Huffman encoder, are not supported.

The XPP wrapper module behaves like a built-in Simulink module and is in-
cluded in a dedicated Simulink library, from where it can be instantiated in new
designs. In the same library there is also a special module without ports, which
is used for specifying simulation-specific settings. One such a module has to be
instantiated in every design. However, multiple wrapper modules can be instan-
tiated. In order to support different port mapping, sizes, and configurations, the
wrapper module is generic and run-time parameterizable.

Fig. 8. Settings for the wrapper library

The parameters can be specified upon instantiation in a design by double-
clicking on the generic wrapper module. Fig. 8 shows the parameters for both
the wrapper and the configuration module, such as the configuration file, the
number of data and event ports, the mapping of the XPP I/O elements to the
Simulink ports, and the block size of the data ports. A test is performed when
the parameters are changed, to ensure the consistency of values.

Based on the generic wrapper module, specialized instances are created for
every application available on XPP, such as FFT, digital filters, Viterbi de-
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coders, Rake receivers, OFDM receivers, etc, which are made available as an IP
library for signal processing. Although permitted, designers will not instantiate
the generic wrapper module directly, but use the specialized modules instead.

5 Conclusions

We have presented the XPP reconfigurable architecture for multimedia and wire-
less developed at PACT XPP Technologies, together with its associated design
flow. As an extension to the existing design flow, we have developed a solution
for integrating the architecture in a Simulink design flow. Of the two aspects
involved in the integration, namely the co-simulation and the automated code
generation for a target platform, this paper dealt with the former, while the
latter will make the object of another paper.

In order to enable the co-simulation, a special Simulink wrapper module has
been developed, which communicates with the XPP simulator. The wrapper is
generic and can be parameterized for specific configurations which are part of
an IP library. Including the XPP IP blocks early in the design process helps
reducing the development time and increase productivity. In conjunction with
the automated code generation, this allows a complete application to be designed
and prototyped in a matter of hours.
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Abstract. This paper discusses the suitability of reconfigurable com-
puting to speedup medical image classification problems. As an example
of the speedup offered by reconfigurable logic, a multispectral computer
vision system for automatic diagnosis of prostatic cancer is implemented.
Different parallel architectures for various steps in automatic diagno-
sis are proposed and implemented in Field Programmable Gate Arrays
(FPGAs). The first step of the algorithm is to compute Grey Level Co-
occurrence Matrix (GLCM). The second step involves the normalisation
of GLCM. The third step of the algorithm is to compute texture fea-
tures from the normalised GLCM. The last step is concerned with image
classification using linear discriminant analysis (LDA). Finally, the per-
formance of the proposed system is assessed and compared against a
microprocessor based solution. The results obtained clearly show that
the proposed solution compares favorably.

1 Introduction

Image processing applications usually require the processing of large amounts of
data, especially after the introduction of multispectral and scanscope images [1,
2]. In multispectral images, instead of analyzing conventional grey scale or RGB
color images, multiple bands of a object are created using light from different
parts of the spectrum [1]. Figure 1 shows two bands of a textured multispectral
medical image. In scanscope images, for a 15mm ∗ 15mm tissue section, approx-
imately 2.5 gigabytes (GB) of data must be acquired. Much effort has therefore
gone into designing high performance architectures tailored to image processing
applications. The aim of this paper is to develop an FPGA based co-processor for
the classification of tissue patterns in prostatic cancer using multispectral med-
ical images. Figure 2 shows the steps involved for prostate cancer classification
[1].

The first step of the algorithm is to compute GLCM to extract Haralick tex-
ture features [3,4]. Step 2 involves the normalization of GLCM. The third step of
the algorithm is to compute texture features from normalized GLCM. Since dif-
ferent regions in tissue section images can be classified as cancer or normal using
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Fig. 1. Two bands of a multispectral image showing pathological section of a prostate
biopsy.

Fig. 2. Algorithm for the classification of prostate tissue cancer.

texture features, these features are measured in a large number of sub-regions
inside each band of the multispectral image. Thus, for each subregion, the com-
putation of GLCM is required along with the computation of texture features.
Step 4 is a data reduction step which is used to avoid curse-of-dimensionality
problem. Step 5 involves the use of a classifier for classification [1,5].

The overall calculations for the computation of GLCM and texture features
are computationally intensive. For an image of size 5000*5000 with 16 bands, the
time required is 350 seconds using Pentium 4 machine running at 2.4 GHz. 75%
of the total time spent is for the calculation of GLCM, 5% for the normalisation,
19% for the calculation of texture features while 1% is for the classification using
classical discrimination method. There are different images for each patient and
even the number of patients can vary. The Von Neumann style of fetch-operate-
writeback computation fails to exploit the inherent parallelism in computing
GLCM and Haralick features. Therefore, a hardware intensive parallel imple-
mentation is needed. Furthermore, by implementing this application on FPGAs,
hardware solutions are also provided for various important algorithms in image
processing such as GLCM, Haralick Texture Features, and Classification using
discriminant analysis.

The target hardware for this work is a Celoxica RC1000-PP PCI based FPGA
development board equipped with a Xilinx XCV2000E Virtex FPGA having
19,200 slices and 655,360 bits of block RAM, and four banks of static RAM with
2MB each [7,8].

The paper is organized as follows. Section 2 reviews GLCM, Haralick tex-
ture features and linear discriminant classifier. Section 3 describes the proposed
system model. Experiments and discussion are presented in Section 4. Section 5
concludes the paper.
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2 GLCM, Haralick Texture Features, Data Reduction,
and Linear Discriminant Classifier

Grey Level Co-Occurrence Matrix (GLCM): GLCM, first introduced by
Haralick [3], is a powerful technique for measuring texture features. The texture-
context information is specified by the matrix of relative frequencies Pi,j with
two neighboring pixels separated by a displacement d and an angle θ. The GLCM
is calculated with the following equation [9];

P (i, j, d, θ) = #{(x1, y1)(x2, y2)|f(x1, y1) = i, f(x2, y2) = j,

|(x1, y1) − (x2, y2)| = d, � ((x1, y1), (x2, y2)) = θ} (1)

where # is the number of occurrences inside the window sizes where the intensity
level of a pixel pair changes from i to j, the location of the first pixel is (x1, y1)
and that of the second pixel is (x2, y2), d is the distance between the pixel pair,
θ is the angle between the two pixels. The co-occurrence matrix so defined is
not symmetric. If the GLCM is calculated with symmetry, then only angles
up to 1800 need to be considered. A symmetric co-occurrence matrix can be
computed by the expression P (i, j, d, θ)

′
= (P (i, j, d, θ) + P (i, j, d, θ)T ) / 2 where

P (i, j, d, θ)T is the transpose of P (i, j, d, θ). Probability estimates are obtained
by dividing each entry in P (i, j, d, θ)

′
by the sum of all possible intensity changes

with the distance d and direction θ.
Haralick Features: Let P (i, j, d, θ) is a (normalised) frequency of occur-

rence of grey level pair (i,j) at distance d and angle θ and Ng be the number of
gray levels.

f1(d, θ) = ASM =
∑Ng

i=1
∑Ng

j=1 P (i, j, d, θ)2 (2)

f2(d, θ) = μ =
∑Ng

i=1
∑Ng

j=1 iP (i, j, d, θ) (3)

f3(d, θ) = σ =
∑Ng

i=1
∑Ng

j=1((i − μ)2P (i, j, d, θ))1/2 (4)

f4(d,θ) = Corr =
∑Ng

i=1
∑Ng

j=1
(i−μ)(j−μ)P (i,j,d,θ)2

σ2 (5)

f5(d,θ) = Cont =
∑Ng

i=1
∑Ng

j=1(i − j)2P (i, j, d, θ) (6)

f6(d,θ) = Diss =
∑Ng

i=1
∑Ng

j=1(i − j)P (i, j, d, θ) (7)

f7(d,θ) = Ent = −
∑Ng

i=1
∑Ng

j=1 P (i, j, d, θ) log P (i, j, d, θ) (8)

where ASM, μ, σ, Corr, Cont, Diss, Ent are angular second moment, mean,
variance, correlation, contrast, dissimilarity, and entropy respectively.

Data Reduction: Normally, the total number of features used in the clas-
sification process using multispectral images is greater than 100. The accurate
estimation of statistical parameters requires the rate (number of features / num-
ber of samples) to be as low as possible. Therefore, a data reduction step, such
as Principal Component Analysis (PCA), is used [5]. Mathematically;
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(
fv1 fv2 . . fvk

)
=
(

f1
′
f2

′
. . fd

′
)
∗

⎛
⎜⎜⎝

c11 c12 . . c1k

c21 c22 . . c2k

. . .
cd1 cd2 . . cdk

⎞
⎟⎟⎠ (9)

where f1
′
f2

′
..fd

′
= standardized feature vector with dimension d,

fv1fv2..fvk = reduced feature vector with dimension k, and c11.... is the Com-
ponent Score Coefficient Matrix [10,11] obtained after applying PCA on training
samples to reduce the dimension. The standardized feature vector f1

′
is obtained

by subtracting the original feature vector f1 with mean variable and dividing
by the standard deviation variable. Both mean and standard deviation variables
are calculated for each feature variable during the training stage. In order to
simplify the calculations during the testing process (i.e. to avoid division and
substraction in equation 10), the equation 10 can be reduced to equation 11 as
follows

fv1 = f1
′
∗ c11 + f2

′
∗ c21 + ... + fd

′
∗ cd1 (10)

fv1 = f1−mf1
stdf1

∗ c11 + f2−mf2
stdf2

∗ c21 + ... + fd−mfd

stdfd

∗ cd1

fv1 = f1 ∗ c11
′
+ f2 ∗ c21

′
+ ... + fd ∗ cd1

′ − mf1 ∗ c11
′ − mf2 ∗ c21

′ − mfd
∗ cd1

′

fv1 = f1 ∗ c11
′
+ f2 ∗ c21

′
+ ... + fd ∗ cd1

′ − g1 (11)

where cd1
′
= cd1

stdfd

and g1 = mf1 + mf2 + ..... + mfd
.

fv2 = f1 ∗ c21
′
+ f2 ∗ c22

′
+ ... + fd ∗ cd2

′ − g2 (12)
.........

fvk = f1 ∗ cd1
′
+ f2 ∗ cd2

′
+ ... + fd ∗ cdk

′ − gk (13)

where, (g1, g2, ..... , gk) are constants. The simplification of equation 9 results
in an efficient hardware avoiding many division and subtraction.

Linear Discriminant Analysis: Linear discriminant analysis (LDA) is a
classical statistical approach for classifying samples of unknown classes, based on
training samples with known classes. For a two class problem, linear discriminant
analysis can be defined mathematically as: if fv1 ∗y1 +fv2 ∗y2 + ..+fvk ∗yk > 0
then, the sample belongs to class1 else it belongs to class2. y1, ...yk are Canonical
Discriminant Function Coefficients obtained during training [10,12].

3 Proposed System Architecture

The proposed system architecture for the classification of prostate cancer is
shown in Figure 3. Different parallel architectures for each stage are proposed
(Figures 4 to 7). At its most basic level, the programming model for our image
processing machine is a host processor (typically a PC running on 2.4 GHz
Pentium 4-based system, programmed in C++). The host machine works as a
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Fig. 3. System architecture.

control unit for loading input data required for each stage in the FPGA external
memory. In the first stage, the input to the FPGAs are the different bands
of multispectral images. Each band is divided into regions of size N*N. The
input to the second stage and third stage are B*R co-occurrence matrices with
θ = {0o, 45o, 90o, 135o} where B is the number of bands in multispectral images
and R is the number of regions for each band. The input to the fourth and last
stage are the features obtained from stage 3. The output from stage 4 are the
different regions in the image that are classified as stroma and cancer.

Proposed Architecture for Calculating GLCM: The block diagram for
calculating GLCMs on FPGA is shown in Figure 4(a) [13]. The inputs to the
FPGAs are image regions of size N*N loaded into memory banks 0,1,2,3 for bands
Bj , Bj+1, Bj+2, Bj+3, respectively. The main reason of distributing different
images (bands) in memory banks is to achieve a maximum parallelism. Pixel i
is read simultaneously from each memory bank for different bands. Neighboring
pixels are then accessed simultaneously. Thus, all neighboring pixels are accessed
in 4 clock cycles. The memory addresses for all 16 GLCMs ( bands Bj , Bj+1,
Bj+2, Bj+3 with θ = 0, 45, 90, 135 i.e. 4*4) are calculated in parallel followed by
an updating of the number of occurrences of pixels in the co-occurrence matrix.
The process is repeated for each pixel of the entire image. After the calculation
of GLCMs, the normalisation of GLCM is required. The flow diagram for the
normalisation of GLCMs is shown in Figure 4(b). For simplicity reasons, the
normalisation of only one GLCM (for band j and θ=0) is illustrated. All other
GLCMs are also normalised simultaneously. In order to normalize the GLCM,
element P (i, j, d, θ) is first added with PT (i, j, d, θ). The result is then divided by
the expression (two times the sum of all possible intensity changes with direction
θ) to compute the estimation of probability [9,13]. Since, the above expression
is constant, a constant multiplier is used instead of a divider by taking the
reciprocal of the expression. The final result is stored in the external memory. If
there are more elements in GLCM, the process is repeated. Other GLCMs are
also normalised simultaneously. Thus, all GLCMs are calculated and normalised
in parallel. The process of calculating and normalising GLCM is then looped for
the remaining bands and regions of the multispectral images.

Proposed Architecture for Haralick Texture Features Computa-
tion: The block diagram of the proposed architecture for extracting the texture
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Fig. 4. (a) Block diagram for calculating GLCM on FPGA. (b)Flow Chart for the
normalisation of GLCMs on FPGA.

features on FPGA is shown in Figure 5 [14]. Each processing unit, which oper-
ates in parallel, consists of a set of adders and multipliers as shown in Figure 6
and is used to calculate the features described in equations 2-8 for a particular
angle θ. The final processing unit, consisting of adders and shift registers, is used
to calculate the average of each feature for different angle θ. This results in 7
features as mentioned in section 2 for region R and band B. These features are
then stored in SRAM (Bank 0). This process is looped Y times where Y = R∗B.
Figure 6 shows the block diagram of the processing unit indicated in Figure 5.
There are two stages in this block diagram. Mean, contrast, dissimilarity, and
entropy are calculated in the first stage and four Processing Elements (PEs)
are used for their calculations. These PEs, consisting of parallel multipliers and
adders, operate simultaneously. In order to speed up the computation, the con-
stants (i − j) and (i − j)2 of equations 6 and 7 are pre-computed and stored
in ROMS. Log tables, which are stored in Block RAMS, are used for the cal-
culation of log function involved in the entropy computation. Angular second
moment, variance and correlation are calculated in the second stage as variance
and correlation depend upon the mean value.
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Fig. 5. Block diagram for extracting Haralick features in FPGA.

Fig. 6. Block diagram of Processing Unit 1 as shown in Figure 5. The other processing
units 2-4 have the same architecture and are executed in parallel.

Proposed Architecture for data reduction and linear discriminant
analysis: Figure 7 shows the hardware design for data reduction and LDA with
k = 5. The feature vector is distributed into 4 different banks of SRAMs. Each
feature is multiplied by k different constants. Thus, 20 PEs (4 features in one
iteration * 5 constants ) are executed in parallel to perform the multiplication
and accumulation. The coefficients stored in the ROM are also distributed such
that they are not duplicated. The process is repeated F times where the value
of F is (numberoffeatures)/4. Once this is done, the results from PE1, PE6,
PE11, and PE16 are added using adder1 and then constant g1 is subtracted
to compute fv1 as mentioned in equation 11. The results of fv2......fvk can be
obtained in the similar way. The constant multipliers are used for LDA and the
results from the constant multipliers are added to determine whether region i is
cancerous or normal. The process is then repeated if there are more regions to
be classified.

The proposed architecture has been implemented by using Handel-C [7].
Handel-C is a truly innovative C-like language for implementing algorithms in
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Fig. 7. Hardware Architecture for data reduction and linear discriminant analysis. The
value of F is (No. of features) /4, while the value of is the number of samples to be
classified.

hardware. The output from Handel-C is a file that is used to create the config-
uration data for the FPGA.

4 Experiments and Discussion

The original testing material consists of textured multispectral images taken
at 16 spectral channels (from 500nm to 650) [1]. For testing the classification
accuracy, the features used for training are computed on the FPGA co-processor.
304 different samples have been used to carry out the analysis. They have been
assessed by two highly experimented pathologists and labelled onto 2 groups:
128 cases of Stroma (muscular normal tissue), 176 cases of Prostatic Carcinoma:
PCa(abnormal tissue development corresponding to cancer). The assessment of
classification results has been made using Leave-One-Out method [5,10]. Table 1
shows the overall classification error. This error is the same when the same
features are re-calculated using C++ and classified using LDA.

Table 2 shows the execution time comparison between μP-based and FPGA-
based implementation for various image sizes for the calculation of GLCM, Tex-
ture Features, and data reduction (PCA) & LDA. The clock speed of the FPGA
architecture for calculating GLCM is 50MHz, the clock speed for calculating
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Table 1. Classification error.

Classified as PCa STROMA Error
PCa 171 5 2.8%

STROMA 3 125 2.3%
Overall 2.55%

GLCM texture features is 45MHz, and the clock speed for performing data re-
duction (PCA) and LDA is 44MHz. The clock speed for Pentium 4 is 2.4GHz.
The result shows that the performance of FPGA in calculating GLCM is approx-
imately 5 times faster than that of Pentium 4 PC even though the PC platform
has a clock speed which is 45 times faster. This improvement in the performance
is mainly due to the calculation of different GLCMs in parallel. Also, the result
shows that the performance of FPGA in calculating Haralick Texture Features
is approximately 7 times faster than Pentium 4 PC. This is mainly due to the
parallel architecture of FPGA that results in more multiplications and additions
on every clock cycle than Pentium 4. Finally, the performance of FPGA in per-
forming PCA&LDA is 11 times better than Pentium 4 PC as 20 multiplications
and additions are performed in parallel in this case. Table 3 shows the area used
by different FPGA architectures. The speed-grade of the FPGA used for the
experimental results is 6.

Table 2. Comparison of Execution Time between μ-P and FPGA implementation for
GLCM, Haralick Texture Features, and PCA&LDA. S = Speed-Up.

Image Size GLCM Texture Features PCA&LDA
(16 Bands) Time in sec Time in sec Time in msec

μ-P FPGA S μ-P FPGA S μ-P FPGA S
512*512 3.0 0.63 4.75 0.710 0.097 7.3 0.54 0.049 11.0

1024*1024 11.9 2.5 4.75 2.840 0.388 7.3 2.16 0.196 11.0
2048*2048 47.6 10.0 4.75 11.360 1.550 7.3 8.65 0.785 11.0

Table 3. Area used for calculating GLCM, GLCM Texture Features, and PCA&LDA.

GLCM Texture Features PCA&LDA
Number of occupied Slices 59% 86% 73%
Number of slice flip flops 4% 16% 9%

Total number of 4 input LUTs 57% 70% 63%
Number of bonded IOBs 65% 59% 65%
Number of block rams - 76% -
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5 Conclusion and Future Work

Reconfigurable architectures have many applications in image classification. De-
pending on the classifier, reconfigurability can assist in speeding up classification
process. An FPGA based multispectral computer vision system for diagnosis of
prostate cancer is proposed in this paper. Different parallel architectures for var-
ious steps in automatic diagnosis have been proposed and implemented on FP-
GAs. The FPGA-based version is 5 times faster when compared with μ-processor
for calculating GLCMs, 7 times faster for calculating texture features while 11
times faster for dimension reduction and linear discriminant analysis. This was
mainly achieved due to various parallel architectures used for different steps in
automatic diagnosis. Future work is concerned with an implementation of these
proposed architectures using new Celoxica RC2000-PP PCI based FPGA devel-
opment board in order to further improve the performance both in terms of area
and speed. This board is equipped with a Xilinx Virtex II FPGA and six banks
of static RAM with 2MB each.
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Abstract. This work introduces a new concept of enhancing a RISC
microprocessor with a tightly coupled reconfigurable ALU array, a vec-
tor load/store unit and a control flow manipulation unit. These units
implement coarse-grain reconfigurable structures by means of switchable
contexts. Context activation is performed event-driven according to the
instruction pointer of the RISC microprocessor. The synchronous oper-
ation of the context controlled functional units enables instruction level
parallelism (ILP) comparable to complex VLIW processors, without in-
troducing instruction overhead. The reconfigurable units can be adapted
to the application demands exploiting parallelism more coarse-grain than
common instruction-level functional units. To evaluate the concept, a
standard ARM RISC microprocessor was chosen to be tightly coupled
to these reconfigurable units. Architecture description and simulation
were performed using RECAST, a reconfiguration-enabled architecture
description language and simulation tool-set. The software environment
also includes a retargetable, parallelizing C compiler based on the SUIF
compiler kit. First experiments executing DSP algorithms have indicated,
that the proposed architecture can exploit more of the potential appli-
cation parallelism than conventional VLIW processors.

1 Introduction

The data processing for today’s media and telecommunication applications can
be efficiently provided by application-specific digital signal processors. Due to
high implementation and mask costs the performance of these DSP is not always
acceptable to be only sufficient for a very limited scale of special algorithm im-
plementation. Another important fact is the lack of available/usable instruction
level parallelism leading to an insufficient average utilization of the functional
units in state-of-the-art VLIW or SIMD architectures [16]. This indicates a low
functional execution density and thus a waste of chip area. Reconfiguration-
enabled functional units have shown a way towards more flexible and efficient
implementations of application-specific microprocessor designs [4][5][6]. On the
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other hand, the flexibility gained from reconfiguration causes additional costs for
reconfigurable components as compared to an ASIC implementation. The con-
figuration memory and the interconnect network consume a significant amount
of chip area. Also, in many cases a not negligible number of reconfigurable blocks
may remain unutilized because of application irregularity or resource constraints.
The additional effort necessary for reconfiguration has to be compensated by
savings concerning the hard-wired components.

In this paper we introduce the ARRIVE (ARm microprocessor with Re-
configurable Instruction-flow controlled Vliw Extension) architecture, which can
be considered a tightly-coupled coarse-grain reconfigurable VLIW extension of
a standard RISC microprocessor. In contrast to common VLIW microproces-
sors, the functional units are controlled by configuration contexts rather than
addressed by the VLIW instruction decoder. The switching of configuration con-
texts is based on the control flow by observing the microprocessor’s instruction
fetch phase and its instruction pointer value. Thereby, we can achieve the syn-
chronization of the execution within the RISC microprocessor core and the recon-
figurable units, effectively gaining a high degree of pseudo-VLIW ILP. Through
the application of this technique, a significant amount of hardware resources
(VLIW decoder, instruction memory) can be saved and made available to the
reconfigurable functional units.

The paper is organized as follows: Section 2 outlines typical microprocessor-
based coarse-grain reconfigurable architectures. In section 3, we introduce the
ARRIVE architecture, which consists of an ARM microprocessor coupled tightly
to coarse-grain reconfigurable functional units. Sections 4 and 5 are dedicated to
the ADL-based architecture description and compilation framework. Section 6
discusses first experimental results. Finally, section 7 concludes the paper.

2 Related Work

In the past, much research work has been carried out on coupling a standard
RISC microprocessor with a fine-grain reconfigurable array [7] [8]. Because of
the low efficiency in terms of area overhead and poor routability of fine-grain
reconfigurable devices, coarse-grain reconfigurable arrays have become an attrac-
tive alternative. This is especially true for obtaining high-bandwidth word-level
parallelism as required in many DSP applications. The greater structural regu-
larity and data width of processing elements (PEs) and their interconnect cause
a massive reduction of configuration data and time. Thus, we want to outline
some typical examples of coarse-grain reconfigurable architectures coupled with
a RISC processor.

REMARC [1] is a reconfigurable accelerator coupled tightly to a MIPS-II RISC
processor. The reconfigurable device consists of an 8×8 array of PEs or nano pro-
cessors. A nano processor has its own instruction RAM, a 16-bit ALU, a 16-entry
data RAM, and 13 registers. It can communicate directly to its four neighbors
and via a horizontal and a vertical bus to the nano processors in the same row
or column. Different configurations of a single nano processor are held in the
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instruction memory in terms of instructions. A global program counter is used
as an index to a particular instruction inside the instruction memory.

PACT SMeXPP [2] is based on the XPP hierarchical array of coarse-grain
Processing Array Elements (PAEs). These are grouped into a single or multiple
Processing Array Clusters (PACs). Each PAC has its own configuration man-
ager, which can reconfigure the associated PAEs while neighboring PAEs are
processing data. In addition, the SMeXPP is equipped with an additional ARM
processor core, that is loosely coupled via a high-speed bus interface with the
reconfigurable array.

MorphoSys [3] combines a RISC processor with a reconfigurable cell array con-
sisting of 8×8 (subdivided into 4 quadrants) identical 16-bit PEs. Each PE has
an ALU-multiplier and a register file and is configured through a 32-bit context
word. The interconnection network comprises three hierarchical levels enabling
nearest neighbor, intra-quadrant, and inter-quadrant connections.

The analysis of the existing concepts suggests that the communication between
the RISC processor and the reconfigurable array should be performed using
additional instructions. In case of a tightly-coupled functional unit, these in-
structions are often implemented as an ISA extension. ILP is not targeted in the
examples mentioned above. Although it is possible to enhance performance by
grouping instructions into a VLIW instruction word [4][5][6] or by dynamically
scheduled superscalar execution [9], there will always be a drawback due to the
increased instruction overhead. Another important issue is the partitioning prob-
lem in a loosely-coupled reconfigurable system. Application development might
experience problems in case of a hardly partitionable algorithm, thus introduc-
ing a lot of communication overhead. It is obvious that the performance gain
of a reconfiguration-enabled microprocessor system is limited in the considered
implementations.

3 The ARRIVE Architecture

The ARRIVE architecture extends an ARMv4 RISC core [15] by three coarse-
grain reconfigurable functional units (RFUs). These units are dedicated to DSP
application acceleration, including support for arithmetic parallelism, data-path
parallelism and hardware-based zero-overhead loop unrolling (hardware loops).
In detail, the ARRIVE architecture includes a multi-context reconfigurable ALU
array (RALU), a multi-context vector load/store unit (VLSU) and a single-
context control-flow manipulation unit (CFMU). The RFUs are data-path cou-
pled to the lower eight mode-independent registers of the ARM core. From the
processing model’s view the ARRIVE architecture can be considered a highly
parallel VLIW DSP. In contrast to previous work, ARRIVE is not an ISA ex-
tension. The processing operations of the RFUs are only specified within the
configuration contexts. As the number of frequently executed instructions inside
inner loops is low, ILP can be easily mapped to a limited number of configuration
contexts. The configuration context change is performed cycle-wise according to



784 S. Köhler et al.

Fig. 1. ARRIVE architecture overview

the ARM instruction pointer. A context assignment table is implemented in the
context configuration manager (CCM), which is capable of changing the config-
uration context on a matching instruction pointer value.

The Reconfigurable ALU Array is composed of coarse-grain context-con-
trolled processing elements (PEs). Horizontal routing is provided through 8-bit
wide busses. The inputs and outputs of the PEs are connected to these rout-
ing busses via a configurable switched matrix. Vertical routing is maintained
only through the PEs. The PEs can be configured to execute 16 different 8-bit
wide arithmetic or logic functions. Additionally, a bypass and an idle operation
are implemented for routing and power-save reasons. Each PE also includes a
pipeline data register. A designated carry logic can be utilized to chain the PEs
horizontally into multiple of 8-bit ALU operation. The inputs of the top row are
directly connected to the source register bus, whereas the outputs of the bot-
tom row interface the destination register bus. The size of the array is currently
assigned - but not limited to - 8×8 PEs, as it is required for our benchmark
applications. Referring to section 2, other array architectures may also be ad-
vantageous for different application domains.

The Vector Load/Store Unit (VLSU) provides a flexible and scalable in-
terface to dedicated external memories. It enables parallel data load/store of the
ARM core registers or the RALU/VLSU local registers. Through special address
registers the VLSU supports typical DSP memory transfers including pre-/post-
increment/-decrement, write-back and offset address modes.

The Control Flow Manipulation Unit (CFMU) can directly modify the
address register of the ARM core, thus influencing the instruction fetch process.
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Two configurable counters and comparators are included to support the map-
ping of loops with fixed bounds.

The Configuration Context Manager (CCM) The configuration manager
matches the value of the ARM address register in the instruction fetch phase
with the entries in the context mapping table. In case of a positive match, it acti-
vates the associated context. Context control is implemented using a triple-stage
pipeline similar to the ARM core pipeline. The independent context numbers for
the RALU and the VLSU are passed to the functional units by separate config-
uration context busses.

4 Architecture Description

To evaluate our architecture, we developed a new reconfiguration-enabled archi-
tecture description language (ADL) and tool-set. Similar to other approaches
[11][12], it supports mixed behavioral and structural modeling, enhancing de-
scription power by additional aspects for reconfigurable systems. Whereas mem-
ory hierarchy and pipeline structure are described structurally, the instruction
set is modelled on a behavioral level. In matters of syntax, the designed ADL
leans rather towards [11] using a C-like notation. The architecture description
can be divided into three main sections describing the memory hierarchy, the
pipeline structure and the instruction set. Optionally, these sections may be pre-
ceded by another one declaring references to external libraries. The description
of the memory hierarchy is straight forward as it enumerates the memory com-
ponents and parameterizes their attributes in a fashion much like [12]. The same
holds for the description of the pipeline, which defines the available pipeline
stages and their own inherent behavior independent from the instruction con-
text executed. Typically, the instruction fetch and decode as well as the default
flow of instruction contexts through the pipeline are defined here. It needs to
be mentioned that the structural composition of the pipeline is not necessarily
static. Specific instructions may override their routing even depending on the
data they process. Additionally an instruction context may be split and routed
to multiple pipeline stages, which allows the modelling of VLIW architectures.
The instruction set is modelled in a hierarchical fashion as is done in [11]. The
instruction set hierarchy is, however, described as inheritance tree rather than
being defined in terms of a formal grammar.

For each pipeline stage as declared in the pipeline section, an instruction
may define a specific behavior. The combination with the behavior possibly in-
herited from another instruction yields the effective behavior of an instruction
as it is to be observed when executed on the architecture model. Figure 2 il-
lustrate how this may serve the brevity of a description. An important feature
of the designed ADL is that the behavioral descriptions can only be composed
from a fixed set of operational statements. The behavioral semantics can thus
not be blurred by vague code in some programming language or even refer-
ences to external functions. Nevertheless is the inclusion of external libraries
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// ARM Instruction Set
ISA {

...
// Data Processing Instructions
Data : Cond "00<o2_i:1><5><rn:4>

<rd:4><-:7><rm_rs:1>
<-:4>","$$ $rd" {

...
// AND Instruction
AND : Data "0000<scc:1>" {
EX {

if (ex_cycle==alu_cycle) {
result=src1 & src2;
...
if (rd==15) {

branch_cycle=1;
ADDRESS=result;
=> EX;

}
else R[rd]=result;

}
}

}
}

}

// Reconfigurable ALU
RALU (Config,op1,op2,cin,

res0,res1,cout) {
// ADDC op1,op2
if (Config==0x0) {

tmp=(op1)(0,9)+op2+cin;
res0=tmp(0,8);
cout=tmp(8,1);

}
// SUBC op1,op2
else if (Config==0x1) {

tmp=(op1)(0,9)+(˜op2)+1;
result=tmp(0,8);
cout=tmp(8,1);

}
// NOT op1
else if (Config==0x2) {

res0=˜op1;
cout=cin;

}
// AND op1,op2
else if (Config==0x3) {

result=op1 & op2;
cout=cin;

}
}

Fig. 2. ADL description of the instruction set and the reconfigurable ALU

supported. These can, however, only be used to provide custom implementa-
tions for structurally isolated models as the arbitration of a bus or the decoding
of instructions. The simulation is currently performed by an interpreting simu-
lator implemented in C++. Beside the architectural description, it receives the
program and the configuration data as binary code. Its generation is part of the
compilation framework, which is described in the next section. The event-driven
simulator core can be plugged into a visual user interface. Its capabilities go
beyond the mere visualization of the architectural state and even allow for the
cycle-accurate debugging of an architecture.

5 Compilation Framework

Based on the SUIF compiler toolkit [10], we have developed a versatile compiler
framework [14], that has been customized for the ARRIVE architecture. The
framework, called Reconfiguration Enabled Compiler And Simulation Toolset
(RECAST) consists of a profiler, retargetable compiler, a mapping module and
a simulator (Fig. 3).

Frontend: For the processing of the C source, we use the frontend that comes
with the SUIF compiler kit. After standard analysis and some architecture-
independent transformation and optimization stages, the algorithm is now rep-
resented by the SUIF Intermediate Representation (IR) in terms of an abstract
syntax tree.

Candidate Identifier: To find the most time-consuming parts of the applica-
tion, which should be accelerated by execution within the reconfigurable array,
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Fig. 3. Compilation framework

a profiler stage is included to estimate the run-time behavior of the application.
In contrast to other profiler-driven concepts, early profiling is performed on the
intermediate representation instead of requiring fully-compiled object code.

Synthesis of Reconfigurable Instructions: The partitioning of the algo-
rithm takes the profiling data into consideration. In the present implementation,
the mapping module generates a description for subtrees of the IR. The map-
ping results can be influenced by a parameter set. This includes the maximal
pipeline depth, the minimal clock frequency and the maximal area consump-
tion. For synthesis, a set of predefined, parameterizable modules is used. These
modules were previously evaluated in terms of implementation costs for our re-
configurable units.

Code Selection: Based on the estimated run-time behavior as provided by the
early profiler, the candidates for reconfigurable execution can be evaluated and
selected so that high speedups are achieved and the number of reconfiguration
contexts is minimized. The design parameters annotated to the reconfigurable
instruction candidates are used to ensure that resource constraints and design
requirements are met.

Scheduling Phase: Interlocked with the selection phase, it attaches the selected
configuration contexts to the hardwired ARM instructions and creates the con-
figuration manager event table. The main goal is to find a common schedule that
is optimal in terms of utilization of all units and processing parallelism, avoiding
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Table 1. FFT schedule mapped to the ARRIVE architecture

Addr ARM CFMU CTXT RALU CTXT VLSU

0 MOV
4 MOV
8 MOV INIT L0

12 MOV
16 MOV
20 MOV INIT L1
24 ADD 1: LDR twiddle++
28 MOV 2: LDR (e1) LDR (e2)
32 NOP 1: MUL

MUL SUB ADD
36 NOP INIT L2 2: MUL

MUL ADD SUB
40 NOP 3: ADD SUB 3: LDR (e1+d) LDR (e2+d)

ADD SUB
44 NOP 1: MUL 4: STR (e1) STR (e1)+d!

MUL SUB ADD
48 NOP LOOP L2 2: MUL 5: STR (e2) STR (e2)+d!

MUL ADD SUB
52 NOP 3: ADD SUB

ADD SUB
56 NOP 4: STR (e1) STR (e1)+d!
60 ADD LOOP L1 5: STR (e2) STR (e2)+d!
64 MOV LOOP L0

resource conflicts (especially memory and register access related) as much as
possible. Software pipelining is also applied to maximize ILP [6].

Through its separated control-flow, data-processing and transfer-oriented recon-
figurable functional units, the ARRIVE concept can be considered a load/store
architecture, which is inherently compiler-friendly. Thus, the configuration con-
texts can be obtained by the application of sophisticated code generation meth-
ods similar to RISC and VLIW microprocessors [13].

6 Experimental Results

The ARRIVE model has been verified against a 512-point FFT, which is a typ-
ical DSP benchmark application. It is implemented as a radix-2 butterfly-based
triple-nested loop with 16-bit accuracy. The optimized inner loop contains 21
ARM instructions, executing in 34 clock cycles. Through the utilization of the
additional coarse-grain reconfigurable units, the FFT inner-loop execution time
can be reduced to 3 clock cycles as shown in table 1. The 16-bit MUL/ADD
and MUL/SUB operations are mapped to the reconfigurable array, executing
in a single clock cycle and consuming 40 processing elements. Detailed opera-
tion layout information is given in figure 4. The init/loop operation addresses
of the hardware-accelerated loops are stored into the CFMU start/end address
configuration registers, thus allowing the observation and manipulation of the
instruction pointer. Every time the control-flow reaches a loop address, the dedi-
cated index register is updated according to the configured increment/decrement
operation. Execution of the unaccelerated FFT takes 99608 cycles, whereas it
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Fig. 4. FFT inner loop RALU operations

can be performed in 8995 cycles on the ARRIVE architecture, assuming all
memories are modelled as single clock cycle accessible SRAM.

7 Conclusions

In this paper, we have presented the ARRIVE architecture as an extension
of a standard RISC microprocessor architecture. Computing performance has
been obtained through tightly-coupled context-controlled reconfigurable func-
tional units, which are synchronized to the microprocessor core in a pseudo-
VLIW manner. Spatial computation is performed inside a reconfigurable array,
thus increasing ILP through coarse-gain parallelism. As a result, higher func-
tional density can be obtained compared to state-of-the-art VLIW processors
[16]. Additionally, the implementation expenses for the reconfigurable units can
be kept low by achieving chip area savings, resulting from the reduction of the
number of hard-wired units, the decrease of the instruction memory size and
the simplification of the instruction decoder. The ARRIVE architecture is also
designed taking low-power considerations into account. Beside the idle mode of
the processing elements, the avoidance of a large high-bandwidth VLIW decoder
is the main argument for a power efficient architecture. Ongoing research will
investigate further applications out of the DSP/telecommunication/multimedia
domain to be mapped to the ARRIVE architecture. Furthermore, we plan the
development of a synthesizable VHDL- model for a prototype evaluation.
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Abstract. Pattern recognition algorithms are used in experimental
High Energy physics for getting parameters (features) of particles tracks
in detectors. It is particularly important to have fast algorithms in trigger
system. This paper investigates the suitability of using FPGA coproces-
sor for speedup of the TRT-LUT algorithm – one of the feature extrac-
tion algorithms for second level trigger for ATLAS experiment (CERN).
Two realization of the same algorithm have been compared: C++ real-
ization tested on a computer equipped with dual Xeon 2.4 GHz CPU,
64-bit, 66 MHz PCI bus, 1024 Mb DDR RAM main memories with Red
Hat Linux 7.1 and hybrid C++ – VHDL realisation tested on same
PC equipped in addition by MPRACE board (FPGA-Coprocessor board
based on Xilinx Virtex-II FPGA and made as 64-bit, 66 MHz PCI card
developed at the University of Mannheim). Usage of the FPGA copro-
cessor can give some reasonable speedup in contrast to general purpose
processor only for those algorithms (or parts of algorithms), for which
there is a possibility to fulfil calculations with a major degree of par-
allelism. In case of TRT-LUT algorithm it is the most time consuming
parts and using of FPGA coprocessor can give us speed-up by factor
more then two for hybrid FPGA/CPU realisation in comparison with
CPU only implementation.

1 Introduction

ATLAS [1] is one of the general-purpose experiments at Large Hadron Col-
lider (LHC) which will start operation in 2007. It will detect the end-products
of proton-proton collisions at a centre-of-mass energy of around 14 TeV.

Triggering is one of the greatest challenges at hadron collider experiments.
At the LHC beams will be colliding every 25 ns and the time available for sec-
ond level trigger algorithms will be about 10 ms. To make things worse, the pp
interaction leading to the interesting physics process (referred to as the physics
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event) will be accompanied by several minimum bias interactions occurring si-
multaneously (∼ 20 at the LHC design luminosity). The task of a trigger system
is to select rare events and to suppress background events as effiefficiently as
possible. One of the most demanding tasks is usually the track reconstruction
from measured points (detector hits) of particle trajectories. The ATLAS trigger
strategy foresees a reduction of the event rate at several levels: Level-1 (LVL1)
and High Level trigger (HLT) which in turn is subdivided on Level-2 (LVL2)
and Event Filter (EF) [2].

There are different kinds of algorithms for the different sub-detectors and
for different subtasks of the trigger. Results of the feature extraction algorithms
is the relevant track features (φ, η, pT, ET – starting angle, momentum and
energy of particle). This document describes the possible acceleration of one of
LVL2 feature extraction algorithms for Transition Radiation Tracker (TRT-LUT
algorithm) with FPGA coprocessors help.

The FPGA coprocessor – MPRACE (Multi Purpose Reconfigurable Accel-
erator / Computing Engine) [3] developed at the University of Mannheim was
used for this task.

MPRACE is an FPGA-Coprocessor based on Xilinx Virtex-II FPGA and
made as 64-bit, 66 MHz PCI card. The main features of this board are:

– Dedicated PCI-to-Local bus bridge PLX9656 with support for 64-bit, 66 MHz
PCI operation and 32-bit, 66 MHz local bus operation.

– High capacity FPGA, Xilinx Virtex-II. In first version XC2V3000-4BF957C
is used (14 336 slices (28 672 LUTs/FFs), 12 DCMs, 96 Multipliers, 1 728 Mbit
of internal block RAM (96 RAM blocks×18 kBit), 684 I/Os)

– High bandwidth memory system: 4 banks ZBT, each 512 k×36 bits (8 Mbytes
in total).

The following conventions are used in the paper: the coordinate system has
its origin at the interaction point. The z-axis is parallel to the beam direction
and x and y or the radius r and the azimuthal angle φ are used to denote
positions in the transverse plane. Instead of the polar angle θ the pseudorapidity
η = − ln(tan(θ/2)) is used to specify directions inside the detector.

2 Detector Geometry

Transition radiation is produced when a relativistic particle traverses an inho-
mogeneous medium, in particular the boundary between materials of different
electrical properties. This radiation hence offers the possibility of particle iden-
tification at highly relativistic energies.

The combined straw tracker and transition radiation detector, the Transi-
tion Radiation Tracker (TRT), provides tracking and contributes to the electron
identification. These are straw tubes which are used in region where the track
density is relatively low. Its purpose is two-fold – firstly to make a large num-
ber of measurements of charged particle position, and secondly to assist in the
identification of these particles.
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The geometrical layout of the TRT used for this work is described below.
More details can be found in ATLAS Inner Detector TDR [4].

The TRT consists of a central barrel part and two end-cap sections. The
sensitive elements are straws of internal diameter 4 mm with a single sense wire
running down the centre. The barrel comprises 52 544 straws parallel to the beam
axis in 73 layers; the end-caps comprise 319 488 radial straws in 18 multiplane
wheels. The barrel has an inner radius of 56 cm and outer radius of 107 cm. The
straws have an electrical break at z = 0. In order to reduce the occupancy and
improve the measurement, each half of the barrel is read out separately.

The TRT straws provide a two-dimensional position measurement, r-φ in the
barrel and z-φ in the end-caps. Typically the TRT provides 36 measurements on
every track in the entire covered η range (∼ 20 000 hits per event).

In the mechanical layout for the detector, the barrel consists of three concen-
tric cylindrical rings. Each ring is formed from 32 independent identical mechan-
ical modules. The modules are not projective and have a different shape from
ring to ring [5]. Layers of straws are grouped into three types of modules. In
each layer, straws are at approximately constant distance (about 6.8 mm), the
Δφ covered by each module is the same (2π/32), and the number of straws per
layer in each module varies from layer to layer (from 15 to 29 straws per layer).
The total number of straws is 1 642 per 3 modules, or 52 544 × 2 for the two
halves of the detector.

In the simulation of the detector the geometry is different for the barrel. In the
simulation the straws in each layer are arranged in a concentric cylinder. Within
a layer all straws have equal distance in φ. For all layers the straw distance is
approximately rφ = 6.8 mm. From layer to layer the first straws have small φ
offsets. The distance between two layers is 6.8 mm, there are 75 layers, two of
which are empty [4]. This geometry, used for simulation and reconstruction, does
not contain any symmetry.

3 Algorithm Description

TRT-LUT algorithm [6] consists of a track candidate search followed by track-fits
performed to select the best candidate and to determine the track parameters.
The purpose of the candidate search is to reduce the number of point combina-
tions to be investigated at the track fitting stage.

Since all particle trajectories to search for can be calculated in advance a
histogramming method based on the Hough Transform is well suited for the
initial track search in TRT [6]. The Hough Transform is a standard method in
image analysis that allows recognition of global patterns in an image space by
recognition of local patterns in a transformed parameter space and the pattern
matching problem can be addressed with easily performed peak detection [7].
Algorithm is based on the idea that every hit in the three-dimensional detec-
tor image can belong to a number of possible (predefined) tracks characterized
by different parameters. All such tracks (or roads) are stored in Look-Up Ta-
ble (LUT). Thus every hit increases the “probability” for the existence of these



794 C. Hinkelbein et al.

tracks by one (histogramming). The histogram for a single track consists of a
“bow-tie” shaped region of bins with entries with a peak at the centre of the
region. The bin at the peak of the histogram will, in the ideal case, contain all
the hits from the track. The roads corresponding to the other filled bins share
straws with the peak bin, and so contain sub-sets of the hits from the track. The
histogram for a more complex event consists of a superposition of the entries
from the individual tracks. The bins containing the complete set of points from
each track can be identified as local maxima in the histogram. After a clean-up
step followed by a fit the final tracks are selected.

LUT based Hough Transform algorithm for TRT was implemented in C++.
It was integrated and investigated in ATLAS Level-2 reference software [6]. The
algorithm was implemented in VHDL for MPRACE board as well. This imple-
mentation was integrated in to ATLAS Level-2 reference software for perfor-
mance study and comparison with C++ implementation.

The entire algorithm as included in the ATLAS Level-2 reference software
consists of the following steps (Fig. 1):

Initial Track Finding: Utilizes an LUT-based Hough Transform using his-
togramming to find potential track candidates. In the barrel, the Hough
Transform is performed from (R, φ) space to (φ, 1/pT) space. The LUT con-
sist of 81 920 (φ× 1/pT = 1024× 80) predefined roads. All predefined roads
point to the origin and are computed as exact circles in the x-y projection
to be accurate enough for low-pT tracks in magnetic field. The road width
increases linearly from 4.5 mm at layer one (numbering from the innermost
layer outwards) to 6.8 mm at layer 42 and is then constant and equal to
6.8 mm from layer 42 to layer 73. With this definition, ∼65 straws are as-
signed to each road. The predefined roads overlap by 30% - 50% in 1/pT
and φ. This overlapping of the roads prevents the loss of hits from a track
with a trajectory which could otherwise pass between two predefined roads,
but can lead to multiply reconstructed tracks, which have to be eliminated
in subsequent steps. Each straw is assigned to ∼120 roads (max.130).

Thresholding and Local Maximum Finding: Selects potential track can-
didates and eliminates multiple reconstructed tracks.

Track Splitting: Removes hits incorrectly assigned to a track, and splits tracks
that have been erroneously merged. In this step the pattern of hits associated
to a track candidate is analysed. If potential track candidate contains Nis
consecutive layers without a hit, the track is split into two separate candi-
dates either side of the gap. If one of the candidates contains more than Nthr
hits, it is retained. If both candidates pass this threshold, the track segment
which starts at the lowest radius is retained. The result of the track splitting
step is a candidate that consists of a sub-set of the straws in a road. For this
step “bin-ordered” LUT is constructed (each bin correspond to road). The
list of straws lying within the road is stored in the LUT.

Track Fitting and Final Selection: Performs a fit in the r-φ(barrel) or z-
φ(end-caps) plane using a third order polynomial. The algorithm uses only
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the straw position (i.e. the drift time information is not used). The final
track candidates are selected during this step.

Starw ordered
LUT

Bin ordered
LUT

Histogram

Hits

Initial Track
Finding

Threshold /
Max Finding

Fit and Final
Selection

Raw Tracks

Track Candidates

Track Parameters

Address
(Straw number)

Bin number in 1/p T

Bin number in  phi

Address
(Track number)

Active Straws
hash table

Split Track

Straw active?

Bin number

Straw

Fig. 1. TRT-LUT algorithm

Profiling of a C++ implementation of the TRT-LUT algorithm shows that
most of the computing time is spent with access of LUTs, incrementing of 8-bit
numbers, and a local maximum finding. CPU-only implementation of Histogram-
ming (or Initial Track Finding) and Thresholding / Local Maximum Finding re-
quire 62% of the total processing time. These two steps are good candidates for
an FPGA implementation because of both steps can exploit an 80-fold paral-
lelism (80 1/pT blocks) and make use of the fast internal dual port block RAM.
The main difference between an FPGA implementation and a CPU implemen-
tation of the Hough transformation is that the loop over all predefined roads
for one straw (one row in LUT), which is executed once per active straw and
increments ∼120 histogram counters, is executed sequentially in the CPU and
in parallel in the FPGA.

A schematic view of the VHDL implementation of the initial track finding
step of the algorithm is shown in Fig. 2. This implementation takes advantage
of both the external SRAM and the internal RAM blocks.

The initial track finding works as follows. The array of active straws (hits)
prepared in host memory and transferred over PCI bus to MPRACE by DMA.
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Fig. 2. FPGA initial track finding

For each hit straw, counters are incremented for all roads containing that straw.
The histogram counters for all TRT straws which have to be incremented are
stored in the “straw-ordered” LUT. The construction of the LUT with over-
lapping roads in φ and 1/pT guarantees that each active straw contributes to
exactly one or two pre-defined φ values of a certain predefined 1/pT. For the bar-
rel, there are 80 “1/pT-blocks” with 1024 possible φ each, thus 81 920 patterns
are predefined. Therefore the one or two values out of 1024 possible values, which
have to be incremented, are stored in 11 bits (10+1), because the (possibly) two
values are always directly neighboured.

The “straw-ordered” LUT is stored in the SRAM. An address space of 16
bits for the straws in the “straw-ordered” LUT is required (if symmetry of the
detector not in use). The SRAM itself has 19 bits addresses, of which 16 are used
to identify the current straw. The LUT stores for each straw address 880 bits -
histogram counters addresses (80×11 bits). The word length of the SRAM is only
144 bits; therefore seven steps (passes) with the same straw address (16 bits)
and changing pass addresses (3 bits) are needed for transfer from SRAM (LUT)
all information corresponding to one straw to FPGA. Using of the detector
symmetry can significantly reduce requirements for size and word length of the
memory used for LUT. The histogram is stored in the internal RAM blocks in
the FPGA. The implementation profits from a true Dual Port RAM (internal
RAM Blocks) to allow a fast read-modify-write cycle during one external SRAM
cycle. Therefore histogramming for each straw is executed in seven passes with
up to three clock cycles each, whereas a CPU implementation requires looping
sequentially over 130 histogram bins.
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After the histogramming step the maximum finding step first applies a thresh-
old filter and then search for local maximum. The maximum finding has to be
applied in two dimensions (φ and 1/pT). This is done in parallel for 80 1/pT-
blocks and sequentially for 1024 φ-blocks. Resulting are the histogram counters
with values above the threshold and which are local maximum in both φ and
1/pT. The output information contains the predefined φ and 1/pT values of the
track (predefined from the LUT) and the number of active straws corresponding
to the track. These results stored in output FIFO and transferred over PCI bus
to host memory by DMA.

If the track splitting step is also done in the FPGA, the results of the local
maximum finding step are stored internally in the FPGA for this step.

A schematic view of the FPGA implementation of the track splitting step
looks similar to initial track finding and is shown in Fig. 3.
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Fig. 3. FPGA initial track finding

The track splitting step uses the 75 internal RAM blocks (each block for one
layer/plane) for a hash-table, which stores for each straw in this layer/plane if it
is active or not (“active straws” hash-table), and the threshold information (and
optionally the drift-time). The SRAM is used to address the bin-ordered LUT
with histogram bin numbers above the threshold which were a local maximum.
The LUT outputs all straws which belong to the pattern definition layer by
layer. The bin-ordered LUT stored 825 bits (75 layers×11 bits for straw number
in layer). The word length of the SRAM is 144 bits; therefore six steps (passes)
with the same bin address and changing pass addresses are needed for transfer
from SRAM (LUT) all information corresponding to one pattern to FPGA.
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Straw numbers from LUT are used as address for “active straws” hash-table.
We have two 74 bit words from this hash-table: one of them give us information
about active straws, second – about high threshold hits. This information is used
for perform track splitting and the result is a 28 bit word which contain number
of hits, number of high threshold hits, fist hit layer and last hit layer for track
candidate. This result is passed to the host CPU over PCI bus by DMA for the
track fit.

It is possible to put both LUTs (straw-ordered and bin-ordered) in to SRAM
memory of the MPRACE board if information about detector symmetry will be
in use. For barrel the 32-fold symmetry allows to store only 32 φ×80 1/pT = 2 560
bins. Therefore we need 20 bit address at the SRAM: 16 bits for “straw-ordered”
LUT (52 544 straws), 3 bits for passes and 1 bit for selecting one of LUTs (“bin-
ordered” or “straw-ordered”). Without symmetry we need 21 bit address: 17 bits
for “bin-ordered” LUT, 3 bits for pass and 1 bit for LUT selecting.

4 Execution Time Measurement Results

Measurements have been made on a computer equipped with dual Xeon 2.4 GHz
CPU, 64-bit, 66 MHz PCI bus, 1024 Mb DDR RAM main memories with Red
Hat Linux 7.1 and MPRACE board. But only one CPU has been used by al-
gorithm. It is supposed that the algorithm will be included in ATLAS Trigger
software which has several algorithms for different subdetectors and any of these
algorithms can be run in parallel on one workstation. There is no advantage to
have multithreaded algorithms in this case.

Only initial track finding step of the TRT-LUT algorithm was implemented
in VHDL. Software was compiled with GNU gcc-2.95; Mentor Graphics Leonar-
doSpectrum and Xilinx ISE4 were used for synthesis and place and route. FPGA
design is synchronised by 64 MHz clock signal. A data file containing approx. 156
events was used.

Identical results are obtained for the initial track finding step for both the
CPU and FPGA implementations.

The TRT consists of two subdetector types, the barrel and the end-cap.
Both measure essentially in two dimensions, the barrel in r − φ and the end-
cap in z − φ. The algorithms for barrel and end-cap differ, but the principles
are identical. For the performance measurements presented in this paper only
the barrel algorithm was used. The TRT barrel is composed of two identical (in
the scope of this document) parts, the left and right barrel half. The following
numbers refer to one half barrel.

The total number of straws is 52 500. The resolution required for the Initial
Track Finding is defined by 1024 bins in φ space and 80 bins in 1/pT space leading
to total search space 81 920 patterns. Information about barrel symmetry is not
used. Measurements results are shown in Table 1.

For higher speed-up “Track Splitting” part of algorithm should be imple-
mented in FPGA too. We expect that FPGA realisation of “Track Splitting”
gives at least the same speed-up as “Histogramming / Maximum Finding”. In
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Table 1. Execution times on a Xeon 2.4 GHz PC for the TRT-LUT CPU only and
hybrid implementation. (The total time is not the sum of the average times shown in
the table, but rather is the average of the total times per event.)

Number of events: 156
Average number of hits in event: 2 167.413
CPU: Pentium-IV XEON 2.4GHz
FPGA board: MPRACE (VIRTEX-II), 64MHz, 64-bit, 66MHz PCI
Pattern-ordered LUT with 80 1/pT and 1024 φ values predefined
Threshold: Nthr = 12; Isolation: Nis = 9
Average number of track candidates per event: 57

Task Platform Time(μs)

CPU-only Implementation
Fill event CPU 107.77
Histogramming CPU 2314.03
Threshold/Max Find CPU 376.76
Histo/Thresh/Max CPU 2694.72
Track Splitting CPU 1246.18
Track Fitting CPU 151.91
Final Selection CPU 25.05
Copy tracks CPU 145.62
Extract time CPU 4371.24
Hybrid Implementation
Fill event CPU 115.23
Data converting CPU 24.62
prepare write buffer CPU 81.55
DMA write/Histogramming PCI/FPGA 433.04
prepare read buffer CPU 23.44
Max Finding/DMA read FPGA/PCI 22.42
output formatting CPU 17.71
Histo/Thresh/Max FPGA/CPU 612.77
Track Splitting CPU 1274.87
Track Fitting CPU 155.54
Final Selection CPU 24.80
Copy tracks CPU 149.71
Extract time FPGA/CPU 2332.92

this case we will have “Track Splitting” done in ∼285 μs instead of 1 246 μs and
full extract time will be ∼1 350 μs. It is gives us speed-up ∼3.2.

5 Conclusion

Improving the speed of tracking algorithms is extremely important for future
hadron collider experiments, where the presence of many pile-up interactions
simultaneously recorded with the interesting physics event leads to very high hit
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occupancy in tracking detectors. Faster algorithm allows physicists not only to
obtain data sooner, but it allows to have lower Level-1 and Level-2 thresholds
with same events rate, and, therefore, to study more interesting physics (like
b-physics).

One of the possible approaches is use of hybrid FPGA/CPU systems for
such algorithms where most time consuming parts of algorithm are accelerated
by FPGA platforms. We could demonstrate that FPGAs are well suitable for
these tasks. Usage of the FPGA coprocessor can give some reasonable speedup
as contrasted to general purpose processor only for those algorithms (or parts
of algorithms), for which one there is a possibility to fulfil calculations with
a major degree of parallelism. In case of TRT-LUT algorithm it is the most
time consuming parts and using of FPGA coprocessor can give us speed-up
by factor ∼2–3 for hybrid FPGA/CPU realisation in comparison with CPU
only implementation. It allows to make search for low-pT tracks in entire TRT
detector at low luminosity (1033 cm−2s−1) in reasonable time what is particularly
important for some special physics programs which can be done on ATLAS (for
example b-physics).
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Abstract. Current trends show that partial and dynamic reconfiguration can be
used in adaptive systems. These systems are able to adapt themselves to the
demand of their environment during run-time. This flexibility can be used for
many industrial applications. Unfortunately the current documentation for using
this methodology isn’t sufficient. This gap should be closed with a tutorial that
shows the possibilities of this feature and also gives some precious hints for
designers.

1 Introduction

Field programmable gate-arrays (FPGAs) are mainly used today for rapid-prototyping
purposes. They can be reconfigured many times for different applications. Modern
state-of-the-art FPGA devices like Xilinx Virtex FPGAs [1] additionally support a
partial dynamic run-time reconfiguration which reveals new aspects for the designer
who wants to develop future applications demanding adaptive and flexible hardware.
Especially in the domain of mobile computing high-end mobile communication
applications will benefit from the capabilities of the new generation of reconfigurable
devices. There exist some new approaches deploying Virtex/Virtex-II FPGAs in
multimedia applications using their capabilities for a dynamic function-multiplex
showing new ways for the efficient deployment of partial run-time reconfiguration [2]
[4]. A new approach to create systems that are able to manage configuration is run-
time systems. These systems use the flexibility of an FPGA by changing the
configuration partially [3]. Only the necessary functions are configured in the chip’s
memory. A function can be replaced by another function while other parts stay
operative. To solve the problem of substitution and I/O management the configuration
needs a main module to control the tasks. With such a system it is possible to save
resources like output pins and energy because of outsourcing configuration data [4].
The need of chip area becomes smaller and therefore the power consumption can be
reduced. Nevertheless the power requirements of such applications will grow with
increasing rate of configuration [5]. Creating such a system has two aspects: Reducing
amount of chip area and reducing power consumption by designing a control system
which manages the content of FPGAs configuration in an intelligent way to minimize
reconfiguration rate. Additionally this management can control the on chip
intercommunication bus to prevent an overhead of bus size. The development of such
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a system assumes a deep knowledge about internal dependencies inside the FPGA. A
tutorial should open this possibility for interested researchers and developers.
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Fig. 1. Architecture of Xilinx Virtex FPGAs

2 Internal Structure of Xilinx Virtex FPGAs

The key-component of each Xilinx Virtex FPGA is the CLB, which consists of four
slices each of them providing two 4-input function generators, carry logic, arithmetic
logic gates, function multiplexers and two storage elements (figure 1) [10][12]. The
four slices are directly linked to the global switching matrix and to the fast connection
matrix, so that routing is done between slices and not at the CLB-level. Thus, the
view of a Virtex FPGA using e.g. Xilinx Floorplanner shows the slices available.
When implementing partial reconfiguration, it is important to place reconfigurable
modules horizontally on a four-slice boundary. This means that the leftmost slice
number (‘X’-index) for any reconfigurable module must be 0, 4, 8… Vertically, the
reconfigurable module fits into the full height of the device [11]. Section 4
(Placement Constraints) provides more details how to do it.
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3 Modular Design Flow

The Modular Design Flow is the method generally used to enable partial and dynamic
reconfiguration. Originally, it is intended to allow many designers to work on the
same design project in parallel. Xilinx recommends it to implement partial
reconfiguration [11].

One specific requirement for partial reconfiguration is there must be as many
top-level design projects as the number of reconfigurable modules planned; each top-
level includes a different alternate reconfigurable module. The top-level designs
include fixed modules and reconfigurable modules all instantiated as “black boxes”.
The corresponding attribute for VHDL-design entry is: “attribute box_type of
<module name>: component is "BLACK_BOX” which is defined in the Xilinx unisim
library.  Communication between fixed and reconfigurable modules is implemented
by instantiating as many bus macros as required to assure signal integrity during
partial reconfiguration. For that, the bus macro component and its implementation file
(bm_4b_v2.nmc) are provided. Each top-level design can be handled as a single
design project and therefore synthesized in a separate directory.

In order to get a clear but also essential organization of the design files,
Xilinx recommends setting up a well-defined directory structure. An example of such
a structure can be found in Xilinx Application Notes 290 [11]. The also provided
reference design (e.g. calctop for VHDL-based designs) shows all steps and the
corresponding commands needed to fully implement partial reconfiguration using
Modular Design Flow.

4 Placement Constraints

Placement constraints are one of the central points in the partial reconfiguration. They
are used exclusively to allocate device area for modules in a given configuration or
bitstream. The placement constraints can be done only on the basis of the module's
size which can be estimated after compiling the top-level design containing the
module as described in the initial budgeting phase. The Xilinx PACE tool can then be
used to graphically visualize the module. This is helpful since it provides a good
visual estimation on the bounding-box in which the module can be placed. Use the
PACE toolkit to constraint the module to be placed in the estimated bounding-box to
a given location.

PACE generates (or modifies, if there is one) an “.ucf” file in which the
placement constraints are described in the correct notation (e.g. AREA_GROUP =
usergroup RANGE=SLICE_X3Y1: SLICE_X33Y33 for the Virtex II and II-Pro and
AREA_GROUP = usergroup RANGE=CLB_R3C1: CLB_R33C33 for the Virtex, Virtex E and
Spartan).

It is very important to note that all the pins used by a given module should be locked
in the area (set of columns) occupied by that module. Otherwise, bus macros should
be used to keep the integrity of the signals across module boundaries, especially when
driving a signal from one module to a configurable one. Most designers spend 80% of
the time on solving such issues which are really not related to the partial
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reconfiguration itself. Unfortunately, most of the boards on the market were not
designed for partial reconfiguration purpose. We recommend studying the pin
assignment on a board and only buying it, if it matches the computation-flow of your
application.

5 JBits

JBits [13] is an Application Program Interface (API) to the Xilinx configuration
bitstream. It is designed for dynamic modification of Virtex-II bitstreams. JBits
contains Java classes which allow having access to internal resources by modifying
parts of a partial or complete configuration bitstream. Modification of bitstreams
generated by Xilinx design tools or bitstreams read back from a device is possible.

Designers are able to access resources (e.g. CLBs, IOBs, Block RAM and PIPs)
and may modify them before writing the bitstream back to the FPGA. One example
use of JBits is to use it to extract partial configuration data from a complete bitstream.
This can be done after the Modular Design Flow (see section 3) to generate partial
configuration data. This data can be stored in an external memory and used for partial
reconfiguration by reading out external Flash memory and sending the data to the
Internal Configuration Access Port (ICAP) or the SelectMAP™ interface (see section
6). In [4] this technique is used within the reconfigurable system using static design
flow (figure 2). In this example JBits is only used to extract data from an existing
bitstream without modification of the data.

JBits can modify bitstreams very quickly, which enables it to be used in runtime
reconfiguration (RTR) applications. Using the Java Run Time Reconfiguration (RTR)
design flow (figure 2), the configuration of the FPGA can be modified during run-
time. An application uses JBits for modifying existing or read back configuration
data. Modifications are done and exported to XHWIF (Xilinx HardWare InterFace)
for communication to the hardware. The XHWIF interface can be used for
communication with a FPGA board. It provides several methods to describe the
FPGA based board and to send data to and from the board. The powerful XHWIF API
adds a layer of abstraction to the hardware. This enables the simple porting of
applications to new hardware. XHWIF also provides clock stepping and readback
commands which enable debugging on hardware.

6 ICAP Interface

ICAP is an acronym for Internal Configuration Access Port. This component was
introduced in the Xilinx Virtex-II devices. It is also present in Xilinx Virtex-II Pro
devices. The ICAP provides configuration access to the FPGA logic. This in essence
enables self-reconfiguration of Virtex-II devices. Care obviously must be taken when
using the ICAP not to reconfigure the circuitry that is controlling the ICAP. Thus the
ICAP does not allow full reconfigurations, only partial reconfigurations. The ICAP
interface is a subset of the SelectMAP™ Interface. The process for configuring the
device and reading back from the device using the ICAP is essentially the same as it
is for SelectMAP. Xilinx Application Notes 138 and 151 describe the Virtex™ series
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configuration architecture and the SelectMAP interface [9][10]. Table 1 describes the
ICAP ports.
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Fig. 2. Design Flow with Jbits

The ICAP interface is simplified because it only has to support partial
reconfigurations. It does not have to support full configurations or multiple modes
like SelectMAP.  The pins that are missing from the ICAP interface are the mode pins
(M2, M1, M0), DONE, INIT, and PROGRAM. The SelectMAP CS pin has been
renamed CE on the ICAP. This pin still performs the same functions and it defaults to
active low just like in the SelectMAP interface. The SelectMAP bi-directional D[0:7]
port is split into two ports in the ICAP interface. These two ports are I[0:7] and
O[0:7]. The Xilinx Embedded Developer Toolkit (EDK) provides tools for
implementing FPGA designs containing embedded processors. The EDK version 6.2
contains a peripheral called opb_hwicap. This peripheral wraps the ICAP with
additional logic that can read and write frames to a BRAM. The opb_hwicap
interfaces with the CoreConnect™ On-Chip Peripheral Bus (OPB)[7]. This peripheral
with its associated drivers abstracts away the details of the ICAP configuration
interface and enables a self-reconfiguring platform [8].

7 Troubleshooting

When compiling a partial reconfigurable design, they are some troubles which may
appear. We have listed some of them below and provide some tips on how to solve
them.

In the initial phase
Error: At least on inactive module...
Solution: at top level, each module should be defined as black box
In the Synthesis phase when defining bus macros
Error: a default value is assigned, a signal should be assigned...
Solution: In port map of bus macro, the signal must be grouped.
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Table 1.

ICAP
Port

Description

I[0:7] The I0 through I7 pins function as an input data bus to the ICAP
port. Configuration data is written to this bus. The I0 pin is
considered the MSB bit of each byte.

O[0:7] The O0 through O7 pins function as an output data bus from the
ICAP port. Readback data is read from this bus. The O0 pin is
considered the MSB bit of each byte. This bus also provides status
information while the device is being configured.

BUSY The BUSY output indicates when the FPGA can accept another
byte. If BUSY is Low, the FPGA reads the data bus on the next
rising CCLK edge where both CE and WRITE are asserted Low. If
BUSY is High, the current byte is ignored and must be reloaded on
the next rising CCLK edge when BUSY is Low.

CE Enables the ICAP port. Although not specified in the Libraries
guide, the CE pin is active low by default. FPGA Editor shows that
it is possible to invert this signal to make it active high.  This pin is
equivalent to the SelectMAP \CS pin.

WRITE Like the CE pin the WRITE pin is active low by default.  When
asserted Low, the WRITE signal indicates that data is being written
to Data Input bus (I[0:7]). When asserted High, the WRITE signal
indicates that data is being read from Data Output bus (O[0:7]).
FPGA Editor shows that it is possible to invert this signal to make
it active high.  This pin is equivalent to the SelectMAP \WRITE
pin.

CCLK The CCLK signal synchronizes all loading and reading of the
data bus for configuration and readback.

Error: no pin connected for the output of bus macro
Solution: Define dummy output in the top level entity, and feed the output of bus
macro to them.  Update the .ucf file accordingly.
In the active phase
Error: multiple drivers...
Solution: Check the project properties of the top level designs and all modules before
launching the synthesize tool:  the bus delimiter must be set to (), and the I/O buffers
must be disabled when synthesizing the modules.
Assembling phase
Error: The STEPPING level for this design is 0.  
FATAL_ERROR: Guide: basgitaskphyspr.c:255:1.28.20.1.14.1:137…
Solution: This error is cause by a GLOBAL_LOGIC used implicitly in a sub-module,
but locked in the boundary of the device. For example if a BUFG is used in a sub-
module this will implicitly declare and use a global logic GLOBAL_LOGIC1_XX.
Since GLOBAL_LOGIC1_XX has to be locked in top level design, a fatal error will
be given back.
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Never declare and use a GCC or GND in the top-level module. All the constant
signals (e.g. GND=0; VCC=1) needed at the top-level should be defined in a sub-
module and fed to the top-level entity. Remove all the GNDs and VCCs signals
declared in the sub-level modules which are not used.

8 Partial Reconfiguration with HandelC on the RC200 Board

One of our experiments on partial reconfiguration was made using the HandelC
language on the RC200 board. The structure of the directory previously described is
the same. Using HandelC a design can be compiled either to VHDL or to EDIF,
which then can be used through the Modular Design Flow. The example below shows
how to implement a small partial reconfigurable design using HandelC.

Example: The design consists of an adder in its first configuration and it is partially
reconfigured to act as a subtracter. Both modules (adder and subtracter) have to be
implemented separately. The following listing shows a HandelC description of an
adder.
void main()
{

unsigned 32 res;
interface port_in(unsigned 32 var_1 with {busformat="B<I>"}) Invar_a();
interface port_in(unsigned 32 var_2 with {busformat="B<I>"}) Invar_b();
interface port_out() Outvar(unsigned 32 Res = res with {busformat="B<I>"});
  res = Invar_a.var_1 + Invar_b.var_2;

}

The first part of the code is the definition of the interfaces for communication
with other modules and the second part realizes the addition with the input values
coming from the input interface and the output values sent to the output interface. The
modules must now be included into the top-level module and connected together as
shown on the following code segment.

unsigned 32 operand1, operand2;
unsigned 32 result;
interface adder (unsigned 32 Res)
my_adder(unsigned 32 var_1 = operand1, unsigned 32 var_2 = operand2) with
{busformat="B<I>"};

void main()
{

operand1 = produceoperand( 0); operand2 = produceoperand( 3);
result = my_adder.Res;
dosethingwithresult(result);

}
According to the top-level design being implemented, the adder will be

replaced by a subtracter. The next question is how to keep the signal integrity of the
interfaces. Since there is no bus macro available in HandelC, bus-macros provided by
Xilinx may be used as VHDL-component in a HandelC design. Before setting
constraints on a HandelC design, it has to be compiled first. Afterwards, the resulting
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EDIF-file is opened with any text-editor and the longest pattern that contains the
name of the module as declared in the top-level module is selected. This is useful
because the HandelC compiler adds some characters to the module name used in the
original design. If the original module name is used it will not be recognized in the
following steps of the Modular Design Flow.

Experience with the RC200-Board
Since all the interfaces and pin-locking of the RC200-board are hard-coded in the
Celoxica-PSL-library, it is not possible to set the required pin-constraints after the
design has been compiled to EDIF. Thus, the design has to be compiled to VHDL in
order to overcome this issue. In the resulting entities the top-level ports are named
with the pin-names of the given device. Note that the pins are not optimally (in term
of partial reconfigurability) placed on the RC200-board.

9 Practical Demonstration

We have implemented a self-reconfigurable platform under Linux. The hardware for
this demo is the Xilinx ProMedia Board which contains 3 Virtex2Pro XC2VP50
devices. In this demo only one XC2VP50 is used. On the XC2VP50 is a complete
running Linux system. The embedded PowerPC is used to run Linux and multiple
peripherals are implemented in the FPGA fabric. The ProMedia board has a
LM4549A audio chip. We use this chip to stream music from an MP3 player into an
audio filter implemented on the same FPGA as the running Linux system. From a
laptop we are able to login to the ProMedia board over a TCP/IP connection. Once
logged in to the board we can download new DSP filters over the TCP/IP connection
and self-reconfigure the FPGA with these filters. The effect of loading the new filters
can be heard through the speakers.

Figure 3 shows how the physical design has been partitioned. In this design bus
macros are not used since there is no communication between the logic that makes up
the embedded Linux system and the filters that are reconfigured. However there is
communication between the main Linux system on the right hand side and the
Ethernet and SystemAce peripherals on the left hand side via an OPB bus. The DSP
filter between these two regions can be reconfigured without disturbing the
communication on the OPB bus.  This is possible because Virtex 2 [Pro] devices offer
glitchless partial reconfiguration.  If a configuration bit holds the same value before
and after configuration there will be no glitch on the resource that bit controls.
Resources to be careful of are SRL16s and LUT Rams because they change
dynamically and will be over written when configuration occurs.  We worked around
this problem by constraining the filters to the top part of the reconfigurable region and
allowing only OPB routing (no logic) under the filter region.
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Fig. 3.  FPGA Editor view of implemented system

10 Conclusions

Partial and dynamic run-time reconfiguration offers new possibilities for designs with
Xilinx Virtex-II FPGAs. This paper shows the desired design flow and novel tools
enabling the use of this technique. One example of the benefit for using dynamic
reconfiguration is the possibility to use smaller FPGAs by outsourcing configuration
data [5]. Other aspects are the adaptivity of systems to the demand of e.g. applications
or environment. This technique opens a great field for investigation and the
development of new systems.
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Abstract. The Field Programmable Logic (FPL) community is set to
assume an important role within the electronic system level (ESL) com-
munity. Programmable technologies are proving to be the correct imple-
mentation substrate for the growing majority of system architects who
can no longer afford the cost or shoulder the risks associated with sub-
micron ASIC design. In this tutorial we present an overview of SystemC,
the dominant and open environment for ESL design and modeling. We
focus on presenting the fundamentals of the language and describing
an important extension to the language that enables rapid modeling of
systems at the transaction level.

1 Introduction

ASIC design has become an overwhelming task, plagued by spiraling cost and
complexity, and burdened with issues at both the silicon and system levels. Pro-
grammable logic such as FPGAs are a compelling alternative implementation
technology that allow the designer to mitigate the silicon-level issues of ASIC
design. Yet, as FPGAs and other programmable technology become host to
larger systems, the challenges being tackled by the electronic system level (ESL)
for contemporary ASIC design community also will be applicable to designers
in the FPGA community. This paper describes SystemC, the defacto industry
standard modeling environment for ESL. Our aim is to provide a comprehensive
overview of two of the main features of the SystemC environment. In section
one, we describe the fundamentals of the SystemC language and its approach
to modeling. In section two, we discuss an important extension to SystemC: a
standard library, defined by Cadence, for modeling systems at the transaction
level. This library is proposed to the SystemC community for widespread adop-
tion and is in process of being donated to the Open SystemC Initiative (OSCI)
for inclusion into the SystemC language.

2 The Fundamentals of SystemC

Many system-level models have been written using the C or C++ language.
SystemC standardizes these approaches in one language, based in C++ and
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implemented as a library that includes a simulation kernel. The library pro-
vides all the necessary constructs for hardware specification, software design, and
system-level modeling. The governing body of SystemC is the Open SystemC
Initiative (OSCI). OSCI holds the license of SystemC under an open software li-
cense model and it drives both the standardization and the further development
of the language. In addition, a vivid market of commercial products (EDA tools,
IP products, etc.) has been established around the SystemC language.

Compared to traditional hardware description languages like VHDL or (Sys-
tem)Verilog, SystemC addresses a broad range of abstraction levels, beginning
from low-level hardware modeling on the register-transfer level (version 1.x)
up to system-level modeling methodologies and algorithmic specification styles
(current version 2.x). The future roadmap for the language integrates real-time
software development (version 3.x), and analog, mixed-signal design (version
4.x).

2.1 Basic Modeling Concepts

The structure of the SystemC library is shown in Figure 1. The core language
elements (modules, ports, processes, etc.) and the extended hardware-specific
data types (including standard C++ types) are the basis blocks of the language.
Elementary channels for communication and synchronization (signals, FIFOs,
etc.) are built upon these. SystemC allows designers to extend the language’s
modeling capabilities by adding user-defined or application-specific channels or
libraries, e.g. for master/slave-like communication, verification and testbenching,
or alternative models of computation.

Standard Channels for Various
Models of Comuptation

Kahn Process Networks,

Static Dataflow, etc.

Methodology-specific
Channels and Libraries

Master/Slave Library,

SystemC Verification Library

Elementary Channels
Signals, timers, mutexes, semaphores, FIFOs, etc.

Core Language Elements
Modules, ports, processes, events,

interfaces, channels.

Event-driven kernel.

Data Types
4-value logic types/vectors, bits and

bit-vectors, arbitrary-precision

integers, fixed-point numbers,

C++ user-defined types.

C++ Language Standard

Fig. 1. SystemC Language and Library Structure

Modules and Hierarchy. Modules are the building blocks of a SystemC de-
sign. The sc module class allows us to compose a design from distinct func-
tional units and separate the specification of computation from communication.
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Modules may contain other modules, allowing hierarchical composition. A mod-
ule may also contain SystemC processes which enable concurrency within the
model. The behavior of the module is specified in its member functions. Data
members of a module can be any kind of variables or SystemC ports. Ports
are the connecting points to the interfaces of SystemC channels and facilitate
communication between the modules of the model.
Channels, Ports, and Interfaces. To ensure extensibility and a proper separa-
tion of functionality and communication, SystemC supports the concept of chan-
nels. Channels (derived from SC_CHANNEL) are containers for communication.
The interfaces (derived from sc_interface) of a channel define only the func-
tion signatures (prototypes) for the communication and synchronization which
is to be implemented within a channel. A process in a module may access these
communication functions (e.g. data read() or write() functions) by ‘binding’
the channel interfaces to ports of the module and invoking the functions speci-
fied in the interface via the bound port object. Figure 2.1 shows this scenario.
The interface concept enables easy substitution of one channel implementation
for another (e.g. swoping an un-timed for a timed implementation) without any
modification of the module specifications, provided the interface definition re-
mains unchanged.

MODULE B

Processes

Port

MODULE A

Processes

Port

Channel

Inter-
face

Inter-
face

Fig. 2. Module Communication

Besides these ‘primitive’ channels, SystemC also supports ‘hierarchical’ chan-
nels that can contain their own processes, e.g. for modeling complex communi-
cation protocols. SystemC provides several standard channels, such as hard-
ware signals (sc_signal), and FIFOs (sc_fifo), etc. Primitive and hierarchical
channels can also be user-defined. With these features, SystemC can model ba-
sic low-level communication like hardware signals as well as extended, abstract
communication semantics defined by the designer.
Processes: As mentioned above, the functionality in SystemC designs is ex-
pressed in member functions of the respective modules. This functionality is
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vitalized by processes, the SystemC constructs that represent concurrency. Sys-
temC provides two types of process: sc_method and sc_thread:
Methods: When activated, a method process always executes its function body
from the beginning to the end. It cannot be interrupted and therefore it doesn’t
save any internal state. For example the modeling of a finite state machine using
methods explicitly requires member variables and switch statements.
Threads: In contrast to a method, a thread process may be suspended by call-
ing wait() functions. Whilst suspended, its state (including local variables) is
retained and the execution will be continued from the same point after it is re-
invoked by the SystemC scheduler. This allows the specification of multi-cycle
behavior very easily.
Sensitivity lists (both static and dynamic) are used to inform the SystemC sched-
uler which specific events (e.g. signal changes, clock signals, user defined, etc.)
may activate any given process.
Data Types: As SystemC is based on the C++ programming language, all
C++ data types like integer, floating-point data types, etc. can be used within a
SystemC model. The SystemC library also introduces a huge variety of additional
data types that are designed specially for system and hardware modeling: two-
valued and four-valued bits and bit vector types, arbitrary width integer data
types and a sophisticated set fixed-point data types.

Putting it all together: SystemC Simulation. OSCI maintains the refer-
ence implementation of the SystemC simulator. In order to run a SystemC sim-
ulation, the entire model is compiled using a common C++ compiler and linked
to the SystemC library (the OSCI event-driven simulation kernel is included in
the SystemC library). The resulting executable represents the simulator for the
given model and running it performs an actual simulation of the system. During
execution, the model may interact with its environment, read and produce data
files and, with the help of an integrated trace library, produce standard VCD
waveforms. Third party vendors such as Cadence, Mentor and CoWare also offer
simulators for SystemC.

The path towards Hardware: SystemC Synthesis. SystemC includes de-
sign flows for hardware synthesis. The synthesizable subset of the SystemC lan-
guage depends strongly on the synthesis tool. The current synthesizable subset
is comparable to that of classical hardware description languages. Ongoing stan-
dardization activities within the OSCI synthesis working group also cover the
specification of a tool and vendor independent synthesizable subset.

3 Transaction Level Modeling

Transaction Level Modeling (TLM) addresses a number of practical ESL design
problems. These include: providing an early platform for software development;
design exploration; system verification; and the need to use system-level models
in block-level verification. RTL tools and techniques are intended for block level
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implementation and test and are not effective for ESL design. As such, an ESL
tool chain must enable design at levels of abstraction above RTL: designs should
be captured and manipulated at the transaction level. The OSCI Transaction
Level Working Group (TLMWG) has defined the following abstraction levels,
listed in increasing order of detail:

– algorithmic level(AL): purely behavioral, no architectural detail whatso-
ever.

– communicating processes(CP): behavior partitioned into a network of
processes connected point-to-point, possibly through buffers.

– communicating processes with time(CP+T): CP annotated with high-
level performance data.

– programmers view (PV): behavior specified memory and register accu-
rate. The CP point-to-point interconnect refined to an abstracted bus or
NoC model. The model is sequenced but untimed.

– programmers view with time (PV+T): PV with multi-cycle timing es-
timates annotated.

– cycle callable (CC): system behavior modeled with hardware and cycle-
true detail. Communication models are protocol-true.

– register transfer level (RTL).

Of these abstraction levels, TLM applies at the levels between AL and RTL.
SystemC has supported TLM since Version 2.0 but the lack of established stan-
dards and methodologies meant each TLM effort had to invent its own methods
and APIs. In addition to ‘reinventing the wheel’, the methodologies each dif-
fered slightly, making IP exchange difficult. An industry standard for TLM will
increase the productivity of software engineers, architects, implementation and
verification engineers. However, the improvement in productivity promised by
such a standard can only be achieved if the standard meets a number of criteria:
it must be easy to use, efficient and thread-safe; it must enable reuse between
projects and abstraction levels; it must model hardware, software and hybrid
designs easily; and it must enable the design of generic components such as
routers and arbiters. This section describes the proposed OSCI TLM standard,
as originally defined by Cadence in [5]. Widespread adoption of this proposal
will enable the productivity improvements promised by TLM.

3.1 The TLM Proposal

Three key concepts are used in the proposal: interfaces; blocking vs non-blocking
methods; and bi-directional vs uni-directional transactions.

Interfaces : The emphasis on interfaces rather than implementation flows from
the fact that SystemC is a C++ class library, and that C++ (when used prop-
erly) is an object oriented language. Interfaces are the key to enabling inter-
operability and reuse. Before we can define a TLM standard, we first need to
rigorously define the key interfaces, and then we can go on to discuss the various
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ways these may be implemented in a TLM design. In SystemC, all interfaces
should inherit from the class sc interface.
Blocking and Non Blocking: As discussed in the fundamentals section, Sys-
temC offers two concurrency constructs: SC THREAD and SC METHOD. OSCI de-
fines SC METHOD to be anon-blocking construct: it cannot invoke the simulator’s
‘wait()’ function. SC THREAD is a blocking process construct as it may call
wait(). This distinction is important to TLM as some models are more nat-
urally captured with a blocking style whereas others have a natural fit with
a non-blocking style. The non-blocking style avoids simulator context switch
penalties and therefore gains simulation performance. This issue is discussed
in some depth in [4]. In the TLM API, we clearly delimit which methods are
blocking (they may call ‘wait()’) and which methods are non-blocking (they
are guaranteed not to call ‘wait()’).
Bidirectional vs Unidirectional: Some transactions (e.g., a read across a
bus) are clearly bidirectional whilst others are clearly unidirectional (e.g., a
packet based communication mechanism). Complex protocols may be decon-
structed into a sequence of bidirectional or unidirectional transfers. For example,
a bus with address, control and data phases may look like a simple bidirectional
read/write bus at a high level of abstraction, but more like a sequence of pipelined
unidirectional transfers at a more detailed level. Any TLM standard must have
both bidirectional and unidirectional interfaces, provide a common look and feel
to both interfaces, and show clearly how the two may inter-relate.

3.2 The Core TLM Interfaces

The Unidirectional Interfaces. Figure 3(i) and (ii) show the unidirectional
interfaces, both of which are based on the sc fifo interfaces of SystemC 2.1.
sc fifo has been used for many years and, as a result, it is well understood and
proven reliable in concurrent systems. Furthermore, interfaces based on sc fifo
are amenable to well known static scheduling optimizations. The unidirectional
interface classes are split into blocking and non-blocking classes. Non-blocking
methods are distinguished with the prefix “nb ”. For convenience, we supply
two forms of get and a default implementation of the pass-by-reference form.
Therefore, an implementer of the interface need only supply one.

The non-blocking interfaces may ‘fail’ since they are not allowed to wait()
for the correct conditions for the calls to succeed. Since the blocking functions
are allowed to call ‘wait()’, they never ‘fail’. Hence nb put and nb get must
return a bool to indicate whether the invocation succeeded. We also supply
nb can put and nb can get which enquire whether a transfer will be successful
without actually moving any data. These methods enable polling put() and
get() methods to be implemented. We also supply event functions which enable
an SC THREAD to wait until it is likely that the access succeeds or a SC METHOD to
be woken up because the event has been notified. These event functions enable
an interrupt driven approach to using the non-blocking interface. However, in
the general case, even if the relevant event has been notified, we still need to
check the return value of the non-blocking method. For example, many threads
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template < type T >
class tlm_blocking_get_if : … {
public:
  virtual T get() = 0;
  virtual void get (T &t){t=get();}
};

template < type T >
class tlm_blocking_put_if  : … {
public:
  virtual void put(const T &t)=0;
};

(i) TLM Unidirectional Blocking Interface

template < typename T >
class tlm_nonblocking_put_if  : … {
public:
  virtual bool nb_put ( const T &t ) = 0;
  virtual bool nb_can_put () const = 0;
  virtual const sc_event & ok_to_put () const = 0; };

template < typename T >
class tlm_nonblocking_get_if  : … {
public:
  virtual bool nb_get ( T &t ) = 0;
  virtual bool nb_can_get () const = 0;
  virtual const sc_event & ok_to_get () const = 0;
};

(ii) TLM Unidirectional Non-blocking Interface

template<REQ, RSP>

class tlm_transport_if  : ... {
public:

virtual RSP transport (const REQ&) = 0;};

(iii) TLM Bidirectional Blocking Interface

template < REQ , RSP >
class tlm_master_if  :

  public virtual tlm_extended_put_if < REQ > ,

  public virtual tlm_extended_get_if < RSP > {};

template < REQ , RSP >

class tlm_slave_if :

  public virtual tlm_extended_put_if < RSP > ,
  public virtual tlm_extended_get_if < REQ > {};

};

(iii) TLM Channel Interfaces and transport method implementation

RSP transport ( const REQ &req ) {

  request_fifo.put( req );

  return response_fifo.get( rsp );

}

Fig. 3. TLM Interfaces and Channels



818 A. Donlin, A. Braun, and A. Rose

may have been notified that a fifo is no longer full but only the first to ‘wake
up’ is guaranteed to have room to write before the fifo is full again.

Bidirectional Blocking Interface. The bidirectional blocking interface,
shown in Figure 3(iii), is used to model transactions where there is a tight one
to one, non-pipelined binding between the request going in and the response
coming out. This is typically true when modeling from a software programmers
point of view, when for example a read can be described as an address going in
and the read data coming back. The signature of the transport function can be
seen as a merger between the blocking get() and put() functions. This is by
design, since then we can produce implementations of tlm transport if which
simply call the put() and get() of two unidirectional interfaces.

3.3 TLM Channels

One or more of the interfaces described above can be implemented by any channel
that a user cares to design. However, we have identified two channels common
to a large number of modeling contexts. We provide implementations of them as
part of the core TLM proposal.
tlm fifo<T>: The tlm fifo<T> class implements all the unidirectional interfaces
above, and is based on the implementation of sc fifo. In addition to the sc fifo
functionality, tlm fifo can be zero or infinite sized, and implements the fifo
interface extensions discussed in [5].
tlm req rsp channel<REQ,RSP>: This class contains two fifos, one for the re-
quest going from initiator to target and one for the response from target to
initiator. We provide direct access to these fifos by exporting the four fifo in-
terfaces. The channel implements three additional interfaces. The first two com-
bine the unidirectional requests and responses into convenient master and slave
interfaces. In addition to this, it implements the transport() method of the
tlm transport if<REQ,RSP> as shown in Figure 3(iv). This simple function
provides a key link between the bidirectional and sequential world (represented
by the transport function) and the timed, unidirectional world (represented by
tlm fifo<T>).

3.4 Core of TLM Library

The ten methods, grouped into the five interfaces above, will form the basis of
the OSCI TLM standard. With it we may build models of software and hard-
ware, generic routers and arbiters, pipelined and non pipelined buses, and packet
based protocols. We can also model at multiple levels of timing and data ab-
straction and provide channels to connect between abstraction levels. Users may
design their own channels, implementing some or all of the TLM interfaces. In
addition to the core interfaces, the two standard channels (tlm fifo<T> and
tlm req rsp channel<REQ,RSP>) are included and enable modeling of a wide
variety of timed systems and an easy to use bridge between the untimed and
timed domains.
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3.5 The Structure of an OSCI-TLM Model

It is not possible to give a detailed example of a TLM model in this paper but
in this section we shall discuss the abstract structure of a single master, single
slave TLM. We refer the reader to [4,5] for a detailed treatment of both the
philosophy and technology of the TLM library. Figure 4 shows the common use
of the TLM interfaces in a bus oriented model with a master node initiating a
transaction to a slave node. The structure may be applied through each of the
abstraction levels and a discussion of the refinement of a TLM based on this
structure can be found in [5], alongside many more examples of using the TLM
interface classes for common system structures.

text

Master Slave

initiator_port slave_base

SC_PORT SC_EXPORT

Convenience interface

TLM interface

User
Layer

Protocol
Layer

Transport
Layer

Read(), Write()

Transport()

Fig. 4. Common API Layering in a TLM

We have separated out the API utilization according to three layers: user,
protocol and transport. This separation exists to serve two distinct groups of
engineers. The first group (the “application-level” engineers) understand the ap-
plication domain very well, but they are not particularly expert in C++ nor are
they interested in the finer details of the TLM transport layer or the signal level
protocol used to communicate between modules. The second group (the “system-
modeling” engineers) do not necessarily understand the application domain well,
but its members do understand the underlying communication protocols and the
C++ techniques used to model them. Because of the difference in relative ex-
pertise and interests, it is often useful (but by no means compulsory) to define a
protocol-specific boundary between the two groups. In Figure 4, we identify this
boundary as the ‘convenience interface’. It allows the first group of engineers to
create comprehensive models of the system behavior without concerning them-
selves with detailed protocol and modeling issues. The structure shown in Figure
4 assumes a bus-based system and exposes two read() and write() methods.
It is these methods that constitute the convenience interface and, through them,
the ‘application-modeling’ engineers may express interaction of the system mod-
ules they specify. Below the user layer, the protocol and transport layer may be
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implemented and optimized by the second group of engineers. At these levels,
they may further optimize the model’s implementation for efficient exploration
and analysis of the system . By maintaining coherence with the respective TLM
interfaces, the implementations may also be swopped out for alternative imple-
mentations as required.

4 Summary

ESL and the technologies which enable it are of growing relevance to the pro-
grammble logic community. As ASIC design cost and complexity continue to
grow, more and more system-level ASIC design starts will be displaced into
programmable technologies. FPGAs are the dominant programmable logic tech-
nology and this tutorial has offered an overview of SystemC, the dominant ESL
modeling technology, to this important design community. The authors of this
paper firmly believe that, as FPGAs and other programmable technologies as-
sume their role in system-class designs, the design and modeling environment
offered by SystemC will become a central component of the FPGA designer’s
tool flow. We have provided an overview of two key components of ESL with
SystemC: the fundamentals of the language and the upcoming transaction-level
extensions to the language. For further discussion of these issues we direct the
reader to [2,1] and [4,5] respectively. A breadth of information on SystemC and
OSCI may also be found at [6].
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Abstract. Evolvable Hardware (EHW) is a scheme - inspired by natural evolu-
tion, for automatic design of hardware systems. By exploring a large design search
space, EHW may find solutions for a task, unsolvable, or more optimal than those
found using traditional design methods. During evolution it is necessary to evaluate
a large number of different circuits which is normally most efficiently undertaken
in reconfigurable hardware. For digital design, FPGAs (Field Programmable Gate
Arrays) are very applicable. Thus, this technology is applied in much of the work
with evolvable hardware. The paper introduces EHW and outlines how it can be
applied for hardware design of real-world applications. It continues by discussing
the main problems and possible solutions. This includes improving the scalabil-
ity of evolved systems. Promising features of EHW will be addressed as well,
including run-time adaptable systems.

1 Introduction

The number of transistors becoming available for designers continue to increase as
Moores law seems to be valid for the development of new computer hardware. Earlier
we have seen a limit in the size of hardware devices. However, we may very well soon
see a limit in designability. That is, designers are not able to apply all the transistors
in the largest integrated circuits becoming available. To overcome this problem, new
and more automatic design schemes would have to be invented. One such method is
evolvable hardware (EHW).

Initialize a
population
of circuits

Evaluate the
circuits

Sort circuits
based on

their fitness

Is the best 
circuit

acceptable?

Make new circuits
by combining parts 

from the highest
ranked circuits

No

Yes Apply
Circuit

Fig. 1. The algorithm for evolving circuits.
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Fig. 2. The genetic algorithm operators.

It was introduced for about ten years ago as a new way of designing electronic
circuits [4]. Instead of manually designing a circuit, only input/output-relations are
specified. The circuit is automatically designed using an adaptive algorithm inspired
from natural evolution. The algorithm is illustrated in Fig. 1. In this algorithm, a set
(population) of circuits – i.e. circuit representations, are first randomly generated. The
behavior of each circuit is evaluated and the best circuits are combined to generate new
and hopefully better circuits. Thus, the design is based on incremental improvement of
a population of initially randomly generated circuits. Circuits among the best ones have
the highest probability of being combined to generate new and possibly better circuits.
The evaluation is according to the behavior initially specified by the user. After a number
of iterations, the fittest circuit is to behave according to the initial specification. The most
commonly used evolutionary algorithm is genetic algorithm (GA) [3]. The algorithm –
which follows the steps described above, contains important operators like crossover
and mutation of the circuit representations for making new circuits. The operations are
very similar to those found in natural evolution as seen in Fig. 2.

Each individual – representing a circuit description, in the population is often named
chromosome or genotype and is represented by an array of bits. Each bit in the array
is often called a gene. Thus, each chromosome contains a representation of a circuit
with a set of components and their interconnections. In crossover, the parameters of
the pairwise selected circuits are exchanged to generate – for each couple, two new
offspring – preferably fitter than the parents. As an alternative to crossover operation,
there is usually some probability for conducting cloning instead. Then, the two offspring
circuits are equal to the two parent circuits. Further, the best circuit may as well be directly
copied into the next generation (called elitism). Mutations may also occur and involves
randomly inverting a few genes in the chromosome. This make the chromosomes slightly
different from what could be obtained by only combining parent chromosomes.

When the number of offspring circuits equals the number of circuits in the parent
population, the new offspring population is ready to become the new parent popula-
tion. The original parent population is deleted. Thus, one loop in Fig. 1 is named one
generation. Randomness is introduced in the selection of parents to be mated. Not only
the fittest circuits are selected. However, the probability of a circuit being selected for
breeding decreases with decreasing fitness score.

A circuit can be represented in several different ways. For digital circuits however,
gate level representation is most commonly used. That is, the representation contains a
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Fig. 3. Illustration of an Field Programmable Logic Device (FPLD).
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Fig. 4. The cycle of evolving a circuit.

description of what kind of gates are applied and their interconnections. This is coded
into a binary configuration bitstream applied to configure a reconfigurable logic device
as seen in Fig. 3. This is usually either a commercial device like an Field Programmable
Gate Array (FPGA) or a part of an Application Specific Integrated Circuit (ASIC). Each
new circuit would have to be evaluated for each generation. This can be undertaken more
efficiently by measuring the performance on a real reconfigurable device compared to
using simulation. Thus, reconfigurable technology is an important technology for the
development of systems based on evolvable hardware.

In addition to the evolutionary algorithm (GA), a circuit specification would have to
be available. This is often a set of training vectors (input/output mappings) assembled
into a data set. The operation of GA together with the data set are given in Fig. 4. The
most computational demanding part of GA is usually the evaluation of each circuit –
typically named fitness computation. This involves inputing data to each circuit and
computing the error given by the deviation from the specified correct output.

There are a number of aspects to consider when evolving hardware. Many roads lead
to evolved systems. This paper will give an overview of the large variety of schemes,
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parameter settings and architectures available. However, evolving systems have a number
of limitations. One of the main problems with evolution seems to be the scalability of
the systems. As the complexity of a system increases, the chromosome string length
must be increased. However, a larger number of generations is required as the string
length increases. This often makes the search space too large to be able to find a well
performing system. Thus, this paper will go into this important problem and present how
it is tried to be solved.

On the other hand, there are several new features provided with evolution. Since
the systems are automatically designed, we are able to have the evolution going on at
runtime in parallel with normal operation. This could be applied to modify the system if
the environment changes or errors occur in the system. Work on such run-time adaptable
systems will be described. Evolvable hardware has been applied to a number of real-
world applications showing the applicability of the promising approach of evolving
hardware systems.

The next section contains a classification of EHW research based on a given clas-
sification framework [32]. This is followed by a discussion of the main problems in
Section 3. Section 4 includes a presentation of the online adaptivity provided with EHW.
Conclusions are given in Section 5.

2 A Framework for Classifying EHW

EHW research is rapidly diverging. Thus, to understand the EHW field of research, a
classification framework would be beneficial. This is presented below. The many degrees
of freedom in EHW could be represented in a multi-dimensional space. However, here
a list format is prefered.

Table 1. Characteristics of EHW applied to real-world applications.

Application EA TE AR BB THW FC EV SC
Adaptive Equalizer [18] GA D CD Neuron Custom ONL On-chip S
Ampl. and Filter Design [15] GA A CD T/R/L/C Custom OFL Off-chip S
Analog Circuit Synthesis [12] GP A CD R/L/C Custom OFL Off-chip S
Character Recognition [31] GA D CD Gate Comm. OFL Off-chip S
Clock Adjustment [27] GA D CT Gate Custom ONL Off-chip S
Digital Filter Design [16] GA D CD Gate – OFL Off-chip S
Gene Finding [39] GA D CD Gate Comm. OFL Off-chip S
IF Filter Tuning [17] GA A CT Filter Custom ONL Off-chip S
Image Compression [22] GA D CT Pixel Custom ONL On-chip D
Image Compression [23] GA D CD Gate Comm ONL On-chip D
Multi-spect. Image Rec. [20] GA D CT Function Comm. OFL Off-chip S
Number Recognition [7] GA D CD Gate Comm. OFL Off-chip S
Prosthetic Hand [9] GA D CD Gate Custom ONL Complete S
Road Image Rec. [33] GA D CD Gate Comm. OFL Off-chip S
Robot Control [10] GA D CD Gate Comm. ONL Complete D
Robot Control [28] GA D CD Gate Comm. ONL Off-chip S
Sonar Classification [38] GA D CD Gate Comm. OFL Off-chip S
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Evolutionary Algorithm (EA). A set of major algorithms exists:
– Genetic Algorithm (GA)
– Genetic Programming (GP)
– Evolutionary Programming (EP)

The major difference between GA and GP is the chromosome representation. GA
organizes the genes in an array, while GP applies a tree of genes. Both schemes
apply both crossover and mutation, while EP – which has no contraints on the
representation, uses mutation only.

Technology (TE). Technology for the target EHW:
– Digital
– Analog

Architecture (AR). The architecture applied in evolution:
– Complete Circuit Design (CD) Complete circuit evolution where building

block functions (see below) and their interconnections are evolved.
– Circuit Parameter Tuning (CT) The architecture is designed in advance and

only a set of configurable parameters are evolved.

Building Block (BB). The evolution of a hardware circuit is based on connecting basic
units together. Several levels of complexity in these building blocks are possible:

– Analog comp. level. E.g. transistors, resistors, inductors and capacitors.
– Gate level E.g. OR and AND gates.
– Function Level E.g. sine generators, adders and multipliers.

Target Hardware (THW). In EHW, the goal is to evolve a circuit. The two major
alternatives for target hardware available today are:

– Commercially available devices. FPGAs are most commonly used. Field-
Programmable Analog Arrays (FPAA) are available as well. They use the same
programming principle as FPGAs, but they consist of reconfigurable analog
components instead of digital gates.

– Custom hardware. ASIC (Application Specific Integrated Circuit) is a chip
fully designed by the user.

Fitness Computation (FC). Degree of fitness computation in hardware:
– Offline Fitness Computation (OFL). The evolution is simulated in software,

and only the elite chromosome is written to the hardware device (sometimes
named extrinsic evolution).

– Online Fitness Computation (ONL). The hardware device gets configured for
each chromosome for each generation (sometimes named intrinsic evolution).

Evolution (EV). Degree of evolution undertaken in hardware:
– Off-chip evolution. The evolutionary algorithm is performed on a separate

processor.
– On-chip evolution. The evolutionary algorithm is performed on a separate

processor incorporated into the chip containing the target EHW.



826 J. Torresen

– Complete HW evolution. The evolutionary algorithm is implemented in
special hardware – i.e. it is not running on a processor.

Scope (SC). The scope of evolution:
– Static evolution. The evolution is finished before the circuit is put into normal

operation. No evolution is applied during normal operation. The evolution is
used as a circuit optimizing tool.

– Dynamic evolution. Evolution is undertaken while the circuit is in operation
and this makes the circuit online adaptable.

Table 1 summarizes the characteristics of the published work on EHW applied to
real-world applications. The applications are mainly in the areas of classification and
control when complete circuit design is applied. There are also some examples of circuit
parameter tuning. A major part of them are based on digital gate level technology using
GA as the evolutionary algorithm. However, promising results are given for analog
designs, where evolution is used to find optimal parameters for analog components.
About half of the experiments are based on custom hardware – or simulation of such. It
is more common to put only the fitness computation (ONL), than the whole evolution
(On-chip/Complete), on the same chip as the target EHW. This is reasonable, since the
fitness computation is – as mentioned earlier, the most computational demanding part
of the evolution.

Even though there are promising results in evolving systems, there are several ob-
stackles as well that will be discussed in the next section.

3 Evolvable Hardware Scalability

There are several problems concerning evolution and scalability. In this section, two of
the major ones will be discussed.

3.1 Chromosome String Length

As mentioned in the introduction, there has been a lack of schemes to overcome the
limitation in the chromosome string length [14,37]. A long string is required for rep-
resenting a complex system. However, a larger number of generations are required by
genetic algorithms as the string length increases. This often makes the search space too
large and explains why only small circuits have been evolvable so far. Thus, work has
been undertaken trying to diminish this limitation. Various experiments on speeding up
the GA computation have been undertaken [1]. The schemes involve fitness computation
in parallel or a partitioned population evolved in parallel. Experiments are focussed on
speeding up the GA computation, rather than dividing the application into subtasks. This
approach assumes that GA finds a solution if it is allowed to compute enough genera-
tions. When small applications require weeks of evolution time, there would probably
be strict limitations on the systems evolvable even by parallel GA.

Other approaches to the problem have used variable length chromosomes [7]. An-
other option, called function level evolution, is to apply building blocks more complex
than digital gates [19]. Most work is based on fixed functions. However, there has been
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work in Genetic Programming for evolving the functions — called Automatically De-
fined Functions (ADF) [11].

An improvement of artificial evolution — called co-evolution, has been proposed
[6]. In co-evolution, a part of the data which defines the problem co-evolves simultane-
ously with a population of individuals solving the problem. This could lead to a solution
with a better generalization than a solution based only on the initial data. A variant of
co-evolution — called cooperative co-evolutionary algorithms, has been proposed by
De Jong and Potter [8,21]. It consists of parallel evolution of sub-structures which inter-
act to perform more complex higher level structures. Complete solutions are obtained
by assembling representatives from each group of sub-structures together. In that way,
the fitness measure can be computed for the top level system. However, by testing a
number of individuals from each sub-structure population, the fitness of individuals in
a sub-population can be sorted according to their performance in the top-level system.
Thus, no explicit local fitness measure for the sub-populations is applied in this ap-
proach. However, a mechanism is provided for initially seeding each GA population
with user-supplied rules. Darwen and Yao have proposed a co-evolution scheme where
the subpopulations are divided without human intervention [2].

Incremental evolution for EHW was first introduced in [30]. The approach is a divide-
and-conquer on the evolution of the EHW system, and thus, named increased complexity
evolution. It consists of a division of the problem domain together with incremental
evolution of the hardware system. Evolution is first undertaken individually on a set of
basic units. The evolved units are the building blocks used in further evolution of a larger
and more complex system. The benefits of applying this scheme is both a simpler and
smaller search space compared to conducting evolution in one single run [35].

When considering manual hardware design, much a priori knowledge is applied
[29]. E.g. designing a large circuit would be almost impossible if the designer had to
design each sub-circuit from scratch every time it is used [13]. Further, connections are
with a mixture of buses and bit-wires. Thus, in the future it is expected to see intelligent
(or controlled) evolution as an alternative to the normal unconstrained evolution.

3.2 Fitness Computation

To be able to conduct online fitness computation, fast switching between different con-
figurations in a population should be possible. With the available FPGA technology,
only a single configuration can be stored at a time within the device. Reloading a new
configuration takes too much time to be of interest for evolution. Thus, there has been
work on implementing a user defined FPGA inside an ordinary FPGA [25,30]. By pro-
viding a set of different configuration registers, it is possible to store a population of
configurations within an FPGA and perform configuration switching in a single clock
cycle [34].

4 Online Adaptation in Real-Time

Most living creatures are able to learn to live in an environment and adapt if some
change occur.Artificial systems are far from such an adaptivity. Research on evolutionary
methods has – with a few exceptions, been based on one-time evolution. However, there is
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a wish of being able to design online adaptable evolvable hardware. The hardware would
then have to be able to reconfigure its configuration dynamically and autonomously, when
operating in its environment [5]. This would be by dynamic evolution.

One possible approach to such a system is to use two parallel units. A primary unit
is applied for normal runtime operation of an application, while a secondary unit keeps
evolving in parallel. If the performance of the secondary unit becomes better than the
primary unit, they are exchanged. Thus, the unit giving the best performance at the
moment is enabled.

A system for autonomous evolution of robot control has been proposed [10]. A
mobile robot learns to track a red ball without colliding with obstacles through dynamic
evolution. Thus, all information about the environment is collected concurrently with
evolution. This is undertaken through building a model of the environment. Another
application with dynamic evolution is image compression [22]. During compression of
a given image, evolution search for an optimal set of templates for doing pixel prediction.

So far there is not much work on applying dynamic evolution. This is mainly due
to the problem of evolution speed and fitness computation. A set of individuals in the
population would have to be evaluated – one at a time, for each generation which is
normally time consuming. To make fitness computation you need a feedback from the
environment on the performance. This could be difficult to obtain. However, if these
problems can be overcome, there is a large potential in being able to provide online-
adaptable systems.

5 Conclusions

This paper has introduced EHW and contained a study of the characteristics of EHW
applied to real-world applications. Further, problems and new features related to evolu-
tion are discussed. For more information about evolvable hardware, there are a couple
of special journal issues [36,26] and some books [40,24]. The two main conferences in
the field are International Conference on Evolvable Systems: From Biology to Hardware
(Springer LNCS publisher) and NASA/DoD Conference on Evolvable Hardware (IEEE
publisher).
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Abstract. We present a runtime environment that partially reconfigures and ex-
ecutes hardware tasks on Xilinx Virtex. To that end, the FPGA’s reconfigurable
surface is split into a varying number of variable-sized vertical task slots that can
accommodate the hardware tasks. A bus-based communication infrastructure al-
lows for task communication and I/O. We discuss the design of the runtime system
and its prototype implementation on an reconfigurable board architecture that was
specifically tailored to reconfigurable hardware operating system research.

1 Introduction and Related Work

Reconfigurable hardware operating systems (RHWOS) are a rather new line of research.
Analogous to classical software operating systems, RHWOS allow to compose appli-
cations out of communicating tasks. Such hardware tasks represent digital circuits with
coarse-grained functionality. A RHWOS executes a set of hardware tasks on a recon-
figurable device in a truly-parallel multitasking manner. While the use of an operating
system leads to overheads in terms of required area and execution time, a RHWOS also
offers a number of benefits. A reconfigurable architecture controlled by an operating
system can easily execute dynamic task sets and utilize modern high-density FPGAs.
Further, an operating system introduces a minimal programming model and, thus, leads
to improved productivity and portability.

Concepts for a RHWOS and the swapping of hardware tasks were first discussed
in [1]. Basic multitasking services were investigated in [2]. Especially, the problem of
finding placements for hardware tasks on a reconfigurable surface has received attention,
e.g, in [3] [4]. More general aspects and services of a RHWOS were discussed in [5] and
[6]. There are only few reports on practical implementations of a RHWOS on real FPGA
technology, e.g., in [7] and [6]. Due to the limited partial reconfiguration capabilities of
current FPGAs, most approaches follow a one-dimensional resource model and partition
the reconfigurable surface into a number of fixed-size slots that can hold hardware tasks.

In this paper, we present the design and the implementation of a RHWOS runtime
environment on real FPGA hardware (Xilinx Virtex-II). Like related projects, our run-
time environment structures the reconfigurable area into vertical task slots. Contrary
to related work, our RHWOS works with variable-sized task slots and can thus better
adapt the reconfigurable resources to the incoming tasks. A bus-based communication
infrastructure is used to connect the hardware tasks with memory resources and I/O.
� This work is supported by the Swiss National Science Foundation (SNF) under grant number

2100-59274.99 and by Xilinx, Inc. by hardware donations.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 831–835, 2004.
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2 Reconfigurable Hardware OS Approach

As target architecture, we consider an embedded system consisting of a CPU and a
partially reconfigurable FPGA. The CPU runs operating system functions that manage
the reconfigurable system resources at runtime. To gain short reconfiguration times, the
CPU directly connects to the configuration port of the FPGA. In parallel, a number of
wires implement general purpose I/O between CPU and FPGA which allows for high
bandwith communication.

An operating system offers an application model in the sense that i) applications
are composed out of user tasks and operating system objects and ii) scheduling policies
are provided to decide which of the ready tasks should execute. Especially real-time
operating systems (RTOS) offer rich sets of objects for task synchronization and com-
munication together with priority-based preemptive scheduling.

We aim at offering similar objects and services to hardware tasks in a RHWOS. An
application consists of user hardware tasks and several operating system objects. Many of
these objects offer communication services, such as FIFOs, message boxes, and private
and shared memory blocks. Task synchronization is supported by semaphore objects,
timers, and triggers. Device drivers allow for I/O access.

In contrast to software RTOSs that manage a single computational resource which is
either fully allocated by a task or empty at any given point in time, a RHWOS manages
a resource which can also be occupied partially and by several tasks concurrently.

A hardware task is a functional entity with a set of ports. The function carried out
by a hardware task is invisible for the RHWOS. A control port connects a hardware
task to the RHWOS modules such as the scheduler. Further, each task may implement
a number of input ports and output ports. These are independent parallel interfaces and
allow a task to access operating system objects. Finally, a clock port is required to drive
the task with a proper clock.

Based on the knowledge of the application structure, the RHWOS schedules and
loads hardware tasks to the FPGA and replaces them after they have finished execution.
To enable this, an FPGA needs to provide some infrastructure which we denote runtime
environment. The implementation of such a runtime environment strongly depends on
the architectural features of the FPGA, especially on its reconfiguration features.

3 Runtime Environment Based on Xilinx Virtex-II

The most important characteristic of Xilinx Virtex-II is its column-wise chip-spanning
partial reconfiguration which asks for a one-dimensional resource model. Consequently,
we partition the user task area into a number of vertical task slots. The main feature of our
runtime system with respect to resource management is its ability to deal with variable-
sized slots. In the following, we emphasize on the partitioning of the reconfigurable
surface and the communication infrastructure.

3.1 OS Frames and Variable-Sized Task Slots

The FPGA surface is split into a static and a dynamic region. The static region comprises
all operating system modules and is organized into two OS frames located at the left
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Fig. 1. OS frame (left, right) and Task Communication Bus (TCB)

and right edges of the FPGA. This is shown in Figure 1. The dynamic region comprises
logic resources available for user hardware tasks which are dynamically loaded.

Whenever the system is powered up, the FPGA undergoes a full configuration. This
initial configuration contains the OS frames with the RHWOS elements and the dynamic
area organized into a number of dummy tasks. Dummy tasks are placeholders for user
tasks. They do not implement any functionality but establish the communication infras-
tructure of the runtime environment. Each dummy task implements a part of the overall
communication infrastructure consisting of bus macros and bus wires. The width of a
dummy task defines a static grid of reconfigurable slots.

When a user task is loaded, it occupies an integer multiple of the width of dummy
tasks. Figure 1 shows two user tasks T1 and T2 with different widths w = 1 and w = 3,
respectively, which equals 1× and 3× the dummy task width. Tasks with widths w > 1
do not necessarily need to implement the bus macros within their area. Implementing the
bus macros at the user task borders suffices.After a task with width w > 1 has terminated,
the occupied area is again filled with dummy tasks to re-establish the communication
infrastructure for subsequent user tasks. Dummy tasks as well as user tasks are available
as partial bitstreams.

3.2 Task Communication Bus (TCB)

A RHWOS runtime environment has to provide a communication infrastructure for the
exchange of data between user tasks and OS objects. There are several ways to implement
such a communication infrastructure, with trade-offs between the achieved data through-
put and the needed resources. Assigning each task a set of dedicated wires and turning
the communication infrastructure into a crossbar would result in the highest-possible
throughput. At the same time, a crossbar also leads to enormous area requirements and
is not scalable. We rely on a diametrical solution and implement a shared bus structure as
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communication network. A bus requires less resources but delivers also a lower commu-
nication bandwidth. We use two methods to scale the throughput, varying the bus width
and using several independent busses. However, the bus approach scales poorly with the
FPGA size. Future devices with strongly increased densities will allow to accommodate
dozens of user tasks at the same time. Then, the bus would become a severe bottleneck.
For such architectures, a two-dimensional partitioning into slots and a 2D communi-
cation infrastructure will be better choices [7]. We have decided for a bus structure in
this work, as currently neither a 2D partitioning nor a 2D communication network is
supported by the available FPGAs.
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Fig. 2. Task Communication Bus (TCB): structure and elements

Figure 2 shows the bus structure with its elements. The bus system consists of bus
wires, bus macros, two bus arbiters (BARL, BARR) located in the right and left OS
frames, and a bus access controller (BAC) in each user task. The bus is split into a left
bus, a right bus, and a control bus. The left bus serves read/write accesses to OS elements
located in the left OS frame and the right bus accesses OS elements in the right frame,
respectively. The left bus is arbitrated by the BARL, and the right bus by the BARR. The
control bus comprises request/grant signals connecting each BAC to both arbiters.

The bus access controller (BAC) provides an interface that consists of the bus access
logic and, at the user task’s side, of a task control interface (TCIF) and m data exchange
interfaces (DxIF). The bus access logic handles the bus reservation and implements the
data transaction protocol. Thus, the actual bus protocol is hidden from the user task. The
control and data interfaces connect to the task’s control and data ports (see Section 2).
The TCIF controls the task’s state and provides a standard set of signals which each user
task is obligated to implement.

4 Prototype Implementation

To realize RHWOS prototypes, we have developed the XF-Board platform. For a detailed
description of the XF-Board and its features, we refer to [8]. We have successfully
tested the full and partial reconfiguration capabilities. The device, a Xilinx Virtex-II
XC2V3000-4, contains 14336 slices and is fully configured in 24.3 ms. Although the
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bus macros dictate a minimal dummy task width of 4 CLBs, we have used a width of
8 CLBs in our tests for both the dummy tasks and the OS frames. A user task of width
w = 1 is then partially reconfigured in 3.4 ms, a task of width w = 5 in 17.3 ms.

5 Conclusion

In this paper, we have presented the design and implementation of a runtime environ-
ment for reconfigurable hardware operating systems. The runtime environment is able to
dynamically load and execute tasks of variable size. A bus-based communication infras-
tructure allows for task communication and I/O. Ongoing work includes the thorough
test of the developed OS elements and the user tasks as well as a quantitative evaluation
of the OS overheads.
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Abstract. This paper presents APL, an Asynchronous Programmable Logic ar-
ray, as a flexible dynamically reconfigurable multi-application platform with
self-reconfigurability. APL employs a Globally-Asynchronous-Locally-Syn-
chronous (GALS) architecture. It consists of Timing Regions (TRs) which op-
erate independently under locally generated clocks and communicate with each
other through handshaking asynchronous interfaces. Different applications are
mapped into different TRs, so they can run independently. And because of the
asynchronous communication, dynamic partial reconfiguration is easily real-
ized with TRs as the basic reconfiguration units. Self-reconfiguration is realized
by giving each TR the capability to access the central configuration controller
which, in turn, can read/write the configuration memory.

1   Introduction

Future products of reconfigurable computing system are likely to be multi-standard
and multi-application. This requires a FPGA to provide multiple clock domains and
data communication mechanisms among different clock domains. Dynamic partial re-
configuration is needed for modification of different applications. Furthermore, self-
reconfiguration is required for implementation of applications that are
data/environment sensitive. Current FPGAs can hardly meet those requirements.
Globally-Asynchronous-Locally-Synchronous (GALS) design, which allows inde-
pendent operation of synchronous islands, is a suitable solution. We propose APL, an
Asynchronous Programmable Logic array which adopts GALS architecture, as a
flexible dynamically reconfigurable multi-application platform. APL consists of tim-
ing regions (TRs) that operate as basic application mapping units and reconfiguration
units. Because of the asynchronous properties between TRs, dynamic partial recon-
figuration becomes easier and more efficient. Self-reconfiguration is realized by giv-
ing each TR the capability to access the central configuration controller which, in
turn, can read/write the configuration memory.

Different GALS systems have been proposed by previous researchers [1, 2, 3] and
several asynchronous FPGA architectures have been published in the last decade [4,
5, 6, 7]. STACC [5] is a dual-layer GALS FPGA architecture. Our APL design adopts
the similar idea from STACC in forming the local clock generator and asynchronous
wrapper of a GALS system but provides more efficient routing structure and dynami-
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cally partial reconfiguration and self-reconfiguration mechanism. PCA [6] contains a
programmable logic layer and a network of built-in-facilities, but the wormhole mes-
sage passing between objects in PCA is expensive in time.

Several FPGAs are self-reconfigurable [8, 9, 10]. They all only allow one recon-
figuration generator. APL allows arbitrary number of TRs been configured as recon-
figuration generators and therefore, is more suitable to a multi-application scenario.

2   APL Architecture

APL employs a dual-layer structure composed of a timing layer and a logic layer.
Both the timing layer and the logic layer adopt hierarchical routing structure which
provides various types of routing wires. The whole array is divided into timing re-
gions. A TR consists of a Timing Cell from the Timing Layer and Logic cell from the
Logic layer. Each TR is driven by a locally generated clock signal and communicates
with other TRs through a 4-phase handshaking protocol.

APL timing cell design is similar to and inspired by STACC [5] timing cell design.
The main concern of logic cell design is to determine the logic size and granularity.
An appropriate decision must be a compromise of handshaking overhead, reconfigu-
ration time and logic utilization. For the first version of APL, we choose each logic
cell to contain 4 logic blocks (LBs). Each LB adopts the same structure as the CLB
structure of Xilinx Virtex FPGA [11] which contains four 4-input LUTs. Thus, each
logic cell contains a total of 256 SRAM bits.

APL adopts a hierarchical routing structure for both timing layer and logic layer.
In hierarchical routing, the routing delays are more predictable. APL only supports
bundled-data protocol, and the performance of this protocol is eventually decided by
how precisely the interconnect delays can be estimated. By employing hierarchical
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routing structure, routing, hence, routing delay, is much more predictable than using
symmetrical structure. The timing layer routing strictly follows the same fashion as
the logic layer routing, which is crucial for a better performance in bundled-data
protocol. Left part of Fig. 1 shows the APL timing layer routing structure.

A Timing Routing Switch Box (TRSB) as shown in right part of Fig. 1 provides
four handshaking pairs in each direction to its four neighbors. Three basic functions
need to be realized inside a TRSB: fanin, fanout and arbitration. Fanin and fanout are
used to distribute data to and from different locations and arbitration is needed when
data compete to the same location.

3   Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is possible in APL architecture through a parallel
configuration port. A timing region is treated as a basic reconfiguration unit. Inside
each reconfiguration unit, memories are read and written serially. A local memory
controller attached with each reconfiguration unit controls the serial read/write of the
reconfiguration unit memory. Left part of Fig. 2 shows the memory organization.
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Fig. 2. Dynamic partial reconfiguration of APL

To do dynamic partial reconfiguration, it is essential to guarantee that the recon-
figuration of one part of the FPGA will not cause false operations of the other parts.
This can be easily realized due to the asynchronous feature of the APL architecture.
What we need to do is to simply disable all the input/output ports of the correspond-
ing timing cell when the reconfiguration process begins. A simple enable/disable cir-
cuit has been added to the timing cell for this purpose as shown in right part of Fig. 2.
Signal Par is the partial reconfiguration mode select signal. It only turns high during
the partial reconfiguration period. Signal Select comes from the block raw and col-
umn decoders. It is high when the corresponding reconfiguration unit is selected. The
n-transistor works as a pull-down resistor. This way, the En signals are driven low
when the corresponding partial reconfiguration begins.
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4   Self-Reconfiguration

Each TR has a dedicated reconfiguration port that contains a handshaking signal pair
and 4-bit reconfiguration data lines. The reconfiguration port connects to the central
configuration controller that controls the modification of the configuration memory.
Since there is only one central configuration controller that can directly access the
configuration memory, reconfiguration requests from different TRs must be proc-
essed sequentially. Therefore, an arbitration mechanism among different reconfigura-
tion requests is needed. The left part of Fig. 3 shows the self-reconfiguration struc-
ture.

This structure also fits the hierarchical routing structure of APL very well: All the
arbitration modules are placed at the same position of the corresponding RSBs, and
the reconfiguration data lines are multiplexed with the interconnect wires. Therefore,
no extra data lines are needed for the reconfiguration purpose. The circuit that realizes
the arbitration function is called cfg-arbiter here. The cfg-arbiter performs differently
from the ordinary arbiter. The reconfiguration process takes many handshaking cy-
cles. Once a reconfiguration request wins the arbitration, the cfg-arbiter must hold the
path for the request until the reconfiguration process is done. The right part of Fig. 3
shows the circuit implementation of the cfg-arbiter.

In the cfg-arbiter design, an exclusive element is used to grants service to only one
request and delays other requests. A rank of D flip-flops is used to catch the result of
arbitration and keep the communication channel until the reconfiguration process is
done. At that time, a “Done” signal is generated by the central configuration control-
ler to reset the D flip-flops.
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Table 1. APL_1 implementation details

Die size 2.5mm × 1.8 mm
4-LUTs 64
Timing regions 4
Timing layer area 0.4 mm2

Logic layer area 4.2 mm2

Configuration memory size per TR 1520 bits
tcTR: partial configuration time per TR 1.9 μs
tlc: clock to logic cell output 22.5 ns
tdly: interconnect delay between adjacent timing cells 1.8 ns
ths: handshaking cycle time between TRs 14.2 ns
tcfg : self-reconfiguration cycle time 15.7 ns

5   Experimental Results

To evaluate our architecture, we implemented a proof-of-concept design APL_1 of
the proposed architecture using TSMC0.18μm technology with 6 metal layers. APL_1
contains 4 Timing Regions. Table 1 gives some implementation details.

From the implementation, we can see that the area overhead of adopting the GALS
design style is around 10% (the timing layer area). The handshaking communication
time is one local clock cycle. But our APL_1 implementation is very small and the
timing regions are adjacent to each other, we can expect the handshaking communi-
cation time to be longer when the FPGA array size becomes larger and more routing
switch boxes are needed.

Our future work will focus on the automatic mapping of designs to APL. The pri-
mary goal would be to explore timing region level parallelism while minimizing the
communication overhead across timing regions.
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Abstract. Dynamic reconfiguration of digital hardware enables systems to
adapt to changing demands of the applications and of the environment. This pa-
per concentrates on a core element of a reconfigurable hardware architecture,
which supports a Real-time Operating System in reconfiguring the hardware –
the Run-time Reconfiguration (RTR) Manager. The RTR-Manager has been
developed to control, monitor and execute dynamic reconfiguration. It enables a
fast adaptation of the SoC architecture through context switching between dif-
ferent configurations. Configuration code analysis and observation of the recon-
figuration process guarantee a correct reconfiguration and increase the safety of
the system. The system was successfully implemented and evaluated by means
of the Rapid Prototyping System RAPTOR2000.

1   Introduction 

A hardware support system for dynamically reconfigurable SoC architectures is intro-
duced, which consists of an embedded processor system and programmable logic in-
tegrated in an FPGA. Upon this architecture, a Real-time Operating System (RTOS)
is implemented. The RTOS and the FPGA allow for dynamically exchanging soft-
ware components and reconfiguring hardware modules [1].

The core of our architecture is a Run-time Reconfiguration Manager (RTR-
Manager) embedded in hardware, which serves as an interface between the operating
system and the reconfigurable logic. It offers services to the RTOS for controlling and
monitoring of the hardware configuration, supports the dynamic partial reconfigura-
tion of SoC modules and relieves the RTOS from low-level hardware administration.

By introducing dynamically reconfigurable hardware in SoCs, an additional source
of failure emerges. Potential failures are, e.g., replacing the wrong parts of the recon-
figurable resources, loading of false or faulty modules, and unforeseen interferences
between hardware modules. This could result in not fulfilling real-time criteria, failure
of the whole system, or even damage to the hardware. Appropriate mechanisms to
prevent such situations have to be implemented, and a basic concept for detecting
such errors and coping with them is incorporated in the RTR-Manager.

                                                          
* This work was developed in the course of the Collaborative Research Center 614 – Self-

optimizing Concepts and Structures in Mechanical Engineering – University of Paderborn,
and was published on its behalf and funded by the Deutsche Forschungsgemeinschaft.



Hardware Support for Dynamic Reconfiguration        843

2   Architecture of the Reconfigurable System

The proposed architecture consists of an embedded processor running the RTOS.
Memory, reconfigurable hardware modules and application specific hardware mod-
ules as well as the RTR-Manager are attached to the processor bus. The RTR-
Manager uses dedicated interconnections to control the modules and to monitor the
states of the modules. In addition to the processor bus, the modules can use a module
synchronization bus to communicate with each other without any protocol overhead.
As some modules need to communicate with external hardware, the architecture sup-
ports controlled access to the user I/Os of the FPGA.

In the current approach, the hardware modules are placed onto the FPGA in par-
ticular module slots during run-time. By using partial reconfiguration, only one mod-
ule slot is changed at a time, while the remaining parts of the system keep working
without being interrupted. This type of modules also facilitates the use of a design
flow published by Xilinx, which enables the generation of partial reconfigurable
hardware modules with a high level description language entry [3]. The implementa-
tion of the RTR-Manger can easily be extended to flexible sized modules.

The aim of the introduced architecture is to support methods needed for dynamic
reconfiguration of hardware modules. As mentioned in the introduction, different im-
plementations of hardware modules in the FPGA are reconfigured during run-time. A
fast transition between the current implementation and a new implementation can be
realized if the module, which will be replaced, stays working until the configuration
of the new hardware module has finished. The RTR-Manager can switch between the
old and the new module in one clock cycle, which we call discrete transition. For the
replacement of modules it may also be necessary that the new module obtains status
information, e.g., register entries, from the current module. This information can be
exchanged via the module synchronization bus.

In some cases exchanging internal states is not sufficient to synchronize two mod-
ules. E.g., the transition between different controller modules for automation applica-
tions has to be smooth, i.e., it is necessary to synchronize the two controllers. During
the synchronization, both modules receive the same information from the processor
and the external user I/Os. Once the controllers are synchronized, the processor initi-
ates the discrete transition, and the old module will be removed.

RTR-Manager
The main function of the RTR-Manager is to control and observe the dynamic recon-
figuration. This service of the RTR-Manager is provided to the RTOS on the proces-
sor system. For the purpose of optimization the software requests the RTR-Manager
to reconfigure the FPGA with new modules at run-time. The RTOS also provides the
memory address of the FPGA configuration bitstream and it selects the module slot to
be reconfigured. Furthermore, the RTOS can select several modes for the dynamic re-
configuration. This includes a direct activation of a module after the reconfiguration
and an automated status transfer between two modules.

To initiate the process of dynamic reconfiguration, the processor sends an instruc-
tion to the RTR-Manager. First of all, the RTR-Manager deactivates the module that
will be replaced. Just before the RTR-Manager starts the reconfiguration, it analyzes
the header of the configuration file for security purposes. Afterwards, the RTR-
Manager triggers the reconfiguration of the FPGA. When the reconfiguration is com-
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pleted, the RTR-Manager receives a status message indicating the correctness of the
reconfiguration. If no error occurs during reconfiguration and the RTOS has selected
the corresponding options, the RTR-Manager starts the module transfer and activates
the module. In case of an error, the RTR-Manager immediately stops the dynamic re-
configuration and triggers a processor interrupt. Furthermore, the RTR-Manager sup-
ports the synchronization and cross-fading of two modules. With the help of the RTR-
Manager, modules can be set into a passive mode. In this mode, the RTR-Manager
deactivates the write access to the user I/Os and so the modules are just able to listen
to these I/Os. Active modules are able to drive both bus and I/O signals; deactivated
modules can only be reactivated by the RTR-Manager.

The analysis of the FPGA configuration code belongs to the security concept of the
reconfigurable system and is implemented as a part of the RTR-Manager. The RTR-
Manager checks every new configuration bitstream before it is loaded into the FPGA.
This is very important as faulty bitstreams can overwrite and destroy the SoC archi-
tecture inside the FPGA. The current RTR-Manager checks if the configuration file
was generated for the correct FPGA, and if the header has the correct form. Further
tests for the partial reconfiguration can be integrated easily, e.g., tests of the size and
the position of a partial reconfigured module inside the FPGA have to be conducted.

3   Implementation and Test

The reconfigurable SoC architecture described above is implemented on our
RAPTOR2000 Rapid Prototyping System [2], which is able to execute full or partial
configuration either at start-up or at run-time. RAPTOR2000 consists of a PCI based
motherboard and up to six daughterboards (in the context of RAPTOR2000, the term
module refers these daughterboards).

Fig. 1. Prototyping architecture
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The DB-V2 Pro FPGA module, used for the reconfigurable SoC, contains a
XC2VP20/30 Virtex-II Pro FPGA and up to 256 MB SDRAM. The RTOS is exe-
cuted by one of the embedded PowerPC processors and the reconfigurable logic is
used for the other parts of the SoC architecture. Finally, all building-blocks of our ar-
chitecture fit into a single FPGA. However, for a first implementation the SoC archi-
tecture is partitioned into two designs, located on two DB-V2Pro FPGA modules. As
shown in Fig. 1, the RTR-Manager is implemented in the rightmost FPGA, while the
reconfigurable SoC modules are mapped onto the center FPGA module, because the
latter is our target for partial dynamic reconfiguration. In the current implementation
the configuration memory is located in the main memory of the host computer. In or-
der to minimize communication via the PCI Bus, future implementations, will support
the storage of the configuration data in the SDRAM on the FPGA module.

As illustrated in Fig. 1, two modules have been designed, which implement a stan-
dardized interface between the SOC modules and the RTR-Manager. With these
modules, the data communication between the SoC modules was tested, and the pos-
sibility to switch over from one SoC module to another has been proved. Addition-
ally, the activation of SoC modules by the RTR-Manager and the write access control
of the SoC modules have been verified. An application specific graphical user inter-
face for controlling and monitoring of our SoC architecture has been implemented
using the RAPTOR2000 software environment. The software displays all registers of
the RTR-Manager. Additionally, the user can access the register entries, e.g., to start
the reconfiguration or to activate a module.

4   Results

The VHDL description of the RTR-Manager has been synthesized for a XC2VP20-6
Virtex-II Pro FPGA, resulting in a maximum clock frequency of 53.2 MHz and a size
of 861 slices, i.e., 9 % of the FPGA resources. By means of a logic analyzer, we have
measured the reconfiguration time, including the time for the configuration code
analysis, the module transfer and the module activation. Table 1 depicts the results of
the measurements, showing that most of the time is spend on the configuration of the
FPGA. With 3 μs, the time consumed by the RTR-Manager is very small compared tos, the time consumed by the RTR-Manager is very small compared to
the configuration time of the FPGA (0.02%).

Table 1. Measured reconfiguration time on the Virtex-II Pro at 25 MHz.

Operation Time Clock Cycles
Initialize RTR-Manager  0.12  μs 3
Configuration code analysis  2.20  μs 55
Start configuration manager  0.28  μs 7
Status request  0.19  μs 5
Synchronization and activation  0.19  μs 5
Total RTR-Manager time  3.00  μs 75
Partial Configuration (57 KB)  14.325  ms 358,125
Total reconfiguration time  14.328  ms 358,200
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For the configuration of the FPGA we use the “Select Map” interface of the Virtex-
II Pro, which transmits one byte per clock cycle. To compare the measured configu-
ration time with the minimum possible values, we calculate the possible theoretical
value for the reconfiguration of the Virtex-II Pro FPGA. With a clock frequency of 50
MHz the transfer rate r is 50 MB/s. The length L of the tested partial reconfiguration
file for the XC2VP20 is 57 KB. The reconfiguration time is Tconf= L/r. With 1.14 ms,
the minimum reconfiguration time is much less than the 14.33 ms that are given in
Table 1. This is, on the one hand, due to the current design frequency of 25 MHz. On
the other hand, the data transfer of the bitstream from the external configuration
memory (located in the host PC) to the FPGA has not yet been optimized.

To provide fast dynamic reconfiguration, it is important that the RTR-Manager
does not significantly increase the reconfiguration time. Therefore, the time that is
spent by the RTR-Manager is compared to the minimum time that is required for a
complete and for a partial reconfiguration. It can be seen that the time required by the
RTR-Manager is even small compared to the minimum reconfiguration time, which is
spent for a partial reconfiguration with a bitstream of 57 KB (<0.27%).

5   Summary and Outlook

In this paper we have presented a hardware support system for dynamically recon-
figurable SoC architectures. A Run-time Reconfiguration Manager has been devel-
oped, which supports the real-time operating system in controlling and reconfiguring
the hardware modules inside an FPGA. All functions of the RTR-Manager have been
tested successfully on our RAPTOR2000 prototyping system, i.e., the interaction with
the software, the configuration code analysis for safety reasons, and the dynamical re-
configuration of an FPGA. The influence of the RTR-Manager on the FPGA recon-
figuration time is below 0.27%, even if small partial bitstreams are loaded at the
maximum configuration speed of 50 MB/s. Finally, a hardware support architecture is
now available to implement a dynamically reconfigurable system.

Our future work will focus on the implementation of hardware IP modules, i.e., an
operating system scheduler, and real-time communication modules. These modules
will allow for generating partial bitstreams with reasonable functionality. Further
work will be spent on using the internal configuration access point (ICAP) of the
Virtex-II Pro for FPGA reconfiguration.
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Abstract. We describe algorithmic results for two crucial aspects of allocating
resources on computational hardware devices with partial reconfigurability. By
using methods from the field of computational geometry, we derive a method that
allows correct maintainance of free and occupied space of a set of n rectangular
modules in optimal time Θ(n log n); previous approaches needed a time of
O(n2) for correct results and O(n) for heuristic results. We also show that finding
an optimal feasible communication-conscious placement (which minimizes the
total weighted Manhattan distance between the new module and existing demand
points) can be computed in Θ(n log n). Both resulting algorithms are practically
easy to implement and show convincing experimental behavior.

Keywords: Reconfigurable computing, field-programable gate array (FPGA),
module placement, occupied space manager (OSM), routing-conscious placement,
Manhattan metric, line sweep technique, optimal running time, lower bounds.

1 Introduction

One of the cutting-edge aspects of reconfigurable computing is the possibility of partial
reconfiguration of a device. In this paper we resolve two crucial issues for this task:

1. Given a set of n rectangular modules that have been placed on a chip, identify all
feasible positions for a new module.

2. Given a set of n rectangular modules that have been placed on a chip, a new module,
and demands for connecting it to existing sites, find a feasible position for the module
that minimizes the total weighted distance to the given sites.

Related Work. The first of the above issues is the task of maintaining free space.
Bazargan et al. [3] describe how to achieve this by maintaining the set of all maximal free
rectangles; as this set can have size Ω(n2), the complexity is quadratic. Alternatively,
they propose partitioning free space into only O(n) free rectangles; the price for this
improved complexity is the fact that no feasible placement may be found, even though
one exists. Walder et al. [7] have suggested ways to reduce this deficiency and did report
on experimental improvement, but their O(n) procedure is still a heuristic approach that
may fail in some scenarios. Thus, there remains a gap between O(n2) methods that report
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an accurate answer, and O(n) heuristics that may fail in some scenarios. Ahmadinia et
al. [1] suggested maintaining occupied space instead of free space, but (depending on
the computational model) their approach is still quadratic.

The more difficult task of routing-conscious placement has received less attention:
Clearly, optimal placement of a new module has to go beyond feasible placement. For
configurable computing, this second aspect has only been treated very recently, in work
by Ahmadinia et al. [1], who suggest a heuristic to find a feasible placement for a new
module with small total weighted Euclidean distance to a set of demand points. However,
according to [5], using Manhattan distances is more appropriate.

Our Results. We resolve both of the above issues:

– We give a O(n log n) method to provide an occupied space manager (OSM). This
approach uses a plane-sweep approach from computational geometry.

– We give a matching lower bound of Ω(n log n) for locating a maximal free rectangle
between a set of n modules, showing that our method has optimal complexity.

– We show that our OSM can be extended to find a feasible position that minimizes
total weighted Manhattan distance to existing sites. The resulting algorithm still has
an optimal running time of Θ(n log n).

– We describe implementation details to illustrate that our method is fast and easy.
– We provide experimental data to demonstrate the practical usefulness of our results.

In Section 2, we present our optimal OSM. Section 3 describes optimal routing-
conscious placement, followed by implementation details and experimental data in Sec-
tion 4. See [2] for a full version of our paper.

2 The Occupied-Space Manager

Our occupied-space manager is based on a modification of the well-known algorithm
ContourOfUnionOfRectangles (CUR) [6] that finds the contour of a union of axis-
parallel rectangles. As the number of contour segments is linear in n, we achieve a
running time of O(n log n). Note that we do not require the contour to be connected,
i.e., our approach works even if there are holes in the arrangement.

As shown in Figure 1, we shrink the area of the chip and simultaneously blow up the
existing modules by half the width and half the height of the new module. Then placing
the new module m reduces to finding free space for a point.

In general finding the contour of a set of axis-aligned rectangles can be done by
using the CUR algorithm as described in [6]. Our algorithm is a modification of CUR
and returns a linear number of vertical and horizontal line segments. The building blocks
of CUR are an algorithmic technique from computational geometry called plane sweep
and a data structure called segment tree. See [4] for in-depth introductions.

The crucial part of our algorithm are two plane sweeps: one horizontal sweep that
discovers all the vertical contour segments and one vertical sweep that finds all horizontal
segments.

For the horizontal sweep we add for each of the modules in M ′ (x′
i, Open, y′

i, y
′
i+h′

i)
and (x′

i + w′
i, Close, y′

i, y
′
i + h′

i) to a list L. After sorting this list lexicographically all
elements are processed. In case of an Open event the corresponding contour points are
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Fig. 1. (Left) A set of existing modules, and an additional module. (Right) Expanding existing
modules and shrinking chip area and the new module reduces free-space management to placing
a single point.

m

4

2

1
2

Fig. 2. (Left) Physical chip (Right) Communication model with k = 4: The numbers on the
connections are the bim.

retrieved from the segment tree and the segment [y′
j , y

′
j + h′

j ] is added to the tree. For
a Close event the segment [y′

i, y
′
i + h′

i] is removed from the tree and the corresponding
contour points are retrieved.

In the CUR algorithm we would construct the horizontal contour segments from the
vertical segments. In our setting we would not find free space of height 0. So we need
to do another vertical plane sweep to discover all horizontal segments.

In the algebraic tree model of computation, there is a lower bound of Ω(n log n)
on the complexity of deciding the maximum size of a free rectangle between n existing
rectangles. In summary, we get the following result:

Theorem 1. The complexity of FindContourSegments is Θ(n log n).

3 Routing-Conscious Placement

An appropriate measure for the cost of communication between modules is their Manhat-
tan distance, weighted by the relative amount of communication. See Figure 2. Finding an
optimal feasible placement under this measure can still be achieved in time Θ(n log n),
making use of local optimality properties, our OSM, and another application of plane
sweep techniques.

When placing an additional module m at position (x, y), with existing modules
placed at (x′

i, y
′
i) and buswidth bim for the communication path needed to create a
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routing unit between modules i and m, we consider the objective function

min{
k∑

i=1

bim‖(x′
i, y

′
i) − (x, y)‖1 : (x′

m, y′
m) ∈ F ′ \

⋃
m′

i∈M ′
m′

i}.

In the Manhattan metric, this can be reformulated to

c(x′, y′) =
k∑

i=1

bim|xi − x′| +
k∑

i=1

bim|yi − y′|.

This means we may consider two separate minimization problems, one for each co-
ordinate. If we ignore feasibility, both minima are attained in the respective weighted
medians. As we already sort the coordinates for performing plane sweeps, the running
time for this step is not critical. If the median is in the occupied space there are only two
other types of points where the global optimum could be located.

One type of point can be found by intersecting the contour of the occupied space with
the median axes lx = {(xmed, y) : y ∈ [0, H]} and ly = {(x, ymed) : x ∈ [0, W ]}.
In these points the x- or y-coordinate of the gradient vanishes. We cannot move in
the direction of a better solution because that way is blocked by either a vertical or a
horizontal segment of the contour.

The other type of points are some of the vertices of the contour. These points are the
intersections of horizontal and vertical segments forming an interior angle of π

2 pointing
in the direction of the median. In these points neither of the gradients vanishes, but local
improvement is blocked by contour segments.

By inspecting all O(n) local optima one finds the global optimum. Using incre-
mental plane sweep techniques, evaluation of all local optima can be achieved in time
O(n log n). Again, see [2] for details.

As the lower bound on feasible placement still applies, we get the following:

Theorem 2. A feasible position with minimum communication cost can be computed in
time Θ(n log n).

4 Experimental Results

The running time of our algorithm is not only good in theory, but also quite practical
(as constants are small) and easy to implement. Here we show some results of our
implementation. See Table 1 for an overview and [2] for details.

We have randomly generated different kinds of benchmark instances with 100 mod-
ules. The instances differ in module size and distribution of the sizes. We benchmarked a
g++ 3.2 compiled c++ implementation of our algorithm against the algorithms described
in [1] and [3]. Shown in the first set of columns in the table is a comparison of overall
running times for 100 modules for each instance in milliseconds on a 2.53GHz Intel
Pentium 4. Remarkably, our algorithm has clearly the fastest running times, even though
it computes a much better solution. This illustrates the superiority of a plane-sweep ap-
porach. Clearly, the difference in running times will increase for even larger instances.
The second set of columns compares the average routing cost per module. Note that in
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Table 1. Experimental results for the different benchmark instances. Overall running time, average
routing cost for each module, and rejection rate are shown for the different algorithms. RCP denotes
the algorithm described in this paper, NAOP refers to the algorithm as described in [1] and KFF
is the algorithm KAMER combined with First Fit as presented in [3].

Running Time (ms) Routing Cost Rejection Rate
RCP NAOP KFF RCP NAOP KFF RCP NAOP KFF

Uniform 5-10% 173 197 204 1403 3641 9522 0% 0% 0%
Uniform 10-15% 162 208 194 1747 5490 14311 0% 1% 0%
Uniform 15-20% 160 172 158 2044 7250 19791 2% 5% 1%
Uniform 20-25% 156 181 161 1987 7061 20159 10% 12% 9%

Uniform 5-25% 168 224 215 1721 6741 21347 5% 8% 5%
Increasing 5-25% 196 252 243 1931 6914 21910 8% 14% 6%
Decreasing 25-5% 175 232 228 611 2311 11712 0% 3% 4%

[1], placement is done according to a weighted Euclidean distance, and optimization is
only done heuristically. As a consequence, the objective values are markedly higher. [3]
does not take routing cost into account and places by some bin-packing like heuristic
that tries to minimize rejection rate. As a result, communication cost is one order of
magnitude higher than for our method. The third set of columns compares the average
number of modules that had to be rejected due to lack of space on the chip, which is
one of the objectives in [3]. Even though this figure is not considered by our algorithm,
the total number of rejected modules for our algorithm is precisely the same as for [3].
Again, our results dominate the ones for [1] by a clear margin.

In summary, our algorithm is faster, better and more robust against rejection than the
method described in [1]. It is also faster, much better and as robust against rejection as
the approach described in [3].
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Abstract. This work introduces three improvements to the traditional
simulated annealing algorithm, which is widely used in industrial and
academic tools for FPGA placement. The improved algorithm has been
tested with the 20 largest benchmarks from the MCNC set and the re-
sults were compared with the VPR placer. The outcome is nearly 3%
better timing and about 6% less swap moves in the kernel of the simu-
lated annealing algorithm. The main positive result is the reduction of
the run time of the simulated annealing algorithm without sacrificing
the placement quality for combined routability and timing driven case.
For most benchmarks, the quality of the final placement could even be
improved despite using less swap moves.

1 Introduction and Previous Work

Simulated annealing has been introduced in the early sixties and since then
became a very popular approach to solution of many optimization problems.
In particular, placing algorithms for FPGA and ASIC design are often using
it to minimize the timing or routing cost of the netlists. The basic idea is to
minimize the cost function (defined in terms of timing and routability) of the
placement by applying random swap moves to pairs of blocks in the netlist.
Since the algorithmic kernel of the simulated annealing works with different
cost parameters building a cost function and a schedule, much research effort
was spent on their optimization. Many papers explore the dependence between
run-time and placement quality. One of the latest implementations, considered
state-of-the-art by the research community, was introduced with the VPR tool
[1]. The novel approach, introduced in this paper does not try to trade quality
for run-time, but rather to optimize some internal settings of the simulated
annealing.

The rest of this paper is organized as follows. Section 2 describes the tradi-
tional simulated annealing algorithm. In section 3 the proposed improvements
are described in detail. Section 4 introduces the experimental set-up and dis-
cusses the results of the benchmarking. Section 5, finally, summarizes the high-
lighs and draws some conclusions.
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2 Simulated Annealing in a Nutshell

To explain the proposed improvements of the simulated annealing, a sketch of the
algorithm will be provided first, based on [1]. The annealing schedule determines
the speed of temperature decrease depending on the fraction of accepted moves.
Cost function Cost is checked after every move to determine its acceptance. The
placement is started with a random seed and the temperature T is set to an
initially high value. In each step, two blocks or I/O pads are swapped pair wise
or moved to an empty space. If the swap decreases the cost function, it is always
accepted, otherwise the expression F = e−ΔCost/T is evaluated and compared to
some random number μ in the range from 0 to 1 (called probability of acceptance
of bad move). If F is greater than μ, the move is accepted, otherwise it is rejected
(μ is regenerated for every new swap). The cost function for routability driven
placement is called linear congestion and is computed as follows:

Wiring Cost =
Nnets∑
i=1

q(i)
[

bbx(i)
Cav ,x(i)

+
bby(i)

Cav ,y(i)

]
, (1)

where Nnets is the number of nets, bbx and bby are the horizontal and verti-
cal dimensions of the bounding box of the corresponding net respectively. Cav ,x

and Cav ,y denote the average horizontal and vertical routing channel capaci-
ties in tracks and q is a compensating coefficient for too optimistic wire lengths
of the bounding box model for nets with more than 3 terminals [2]. For tim-
ing driven placements an additional cost function is defined as Timing Cost =∑

∀i,j⊂circuit Delay(i, j) · Criticality(i, j)η, where Delay(i, j) is a delay between
nodes i and j, η is an empirical measure to weight critical connections more
heavily and Criticality(i, j) is defined as Criticality(i, j) = 1− Slack(i,j)

Dmax
, whereby

Slack(i, j) denotes the time slack between the nodes i and j and Dmax stands
for the maximum delay in the netlist (= critical path). Taking both routability
and timing into account, the change of the cost function for every move can then
be defined as

ΔCost = (1 − ϕ) · ΔTiming Cost
Previous Timing Cost

+ ϕ · ΔWiring Cost
Previous Wiring Cost

. (2)

In the classic approach ϕ is set to 0.5. The new temperature is computed accord-
ing to the equation Tnew = γ ·Told . The value of γ is determined according to the
schedule published in [1]. A fraction of accepted moves α is used to control the
Rlimit value, limiting the maximal distance between the blocks, considered for
the swap. Initially, Rlimit is set to the entire array, but with every temperature
decrease it is recomputed according to the equation Rnew

limit = Rold
limit ·(1−0.44+α)

and normalized to fit the range 1 . . .Array size. The algorithm is terminated
when

T < ε · Cost
Nnets

, (3)

whereby ε should be chosen reasonably small (0.005 by default). The number of
swap attempts per temperature can be chosen flexibly, 10 · (N1.33

blocks) was shown
to be good enough for high quality placements [1].
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3 Improving Simulated Annealing

Observation of the behavior of the algorithm for the MCNC benchmark set in
VPR shows, that some slight changes to these settings may improve the perfor-
mance. The first point to address is the wiring cost function. After introducing
the parameters Sx = Cav ,x · Array sizex, and Sy = Cav ,y · Array sizey, where
Array sizex and Array sizey are respectively the horizontal and vertical dimen-
sions of the array, the equation (1) is redefined as

Wiring Cost =
Nnets∑
i=1

q(i)
[
bbx(i)
Sx(i)

+
bby(i)
Sy(i)

]
, (4)

With this new wiring cost function ΔCost and, thus, also the corresponding
temperature values are changed. Implementation of this adopted cost function
leads directly to the second improvement of the algorithm.

As described above, the acceptance probability for the bad move μ is gen-
erated randomly for every swap in the range from 0 to 1. However, using the
wiring cost function defined above has a consequence, that most of ΔCost values
are falling into the range of 0.9 to 1. Setting μ to this range reduces the general
acceptability of extremely bad moves, but as experiments have shown, does not
influence the quality of the final placement. By applying this setting together
with the redefined wiring cost function, the anneal termination condition (3) is
reached faster than in [4]. Basically, the number of temperature iterations and
thus the total number of moves is reduced.

Finally, the most powerful improvement is the weighting of the cost function
by adjustment of the ϕ parameter. ϕ is defined as

ϕ =
2 · Rlimit

Array sizex + Array sizey

. (5)

The ϕ value is forced to be 0.3 if it is less than 0.3 and 0.45 if it is greater than 0.45
(in general it decreases with falling temperature). At higher temperatures, the
wiring part of the cost function dominates, with decreasing temperatures the tim-
ing part becomes more important. The reasoning behind this approach is based
on the observation, that routability is most significantly improved, when com-
paratively long-distance swaps are still possible (at high temperatures). Short
distance moves which dominate at lower temperatures, appear more critical for
the timing. Consequently, at higher temperatures the fluctuation of the timing
cost function from very good to very bad values is quite high and the timing cost
is less feasible as measure for the overal quality. With lowering temperatures,
Timing Cost becomes more stable and should get more weight. In counterpart
to the pure routability-driven placement or equal weighting of wiring and timing
components, the schedule described above shows better performance. This also
corresponds to the fact, that the most effective phase of the simulated annealing
takes place, when α is close to 0.44 as was experimentally shown in [3].
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Fig. 1. Experimental set-up and design flow

4 Experimental Set-up and Benchmarking

To prove the effectiveness of the proposed improvements, the modified simu-
lated annealing algorithm has been implemented within PROBE (placement and
routing object-oriented editor) tool. The general experiment set-up is depicted in
Fig. 1. The benchmarks are 20 largest circuits from the MCNC set. As proposed
in [4], the relaxed case is used for the benchmarking. The target architecture is
using logic blocks (LBs) consisting of one 4-input LUT and one register.

Table 1 summarizes the final results. Concerning the number of moves in
the simulated annealing inner loop, 15 out of 20 benchmarks perform better.
For the des netlist, the number of moves could be reduced by more than 1

3 .
However, on average the improvement is only 6.2% due to dramatic increase
(39.4%) of moves for s298 benchmark and four other circuits. The timing for
the relaxed case is improved by 2.9% on average. For 12 benchmarks, the critical
path was decreased by 1.2-33.6%. Other 8 benchmarks showed an increase of the
critical path by 0.6-11.4%. Concerning the routability, the optimized algorithm
uses the same amount of tracks per routing channel with the exception of dsip
benchmark, for which PROBE placement does not fit within relaxed case. On
average, in terms of routability PROBE is only neglectingly worse even if the
minimal number of tracks instead of the relaxed case is considered.

5 Conclusions

This paper introduced three improvements to the simulated annealing algorithm
concerning the probability of the acceptance of the bad move, calculation of the
wiring cost function, and weighting the overall cost function depending on the
temperature. Tests with 20 circuits from the MCNC set shows, that the number
of moves in the simulated annealing inner loop could be reduced by more than
6% (geometric average). The critical path could be reduced by nearly 3%. Even
if it seems to be a rather marginal improvement, for the case of FPGA circuit
design with tight timing constraints saving 3% may have significant influence,



856 A. Danilin and S. Sawitzki

Table 1. Results summary. All numbers are given for the relaxed case, ”less is better”

total # of critical path # of routingCircuit
moves ·106 (ns) tracks(# of LBs)

VPR PROBE Δ in % VPR PROBE Δ in % VPR PROBE Δ

ex5p(1064) 1.23 1.14 −7.7 68.7 67.0 −2.5 19 19 0
apex4(1262) 1.49 1.28 −14.0 72.7 71.9 −1.2 18 18 0
dsip(1370) 2.75 1.97 −28.2 74.5 49.5 −33.6 8 9 1
misex3(1397) 1.62 1.55 −4.5 69.5 64.7 −7.0 16 16 0
tseng(1407) 1.32 1.28 −2.7 55.8 61.1 9.5 10 10 0
diffeq(1497) 1.81 1.80 −0.9 60.9 65.3 7.3 12 12 0
alu4(1522) 1.87 1.82 −2.6 81.6 82.9 1.6 14 14 0
des(1591) 3.02 1.98 −34.6 73.7 77.4 5.1 11 11 0
bigkey(1707) 3.27 2.63 −19.6 55.5 46.5 −16.2 12 12 0
seq(1750) 2.32 2.27 −2.2 74.2 72.0 −2.9 17 17 0
apex2(1878) 2.48 2.54 2.5 87.9 88.4 0.6 16 16 0
s298(1931) 2.48 3.46 39.4 132.4 130.3 −1.5 13 13 0
frisc(3556) 6.10 6.98 14.4 128.4 129.5 1.0 20 20 0
elliptic(3604) 6.75 5.85 −13.4 108.7 102.5 −5.7 17 17 0
spla(3690) 6.24 6.03 −3.4 106.3 118.4 11.4 19 19 0
pdc(4575) 8.41 7.57 −10.0 147.7 127.2 −13.9 25 25 0
ex1010(4598) 8.23 7.33 −10.9 155.1 151.4 −2.4 16 16 0
s38417(6406) 12.22 13.14 7.5 88.6 86.5 −2.4 11 11 0
s38584.1(6447) 13.49 13.97 3.6 83.7 90.9 8.5 12 12 0
clma(8383) 19.33 16.88 −12.6 167.7 164.9 −1.7 17 17 0
Geom.Av. 3.74 3.51 −6.2 89.4 86.9 −2.9 14.6 14.7 0.1
Total (59635) 106.50 101.47 −5.0 1893.6 1848.3 −2.4 303 304 1

so the approach introduced in this paper appears feasible after all. The main
positive outcome of this work is the fact, that the run time of the simulated
annealing algorithm was reduced without sacrificing the placement quality for
combined routability and timing driven case. For most benchmarks, the quality
of the final placement could even be improved despite using less swap moves.
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Abstract. When designing SoCs, a unique opportunity exists to generate
custom FPGA architectures that are specific to the application domain in which
the device will be used. The inclusion of such devices provides an efficient
compromise between the flexibility of software and the performance of
hardware, while at the same time allowing for post-fabrication modification of
circuits. To automate the layout of reconfigurable subsystems for systems-on-a-
chip, we present template reduction. Template reduction enables a designer to
eliminate resources from a template that are unnecessary to support the
specified application domain. To facilitate this, we have created a feature rich
template, from which we automatically generate application specific
reconfigurable circuits. Compared to the full template, we achieve designs that
are 53.4% smaller and 13.9% faster, while continuing to support the algorithms
in a particular application domain.

1   Introduction

In the traditional FPGA design space there is a limit to the number and variety of
FPGAs that can be supported – large NREs due to custom fabrication costs and
design complexity means that only the most widely applicable devices are
commercially viable. However, a unique opportunity exists in the system-on-a-chip
(SoC) design space. FPGAs have a role in this design space as well, providing a
region of programmability in the SoC that can be used for run-time reconfigurability,
functionality improvements, multi-function SoCs, and other situations that require
post-fabrication customization of a hardware subsystem. This gives rise to an
interesting opportunity: since the reconfigurable logic will need to be custom
fabricated along with the overall SoC, that reconfigurable logic can be optimized to
the specific demands of the design.

The goal of the Totem project [1, 2, 3, 4] is to reduce the design time and effort in
the creation of a custom reconfigurable architecture. The architectures that are created
by Totem are based upon the applications and constraints specified by the designer.
Since the custom architecture is optimized for a particular set of applications and
constraints, the designs are smaller in area and perform better than a standard FPGA
while retaining enough flexibility to support the specified application set, with the
possibility to support applications not foreseen by the designer.
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2   Background

2.1   RaPiD

The reconfigurable-pipelined datapath (RaPiD) [5] has been chosen as a starting point
for the architectures that we will be generating.  The goal of the RaPiD-I architecture
is to provide performance at or above the level of a dedicated ASIC, while also
retaining the flexibility that reconfigurability provides. RaPiD-I is able to achieve
these goals through the use of course-grain components, such as memories, ALUs,
multipliers, and pipelined data registers.

Along with coarse-grain components, the initial RaPiD-I architecture consists of a
one-dimensional routing structure, instead of a standard FPGA’s two-dimensional
interconnect. The RaPiD-I architecture is able to take advantage of the reduction in
complexity that a one-dimensional routing structure provides because all of its
computational units are word-width devices. This structure has proven effective in
supporting high-performance signal processing applications [5].

2.1   Totem

The goal of the Totem project is to create tools to generate domain-specific
reconfigurable architectures based on designers' needs.  One way the Totem project
can achieve its goal is to remove as much flexibility as possible from a reconfigurable
device, while still supporting the particular algorithms or domain that concerns a
designer. While the gains of removing unneeded overhead are apparent, creating a
custom reconfigurable architecture is a time consuming and costly endeavor; thus,
another goal of the Totem project is to automate the creation of these custom
architectures. The overall Totem design flow can be broken into three parts: high-
level architecture generation, VLSI layout generation, and place-and-route tool
generation.

The focus of this work is the automatic generation of mask layouts, which is
performed by the VLSI layout generator. The layout generator will receive, as input
from the high-level architecture generator, the Verilog representation of the custom
circuit. We are currently investigating three possible methods of automating the
layout process: standard-cell generation [1], circuit generators, and template
reduction.  Here we present the template reduction method.

3   Template Reduction Method

The idea behind template reduction is to start with a full-custom layout that provides a
superset of the required resources, and remove those resources that are not needed by
a given domain.  One example of a similar approach to template reduction in industry
is eASIC’s FlexASIC  [6].  Their approach enables designers to remove unneeded
routing resources by the elimination of vias, creating a reconfigurable device that is
similar to an anti-fuse based design.  The goal of the Template Reduction Method is
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to not only remove unneeded routing resource, but to also remove unneeded
functional units.

During template reduction, the removal of resources is done by automatically
editing the layout to eliminate the transistors and wires that form the unused
resources, as well as automatically replacing programmable connections with fixed
connections or breaks for flexibility that is not needed. In this way we can get most of
the advantage of a full custom layout, while still optimizing towards the actual
intended usage of the array.

Template reduction has been broken into three tasks. The first is the creation of a
feature rich macro cell, which is used as an initial template that will be reduced and
compacted to form the final circuit. The second is the creation of the reduction list
that identifies the resources that should be removed. The final task is the
implementation of the reductions on the template, followed by the compaction of the
resultant circuit.

3.1   Template Cell

Extensive profiling has been performed to create the feature rich template. This led us
to the cell, called RaPiD-II, which is a more feature rich version than the original
RaPiD-I cell. The increase in resources is required, since we have found that the
original full-custom RaPiD-I cell does not have enough interconnect resources to
handle some of the benchmarks intended for the architecture [4].  RaPiD-II addresses
this issue because it has 24-buses and three bus-connectors per functional unit,
compared to RaPiD-I, which has 14-buses and one bus-connector per functional unit.
In addition to the increase in routing resources, the RaPiD-II cell that was chosen had
to have a rich enough resource mix of functional units to support a large set of
applications.  Note that RaPiD-II isn’t an architecture chosen just for template
reduction, but instead is the RaPiD tile we believe is the best for implementation in
any methodology, including full custom tiles. Template reduction will work on
RaPiD-II, the original RaPiD-I, or any other premade tile that has at least enough
resources to support the desired circuits.

3.2   Reduction List Generation

The next task in template reduction is the creation of the reduction list. Towards this
end we have implemented a subtractive scheme that eliminates as many functional
units and routing resources, collectively called “resources”, as possible while placing
and routing a set of netlists onto the template architecture. Individual netlists are
placed using a simulated annealing approach [2], and routed using the Pathfinder
algorithm [7]. Initially, all netlists in the set are individually placed and routed on the
template architecture.  At the end of this first run, the fraction of netlists that used
each resource in the template is recorded, and a cost (referred to as usage_cost) is
assigned to each resource based on the fraction of netlists that used the resource
during the previous run.

After completion of the first run on all netlists, a second run is commenced during
which the netlists in the set are individually placed and routed again on the template
architecture.  However, for any given netlist, the cost of using a resource during the
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second run is influenced by the usage_cost of that resource.  At the end of the second
run, the usage_cost of each resource is again adjusted in a manner identical to that at
the end of the first run, and a third run is begun.  Once the three runs are completed,
we have a list of the resources that can be eliminated from the template architecture.

3.3   Reduction and Compaction

Once the reduction list is generated, the final task is to automatically edit the
template, followed by a compaction step to reduce the template size. To reduce the
template, the layouts were automatically edited within the Cadence CAD tools.  To
achieve the required automation Cadence SKILL [8] routines were written for each
reduction that the subtractive method performs.

First among the reductions is the elimination of any unused cells (that is, complete
RaPiD-II tiles).  The next reduction is the elimination of any functional units in any
cell that are not needed.  Next, we remove any of the bidirectional bus-connectors that
are not needed in the interconnect. The final reduction is the removal of any unused
wires. When an unused wire is removed, the corresponding transistors and
programming bits in any muxes and drivers on the wire are also removed.  Once all of
the reductions have been preformed the final design is compacted.

4   Results on Benchmarks

We are using five sets of netlist to evaluate the template reduction method.  All of the
netlist sets have been compiled using the RaPiD compiler [9].  The five benchmark
sets are:
• Radar – used to observe the atmosphere using FM signals
• Image Processing  – a minimal image processing library
• FIR –six different FIR filters, two of which time-multiplex use of multipliers
• Matrix Multiply – five different matrix multipliers
• Sorters – two 1D sorting netlists and two 2D sorting netlists

The template reduction method is able to reduce the number of functional units by
an average of 45%, and the routing resources by an average of 75%.  Through these
reductions, we have found that the template reduction method produces circuits that
are on average 53.4% smaller and 13.9% faster than the unreduced template.

5   Conclusions

With the advent of SoCs, it is now possible to reduce the NRE cost of creating custom
reconfigurable devices. This presents some interesting possibilities for high
performance reconfigurable circuits that are targeted at specific application domains,
instead of random logic. Automation of the design flow is required, if these new
custom architectures are to be designed in a timely fashion.
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The template reduction method is able to leverage full custom designs, while still
removing unneeded resources. This enables it to create circuits that perform at or
better than that of the initial full custom template. In this work we have shown that the
automation of the layout portion of the design flow is possible using a template
reduction methodology. We have created the RaPiD-II cell, since the RaPiD-I cell
was not able to implement all of the circuits from the benchmark suite, circuits that it
was targeted to support.  We have found that the template reduction method produces
circuits that are 53.4% smaller and 13.9% faster than RaPiD-II.
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Abstract. Modeling of molecule interactions often uses rigid models
and correlation techniques, either in early screening passes or as steps
within more complex models. Even rigid models are time-consuming
when applied to large models at 103 − 105 different three-axis rotations.
This paper presents an FPGA structure for performing the correlations
efficiently using a systolic array for 3-D correlation and an addressing
technique for low-overhead rotation of a 3-D voxel models around three
axes. We find a 200× speedup in our FPGA implementation compared
to the standard transform-based method.

1 Introduction

Molecule interaction modeling is simulation of chemical systems, to understand
how two compounds will bind. This is important in many biological interactions
including screening of drugs, fitting a relatively small drug molecule (or ligand)
to a large biomolecule (substrate). The ligand is tried in all three-dimensional
offsets and in all three-axis rotations, a six-dimensional search of all possible
poses of the two molecules. The best chemical and mechanical fit between the
ligand and substrate is the docked configuration.

One simplifying assumption [1,2] is that the two molecules are rigid and that
electrostatic, solvation, and other forces [3] have scalar values at fixed distances
from each molecule. Using these assumptions, the molecules and forces are digi-
tized onto 3D voxel grids. The best fit is found using 3D correlation, repeated at
many different rotations. Standard PC implementations use 3D Fourier trans-
forms to perform the correlation efficiently. We report an FPGA-based hardware
accelerator that uses direct correlation to give a 200× speedup.

2 Application Detail and Serial Reference Code

A simple model describes each voxel as interior to a molecule, in the molecule’s
surface region, or exterior to the molecule. When the two grids are aligned,
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Fig. 1. Bounding box of rotated model

interior-interior overlaps represent collisions between the molecule bodies.
Surface-surface overlaps represent regions where binding can occur. A few col-
lisions need not disqualify a relative placement because real molecules flex and
digitization necessarily introduces inaccuracies. Standard encoding (e.g. [3,4])
treats interior voxels as imaginary values so their products are negative. Real
voxel values represent surface regions, so their products are positive. The total
score S of one relative offset (x, y, z) between molecules A and B can be written
as

Sx,y,z =
∑

i

∑
j

∑
k ai−x,j−y,k−z · bi,j,k

where elements with out-of-bounds subscripts have 0 value. This is easily rec-
ognized as a 3D correlation. A change of subscript variables rewrites this as
a′

x−i,y−j,z−k = ai−x,j−y,k−z, so the correlation becomes a 3D convolution
S = A′ � B. Direct convolution takes O(N6) steps for grids of size N , which
can be reduced to O(N3 log N) using Fourier transforms:

Sx,y,z = A′ � B = F−1(F(A′) ×F(B))

One grid, assume A′, is transformed and reused in all poses, so only B needs
to be transformed at each rotation. The computation sequence for each rotation
then consists of 1) a three-axis 3D rotation of grid B, giving grid B′, 2) a 3D
Fourier transform F(B′), 3) the 3D multiplication F(A′) × F(B′),and 4) the
inverse Fourier transform F−1 on the product.

As shown in Figure 1, the bounding box of B′ can be up to
√

3 ≈ 1.73 the
size of grid B, or

√
3
3 ≈ 5.2 the number of voxels, though the average bounding

box has only about 40% as many voxels as the worst case. The molecule is
not a repeating structure, so transforms require grids A′ and B′ to be padded
until both molecules fit without overlap. Padding and expansion in rotation do
not change the polynomial complexity of the calculation, but can increase the
number of voxels by a factor of 40, relative to the un-padded, un-rotated grids.
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Fig. 2. Modified McWhirther/McCanny 2D convolution array

3 FPGA Algorithm, Implementation, and Results

The purpose of the Fourier transform and inverse is to avoid direct convolution.
Convolution is a staple of signal processing, however, so it has been well stud-
ied and efficient FPGA structures are available for performing it. The rest of
this section shows an FPGA accelerator for rigid molecule docking by direct 3D
convolution. First, we present a modified McWhirther-McCanny (MM) [5] con-
volver that generates one Sx,y,z score value per clock cycle after startup. Next, we
describe a technique for addressing the voxel model so that 3D rotation is elim-
inated as a separate step. Finally we demonstrate that, for realistic model sizes,
direct convolution can run faster than the transform-based algorithm since it
benefits from zero loop and load/store overhead, massive parallelism, and other
optimizations. The net effect is an FPGA algorithm roughly 200× as fast as
PC-based serial code.
Systolic array for three-dimensional convolution. Our 3D convolution is
similar to the non-recursive form of the MM systolic array. The biggest change is
extension of the array from its original 2D form to 3D form, shown in Figure 2.
Each row in the MM array includes a 1D convolver, which holds coefficients for
one row of the smaller molecule A. The row also contains a synchronous FIFO,
which holds the rest of the 1D convolution result of length xA + xB − 1. Each
rotation of B is broadcast to the array one voxel at a time. After a startup delay,
one convolution result is output per cycle.

FIFOs (row buffers) extend the 1D convolver to result length xA + xB − 1,
before sending results to the next row in that 2D plane. Likewise, the 2D plane
consists of a column of yA 1D row convolutions plus a 2D buffer connecting to
the next plane in the 3D stack. The full size of the 2D result is xA + xB − 1 by
yA +yB −1, so an additional FIFO of length (yB −1) ×(xA +xB −1) is added to
each plane. These plane buffers are also RAM FIFOs that can be programmed
to handle different values of (yB − 1) × (xA + xB − 1). The 3D array is a stack
of zA 2D planes, as shown in Figure 3.

The sizes of A and B can both vary according to the molecules modeled and
the rotation of B, so the FIFO has adjustable length. Different A lengths are
accommodated by using parts of the 1D convolver as FIFO elements. This allows
relatively gate-intensive computation cells to hold the A values and the RAM
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Fig. 3. Two-dimensional convolver extended to 3D

FIFO to hold the bulk result data. Since the convolution cells store the voxel
values for the A grid, the number of gates available for convolution cells sets the
upper bound on the size of the smaller molecule. RAM resources for the FIFOs
and for the unrotated B image limit the size of the B molecule.

Each cell of the convolution array is one multiply-accumulate step of the
convolution. For one-bit collision and surface information, multiplication re-
duces to AND operations and accumulation to conditional incrementing. We
use saturating arithmetic to reduce the number of bits per accumulator without
wraparound.

Fourier transform implementations must pad molecule grids because
molecules are not repeating structures and because common FFT codes require
2N grid sizes. Direct convolution does not pad for either reason, so uses far fewer
voxels for each correlation.
Address generation for 3-axis rotation. Docking requires a three-axis rota-
tion of one molecule relative to the other before each convolution. Our approach
performs the inverse linear transformation, from (i, j, k) traversal coordinates
to (x, y, z) unrotated coordinates, using fixed-point arithmetic precise to ± 0.5
units over the entire grid. The (x, y, z) are then converted to linear memory
addresses. Because of the regular traversal order, this can be optimized to one
addition and range test per axis, performed in parallel across all three axes. The
regular access pattern allows even these operations to be pipelined. The result
is a 3D rotation engine with:

– No separate rotation phase or buffer for rotated image,
– Precise sizing of bounding box to rotated size, averaging 40% the volume of

the worst-case rotation’s bounding box,
– Setup requiring only 18 values per rotation, and
– Implementation using modest amounts of logic, 268 logic slices in a Xilinx

Virtex-II Pro for a 1283 grid.

FPGA implementation and performance results. We require a computa-
tion grid that accommodates typical drug candidates: a 25×25×25Å model will
handle many pharmacophores of interest. The computation must also handle
common substrate molecules, or at least their active regions: 200 × 200 × 200Å
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is acceptable for our initial implementation. Resolution around 2Å is common
in models of the substrate proteins [6], so is used as the size of each grid cell.
The Xilinx Virtex-II Pro XC2VP100 FPGA has enough capacity for a cubical
convolution array 14 cells on a side, and memory adequate for 1003 grid cells in
the substrate model and FIFOs. Thus, it meets these molecule size requirements.

We synthesized the accelerator for a Xilinx XC2VP100 FPGA using two-bit
voxel values, 143 cells in the convolution array, buffer capacity for substrates to
1003, and rotated addressing for access to the substrate model.

For comparison, we used only the time of a 3D Fourier transform and inverse
running on a 3GHz Intel Xeon processor, and skipped the rotation and grid
multiplication steps. The C-language 3D transform and inverse were taken from
[7]. The C code operates only on cubes of size 2L for integer L, so times are
reported for the lowest power-of-two size that holds the result. Direct convolution
in C took several times as long as the transforms, and is not reported. FPGA
timings are based on a clock estimate of 24.9ns. We assume 5376 rotations,
corresponding to angles sampled at 12.7◦ intervals.

Table 1. Performance results, FPGA vs. serial C code

4 Extensions

We have assumed that the ligand is small relative to the substrate. In order
to analyze interactions between large molecules, we take advantage of the fact
that convolution is a linear operation. The resulting algorithm is analogous to
the one presented here, but uses multiple passes through the convolution array.
This is currently under development, as are additional scoring functions based
on electostatics and other phenomena.
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Abstract. A high-performance reconfigurable coarse-grain data-path, part of a
hybrid reconfigurable platform, is introduced. The data-path consists of coarse
grain components that their flexibility and universality is shown to increase the
system’s performance due to significant reductions in latency. An automated
methodology for mapping applications on the proposed data-path is also
presented. Results on DSP benchmarks show important performance
improvements, up to 44%, over existing high-performance data-paths.

1   Introduction

Coarse-grain units in hybrid reconfigurable systems improve the performance and
reduce the energy consumption of applications, when these are mapped to this type of
reconfigurable hardware [1]. Research in Architectural Synthesis [2] and in automatic
instruction generation in Application Specific Instruction Processors (ASIPs) [3, 4],
proved that complex data-path resources, called templates, accelerate computational
intensive applications, like DSP ones. A template may be a specialized hardware unit
or a group of optimally-designed chained units. Chaining [5] is the removal of the
intermediate registers between the primitive units (like single ALUs) for improving
the total delay of the units combined. A high performance reconfigurable coarse-grain
data-path that can efficiently implement DSP applications and it is a part of a generic
hybrid reconfigurable platform (Figure 1), is presented in this work. Each
computational component of this data-path can easily realize any template due to its
universal and flexible structure. There is a full utilization of chaining of operations
through direct inter-component connections resulting in performance improvements
compared with existing template-based methods [2, 3, 4].

2   Data-Path Description

The proposed data-path is composed by: (a) the Coarse-Grain Components (CGCs),
(b) a register bank, and (c) a reconfigurable interconnection network, which enables
____________________________
* This work was partially supported by the project IST-34793-AMDREL funded by the E.C.

Also, it was partially funded by the Alexander S. Onassis Public Benefit foundation
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Fig. 1. Hybrid reconfigurable platform architecture

the inter-CGC connections and the connections between the CGCs and the register
bank. The structure of the CGC is an n-by-m (nxm) array of nodes, where n and m are
the number of nodes per row and column, respectively. In Figure 2a shows a 2x2
CGC. Each CGC node (Figure 2b) consists of two functional units that are a
multiplier and an ALU, where one of them is enabled in a specific clock cycle. The
data-bus of the CGC is 16-bit, since such bit-width is sufficient for the majority of the
DSP applications. The fine-grain part (FPGA) of the hybrid granularity platform hosts
the control-unit of the CGC data-path. A crossbar interconnection network provides
full connectivity between the CGCs and among the CGCs and the register bank. A
hierarchical network, like the fat-tree [6], can be used when a large amount of CGCs
compose the data-path. The fat-tree network allows scaling of the CGC data-path,
something that it is not achieved by a crossbar, since the fat-tree’s interconnect delay
increases logarithmically with the number N of CGCs, and not in quadratic manner as
in a crossbar network (where O(N2) switches are required).

CGCs with a value of 2 ≤ n ≤ 3 and 2 ≤ m ≤ 3 are adequate to be used for improving
performance of DSP applications. This is justified by the fact that in existing
template-based methods [2, 3, 4], templates with depth=2 and 1 ≤ width ≤ 2 (i.e n=2,
1 ≤ m ≤ 2 for the CGC) were mainly used due to two reasons: (a) larger templates
introduce larger area and control overhead relative to a primitive resource data-path
[2], and (b) templates consisting of two operations in sequence contribute the most to
the performance improvements [3, 4].
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Fig. 2. Detailed architecture of a 2x2 CGC (a) and the CGC node architecture (b)
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Compared with an equivalent CGC functionality realized by templates, like the
ones of [2, 3] the CGC’s critical path increases due to the summations of the delays of
levels of tri-state buffers and multiplexers. The delay of a 2x2 (2x3) CGC compared
with a template composed by two multipliers in a sequence, is increased by 4.2%
(4.7%), when both are synthesized at a 0.13μm ASIC CMOS process. These delay
overheads are negligible and they do not negate the performance gains (through clock
cycle reduction), as these are shown in Table 1. Although extra control signals are
required to configure a CGC compared to a primitive or a template resource, the
control-unit can be designed in such a way that does not incur an increase to the delay
of the whole data-path. This can be achieved when control signals are grouped
together to define a subset of the state of the control-unit in a control-step (c-step).
This way of synthesizing the control-unit is supported by current CAD synthesis tools
[7], where the control-unit can be automatically synthesized under a given delay
constraint. Nevertheless, the area of the control-unit increases. However, since our
priority is high performance and not area consumption, this area increase is not a
major consideration in this work. The area redundancy of the CGC data-path - also
due to the 2 functional units in the CGC node - can be consider as a trade-off for
achieving high-performance, as this is also the case in existing template-based data-
paths. In [2], an average increase of 66% in area consumption was reported.

3   Mapping Methodology Description

Due to the universal and reconfigurable structure of the CGC, a full Data Flow Graph
(DFG) covering using only CGCs is easily obtained, while the application mapping is
simplified. Also, a full exploitation of chaining of operations both inside and among
CGCs - resulting in performance improvement over primitive resource and template-
based data-paths - is achieved. The existence of a library consisting of only one type
of resource (i.e. the CGC) further simplifies binding with the CGCs. On the other
hand, to cover a DFG by a template-based data-path, the data flow structure and the
type of the operations of the DFG portion have to be matched with a template
available in the library, which results in a difficult matching problem. In previous
methods [2, 3, 4], due to the inflexible structure of their templates, a large number of
templates is usually instantiated, as it is proven in this paper’s experimental results.
This prevents the design of an efficient inter-template network. Also, when partial
matching [2] is not supported by the available templates as in [3], the uncovered DFG
operations have to be realized by primitive resources. This may result in an increase
of delay, area, and power. For example, if the primitive operations are implemented in
FPGA hardware [3], the performance is degraded and this is justified by the results of
Table 1.

    The steps of the mapping process are: (a) scheduling of DFG operations, and (b)
binding with the CGCs. The design choice was to use a list scheduler [5]. In the CGC-
based data-path, the list scheduler is simplified, since it handles one resource type,
which is the CGC node. Due to the features of the introduced CGC data-path a
simple, though effective, algorithm is used to perform binding. The pseudo-code of
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do {
  for the number of CGCs
   for (CGC_index=0; CGC_index <n; CGC_index ++) 
    while (col_idx <  number of ops in a row && col_idx < number of uncovered DFG
nodes)
                  map_to_CGC (DFG_node, CGC_index, col_idx)
    end while;
   end for;
  end for;
} while (the DFG is covered)

Fig. 3. The CGC binding algorithm

the binding algorithm is illustrated in Figure 3. The input is the scheduled DFG,
where each c-step has Tprim duration. After binding, the overall latency of the DFG is
measured in new clock cycles having period TCGC that is set for having unit execution
delay for the CGCs. We define a term called CGC_index that it is related to the new
period TCGC and it represents the current level of CGC’s operations that bind the DFG
nodes.

4   Experimental Results

A tool has been developed in C++ for mapping DFGs to the CGC data-path. The
DFGs used in the experiments were obtained from representative benchmarks
described in VHDL and C. For the extraction of the DFGs from the kernel's code,
tools like the SUIF2 compiler, were used. An experiment was performed that showed
that a data-path with two 2x2 CGCs achieves an average decrease in clock cycles
(latency) of 58.1%, when compared with a data-path composed by primitive resources
and its clock cycle is set to the ALU delay. The performance of the proposed data-
path is higher if TCGC<2.4 ⋅ Tprim (1), where TCGC

 and Tprim is the clock period for the
CGC and the primitive resource based data-path, respectively. Equation (1) has been
experimentally satisfied after comparing the 2x2 CGC delay with a 16-bit ALU delay,
both implemented in structural VHDL and synthesized with a 0.13μm CMOS process.
The experiment has showed that TCGC=2.14 ⋅ Tprim.

A second experiment compares the performance of the CGC data-path with a
template-based one. The template library consists of multiply-multiply, multiply-alu,
alu-alu, and alu-multiply templates that enable partial matching [2]. These templates
are chosen because they are proposed by the majority of the existing methods [2, 3, 4]
to be used to derive high-performance data-paths for DSP applications. The clock
period for the template-based and the CGC data-path is set to the combinational delay
of two multiplications in sequence, so as the clock cycle (performance) comparison is
straightforward. The binding with the templates is performed so as the available
primitive computational resources (multipliers and/or ALUs) in each c-step is equal
with the ones in the CGC data-path. The CGC data-path achieves better performance
than the template-based one, due to the average reduction in clock cycles by 20.4%
for the case of two 2x2 CGCs comprising the data-path (i.e. 4 operations can be
executed in parallel), while for the two 2x3 CGCs the reduction is 20.7%. In this
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experiment, the number of the template instances for the template-based data-path has
been also enumerated. It has been found that, in average approximately 7 (10)
template instances are required when 4 (6) operations can be executed concurrently.
On the other hand, 2 CGCs instances are required in both cases. So, due the absence
of flexible templates (like the CGCs) the generated template-based data-paths are
realized by a large number of template instances preventing the adoption of direct
inter-template connections and thus the inter-template chaining exploitation.

In a third experiment (its results are shown in Table 1) the performance of the
CGC data-path with a template-based one is compared, when the template partial
matching is not enabled. The uncovered DFG nodes are implemented by primitive
resources implemented in FPGA technology, like in [3]. The template library of the
previous experiment is used. The clock period of the ASIC components (i.e. the
templates) TASIC is set to the delay of the multiply-multiply template. In the case of the
FPGA hardware, the clock period TFPGA is set to the delay of the multiplier unit. In
this experiment we assume that TFPGA=2 ⋅ TASIC, which is a reasonable assumption for
the performance gain of an ASIC technology compared to an FPGA one. To simplify
the synchronization problems between the FPGA and the ASIC hardware (due to the
presence of two clocks), it is assumed that: (a) a closely coupled template data-path
and FPGA hardware, and (b) a clock period set to TASIC. So, the DFG operations
mapped to the FPGA hardware have an execution delay of 2 clock cycles, and the
ones mapped to the template data-path have unit-execution delay. As deduced from
the results of Table 1, the latency reduction (thus performance improvement) is even
greater (approximately 43%) when the CGC data-path is compared with a template-
based one that does not support partial matching.

Table 1. Latency (clock cycles) results when the CGC data-path is compared with a template-
based one (template full matching + FPGA primitive resources are enabled)

Template-based CGC-based % latency decreaseDFG
4

res.
6 res. two 2x2 two 2x3 4 res. 6 res.

ellip 12 12 6 6 50.0 50.0
fir11 11 9 6 6 45.4 33.3
nc 17 12 10 7 41.2 41.7
volterra 10 10 6 6 40.0 40.0
wavelet 19 14 9 7 52.6 50.0
wdf7 13 13 7 7 46.2 46.2
jpeg 134 91 81 54 39.5 40.6
ofdm 55 37 34 23 38.2 37.8
gsm_enc 196 103 103 69 47.5 33.0
gsm_dec 155 130 109 73 29.8 43.8
mpeg2 20 14 9 6 55.0 57.1
rasta 33 21 19 13 42.4 38.1

Average values 44.0 42.6



Mapping DSP Applications        873

5   Conclusions

A high-performance reconfigurable coarse-grain data-path, part of a hybrid recon-
figurable platform, has been presented in this paper. An automated methodology for
mapping applications to this data-path was also developed. Important performance
gains have been achieved compared with primitive and template-based data-paths.
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Abstract. A new timing-driven partitioning-based placement tool for 3D FPGA
integration is presented. The circuit is first divided into layers with limited
number of inter-layer vias, and then placement is performed on individual
layers, while minimizing the delay of critical paths. We use our tool as a
platform for exploring potential benefits in terms of delay and wire-length that
3D technologies can offer for FPGA fabrics. We show that 3D integration
results in wire-length reduction for FPGA designs. Our empirical analysis
shows that wire-length can be reduced by up to 50% using ten layers. Delay
reductions are estimated to be more than 30% if multi-segment lengths are
employed between layers.

1 Introduction

In response to mounting problems of the integrated circuit technology, various
research groups have shown renewed interest in 3D IC integration, and a number of
successful projects have shown the viability of the technology [1], [2]. 3D integration
can significantly reduce wire-lengths (hence circuit delay), boost yield, and can
particularly be useful for FPGA fabrics. It can address problems pertaining to routing
congestion, limited I/O connections, low resource utilization and long wire delays.
Even though the idea of 3D integrated circuits is not new, recent technological
advances have made it a viable alternative. However, there is a lack of efficient 3D
CAD tools that can exploit the potential gains that 3D integration can offer.

There has been previous work on CAD tools for 3D FPGA integration. Alexander
et al. proposed 3D placement and routing algorithms [3] for their architecture in [4].
An improved version of the placement algorithm appears as Spiffy, which performs
placement and global routing simultaneously [5]. In the experimental methodology
presented in [6], placement was performed with VPR [7] and routing was performed
with a custom routing tool [8].

In this paper we present a fast placement tool for 3D FPGAs called TPR (Three
dimensional Place and Route). Unlike previous works on 3D FPGA architecture and
CAD tools, we investigate the effect of 3D integration on delay, in addition to wire-
length. We show that wire-length alone cannot be relied on as a metric for 3D
integration benefits. The main contribution of our work is as follows.
• We analyze the potential benefits, which can be obtained by 3D integration for

FPGAs. More specifically, we place circuits onto 3D FPGA architectures and
study the variation in circuit delay and total wire-length compared to their 2D
counterparts, under different 3D architectural assumptions. The results of this
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• study and similar studies in future could guide researchers in designing high
performance 3D FPGA fabric architectures.

• We developed a tool, which is available as source and executable on the web. Its
purpose is to serve the research community in predicting and exploring potential
gains that the 3D technologies for FPGAs can offer. It shall be used as a platform,
which can be used for further development and implementation of new ideas in
placement and routing for 3D FPGAs.

2 Placement Algorithm

The philosophy of our tool closely follows that of its 2D counterpart, VPR [7]. The
flow of the TPR placement and routing CAD tool is shown in Fig. 1. The design flow
starts with a technology-mapped netlist in .blif format. Then, the .blif netlist is
converted into a netlist composed of more complex logic blocks with T-VPack [9].
The .net netlist as well as the architecture description file are the inputs to the
placement algorithm.

Fig. 1. Flow diagram of the 3D placement and routing tool

Our placement algorithm (see Fig. 2) is partitioning-based, and hence scalable in
the face of explosive growth of design sizes. The initial “partitioning into layers” step
is performed using the min-cut hMetis partitioning algorithm [10]. This is motivated
by the limitations imposed by current technologies, which require us to minimize the
usage of vertical connections (it was also observed in [11] that optimizing inter-layer
interconnect is of key importance for 3D integration technologies).

After the initial partitioning into layers we assign partitions to layers using a linear
placement approach. The goal of this step is not only to minimize the total vertical
wire-length but also the maximum cut between any two consecutive layers. The actual
placement is performed on each layer individually starting with the top layer (layer 0)
and continuing downwards till the last layer (layer L-1). The placement of every layer
is based on edge-weighted quad-partitioning using hMetis partitioning algo-
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Architecture
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Constraint driven placement
top-to-bottom layers

3D detailed routing
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Placement and routing info
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Fig. 2. Pseudo-code of TPR placement algorithm

rithm. Edge weights are computed inversely proportional to the slack of nets.
However, we also selectively bias weights of the most critical nets. The set of critical
nets contains edges on the current k-most critical paths. The delay of the circuit
(therefore slacks) and the set of the most critical paths are periodically updated based
on the delay assigned to all current cut nets by the partitioning engine. This ensures
accurate estimation of the circuit delay as the placement algorithm progresses. The
rate of delay update and critical paths re-enumeration is dictated by runtime /
estimation accuracy trade-off. The recursive partitioning of a given layer stops when
each placement region has less than four blocks. Complete overlap removal is done
using a greedy heuristic which moves non-critical blocks (i.e., not on any critical
paths) to the closest available empty location.

When the placement of a given layer is finished, we forward propagate placement
constraints for the most critical nets. In layers that have net bounding box constraints,
terminals that have placement restrictions are fixed in appropriate partitions before a
call to the hMetis partitioning engine. This technique explicitly minimizes the 3D
bounding-boxes of critical nets, which leads to minimization of the total wire-length
and circuit delay. Steps 3 to 7 of the algorithm shown in Fig. 2 are performed for all
layers, and when the last layer is finished the circuit is completely placed.

3 Analysis of Placement Delay Estimation

We analyze the relation between circuit delay, which we estimate after placement and
circuit delay computed after detailed routing in the 2D case. The goal of this 2D
analysis is to study the reliability of the delay estimation during placement (which in
turn affects slack calculations and the decision on which nets to tag as critical). To
this end, we placed a set of circuits – shown in Table 1, which come with the VPR
package – using our TPR placement algorithm on a single layer and recorded the total
wire-length and the circuit delay using our estimation1. Then, all placements are
routed using the timing-driven VPR routing algorithm [7], after which again circuit
delay and total wire-lengths are recorded.

                                                          
1 Our optimistic delay estimation during and after placement is based on a matrix lookup table

of best delays – as reported by VPR routing algorithm – which can be achieved for a route
between two generic points say (x
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Table 1. Statistics of simulated circuits

 
b) a) 

Fig. 3. Correlation between normalized delay (a) and normalized wire-length (b) after
placement and after routing

Correlations between the delay and wire-length estimation after placement and the
delay and wire-length after detailed routing are shown in Fig. 3.

The plot in Fig. 3.a corresponds to delay and plot in Fig.3.b shows wire-length
correlations. Each point in these plots corresponds to one circuit from Table 1. A
point with (x,y) coordinates indicates that for that circuit, delay (wire-length)
estimation at placement was x, while the delay (wire-length) after detailed routing
turned out to be y. The closer x and y, the more reliable the delay (wire-length)
estimation is at the placement level. The plot in Fig. 3.a describes the relation between
the normalized delay estimated after placement and normalized delay computed after
detailed routing. The routing architecture has wire segments of length one, two and
six as well as long wires. The plot in Fig. 3.b shows the correlation between the
normalized total wire-length after placement (computed based on half-perimeter of
bounding-boxes) and the normalized total wire-length after detailed routing. We note
that there is a good correlation in all cases, which tells us that comparing placed
circuits based on our estimations should be representative of the results after routing.
Our 3D routing tool is yet under development. Preliminary simulations with a first
version of it demonstrate plots similar to those in Fig. 3, for a number of layers
greater than two.

4 Simulation Results

The goal of our simulations in this Section is to study the variation of the circuit delay
and total wire-length with the number of layers when the delay of an inter-layer wire
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(i.e., vertical via) has different values. In the first set of simulations we assume that
inter-layer vias are as long as single-length wire segments (i.e., the distance between
two CLBs). This is a reasonable assumption, because 3D fabrication methods such as
[1] can create inter-layer vias that are a mere 5-10μm long. The delay of the inter-
layer via is assumed to be equal to the delay of a segment of length one as well. We
placed circuits of Table 1 on different number of layers and recorded the average
circuit delay and total wire-length of four placement runs. The simulation results are
shown in Fig. 4.a and Fig. 4.c, where circle points represent the average of the ten
circuits and square points represent the minimum and the maximum among the ten
circuits of the delay and wire-length, respectively. It can be seen that wire-length
decrease is significant (and are similar to the ASIC results from other researchers).
Circuit delay decreases as well but starts increasing when the number of layers is
larger than nine.

b) a) c) 

Fig. 4. a) Circuit delay as a function of the number of layers: the delay of an inter-layer
connection that connects terminals that are k layers apart is k times the delay of a segment of
length one b) Circuit delay as a function of the number of layers when the inter-layer delay is
independent of distance between layers (equal to the delay of a unit segment) c) Total wire-
length – normalized to the 2D case – as a function of the number of layers when the length of
an inter-layer via is one

The main reason for the lesser decrease in circuit delay (compared to the potential
significant decreases one can achieve with 3D integration of standard cell integrated
circuits [11], [12]) is that in FPGAs the net delay is proportional to the number of
switches on the net, rather than the Manhattan distance. Therefore, the
“segmentation” due to switches necessary for connecting terminals of nets spanning
more layers will impair the benefits of 3D integration for FPGAs with a simplistic
vertical routing architecture. We also note that the delay increase of some circuits is
due to their high internal connectivity, which in turn requires a significant fraction of
nets to span at least two layers.

In the second set of simulations we placed all circuits and recorded the average
circuit delay for the ideal situation where the delay of an inter-layer wire is assumed
to be equal to the delay of a segment of length one, regardless of how many layers
separate the net terminals. This setup serves the purpose of analyzing the upper bound
of maximum potential delay improvements using our method, which can be achieved
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by the 3D integration2. The simulation results are shown in Fig. 4.b. It can be seen
that delay improvements of more than 30% can be achieved using nine or ten layers.

We note that the total wire-length decreases as more layers are used (see Fig. 4.c).
This decrease can be up to 50% for some circuits, mainly depending on the internal
connectivity of the circuits. If the length of the inter-layer via increases, then the total
wire-length decrease will be less. That is mainly because the fraction of the vertical
wire-length relative to the total wire-length will become significant and also the
average net delay will increase due to bending (i.e., switches) of nets spanning more
layers. It has to be noted that the decrease in total wire-length can have favorable
impact on the routing congestion (hence channel width), as well as power dissipation
(especially due to the fact that most of the power dissipated in FPGAs is due to
interconnects, which account for more than 80% of the total area) as predicted by
Rahman et al. in [13]. On the other hand, the potential gain in terms of circuit delay is
smaller (see Fig. 4.a) unless the 3D technology offers a rich vertical routing
architecture that has vias that span multiple layers without using a switch (similar to
segments of length, e.g., two, six, and long in the 2D architectures). Technologically,
this is doable. However, further research needs to be done to find the exact patterns
and lengths of such vertical routing segments. The 2D routing architecture cannot be
simply extended to the 3D due to the more restrictive limitations on the number of
vertical segments.

5 Conclusion

Benefits which 3D FPGA integration can offer were analyzed using a new placement
algorithm3. The placement algorithm is partitioning-based and has integrated
techniques for minimization of the 3D bounding-boxes of nets and of the delays of the
critical paths. Simulation experiments showed potential total wire-length decrease up
to 50% for some circuits and 30% decrease in delay – for rich 3D vertical routing
architectures which have vias that span multiple layers without using switches –
compared to the 2D case.
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Abstract. Dynamically reconfigurable co-processors (DRCs) are interesting
design alternatives when both flexibility and performance are concerns.
However, it is difficult to study the performance impact of including such
devices into design when using traditional design methods and tools. In this
paper, we present easily adaptable system-level techniques, which are able to
perform fast exploration of different reconfiguration alternatives. A SystemC-
based modeling method for DRCs and a high-level synthesis-based estimation
tool to support system partitioning are presented.

1 Introduction and Related Work

The technology developments have made it possible to re-program configurable
hardware at run time. Such device is generally referred to as dynamically
reconfigurable logic (DRL). Unlike software or hardware implementation, DRLs
spread computation over both time and space. The new feature requires various
changes in the traditional design flow. At the system level, the problems are how to
support HW/SW/DRL partitioning, how to evaluate different reconfiguration
alternatives, how to model the DRLs with the aim of fast design space exploration,
etc. In the era that the design level is moving higher and higher, the design of
Reconfigurable System-on-Chip (RSoC) requires an easily adaptable solution to
enhance traditional design methods and tools in order to reduce the time-to-market.

Authors in [1] proposed a VHDL modeling technique of the reconfigurable process
that is simulatable and takes reconfiguration overhead into account, but the approach
is not suitable for design space exploration. In [2], a system-level model of runtime
reconfigurable system was proposed. However, the reconfiguration overhead was not
addressed. In [3], the VCC tool was used to evaluate different design options of a
reconfigurable platform, but context scheduling is not addressed.

Our research focuses on high-level design methodology of reconfigurable systems,
where DRLs are used as co-processors. This paper presents a system-level modeling
technique of DRCs and the associated tools. The work is an extension of [4]. The
main advantage of the approach is that it can be easily embedded into a SoC design
flow to allow fast design space exploration for different reconfiguration alternatives
without going into implementation. The system-level model describes the behavior of
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the reconfiguration process and relates the performance impact of the reconfiguration
process to a set of parameters extracted from reconfiguration technologies of interest.
Thus, by tuning the parameters, designers can easily evaluate the trade-offs between
different technologies. In simulation, the model can automatically detect the
reconfiguration requests and trigger the reconfiguration process. The modeling
methodology is supported by an estimation tool for the system partitioning and a
transformation tool for reuse of existing SystemC code.

The structure of the paper is as following. Section 2 introduces the modeling
technique and supporting tools. The validation work using a MPEG2 decoder case is
described in section 3. Section 4 gives the conclusions.

2 Proposed System-Level Modeling Techniques

The important tasks in system-level design of RSoC are to identify candidate
components and to reveal reconfiguration overhead. The candidate components are
application functions that are considered to gain benefit from being implemented on
DRCs. The decision whether a task should be a candidate component is clearly
application dependent. The criterion is that the task should have two features in
combination: flexibility (that would exclude an ASIC implementation) and high
computational complexity (that would exclude a software implementation). Flexibility
may come either from the point that the task will be upgraded in the future or in view
of hardware resources sharing with other tasks with non-overlapping lifetimes for
global area optimization. The reconfiguration overhead is the feature closely related
to DRL technologies and run-time behavior of the candidate components.

Our modeling technique focuses on three issues: selection of candidate
components, modeling of the reconfiguration overhead for fast design space
exploration, and design reuse. They are separately addressed in following sections.

2.1 Estimation Approach to Support Identifying Candidate Components

We developed a high-level synthesis-based estimation tool [5], which can produce
estimates of the execution time and hardware resources required for embedded FPGA
type DRCs, in order to support the selection of candidate components with the aim of
total area reduction. Traditional HW/SW partitioning methods will be involved when
making a full HW/SW/DRL partitioning.

The input is C code of tasks to be studied. A SUIF-based front-end preprocessor is
used to extract Control-Data Flow Graphs (CDFG), based on which well-known high-
level synthesis tasks are carried out to produce the estimates. As-soon-as-possible
(ASAP) and as-late-as-possible (ALAP) scheduling are used to determine the critical
paths, from which we estimate the execution time. A modified version of Force-
Directed Scheduling (FDS) is used to estimate the hardware resources required for the
tasks. Finally, allocation algorithms are used to estimate the hardware resources
required for interconnection with multiplexer type of interconnection units. The
current estimator targets a Virtex2-like embedded FPGA in which main resources are
LookUp-Tables (LUTs) and multipliers.
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2.2 Modeling of Reconfiguration Overhead

The modeling of reconfiguration overhead is divided into two steps. In the first step,
different technology-dependent features are mapped onto a set of parameters, which
are the size of configuration data, the clock speed of configuration and the extra
delays apart from loading of the configuration data.  In the second step, a SystemC
module that models the behavior of run-time reconfiguration process is created and is
used in system-level simulation to reveal the reconfiguration overhead.

A general SystemC model of RSoC is shown in Fig. 1. The left side is an overview
of the RSoC. The DRC is a single SystemC module, which implements the same bus
interfaces in the same way as other HW/SW modules. A configuration memory is
modeled, which could be an on-chip or off-chip memory that holds the configuration
data. The right side shows the internal structure of the DRC, which is in fact a
hierarchical SystemC module. Each candidate component (F1 to Fn) is an individual
SystemC module, which implements the top-level bus interfaces with separate system
address space, and is instantiated inside the DRC. Each candidate component has two
extra ports. One is a DONE signal port routed to the Configuration Scheduler (CS).
The port is used to acknowledge the CS that this task can be safely swapped out. The
other is connected to a shared memory that saves the data to be preserved during
reconfiguration. The Input Splitter (IS) is an address decoder and it manages all
incoming Interface-Method-Calls (IMCs). The CS monitors the operation states of the
candidate components and controls the reconfiguration process.

Fig. 1. System-level Modeling of Reconfigurable SoC

The main idea of the modeling method is as following. When the IS captures an
IMC to a candidate component, it will hold the IMC and pass the control to the CS,
which decides if reconfiguration is needed. If so, the CS will call a reconfiguration
procedure that uses the parameters specified in step 1 to generate memory traffic and
associated delays to mimic the reconfiguration latency. When the CS is done, the IS
will dispatch the IMC to the target module. If the module cannot be activated at the
moment, a message of request to reconfigure the target module will be put into a
FIFO queue and the IMC will return with the value of FALSE. When a module
finishes its operation, it will send a DONE signal to the CS, and the CS will check if
there is any waiting message in the FIFO queue. If so and it is possible to activate the
waiting module, the CS will call the reconfiguration procedure. Concerning the
practical implementation effort, the pre-emption of a running module is not supported.
The modeling method is for non-blocking IMCs. The use of blocking IMC requires
the behavior of the system bus to be changed in order to avoid the bus being locked
when the called module is off the device.
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There is a state diagram common to all candidate components, based on which the
CS makes reconfiguration decisions. A state diagram of partial reconfiguration is
presented in Fig. 2. For single context and multi-context DRCs, similar state diagrams
can be used in the model. The main advantage of the modeling method is that the rest
of the system and the candidate components need not to be changed between a static
approach and run-time reconfiguration approaches, which makes this method very
useful in making fast design space exploration.

Fig. 2. Reconfiguration state diagram

2.3 Transformation Tool to Support Reuse of Existing SystemC Modules

We developed a tool that can automatically transform SystemC modules, which
however must follow a defined modeling pattern, into a SystemC module of a DRC.
The inputs are SystemC files of a static architecture and a script file, which gives the
names of the modules that are selected as candidate components and the associated
design parameters. The outputs are SystemC files of a modified architecture, in which
those specified SystemC modules have been replaced with a DRC module. The kernel
of the tool contains a C++ parser to analyze the SystemC files, a script file parser and
a template module of the DRC. There are two specific requirements for the input
moduls. Firstly, modules should implement the bus interface methods with defined
names. Otherwise the transformer would not have the knowledge of their meanings.
Secondly, a port of DONE signal with specified name should exist in a candidate
module in order to let the CS capture its status.

3 Case Study

A MPEG2 decoder case is chosen to prove the approach is very useful for the task of
fast design space exploration. The starting point is a SystemC transaction-level model
of a static architecture of the decoding system. Control-oriented tasks, such as
variable-length decoding, are assigned to a RISC processor. Motion compensation is
assigned to a DSP core. The color converter (CC), which processes 8 pixels in
parallel, and the IDCT are assigned to two separate hardwired ASICs. A shared
memory and a one-level system bus are used. The task is to study the possibility of
moving the IDCT and the CC from ASIC implementation to a DRC.

The DRC is a Virtex2-like FPGA. The partial, single/multi-context reconfiguration
are to be considered. Features of the target DRC are as following. There are 3200
LUTs and 40 multipliers available. The size of bitstream to configure the full device
is 200k bytes. In partial reconfiguration, the size of configuration data is proportional
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to the number of LUTs required. In the multi-context reconfiguration, there are two
layers of programming bits and 5 clock cycles are required for context switching. The
configuration clock is running at 50MHz, and 8 bits are loaded every cycle.

We started with the estimation of the requirement of the configuration data in
partial reconfiguration. The estimation tool showed 2983 LUTs and 2688 LUTs were
required for the IDCT and the CC separately, which correspond to 186k and 168k
configuration data. Three simulation packages were created using the modeling
method described in section 2.2 and the simulation results are given in Table 1. The
differences between three configuration styles are clearly revealed. Designers can
easily make design decisions when information of ASIC area of the two functions and
the estimates of design time are available.

The case study proves the approach is useful in helping designers to rapidly
perform design space exploration. The estimation tool can produce results within
minutes without any manual effort. In the SystemC modeling, the transformation tool
can significantly reduce the amount of coding work. Designers need to edit only the
script file of the design parameters, which can be easily done within a minute.

Table 1. Comparison of reconfiguration latencies

Original Single Multi Partial
Decoding time (ms/fr) 15.35 26.69 18.69 25.78
Conf. latency (ms/fr) NA 8.00 2e-4 7,09

4 Conclusions

In this paper, we have presented a system-level modeling methodology of DRCs. The
use of DRCs will create a flexible system and result in shorter time-to-market when
comparing with equivalent ASIC-type SoC implementation. It is very important to
have an approach that allows designers in the early phase of design to rapidly explore
the differences of using different reconfiguration alternatives. Our easy-to-use
approach has been proved with a MPEG2 case to be able to fulfill the task.
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Abstract. ReDiFlex is a system that supports the development of appli-
cations that use dynamically and partially-reconfigurable hardware. The
hardware functionality is specified by the flow of data between mutable
operators. The system automatically creates the physical implementa-
tion after partitioning the model to fit the hardware constraints; during
application execution new computation-dependent partial configurations
can be created. ReDiFlex provides run-time support for reconfiguration
and data transfer scheduling.

1 Introduction

The describe a development support system for applications that use dynami-
cally reconfigurable hardware (DRH) called ReDiFlex. Embedded in an inter-
active programming environment, ReDiFlex allows the programmer to define
the functionality of the hardware through a data-flow-like specification, maps
this specification to dynamically reconfigurable hardware, generates the required
configurations and enables application access the additional operations through
regular function calls. Changes to the specification can be immediately and
transparently propagated to hardware by partial reconfiguration. In addition,
the implementation is automatically partitioned to accommodate hardware size
restrictions. ReDiFlex includes a run-time support system that transparently
schedules all reconfigurations and data transfers.

The prototype implementation of ReDiFlex uses a H.O.T. Works board from
VCC equipped with a XC6216 FPGA [1]. The board is connected through the
PCI bus to the CPU that runs the application (and the development system).
One of the aims of this work was to produce a system where the use of the
hardware infrastructure is transparent to the applications programmer, except
for the need to specify explicitly what part of the application is to run on DRH.

After discussing some global design choices, section 2 describes the main
modules of the ReDiFlex systems, with emphasis on the services provided to the
user/programmer. Section 3 shows briefly how the behaviour of the DRH part is
specified. Section 4 explains how the high-level description of the functionality is
converted to DRH configurations. Brief concluding observations appear in sec. 5.
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Fig. 1. ReDiFlex: main modules and general information flow

2 General Organisation of the ReDiFlex System

ReDiFlex was designed to be embedded in a general-purpose programming en-
vironment. We decided that the hardware functionality would be described ex-
plicitly by a data-flow-like model, where the processing nodes (but not the inter-
connection structure) might change with time. This enabled us to avoid having
to perform generic run-time routing of interconnections.

The use of an explicit model implies that the hardware infrastructure is not
transparent to the user. Instead, the user must have the two domains (changing
hardware and software) in mind while designing the application. This is not
necessarily bad, since a uniform model is difficult to find.

The data-flow model is a first-class “citizen” of the application, i.e., it is
represented by an object that can be inspected and partially changed by the
running application (in general, the changes may be done at run-time to account
for the data that is being processed). Any changes to this representation of
the model are automatically propagated to its hardware implementation by the
runtime support system.

ReDiFlex needs detailed knowledge of both the computations performed by
the hardware and the resources involved (including the exact position of the
individual modules on the FPGA). In addition, some operations (like routing)
may be partially performed at run-time (in restricted situations). Therefore, the
system implements all the tasks necessary to go from the data-flow model to the
individual (partial) reconfigurations (including model partitioning, placement
and routing) without relying on any external tools.

ReDiFlex is a layered system, with upper layers building on those immedi-
ately below (Fig. 1). An exception is the run-time support system, which inter-
faces with all the other main modules.

The application programming interface (API) is provided jointly by the run-
time support (RTS) system and by the module that handles data-flow models
(the OPNET module). The API is embedded in the host programming environ-
ment, so all the features of the latter are available for application development.

Together, the two top modules provide the following services:
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1. Incremental construction of dataflow-like models with consistency checks.
2. Automatic creation of the interface to the running hardware.
3. Scheduling of reconfiguration and data transfer operations to/from the DRH.
4. Access to detailed information on the mapping of the model to the hardware

resources.

For each data-flow model, the system creates an appropriate implementation
(without user intervention) and defines a set of functions that the application can
use to send data to the reconfigurable hardware and to retrieve the results. To the
application, these are regular functions of the host programming environment;
internally they call on the reconfigurable hardware for the computations.

An additional set of functions that control hardware reconfiguration are also
created. They translate changes of the data-flow model into reconfiguration op-
erations at the hardware level. Changes are specified in terms of the data-flow
model (the “visible” representation of the hardware at the application level); the
application never deals directly with hardware resources.

The RTS module is responsible for the actual data transfers to/from the
DRH, and for scheduling and carrying out the reconfiguration operations.

The OPNET module takes care of the internal representation of the data-flow
models and associated processing (including model partitioning). The PHYS
module handles the internal representation of the reconfigurable hardware re-
sources. It is responsible for placement and routing of individual elements and
performs incremental routing inside special elements called containers. A re-
stricted type of partitioning can also be done at this level.

The HWCTRL module provides the raw access to the hardware. It handles:
(i) hardware initialisation and reset; (ii) reading and writing of application or
configuration data; (iii) clock control (both single-step and free-running). The
basic access to the hardware is implemented by a thin layer of C++ code and a
device driver.

3 Specifying the Functionality of Dynamically
Reconfigurable Hardware

The specification of the DRH behaviour is based on the flow of data between
operators. Each operator is characterised by the function it implements and its
interface (unidirectional input/output channels). A complete description is an
acyclic network of operators. An operator network has fixed connections, but
the operators can change in well defined ways. Dynamic, partial reconfiguration
is used to propagate changes of the operators to the underlying hardware.

Operators are abstract, parameterisable classes of objects. Each operator
can have application-accessible state attributes. An operator’s instance state at-
tribute values are accessible for inspection while the application runs. (State
attributes are a model for hardware registers.) Parameters either specify initial
values of state attributes or define aspects of the hardware implementation. In
general, the parameters of an operator can be changed at any time. If a param-
eter corresponds to a state variable, the modification takes effect immediately,
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Table 1. Operator network partition-
ing

Circuit Ops. Sub-models Time (s)
alu4 202 2 0.3
spla 581 11 0.6
des 3592 86 7.9

Table 2. Layout partitioning

Circuit Ops. Nets Time (s)
cordic 80 78 6.47
inc 113 104 14.3
misex2 142 124 17.1

Running times of partitioning routines for some MCNC benchmarks (Pentium
III, 730 MHz)

even if the operator is active, i.e. running on the hardware. For implementation-
modifying parameters, changes are registered in the model, but only take effect
when a reconfiguration is explicitly requested.

Some parameters determine aspects of the operator’s interface, for instance,
the number of bits of an input port. These parameters can only be specified once,
before the underlying hardware configuration is produced. This follows from the
decision not to support modifications of inter-operator connections at run-time.

The current prototype implementation includes a basic set of operators. Some
of them are not mutable (i.e., have a fixed implementation) and correspond to
simple logic gates or arithmetic circuits; others correspond to dynamically recon-
figurable circuits. For instance, adder is a regular binary adder, const-adder is
a circuit that adds a constant value to its input (a specialised version of adder
for a fixed second argument) and mutable-const-adder is a const-adder that
can be changed at run-time (i.e., successively specialised for different constants).

ReDiFlex also provides containers, mutable operators whose implementation
details are delegated to other operators. The container is a “wrapper” around
other operators, only one of which may be active at any one time. The “con-
tained” operators must be compatible: they must have identical number of input
and output ports and the respective sizes must be the same; the containers need
not have the same physical dimensions. Containers have a special parameter
that specifies the active “contained” operator. The change of active operator
implies re-routing the connections to the container pins at run-time and saving
the instance’s state. Containers may be nested.

Feeding the FPGA with the correct data is a complicated process, because
operators may be sequential circuits and it is necessary to provide them with the
input data on precisely determined clock cycles. Similarly, the different results
must be collected on specific clock cycles. The run-time support system takes
care of these tasks automatically. The system also supports a pipelined mode of
operation for processing large batches of data.

4 From Data-Flow Model to Physical Implementation

Given an operator network, ReDiFlex generates the required FPGA configura-
tions and the scheduling information for the run-time support system. For each
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kind of operator, the system has a generator, a set of software routines that
generate the configuration for a rectangular section of the FPGA (a “block”).
The generators can create new configurations or alter existing ones. The external
dimensions of the blocks are preserved in the process.

ReDiFlex generates the layout of the circuits by starting with a levelised
graph of the data-flow model: for each level, a corresponding full-height vertical
“slice” is created in the layout. Each slice contains the blocks associated with
operators of the same level plus feed-through blocks that allow for communica-
tion between non-adjacent slices. This organisation allows for a direct mapping
between operator model and layout and is well suited to the architecture of
the XC6200 family. ReDiFlex then proceeds to route all connections between
adjacent slices, adjusting the space between them as necessary.

The layout obtained by this procedure may not fit into the FPGA because
it may be too wide or too high. The fist problem can solved by partitioning the
physical layout in FPGA-sized clusters. Additional input and/or output registers
have to be added to the layout of each cluster. At run-time, the support system
stores the intermediate values produced by one cluster and feeds them to the next
cluster after FPGA reconfiguration. This solution is implemented directly on the
layout. To solve the second problem, ReDiFlex partitions the initial data-flow
model into a set of implementable sub-models. The sub-models must form an
implementable acyclic graph. This task is done by a variation of the partitioning
algorithm of [2]. The current implementation stresses finding a viable layout
rapidly, as suits the exploratory nature of the tool. Table 1 reports running times
for model partitioning; table 2 does the same for physical-level partitioning.

5 Conclusion

ReDiFlex is a working, interactive support system for applications running on
a CPU with fast connection to DRH. It was intended as an vehicle for research
on execution models for DRH-based applications and associated run-time man-
agement issues. New platform FPGAs with embedded CPUs (like the Virtex-II
Pro) seem particularly attractive targets for extensions of the work presented,
with the PHYS layer requiring the largest modification. An important problem
that remains to be solved is how to describe the functionality of the DRH at an
abstract level, while being able to exploit specific resources like internal block
RAMs.
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Abstract. Coarse-grain reconfigurable architectures consist of a large number of
processing elements (PEs) connected together in a network. For mapping appli-
cations to such coarse-grain architectures, we present an algorithm that takes into
account the number and delay of interconnects. This algorithm maps operations
to PEs and data transfers to interconnects in the fabric. We explore three different
cost functions that largely affect the performance of the scheduler: (a) priority of
the operations, (b) affinity of operations to PEs based on past mapping decisions,
and (c) connectivity between the PEs. Our results show that a priority-based op-
eration cost function coupled with a connectivity-based PE cost function gives
results that are close to the lower bounds for a range of designs.

1 Introduction

Coarse-grain reconfigurable architectures have been proposed as co-processors for ac-
celerating compute intensive portions (generally loops) of applications in embedded
system platforms. These architectures are attractive to system designers because they
provide the high performance of ASICs with the ease of reconfiguration of fine-grain
FPGAs. As a result, we have seen the emergence of a wide range of coarse-grain re-
configurable architectures over the last few years [1,2,4,5,6]. (to name a few). Mapping
applications to coarse-grain architectures is a combination of assigning time cycles for
operations to execute in (scheduling), mapping these operation executions to specific
PEs (mapping), and routing the operands or input data by mapping and scheduling data
communications to specific interconnects in the fabric (routing).

In this paper, we present an algorithm that performs these tasks by taking into account
the spatial locality or connections between the PEs and the temporal locality between
the data used by the operations. We examine different metrics that affect this algorithm
– specifically (a) the priority of operations based on the length of the dependency chain
or critical path through the code, (b) the affinity of operations to PEs, i.e., operations are
more likely to be mapped to a PE if their predecessor operations are also mapped to that
PE or one of its connected neighbors, and (c) the connectivity of the PEs, i.e., we first
map operations to PEs that are connected to the maximum number of other PEs, thereby,
exploiting their spatial locality. The main contribution of this paper is in examining the
� This work was partially supported by NSF grants CCR-0203813, ACI-0204028, and Hitachi

Corporation.
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Fig. 1. Algorithm to schedule a basic block

Fig. 2. Algorithm for verifying routability of data

Fig. 3. (a) PE indexing in base algorithm and (b)
PE indexing in connectivity based algorithm

different metrics that influence the mapping results and demonstrating which ones do
better than others.

The rest of the paper is organized as follows. Section 2 outlines the related work. We
present the base mapping algorithm in Section 3 and then explore three different cost
functions which affect the performance of the algorithm. In Section 4 we present our
experimental setup and results. Section 5 concludes the paper.

2 Related Work

Several efforts have focused on algorithms for mapping applications to coarse-grain
architectures. Huang et al. [12] proposed a methodology to map loops on the architecture
and then merge all the data paths corresponding to different loops. Venkataramani et
al. [15] presented an algorithm for mapping loops written in SA-C language to the
MorphoSys architecture [5] which uses a similar notion of affinity, but no detailed results
are available.

RaPid [2] uses a C-like language to program loops which requires a consider-
able knowledge about the underlying architecture. Mei et al. [17] proposed a mod-
ulo loop scheduling approach to map loops on a generic reconfigurable architecture.
A list scheduling based approach enriched with a priority based heuristic was used for
PipeRench architecture [4] in which priority was defined on the basis of distance from
the nearest non-routing node. Our algorithm bears some resemblance with this work,
however, we differ in terms of the heuristics used and the target architecture which
consists of a mesh based array of PEs in our case.

In this paper, we examine different cost functions that have an impact on the mapping
of applications to a generic mesh-based coarse-grain architecture using a list scheduling
based mapping approach. Based on our experimental results, we provide new insights
into the metrics that affect this mapping.
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3 Base Mapping Algorithm

Our base algorithm traverses the control-data flow graph of the application and schedules
and maps one basic block at a time. ScheduleMapBB, the heuristic for scheduling the
operations in a basic block and mapping them to PEs, is listed in Figure 1. The heuristic
takes as input basic block to be considered (currBB), a global clock cycle (currCycle),
and the list of all the PEs (PEList) in the architecture.

The ScheduleMapBB heuristic starts by collecting a list of available or ready
operations, Aavail, in the current cycle. Available operations are operations whose data
dependencies are satisfied and can be scheduled in the current cycle.Aavail and PEList
are then ordered by the cost functions Cop and CPE to store back in Aordered and
PEList respectively. We examine the effect of varying the Cop and CPE cost functions
in the following sections. The heuristic then maps operations to PEs starting with the PE
candPE having the minimum cost CPE . We first make a copy of the available operation
list as AcandPE for candPE (lines 6 and 7 in Figure 1) since operations that cannot
be mapped to candPE will be removed from the candPE’s available list. Next, the
heuristic chooses the operation (candOp) with the lowest cost, Cop, from AcandPE .

Once an operation and a PE is selected, ScheduleMapBB calls the IsRoutable
function to verify if there is a route available for the data required by candOp to reach
candPE in currCycle. This function is presented in detail in the next section. If
IsRoutable does not find any route, then ScheduleMapBB considers the next op-
eration in AcandPE till it maps an operation to candPE or no more operations are left.
If IsRoutable returns a true result, candOp is mapped on candPE and scheduled to
execute in currCycle. We also store the usage information of different connections for
each cycle. This information is used by IsRoutable function to check the availability
of different routes. Once we map an operation on a PE, usage information of all the
connections used for this operation is updated. (lines 11 to 16 in Figure 1).

In this way, the ScheduleMapBB heuristic schedules and maps operations on each
PE in PEList and then increments currCycle when PEList is exhausted. Note that, in
each cycle we restart the mapping of PEs in the same fashion. This process is continued
until all the available operations in the current basic block have been scheduled.

3.1 Routing Algorithm

The IsRoutable function, outlined in Figure 2, verifies the ability to route data from
the predecessors of candOp, to candPE in currCycle. Thus, the IsRoutable function
checks all the routes from each predPE (on which a predecessor operation is mapped) to
candPE by calling the function GetRoutes (lines 2 and 3 in Figure 2). These routes and
delays on them are determined statically before scheduling so that there is no additional
run-time overhead of finding routes in terms of complexity of the algorithm. A route
from predPE to candPE cannot be used if: either the cycle in which the predecessor
operation finishes execution (EndTime(predOp)) summed with the delay of the route
(Delay(route)) is larger than the current cycle (currCycle), or if the route is not
available, i.e., some connection on the route is used by another data communication in
the same cycle (lines 4 to 6 in Figure 2).
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The routability verification algorithm is a constant time algorithm as routes are
determined statically at the start of the scheduling. The worst case complexity of the
scheduling and mapping algorithm is O(m∗n2) where m is the number of PEs in the
architecture and n is the number of operations in the basic block. The actual run-times
of our algorithm for an architecture having 16 PEs is in the range of 10 user seconds for
the designs considered (see Section 4).

Apart from verifying the routability of the operands, two other aspects that affect the
performance of the scheduler are the cost functions Cop and CPE . Over the next few
sections, we present analysis of different cost functions.

3.2 Base PE and Operation Cost Functions

PEs are selected from the PEList based on the cost function CPE . CPE for the base
algorithm is defined as equal to the index of that PE; we assign indices to the PEs
from PE0 to PE15 (as shown in Figure 3(a)). Operations are selected from the list
of available operations based on the cost function Cop. For the base algorithm, cost is
randomly assigned to all the operations, i.e., operations are randomly selected. Next, we
analyze other CPE and Cop functions.

3.3 Priority-Based Cop

Since we are trying to optimize performance of the applications mapped to the coarse-
grain architecture, it is intuitive to give preference to the operations that lie on the
critical path through the code. Hence, we assign a priority to each operation in the input
description based on the length of the chain of operations that depend on it. The priority
of an operation is calculated as one more than the maximum of the priorities of all the
operations that use its result. Operations whose results are not read (primary outputs)
have a priority of one. The operation cost function (Cop) is taken as the negative of its
priority. In other words, higher the priority, lower the cost.

3.4 Affinity Based Cop and CPE

If operation Opi is mapped on PE PEm, then communication delay can be minimized
by mapping operation Opj that reads the result of Opi on a PE PEn that is either directly
connected or connected through the fewest intermediate links to PEm. This leads us to
the notion of affinity between operations and PEs. We define affinity, Aff(Opi,PEm),
of an operation Opi to a processing element PEm as the sum of the number of parents
of Opi that were mapped on any PE adjacent to PEm. Processing element PEm is
considered adjacent to PE PEn if they have point-to-point connection between them.
Note that, a PE is adjacent to itself. Note also that affinity of operations have to be
calculated at the beginning of each cycle during the scheduling and mapping process.

Thus, affinity captures the data dependency information along with past operation
to PE mapping decisions. We can, thus, use affinity to map operations to PEs with
which they have the highest affinity and in the process minimize communication
delays. That is, we calculate the operation cost function Cop as the negative of its
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Fig. 4. (a) Example DFG, (b) Mapping of parent ops., (c) Mapping with a delay, (d) Mapping
without delay

affinity. If two operations have same cost then we select the operations on the basis
of their priorities. Note that, a similar notion of affinity has been discussed earlier
by Venkataramani et al. [15]. We also associate an affinity with each PE. Affinity
of a processing element PEm is the sum of affinities of all the operations to PEm, that is:

AffPE(PEm) =
∑

Aff(Opi,PEm) ∀ Opi ∈ Aavail

We then take the cost of a PE, CPE , as equal to its affinity. We schedule operations on
PEs starting with the PE having lowest affinity. The reason for this can be understood
by the example DFG shown in Figure 4(a). The target architecture we consider is shown
in Figure 4(b). If we map Op1 on PE2, Op2 on PE5, and Op3 on PE6 as shown in
Figure 4(b) then both Op4 and Op5 have affinity of two for PE6. However, only Op4
has affinity of one for PE2 and only Op5 has affinity of two for PE5. By definition,
the affinities of different PEs are: PE2 has 2, PE5 has 3, and PE6 has 4. Now if we
choose to schedule PE6 first (i.e. PE with the highest affinity), then we may choose to
map operation Op5 on it, instead of Op4 since they both have an affinity of 2 to PE6.
The resultant mapping is shown in Figure 4(c). However, this means that Op4 will have
to be mapped to PE5 (or any other PE). This in turn means that the result of Op1 will
suffer a communication delay of one cycle to reach Op4. However, according to the
proposed algorithm, we first choose PE2 only to find that no operation is routable on
this PE. Then we choose PE5 and find that Op5 is routable on it, so we map it on PE5.
Now there is only one choice – that of mapping Op4 on PE6. The resultant mapping is
shown in Figure 4(d) which has no communication delay.

Thus, we first map PEs (having non-zero affinity) in increasing order of affinity and
then the rest of the PEs based on the PE indices, (starting from top left corner to bottom
right corner).

3.5 Connectivity Based CPE

We noticed that in mesh architectures like the one shown in Figure 3(a), the PEs at the
corner of the grid (PE0, PE3, PE12, PE15) have only 3 directly connected neighbors.
In contrast, PEs at the center of the grid have 5 neighbors. Mapping operations to PEs in
increasing order of their indices means that the operations with highest priority and/or
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affinity are first mapped on the sparsely connected PEs on the edge (first row) of the
grid. Thus, the data produced by these operations can be routed to a smaller number
of PEs than if the operations were mapped to the PEs at the center of the grid. This
observation led us to develop a PE ordering in which operations are first mapped to PEs
that are better connected. Thus, in our connectivity-based cost function, we give higher
preference to the PEs with more number of connections, i.e., the PEs at the center of
the grid. We assign the indices to the PEs starting from the PE at the center, as shown in
Figure 3(b). The PE cost function CPE is equal to the index of the PE, but the indexing
of PEs is changed which, in turn, changes the cost function.

4 Experimental Setup and Results

In order to evaluate the applicability of the algorithms proposed in this paper, we imple-
mented them in a prototype compiler framework. This framework accepts an application
code in C and applies basic compiler transformations such as copy propagation and dead
code elimination. We used a set of seven designs drawn from the DSP domain for our
experiments. All these designs consist of straight-line code with a loop (or nested loops).

For all the experiments in this paper, we consider an architecture with 16 PEs con-
nected in a 4x4 array. We found little change in the relative numbers with larger arrays
[11]. Each PE has one functional unit, which is capable of executing any operation in
one cycle. The interconnect delay on direct connections is taken as 0 cycle, unless oth-
erwise specified. The typical run time of our algorithm is 10 user seconds on a 400 MHz
UltraSparc-II machine.

In all the experiments presented in this paper, we make some assumptions: (a) there
is enough memory bandwidth to fetch data without any delay, (b) there are enough
registers to store all the intermediate and final results, and (c) the architecture supports
cycle-by-cycle reconfiguration. We plan to address these assumptions in future work.

4.1 Comparison Algorithm

In an attempt to demonstrate the efficacy of the proposed algorithm, we created an
Integer Linear Programming (ILP) formulation of the mapping problem. To solve these
ILP formulations, we used publicly available solvers; LP SOLV E and CAP (Contig
Assembly Program). Despite their reported efficiency, neither of these solvers were able
to solve ILP formulations (within a few days), corresponding to a realistic application.
Still, to provide some comparison baseline, we devised a heuristic that uses a zero-
delay routing model. Specifically, all the PEs are assumed to be connected to each other
with a full crossbar interconnect. We use a priority based list scheduling heuristic to
map operations on this architectural model. This heuristic gives a lower bound on the
mapping results as there is no delay induced by routing. We manually looked at the
results of this heuristic and found little or no opportunity to improve them. We compare
all our results with the lower bounds generated by this heuristic.
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Fig. 5. (a) Mapping results for 7 DSP designs using base algorithm, (b) Comparison of mapping
results using different cost functions for 0-delay interconnect model

4.2 Results for Base Algorithm

In order to expose the parallelism of the application, we unroll the loops that increases
the number of operations to map. In case of nested loops, we unroll the innermost loop.
For all the experiments in this paper we present the results with an unrolling factor of
10 since we have shown earlier that unrolling factor of 10 is sufficient to explore the
inherent parallelism of the designs [10]. Table 5(a) shows the mapping results for the
designs using base algorithm. Third column in this table represents the number of cycles
needed to execute the design using base algorithm.

4.3 Comparison of Priority, Affinity, and Connectivity-Based Cost Functions

The results shown in Figure 5(b) demonstrate that a simple cost function based on
the priority of the operations gives significant improvement (up to 27%) over base algo-
rithm. But surprisingly a more sophisticated cost function based on affinity does not give
any improvement over priority based algorithm. The reason is that the routing function
IsRoutable (explained in Section 3.1) implicitly considers the data dependency infor-
mation when it finds the shortest routes in terms of communication time; this obviates
the need for complex affinity-based cost functions.

In contrast, connectivity based algorithm gives a further improvement of up to 16%
(in case of ATR) over the priority based algorithm. This is because of our earlier claim of
exploiting the better connectivity of PEs at the center of the grid. In fact, in most cases,
the connectivity based algorithm gives results that are close to the lower bounds.

4.4 Results for Varying Interconnect Delays

In order to support our claim about the applicability of the algorithm for different in-
terconnect delays, we performed experiments with a delay of 1 cycle (instead of 0) on
point-to-point connections. Figure 6(a) shows the performance results corresponding to
different cost functions with this interconnect model. The results in this figure are similar
to the results corresponding to the zero delay interconnect model. This demonstrates the
effectiveness of our mapping algorithm and usefulness of the priority and connectivity
based mapping strategies.
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Fig. 6. (a) Comparison of mapping results using different cost functions for 1-cycle delay intercon-
nect model, (b) Comparison of performance for different cost functions for the torus architecture.

4.5 Results for Torus Architectures

We introduced the notion of the connectivity-based PE cost function to use the informa-
tion about the differing number of connections between PEs during mapping. However,
there are some aggressive architectures in which all the PEs have same number of con-
nections. For example, in the architectures having torus shaped interconnects [1], PEs
in the first row (column) are also connected to the PEs in the last row (column) using
wrap-around connections.

Figure 6(b) shows the performance results corresponding to this architecture model
(delay on direct connection is zero cycle). These results show that with the torus archi-
tecture, as expected, the connectivity-based cost function does not give any improvement
over the priority-based function. In fact the priority-based algorithm now gives results
that are close to the lower bounds.

5 Conclusion

We explored three different cost functions which affect the performance of mapping
applications on to coarse-grain reconfigurable architectures: (a) a priority-based function
in which operations on the longest dependency chain are given preference, (b) an affinity-
based function in which an operation gets preference for a PE, if any of its predecessors
was mapped to that PE or its adjacent PEs, and (c) a connectivity-based function in
which preference is given to PEs that have more connections to other PEs. Although the
affinity-based strategy seems intuitive and useful, our experimental results show that the
priority-based operation cost function coupled with connectivity-based PE cost function
is sufficient enough to give results that are close to the lower bounds for most of the
designs considered.
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Abstract. Dynamically reconfigurable devices allow run-time reconfig-
uration to permit execution of incoming tasks or task fragments. One of
the important issues in run-time reconfiguration is the fragmentation of
the device area as the reconfigurable blocks are allocated and released
when tasks are placed, executed and deleted. Due to those scattered, un-
used resources, an incoming application may not be placeable or routable.
A cluster-based reconfigurable FPGA architecture is proposed to allevi-
ate this difficulty. We present an assessment of the proposed architecture.
We develop a fast evaluation tool to simulate on-line placement and rout-
ing effects on a run-time reconfigurable platform. The simulation results
show the efficiency of the proposed architecture in relieving the frag-
mentation problem at the price of a modest increase in the number of
switches.

1 Introduction

Run-time and partial reconfiguration capabilities of the state-of-the-art FPGAs
[7] have shown potential for a large number of novel applications of the FPGAs.
Due to the obvious advantages, a large number of research projects focus on im-
provements in the FPGA architecture. A large number of these projects propose
coarse-grained architectures which are column-based or word-level configurable.
Major benefit of course-grained architectures is the drastic reduction of place-
ment and routing complexity and the reduction of configuration time. However,
coarse-grained architecture exhibits less flexibility than the corresponding fine-
grained architectures, and is suffered from area fragmentation. In this paper,
we present a cluster-based reconfigurable architecture which supports multi-
granular reconfiguration by taking advantages of both mesh and tree routings
topologies. We evaluate proposed architecture by simulating run-time placement
and routing.
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2 Architecture Modeling

The two-dimension mesh architecture works well for the shorter connections
and is easy to be targeted by the CAD tools for the physical synthesis. For the
longer wires, the tree interconnect is more attractive. A combination of those two
topologies may take advantage of both mesh and tree based routing architectures.
The proposed architecture consists of a mesh array of reconfigurable units (RUs),
that have have CLB-like internal structures. In the proposed architecture, the
RUs are grouped into clusters. The short routes are accommodated inside the
cluster by using the mesh interconnect and routings between the clusters are
performed in either mesh or tree-like fashion.

TSCLB

Level 0

Level 1

Level logN−logk

N

k

Fig. 1. One dimensional illustration of connection

L S T

Fig. 2. A tree with N/k leaves

2.1 Connection Hierarchy

The reconfigurable units (RUs) are arranged as aN × N array. Let k × k be the
size of cluster, there are k leaves (from henceforth, we use the terms leaf and RU
interchangeably) for one dimension of cluster. Each leaf in a cluster has two trees
connected to the corresponding leaves in the other clusters. Namely, in the mesh
array of proposed architecture, every two corresponding RUs located on two
clusters with distance k are formulated as two leaves of a binary tree. The same
policy is applied to the root nodes from level 1 to level log N − log k recursively
and a N

k × N
k mesh-of-tree (MoT) is built. Since the trees are organized on a

cluster-based array (shown in Fig.1), the total number of MoTs is k × k. MoT
[2] has a good property that the leaves of trees are exactly the nodes of mesh.
In each row and each column, wires and additional nodes are connected to form
a complete binary tree. Mesh of tree has polylogarithmic Θ(log N) or Θ(log2 N)
running time on a wide range problems described in [2], which is much faster
than the typical running times of Θ(N) or Θ(N2) for algorithms on meshes or
trees. After construction, N/k leaves are put together remotely through a tree
network (Figure 2), where N = 16 and k = 4.

For the mesh array (level 0), we assume the same interconnection struc-
ture as a typical island-style FPGAs. However, as mentioned earlier, the RUs
are grouped as a cluster in which local routing resources are provided. The
long connections between clusters can be routed through tree network. Further,
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grouping RUs into clusters have two obvious benefits from configuration point
of view. Since most of the applications need reconfiguration of more than one
RU, RU clustering prove to be more efficient. Moreover, the cluster organization
would fast locate target area and reduce the size of hardware decoder.

Normally, in a mesh array, each RU has four neighbors (east, south, west and
north). By applying our hybrid network, the neighbors have been expanded from
four to six. Two more neighbors are the siblings of that RU in tree connections.
Note that although we have not drawn those neighbors, all neighbor connections
can be implemented by only one (through tree) or two (through mesh) switches.
Increased neighbors can help in realizing multi-granular configurations.

2.2 Switch Overheads

Let us consider two FPGAs with two different architectures: the conventional 2-
D island array and the proposed architecture, which is a hierarchical combination
of mesh and tree interconnect topologies. Let m denotes the number of pins of a
RU, and I is the number inputs and outputs from one side of RU to the channel.
We have I = m/4 for mesh array. The sizes of two FPGAs are set to N × N . In
order to be comparable, all bisection widths at highest level are set to be equal,
which is pmN2. Here, mN2 is the total number of possible signals. Since any
signal may cross the middle line of chip several times or not pass it at all, we
multiply it by a parameter p. Let W be the channel widths of conventional model.
Since there are N connection boxes and N−1 switch boxes per row/column either
along horizontal or vertical dimension. The bisection width can be represented
as N × I + 2 × (N − 1) × W . Therefore, we have:

W =
mN(4pN − 1)

8(N − 1)
(1)

Following the definitions in [1], if we assume the flexibility of connection block
is W and the flexibility of switch block is Fs, then for the conventional FPGA,
the total number of switches is estimated as:

SWA = N2 × (2 × 2 × I × W +

(
4
2

)
× Fs × W ) =

m(m + 6Fs)(4pN − 1)N3

8(N − 1)
(2)

Note that in the above calculations, we associate each logic block with one
switch box and two connection boxes. Therefore, the total switches are the N2

times of summation of switches in the switch and connection boxes.
For the proposed model, the total number of switches required for the tree

interconnect can be calculated as:

SWT = 2kN

log N
k

−1∑
i=1

(
2 × m + m2)× 2−i × N

k
= 2(m2 + 2m)(N − 2k)N (3)

In a tree network, the switches at the box at the ith level (where 1 ≤ i ≤ log N
k

−1)
are given by m2 +2m. Note that we assume the fully connected switch box which
is the worst case scenario. The numbers of switch boxes are 2−i × N

k
, and the

tree has log N
k

levels. From Eq.2 and Eq.3, we see that the number of switches
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needed for the two architectures are O(N3) and O(N2) respectively. For the
typical settings (N = 128, p = 0.5, Fs = 3, m = 30, and k = 4), the overheads
are under 5%.

3 Evaluation Methodology

In this section, we discuss the experiments conducted to evaluate the proposed
architecture and to compare it with traditional mesh architecture. In a dynam-
ically reconfigurable system, the applications (tasks) may come at arbitrary in-
tervals, and those tasks need to be placed on the reconfigurable platform at run
time. In our model, the FPGA is modeled as a two dimensional array and we
use the algorithm [6] to find maximal empty rectangles (MER) as possible task
placement locations. Each task consists of a set of hard macros. A macro can
be configured at a location where both placement and routing constraints are
satisfied. We use the fitting strategies [5] as our placement rules and model the
routing delay proportional to the Manhattan distance between two rectangles.
If a macro can not be placed due to either lack of suitable MER or limited rout-
ing resources, the routine flags failed status flag. We denote it as task rejection
(shown in Fig.4).

We randomly generated the tasks with their sized generated randomly with
uniform distribution between [1, Max size]. The set of macros for each task
are randomly generated with uniform distribution of their size in interval [1,
Max size] until the total area of all generated macros reaches the area of that
task. For the life time of each task and the interval time between any two con-
secutive tasks, we follow [6]. We generate 100 tasks for one execution and we
ran that experiment 100 times and report average values of results. We need to
point out that all tasks are assumed to be data independent of other tasks.

We use two different scheduling methodologies. In first approach, if a task
cannot be placed due to placement or routing constraints, that task is considered
rejected and no further attempt is made to place it. After placement of each
task, we calculate the free area left (Shown in Fig.3). In the second scheduling
methodology, if a task cannot be placed at its arrival time, it is put into a
queue and attempt is made to place it again after deletion of a task from the
FPGA. All tasks are executed on the FPGA at the expense of delay in their
execution(Shown in Fig.4).

4 Simulation Results

Three kinds of reconfigurable models are evaluated. Model A is Xilinx Virtex-
like FPGA, which is partially reconfigurable in vertical, chip-spanning columns.
Model B is fine-grained FPGAs, which has the same structure as model A while
reconfigurable in each RU (CLB). Model C is the proposed architecture. We
assume all three models have the same number 128 × 128 RUs or CLBs. The
Max size of a task is set to 45 × 45.

We have different policy for selection of a maximal empty rectangle for place-
ment of macro in different models. In model A, we choose a MER with minimum
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width that can accommodate a macro and for model B and C, we choose a rect-
angle with minimum area to place a macro. Bottom right point of a macro is
placed at the bottom right point of the selected MER for Model A and B. For
Model C, the right bottom point of macro is placed at the right-est and bottom-
est point of the cluster in that rectangle. In model A, if a macro is placed in a
column, that column cannot be reused for placement of other macros until the
previously placed macro is removed. For model B, all unoccupied area can be
allocated to any macro. In case of model C, macros are placed at the boundary
of cluster only. So, the bottom right point of a macro is placed at the bottom
right location of the bottom right cluster in the selected MER.

Fig. 3 shows that the empty area after each configuration is more than 60%
of the chip area. This implies all three models are suffering fragmentation se-
riously. We draw the ratios of rejected tasks, left area per unit time and extra
waiting time per execution of three models in Fig. 4. It is clear that our model
has significant improvements in terms of task rejection and the waiting time as
compared to the other models. The improvement in area utilization is also no-
ticeable. Since reconfigurable area is pretty large, some percentage improvements
are still significant.
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5 Conclusions

In this paper, we present a hybrid interconnect FPGA. The proposed model is
evaluated using an evaluation tool developed to compare its run time configura-
tion properties with other architecture models. Results shows that the proposed
architecture is superior to other architectures for run-time reconfiguration.
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Abstract. Recursion is a powerful method that is used to describe many
algorithms in computer science. Processing of recursion is traditionally
done using a stack, which can act as a bottleneck for parallelising and
pipelining different stages of recursion. In this paper we propose a method
for mapping recursive algorithms, without the use of a stack structure,
into hardware by pipelining the stages of recursion. The use of runtime
reconfigurable hardware to minimise the amount of required hardware
resources, and the related issues to be resolved, are addressed.

1 Introduction

Recursion is a powerful tool that is heavily used for the development of programs
today, that allows a programmer to compactly and easily design code that would
be much more complex in design if it is done using iteration. Recursion makes it
easier to develop programs and makes it inherently easier to debug due to much
simpler code being present for reviewing. Recursive descriptions can be seen
in many elegant algorithms such as tree traversals and “divide-and-conquer”
geometrical and mathematical problems in multi-dimensions [1]. Iterative equiv-
alents for such algorithms are nowhere near as elegant. Furthermore recursion
is fundamental to functional language paradigms which rely on recursion due to
an absence of common iterative operators.

On a general-purpose processor, recursive descriptions are implemented by
the use of a stack that is used to temporarily store arguments and results between
stages of a recursive function. This solution could be implemented easily on an
FPGA-based system. However the ability of such systems to provide customised
pipelining and parallelism, which software implementations on a general-purpose
processor cannot provide, will not be possible with such an implementation.

A solution for this problem is not provided by the majority of high level
language development tools such as Handel-C [2], which do not support recursive
procedures. The exclusion of recursive constructs from such tools is a testimony
to the difficulty of the process of mapping them into hardware.

Previous work into mapping recursive functions into FPGAs without the use
of a stack has relied on transforming the function into a loop [3]. However it
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makes no attempt to parallelise the recursive calls that are made in instances
where a function calls itself multiple times.

In this paper we present a method for mapping “basic” recursive functions
into reconfigurable hardware that unrolls the recursion with the use of runtime
reconfiguration, and hence does not use a stack.

Our approach builds on the previous work on unrolling iterative loops for the
purpose of mapping them into runtime reconfigurable hardware [4] and addresses
the additional difficulties that are unique to recursion. These difficulties include
hardware allocation which does not have the constant growth rate as in iterative
loops, and minimising the cost of runtime reconfiguration. In this paper we
allude to the use of special-purpose logic to predict hardware requirements for
the function being unrolled at the earliest time possible. More information can
be found in the full technical report [5].

We begin by defining what is meant by “basic” recursive functions. A “basic”
recursive function is a function that, calls itself zero or a constant number of
times, at any depth of recursion all instances of the function call themselves the
same number of times, and when given initial arguments the maximum depth of
recursion can be accurately calculated, or can be calculated at any time during
the processing of an input stream of arguments.

We begin by presenting a method for mapping this conceptual model of re-
cursion into hardware solutions on FPGAs that minimises the effect of runtime
reconfiguration delay. Details of two case studies, merge sort [6] and an imple-
mentation of Strassen’s matrix multiplication algorithm [7] can be found in [5].
Merge sort provides a motivating example, while the matrix multiplication case
study illustrates how hardware can be allocated unevenly between recursive in-
stances.

2 General Recursive Problem

We shall now describe a model of recursive processes that illustrates our pro-
posed solution. We model a basic recursive function as a tree. This is shown in
figure 1(a), which has an example of a function that calls itself twice.

Our implementation is based on pipelining the operation between consecutive
levels with an area on the chip dedicated to processing the nodes contained in
each level. To allocate the minimum amount of hardware the number of levels in
the recursive tree must be estimated accurately at runtime. The necessary logic
to meet this estimate can then be configured at runtime. This requires runtime
reconfiguration. Therefore an effective implementation of this process requires
the ability to hide the delay that is produced by runtime reconfiguration.

The example in figure 1(a) is not tail recursive, with values being returned
back up the recursive tree. This communication pattern presents problems in
pipelining if only a single area of logic is dedicated per level, as this area will be
blocking while waiting for subsequent logic to return data. A solution to this is
presented later in the paper.
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We also point out that the recursion in figure 1(a) is balanced, whereas
not all recursive trees are balanced. Unbalanced recursion presents problem in
the scheduling of data being sent through the pipeline, as well as introduces
an increased complexity in hardware allocation. This is due to the difficulty
in predicting the node population of a level of recursion due to the irregular
growth rate that is a result of unbalanced recursion. The problem presented by
unbalanced recursion is not discussed in this paper and has been left for future
work.

3 General Solution

The tree in figure 1(a) models a balanced recursive function with two recursive
calls. As indicated by the arrows directed from the children nodes back to their
parent nodes, the recursive calls return values that are processed by the parent
nodes.

Our approach is similar to previous approaches [8,9] that transform general
recursive calls into two tail recursive calls. Such transformations have been sug-
gested in the past as software compiler level optimisations [8,9]. These earlier
techniques rely on transforming a recursive call into two tail recursive calls and
using a stack to hold arguments generated in the first tail recursive call for the
second tail recursive call. Such methodology does not attempt to make use of
parallelism and pipelining opportunities that modern hardware offers. Our ap-
proach eliminates the need for a stack by taking advantage of multiple processing
elements and networking that current reconfigurable hardware makes possible
to implement and utilise on-demand.

(a) (b)

Fig. 1. A recursive tree, and the corresponding DAG produced.

Our mapping begins by removing upward returns in the tree by adding an-
other tree that shares the leaves with the original tree. The result is a DAG as
shown in figure 1(b).

Construction of the new graph involves the splitting of the statements in a
recursive function into two disjoint sets. The first set contains the statements that
occur before the recursive calls. These statements correspond to the unshaded
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nodes in the graph. The second set contains the statements that occur after the
recursive calls. These statements correspond to the shaded nodes in the graph.
For each set we define a different logic type as follows:

1. PreRecursion: This corresponds to logic that can compute during the ex-
pansion portion up to and including the point of truncation. This is in effect
the first tail recursive function.

2. PostRecursion: This corresponds to logic that can compute during the col-
lapsing of the tree. This is in effect the second tail recursive function.

An instance of a PreRecursion unit and a PostRecursion unit, creates a
complete instance of the original function. As can be seen in figure 1(b), the
shaded nodes which correspond to units of type PostRecursion are created by
mirroring the unshaded nodes. The nodes that are related in this mirroring are
named twins. Thus a twin corresponds to a complete function instance.

LU1 LU1 LU1 LU2 LU2 LU2

Fig. 2. Logic unit allocation

All instances of each unit communicate between levels as shown in figure 1(b),
with extra communication between twin units. They all take in the necessary
arguments to compute the values they are to output.

One possible layout in hardware for this DAG is an array as shown in fig-
ure 2, with the communication between logic units set so that the concept of a
twin can be seen. The logic to compute the results of a node may be replicated
in proportion to the node population in that level of the graph to maintain a
constant throughput. However there are instances where the communication be-
tween different levels of recursion incurs more cost than the actual computation.
In this case throughput is bounded by the communication between logic units,
and thus throughput remains constant irrespective of the amount of logic config-
ured. Following this observation a minimum amount of logic is configured, which
is the amount needed to compute the resulting computation of a single node.

As the depth of recursion increases, our mapping dedicates the minimum
amount of logic needed as dictated by the maximum depth reached. This is
achieved by the use of runtime reconfiguration to configure logic on demand.
Rruntime reconfiguration is a task that requires time orders of magnitude longer
than the time for performing computation. It will not be desirable to have the
system stall and wait for more logic to be reconfigured when logic for a new
recursive level is required.

To combat this problem, we implement a prediction mechanism that monitors
input into the system and detects the need for more logic before it is actually
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needed. All input items pass through this prediction circuitry, before being placed
into the compute logic. The collected information is used to hide as much of
the performance penalty introduced by runtime reconfiguration as possible. The
prediction logic will also be responsible for deciding how much hardware should
be allocated when reconfiguring new logic, in respect to the node population at
that depth of recursion.

When the prediction logic of the pipeline decided that more hardware is
needed when a new item enters the system it has time related to the length of
the currently configured pipeline to configure new logic. Prior configuration of a
suitable pipeline depth will make it possible to hide this cost completely.

4 Conclusion

A method for mapping basic recursive structures to runtime reconfigurable hard-
ware has been demonstrated. Case studies have been conducted to show the
method’s validity and correctness, based on an ability to predict the need for
runtime reconfiguration well before it is required. Whereas only basic recursive
structures have been mapped to reconfigurable hardware it is believed that simi-
lar techniques can be used to map more complex and general recursive structures.
The cases of unbalanced recursion and recursive problems where prediction may
not be optimal, are left as topics for future research.
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Abstract. The Tate pairing is a mapping which has good functionality
for constructing elliptic cryptosystems, while its computation is a hard
task. Especially, calculation of an inverse element using the extended
Euclidean algorithm over a finite field Fp tends to be a bottleneck. In
this paper, several kinds of implementation of the extended Euclidean
algorithm on an FPGA are shown and compared. Effects of introducing
Montgomery multiplication methods are also analyzed.

1 Introduction

The Tate pairing [2], which is a mapping on an elliptic curve, has been attracting
much attention since it provides good functionality for constructing cryptosys-
tems such as the identity-based key exchange. However, the computation of the
Tate pairing is a hard task, therefore it is essential to find efficient implementa-
tion in case of practical use [3]. One of the promising approaches is hardware im-
plementation [7],[6],[1]. Especially, reconfigurable implementation [1] is efficient
since the architecture can be flexibly tailored for an adopted elliptic curve. Most
of these existing architectures for cryptosystems deal with elliptic curves over an
extension field F2m , since multiplication and division in F2m can be reduced to
shift operations. However, this means that elliptic curves that can be adopted in
cryptosystems are restricted. To keep the generality of the Tate pairing, imple-
mentation in a prime field Fp where p is a large prime that has not fewer than
160 bits is desirable [3]. In this paper, we show some FPGA implementation of
the extended Euclidean algorithm and provide area and performance tradeoff
analysis.

2 Background

The Tate pairing was introduced into cryptography by Frey and Rück [2]. Here,
we show an outline of the Tate pairing. Detailed definition can be seen in [3] and
[4]. Let consider an elliptic curve over a finite field Fp. Let l be a positive integer
coprime to p. Let k be a positive integer such that the field Fpk contains the lth
roots of unity. This means (pk−1) mod l = 0. The Tate pairing operates on l-fold
divisors, i.e. divisors D such that lD is principal (see [8] for an introduction to
divisors). Given two l-fold divisors P and Q defined over an extension field Fpk ,
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there exist fP such that ÷(fP ) = lP . The Tate pairing of P and Q is defined as
tm(P, Q) = fP (Q)(p

k−1)/l.

Input: b, p

Output: t = b−1 over Fp

Initialize: t0 = 0, t = 1
q = � p

b 
r = p − q × b
while r > 0

tmp = t0 − q × t
t0 = t
t = tmp
p = b
b = r
q = � p

b 
r = p − q × b

return t

Fig. 1. The extended
Euclidean algorithm

According to our primary implementation and anal-
ysis, calculation of an inverse elements over Fp with
the extended Euclidean algorithm dominates the com-
putation time of the Tate paring. Therefore, in this
paper, we address efficient implementation of the ex-
tended Euclidean algorithm on an FPGA.

Let b ∈ Fp. The inverse element of b over Fp is writ-
ten as b−1 ∈ Fp, and defined as b × b−1 ≡ 1 (mod p).
To calculate an inverse element over Fp, the extended
Euclidean algorithm (Fig. 1) is widely used.

3 Implementation and Evaluation

3.1 Structure of the Extended Euclidean Hardware

The extended Euclidean algorithm consists of the four basic operations of arith-
metic as mentioned above. However, since the Tate pairing requires p has not
fewer than 160 bits, we must efficiently implement multiple precision arithmetic
units on an FPGA. Here, let p have 256 bits to ensure high degree of security.

Fig. 2 shows the overall structure of the extended Euclidean hardware that
we designed. The hardware consists of a 256-bit multiplier, a 256-bit subtractor
and two 256-bit dividers. The loop body operations consisting of a multiplier,
a divider and a subtractor are repeated while the value of r remains positive.
We chose Xilinx xc2vp70 as a target FPGA. The designs are synthesized and
mapped on the FPGA using Xilinx ISE tool.

3.2 Addition Module
Table 1. Addition modules

bits critical path cycles proc time
16 4.193 ns 66 276.7 ns
32 4.263 ns 34 144.9 ns
64 5.293 ns 18 95.3 ns

128 7.629 ns 10 76.2 ns
256 12.311 ns 4 49.2 ns

There are several implementation alterna-
tives for a 256-bit addition module in terms of
granularity. While a 256-bit adder can be im-
plemented as combinational circuits, sequen-
tial implementation using a smaller adder is
also possible. Fig. 4 shows an example of the
sequential approach which uses a 128-bit adder. Note that the adder module also
includes a subtractor, since the addition must be done in a prime field Fp.

As the granularity of a basic adder becomes finer, required clock cycles are
increased while the operational frequency is improved. In order to analyze the
tradeoff, we implement and evaluate five addition modules. The results are sum-
marized in Table 1. The module using a 16-bit adder shows the shortest critical
path and achieves 2.9 times frequency compared with the 256-bit module. The
number of required clock cycles is increased by 16.5 times and the processing
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Fig. 2. The extended Euclidean hardware

Input: A = (ak−1, . . . , a1, a0),
B = (bk−1, . . . , b1, b0), p

Output: Z = AB2−n (mod p)
Advance calculation: q = −p−1 (mod 2r)
Z = 0
for i = 0 to k − 1

t = (z0 + aib0)q (mod 2r)
Z = (Z + aiB + tp)/2r

if Z ≥ p then Z = Z − p
return Z

Fig. 3. Algorithm (MM1)

: adder of 128bit

: subtractor of 128bi

A B

output

1

ans>p

NO

YES

: 128 bit

 : 256 bit
A256bit 256bit B

128bit shift 128bit shift

256bit
ANS

256bit
p

carry

1

Fig. 4. The 128bit-adder

Input: A = (ak−1, . . . , a1, a0),
B = (bk−1, . . . , b1, b0),
p = (pk−1, . . . , p1, p0)

Output: Z = AB2−n (mod p)
Advance calculation: q = −p−1 (mod 2r)
Z = 0
for i = 0 to k − 1

w = 0
t = (z0 + aib0)q (mod 2r)
for j = 0 to k − 1

S = (zj + aibj + tpj) + w
if (j �= 0) then zj = S (mod 2r)
w = S/2r

zk−1 = w
if Z ≥ p then Z = Z − p
return Z

Fig. 5. Algorithm (MM2)

time is also degraded by 5.6 times. As a result, the module using a 256-bit com-
binational adder shows the best processing time among the evaluated design
alternatives.

3.3 Multiplication Module

In modulo p arithmetic, addition of multiple number of p does not have any
effects. Making the best use of this property, it is possible to make the lower
n bits of the multiplication results to be 0 by adding an appropriate multi-
ple of p. In order to obtain AB (mod p), a result value of the Montgomery [5]
multiplication must be shifted by n bits, then the modulo in p must be calcu-
lated. However, the Montgomery multiplication itself is able to accept AB2−n

(mod p) instead of AB (mod p). Therefore, modular exponentiation, which is
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Fig. 7. MM2 multiplier

a basic operation of RSA cryptography algorithm, is efficiently calculated by
repeating the Montgomery multiplication algorithm [7]. On the other hand, in
the extended Euclidean algorithm, results of the multiplication module are used
by the subtraction module as shown in Fig. 2. This means that we need AB
(mod p), and the Montgomery multiplier still must be coupled with a division
module for the modulo calculation. We evaluate the following four multipliers.
Montgomery multiplier 1 (MM1): This multiplier is implementation of the ba-
sic algorithm shown in Fig. 3. In the Montgomery multiplication, A and B are
divided into k r-bit. Here, we use ai to show the i-th r-bit block of A (from
the LSB side). We chose r = 64 since it has been reported this is efficient for a
Xilinx FPGA [9]. As Fig. 6 shows, MM1 includes a 64x256-bit multiplier as well
as normal 64-bit multipliers.

output

64bit shift
A

256bit

B

256bit

64bit shift

: 64 bit

 : 256bit

multiplier of 64bit:

: adder of 256bit

128bit
128bit

Z
256bit

128bit

Fig. 8. SEQ multiplier

Montgomery multiplier 2 (MM2): As Fig. 5
shows, this algorithm unifies the size of mul-
tipliers to 64 bits by introducing a nested
loop. While the clock cycles are increased com-
pared to MM1, it could achieve higher fre-
quency eliminating the 64x256-bit multiplier.
The structure of MM2 is shown in Fig. 7.
256-bit combinational multiplier (COMB):
This module simply multiplies inputted 256-
bit values using combinational circuits.
Sequential multiplier (SEQ): A product is se-
quentially calculated using a 64-bit combina-
tional multiplier and a 256-bit adder. As shown in Fig. 8, 128-bit partial products
are accumulated in the Z register, while A, B and Z registers are rotated by 64
bits. This process is repeated 16 times to generate the final result.
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Table 2. Multipliers and a divider

type critical path cycles proc time
MM1 18.690 ns 28 523.3 ns
MM2 12.361 ns 127 1569.8 ns
COMB 31.455 ns 1 31.5 ns
SEQ 13.977 ns 32 447.3 ns
divider 12.686 ns 1029 13053.9 ns

Table 3. Extended Euclidean hardware

type critical path cycles proc time
MM1 22.040 ns 290,939 6.41 ms
MM2 22.040 ns 300,146 6.62 ms
COMB 31.455 ns 288,428 9.07 ms
SEQ 22.040 ns 291,311 6.42 ms

For each type of the multipliers a divider is required to calculate the modulo
in p. Here, we choose a normal nonrestoring divider. Table 2 shows implemen-
tation results of the multipliers and the divider. The results show the critical
paths of multipliers are longer than those of adders shown in Table 1. While
COMB shows the best processing time, its operational speed is the worst among
the evaluated multipliers. Meanwhile, MM1 achieves 3.0 times better processing
time compared with MM2. This implies a large combinational multiplier does
not critically degrade the circuit performance. However, as far as we focus only
on multipliers, the Montgomery approach does not show the effect.

3.4 Evaluation of the Extended Euclidean Hardware

Here, we evaluate and compare the whole extended Euclidean hardware shown in
Fig. 2. The implementation results are summarized in Table 3. Unlike the results
in Table 2, the selection of a multiplier does not affect the critical path except
for COMB. This is due to relatively complicated control structure including long
word comparators. Therefore, the adoption of COMB shows the worst processing
time, although it achieves the best performance in Table 2. Table 3 shows MM1
is the most efficient among the evaluated implementation alternatives in terms
of processing time and hardware amount. As Table 2 shows, MM1 generates its
result faster than SEQ by 4 cycles, and this difference results in speed up of
10 μs in the whole algorithm.

Table 4. Required resources

type Slices Flip Flops MULT18Xs
MM1 9028/33088 7155/66176 136/328
MM2 11597/33088 9079/66176 42/328
COMB 11181/33088 7043/66176 255/328
SEQ 9868/33088 6940/66176 67/328

Table 4 shows the required hard-
ware resources for the extend Euclidean
hardware. According to the results,
MM1 reduces the number of required
slices by 8.5% compared with SEQ. On
the other hand, MM1 doubles the num-
ber of occupied 18-bit built-in multiplications in the FPGA. As a result, it is
shown that the Montgomery approach is efficient when the extended Euclidean
algorithm is implemented on an FPGA that has rich resources of built-in multi-
plications.

4 Conclusion

Implementation alternatives for the extended Euclidean algorithm in Fp on a
Xilinx FPGA were evaluated and analyzed. It is shown that the Montgomery
approach is efficient for an FPGA that has rich built-in multiplications.
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Abstract. The application of Field Programmable Gate Arrays (FPGA) has
moved from simple glue logic to complete systems. The potential for FPGA use
in embedded systems is steadily increasing continuously opening up new appli-
cation areas. Low cost FPGA devices are available in logic densities where the
CPU with necessary peripheral device can be integrated in a single device. Java,
with its pragmatic approach to object orientation and enhancements over C, got
very popular for desktop and server application development. Some features of
Java, such as thread support in the language, could greatly simplify develop-
ment of embedded systems. However, due to resource constraints in embedded
systems, the common implementations of the Java Virtual Machine (JVM), as
interpreter or just-in-time compiler, are not practical. This paper describes an
alternative approach: JOP (a Java Optimized Processor) is a hardware imple-
mentation of the JVM with short and predictable execution time of most byte-
codes. JOP is implemented as a configurable soft core in an FPGA. With JOP it
is possible to develop applications in pure Java on resource constraint devices.

1 Architecture

JOP is the implementation of the Virtual Machine (JVM) [3] in hardware. JOP is in-
tended for applications in embedded real-time systems and the primary implementa-
tion technology is in an FPGA, which results in the following design constraints:

• Every aspect of the architecture has to be time predictable

• Low worst-case execution time is favored over average execution speed

• The processor has to be small enough to fit in a low cost FPGA device

JOP is a full-pipelined architecture with single cycle execution of microinstructions
and a novel approach to map Java bytecode to these microinstructions. Fig. 1 shows
the datapath of JOP. Three stages form the core of JOP, executing JOP microcode. An
additional stage in the front of the core pipeline fetches Java bytecodes, the instruc-
tions of the JVM, and translates these bytecodes to addresses in microcode. The sec-
ond pipeline stage fetches JOP instructions from the internal microcode memory and
executes microcode branches. The third pipeline stage performs, besides the usual
decode function, address generation for the stack ram. Since every instruction of a
stack machine has either pop or push characteristics, it is possible to generate the ad-
dress for fill or spill for the following instruction in this stage. The last pipeline stage
performs ALU operations, load, store and stack spill or fill.
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Fig. 1. Datapath of JOP

Memory blocks in an FPGA are usually small (e.g. 0.5 KB) with two independent
read/write ports of configurable size. With these constraints, a stack machine is an
attractive architecture in an FPGA:

• The stack can be implemented in internal memory

• A register file in a RISC CPU needs two read ports and one write port for single
cycle instructions. A stack needs only one read and one write port

• Instruction set is simpler and instruction coding can be reduced to 8 bit

• No data forwarding is necessary

The basic stack is implemented in a FPGA memory block. The two top elements of
the stack are implemented as register A and B. Every arithmetic/logical operation is
performed with A and B as source and A as destination. All load operations (local
variables, internal register and memory) result in the value loaded in A. Therefore no
write back pipeline stage is necessary. A is also the source for store operations. Reg-
ister B is never accessed directly. It is read as implicit operand or for stack spill on
push instructions and written during stack spill and fill. Instructions of a stack machine
can be categorized with respect to stack manipulation in pop or push:

Pop instructions reduce the stack. Register B (TOS-1) from the execution stage is
filled with a new word from stack RAM. The stack pointer is decremented. In short:
A op B  A, stack[sp]  B, sp-1  sp

Push instructions generate a new element on the stack. Register B is spilled to stack
RAM and the stack pointer is incremented:
data  A, A  B, B  stack[sp+1], sp+1  sp

An instruction needs either read or write access to the stack RAM. Access to local
variables, also residing in the stack, need simultaneous read and write access:
stack[vp+0]  A, A  B, B  stack[sp+1], sp+1  sp
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2 Microcode

There is a great variation in complexity of Java bytecodes, the instructions of the
JVM. There are simple instructions like arithmetic and logic operations on the stack.
However, the semantic of bytecodes like new or invoke are too complex for hardware
implementation. These bytecodes have to be implemented in a subroutine. One com-
mon solution, used in Suns picoJava-II [5], is to execute a subset of the bytecode na-
tive and trap on the more complex ones. This solution has an overhead (a minimum of
16 clock cycles in picoJava) for the software trap.

A different approach is used in JOP.  JOP has its own instruction set (the so called
microcode). Every bytecode is translated to an address in the microcode that imple-
ments the JVM. If the bytecode has a 1 to 1 mapping with a JOP instruction, it is exe-
cuted in one cycle and the next bytecode is fetched and translated. For more complex
bytecodes, JOP just continues to execute microcode in the following cycles. At the
end of this instruction sequence the next bytecode is requested. This translation needs
an extra pipeline stage but has zero overheads for complex JVM instructions. Fig. 2
shows an example of this indirection. The fetched bytecode is used as an index into
the jump table. The jump table contains the start addresses of the JVM implementation
in microcode. This address is loaded into the JOP program counter for every executed
bytecode.

Fig. 2. Data flow for a bytecode instruction

The example in Fig. 3 shows the implementation of single cycle bytecodes and a byte-
code as a sequence of JOP instructions. In this example, ineg takes 4 cycles to execute
and after the last instruction (add) for ineg, the first instruction for the next bytecode
is executed. The microcode is translated with an assembler to a memory initialization
file, which is downloaded during FPGA configuration.

iadd:    add nxt    // 1 to 1 mapping
isub:    sub nxt
ineg:    ldi –1     // there is no -val
         xor        // function in the
         ldi 1      // ALU
         add nxt    // fetch next bc

Fig. 3. Implementation of iadd, isub and ineg
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3 HW/SW Co-design

Using a hardware description language and loading the design in an FPGA, the tradi-
tional strict border between hardware and software gets blurred. Is configuring an
FPGA not more like loading a program for execution?

This looser distinction makes it possible to move functions easily between hard-
ware and software resulting in a highly configurable design. If speed is an issue, more
functions are realized in hardware. If cost is the primary concern these functions are
moved to software and a smaller FPGA can be used. Let us examine these possibilities
on a relatively expensive function: multiplication. In Java bytecode imul performs a 32
bit signed multiplication with a 32 bit result. There are no exceptions on overflow.

Since single cycle multiplications for 32 bits are far beyond the possibilities of cur-
rent FPGAs, we can implement imul with a sequential booth multiplier in VHDL.
Three JOP instructions are used to access this function. If we run out of resources in
the FPGA, we can move the function to microcode. The implementation of imul needs
73 JOP instructions and has an almost constant execution time. JOP microcode is
stored in an embedded memory block of the FPGA. This is also a resource of the
FPGA. We can move the code to external memory by implementing imul in Java byte-
code. Bytecodes not implemented in microcode result in a static method call from a
special class (com.jopdesign.sys.JVM). The class has prototypes for every bytecode
ordered by the bytecode value. This allows us to find the right method by indexing the
method table with the value of the bytecode. The additional overhead for this imple-
mentation is a call and return with the cache refills.

Table 1 lists the resource usage and execution time for the three implementations.
Executions time is measured with both operands negative, the worst-case execution
time for the software implementations. Only a few lines of code have to be changed to
select one of the three implementations. The showed principle can also be applied to
other expensive bytecodes like: idiv, ishr, iushr and ishl. As a result, the resource us-
age of JOP is highly configurable and can be selected for every application.

Table 1. Different implementations of imul

Hardware [LC] Microcode [Byte] Time [Cycle]
VHDL 300 12 37
Microcode 0 73 750
Java 0 0 ~2300

4 Results

Table 2 shows resource usage for different soft-core processors and different configu-
rations of JOP implemented in an EP1C6 FPGA from Altera [1]. All configurations of
JOP contain a memory interface to 32-bit static RAM and an 8-bit FLASH for the
Java program and configuration data. The minimum configuration implements multi-
plication and the shift operations in microcode. In the core configuration, these opera-
tions are implemented as sequential Booth multiplier and a single-cycle barrel shifter.
The typical configuration contains some useful I/O devices such as an UART and a
timer with interrupt logic for multi threading. Lightfood [6] is a Java processor tar-
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geted at Xilinx FPGA architectures. As a reference NIOS [2], the RISC soft-core from
Altera, is also included in the list. Version A is a minimum configuration. Version B
adds an external memory interface, multiplication support and a timer.

Table 2. Different FPGA soft cores

Processor Resource [LC] Memory [KB] fmax [MHz]

JOP Minimal 1238 3.25 101

JOP Core 1670 3.25 101

JOP Typical 2036 3.25 100
Lightfoot 3400 1 40

NIOS A 1828 6.2 120

NIOS B 2923 5.5 119

5 Conclusion

Java possesses language features as safety and object orientation that can greatly im-
prove development of embedded systems. However, implementation as interpreter
with a JIT-compiler are usually not practicable in resource constraint embedded sys-
tems. This paper presented the architecture of a hardware implementation of the JVM.
The flexibility of FPGAs and HW/SW co-design makes it possible to adapt the re-
source usage of the processor for different applications. Predictable execution time of
bytecodes enables usage of Java in real-time applications. JOP has been used in three
real-world applications showing that it can compete with standard microcontrollers.
JOP encourages usage of Java in embedded systems. Full source (VHDL and Java) of
JOP can be found at [4]. The main features of JOP are summarized below:

• Small core that fits in a low cost FPGA

• Configurable resource usage through HW/SW co-design

• Predictable execution time of Java bytecodes

• Fast execution of Java bytecodes without JIT-Compiler

• Flexibility for embedded systems through FPGA implementation
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Abstract. The paper describes two methods for the design of matrix-oriented
SAT solvers based on data compression. The first one provides matrix
compression in a host computer and decompression in an FPGA. It is shown
that although some improvements have been achieved in this case, there exists a
better solution. The second method makes possible to execute operations
required for solving the SAT problem over compressed matrices.

1   Introduction

The complexity of FPGAs is not always sufficient for implementing SAT solvers and
the required resources have to be partitioned between software running on a general-
purpose computer and hardware. This involves multiple data exchange, which is
either costly or time consuming. To overcome this drawback the following two
methods have been explored: 1) the technique for matrix compression/decompression
permitting to reduce the size of matrices in software, to transmit them to an FPGA
and to restore the original matrices in hardware; 2) matrix transfer in a relatively
simple compressed form and solving in hardware a 3-SAT problem [1, 2] over the
transmitted matrices avoiding the decompression step.

2   Matrix Compression/Decompression Techniques

It is known that the SAT problem can be formulated over different models [3] and we
will consider for such purposes ternary matrices [4, 5]. They have been chosen
because of the reasons reported in [4, 5]. Fig. 1 demonstrates how the considered
technique for matrix compression/decompression has been applied. This technique is
useful if the following conditions are valid:

• Additional hardware that is necessary to implement the decompressing circuits is
reasonable. The latter can be estimated as follows. Let us assume that FPGA
resources can be defined as RFPGA, the resources needed to handle matrices with
n(2n) columns are Rn(R2n). If Rn ≤ RFPGA< R2n and after implementing the SAT
solver for an n-column matrix the remaining part of the FPGA (i.e. RFPGA-Rn) is
sufficient to build the decompressing circuits, then additional hardware is
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reasonable. The values n and 2n are considered because we assume that matrices
are kept in FPGA embedded memory blocks with reprogrammable numbers of
inputs and outputs. Incrementing an address size (i.e. adding one input) causes the
number of the available memory block outputs to be reduced by a factor of 2.

• Let T be the time of data transfer without the use of compression/decompression
and the following expression (see Fig. 1) is satisfied: T>(Tt+Th).

Software part
for SAT solver

Hardware part
for SAT solver

Transmitting
compressed

data (Tt)

General-purpose
computer

FPGA

Data compression
in software (Ts)

Data
decompression

in hardware
(Rh,Th )

Transmitting
non-compressed

result

Fig. 1. Using compression/decompression technique for data exchange between hard-
ware/software parts of SAT solver

In order to validate these conditions the following technique has been applied.
• Matrix compression and decompression have been employed for the

hardware/software SAT solver considered in [5].
• Data compression/decompression have been provided with the aid of slightly

modified Huffman coding, which a) settles repeating coefficients for matrix don’t
care values because as a rule the number of don’t cares is significantly greater
than the number of ones and zeros; and b) is based on effective recursive
procedures considered in detail in [6].

Table 1 demonstrates the results of experiments (for data exchange through the
Ethernet for RC200 board [7]), which make possible to estimate the advantages and
disadvantages of the technique considered in Fig. 1 for different matrices M(n×m),
where n is the number of columns and m is the number of rows. A ratio is defined as
the size of compressed data divided by the size of non-compressed data and R is the
percentage of FPGA resources required for the decompressing circuit. Note that the
compression in software can be done in parallel with executing the SAT-solver
algorithm in hardware (that is why the last column shows just the time Th+Tt).

Table 1. The results of experiments for the circuit in Fig. 1
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An analysis of Table 1 has shown that independently of the good ratio for data
compression the total time is increased, i.e. for all the examples Th+Tt>T. Note that
the Ethernet-based data exchange is very fast and in case of using other interfaces the
compression permits the total time to be shortened. For example, in case of parallel
interface the values T and Tt will be increased approximately in 10 times and
consequently for all the examples Th+Tt<T. However, we cannot provide significant
improvements.  

3   Executing Algorithms over Compressed Ternary Matrices

In accordance with [5] a matrix-oriented SAT solver executes operations over
rows/columns of a ternary matrix applying the following set of rules:

1. If a column contains just don’t care values it must be deleted from the
matrix.

2. All rows that are orthogonal to an intermediate vector w (that incrementally
forms a solution) must be removed from the matrix. All columns that
correspond to the components of the vector w with values 1 and 0 must be
deleted from the matrix.

3. If the matrix contains a row with just one component 0 (1) with an index i
then the element i of the vector w must be assigned the value 1 (0), i.e. the
inverted value.

4. If there is a column j in the matrix without values 1 (0) then the element j of
w can be assigned the value 1 (0).

The considered SAT algorithm implemented in hardware is depicted in Fig. 2. On
the one hand the majority of the involved operations are similar to [5]. On the other
hand the algorithm has a number of distinctive features which make possible the
required hardware resources to be reduced without a degradation of performance.
These features are the following:

1. The rule 1 was avoided because it consumes time but does not simplify the
operations over matrix rows/columns.

2. Instead of dynamic selection of the next decision variable (column), a static
selection has been employed in such a way that all the columns have been
sorted by the number of non-don’t care values in an ascending sequence and
the selection has been performed from the first to the last matrix column. Our
experience has shown that such predefined sequence minimizes the required
FPGA resources and does not reduce performance (in hardware).

3. Any matrix is addressed in the memory by rows, which means that any row can
be read/written in one clock cycle.

4. The rules 2 and 3 are sequentially checked for all matrix rows starting from the
first row (see Fig. 2). Note that the relevant to the rules 2 and 3 operations can
be executed in parallel over any complete row.

5. During sequential operations over rows a vector, which identifies columns
containing just ones and don’t cares (or zeros and don’t cares), is incrementally
constructed. It permits the rule 4 to be applied after all rows have been
examined (see Fig. 2). Thus the matrix transpose is no longer required.
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All the other operations are exactly the same as in [5] and we will not replicate them
to keep the description short. Note that any compression technique leads to non-equal
sizes of different rows (vectors) and this conducts to irregularity of different SAT
solver blocks, such as the matrix memory, the combinational circuit, etc. To cope with
this problem the following approach has been employed.

1. The software transforms any matrix that is going to be dispatched to an FPGA
in such a way that all the matrix rows contain not more than three non-don’t
care values. It is known that such a technique is called 3-SAT [2] and the
respective transformation can be done in polynomial time.

2. Any non-don’t care value (i.e. any one or zero) is coded by its index followed
by the value. For example, the vector [0-------1-1----] is coded as 0000 0 1000 1
1010 1.

3. If the vector has less than 3 non-don’t care values then the flag containing all
ones in the respective code is used. For example, the vector [---------------] can
be coded as 1111 0 1111 0 1111 0. Thus an r-bit code can be used for any
matrix, which has no more than 2r-1 columns and the number of matrix rows is
limited just by available FPGA resources.
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Yes

No
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Last row
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No

Change
the vector w
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Fig. 2. The SAT algorithm implemented in hardware

4   The Results of Experiments and Implementation Details

A SAT solver, which implements the algorithm in Fig. 2 has been designed in DK2
environment [7] from specification in Handel-C and implemented in Xilinx Virtex-II
XC2V1000 FPGA (Celoxica RC200 prototyping board). Mapping, placement, routing
and generating the bit-stream for FPGA from an EDIF file created by DK2 have been
performed in ISE 6.2.2 of Xilinx. The implemented in FPGA circuits permit to
process in hardware matrices containing up to 255 columns and 1500 rows. The clock
frequency was set to 45 MHz. As we can see from data in Table 2 the considered
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circuit has a high performance. In all the examples we have used randomly generated
3-SAT formulae.

Table 2. The results of experiments with the compressed-matrix-oriented SAT solver

Matrix (n × m) The result Time for solving the
problem in FPGA (s)

% of the used
FPGA resources

127 × 128 Satisfiable 0.00087 30
127 × 500 Unsatisfiable 0.127 30
255 × 256 Satisfiable 0.00357 54

255 × 1000 Unsatisfiable 0.195 54
255 × 1500 Unsatisfiable 0.264 54

5   Conclusion

One of the problems inherent to matrix-oriented SAT solvers is the relatively high
volume of data that have to be transferred from a host computer to the accelerator,
especially in the case of partitioning the problem between general-purpose software
and hardware. Due to the complexity of practical SAT problem instances this
partitioning is very common. To reduce the influence of data exchange on the total
time of computations, two methods have been explored and analyzed.
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Abstract. With the help of the FPGA technology, the boarder between hard- and
software has vanished. It is now possible to develop complex designs and fine
grained parallel applications without the long-lasting chip design cycles. Addi-
tionally, it has become easier to write coarse grained parallel applications with the
help of message passing libraries like MPI. The chess program Hydra is a high
level hardware-software co-design application which profits from both worlds.
We describe the design philosophy, general architecture and performance of Hy-
dra. The time critical part of the search tree, near the leaves, is explored with the
help of fine grain parallelism of FPGA cards. For nodes near the root, the search
algorithm runs distributed on a cluster of conventional processors. A nice detail is
that the FPGA cards allow the implementation of sophisticated chess knowledge
without decreasing the computational speed.

1 Introduction

The early chess programs tried to mimic the human chess style. In the 1970s Chess 4.5
[7], however, demonstrated that emphasizing the search speed might be more fruitful.
Belle[1], Cray Blitz, Hitech, and Deep Thought[4] were the top programs in the 1980s.
From 1992 on, PCs dominated the world of computer chess: ChessMachine, Fritz, Shred-
der etc. With one well known exception: In 1997, IBM’s Deep Blue[3] won the historical
6-game match against Garry Kasparov. This highlight is still of singular quality, although
the playing strengths of present top programs seem to cross the borderline beyond the
strongest human players. Only one big point is vacant: The final, generally accepted,
victory over the humans. The previous Computer Chess World Championship in Graz
showed that the race will probably be performed by only four programs: The top four of
that championship (Shredder, Fritz Junior, and Brutus/Hydra) scored more than 95% of
the possible points against the further 12 participants. Typically, a game playing program
consists of three parts: a move generator, which computes all possible chess moves in a
given position; the evaluation procedure implements a human expert’s chess knowledge
about the value of a given position (these values are quite heuristic, fuzzy and limited)
and the search algorithm, which organizes a forecast: At some level of branching, the by
the game defined game tree (the complete one) is cut. The artificial leaves at this top are
evaluated by a heuristic evaluator, because the real values are usually not known, and
these values are propagated to the root of the game tree, as if they were real ones. The
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Fig. 1. The System Architecture: 4 Dual Pentium with 2 FPGA cards per node are interconnected
with an end-user PC via the Internet.

astonishing observation over the last 40 years in the chess game, and some other games
is: the game tree acts as an error filter. The faster, and the more sophisticated the search
algorithm, the better the search results!

In professional game playing programs, mostly the Negascout [6] variant of the
Alphabeta algorithm [5] is used. The Alphabeta algorithm and its variants, are depth
first search algorithms, which use information collected in left parts of the search tree in
order to reduce searching time in right parts. The form of the search tree, as well as the
efficiency with that it is examined, strongly determines the quality of the search result.

Encoding the move generator, the evaluation procedure and the search algorithm in a
hardware design has the following advantages: first, the procedures can be processed in a
very few cycles such that the execution speed can significantly be increased. Second, on
standard PCs there occurs a tradeoff between the search speed and the implementation
of chess knowledge. This tradeoff does not exist in a hardware design. Most evaluation
features can be processed in parallel. Therefore, we only need additional space, but no
extra time. In contrast to fixed wired hardware, FPGA serves with the advantage that
debugging is easier and any improvements can be added instantly.

In this paper, we discuss the design philosophy, general architecture and performance
of one of the strongest chess programs in the world. Section two starts with a hardware
overview. Then in section 3, we will discuss the software architecture. Firstly the FPGA
related stuff, thereafter the parallel search algorithm on the PC side. Last but not least,
Section 4 deals with experimental results.

2 System

Hydra uses the ChessBase/Fritz graphical user interface, running on a PC with Win-
dowsXP. It connects with the help of a secure shell via the Internet to our Linux cluster,
which itself consists of 4 Dual PC server nodes being able to handle two PCI busses
simultaneously. Each PCI bus is supplied with one FPGA card. Each MPI-processes is
mapped onto one of the processors and one of the FPGA cards is associated with it, as
well. The server nodes themselves are interconnected by a Myrinet network.
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3 Software Architecture

Hydra partially runs on PCs, and partially on FPGA cards. The reason is that the bot-
tleneck of the system is the PCI bus. Therefore, on the one hand we cannot make the
whole search run on the PC side. On the other hand, it is not clever to put all the search
on the FPGA card, because it is much more difficult to develop a sophisticated search
algorithm in hardware. We perform the last 3 plies of an n-ply search on the FPGA side,
inclusively the quiescence search and all evaluations. Such a depth-3 search is initiated
about 100.000 times per second per processor.

3.1 The FPGA

At the present, we use a XilinX based VirtexV1000E card from Alphadata. We use 67
out of 96 BlockRAMs, 9,879 of 12,288 Slices, 5,308 of 12,544 TBUFS, 534 of 24,576
Flip-Flops, and 18,403 of 24,576 LUTs. We can run the FPGA with 33MHz, the longest
path consists of 51 logic levels. An upper bound for the number of cycles per search node
is 9 cycles. Hydra essentially contains a big piece of combinatorial logic, controlled by
a finite state machine (FSM) with 54 states for the search.

The evaluation consists of many small features which are summed up by the help of
one large adder tree.All features are simultaneously determined. Because of its structural
simplicity, we refrain from further details.

A move generator is usually implemented in software as a quad-loop: One loop
over all piece types, an inner loop over pieces of one type, a more inner loop for all
directions in that the piece can move, and the most internal loop for the squares to
which the piece can move under consideration of the current direction. This is quite
a sequential procedure, especially, when we consider that e.g. taking moves should be
sorted to the beginning of the move list. In hardware, there is a nice, fast and small move
generator which works completely different. The move generator is, in principle, an
8×8 chessboard. The so called GenAggressor module and the GenVictim module, both
instantiate 64 square modules, one for each square. Both determine to which neighbor
square incoming signals have to be forwarded. The squares send piece-signals (if there
exists a piece on them) resp. forward the signals of the far-reaching pieces. Additionally,
each square can output the signal ’victim found’. Then we know that this square is the
’victim’ (i.e. a to-square) of a legal move. The collection of all ’victim found’ signals
is the input for an arbiter (indeed a comparator tree), which selects the most attractive,
not yet examined victim. The GenAggressor module takes the arbiter’s output as input
and sends the signal of a super-piece (a combination of all possible pieces). If e.g. the
rook-move signal hits a rook of our own, we will find an ’aggressor’ (i.e. a from-square
of a legal move). Thus, many legal moves are generated in parallel. These moves must
be sorted and we have to mask, which of them have already been examined. We sort the
moves by the help of a comparator tree. The winner is determined within 6 levels of the
tree. Sorting criteria are the values of attacked pieces and whether or not a move is a
killer move. We refer to [3] for further details about this kind of move generator.

Figure 2 shows a simplified version of the finite state machine that controls the search
on the FPGA card. The search works as follows. We enter the search at FS INIT. If there
is anything to do, and if a nullmove is not applicable, we come to the start of the full
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Fig. 2. Flowchart for the Finite State Machine for the Search.

search. After possible increasing the search depth (not shown in figure 2), we enter the
state FS VICTIM, where the output of GenVictim is inspected. If we find a to-square of a
valid move and a futility cutoff is not possible, we will reach the state FS AGGR, where
the GenAggressor output is inspected, and if we find a from-square, we will make the
next move and reach FS DOWN. This corresponds to a recursive call of the Alphabeta
algorithm with with search window [α, α + 1]. If the search remaining depth is greater
than 0, we start with looking for a move in the state FS START. Otherwise we enter
the quiescence search, which starts with the examination of the evaluation output. If the
evaluation is not greater than alpha, we continue with a capture move, if available. If
there is a piece which can be taken, we reach the QS AGGR state, and if we additionally
get a from-square by the help of the GenAggressor module, we will make a further
move etc. Moves are unmade and we leave a recursion level, whenever we reach the
state QS RETURN. A recursive algorithm like the Alphabeta algorithm needs a stack
for its procedure. The stack in Hydra is realized by six blocks of dual port block RAM.
The RAM is organized as 16-bit RAM. Thus we can either write two 16-bit data into
the RAM, or one 32-bit word at one point of time. A ply variable which is controlled by
the search FSM controls the data flow. Different tables capture different local variables
of the recursive search.
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3.2 The Distributed Search Algorithm

The basic idea of our parallelization is to decompose the search tree, to search parts
of the search tree in parallel and to balance the load dynamically by the help of the
work stealing concept. First, a special processor P0 gets the search problem and starts
performing the Negascout algorithm as if it would act sequentially. At the same time,
the other processors send requests for work to other randomly chosen processors. When
a processor Pi that is already supplied with work, catches such a request, it checks,
whether or not there are unexplored parts of its search tree, ready for evaluation. These
unexplored parts are all rooted at the right siblings of the nodes of P ′

is search stack.
Either, Pi sends back that it cannot serve with work, or it sends such a node (a chess
position with bounds etc.) to the requesting processor Pj . Thus, Pi becomes a master
itself, and Pj starts a sequential search on its own. The processors can be master and
worker at the same time. The relationships dynamically change during the computations.
When Pj has finished its work (possibly by the help of other processors), it sends an
answer message to Pi. The master-worker relationship between Pi and Pj is released,
and Pj becomes idle. It again starts sending requests for work into the network. When a
processor Pi finds out that it has sent a wrong window to one of its workers Pj , it makes
a window message follow to Pj . Pj stops its search, corrects the window and starts its
old search from the beginning. If the message contained a cutoff, Pj just stops its work.
We refer to [2] for further details.

4 Results

Experiments are performed on the hardware of the Paderborn University. Every processor
is a Pentium IV/2.8GHz running RedHat Linux. We measure speedups of our program
with the help of the BT2630 test set.

time(s) SPE work %

1 24213 1 0
2 12139 1.99 0
4 6888 3.5 3.6
8 3488 6.94 -1
Speedups on BT2630

We compare the running times and the number of used
search nodes of parallel Hydra with the one processor con-
figuration. The speedup (SPE) is the sum of the times of
the sequential version divided by the sum of the times of
a parallel version. The search overhead is given in percent
(work %) seen from 100% of the sequential version.

Tournaments and games: Hydra’s predecessor Brutus reached the third rank on the
Paderborn Computer Chess Championship in February 2003 and it has won the Lippstadt
FIDE Grandmaster Tournament with 9 out of 11 points, reaching a performance of 2768
ELO, which is in the range of the human top players.1 Internal test matches show that
Hydra has made further progress: 140 test games with only 4 processors against Fritz8
and Shredder8, playing on a Pentium 2.4 GHz PC, showed an advantage of more than 110
ELO points. Last but not least, Hydra won the 13th International Paderborn Computer
Chess Championships, in the presence of World Champion Shredder8 and Fritz8.

1 The ELO-system is a statistical measure for the strength of chess players.
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5 Conclusion

We presented the professional chess program Hydra, which is one of the top chess
programs in the world. It uses the FPGA technology and combines the hardware design
methods of Deep Blue with fully dynamic game tree search approaches. The FPGA
technology seems to serve with a good compromise, as on the one hand it is possible
to make use of hardware parallelism. On the other hand we have no long development
cycles. In computer chess it is essential to have the possibility to frequently change and
improve the program’s code.

References

1. J.H. Condon and K. Thompson. Belle chess hardware. Advances in Computer Chess III,
M.R.B. Clarke (Editor), Pergamon Press, pages 44–54, 1982.

2. R. Feldmann, M. Mysliwietz, and B. Monien. Studying overheads in massively parallel
min/max-tree evaluation. In proc. of SPAA’94, pages 94–104, NY, 1994.

3. F-H. Hsu. Ibm’s deep blue chess grandmaster chips. IEEE Micro, 19(2):70–80, 1999.
4. F-H. Hsu, T. S. Anantharaman, M.S. Campbell, and A. Nowatzyk. Computers, Chess, and

Cognition, chapter 5 Deep Thought, pages 55–78. Springer Verlag, 1990.
5. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence,

6(4):293–326, 1975.
6. A. Reinefeld. Spielbaum - Suchverfahren. Springer, 1989.
7. D.J. Slate and L.R. Atkin. Chess 4.5 - the northwestern university chess program. Chess Skill

in Man and Machine, P.W. Frey (ed), Springer , pages 82–118, 1977.



FPGA-Efficient Hybrid LUT/CORDIC
Architecture�

Ireneusz Janiszewski, Hermann Meuth, and Berhard Hoppe

Fachhochschule/University of Applied Sciences Darmstadt,
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Abstract. The paper presents a hybrid architecture for digital polar-to-
Cartesian (i.e. phase-to-I/Q) designs. The hybrid LUT/CORDIC archi-
tecture allows design partitioning between logic and storage based FPGA
resources. FPGA resource utilization, timing and power consumption as
well as accuracy of calculated results may be optimised consistently in
comparison to conventional pure CORDIC algorithm implementations.

1 Introduction

Implementing algorithms for rotating a two-dimensional (2-D) Cartesian coor-
dinate system is a common requirement in the fields of communication tech-
nologies, signal and image processing, for precision measurement instrumenta-
tion and the analysis of time varying systems. These transformations may be
performed either by using look-up tables for low-latency, low-resolution applica-
tions or by algorithmic procedures for medium latency, high precision designs.
The basic idea behind the work reported here was to combine the algorithmic
as well as the look-up table approach into a unified hybrid hardware model.
This approach offers new optimisation potential. Pure look-up or algorithmic
approaches fall far below the features obtained with hybrid architectures. The
hybrid models reported here are synthesizable and may be ported on arbitrary
technologies as a functional block in a compound system design, be it on FPGA
or on a chip. Example results of implementations in Flex10k ALTERA devices
will be presented in Sec. 4.

2 How Does the CORDIC Work?

Sinusoidal digital signal generation, also referred to as direct digital frequency
synthesis (DDFS) regularly requires, in addition to a time-advancing ‘phase ac-
cumulator’, a polar-to-Cartesian transformation, or simpler yet, phase-to-Sine
at constant magnitude. Signal detection and information extraction, in turn,
� This work was supported by the German Federal Ministry of Education and Research

under contract FKZ17 103 03.
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implies an inverse Cartesian-to-polar (magnitude and phase) coordinate trans-
formation. Dedicated hardware implementations for these tasks are the only
choice, if signal and information bandwidths, agility, size, power considerations
and real-time put-through rule out software-based standard signal processing
schemes. Aside from direct signal-value look-up from table, hardware algorithms,
like COordinate Rotation DIgital Computer (CORDIC), may meet these novel
needs for high precision digital sinusoidal signal generation from a phase input.
The CORDIC algorithm may operate in either a vector-rotation mode, or an
angle-accumulation mode, so-called rotating or vectoring mode respectively. In
its rotating mode, frequently referred to only as CORDIC, CORDIC yields both
sine (or y) and cosine (or x) values for a given input phase angle φ. The CORDIC
algorithm was developed by Jack E. Volder in 1956 [1]. John Stephen Walther [2],
presented the general Unified CORDIC equations capable of performing compu-
tations in either circular, hyperbolic or linear coordinate systems. Both rotation
and vectoring CORDIC modes result in the same set of iterative equations:

xi+1 = xi − σi · yi · 2−i

yi+1 = yi + σi · xi · 2−i

zi+1 = zi − σi · αi

(1)

In geometrical terms, executing this algorithm thus amounts to successive ro-
tations by decreasing angle steps of αi = arctan(2−i). Arithmetically, it amounts
to successive summations and binary shifts (i.e. divisions by 2), i.e. a very
hardware-efficient scheme involving no multiplication. The positive/negative
sense of each rotation must be chosen such that the procedure converges. This
is assured by the parameter σi, which for the rotating mode is defined as
σi = sign zi, where sign zi = 1 if zi ≥ 0, else sign zi = −1, implying that the
iteration converges against z∞ → 0. In rotation mode, CORDIC provides cosine
(x-path) and sine (y-path) of an input angle, if the initial value of the x input
is 1, and of the y input is 0 with the initial z being the input angle. The results
contain the CORDIC algorithm gain factor GN = 1/KN , where correspondingly,
KN , is a distortion or scaling factor, defined by KN =

∏N−1
i=0 1/

√
1 + 2−2i. This

scaling factor does not depend on the actual value sequence of σiαi.

3 Phase-to-Sine at Constant Magnitude Transformer

The CORDIC algorithm in the rotating mode is suitable for sinusoid signal
generation. Direct Digital Frequency Synthesis (DDFS) based on Numerically
Controlled Oscillators (NCO) is an established method for generating quasi-
periodic sinusoid signals. A typical NCO consists of an overflowing phase accu-
mulator (PA), generating the phase sequence. The subsequent phase summing
block (PSB) may perform in-flight phase jumps, and finally function generator
(FG) produces the sine and cosine amplitude values for the actual phase. Via
the PSB, the PA output addresses the FG, which in most applications is a look-
up table (LUT), yielding amplitudes of bit width FGO. The resolution AW of
the internal phase, a, is generally much coarser than the FW precision at the
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output of the PA block (phase truncation). With increasing output resolution
of FG, a LUT based implementation may become prohibitively large. At the
expense of output multiplexer the LUT entries may be restricted to the first
octant of the unit circle. LUT size may further be compressed, implying addi-
tional hardware, which also could introduce additional spurious contributions to
the output spectrum. High-resolution FGs in contrast may be implemented with
LUT-free hardware by means of CORDIC algorithms. However CORDIC is an
iterative algorithm, its obvious drawback being the delay or latency in pipelined
implementations. A CORDIC/LUT hybrid architecture [3],[4],[5] will essentially
remedy this drawback (see Fig 1). The standard CORDIC iterations of equs. (1)
start with index istart = 0, thereby scanning the polar angle space between −π/2
and π/2. Again, due to symmetry, only phase values from the first octant have
to be considered. Exploiting symmetry leads to a starting index istart = 2. By
further restricting the CORDIC iterations, fewer iterations and fewer pipeline
stages are required to achieve a given accuracy in the amplitude outputs. The
algorithm then has to be started in the respective wedge by suitable x and y ini-
tial values. These values must come from an additional LUT. As size and power
budgets for LUTs on one hand and CORDIC on the other scale differently with
amplitude resolution, there is potential for optimising hybrid NCO designs by
suitably balancing LUT size against the number of CORDIC stages. Figure 1
presents a block diagram of such a hybrid function generator. Here, FS is the
index number istart of the first activated CORDIC stage.
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Fig. 1. Hybrid FG block scheme based on CORDIC in rotating mode. The inlay shows
the bit assignment for a in the case of FS = 4. [4]

The relevant addresses for the LUT are obtained by decoding the correspond-
ing bits from input phase word. Two look-up tables LUT X and LUT Y, provide
the initial inputs for the first activated CORDIC stage. The final amplitudes from
x- and y-paths are mapped to the target octant by X/Y CONTROL.

4 FPGA Implementation

There are various architectures being applied for a CORDIC implementation.
Each is suitable for different design requirements. A survey of architectures with
focus on FPGA as target technology, and also potential CORDIC applications
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can be found in reference [6]. Depending on the actual application and design
constraints, an optimum solution could be an iterative architecture with a small
resource demand or even a more conservative bit-serial iterative architecture. Al-
though such architectures are very efficient in resource exploitation, they, how-
ever, cannot provide as high data-throughputs as unrolled architectures and
especially pipelined unrolled architectures. Aside from the actual architecture
applied, there are many different factors influencing the final result. Such con-
tributors may be the design tools used, libraries of primitive components and
IPs and macros, the number coding used, and finally the target technology and
the technology or device provider.

In the Table 1 implementation results are juxtaposed for an NCO design
based on both pure CORDIC and our hybrid LUT/CORDIC architecture, as
presented in Sec. 3. All these NCO design implementations are equivalent in that
they produce quadrature, 16-bit sine and cosine data sequences based on a 31-bit
frequency control word (FW=31). The 32-bit phase accumulator is truncated to
20-bit internal phase word (AW=20) and followed by a 3-bit phase summing
block (PW=3). The CORDIC-based function generator uses 19-bit x- and y-
paths and returns results after 18 CORDIC iterations (i.e. the last stage of the
CORDIC pipeline has the index LS=17).

Table 1. Results for implementations of NCO designs based on CORDIC

Flex10k30 Flex10k50 Flex10k70
LCs - 2058 2093
EABs not fitted 0 0
Fclk [MHz] - 12,64 11,00
LCs 1504 1504 1520
EABs 0 0 0
Fclk [MHz] 35,58 40,65 34,96
LCs 820 820 822
EABs 5 5 5
Fclk [MHz] 46,08 46,72 42,73
LCs - 749 751
EABs not fitted 9 9
Fclk [MHz] - 46,72 44,44H
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The columns labeled Flex10k30, Flex10k50 and Flex10k70 present the imple-
mentation results with ALTERA devices EPF10K30RC240-3, EPF10K50RC240-
3, and EPF10K70RC240-2, respectively, as a targets. The three row cate-
gories specify the number of utilized design logic cells (LCs), embedded ar-
ray blocks (EABs), and the maximum clock performance (Fclk [MHz]) reached.
These categories are specified for a schematic based design (scheme), and three
VHDL-based designs differing in the first activated CORDIC stage FS=1 (full
CORDIC), FS=10, and FS=11 respectively. Note that last two implementations
save 10 and 11 from 18 total CORDIC iterations and, at the same time, reduce
latency of the pipelined design by the same factor. The two top rows correspond
thus to a pure CORDIC algorithm implementation, and the remaining two to
the hybrid LUT/CORDIC architecture presented here. The schematic-based de-
sign is built from ALTERA-provided primitives and macros. The logic synthesis
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of the design was performed with ALTERA’s Max+plusII tool. The same tool
was used for physical synthesis in all implementations. For logic synthesis from
VHDL, Synopsys FPGA Compiler II was used.

The designs with hybrid architecture utilize dedicated blocks of memory for
implementing the LUT while use of logic cells is substantially decreased. The
LUTs thus save or rather take over the functionality of the eliminated initial
CORDIC stages. Properly balancing the degree of hybridisation by simply tun-
ing the FS parameter in the VHDL design permits to control the partitioning
of the design between memory block and logic cell resources. Increasing the
first activated CORDIC stage FS entails higher memory block utilization but
simultaneously lowers logic cell utilization. Significant latency reduction and in-
crease of maximum switching speed will result. It was also shown in [4],[5] that
power performance as well as accuracy may be improved with the hybrid archi-
tecture. However, increasing the hybridisation degree has its limits, depending
on application, target technology and others constraints. For FS=11 and target
device EPF10K30RC240-3, e.g., the design cannot be fitted. Here, all or almost
all memory blocks are occupied by LUTs. Comparing the results for the two
pure CORDIC implementations, they differ in occupied LCs and in maximum
switching speed performance, depending on the design flow.

5 Conclusions

Our evaluation of hybrid implementations showed that this approach outper-
forms traditional pure algorithmic (CORDIC) as well as pure look-up table so-
lutions (LUT) in terms of layout/FPGA area and power budget, especially for
fast-switching designs. The hybrid schemes may considerably improve on the la-
tency of a pipelined implementation, as well as on obtainable switching speeds.
They also allow for control over FPGA resources partitioning.
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Abstract. In this paper, a multiplexer-based concept for creating a run-time con-
figurable array of multipliers capable of accommodating different input data word
lengths is presented. In our approach, each element of a m1 ×m2 multiplier ar-
ray is a parallel-parallel multiplier itself, each again comprising a number of basic
arithmetic primitive cells and featuring multiplexers as controllable interconnects.
Also, we distinguish between multiplier elements for unsigned and signed num-
bers which differ in algorithm and design. Diverse architectures are being reviewed
and an estimate of hardware complexity and area consumption is given.

1 Introduction

Hardware multipliers are among the most intricate and area consuming pieces of circuit
design [1]. The underlying algorithms and their corresponding hardware implementa-
tions have gone through a comprehensive optimization process and reached a high level
of maturity [2]. Even today, in the age of dynamically reconfigurable hardware, it is ben-
eficial to embed a sophisticated multiplier structure as part of an ASIC or as an FPGA
sub-block, as shown by the 18×18-bit signed two’s complement multiplier in modern
Xilinx r© VirtexTM-II platform FPGAs [3].

However, depending on the application, it can be advantageous to have an array
of smaller multipliers rather than a monolithic block with large bit width. A flexible
approach with reconfigurability at run time can help to save hardware resources and
increase the efficiency of arithmetic operations, for example providing either a higher
throughput at low levels of precision or – when needed – a higher precision by grouping
multiple elements together [4]. In this paper, we will discuss what overhead is needed
to create a multiplier element with a connectivity option, thus enabling each element
to either work separately and in parallel with others, or a group of elements to be
concatenated to form a superior multiplier with increased word length.

2 Concatenation Concept

To achieve the required uniformity, scalability and connectivity of an1×n2-bit multiplier
element, we utilize a parallel array structure with carry-ripple technique [5] as a highly
regular core. The basic arithmetic primitive is composed of an AND gate to calculate the
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partial product and a full adder. Multiplexers with corresponding control input signals
are placed both on top and on the left-hand side of the structure. By introducing a few
supplementary gates, we are able to amend the multiplier element to handle signed
numbers directly, thus eliminating any conversion steps when the task is sourced out to
the environment [6].

2.1 Signed Numbers

To realize the multiplication of signed numbers in signed-magnitude representation, the
basic scheme can obviously be lead back to an unsigned multiplication with a sepa-
rate handling of the sign bits. The sign handling can either be performed outside of the
structure or be embedded, both incorporating only little overhead compared to the un-
signed case. The result is negative and its MSB is ‘1’ when the operands have opposite
signs, therefore the result’s sign bit can be calculated from the input sign bits using the
XOR function. On the other hand, the more practical approach to accommodate signed
operands is to use two’s complement numbers, also because of the unique representation
of the null operand [4]. To account for the sign extension in the parallel-parallel multi-
plication scheme with uniform basic cells [2], an extra column of basic cells is added
to the structure. One proposed structure for a configurable n×n-bit multiplier element
for two’s complement numbers has been previously published in [7]. Depending on the
element’s position in a concatenated array, the additional column of basic cells lies idle
for most cases. But these cells can be reused and configured to act as an additional
standard column and thus increment the multiplicand A’s bit width by 1. The structure
of an [(n1 +1)×n2]-bit multiplier element, which can be configured either to perform
a sign extension or calculate with an additional bit, is depicted in figure 1.

Controllable inverters are shown as multiplexers with a negated input and behave
identical to an XOR gate. When the multiplier is to accept partial sum signals from
another element (S IN), the vertical control signal CTRL V is set to ‘1’, also when there
are partial sum signals from an adjacent element (PSL IN), the horizontal control signal
CTRL H is set to ‘0’. The multiplier is also able to accept additional carry signals from
an adjacent element (C IN) and will supply outward carry signals when the horizontal
connectivity is enabled. According to [8] and [4], the value of the product M of A and
B in two’s complement number representation can be re-written as

Mv = an1−1bn2−12n1+n2−2 +
n1−2∑
i=0

n2−2∑
j=0

aibj2i+j (1)

+2n1−1

⎛
⎝−2n2 +2n2−1 +1+

n2−2∑
j=0

an1−1bj 2j

⎞
⎠ (2)

+2n2−1

(
−2n1 +2n1−1 +1+

n1−2∑
i=0

aibn2−1 2i

)
. (3)

A modified Baugh–Wooley multiplier structure [8] representing this algorithm and the
circuitry for achieving the connectivity is shown in figure 2. The perimeter cells in the
left column and the bottom row are modified and have a controllable inverter inside to
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Fig. 1. A configurable multiplier structure with switchable sign extension

negate the partial product, denoted by a black square in the cell’s bottom right corner.
The cell in the bottom left position in figure 2 acts as a special cell only when one of the
CTRL I signals is ‘1’, but not both at the same time, which is realized by the XOR.

A correcting term representing both +1 parts in (2) and (3) must be added to the
multiplication result in order to get the correct value [9,4], since negating a two’s com-
plement number is done by inverting all bits and adding 1. Having a result bit width
of n1 +n2, this correcting term X has a ‘1’ at the positions x(n1 +n2 −1), x(n1 −1)
and x(n2 − 1). In the structure of figure 2 symbolizing the square case n1 = n2, this
is lead back to two additional ‘1’s: One at the MSB x(2n− 1) and one at the position
x(n). Adding ‘1’ is the same as negating the appropriate carry signal [10], again imple-
mented by two controllable inverters addressed by CTRL C 1 for the (n+1)st bit and
CTRL C 2 for the MSB.

2.2 Estimation of Hardware Overhead

In order to compare the presented architectures, we acquire the number of transistors
in either case. This metric enables us to compare the relative area usage of each variant
objectively [11]. Considering the necessary number of transistors for each full adder,
multiplexer and gate as given in [1], we get the estimated numbers compiled in table 1.
The dominating factor is the actual bit width of each multiplier element and its according
number of basic cells, thus resulting in a quadratic dependency on n when the element’s
architecture is symmetrical (n1 = n2 = n). In case of the two’s complement multiplier
shown in figure 1, however, the extra column for the sign extension mainly entails n2
extra basic cells. When m1×m2 multiplier elements are concatenated, the total number
of transistors becomes Tx,con = m1m2 ·Tx. The bit width has to be chosen carefully,
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Fig. 2. A modified Baugh–Wooley multiplier structure with switchable special cells

and a reasonable tradeoff between core complexity and concatenation overhead has to
be made. This decision of course depends heavily on the application.

3 Conclusion and Further Work

In this paper, we have presented a flexible concept for creating a run-time configurable ar-
ray of multiplier elements, featuring an interconnection approach based on multiplexers.
The major advantage of the parallel-parallel scheme is the highly regular structure and
thus the reusability of its basic arithmetic primitives. A variety of signed and unsigned
multiplication schemes has been discussed. When the application does not explicitly
require two’s complement numbers, our signed-magnitude implementation with an un-
signed core and an extra XOR gate offers the least overhead. In case of two’s complement
numbers, our modified Baugh–Wooley architecture is highly recommendable, since it
is very area efficient and offers a more regular structure than the variant using an ex-
tra column of basic cells. A possible application for our proposed architectures is an
embedded dedicated multiplier/coprocessor block, providing high throughput both in
stand-alone operation and as a concatenated multiplier. The use of a dedicated yet scal-
able multiplier helps to save hardware resources for other tasks [11] and the reusability
of its modules can significantly increase the design efficiency and its performance. Re-
configurable multipliers with a variable number of bits will become essential e. g. for the
coefficient calculation for holographic beam steering applications in future intelligent
optical networks [7]. The upcoming task is to develop a concept for an advantageous
realization of the surrounding circuitry to ensure an efficient data distribution and collec-
tion, in the style of programmable interconnections and hierarchical routing resources
as shown in [3] or dedicated bus structures as proposed in [6]. Then, comparisons to
other architectures in particular usage scenarios can be made.
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Table 1. Estimates for transistor numbers Tx calculated for n1 = n2 = n multiplier elements,
connectivity overhead compared to the non-configurable core structure and area usage reported
in [10] using 0.13μm/1.2V process and layouts based on transmission gates

≈ Tx ≈ overhead (%) ≈ area usage (μm2)
n (bit) 4 8 16 4 8 16 4 8 16

unsigned 462 1686 6438 18.5 9.3 4.7 505.4 2077.6 n/a
signed-magn./ext. XOR 470 1694 6446 20.5 9.9 4.8 n/a n/a n/a
signed-magn./int. XOR 500 1724 6476 28.2 11.8 5.3 n/a n/a n/a
2’s compl./reg. sign ext. 602 1954 6962 54.4 26.7 13.2 703.0 2813.4 n/a
2’s compl./conf. sign ext. 616 1968 6976 57.9 27.6 13.4 n/a n/a n/a
2’s compl./mod. B.-W. 550 1838 6718 41.0 19.2 9.2 592.5 2446.7 n/a
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Abstract. Real-time performance of adaptive digital signal processing
algorithms is required in many applications but it often means a high
computational load for many conventional processors. In this paper, we present
a configurable hardware architecture for adaptive processing of noisy signals
for target detection based on Constant False Alarm Rate (CFAR) algorithms.
The architecture has been designed to deal with parallel/pipeline processing and
to be configured for three versions of CFAR algorithms, the Cell-Average, the
Max and the Min CFAR. The architecture has been implemented on a Field
Programmable Gate Array (FPGA) with a good performance improvement over
software implementations. Results are presented and discussed.

1 Introduction

The extraction of targets from signals is a complex task due to the uncontrolled and
noisy environmental conditions. Adaptive digital signal processing techniques are
often used to remove noise and to enhance the detectability of targets in many
situations. For instance, in radar applications, the backscattering amplitude of the
radar signal is used for target detection and it is usually assumed that a high
magnitude of the backscattering radar signal comes from targets [1]. Since the
background is not uniform and the backscattering amplitude from the background
fluctuates due to noise, an adaptive scheme is required to extract targets according to
a varying reference threshold and to maintain a constant false alarm rate.

The CFAR algorithms have been widely used to extract targets from the
background under noisy environments in application areas such as image processing,
medical engineering, power quality analysis, and sonar and surveillance systems,
among others [2][3]. Although the theoretical aspect of CFAR detection is advanced,
there are not practical hardware applications because the high computational
requirements involved in applications such as radar signal processing.

The rest of the paper is organized as follows. Section 2 provides the theoretical
foundation of the CFAR algorithm. Section 3 presents a data parallelism analysis of
CFAR algorithms and details of the proposed hardware architecture. In section 4 the
FPGA implementation and experimental results are presented. In section 5, a brief
discussion on the performance improvements is presented. Finally, section 6 presents
the concluding remarks.
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2 CFAR Algorithm

The Cell-Averaged CFAR (CA-CFAR) is the most common CFAR detector used for
target detection. The CA-CFAR detector is used to regulate the false alarm probability
to a desired level in varying background environments through averaging. Figure 1
shows a block diagram of the CA-CFAR algorithm structure. In CA-CFAR detectors,
a reference window of N samples which surround the cell or data under test is taken to
compute the average value and some guard cells are incorporated in order to avoid
targets that are close one to each other affect  noise estimation [3][4].

Fig. 1. Block diagram of a CA-CFAR processor. The main components of the processor are
registers, a multiplier, an average computation module and a comparator

The average computation module sums up independently the data samples of both
sides of the cell under test and computes their average, SL and SR, left and right
respectively. Both average values are combined to estimate the local noise level in the
signal. Three modalities, the average, the maximum and the minimum, are used for
this purpose and they are defined according to equation 1. The noise estimation is
multiplied by a scaling factor T and finally compared to the value of the cell under
test Y. If the values of the cell under test exceed the computed value, then target
detection is declared. The CFAR detector adapts the threshold automatically to the
local information on the background noise. The scaling factor T sets up a desired false
alarm probability and it is related to the noise distribution in the environment.
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3 CFAR Hardware Implementation

Let X be the raw data samples of the signal to be processed and n the number of
reference cells in the CFAR detector. For the sake of simplify but without lost of
generality, guard cells are not included in the explanation. Also, let consider a
sequence of reference data samples around a cell under test as one-dimension
windows shown as rectangles in figure 2. Each rectangle includes data from the
reference cells around Xi, Xi+1, and Xi+2. As shown in figure 2, the windows share data
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and each time that the window slides leftwards one position on  data, all its data
samples, except the data located on the edges, belong to the domain of the next
window. Therefore, the data dependencies and sharing can be exploited to reuse
previous partial results. Once a window has been processed, preceding results can be
used to compute the result of the next window without the need of recalculating
partial result over the entire domain just by inserting and deleting values from the
window boundaries.

Fig. 2. A graphical view of the data dependencies for three adjacent reference data sets. A data
set is obtained by sliding the previous data set and by inserting and deleting one data at the
edges of the previous data set

If guard cells are included, it is still possible to exploit the data sharing through
parallelism since data sets on each side of the cell under test exhibit the same data
sharing and both data sets can be processed concurrently by two processing elements.
The data sharing in CFAR algorithms can be efficiently handled through pipelining
and systolic processing due to the regularity of computations [4].

A block diagram of the proposed architecture is shown in figure 3. The main
components of the architecture are: a shift register, two processing elements for
accumulating partial results, called APEs, and a processing element that performs the
thresholding, called CTPE. The length of the shift register is equal to the number of
reference cells NRC plus the number of guard cells NGC plus one cell under test.

Fig. 3. Block diagram of the main core of the CFAR architecture. Two APEs compute the
average of the reference cells and a CTPE computes the thresholding operation

Figure 4 shows a block diagram of the internal structure for the processing
elements APE and CTPE. The APE is composed of an accumulator and a substracter.
Two APEs computes the accumulation of the values of the reference cells, SL o SR in
equation 1. The APE has three inputs: XR the data that is inserted in a new reference
window, XD the data that is deleted from the previous accumulation, and E the signal
that inhibits the activity of the accumulator in the latency period.

The CTPE is composed of an ALU-like sub-module, a multiplier and a comparator.
The ALU-like sub-module provides three modalities for computing the thresholding:
the average, the maximum and the minimum of the partial sums SL and SR. Thus, t
architecture performs three modalities of CFAR algorithms, the CA-CFAR and the so
called MAX family of CFAR detectors [3]. A multiplier scales up the ALU result
with a fixed threshold T and the comparator decides if a target is present or absent.
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Fig. 4. Block diagram of the internal structure of the Processing Elements, a) main components
of the APE and b) main components of the CTPE

In the proposed architecture, on each clock cycle, data moves rightwards and after
a latency period, the APEs accumulate data of the reference cells. At the start of
processing data, the APEs are inactive but after NRC/2+NGC+1 clock cycles the
APEs operates continuously. NRC and NGC stand for the number of reference cells
and the number of guard cells employed in the current architecture, respectively.

4 FPGA Implementation and Results

The proposed architecture was modeled using the VHDL Hardware Description
Language [5] and synthesized with Xilinx ISE targeted for a XC2V250 Virtex-II
device. Table 1 summarizes the FPGA hardware resource utilization and timing
performance. The default configuration of the CFAR processor uses 12-bit for data,
32 reference cells and 8 guard cells which is a common configuration used for most
radar-based applications with a good performance-accuracy trade-off [1]. The internal
temporal data in the accumulator uses 18-bit precision established for the worst case..

5 Discussion

The proposed architecture produces an output result on each clock cycle after the
latency period and performs seven arithmetic operations concurrently. The latency
period is proportional to the number of reference cells NRC, and the number of the
guard cells NGC around the cell under test UCT. The latency arises at the start of
processing since the pipeline or shift register must be full in order to output a result.

The architecture provides a throughput of 840 Millions of Operations per Second
(MOPs). For instance, the architecture execution time to perform the CFAR
processing in radar-based applications is 140 milliseconds on a data set 4096×4096
samples, using 32 and 8 reference and guard cells, respectively [1]. The architecture
performance is over 18 times faster than the required theoretical processing time of
2.5 seconds. The software implementation of the CFAR algorithm was carried out in
Visual C++ targeted to a personal computer with a Pentium IV processor running a
2.4 GHz and 512 Mbytes of main memory. The processing time for the CFAR
algorithm on this platform is 1.2 seconds. In the software implementation a similar
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scheme for data reuse and optimization to the FPGA implementation was used.  Also,
the CFAR algorithm, coded in C language, was targeted to a TMS320C6203 DSP
device from Texas Instruments. The processing time obtained for the DSP
implementation was about 420 milliseconds. The performance improvement of the
proposed architecture is about 10 times than the software implementation but a less
extent improvement is obtained when compared to the DSP implementation.

Table 1. Synthesis summary and timing for the FPGA implementation of the CFAR processor.

Synthesis summary for the CFAR processor targeted for a
XC2V250-6FG456 Virtex-II device

Number of Slices 331 (21%)
Number of 4-input LUTs 177 (5%)
Number of flip-flops 540 (17%)
FPGA Occupation percentage 21%
Maximum clock frequency 120 MHz

6 Conclusions

In this work an efficient hardware implementation of a class of CFAR processors for
adaptive signal processing and target detection was presented. The high performance
of the architecture was feasible since the employment of a parallel processing model
and the arithmetic digital logic and parallel structures provided by FPGAs. The
proposed architecture efficiently implements a class of related CFAR algorithms, the
CA-CFAR and the MAX-CFAR, MIN-CFAR algorithms. The architecture nature
exploits the parallel nature in CFAR signal processing and it can be extended to more
complex CFAR algorithms such as the statistic ordered algorithms.
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1 Introduction

The inclusion of block RAMs and block multipliers in FPGA fabrics has made them
more ammenable for implementing the FFT. This paper describes a parallel FFT design
suitable for such FPGA implementations. It consists of multiple, parallel pipelines with
a front end butterfly-like circuit to preprocess the incoming data and distribute it to the
parallel pipelines. Implementation of the parallel FFT on Virtex II shows superlinear
speedups for a range of FFT sizes.

1.1 The Parallel FFT

Figure 1 shows the standard data-flow graph for a 16-point, decimation in frequency
FFT. The first stage is characterized by data communications between distant rows but
at each new stage the dependencies move closer, and branches of independent data flow
appear. After two stages the network has been divided into four independent partitions
as denoted by the horizontal lines. This suggests the use of four independent processing
elements to compute those partitions in parallel. This problem, known as the parallel
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Fig. 1. 16-point FFT data-flow-graph
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FFT, has been extensively studied in the parallel computing community, and a number
of algorithms for it have been proposed [1]. One method is to map groups of the rows
of the data-flow-graph (Figure 1) onto multiple processors (four processors in the case
of Figure 2. However, because of the interprocessor data dependencies found in the first
two stages of the computation, special mechanisms must be employed to handle this.
In the Binary-Exchange Algorithm[1], data must be exchanged between the processors
during these first stages. An alternative algorithm is called the Transpose Algorithm[1]
where the processors cooperate to compute the first two stages without interprocessor
communication but a transposition of the data in memory is required after the second
stage.

1.2 Mapping the Parallel FFT to FPGAs

We are generating a custom hardware implementation and are thus not limited to using n
identical processing elements and standard interprocessor communication. Our approach
is to create a custom front-end circuit to accomplish the first two stages of the computation
and then feed those results to the parallel pipelines which do the partitioned calculations.

The Discrete Fourier Transform (DFT), for sample frame of size N, is defined as

X(ω) =
N−1∑
n=0

x[n]W ωn
N , (1)

where WN = e−j2π/N , known as the twiddle-factor.
We want to split our output, X(ω), into four blocks, and the DFT for size N can be

decomposed into

X(4ω) =
N−1∑
n=0

x[n]W (4ω)n
N (2)

X(4ω + 1) =
N−1∑
n=0

x[n]W (4ω+1)n
N (3)

X(4ω + 2) =
N−1∑
n=0

x[n]W (4ω+2)n
N (4)

X(4ω + 3) =
N−1∑
n=0

x[n]W (4ω+3)n
N . (5)

Since the FFT will need to input four samples for every four outputs, (2)-(5) need to
be in terms of four separate input blocks. Beginning with (2),

X(4ω) =
N−1∑
n=0

x[n]W (4ω)n
N

=
N/4−1∑

n=0

x[n]W 4ω
N +

N/2−1∑
n=N/4

x[n]W 4ω
N +
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3N/4−1∑
n=N/2

x[n]W 4ω
N +

N−1∑
n=3N/4

x[n]W 4ω
N .

Now, using variable substitution in the summations, it follows that

X(4ω) =
N/4−1∑

n=0

x[n]W 4ω
N

+
N/4−1∑

n=0

x[n + N/4]W 4ωn
N WωN

N

+
N/4−1∑

n=0

x[n + N/2]W 4ωn
N W 2ωN

N

+
N/4−1∑

n=0

x[n + 3N/4]W 4ωn
N W 3ωN

N ,

and because WZωN
N = 1 and WZωn

N = Wωn
N/Z , where Z is some integer, the final

solution becomes

X(4ω) =
N/4−1∑

n=0

(x[n] + x[n + N/4] +

x[n + N/2] + x[n + 3N/4])Wωn
N/4.

The derivations for the other output blocks can be obtained in a similar fashion, resulting
in

X(4ω + 1) =
N/4−1∑

n=0

(x[n] − jx[n + N/4] +

x[n + N/2] + jx[n + 3N/4])Wωn
N/4W

n
N ,

X(4ω + 2) =
N/4−1∑

n=0

(x[n] − x[n + N/4] +

x[n + N/2] − x[n + 3N/4])Wωn
N/4W

2n
N ,

X(4ω + 3) =
N/4−1∑

n=0

(x[n] + jx[n + N/4] −

x[n + N/2] − jx[n + 3N/4])Wωn
N/4W

3n
N .

Next, the following variables will be created,

a0[n] = (x[n] + x[n + N/4] + x[n + N/2] +
x[n + 3N/4]), (6)
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a1[n] = (x[n] − jx[n + N/4] + x[n + N/2] +
jx[n + 3n/4])Wn

N , (7)

a2[n] = (x[n] − x[n + N/4] + x[n + N/2] −
x[n + 3n/4])W 2n

N , (8)

a3[n] = (x[n] + jx[n + N/4] − x[n + N/2] −
jx[n + 3n/4])W 3n

N , (9)

and substituting these into the derived block DFT equations produces

X(4ω) =
N/4−1∑

n=0

a0[n]Wωn
N/4

X(4ω + 1) =
N/4−1∑

n=0

a1[n]Wωn
N/4

X(4ω + 2) =
N/4−1∑

n=0

a2[n]Wωn
N/4

X(4ω + 3) =
N/4−1∑

n=0

a3[n]Wωn
N/4.

Note that these four results are each DFTs of length N/4, and share the same twiddle-
factors of Wωn

N/4. Each can be computed by a separate FFT pipeline. The only additional
hardware needed is to compute the set {a1[n], a2[n], a3[n], a4[n]}. The key observation
is that this set of values can be computed using a conventional 4-point butterfly followed
by modified twiddle factor mutliplications as shown in Figure 2 where the multiplication
factors are the W ’s from equations (6) through (9).

This result is equivalent to that used for computing mixed radix FFT’s [2]. The major
contribution of this paper is to recognize that the method can be used to factor an FFT
for parallel computation on an FPGA to achieve throughputs greater than 1. In addition,
as will be show in the results below, the resulting parallel pipelines share significant
logic and memory and achieve superlinear speedups (they use less than k times the
hardware to achieve k-fold speedups). It should be obvious from the above discussion
that breaking the FFT into four parallel pipelines is not the only choice — any k-way
factorization (including non-power-of-two values) can be used followed by k parallel
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pipelines. Obviously such an approach can result in extremely high throughputs, limited
only by the chip resources available. It also provides flexibility to trade off chip area
for throughput. Both fixed point and block floating point versions of the FFT shown in
Figure 2 have been implemented using a module generator written in JHDL, simulated,
and tested on a Virtex II 6000-4. The module generator uses the Radix-22 algorithm
[3] for the parallel FFT pipelines but any constant I/O FFT pipeline algorithm could be
used.

Implementation results are shown in Table 1. All FFT’s in the table use fixed-point
computations and an 18-bit word size. They are constant-I/O, meaning that the samples to
be processed can be input continuously without any breaks between frames. Throughput,
in samples per second, can be computed for these FFT’s by multiplying the clock rate by
the number of pipelines. The table clearly shows that the quad-pipeline FFT is only 2-3
times as large as a single-pipeline FFT but has a 1/4th the transform time at essentially
the same clock rate.

Table 1. Fixed-point FFT’s on the XC2V6000-4

Frame Pipeline Slices Block Block Speed Latency Throughput Transform Area × Transform
Size Style RAMs MULTs (MHz) (cycles) Msps Time (μs) Time Product

Single 2,233 6 9 163 547 163 1.57 3,506256
Quad 5,228 11 33 151 161 604 0.42 2,196
Single 2,870 15 12 164 2,092 164 6.24 17,9091K
Quad 7,656 27 45 151 554 604 1.70 13,015
Single 3,838 33 15 155 8,245 155 26.4 101,3234K
Quad 9,846 63 57 150 2,099 600 6.83 67,248

2 Comparison to Related Work and Conclusions

Multi-chip parallel FFT designs have been published [4] [5] but these focus on VLSI.
At the time of the submission of this paper, two companies have released single-FPGA
parallel FFT’s — SiWorks and Pentek both advertise fixed-point FFT’s with throughputs
in the range of 400-500 Msps but provide few details on their internal architectures..

In contrast, this paper has proposed a Parallel FFT formulation, useful for creating
parallel FFT’s of essentially any size and throughput and suitable for custom hardware
implementations using FPGA’s. It exploits the characteristics of FPGA’s (and custom
hardware in general) as well as the structure of the FFT computation to significantly
increase throughput.

Due to space constraints this paper has focused only on the parallel formulation
of the FFT computation as completed in this work. This work also has included the
development of block floating point FFT modules based on convergent block floating
point [6] and provided an analysis of the cost and benefits of using block floating point.A
parameterized module generator, written in JHDL, has been written which produces both
fixed-point and block-floating-point FFT’s of any size and parallelism desired (limited
only by FPGA resources).
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Abstract. This work describes a Virtex-II implementation of a custom DSP for
QRS-Complex detection, ECG signal analysis and data compression for
optimum transmission and storage. For QRS-Complex detection we introduce a
custom architecture based on a modification of the Hamilton-Tompkins (HT)
algorithm oriented to area saving. We also use biorthogonal wavelet transform
for ECG signal compression and main ECG parameters estimation. In contrast
with previously published works, our modified version of the HT algorithm
offers best performance (a 99% of QRS-detection over normalized noisy
ECGs). Moreover, a compression ratio of 20:1 is obtained when the wavelet-
based engine is running. Results have been successfully verified by using a
combination of MATLAB with SystemGen, Modelsim and a FPGA PCI-based
Card (AlphaData ADM-XRC-II). The QRS-complex detector and compressor
requires minimum area resources in term of LUT and registers, allowing a
custom DSP as coprocessor in a SoC for biomedical applications.

1   Introduction

The medical sector has not taken advantage of the variety of light-weigh, low-power
and low-cost microelectronics circuits that have been successfully applied in modern
telecommunication systems. Main reason is the reduced quantities of classical ASIC
required that are too small for mass production. To save this problem we propose as
solution the use of a FPGA. The work describes a custom DSP for QRS complex
detection or ECG analysis (ECG classification or ECG parameters estimation).

The ECG is one of the most common bioelectric signals with frequency range from
0.05 to 150 Hz an amplitude range between 5uV to 8mV. The recommended sampling
rate is 500Hz whereas the sampled data should have 12-bit resolution that achieves
about 4 – 5uV of resolution. Recently published papers [1] focuses on the fact that
various morphologies of the ECG waveform are excited better at different frequency
scales allowing both a compression of the ECG data and a detection of several
important ECG parameters. These time-frequency analyses are accomplished by
means of the wavelet transform that is a less computationally intensive method than
the suggested in [2]. In addition, using wavelets the QRS complex can be efficiently
detected [1]. The performance of the wavelet transform to detect the QRS complex is
usually compared with detectors based on the Hamilton-Tompkins (HT) algorithm
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[3], results show that no one algorithm exhibit superior performance in all situation
(with several noise addition). For the first time, this work compares both algorithms in
its hardwired versions, estimating power consumption, area and frequency operations
on a FPGA, test benches are based on the AHA (American Heart Association) tapes.
Next section gives a brief review of the HT algorithm and describes our RTL
modified version. Third section depicts the wavelet-based QRS detector chip. Finally,
comparisons of both algorithms from the VLSI point of view are done.

2   A VLSI Implementation of HT QRS Detection Algorithm

The QRS detection algorithm developed by Hamilton and Tompkins recognizes QRS
complexes based on the analysis of the slope, amplitude, and width. The algorithm
proposes various cascaded high-pass and low-pass filters to attenuate noise (Fig. 1).
Subsequent processes are differentiation, squaring, and time averaging of the signal,
next step is differentiation and the squaring of signal samples to find and accentuate
the QRS slopes. Finally, the window integrator and the adaptive amplitude estimate
the peak signal level and the peak noise making the final determination as to whether
or not a detected event was a QRS complex. Our version eliminates the moving
average window and the squaring of the signal. Moreover, the adaptive amplitude
threshold has been simplified too. Next paragraphs describe the algorithm.

Fig. 1. The Hamilton-Tompkins basic building blocks.

2.1   Filters

The transfer function of the low-pass filter, high-pass and notch filters are described
in eq. 1, 2 and 3 respectively. All the coefficients can be defined as power-of-two so
the multipliers are reduced to shifts of the input data. As example, Fig. 2 shows the
hardware realization of high-pass filter.
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Fig. 2. Hardware organization of the high-pass filter.

2.2   Thresholding

Once the QRS has been filtered a threshold must be applied. The HT thresholding
steps provided are:
1. Fix the first threshold = PEAK_LEVEL/2. Peak level = minimum signal value.
2. QRS-complex detected when signal amplitude is below the previous threshold.
3. Disable the detection up to 400ms to reduce interferences in the refractory period.
4. Set the Adaptive Threshold: New = 0.125·Peak_level+0.875· Old and go to step 2.

A multiplierless schema has been utilized: threshold is obtained rewriting 0.875 as 0.5
+ 0.25 + 0.125 so only shifts and additions of the previous threshold are required.

2.3   Performance Measurement and Functional Verification

To test the modified version of the Hamilton Tompkins algorithm three functional
verification levels have been provided by means of a MATLAB model verification, a
RTL-code verification and the final verified chip by using a PCI-FPGA evaluation
board. The output of the MATLAB code (floating-point precision) for several ECG
signals with and without noise artefacts is evaluated for various parameters: TP or
True Positive Detection, FP or False Positive, FN or False Negative, Se or Sensibility
(eq. 4) and P+ or Positive Predictability (eq. 5).

FNTP

TP
Se

+
=

(4)

FPTP

TP
P

+
=+

(5)

The results of the synthesizable QRS detector after simulation with ModelSim
show a 99% of Se and a 100% of P+ of the QRS-complex detector compared to the
MATLAB code. By using a PCI card the ECG signal is evaluated through the chip
and the resulting QRS-complex detection is obtained from the PCI bus and shown on
the PC screen.
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3   A Wavelet-Based QRS-Complex Detector and Compressor

As the HT algorithm, the detection of QRS-complex is preceded by a filtering of the
data in order to isolate the QRS frequency. The DWT proposed schema for a pair of
filters is based on the polyphase decomposition. These filters are designed by using a
folded structure [4]. The filter coefficients (Daubechies D4) were specially selected for
QRS detection. Once the ECG is wavelet decomposed, one of the last level outputs is
selected and processed in a threshold detector or in a compressor engine (usually a
run-length coder). The functionality of the threshold circuit is similar to the described
in previous section.

Fig. 3. The Low-Pass Distributed Arithmetic filter in its polyphase representation.

Fig. 3 shows the digit-serial distributed arithmetic (DA)-based basic cell. The filters
are designed by using Look-up Tables (or ROM) and a scaling accumulator,
additional information about the VLSI implementation of wavelets for FPGA by
using DA can be read in our previously published work [5]. The results were
extremely verified on the chip (see section 2.3). Table 1 offers post-synthesis results
of the QRS detector chip for noisy ECG.

Table 1. Parameters obtained for noisy ECG.



958        M.M. Peiró et al.

4 Comparisons from the VLSI Point of View

This section offers results in terms of area, frequency operation and estimated power
consumption of the described algorithms. The selected reconfigurable chip is a
VIRTEX xc2v3000-6 from Xilinx with 28678 basic cells – one 4-input LUT (Look-
Up Table) and one flip-flop build this cell –. Table 3 resumes the VLSI parameters
obtained from the ISE Xilinx Tool. On behalf of ASIC implementation, in contrast
with previously published woks [1], the Modified HT algorithm exhibits better
performance, area and power consumption than the DWT for QRS detection (DWT +
Threshold in Table 2). However, for ECG signal compression the DWT plus the run-
length compressor can achieve an average compression ratio of 20:1. All algorithms
described require less than a 1% of the total area resources of the chip.

Table 3. VLSI parameters for the Modified Tompkins and the DWT chips.

Algorithm 4-LUT FlipFlop Performance MHz Power mW
Modified Tompkins 259 175 33.93 395
DWT + Threshold 645 284 30.19 411
DWT+ Compressor 514 251 32.15 402

5 Conclusions

The work describes modifications over two QRS-complex detector algorithms
indented to its VLSI implementation. The functionality of the algorithms has been
fully verified and more than 99% of predictability over noisy ECG has been obtained.
Comparison in terms of FPGA parameters concludes than the modified HT is the best
selection for area whereas the DWT-based algorithms can be use for both QRS-
complex detection and compression with a penalty in the area and frequency
operation. Nevertheless the area obtained in the three evaluated algorithms represents
less than a 1% of the reconfigurable chip area. This fact implies reduced power
consumption allowing the integration of portable biomedical systems in one chip.
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Abstract. A complete and transparent design flow targeted on FPGA compo-
nents Virtex II and Virtex II Pro for multiuser detection in DS-CDMA wireless
communication system is presented. The developed architectures are specific in
order to exploit the modern technology of the programmable logic. The result of
this work is modular, dedicated, specific and functional hardware architectures
of an adaptive multiuser detector using a library of hard IP cores, optimized for
these FPGA components, performing adaptive LMS filtering on normalized
fixed-point complex signals. The developed architectures can be used as
optimized cores to implement MUD function in a system-on-chip (SoC) for DS-
CDMA wireless communication systems.

1   Introduction

Multiuser detection (MUD) is essential for an efficient high data rate 3G wireless
network systems [1] deployment. It permits to cancel multi-access interference (MAI)
due to the fact that several users have simultaneously accessed the same frequency
band in such DS-CDMA (Direct Sequence Code Division Multi Access) systems.
While algorithmic aspect of MUD is transparent, implementation aspect is non-trivial
in order to satisfy real-time performances and hardware complexity [2],[3]. The
bottleneck also consists of a transparent methodology of design [4]. In this paper we
propose FPGA architecture and its implementation of an adaptive MMSE (Minimum
Mean Square Error) algorithm. The rapid prototyping of more complex MUD based
on iterative approach targeted on FPGAs is also proposed [6].

The paper is organized as follows. Section 2 presents briefly the MUD and the
algorithm considered in this paper. Section 3 introduces the architecture of the MUD
targeted on the Virtex II and Virtex II Pro devices. Section 4 presents the design flow
while the results are presented in Section 5, and finally final remarks in Section 6.

2   Adaptive Multiuser Detectors for DS-CDMA

In a baseband DS-CDMA system, consider K users transmitting symbols from the
alphabet Ξ={-1,1}. Each user's symbol is spread by a pseudo-noise (PN) sequence of
length Nc (signature or spreading code). Let T denotes the symbol period and Tc

denotes the chip period where Nc=T/Tc is an integer. The kth user’s continuous time
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spreading waveform is formulated by (1). The transmission channel ( )
, ( )n

k lh t  for user k

is defined by (2) where Lk is the number of propagation paths, ( )
,
n

k lh  is the complex

gain of the lth path for user k at time n, ,k lτ  is the propagation delay and ( )tδ  is the

Dirac impulse function. The baseband received signal can then be written as (3)
where Nb represents the number of the transmitted symbols, Ak is the transmitted
amplitude of user k, and ( )tη  is the additive Gaussian noise with variance 2

ησ . The

discrete matrix-vector form of equation (3) (in baud space) is described by (4).
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Based on this multipath fading asynchronous DS-CDMA system, we will define an
adaptive MUD receiver [5]. We consider the adaptive signature algorithm that is
based on FIR (Finite Impulse Response) filters using the adaptive LMS (Least Mean
Square) algorithm to detect all transmitted data bk in a nonlinear manner. It was
proposed as an alternative of MMSE algorithm. The proposed algorithm is so-called
adaptive MMSE. The drawback of MMSE algorithm consists of algorithmic
complexity due to matrix inversion. The adaptive MMSE is proved to be efficient as
compared to the MUD algorithms in literature [1][5].

The general adaptive LMS algorithm is described by (5) and (6) for each user k. The
coefficient vector ( )n

kw , with ( )dim( )n
k TN=w , contains the adaptive spreading code

of one user and ( )n
kx  represents the received signal r  shifted by the delays τk. The

output signal of adaptive LMS filters is produced to match the real desired BPSK
signal based on a training sequence. Considering the complex number multiplication,
the equation (5) is computed using (7). Since the desired signal is real, we can update
the coefficients of (6) using (8).

( ) ( ) ( )  n T n n
k k ky = w x (5)
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Fig. 1. Adaptive MMSE algorithm.
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Re(x) and Im(x) define the real and imaginary parts of x, and Rre and Rim represent the
accumulation registers for real and imaginary parts respectively. From these equations
of the adaptive MMSE, we will describe the proposed FPGA-targeted architecture.

3   FPGA-Based Architecture of Adaptive MMSE

The modular architecture is based on a modular array of processing elements (PE).
These PEs are hard IP cores performing adaptive LMS filtering on normalized-fixed
complex signals according to (7) and (8). The core of these adaptive filters is the
pipelined multiplier-accumulator using the dedicated multipliers available on the
silicon die of Virtex II, Virtex II Pro devices. The timing scheduling is based on time-
multiplexing (TMUX=1,2,3,4). The data and address paths are independent. The
principle of direct association is used to solve the hazard problem of memory access.
The utilization of distributed RAM implemented by LUTs permits to implement
multiport memory buffers of MUD accessing simultaneously to external memories.
BRAM (Block RAM) are used as memories of filters and they are internal memories
of MUD. Since the filters are based on complex multiplier-accumulators (CMAC), it
is, hence, critical to consider an efficient implementation of a complex multiplier on
these FPGA components. We used an advanced scheduling based on time
multiplexing by modifying the conventional methods, i.e. ASAP (As Soon As
Possible) and ALAP (As Late As Possible) to use only two real multipliers. This
method exploits the symmetric property of BRAMs and the dedicated multipliers of
these components. The execution time of an adder is 1-cycle (C-step) and that of a
multiplier is 2-cycle. The total execution time for the complex LMS-FIR of NT

complex taps is (2NT+9)Tclk where Tclk is the clock cycle period.

4   SoC Design Flow

Once the algorithm in fixed point is functional, the execution of system is refined into
HW and SW tasks. This paper focuses on the HW design flow of the MUD based on a
library of the optimized hard IP cores; for instance, complex taps LMS filters used as
PE for the adaptive MUD. Different architectures were developed in order to optimize
the HW resources and timing performances as a function of several different
algorithmic specifications of the MUD such as the OVSF (Orthogonal Variable
Spreading Factor) used in WCDMA as channelisation codes, the number of users K,
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the adaptation period, etc. The principal difference between these architectures is the
global control in order to exploit the possible strategy of pipelining to minimize HW
resources and satisfy performance requirements.
It is necessary to estimate the timing performance and HW resources required by
architectures from the architectural specifications stated above. Thus, a program
based on nonlinear integer programming model was developed. This tool is used to
maximize the time multiplexing (number of users in one PE) and timing performances
(number of clock cycles) of system respecting algorithmic constraints and HW
resource limitations (number of multipliers and block RAM). It is also necessary to
minimize the clock rate for consummation performance. This program helps to
choose the type of architecture more corresponding in terms of the strategy of pipeline
for the algorithmic specification of MUD. Also, it can be used to estimate the
necessary HW resources and timing performances.

The specification and characterization step makes it possible to specify and
characterize the PE for a given algorithm. For the algorithm of the MUD to be
implemented in this project, the PE are dedicated as adaptive LMS and FIR filters on
the complex signals. The advanced scheduling method modified from the
conventional techniques (ASAP and ALAP) makes it possible to use only two real
multipliers to build the CMAC. The CMAC is 2-level pipeline using the dedicated
multipliers available on these FPGAs. The left alignment method is used for coding
numbers in normalized fixed format.

Table 1. Maximum number of users (K) in Virtex II Pro devices for different OVSF’s (64, 16, 8
and 4) and mobile speeds (pedestrian and fast moving)

The remainder of HW design flow relies on conventional design methodology
targeted on FPGA: the netlist in EDIF format is used as unified format for Xilinx
physical tool, i.e. placement and routing; the timing constraints are applied in a
hierarchic manner considering that the verification is critical in the design flow;
dynamic verification by simulations is used during all along design flow; results of
fixed-point simulations in high-level language (Matlab®) are used as static functional
reference for the HW verification of the architecture; and finally the synthesized data
are used for the verification of adaptive MMSE FPGA implementation.
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Table 2. Post Layout Synthesis Results for Xilinx Virtex II PRO XC2VP30 device with
OVSF=16, K=16 and 100 iterations for pedestrian and fast moving conditions

5   Performance Evaluation

The results of this work are functional HW architectures targeted on the Virtex II and
Virtex II Pro components satisfying the different algorithmic specifications. FPGA
implemented validations are done in comparison with Matlab simulation based on
CDMA platform.

Table 1 summarizes the maximum number of users (K) that can be treated on
different devices of the Virtex II Pro family in different data throughput based on the
3G standard and fixed by the OVSF parameter such as 64, 16, 8 and 4 corresponding
respectively to 12.2kbps (voice rate), 64kbps, 144kbps and 384kbps data rates. We
considered two mobile speeds: pedestrian (T

A
=10ms) and fast moving (T

A
=2ms),

where T
A
 represents the adaptation sequence period considered to adapt all MMSE

parameters, ( )n
kw , in NA=100 iterations to adapt each users. Assumption of 100 MHz

clock frequency, we can used TMUX=4 in pedestrian case and TMUX=2 for OVSF of 64
and 16 and TMUX=1 for OVSF of 8 and 4 in case of fast moving.
The performance in term of adaptation time (tA) and detection time (tD) is defined by
tA=(3NT+9)(TMUXNA)(256/OVSF)Tclk and tD=(2NT+5)TMUX(38400/OVSF)Tclk. With
pipeline strategy of architecture, the time processing of this system is max(tA,tD) and
need to be inferior to one time frame (10 ms) to adapt all parameters and to detect all
data. TMUX is maximized to respect the time constraint of tA≤ TA and tD<TD and depend
of the clock frequency.

From Table 1, we observed a constant maximum number of users for all throughputs
due to the limitation of resources (BRAM to store ( )n

kw  and multipliers). Indeed, the

OVSF used in WCDMA imposed to store and adapt 256/OVSF vectors ( )n
kw  for each

user. The post layout synthesis results are included in Table 2 using Leonardo and
Foundation tools where TMUX=4 for pedestrian and TMUX=1 for fast moving..

6   Final Remarks

The HW architectures of an adaptive multiuser detector based on adaptive MMSE for
DS-CDMA systems were developed. These dedicated architectures can be used later
as optimized hard cores performing MUD functions. The current HW architectures
are purely glue logic. The future work consists in exploiting SW processing in the
MUD as a whole respecting the algorithmic specifications of the 3G wireless
communications. As for the design methodology level, it will be interesting to use a
higher-level language for architectures’ HW design flow. The current flow is based on
VHDL that is time-consuming in our modeling task for different architectures.
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Abstract. In complex SoC designs verification consumes more than half
of the overall design effort. Design reuse is a critical element in closing the
SoC design gap, but it is not enough. A generic core-based architecture
for circuits that require high volume data transfer control was designed.
After some experience in reusing the architecture, a key improvement
has recently been undertaken: a reusable simulation platform. The com-
plexity of architectural verification and performance analysis has been
greatly alleviated by means of a monitor module that processes all the
events on the SoC and an Architecture Specific Graphical User Interface
(ASGUI) that shows all the data transfers while simulation is running.
The generation of bitrate and latency statistics is fully automated.

1 Introduction

Several control applications require very high speed data exchange between data
source and sink elements [1] [2] [3]: industrial machinery like filling or milling
machines, polyphonic audio, three dimensional images, video servers, PC equip-
ment like plotters and printers, etc. After dealing for quite a long time with such
applications, it was considered that much work could be reused, and a generic
and reusable core-based architecture for circuits that require high bandwidth
data transfers was designed in order to reduce the SoC design cycle time as
much as possible [4] [5]. An schematic representation of the generic data trans-
fer control architecture is shown in figure 1 inside the rectangle named SoC
[6]. It is composed of three buses that are compatible with the Wishbone SoC
interconnection Architecture for Portable IP Cores specification [7]:

– Data Transfer Bus (DTB). It is a shared bus interconnection that performs
all high speed data transfers. High bandwidth data transfer control can be a
very time consuming task. In order to liberate the main control unit a data
transfer control specific unit has been used.

– Main Processor Bus (MPB). It is used to perform high level tasks, which are
controlled by a high level controller or main processor, usually a microcon-
troller. It uses its specific bus to read and write on program memory, input
and output blocks and any other devices, as well as to communicate with
the DTB.
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– Communication Bus (CB). It is used to exchange information with the ex-
ternal system. It can not directly access to the DTB and it exchanges infor-
mation with the communication processor, which is a module on the DTB.

Architecture reusability was improved by taking into account the usual
design-for-reuse guidelines [8]: configurable cores and verified in detail, flexi-
ble and scalable architecture, technology and CAD tools independence, good
documentation, Register Transfer Level (RTL) synchronous descriptions, etc.

2 Improving Architecture Reuse by Means of a
Simulation Environment

Although design complexity was alleviated by reusing the flexible and generic
system, architectural verification and analysis were still very time consuming
tasks because each time the architecture was reused for a new application, an
application specific testbench was developed [9]. At this point, a key improve-
ment has recently been undertaken: a simulation platform valid for any applica-
tion designed by reusing the generic architecture [10]. These are the goals of the
simulation platform:

– Verification. Although each core is a preverified block, it must be ensured
that the whole SoC implements intended functionality. Without functional
verification, one must trust that the transformation of a specification docu-
ment into RTL code was performed correctly, without misinterpretation of
the specification’s intent [11][12].

– Performance analysis. We want to analyze the influence of architectural pa-
rameters like the number of simultaneous active channels, the type of data
units, and the use of the SDRAM on system features like bitrate and latency.

The complexity of stimuli generation and result analysis has been greatly
alleviated by means of using text files. The circuit description and the data ex-
changed are separated, so simulation data and circuit descriptions are clearly dis-
tinguished. In complex SoCs the amount of interconnection signals is so extensive
that traditional timing diagrams become nearly unmanageable. An Architecture
Specific Graphical User Interface (ASGUI) that shows all the transfers has been
developed to simplify the verification task. Tool Command Language/Tool Kit
(TCL/Tk) has been used to create a custom window and simulation control
features because the command line prompt to the simulator employed (Mod-
elsim) is a Tcl/Tk shell and because it has powerful and flexible capabilities.
Scripting languages like Tcl provide an ideal mechanism for integration tasks in
component-based designs [13].

3 Simulation Platform

Figure 1 shows the block diagram of the whole simulation platform. All the
circuits that compose the SoC under study are represented with a rectangle.
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The surrounding circuits that are modelled (a bus functional model) only for
simulation porpouses are represented with a circle and all of them are provided
with a virtual interface to access one or more text files.
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Fig. 1. Block diagram of the simulation platform.

The MONITOR registers all the events in the system and performs two
kinds of tasks: it acknowledges the ASGUI on any event that must be shown
and it stores performance information in text files. A spreadsheet automatically
generates bitrate and latency graphical representations from these monitor files.
Table 1 shows the name and description of the most important data and monitor
files.

Figure 2 is a screenshot of the Architecture Specific Graphical User Interface
(ASGUI). Three main zones can be distinguished:

– Pull-down menus, at the top, to access the VHDL and text files.
– Graphical user interface, at the middle, to create the topology of the simu-

lation platform and to visualize the data transfers performed in the buses.
Each simulation clock cycle there is a call to a process that verifies wether a
new data transfer has been performed. The simulation is halted whenever a
data transfer occurs. Then an arrow shows the origin and destination of the
data transfer and the content of the data and address buses is also indicated.

– Simulation control buttons, at the bottom, make possible the interaction
with the simulation software.
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Table 1. Data and monitor text files.

Name Description

Data files

ext tx com.txt (DF1) Commands to be transmitted by the external system
ext tx data.txt (DF2) Data to be transmitted by the external system
ext rx.txt (DF3) Commands and data received by the external system
sdram banki.txt (DF4) Data in bank i of the SDRAM
dso data.txt (DF5) Data to be read by the data source unit
dsi data.txt (DF6) Data written by the data sink unit

Monitor files

transfer dtb.txt (MF1) Transfers in the Data Transfer Bus (DTB)
error dtb.txt (MF2) Errors in the Data Transfer Bus (DTB)
bit rate.txt (MF3) Bitrate in each channel
latency.txt (MF4) Latency in each channel
sdram access.txt (MF5) Read and write accesses to SDRAM

Simulation Time:

COM_INT COM_PROC DATA SINK DATA SOURCE

SDRAM 

CONTROL
BRIDGEDTC

INT_REG

MAIN_PROC

DATA_MPB DATA_DTB

ADDR_MPB ADDR_DTB

Simulate Restart Close

ASGUI

Time to run (ns):

File Data Monitor

60FF

1002

Fig. 2. Architecture Specific Graphical User Interface (ASGUI).



Simulation Platform for Architectural Verification and Performance Analysis 969

4 Conclusion

Several strategies and concepts are being employed to build chips in the multi-
million-gate range in a reasonable amount of time. When reusing predesigned
core-based systems, architectural verification and analysis become very time con-
suming tasks. The simulation platform presented in this paper improves the
reusability of a generic architecture for high bandwidth data transfer control.
All the events on the system are registered by a monitor block and an Archi-
tecture Specific Graphical User Interface (ASGUI) shows all the data transfers
while simulation is running. Simulation inputs and outputs are stored in text
files, which makes possible an easy procedure to manage simulation stimuli and
performance analysis results. A spreadsheet generates automatically bitrate and
latency statistics and multiple graphical representations.
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Abstract. The necessity for programmable analog devices appears when it is
necessary to ease  the design process in small time and with minimum costs,
making the research in FPAAs (Field Programmable Analog Array) more
intense. In this work we proposed a new FPAA topology aiming at wide
frequency range, while keeping a high degree of reconfigurability. The impact
in frequency, programmability and resolution are evaluated, showing that the
proposed technique gives a good performance in these aspects.

1   Introduction

The versatility of the FPAA (Field Programmable Analog Array) never reached the
same level of versatility of the FPGA (Field Programmable Analog Array) because of
factors such as the need of many reconfiguration and interconnections switches, the
huge area occupied for each passive element of the circuit and the granularity
involved to create different circuits. Not only versatility suffers with these design
aspects. Frequency and linearity limitations due to the same switches that allow
programmability are currently a point of interest in FPAA research.

In this paper we present a solution able to cope with the frequency problem. By
translating the signal, instead of changing the circuit, we can achieve high
performance in a wide range of frequencies, much larger than any commercial FPAA
can presently reach. Thanks to the processing by a simple analog function, we do not
incur in extra power dissipation.

The paper is organized as following: a brief review about some of the main FPAA
architectures is reviewed in section 2. In section 3 the proposed interface is presented.
Section 4 shows some practical results that prove the functionality and feasibility of
the system.

2  Related Works

Some of the main representatives of the different techniques used to implement
FPAAs are switched capacitor, operational amplifier, current conveyor and switched
current. The switched capacitor technique favored the development of active filters
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for precision applications, especially in low frequencies. However, this technique
depends on linear capacitors, which occupy a large area in integrated systems, mainly
in low frequencies. Moreover, this kind of circuit realization has its operation
frequency limited to the Nyquist rate and, since most applications require a huge
amount of programmability and interconnection switches, these also limit the
achievable bandwidth. On the other hand, structures based on switched capacitors
have a high degree of programmability, since some parameters can be changed only
through the variation of the switch frequency of the capacitors. Switched capacitor
based FPAAs developed are described in [1] and [2], which originated the FPAA
currently fabricated by Anadigm, the AN10E40.

FPAAs based on operational amplifiers (opamps) have a band limitation imposed
by the characteristics of the opamp itself. Also, an opamp alone does not realize any
function but a comparator, and hence the inclusion of passives elements such as
capacitors, resistors and diodes becomes necessary, in order to make more complexes
functions. Thus, the same problem associated with area of passive components in
lower frequencies is now present, and the insertion of switches to program all these
components has also impact on the maximum achievable bandwidth and linearity.
Commercial devices produced by Lattice Semiconductor Corp. (ispPAC10/
20/30/80/81 and ispPAC-POWR604/1208) and by Zetex Ltd. (TRAC) are example of
opamp based FPAAs.

The use of current conveyors in the development of FPAAs presents as a great
advantage its large bandwidth, which can easily reach hundreds of MHz. Again, its
use is limited due to the passive components needed to create some analog function
and the switches associated to these components.  Current conveyor based FPAAs are
described in [3] and [4].

A technique analogous to the switched capacitor is the switched current. This
technique allows circuits with lower power consumption. Two problems exist in this
topology: there is a lower resolution if one compares it with switched capacitor
circuits, and it is necessary to create several copies of the current signal to feed
multiple blocks requiring the same signal. Also, bandwidth limitation is restricted,
again, to the Nyquist rate. Example of switched current based FPAA is cited in [5].

Others topologies have been used in order to get betters results in one or another
characteristic. These are, between others, current mirrors, subthreshold operating
CMOS, multiplexer and demultiplexer and others. A generic topology, allowing high
performance in a wide frequency range has not yet been developed.

3 Proposed Interface

Trying to cope with the problem of limited range of frequency in which the FPAA can
operate, without degrading its level of programmability, we propose the use of
frequency shift interface (figure 1), which also have some programmability, both in
the mixer (through LO variation) and in the band pass filter (through its parameters
variation, such as cut frequency, gain and quality factor).
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Fig. 1. Proposed structure to signal allocation and selection, with exclusively analog processing
of the signal.

With this interface, signals to be processed are now centered in a fixed frequency,
allowing the development of the rest of the FPAA optimized to work in this
frequency. Even if one thinks in a FPAA that has a certain bandwidth of operation,
this interface can be used to allocate any signal out of this bandwidth to a frequency
where the device is able to operate. The practical results showed in section 4 use this
principle.

4 Practical Results

In order to demonstrate the feasibility of implementation of the proposed interface
and its functionality, practical experiments have been developed, where signals with
restricted band were translated to a fixed frequency with a passive mixer. A
commercial FPAA has been used as the programmable vehicle, in order to show the
generality of the method. The used structure is presented in figure 2. The RF input
senses de signals in different frequencies. LO is the local oscillator signal and the
resulting signals in IF are the difference and the sum of LO and RF. The desired
signal is then selected by a band pass filter realized with a Lattice FPAA, the
ispPAC10, which consists of two second order sections with quality factor of 7.59.
The subsequent block is another Lattice FPAA ispPAC20 that implement an adder.

Fig. 2. Structure of mixer and band pass filter followed by a FPAA, used in practical results.

The mixer was implemented with transmission gates to give a better noise margin
than one would get with a single transistor. The signals were generated by a
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HP33120A and a Tektronix CFG253 function generators and acquired by a
HP54645D oscilloscope with a rate of 25 MSa/s.

In the experiment, it is desired to sum two sinusoidal signals of high frequency
(5MHz and 5,01MHz), using ispPAC20, whose maximum operating frequency if
550KHz. It is necessary, then, to achieve a down conversion of these signals to a
frequency where ispPAC20 is able to work and make their sum. An IF of 60KHz was
chosen, resulting in a LO frequency of 5.06MHz. The signal in 5MHz is then
translated to this frequency, while the 5,01MHz signal is directly introduced into
ispPAC20, already in a frequency of 70KHz. Figure 3 shows the acquired results.

        

        

Fig. 3. (a) FFT of the 5MHz signal mixed to 60KHKz; (b) FFT of the band pass filtered signal;
(c) FFT of the sum of the 60KHz and 70KHz signals; (d) output signal in time domain.

A mixer based on switches generates, beyond |LO±RF|, higher order harmonics
located in |3LO±RF|, |5LO±RF|, and so on [6]. This way, the harmonics that appear in
figures 3(a) to 3(c), are not introduced by the proposed interface (mixer + band pass
filter), but rather by three other different sources: both the input signals in 5MHz and
70KHz externally generated, the band pass filter implemented with ispPAC10 and the
adder, implemented with ispPAC20. This means that the original system (without the
interface) produces harmonics that degrade the signal. Since the harmonics introduced
by the mixer are in high frequencies, the proposed interface is not contributing  with
the distortion in the operating frequency band, and all distortion is caused by the
reconfigurable commercial device and the input signal. This shows that the actual
effect of the mixer at the input is to extend the performance of the target FPAAs.
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With the system presented, one can easily deal with signals in frequencies very
superiors than those achieved today by the commercial FPAA, for example the
AnadigmVortex family (2MHz), Lattice (1.57MHz for the ispPAC30) and Zetex
(3MHz for most of the blocks).

5 Conclusions

The proposal presented in this work comes as a solution for the limited range of
frequency in which FPAA can operate.

Practical experiment shows results obtained for signals in frequencies much higher
than the commercial FPAA can operate, confirming the system efficiency, allowing
its use in a large range of applications, from low frequency to high frequency.

As future works, analysis will be done regarding the power dissipation of the
system, comparatively with others FPAAs, as well as limits of operation must be
determined, taking account problems related to frequency translation using mixers
based on switches and the distortions introduced in this process due to mixer’s non
linearity.
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Abstract. This paper presents an innovative way to deploy Bitstream
Intellectual Property (BIP) cores. By using standard tools to generate
bitstreams for Field Programmable Gate Arrays (FPGAs) and a tool
called PARBIT, it is possible to extract a partial bitstream containing a
modular component developed on one Virtex FPGA that can be placed
or relocated inside another Virtex FPGAs. The methodology to obtain
the BIP cores is explained, along with details about PARBIT and Virtex
devices.

1 Introduction

Field Programmable Gate Arrays (FPGAs) available now contain millions of
equivalent logic gates. Large systems are implemented on these FPGAs by inte-
grating multiple intellectual property blocks. There are essentially three types of
intellectual property blocks, also called IP cores [1]. The first, called soft cores,
are blocks delivered as Verilog or VHDL code. The chip developer is responsi-
ble for synthesizing and implementing the logic into FPGA’s logic. The second,
called firm cores, are circuits described in a netlist format, mainly EDIF, and
contain some placement information. These are used by the chip developer to
implement the core in the FPGA. The third, called hard cores, are placed and
routed blocks ready to be used inside the FPGA. They can not be altered by
the chip developer.

This paper presents a new approach for the generation of IP cores: Bitstream
Intellectual Property (BIP) cores. The BIP uses a partial bitstream configura-
tion file to deliver the IP core. The full bitstream files can be generated with
commercial tools already available from Xilinx. PARBIT, a tool capable of ex-
tracting a partial bitstream from full bitstream files, enables the chip developer
to generate, develop and test an IP core in isolation on one FPGA then deploy
it into a region of another.

The methodology presented in this paper can also be used to develop new
reconfigurable modules, which can be loaded into a great variety of reconfigurable
platforms, such as [2]. The Field Programmable Port Extender uses one FPGA
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to reconfigure the bitstream of another [3] [4]. The self-reconfiguring platform
presented in [5] implements the reconfiguration control inside the same FPGA
with its own logic resources. All of these approaches introduce a new level of
flexibility for extensible systems. The configuration bitstream may come from
a network or be compressed and stored on a device attached to the FPGA.
The time required to generate new modules for such platforms can be reduced
significantly using BIP cores.

2 Design Flow

PARBIT [6] processes two full bitstream files called original (containing the
reconfigurable module) and target (containing the static logic). The tool has
three operation modes: Slice, Block, and BIP. The slice and block modes can
be used to perform partial run-time reconfiguration of an FPGA-based platform
[7]. The BIP (Bitstream Intellectual Property) mode generates IP cores directly
from bitstreams obtained through Xilinx tools [8]. To add a BIP core developed
from an original device into a system being implemented on a target device, the
source bitstream (containing the BIP core) is reformatted to configure a target
device containing a reserved area for the BIP. Logic configuration and routing
is specified for an area inside the CLB columns of the chip that exclude the top
and bottom frame control bits of the FPGA’s Input/Output Block (IOB). The
area within the FPGA that defines the BIP core is extracted from the original
design an merged into a target bitstream for another device of same family of
FPGA. The tool generates the partial bitstream file containing the BIP core
area and this file is used to program the core into the target device.

The interface between the reconfigurable module and the static logic is well
defined. Modules can be placed into specific locations inside the FPGA. Inter-
faces between modules, called Gasket in [9], were redefined in [10] to be called a
Bus Macro.

Just a few extra steps are needed to generate an original bitstream with the
BIP core and a target bitstream that contains static logic with an open area
reserved for the BIP core. The original bitstream is generated by the BIP core
developer, and the target bitstream is generated by the final user.

The BIP core is defined as the reconfigurable area inside the original device,
delimited by the coordinates: Start Row, End Row, Start Column and End
Column. This FPGA will not have any logic outside the BIP core area.

Each Bus Macro, used to interface the BIP area with the static logic area of
target device, bridges four signals, and occupies 8 CLBs. Four of the CLBs are
located inside the reconfigurable area, and four outside. As shown in Figure 1,
the connection points outside the BIP area are connected to the routed signals
inside of the target device. The location of each one of the bus macro is fixed by
a constraint command inside the UCF (User Constraints File) for the project.

A core developed with the BIP methodology consists of two files: the full
original bitstream file, which is used by PARBIT to extract the configuration
bits for the BIP core; and the Top Level VHDL, which contains the instantiation
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Fig. 1. BIP Original and Target

for the BIP core and the Bus Macro. The BIP width (CLB columns) and height
(CLB rows) are added to VHDL in the form of comments. Likewise, the position
of each interface signal, relative to the upper left corner of the BIP, is specified.

In order to perform run-time reconfiguration, the target bitstream would be
reconfigured within the reserved area that receives the BIP core extracted from
the original bitstream. The target bitstream contains static logic around the
module that will not change during the downloading of the BIP core. This static
logic may include other IPs, previously reconfigured into the FPGA, as shown
in Figure 1.

It is assumed that an area was reserved that is the same size of the BIP core,
and that the bus macros were placed in the same positions relative to the upper
left corner of the BIP. It is not necessary to use the same device employed to
generate the BIP bitstream file, provided that the BIP area fits inside the new
device.

In order to keep the clock signals active to be used in the BIP core we insert
Flip/Flops inside the reserved area to create the needed clock routing.

3 BIP Core Example

To demonstrate the methodology of using a BIP core, a reconfigurable calculator
was implemented, based on an application note from Xilinx [10]. This calcula-
tor has three modules: adder, lcd driver and pushbutton. In our example, the
lcd driver and the pushbutton modules are already placed in the target FPGA,
and the adder module is used as a BIP core.

First, the size of the BIP core is determined and used to set the position of
each bus macro. Six bus macros were used for the original ‘calc’ design: three of
them are used between the lcd driver and the adder; the other ones to interface
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the adder within the pushbutton module. For this example, the BIP core (adder)
is confined in the region delimited by: Start Column = 5; End Column = 18;
Start Row = 1; End Row = 16. Bus macros are placed on rows 5, 10 and 15,
horizontally centered on the left and right sides of the BIP.

To implement and test the BIP adder core, an FPGA circuit was implemented
with the adder connected through external bus macro signals to the FPGA I/O
pins. The FPGA with the adder module was then synthesized, implemented and
simulated with the BIP core in isolation.

Figure 2 shows the floorplan for the BIP core. This core is confined in a
region containing 14 columns with 16 rows. The figure shows that only the bus
macro and clock routing signals cross the boundary region. Because clock routing
do not depend on the CLB configuration frames, they are allowed to cross the
boundary region.

Fig. 2. BIP Core - XCV50

The target device was implemented with the lcd driver and the pushbut-
ton modules placed on the left and right sides of the chip, respectively. An
empty space for the adder module was left by connecting a dummy circuit with
Flip/Flops to internal bus macro signals. These flip/flops generate a clock routing
template, which makes the clock signals available to any BIP core implemented
in the target device. To ensure that all clock signals were routed across the 33
rows of the routed chip, a BIP core with 14 columns and 33 rows was inserted
into this region.
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4 Conclusions

A new way to generate an IP core was presented, utilizing existing Xilinx tools
and PARBIT. The method uses bitstream files generated by commercial tools,
and provides a secure method to deliver the IP.

When used with the Xilinx ISE V5.2i tools, the BIP core presented allows the
mapper and place and route tools to run 8 times faster than without using a BIP
core because the original circuit on the smaller XCV50 routed and placed much
faster than when targeting directly the much larger XCV600 FPGA. Thus, the
methodology presented in this paper can shorten the time necessary to design
new reconfigurable modules for large FPGAs. With a BIP core, a small device
can be used to generate and test a module before the implementation onto a
larger target device.
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Abstract. In this paper, we describe a circuit for real-time computation
of the Generalized Hough Transform (GHT). The GHT is a technique
to find out arbitrary shapes in an image. The GHT is very robust to
occlusion and noises, but requires large amount of memory and long
computation time. In the GHT, a point is chosen as a reference point of
a shape, and the point is searched using edge points in an image. In order
to implement the GHT on one FPGA, we first look up regions that may
include the reference points, and then search the points in those regions.
With this two phase search, the circuit on XC2V6000 can find 112 kinds
of shapes smaller than 256 × 256 pixels in an image (640 × 480 pixels) in
real-time (more than 25 frames per second). The 112 kinds of shapes can
be used to find an object of arbitrary distance and angle in 3-D space.

1 Introduction

The Generalized Hough Transform (GHT) [1] is a technique to find out an arbi-
trary shape in an image. The procedure in the GHT is very simple and regular,
and suitable for parallel processing by hardwares. The computational complex-
ity is, however, very large, and furthermore, large amount of memory required
by the GHT makes it difficult to realize real-time processing on compact cir-
cuits. In order to accelerate the performance, many hardware systems have been
researched[2][3][4][5]. Their performances were, however, slower than video-rate,
or the target image sizes were smaller than standard image sizes. In this paper,
we describe an implementation method to realize real-time processing of the
GHT on standard image sizes with a compact circuit. In our method, regions
that may include the reference points (center of shape) are searched first, and
then the points are searched in those regions by a pipelined circuit.

2 The Generalized Hough Transform (GHT)

In the GHT, as shown in Figure 1(a), one pixel is chosen to refer a shape (center
of the shape), and for each feature point of the shape, relative position of the
center (r, θ) from the point is registered in a table (called R-table) using ϕ as
index in advance. Then, for each edge point in a given image, (1) ϕ is obtained
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by some methods, (2) relative positions of the center from the point are obtained
from R-table using ϕ as index, (3) positions of the center are calculated by the
relative positions, and (4) values in a memory (called Accumulator Array) are
incremented using the positions of the centers as addresses. After processing all
edge points in the given image, peaks in Accumulator Array are chosen as centers
of the shapes.

Fig. 1. The Generalized Hough Transform

Under noisy conditions, it it not easy to obtain correct ϕ, which may cause
errors in finding centers of shapes. In our approach, all positions which may be
the center of the shape are considered as candidates of the center (Figure 1(b)).
Then, all values in Accumulator Array which correspond to the candidates are
incremented. After processing all edge points, peaks (namely crossing points of
the candidates (Figure 1(c))) are chosen as centers of the shapes. This method
requires much more increment and memory access operations than normal GHT,
but much more robust to noises.

In order to increment values in Accumulator Array for all the candidates, we
prepare Shape Table (two-dimensional table) as shown in Figure 2 instead of R-
table. In Shape Tables, values on positions which may be the center of the shape
are one, and all other values are zero. With one Shape Table, we can detect one
kind of shape in a image. Therefore, we need N Shape Tables and N Accumulator
Arrays to detect N kinds of shapes of an object in 3-D space. For each edge point
in an image, all values in k-th Shape table (k = 1, N) are shifted according to the
address of the edge point, and added to k-th Accumulator Array. Then, peaks
in k-th Accumulator Array are considered as centers of k-th shape.

Fig. 2. Shape Tables and Accumulator Arrays
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3 Two Phase Search of the GHT

Our method consists of two phases below.

1. In the first phase, M regions that may include centers are searched by the
GHT using Reduced Accumulator Arrays which can be implemented on one
FPGA.

2. In the second phase, centers are searched in the M regions by the GHT
using M accumulator sub-arrays (called Sub-Arrays) which have same size
with the regions.

Therefore, the GHT is applied twice in our method, but these two phases can
be pipelined as described below.

In Figure 3, the size of Accumulator Array is reduced to 40×32 from 640×480.
Each value in the Reduced Accumulator Array are the sum of 16×16 values in the
original Accumulator Array. The size of Shape Table is also reduced to 17 × 17,
and each value in Reduced Shape Table are the sum of 16 × 16 values in the
original Shape Table.

In the first phase, for each edge point in an image, values in Reduced Shape
Table are shifted according to the address of the edge point (x, y), and added
to Reduced Accumulator Array. Then, M entries which give larger values in
the Reduced Accumulator Array (four gray squares in Figure 3) are chosen as
candidates that may include centers of the shapes.

In the second phase, for each edge point in the image, values in the original
Shape Table are shifted according to the address of the edge point (x, y), and
added to M Sub-Arrays, and peaks in each region are selected as centers.

Fig. 3. Reduced Arrays and Tables

In order to add values in Reduced Shape Table to Reduced Accumulator Array
correctly, we need to prepare 16×16 patterns for one Reduced Shape Table. Sup-
pose that the address of an edge point is (x, y). Then, values which are added
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to Reduced Accumulator Array have to be
RS(k, l) =

∑−x%16+k×16+15
i=−x%16+k×16

∑−y%16+l×j+15
j=−y%16+l×j S(i, j)

where S(i, j) are values in original Shape Table. This means that RS(k, l) be-
comes different according to x%16 and y%16. One of these 16 × 16 patterns is
selected according to x%16 and y%16, and added to Reduced Accumulator Array.
When x%16! = 0 and y%16! = 0, the size of the pattern becomes 17 × 17.

4 Parallel and Pipeline Processing

In order to find an object in 3-D space, we need to detect many kinds of shapes.
Suppose that the maximum size of Shape Table is S×S. Then, we need to detect
S/2 kinds of shapes of an object to find the object in arbitrary distance because
the number of shapes which are smaller than S × S is S/2. Therefore, the two
phase search by the GHT has to be applied to S/2 kinds of shapes.

Figure 4 shows a block diagram of the current implementation of a circuit for
the two phase search, and Figure 5 shows the parallel and pipeline processing
on the circuit. In Figure 4,

1. An image taken by a camera is sent to one of two external memory banks
(I1 and I2) (while an image is sent from the camera to I1 (I2), the previous
image in I2(I1) is accessed by the FPGA),

2. Edge points in an image are detected by Edge Detection Unit, and the ad-
dresses of the points are stored in a memory bank E,

3. The addresses of edge points are read in from E, and given to Accumulator
Unit 1 (Reduced Accumulator Arrays for Phase-1).

4. According to the addresses, Reduced Shape Tables are read out from R, and
added to the arrays.

5. After all edge points are processed, Find MAX Unit reads out values in Re-
duce Accumulator Arrays and finds out M regions which have larger values.

6. The addresses of edge points are read in again, and given to Accumulator
Unit 2 (Sub-Arrays for Phase-2).

7. According to the addresses, Shape Tables are read out from S1,S2,S3,S4, and
added to Sub-Arrays.

8. After all edge points are processed, Find PEAK Unit reads out values in Sub-
Arrays, and finds out peaks (which are considered as the center of shapes).

The parallel and pipeline processing becomes as follows (Figure 5).

1. 112 kinds of shapes (not 128 by limitation of the external memory size) are
searched in total, and 8 kinds of shapes are searched in parallel. Therefore,
two phase search is repeated 14 times on the pipelined circuit.

2. Addresses of edge points are read out 15 times, and given to Accumulator
Unit 1 and Accumulator Unit 2.

3. Accumulator Unit 1 and Accumulator Unit 2 can not be active with Find
MAX Unit and Find Peak Unit at the same time, because they need dual-
port access to same memory banks.
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Fig. 4. Block Diagram of the Circuit

Fig. 5. Pipeline Processing

5 Performance

The circuit was implemented on ADM-XRC-II by Alpha Data with one Xilinx
XC2V6000. This board has eight external memory banks (two banks by an
additional SRAM board). This eight memory banks is very important, because
all Tables are stored in the memory banks, and the number of the memory banks
limits the number of centers which can be found by the approach.

The circuit runs at 66MHz, and 75% of slices in XC2V6000, 122 Block RAMs
are used. Table 1 shows the performance when the rate that a pixel in an image
is an edge points is less than 2.84%, 4% and 6% (when the rate is less than
2.84%, the loading time of eight patterns in Phase-1 becomes the bottle-neck).
As shown in Table 1, the performance depends on the rate (the number of edge
points in an image). The rate can be controlled by a threshold which is used to
decide whether a pixel is an edge point in Edge Detection Unit. Lower threshold
generates more edge points, but many noises are included. In this sense, the
circuit can process more than 25 frames in one second under proper range of the
threshold.

Table 1. Performance of the Circuit (66MHz)

rate of edge points clock cycles per image frames per second
less than 2.84% 2537168 26.3
4% 3451088 19.3
6% 5017808 13.3
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6 Conclusions

In this paper, we described a compact circuit for a real-time computation of the
Generalized Hough Transform. The major limitation in our method is that only
four centers for each eight kinds of shapes can be found because of the limited
memory band-width. Another major drawback is that we may miss the center of
a shape which locates just on the boarder of the divided regions. These problems
can be improved by doubling the memory access frequency, and overlapping the
regions. We are now improving the circuit to achieve faster operational frequency,
and to work with other circuits such as line detection and optical-flow to detect
objects in 3-D space.
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Abstract. Most of Block based motion estimation algorithms are based
on computing the sum of absolute differences (SAD) between candidate
and reference block. In this paper a FPGA design for fast computing
of the minimum SAD is proposed. Thanks to the use of the on–line
arithmetic (OLA) two goal are achieved: it is possible to implement a
full 16 × 16 macroblock SAD in a single FPGA device and it permits us
to speed up the computation by early truncation of the SAD calculation.
Reconfigurable devices allows us to change 8 × 8 or 16 × 16 pixels per
block models. Comparison with other related works are provided.

1 Introduction

Block based motion estimation is one of the critical task in today video compres-
sion standards such as H.26x, MPEG-1, -2 and -4 standards. Motion estimation
is defined as searching the best similar block in previous frame for the block in
current frame. The most commonly used metric to calculate the distortion is the
Sum of Absolute Differences (SAD) [1], which adds up the absolute differences
between corresponding elements in the candidate and reference block.

In spite of inherent parallelism in SAD, the full parallel implementation re-
quires a large amount of operands for the typical block size (16 × 16 pixel mac-
roblock needs 512 8–bit operands). Due to the large amount of hardware, the
computation of the SAD in only one row of a macroblock (16×1) is implemented
on a FPGA device in [1]. In [2] four FPGA chips with 1234 I/O pins each are
used for a completely parallel design. On the other hand, the use of on–line
arithmetic (OLA) for motion estimation is proposed in [3] to speed up the com-
putation by early truncation of the SAD calculation. In [3], a serial architecture
(pixel by pixel) for 4×4 blocks is proposed based on ASIC implementation.

We present a new parallel on–line architecture to carry out the minimum
SAD computation for 16×16 macroblocks. OLA works in a digit-serial mode
which fits very well the FPGA architecture characteristic. Thus, the hardware
requirements are drastically reduced which allows us to implement the complete
SAD operation for a macroblock in a single FPGA device.
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2 Online Computation of the Minimum SAD

On-line arithmetic algorithms operate in a digit-serial manner, beginning with
the most significant digit (MSD) [4]. The value δ is known as on-line delay, since
j+δ digits of the input operands are needed to generate the j-th digit of the result.
Thus, successive operation can execute in an overlapped manner as soon as δ
input digits are available. The MSD first mode of computation requires the use
of redundant representation system. Signed-digit (SD) representation system is
used in this paper. In radix-2 SD representation, the digit set is {−1, 0, 1} which
are represented by two bits ({10, 11 or 00, 01} respectively).

In our design the SAD computation and comparison operation is performed
using on-line arithmetic.The on–line comparator that we design for SAD com-
parison is described in [5].

The SAD adds up the absolute differences between corresponding elements
in the candidate and reference block.

SAD =
N∑

i=1

N∑
j=1

|ci,j − ri,j | (1)

where ri,j are the elements of the reference block and ci,j the elements of the
candidate block. Thus, the computation of the SAD is divided in three steps:

Conversion to SD representation and difference computation: In radix-2 SD
representation, each digit is composed by two bits, the first one negative weighted
and the second one positive weighted. Thus, a SD number can be interpreted
as the difference of two unsigned numbers. This property is used to perform
simultaneously the conversion of each pixel value to SD and the difference, with
no computational cost. In that way, each digit of the value di,j = ci,j − ri,j is
obtained in SD representation by only taking the corresponding bit of ci,j as
the positive weighted and the corresponding bit of ri,j as the negative weighted,
since ci,j and ri,j are unsigned numbers.

Absolute value: To compute the absolute value of di,j , the sign of this value
have to be changed if di,j is negative. In SD the negation operation is performed
by interchanging both bits of each digit. Since MSD-first mode of computation
is used, the sign detection of di,j is performed on-the-fly by checking if the first
non zero digit of di,j is positive (01) or negative (10).

Sum of absolute differences: The absolute difference of all the pixels corre-
sponding to the current and reference blocks are computed in parallel. Then N2

absolute difference blocks are required. An on-line adder tree is used to obtain
the sum of all di,j values.

The number of addition steps of the complete adder tree is log2(N2). In radix-
2 SD representation the on–line delay of the addition is two. Nevertheless in our
case, the carry bit is used as MSD of the results and this digit is obtained one
cycle before. Therefore, the on-line delay of the complete adder-tree is 2 log2(N2),
but the first digit of the results is obtained log2(N2) cycles earlier.
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3 FPGA Implementation of the SAD Processor

Figure 1 presents the architecture of the design corresponding to the SAD pro-
cessor. The absolute value of the differences is computed for each pair of pixels
(|ci,j − ri,j |) and their summation is calculated on the N2–Operand OLA adder.
The result is stored digit by digit on SADc register, and it is simultaneously com-
pared with the corresponding digit of SADr in the comparator (COMP) [5]. If at
any cycle the condition SADc > SADr is detected, the computation is stopped
and a new candidate block is required. Otherwise, if the condition SADc < SADr
is verified, SADc is stored in SADr when the less significant digit of the SAD is
calculated.

Fig. 1. SAD processor architecture

The timing of the computation for the 4 × 4 SAD processor is shown in
figure 2.

The worst case takes place when a new minimum SAD is found, and then
21 cycles are required to the full process, where the last one is to store SADc in
SADr. However, as figure 2 shows, a new SAD computation can start after 16
cycles ( after the 8 digits and 8 zeroes are introduced) and then, this period of
time is the maximum between two consecutive SAD computation. This period is
reduced if the candidate SAD is rejected before. In the best case, it happens after
the analysis of the MSD of the candidate SAD, that is after 9 cycles. Therefore,
the number of cycles for a SAD computation and comparison is between 9 and
16 cycles for a 4× 4 SAD processor. This period is in the range between 13 and
20 cycles for 8×8 block size and between 17 and 24 cycles for 16×16 block size.

The design has been implemented on the Xilinx SPARTAN-II and VIRTEX-
II FPGA families, using the Xilinx ISE Series 5.2i. The main results of the
implementation is shown in table 1. The ratio area/number of pixels is relatively
low, due to the serial-digit nature of on-line computation. The maximum clock
frequency is independent of the block size.
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Fig. 2. Timing of the 4 × 4 SAD processor

Table 1. Area and clock frequency corresponding to different FPGA implementations

SPARTAN-II VIRTEX-II
Block size Area (4 inputs-LUTs)

4x4 (16 pixels) 246 241
8x8 (64 pixels) 603 595

16x16 (256 pixels) 1982 1945
Maximum Frequency(MHz)

231.24 424.99

4 Comparison

In [1] the computation of the SAD for 16 pixels (SAD16) is implemented on
a FPGA device. The design is based on carry–save adders which perform the
computation in parallel over all the digit of the data. According to the authors,
the design is synthesized using FPGA Express from Synopsis by targeting the
FLEX20KE family from Altera, obtaining an area of 1699 LUTs and a maximum
frequency of 197 MHz with a latency of 19 cycles (96ns). The results of our
implementation using the VIRTEX-II family is used for comparison, since it has
similar performance. The worst case for our equivalent design (4 × 4) requires
21 cycles to compute SAD16 plus comparison with the previous minimum and
store it, which means 49ns at the frequency of 425 MHz. Besides, our design
only requires 241 LUTs, that is seven times less area than in [1].

The authors give some notes about how to extend the design to compute a
16×16 SAD in two ways. The first one is based on using 16 SAD16 units (one for
each row) and a final adder tree. They estimate that 27 clock cycles are required.
Nevertheless, the number of LUTs for the design is close to 30000, which does
not seem feasible for the current FPGA devices. Our 16×16 design requires only
1945 LUTs, which is easily implemented on a single FPGA device. The second
approach is based on reusing the SAD16 units to compute the SAD of all the 16
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rows which are buffered to finally add up them. This involves 42 clock cycles with
a larger area size due to buffering and the fact that longer binary data (16 bit
instead of 12 bits) must be supported. Moreover, the intrinsic pipeline behavior
of the SAD16 units is eliminated. For a similar area, our design computes a SAD
each 24 cycles for the worst case.

On the other hand, the solution proposed in [2] involves the use of four
Altera STRATIX EP1S80 devices with 1234 I/O pins. This design uses 7765
LCs and requires 29 cycles for a SAD computation at a frequency of 380 MHz. It
means that our design obtains better time performance using much less hardware
requirement.

We would like to emphasize that the previous comparisons involve our worst
case. However, our best case involves only 9 cycles for 4 × 4 SAD and 17 cycles
for 16 × 16 SAD (see section 4). On the other hand, our results include the
comparison which, for the designs of [1] and [2], involves several clock cycles
(due to carry propagation).

5 Conclusion

In this paper a FPGA implementation of the minimum SAD computation has
been stated. The computation is carried out by using on–line arithmetic. The dif-
ferent operations involved in the SAD computation have been efficiently adapted
to on–line arithmetic. This allows us to implement the design in a single FPGA
device and to speed up the computation. Furthermore, the FPGA implementa-
tion of the design makes possible to reconfigure the hardware to deal with 8× 8
and 16 × 16 pixel blocks according to the MPEG-4 standard requirements. We
show the delay and area details of the implementation for different block sizes
and we provide comparison with other current related works, which shows the
benefits of our design.
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Abstract. This paper presents two novel architectures for efficient im-
plementation of a Color Space Converter (CSC) suitable for Field Pro-
grammable Gate Array (FPGAs) and VLSI. The proposed architectures
are based on Distributed Arithmetic (DA) ROM accumulator principles.
The architectures have been implemented and verified using the Celoxica
RC1000-PP FPGA development board. In addition, they are platform
independent and have a low latency (8 cycles). The first architecture
has a throughput of height, while the second one is fully pipelined and
has a throughput of one and capable of sustained data rate of over 234
mega-conversions/seconds.

1 Introduction

Color spaces provide a standard method of defining and representing colors.
There are many existing color spaces and most of them represent each color as
a point in a 3D coordinate system. Each color space is optimized for a well-
defined application area [1]. The three most popular color models are RGB
(used in computer graphics); YIQ, YUV and YCrCb (used in video systems);
and CMYK (used in color printing). All of the color spaces can be derived
from the RGB information supplied by devices such as cameras and scanners.
Processing an image in the RGB color space, with a set of RGB values for each
pixel is not the most efficient method. To speed up some processing steps many
broadcast, video and imaging standards use luminance and color difference video
signals, such as YCrCb, making a mechanism for converting between formats
necessary. Several cores for RGB to YCrCb conversion can be found in the
market, which have been designed for FPGA implementation, such as the cores
proposed by Amphion Ltd [2], CAST .Inc [3] and ALMA .Tech [4]. This paper
proposes the use of FPGA as a low cost accelerator for two RGB to YCrCb Color
Space Conversion based architectures using DA ROM accumulator principles.
The two proposed architectures are based on serial and parallel manipulation of
pixels. The composition of the rest of the paper is as follows. The mathematical
backgrounds and the descriptions of the two proposed architectures are given
in sections 2 and 3. Section 4 is concerned with the results and analysis for the
hardware implementations. Finally concluding remarks are given in section 5.
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2 Architecture Based Serial Manipulation Approach

The CSC core implemented is based on the following mathematical formula to
convert data from one space to another:

⎛
⎝C0

C1
C2

⎞
⎠ =

⎛
⎝A00 A01 A02 A03

A10 A11 A12 A13
A20 A21 A22 A23

⎞
⎠×

⎛
⎜⎜⎝

B0
B1
B2
1

⎞
⎟⎟⎠ (1)

Where Ci (0 ≤ i ≤ 2) and Bi (0 ≤ i ≤ 3) represent the input and output color
components respectively, A represents the constant conversion matrix. Ci can
be computed using the following equation:

Ci =
3∑

k=0

Aik × Bk (2)

Where {Aik}’s are L-bits constants and {Bk}’s are written in the unsigned binary
representation as shown in equation 3:

Bk =
W−1∑
m=0

bk,m × 2m (3)

Where bk,m is the mth bit of Bk , which is zero or one, W is the word-length.
Since all the components are in the range of 0 to 255, 8 bits are enough to
represent them (W = 8). Substituting 3 in 2,

Ci =
3∑

k=0

Aik × (
7∑

m=0

bk,m × 2m) =
7∑

m=0

3∑
k=0

Aik × bk,m × 2m (4)

Ci can be computed as:

Ci =
7∑

m=0

Zm × 2m ; Zm =
3∑

k=0

Aik × bk,m (5)

The idea is that since the term Zm depends on the bk,m values and has only
24 possible values, it is possible to precompute and store them in ROMs. An
input set of 3 bits (b0,m, b1,m, . . . b3,m) is used as an address to retrieve the
corresponding Zm values as illustrated in table 1. Since the last element of the
vector B is equal to 1, equation 5 can be rewritten as:

Ci =
7∑

m=0

Z∗
m × 2m + Ai3 ; Z∗

m =
2∑

k=0

Aik × bk,m (6)

It is worth mentioning that the size of the ROMs has been reduced to 23.
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Table 1. Content of the ROM i

b0,m b1,m b2,m The Content of the ROM i
0 0 0 0
0 0 1 Ai2

0 1 0 Ai1

0 1 1 Ai1 + Ai2

1 0 0 Ai0

1 0 1 Ai0 + Ai2

1 1 0 Ai0 + Ai1

1 1 1 Ai0 + Ai1 + Ai2

Fig. 1. Serial CSC based DA architecture for
RGB ↔ YCrCb conversions

Fig. 2. ROMs block structure

Figures 1 and 2 show the proposed architecture and the ROM blocks struc-
ture respectively.

The proposed architecture consists of three identical Processing Elements
(PEs) and two ROMs blocks. Each PE comprises a parallel ACCumulator (ACC)
and a right shifter and each ROMs block consists of three ROMs with the size of
23 each. The ROM’s content is different and depends on the matrix A coefficients,
which depend on the conversion type. S is used to select the appropriate CSC.

3 Architecture Based Parallel Manipulation Approach

Consider an N × M image (N : image height, M : image width). Let represent
each image pixel by bijk, (0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, 0 ≤ k ≤ 2) where:

⎧⎨
⎩

bij0= R′
ij the red component of the pixel in row i and column j

bij1=G′
ij the green component of the pixel in row i and column j

bij2= B′
ij the blue component of the pixel in row i and column j

(7)
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The cijk elements (the output image color space components) can be com-
puted using the following equation:

cijk =
3∑

m=0

Akm × bijm (0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, 0 ≤ k ≤ 2) (8)

Where {Akm}’s are L-bits constants and {bijm}’s are written in the unsigned
binary representation as shown in equation 9:

bijm =
W−1∑
l=0

bijm,l × 2l (0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, 0 ≤ m ≤ 2) (9)

Using the same development in the previous section, equation 8 can be
rewritten as:

cijk =
7∑

l=0

Z∗
l × 2l + Ak3 ; Z∗

l =
2∑

m=0

Akm × bijm,l (10)

Equation 10 can be mapped into the proposed architecture as shown in
Figure 3.

Fig. 3. Proposed parallel architecture based on DA principles

The architecture consists of 8 identical PEns (0 ≤ n ≤ 7). Each PEn com-
prises three parallel signed integer adders, three n right shifters and one ROMs
block, which have the structure as shown in figure 2. It is worth noting that the
architecture has a Latency of W = 8 and a throughput rate equal to 1.

4 Hardware Implementation

The two proposed architecture have been implemented and verified using the
Celoxica RC1000-PP PCI based FPGA development board equipped with a
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Xilinx XCV2000E Virtex FPGA [5,6]. In order to make a fair and consistent
comparison with the existing FPGA based color space converters, the XCV50E-8
FPGA device has been targeted. Table 2 illustrates the performances obtained
for the proposed architecture in terms of area consumed and speed which can
be achieved.

Table 2. Performance comparison with existing CSC cores

Design Parameters Slices Speed (MHz) Throughput (vector/clock cycle)
Proposed architecture (1) 70 128 8
Proposed architecture (2) 193 234 1

CAST.Inc [3] 222 112 1
ALMA. Tech [4] 222 105 1
Amphion Ltd [2] 204 90 1

The proposed architecture based serial manipulation approach shows signif-
icant improvements in comparison with the existing implementations [2,3,4] in
terms of the area consumed and the maximum running clock frequency, while
the second architecture outperforms the existing ones in term of the number of
conversions per second.

5 Conclusion

RGB ↔ YCrCb conversions require enormous computing power. However, novel,
scalable and efficient architectures based on DA principles have been reported
in this paper.The implementation result shows the effectiveness of the DA ap-
proach. The performance in terms of the area used and the maximum running
frequency of the proposed architectures has been assessed and has shown that
the proposed systems requires less area and can be run with a higher frequency
when compared with existing systems.

References

1. R.C. Gonzalez and R.E. Woods, “Digital Image Processing,” Second Edition, Print-
ice Hall Inc, 2002.

2. Datasheet (www.amphion.com), “Color Space Converters,” Amphion semiconductor
Ltd, DS6400 V1.1, April 2002.

3. Application Note (www.cast-inc.com),“CSC Color Space Converter,” CAST Inc,
April 2002.

4. Datasheet (www.alma-tech.com), “High Performance Color Space Converter,”
ALMA Technologies, May 2002.

5. Datasheet (www.celoxica.com), “RC1000 Reconfigigurable Hardware Develope-
ment Platform,” Celoxica Ltd, 2001.

6. Xilinx, Inc, http://www.xilinx.com



High Throughput Serpent Encryption
Implementation
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Abstract. Very high speed and small area hardware architectures of
the Serpent encryption algorithm are presented in this paper. The Ser-
pent algorithm was a submission to the National Institute of Technology
(NIST) as a proposal for the Advanced Encryption Standard (FIPS-197).
Although it was not finally selected, Serpent was considered very secure
and with a high potential in hardware implementations. Among oth-
ers, a fully pipelined Serpent architecture is described in this paper and
when implemented in a Virtex-II X2C2000-6 FPGA device, it runs at a
throughput of 40 Gbps.

1 Introduction

In the past few years several calls for Algorithms have been made in the field of
encryption and security. Some of these were looking for a new private key block
ciphers as with the Advanced Encryption Standard (AES) project [1]. Other
projects included also hash algorithms, digital signatures, stream ciphers and
public key algorithms, as the New European Schemes for Signatures, Integrity
and Encryption (NESSIE) [2]. Cipher Algorithms that have been submitted to
any of these calls include MISTY [3], Camellia [4], SHACAL [5], MARS [6], RC6
[7], Rijndael [8], Serpent [9] and Twofish [10].

The Rijndael algorithm was selected for the AES contest while NESSIE is
still open. In this context, Serpent was rejected from the AES context despite
being highly secure -it was reported that “Serpent appears to have a high security
margin” in contrast to “Rijndael appears to have an adequate security margin”
[1]- and its supposed high throughput in hardware implementations. This article
presents a highly efficient hardware implementation. It is faster than any other
encryption hardware implementations of the algorithms mentioned above while
it uses the smallest silicon area in the integrated circuit leading to an outstanding
efficiency.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 996–1000, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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2 Serpent Hardware Implementation

The key points in the hardware implementations are the four input S-Boxes, and
the three input linear transformation. Taking into account the internal structure
of a Virtex-II CLB (and in general any other Xilinx FPGA), it is easily seen
that it is specially suited to perform four input logical operations and latch the
result in the Flip-Flop of the CLB. The hardware implementation will take full
advantage of this feature to obtain high speed using few resources.

The hardware implementation has been done in two different ways. Fully
unrolled loop with key generation and fully unrolled loop without key genera-
tion, each of these have been implemented for total reconfiguration or partial
reconfiguration. In the reconfigurable version without the Key Schedule Gen-
eration hardware the keys are introduced in the encryption pipeline through
reconfiguration.

2.1 Key Schedule Generation

The Key Schedule Generation is constructed using a shift register, XORs, a
decoder, 33 128 bit registers and 1056 four input LUTs to implement the S-
Boxes.

The shift register is 32 bit wide and 8 word depth. The initial key is stored in
this register (8 · 32 = 256) while the output is the exclusive or of elements 1, 3,
5, 8 and the fractional part of the golden ratio. Every clock edge, the words are
shifted except for the 7th element that is XORed with the index and shifted. This
way, the functions have less than four inputs and are easly synthesised obtaining
the w generating block (except for the shift).

The result of the prior operation is shifted and transported to every 128 bit
register. Between the register and w the S-Boxes are generated. The final struc-
ture is a four input LUT and a Flip-Flop, matching the internal CLB structure.
The initial permutation needed to obtain the final subkeys is performed through
correct routing of the signals.

2.2 Encryption Pipeline

The encryption stage is fully pipelined. Every stage of the encryption process is
divided into two substages with registers at the end and, as a result, two clock
cycles are needed to complete each original round.

The first stage in the round includes the S-Boxes and the end register. The
second stage includes the linear transformation and the XOR with the next
round’s key. This is a modification over the original algorithm, in our case the
round algorithm is:

B̂0 = IP(P ) ⊕ K̂0, B̂i+1 = Ri(B̂i), C = FP(B̂32) (1)

Ri(X) = L(Ŝi(X)) ⊕ K̂i+1 i = 0, . . . , 30
Ri(X) = Ŝi(X) ⊕ K̂32 i = 31 (2)
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With this modification we convert the three input linear transformation into
a four input one. This modification improves both area and speed since the
structure suits better Xilinx devices. The initial and final permutation are no
other thing than Flip-Flop reordering using no resources.

The delays in this pipeline are smaller than in the Key Schedule Genera-
tion. To achieve a maximum throughput, the encryption pipeline is clocked at
double speed than the Key Scheduler. This is done using a DCM (Digital Clock
Manager)[11]. This module uses the system clock as input and can output sev-
eral clocks derived from the original, among others, a double frequency clock can
be obtained.

2.3 Reconfigurability

Reconfigurability can be used to improve the efficiency. In our case, the Key
Scheduler is implemented on a PC. In the fully unrolled scheme a new linear
transformation was generated. This linear transformation includes the keys. Do-
ing so, the area needed is reduced since the Key Schedule Generator is omitted.
This is specially interesting since the Key Schedule is very complex and area
consuming.

Table 1. Summary of AES, NESSIE and DES Algorithm Hardware Implementations.

Authors Algorithm Device Used Area Through.
(Mbps)

Efficiency
(Mbps/slices)

Authors1 Serpent XC2V2000 8,013 slices 42838 5.34
Authors2 Serpent XC2V2000 5,143 slices 45714 8.89
McLoone et al. [12] SHACAL-1 XC2V4000 13,729 slices 17021 1.24
McLoone et al. [12] SHACAL-1 XCV1600E 14,768 slices 10123 0.68
Leong et al. [13] IDEA XCV1000 11,204 slices 2003 0.18
Standaert et al.
[14]

Khazad XCV1000 8,800 slices 9472 1.08

Standaert et al.
[14]

MISTY1 XCV1000 6,322 slices 10176 1.6

Ichikawa et al. [15] Camellia XCV1000E 9,692 slices 6750 0.7
Beuchat [16] RC6 XCV1600E 14,110 slices 9700 0.7
Rouvroy et al. [17] Triple DES XC2V3000 8,091 slices 13300 1.64

One of the main disadvantage seen by the NIST in the AES contest about
serpent was the fact that the hardware needed for encryption/decryption almost
doubled that needed for encryption. In other words, encryption and decryption
could not share hardware. This obstacle can be overcome through reconfigura-
tion. Encryption and decryption share the same hardware structure, and using

1 With key generation.
2 Without key generation.
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reconfiguration, the same circuit can be used for encryption and decryption. In
the total reconfigurable scheme no special care must be taken.

3 Performance Evaluation

In table 1 we can find several implementations and results of AES and NESSIE
candidates as well as a Triple DES implementation.

The table shows that the architecture developed in this paper is faster and
more efficient than any other implementation studied by the authors. Apart from
the throughput, the area needed to implement the normal design is one of the
smallest while the reconfigurable one is the smallest one (leaving apart systems
that use Block RAMs and multipliers).

As mentioned in section 2.3, the circuit without Key Generation and total
reconfiguration scheme leads to a faster design than the design with Key Gener-
ation. This is due to the fact that the decrease in the area makes the place and
route process more efficient. The partial reconfiguration scheme has a slightly
worse performance due to the area restrictions. These restrictions makes the
placement more inefficient, leading slower designs.

The encryption/decryption schemes are treated only with reconfiguration
schemes. If we wanted decryption circuits without reconfiguration, the perfor-
mance and area will be almost the same as the encryption circuits. As it can be
seen, the total reconfiguration encryption/decryption and the total reconfigura-
tion encryption share the same performance and area. This is so because both
encryption circuit are the same and the decryption one only differs in the order,
routing and minor logic changes. In this case, the circuit runs at 333Mhz.

The problem when using reconfiguration is the time needed to reconfigure the
system. Using the SelectMAP interface at a throughput of 400 Mbit/s, very fast
reconfiguration can be achieved. The bitstream size of the encryption algorithm
with key generation needs 1959234 bytes, the difference with the decryption is
652008 bytes leading to 13.0 ms of reconfiguration time.

4 Conclusions

The present paper presents two different architectures for the Serpent encryp-
tion algorithm. As it can be seen in table 1, the proposed architectures of the
algorithm surpass, by large, both throughput and efficiency of any other im-
plementation of AES and NESSIE candidates. In fact, the Serpent hardware
description presented in this paper has an area similar to Triple DES while
speed and security are boosted.

Although Serpent is not an standard encryption algorithm, this paper shows
that it has outstanding properties in hardware implementations, making it an
excellent candidate for very high speed communications encryption. It also shows
that using reconfiguration, area very efficient versions can be produced as well
as minimize the encryption/decryption area. This approach lightens the heaviest
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burden of Serpent seen by NIST, that the encryption and decryption doubles
the resources needed for encryption.

References

1. US NIST: (Advanced Encryption Standard)
http://csrc.nist.gov/encryption/aes.

2. IST-1999-12324: (New European Schemes for Signatures, Integrity, and Encryp-
tion) www.cryptonessie.org/.

3. Matsui, M.: New Block Encryption Algorithm MISTY. Lecture Notes in Computer
Science (1997) 54–68

4. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and
Analysis. In: Selected Areas in Cryptography. (2000) 39–56

5. Handschuh, H., Naccache, D.: SHACAL. 1st NESSIE Workshop (2000)
https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/.

6. (Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C.,
Jr., S.M.M., O’Connor, L., Peyravian, M., Safford, D., Zunicof, N.)

7. Rivest, R., Robshaw, M., Sidney, R., Yin, Y.L.: The RC6TM Block Cipher (1998)
http://www.rsasecurity.com/rsalabs/rc6/.

8. Daemen, J., Rijmen, V.: (Aes proposal: Rijndael)
http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/.

9. Anderson, R., Biham, E., Knudsen, L.: (Serpent: A Proposal for the Advanced
Encryption Standard)
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf.

10. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: (Twofish:
A 128-Bit Block Cipher) http://www.schneier.com/paper-twofish-paper.pdf.

11. George, M.: The Virtex-II DCM Digital Clock Manager. Xcell Journal Online
7/1/01 (2001) http://www.xilinx.com/publications/products/v2/v2dcm.htm.

12. McLoone, M., McCanny, J.: Very High Speed 17 Gbps SHACAL Encryption Ar-
chitecture. Lecture Notes in Computer Science 2778 (2003) 111–120

13. Leong, M., Cheung, O., Tsoi, K., Leong, P.: A Bit-Serial Implementation of the
International Data Encryption Algorithm IDEA. In: IEEE Symposium on FCCMs.
(2000)

14. Standaert, F., Rouvroy, G.: Efficient FPGA Implementation of Block Ciphers
Khazad and MISTY1. 3rd NESSIE Workshop (2002)
http://www.di.ens.fr/˜wwwgrecc/NESSIE3/.

15. Ichikawa, T., Sorimachi, T., Kasuya, T., Matsui, M.: On the criteria of hardware
evaluation of block ciphers(1). Technical report, IEICE (2001) ISEC2001-53.

16. Beuchat, J.: High Throughput Implementations of the RC6 Block Cipher Using
Virtex-E and Virtex-II Devices. Technical report, INRIA Research Report (2002)
http://www.ens-lyon.fr/˜jlbeucha/publications.html.

17. Rouvroy, G., Standaert, F.X., Quisquater, J.J., Legat, J.D.: Efficient Uses of FP-
GAs for Implementations of DES and Its Experimental Linear Cryptanalysis. IEEE
Transactions on Computers 52 (2003) 473–482



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1001–1005, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Implementation of Elliptic Curve Cryptosystems
over GF(2n) in Optimal Normal Basis

on a Reconfigurable Computer

Sashisu Bajracharya1, Chang Shu1, Kris Gaj1, and Tarek El-Ghazawi2

1 ECE Department, George Mason University,
4400 University Drive, Fairfax, VA 22030, U.S.A.

{sbajrach, cshu, kgaj}@gmu.edu
2 ECE Department, The George Washington University,

801 22nd Street NW, Washington, D.C., U.S.A.
tarek@gwu.edu

Abstract. Reconfigurable Computers are general-purpose high-end computers
based on a hybrid architecture and close system-level integration of traditional
microprocessors and Field Programmable Gate Arrays (FPGAs). In this paper,
we present an application of reconfigurable computers to developing a low-
latency implementation of Elliptic Curve Cryptosystems, an emerging class of
public key cryptosystems used in secure Internet protocols, such as IPSec. An
issue of partitioning the description between C and VHDL, and the associated
trade-offs are studied in detail. End-to-end speed-ups in the range of 895 to
1300 compared to the pure microprocessor execution time are demonstrated.

1   Introduction

Reconfigurable Computers are high-end computers based on the close system-level
integration of traditional microprocessors and Field Programmable Gate Arrays
(FPGAs). Cryptography, and in particular public key cryptography, is particularly
well suited for implementation on reconfigurable computers because of the need for
computationally intensive arithmetic operations with unconventionally long operands
sizes.

As a platform for our experiments we have chosen one of the first general-purpose,
stand-alone reconfigurable computers available on the market, the SRC-6E [1],
shown in Fig. 1. The microprocessor subsystem of SRC-6E is based on commodity
PC boards. The reconfigurable subsystem, referred to as MAP, is based on three
Xilinx Virtex II FPGAs, XC2V6000.

As shown in Fig. 2, each function executed on the SRC-6E reconfigurable com-
puter can be implemented using three different approaches: 1) as a High Level Lan-
guage (HLL) function running on a traditional microprocessor, 2) as an HLL function
running
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Fig. 1. Hardware architecture of the SRC-6E
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Fig. 2. Three ways of implementing a function on a reconfigurable computer

on an FPGA, and 3) as a Hardware Description Language (HDL) macro running on
an FPGA.

As a result, any program developed for execution on the SRC-6E needs to be par-
titioned taking into account two independent boundaries, the first, between the exe-
cution on a microprocessor vs. execution on an FPGA system; and the second be-
tween the program entry in HLL vs. program entry in HDL.

2   Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems (ECCs) are a family of public key cryptosystems. The
primary application of ECCs is secure key agreement and digital signature generation
and verification [2]. In both of these applications the primary optimization criterion,
from the implementation point of view, is the minimum latency for a single set of
data (rather then the data throughput for a large set of data). The primary operation of
ECCs is elliptic curve scalar multiplication (kP). In our implementation of scalar
multiplication we adopted the optimized algorithm for computing scalar multiplica-
tion by Lopez and Dahab [3]. Our implementation supports elliptic curve operations
over GF(2n) with optimal basis representation for n=233, which is one of the sizes
recommended by NIST [2].
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3   Investigated Partitioning Schemes

A hierarchy of operations involved in an elliptic curve scalar multiplication for the
case of an elliptic curve over GF(2n) is given in Fig. 3. Four levels of operations are
involved in this hierarchy: scalar multiplication (kP) at the high level (H), point addi-
tion (P+Q), point doubling (2P), and projective-to-affine conversion (P2A) at the
medium level (M), inversion (INV) at the low level 2 (L2), and the GF(2n) multipli-
cation (MUL), squaring (rotation) (ROT), and addition (XOR) at the lowest level
(L1). Functions belonging to each of these four hierarchy levels (high, medium, low 2
and low 1) can be implemented using three different implementation approaches
shown in Fig. 1. In this paper, each of these approaches is characterized by a three-
letter codename, such as 0HM. The meaning of these codenames is explained in
Fig. 4.

We used as our reference case the complete ECC implementation running in the
microprocessor and based on [4]. All other implementations ran entirely on the FPGA
and were partitioned between C code that was automatically translated to VHDL and
hand-coded VHDL.

4   Results

The results of the timing measurements for all investigated partitioning schemes are
summarized in Table 1. The FPGA Computation Time, TFPGA, includes only the time
spent performing computations using User FPGAs. The End-to-End time, TE2E, in-
cludes the FPGA Computation time and all overheads associated with the data and
control transfers between the microprocessor board and the FPGA board.

The Total Overhead, TOVH, is the difference between the End-to-End time and the
FPGA Computation Time. Two specific components of the Total Overhead listed in
Table 1 are DMA Data In Time, TDMA-IN, and DMA Data Out Time, TDMA-OUT. They
represent, respectively, the time spent to transfer inputs from the Microprocessor
Memory to the On-board Memory, and the time spent to transfer outputs from the
On-Board Memory to the Microprocessor Memory.
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Fig. 4. Four alternative program partitioning schemes

The scheme that requires the smallest amount of hardware expertise and effort,
0HL1, is 893 times faster than software and less than 50% slower than pure VHDL
macro. Implementing inversion in VHDL, in the 0HL2 scheme, does not give any
significant gain in performance and only small reduction in the resource usage.

The 0HM scheme is more difficult to implement than 0HL1 and 0HL2 schemes,
because of the additional operations that need to be expressed in VHDL Nevertheless,
using this scheme gives substantial advantages in terms of both performance (about
45% improvement) and resource usage (e.g., reduction in the number of CLB slices
by 24% compared to the 0HL1 scheme). The most difficult to implement, the 00H
scheme (the entire kP operation described in VHDL) appears to have the same speed
as 0HM, but it provides an additional substantial reduction in terms of the amount of
required FPGA resources.

Table 1. Results of the timing measurements for several investigated partitioning schemes.
Notation: SPSW – speed-up vs. software, SLVHDL – slow-down vs. VHDL macro.

TE2E

(μs)
TDMA-IN

(μs)
TFPGA

(μs)
TDMA-OUT

(μs)
TOVH

(μs)
SPSW SLVHDL

Soft-
ware

772,519 N/A N/A N/A N/A 1 1,305

0HL1 866 37 472 14 394 893 1.46
0HL2 863 37 469 14 394 895 1.45
0HM 592 37 201 12 391 1305 1.00
00H 592 39 201 17 391 1305 1.00
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Table 2. Resource utilization for several investigated partitioning schemes

% of
CLB
slices

CLB
slices

vs. 00H

% of
LUTs

LUTs
vs. 00H

% of FFs FFs
vs. 00H

0HL1 99 1.68 57 1.30 68 2.61
0HL2 92 1.56 52 1.18 62 2.38
0HM 75 1.27 48 1.09 39 1.50
00H 59 1.00 44 1.00 26 1.00

The current version of the MAP compiler (SRC-6E Carte 1.4.1) optimizes per-
formance over resource utilization. As it matures the compiler should be expected to
balance high performance, ease of coding, and resource utilization to yield a truly
optimized logic.

5   Conclusions

While earlier publications (e.g., [5]) regarding implementations of cryptography on
reconfigurable computers have already proven the capability of accomplishing a
1000x speed-up compared to the microprocessor implementations in terms of the data
throughput, this is a first publication that shows a comparable speed-up for data la-
tency.

This speed-up is even more remarkable taking into account that the selected op-
eration has only limited amount of intrinsic parallelism, and cannot be easily sped up
by multiple instantiations of the same computational unit. In spite of these constraints,
a speed-up in the range of 895-1300 has been demonstrated compared to the public
domain microprocessor implementation using four different algorithm partitioning
approaches.
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Abstract. Wavelet-based image compression has been suggested previously as
a means to evaluate and compare both traditional and reconfigurable computers
in terms of performance and resource requirements. We present a reconfigurable
implementation of such an application that not only achieves a performance com-
parable to that of recent CPUs, but does so at a fraction of their power consumption.

1 Introduction

Accurately evaluating computer systems, both of the traditional and the reconfigurable
kind, is not trivial. Too many characteristics can be measured in too many metrics.
Implementations of benchmark applications are sometimes only subtly different, but no
longer comparable (e.g., due to different quality of results).

To alleviate this, the Honeywell Benchmark Suite [1] uses so-called stressmarks to
evaluate a broad spectrum of system characteristics. Each individual stressmark was
developed specifically to test a subset of the interesting properties. All stressmarks are
described by usage documents and sample implementations in C and sometimes also in
VHDL. Minimum requirements on the quality of results support the comparability of
measurements.

This paper examines an implementation of the versatility stressmark of the Hon-
eywell suite. Since the VHDL reference code included in the Honeywell suite is not
complete, the results described here can serve as baseline data for comparison with
future realizations.

2 Versatility Stressmark

This application from the Honeywell suite [2] aims to evaluate how well the target hard-
ware can perform several different functions using a single architecture. The stressmark
is a wavelet-based compression algorithm [3] for square 8b gray scale images. Figure 1
shows the processing flow of the application.

While Honeywell includes a sample C implementation, the stressmark allows devi-
ations. E.g., both true run-length encoding or zero length encoding may be used. For the
entropy coding step, acceptable algorithms would include Huffman, Shannon-Fano and
arithmetic coding.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1006–1010, 2004.
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Fig. 1. Versatility structure

The “versatility” aspect of the stressmark considers the different implementation
options for the algorithm. The choice we made is a so-called high-complexity imple-
mentation that executes all steps in hardware using a single configuration. Another angle
not considered in the original stressmark definition is the different nature of the various
stages: The wavelet transform and the quantization stage perform mostly arithmetic on
multi-bit words, while the entropy coding step primarily performs bit-manipulations.
With this mix, the capability of the target platform to handle these mixed computation
styles can be evaluated.

The quality of results requirements for this stressmark are defined as minimum peak
signal-to-noise ratios (specified in dB) at a maximum compressed bit rate (given in bits
per pixel).

3 Stressmark Realization and Optimization

As in the sample C implementation, the wavelet transform itself is computed as a 3-step
(2,2)-biorthogonal Cohen-Daubechies-Fouveau transform implemented in the Lifting
Scheme [4].

The first horizontal filtering pass processes 4 8b pixels simultaneously per clock,
subsequent horizontal passes operate on 2 16b values simultaneously per clock (the
width of the data expands during processing). All vertical passes process a single 16b
value per clock. As in the sample C code, the three highest frequency blocks are assumed
to contain only irrelevant (non-visible) details and are dropped entirely from further
processing.

The quantization step can be started only after the minimum and maximum co-
efficient values of a block are known. Thus, a block can be quantized only after it has
been completely wavelet-transformed. However, the quantization and both the following
run-length and entropy encoding steps can be performed in a pipeline-parallel fashion.

While we have adhered to the C sample implementation of the stressmark to a large
degree, some obvious inefficiencies were corrected beforehand (both in SW and HW):

– The memory requirements were reduced by sharing the memory for two buffers
across all processing phases instead allocating dedicated areas.

– The Wavelet Transform fcdf22 does not explicitly copy the input data into a local
buffer before the computation. Instead, the local copy is built and maintained on-
the-fly during the calculation.

– The high-frequency coefficient blocks 7, 8, and 9 are discarded as early as possible
and are neither stored nor processed further.
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Fig. 2. ACE-V architecture

Table 1. Resource requirements

Module Slices BlockRAMs
Wavelet 1075
Quantization 1251
Zero-Length Encoding 179
Huffman Coding 258 3
Global Control & Muxing 1507
Memory Streaming Engine (MARC) [6] 1971 6
Total 6241 9
Equivalent ASIC 270K Gates

– Row-order traversal of memory is faster than column-order accesses, since our 32b
system data bus can fetch four adjacent 8b pixels or two adjacent 16b wavelet
coefficients in a single cycle.

4 Experimental Results

Our implementation of the application for the ACE-V platform (Figure 2, [5]) was
formulated in RTL Verilog, synthesized using Synplicity Synplify 7.2.2 and mapped to
the Virtex target using Xilinx ISE 5.2.031. Table 1 lists the area requirements of the
complete versatility stressmark.

Table 2 gives an overview over the execution times of the stressmark when com-
pressing 256x256 and 512x512 pixel Lena images on various platforms. In all cases,
computation and in-memory data transfer operations were timed, but disk I/O was al-
ways omitted. Furthermore, for all reconfigurable platforms, configuration times were
not included since our implementation does not need to reconfigure between processing
phases. The last two lines in the table shows the clock frequencies achievable when target-
ing our design to recent 90nm commodity (Xilinx Spartan 3 series) and high-performance
reconfigurable devices (Xilinx Virtex IIpro series). The hypothetical execution time on
these RCUs is estimated by a simple scaling based on the increased clock frequency.

Even more interesting than the absolute performance data is the power consumption
of the different processing units for the same task. For the traditional CPUs, the values
are quoted from their data sheets. For the ACE-V Virtex 1000 RCU, the number shown
is the peak power consumption as determined using the Xilinx XPWR power estimation
program on a complete post-layout simulation trace (based on more than 30GB of data).

1 Later versions of the tools have reproducible errors that lead to non-functional circuits.
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Table 2. Performance data

Processor Clock [MHz] Execution Time [ms] Power [W]
256x256 512x512

ACE-V RCU 30 6.6 17.5 1.1
Sun UltraSPARC III+ 900 6.7 24 52.0
AMD Athlon 1333 6.0 131 63.0 . . . 70.0
AMD Athlon XP 1666 3.8 91 54.7 . . . 60.3
Xilinx XC3S1000-4 FPGA 63 3.1 8.3 -?-
Xilinx XC2VP20-7 FPGA 105 1.9 5.0 -?-
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Fig. 3. Power consumption profile for Virtex-based RCU

Figure 3 shows the power consumption profile of the RCU with 1μs resolution over the
entire simulated execution. Note the regular drops during the vertical processing phases,
occurring when the end of a column has been reached and the read stream has to be
reprogrammed and restarted. At those times, the wavelet transform units remain idle.

Table 3 shows the quality-of-results requirements from the original Versatility C
implementation and the actual values achieved by our hardware when compressing
images with L = 2562 at the stressmark’s default quality value of q = 128. Our hardware
implementation at least matches the software values. For the Goldhill image, an error in
the reference software (loss of up to 7b after Huffman coding) that was corrected in the
hardware version even improves the hardware-achieved quality.

2 Since the ACE-V has reliability issues performing memory transfers > 64KB, no QoR data
could be obtained on the actual HW for L = 512.
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Table 3. Quality of results for L = 256 at default compression quality

Image b [bpp] PSNR [dB]
Original Hardware

Barbara 0.29 26.8 26.8
Goldhill 0.26 27.1 27.6
Lena 0.27 27.6 27.6

5 Discussion and Conclusion

We have implemented theVersatility stressmark of the Honeywell suite on aVirtex-based
adaptive computer system (ACS) and evaluated it in terms of resource requirements, per-
formance and power consumption. While the ACE-V ACS with its slow 1998-vintage
RCU (250nm process) is no longer competitive with more recent CISC CPUs, current
reconfigurable devices will allow the realization of RCUs that reach or exceed CPU
performance again. Even more promising is the low power consumption of the recon-
figurable solutions. With the move to 90nm devices, higher power savings seem quite
achievable.
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Abstract. Fieldbuses constitute the lower level of communication networks in a
flexible manufacturing system. Nowadays there are a lot of proprietary
protocols, thus the interconnection of equipment from different manufacturers
has become very problematic. Changing equipment supposes the change of the
fieldbus too with the consequent economic losses. This paper proposes the
implementation of a communication processor based on a reconfigurable device
that makes different fieldbuses compatible. In this way, using the appropriate
level and impedance matching circuit, the same hardware can be connected to
different fieldbuses. In order to verify this proposal a communication processor
based on an FPGA supporting two very important fieldbus standards in the area
of industrial control such as WorldFIP and Profibus, has been developed.
Design constraints and performance of the implemented processor are analyzed
in this paper.

1 Introduction

Fieldbuses are digital serial, multidrop data buses used to connect primary elements of
automation (sensors and actuators with control and measurement functions) with
control devices of a higher level (PLCs, numeric control machines, processors, etc.).
Nevertheless, there are a lot of different commercial solutions and protocols, making
difficult the compatibility between equipment of different manufacturers. The lack of
standardization is a problem in the area of industrial communication networks.

In this paper the authors propose the implementation of fieldbus communication
processors using reconfigurable circuits. In this way a communication protocol can be
modified without changes in the hardware support that implies an economic saving. In
this line the authors have implemented a communication processor based on an FPGA
supporting two important fieldbus standards in the area of industrial control such as
WorldFIP and Profibus. The chosen FPGA for this project was the FLEX
10K20RC240-4 from the ALTERA company [1].

2 Profibus and WorldFIP

Profibus [2] is a fieldbus protocol proposed by German manufacturers while
WorldFIP [3] was driven by French manufacturers. The both have been included by
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the CENELEC in the standard EN 50170 (Volume 2 and 3 respectively). The most
significant differences between them are:

- Data rates: WorldFIP (until 5 Mbps) achieves higher data rates than Profibus
(until 500 Kbps).

- Types of stations: A Profibus network can have several master stations and also
slave stations. WorldFIP networks have a single active bus arbitrator and the
rest of nodes have consumer/producer functionality.

- Timers: Profibus has a lot of timers making the timing information management
and the implementation of timers more complicated than in WorldFIP.

- Signal level and coding: Profibus uses a RS-485 communication in the physical
level and WorldFIP uses a Manchester coding.

- Frame format: In the data link level the protocols are completely different and
also the frame format is not the same.

It can be observed that although Profibus and WorldFIP have a same philosophy,
the differences between both protocols are important and then it forces to implement
different software and hardware for each communication interface. Thus, all this
features must be borne in mind in the implementation of a compatible device for these
protocols using an FPGA that is proposed and reported in this paper.

3 Design of a Fieldbus Interface Using an FPGA

The implementation of fieldbus communication processors using SRAM FPGAs has a
lot of advantages derived from its reconfiguration capability. The most important are:

- The FPGA programming code can be easily improved adding new functions.
- Little changes in bus definitions (frame format, transmission headers, etc.) can be

easily solved changing the software description of the interface, avoiding the
economic cost associated to the equipment renewal.

- It is possible to design devices for different fieldbuses with similar physical
layers making little changes in the programming file.

Taking into account these advantages, the development of reconfigurable fieldbus
interfaces results in a very interesting project. Thus, the authors have worked in the
implementation of the basic communication functions for Profibus and WorldFIP
protocols using a SRAM FPGA. A Profibus slave station and the basic services
(writing buffer, reading buffer and transfer buffer) of a WorldFIP consumer/producer
station have been implemented over the same hardware (FPGA). This compatible
device is able to transmit and receive any frame in right way over any WorldFIP or
Profibus network.

There are several factors to be considered in the selection of the FPGA for this
application. The most important are the cost, the operation frequency and the
available logic resources. The fieldbuses operate at low data rates (in this work 9.6
Kbps for Profibus and 1 Mbps for WorldFIP) and then a high speed FPGA is not
required. By other side, fieldbus protocols manage many variables that must be
stored. So, in order to simplify the design, it is suitable the use of an FPGA with
embedded memory blocks. Taking into account these two aspects and the cost, the
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FPGA FLEX 10K20RC240-4 from the ALTERA manufacturer was chosen for
implementing the communication processor of this project [4].

The design was developed using the Quartus II CAD tools from ALTERA and the
system was specified in VHDL (Very high speed IC Hardware Description Language)
to allow the portability of the design to other FPGA devices.

4 Implemented Device

4.1 The Fieldbus Communication Processor

To get a compatible device between WorldFIP and Profibus networks two designs
were specified using VHDL. The respective block diagrams are shown in Figure 1.

In the case of WorldFIP the transmitter sends data adding the Frame Starting
Sequence (FES) and the Frame End Sequence (FES) established in the WorldFIP
protocol. The receiver detects the frames and delivers them to the receiving buffer
checking the corresponding Frame Check Sequence (FCS). The receiving buffer is
used to temporarily store the last frame received that will be processed by the
WorldFIP control system. To implement this circuit a cycle shared double port RAM
is used to allow a simultaneous access to this buffer. The WorldFIP control system
processes the frames stored in the receiving buffer and runs the required actions
according to the protocol. The values of the consumed and produced variables (set in
the configuration of the device) are stored in the consumed and produced databases,
also implemented with a cycle shared double port RAM. The identifier index contains
all the information about the identifiers of the consumed and produced variables.
Finally, there is an interface between the external circuits (the corresponding sensors
and actuators) and the designed communication processor that is implemented in the
variable access protocol block.

A WorldFIP network with a data rate of 1 Mbps was used for this work. The bus
uses Manchester coding. Thus, the system requires two clocks, the main one of 10
MHz used by the receiver (take 5 samples per half symbol) and another of 2 MHz
used to control the data sending. Both signals are assigned to dedicated clock lines.

In the case of Profibus the receiver circuit manages the reception of the characters
conforming the frames transmitted by the bus. When a byte is received, this circuit
indicates to the reception application module if it is valid or not. The reception
application module takes the valid data bytes and analyzes them to verify the
destination address and the frame type. It checks for possible errors in transmission
(uses a check field of the frame) and if there are not errors the transmission
application receives the information of the received frame. Then, the transmission
application module generates the corresponding response frame that is sent to the
transmitter circuit so that it conforms and transmits the frame characters. This design
includes a sensor buffer to store the last measurement from a specific sensor. This
value is read by the transmission application module to generate the adequate
response frame when a request frame asking for this data is received in the device.
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Fig. 1. Schemes of the implemented WorldFIP (a) and  Profibus (b) interfaces

The data rate of the Profibus network used in this work is 9.6 Kbps, limited by a
protocol analyzer station that uses the serial port to capture the frames circulating by
the bus. Then, the clock signal frequency used by the receiver and transmitter circuits
is 9.6 KHz too. It is resynchronized with the bus every time a new character is
detected.

4.2 Technical Comparison

Table 1 shows a comparative of the FPGA logic resources required to implement the
WorldFIP and the Profibus communication processors.

It can be observed that the average of the logic used resources is very similar in
both cases. The WorldFIP interface uses more memory blocks and interconnections
because it needs to store more variables (several consumed and produced data,
identifier index, variables of management to indicate the presence of a station in the
bus, etc.) than the Profibus interface (only the data stored in the sensor buffer).
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Considering that in both cases the resources usage is very high this FPGA is adequate
for the implementation of simple communication interfaces (a Profibus slave station
and a WorldFIP consumer/producer station with the basic services). When more
functions must be implemented (for example, the design  of  a  Profibus  master
station,  a  WorldFIP consumer/producer station with all the services provided by the
data link layer or a WorldFIP bus arbitrator station), a bigger FPGA is required.

4.3 Level and Impedance Matching Circuits

Due to the electrical characteristics of Profibus, WorldFIP and FPGA are not the
same, it is necessary to design different level and impedance matching circuits that
convert the signals present in the bus to TTL/CMOS signals suitable for the FPGA
and vice versa. This is the unique change in the hardware required for connecting the
designed compatible device based on FPGA to these two fieldbuses.

The WorldFIP matching circuit is based on an integrated circuit from
Telemecanique known as CREOL. In the case of Profibus a MAX485CPA integrated
circuit is used to convert TTL/CMOS signals into Profibus signals (RS-485).

Table 1. FPGA resources used in this project

WORLDFIP PROFIBUS
Resources of FPGA Resources of FPGA

Logic Resources Logic Resources
Interconnection

Resources Logic
Cells

Memory
Blocks

Interconnection
Resources Logic

Cells
Memory
Blocks

94% 60% 94% 33%
74%

82%
56%

81%

5 Conclusions

In this paper the authors propose a solution to design compatible devices for different
fieldbuses using reconfigurable circuits. It is demonstrated that it is possible to get a
device that can be connected to two of the more important fieldbuses used in Europe
like WorldFIP and Profibus without changing the hardware (it is only necessary to
change the connector that contains the adequate level and impedance matching
circuit). It supposes a great money saving when a user needs to change the protocol of
its fieldbus system and also an improvement in the interconnection of commercial
fieldbus devices.

The FPGA used in this work is a low cost circuit with limited logic resources and
the resources usage is very high (section 4.2). Thus, to implement more complex
devices it is necessary to use an FPGA of higher level with more logic resources and
interconnection elements and also more expensive.

In this line of research, it would be very interesting for future works to get the
implementation of multiple fieldbus protocols in a unique FPGA. Also it would be
possible to implement an intelligent reception module able to identify the type of
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network from the analysis of the received frames to automatically use the adequate
protocol. Thus, a total compatibility of the fieldbus devices would be achieved with
the advantages that it supposes.
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Abstract. Modern programmable logic devices have capabilities that are well
suited for them to assume a central role in the implementation of networked
systems. We have devised a highly flexible soft platform architecture abstracted
from such physical devices, which may be viewed as a particularly configurable
and programmable type of network processor. In this paper, we discuss
multithreading in the context of this logic-centric soft platform, and describe the
programmable mechanisms to support multithreading that we have
implemented. Through a design example, we evaluate these mechanisms, and
report that the solution obtained had comparable performance to a custom
solution written from scratch without the intermediate soft platform.

1 Introduction

Networked systems feature communication and networking as a significant activity,
alongside computational activity. Examples include simple sensors and actuators, and
more complex clients and servers. In our broad research, we aim to establish that field
programmable logic devices can offer an attractive basis for implementing networked
systems, through the efficient delivery of “hyper-programmable architectures”, where
all aspects of the architecture are configurable, not just that the architecture supports a
programming model. We have developed an experimental HYPMEP (Hyper-
Programmable Message Processing) soft platform, which is currently targeted at
Xilinx Virtex-II Pro platform FPGA devices.

Multithreading for logic-centric systems (such systems being alternative to
conventional processor-centric systems) was introduced at FPL 2002 [1].  The main
motivation was to transfer the benefits of multithreading for processors into
programmable logic circuitry, thus providing an attractive higher-level method of
organizing the fine-grained parallelism offered by programmable logic. The basic
ideas were illustrated within a hand-crafted case study – the MIR packet router [2]

In this short paper, we describe the support for logic-centric multithreading that we
have implemented in the HYPMEP soft platform, concentrating on practical issues.
We first describe the general programmable mechanisms, and how they interact with
support for non-thread based computation in a complete system.  We then outline a
re-implementation of the MIR packet router, programmed on our soft platform, that
achieved performance comparable to the original bare-FPGA design.
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2 Threads in the HYPMEP Soft Platform

A thread is a computational component with a single identifiable control flow.  In its
logic-centric incarnation, a thread is a finite state machine with programmed structure
and programmed operations associated with each state. This has an obvious direct
implementation in programmable logic, but an alternative implementation could be
via a conventional software thread executed on an embedded processor.
Operationally, threads have top-level modes which minimally include idle, when no
processing is performed, and active, when processing is performed through finite state
machine execution. The minimal form of interaction between threads is allowing a
thread to start or stop another thread, i.e., to move it between idle and active modes.

In the networked systems that we study, threads typically work on an incoming
message (a generic term used to cover packets, frames, cells, etc.), performing
processing in tandem on it until it leaves the system again. Much of the time,
particular threads will be idle, waiting for relevant parts of messages to process.  An
important task in mapping a networked system onto the HYPMEP platform is
determining what combination of threads would be best suited to implementing the
required functionality and performance.  An overall aim is to produce as simple a set
as possible, with a clear flow of control interaction between the threads, and with a
minimal amount of data exchanged between them.  It is also desirable to maximize re-
use of threads from earlier designs.  From our initial experiments, we have devised
various mapping heuristics, which we are continuing to refine in ongoing research.

2.1 Inter-thread Synchronization

We have implemented support for a basic inter-thread synchronization mechanism.  It
is possible for one thread to cause another thread to move from an idle mode to an
active mode by sending it a start signal. This also causes the thread to begin
execution in an initial state. Symmetrically, it is possible for one thread to cause
another thread to move from an active mode back to an idle mode by sending it a stop
signal.  A stop action can optionally cause the thread to pass through a final state
before ending execution.  As well as these two necessary actions, we have also added
support for suspend and resume signals, which move the thread between its active
mode and a suspended mode, and back, respectively.

This is a fully programmable mechanism, allowing any thread to control any other
thread.  A thread sends a signal to some other thread by executing a signal operation
during its regular execution. Specialization of the support for specific inter-thread
signaling is then carried out after programming, when it becomes known which
threads affect which other threads. At the top level of abstraction, a thread might be
implemented either directly in logic, or on an embedded processor. In our current
implementation, for threads implemented in logic, the incoming start and stop control
signals are generated just by forming the logical-OR of the signals from every other
thread.  Then, the specialization is automatically performed by the back-end synthesis
tool, which removes all redundant wires, thus creating a set of point-to-point signaling
wires. For threads implemented on an embedded processor, a conventional, very
lightweight multi-threading kernel can be used to provide inter-thread support.
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In our HYPMEP soft platform, there is no single, central, system-wide control
flow. Instead, there are per-message control flows, which follow from sequences of
start and stop signals.  The initial arrival of a message at a system interface causes a
thread to start; this thread then conditionally starts other threads; these in turn start
further threads, etc. Either through death by natural causes or through stop signals, the
threads all finish their efforts on the message, the last thread to stop being the thread
responsible for the departure (or perhaps destruction) of the message.

2.2 Inter-thread Data Communication

In our HYPMEP soft platform, the messages that are processed by threads constitute a
de facto shared memory inter-thread data communication mechanism. One thread’s
changes to a message can be read by another thread. We naturally support this as an
essential feature of the operation of the soft platform, and one of our major research
themes concerns novel programmable memory architectures to support our message
processing model.  In general, however, some threads may wish to communicate data
that is not strictly the content of a message being processed by the system. Rather
than abuse the external message types as carriers for such data, we also allow internal
messages within our system, which are exclusively used for inter-thread data
communication. In terms of programming data communication, we currently have
two strengths of internal messaging. The lightweight version involves single shared
variables between threads, allowing limited communication through normal
operations reading from and writing to memory. The heavier weight version involves
channels between threads. A thread can send an internal message to some other thread
by executing a send operation during its regular execution, and the recipient executes
a matching receive operation.

For all three data communication schemes mentioned, there are issues surrounding
synchronization between threads, as in all such parallel systems. In our case, given the
nature of the systems being implemented, system behavior is much more predictable
than for some general-purpose parallel computing system. Thus, there is a great deal
more scope for static scheduling of thread behavior to avoid conflicts or deadlocks, as
opposed to adding mechanisms for dynamic scheduling and arbitration of access to
shared data.

2.3 Non-threaded Computation

The threading model is well-suited to many aspects of message processing, since the
handling of communication protocols normally has the characteristic of following an
enclosing finite state machine, with simple, fine-grain operations performed on a
message in each stateHowever, there are also cases when rather more complex,
coarse-grain operations, not naturally or efficiently expressed in (logic-centric) thread
form, are required. It may also be the case that existing IP blocks or software is
available for re-use, as a desirable alternative to implementing operations afresh,
whether using threads or not. We have made provision for these cases as a
fundamental provision in our HYPMEP soft platform, alongside support for threads.
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3 Case Study: A Re-implementation of MIR

In 2001, Brebner developed the Multi-version IP Router (MIR) design targeted at the
Xilinx Virtex-II Pro platform FPGA [2].  This was a four-port gigabit Ethernet router
capable of handling both IPv4 and IPv6 traffic. The MIR design introduced the notion
of a logic-centric system architecture targeted at a platform FPGA and, in particular,
the notion of multithreading in logic to maximize concurrency and minimize latency.
However, the actual implementation of MIR was coded in hand crafted Verilog HDL
for the bare programmable logic, plus C language for the bare embedded processor,
and so represented a one-off system design that required specialist skills. As a case
study for our HYPMEP soft platform, and in particular for the programmable
multithreading support, we re-implemented the MIR design over the soft platform.
Our aim was to achieve a high-level programmed design, in contrast to the original
low-level fixed design, but without major detriment to the MIR system performance.
We retained a similar assignment of threads as was used in the original MIR design.
Replication of thread clusters at each port maximized concurrency at the port level, to
complement the thread-wise concurrency at each port. The only non-thread
concurrent processing activity closely integrated with the threads is the lookup of
IPv4 packet addresses. For this coarse-grain operation, we investigated various
standard algorithms, implemented in logic or on the embedded processor.  Our final
implementation used a software decelerator implementing a hash table algorithm on
the embedded PowerPC in Virtex-II Pro. We present a detailed analysis of its design
and implementation in a recent paper [3].

3.1 Inter-thread Synchronization

The required inter-thread synchronization for the original MIR design was covered
comprehensively in the earlier paper on multithreading [1]. We do not repeat the
details here, since we use the same assignments of threads. The change here is that the
start and stop signals sent between threads were programmed using the support for
threads provided in our soft platform, as opposed to the original ad hoc direct
implementation in the original version.

3.2 Inter-thread Data Communication

The amount of direct inter-thread data communication required is very modest. In
fact, only a total of 72 bits need to be transferred between threads, and each case is a
single source/single destination transfer. This communication was implicit in the
original MIR design, being implemented using fixed-purpose registers. Here, the data
exchange between the threads was programmed using the lighter weight mechanism
for communicating data, as described in Section 2.2. Internally, this feature of the soft
platform is mapped to a simple point-to-point connection network. When first
received, packet data is communicated via a programmable broadcaster channel that
also acts as a data-width converter. Each data word received by an interface is
broadcast to all other threads, so that all threads see the same data at the same time.
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3.3 Non-threaded Computation

As already mentioned, lookup of IPv4 addresses is performed on behalf of the logic
by a software decelerator.  In choosing such an implementation, our target was that
the time for a lookup (including all of the logic-to-processor-to-logic interface
latency) should be within 208 ns, to meet the zero internal latency goal when a
minimum-length packet is being processed [3]. Aside from this, the embedded
processor is also responsible for handling the less frequent types of packet processing.
The final non-threaded computational components are the standard interface blocks
used for physical packet input and output.  The target block for the MIR system was
the standard Xilinx Gigabit MAC (GMAC) IP core.

3.4 Experimental Results

We implemented our system on a Xilinx XC2VP7 Virtex-II Pro platform FPGA,
which includes eight multi-gigabit transceivers, and used the standard Xilinx ISE 6.1
tools to produce the bitstream for the FPGA from a VHDL description of the
programmed soft platform. Two aspects of performance are important. The first is
whether the threads are fast enough to keep up with a gigabit line rate. The GMAC
core produces 8-bit words at a rate of 125 MHz, and the broadcaster channel converts
this data stream to 32-bit words at 31.25 MHz. Thus, all connected threads must be
clocked at 31.25 MHz, which was easily achievable. The second aspect is whether the
most frequent packet types can be handled with zero internal latency. The most
common packet type is expected to be IPv4, and the latency-determining step in
handling such packets is address lookup, here implemented using the embedded
processor. We found that at least 98% of lookups could be performed within the
desired time of 208 ns by our software decelerator, if the processor is clocked at 350
MHz, and its on-chip memory (OCM) bus is clocked at 175 MHz, both of which were
attainable rates [3].  The design required 4140 Virtex-II Pro slices, which is 84% of
the small XC2VP7 device used.  The number of Block RAMs required for the design
was 28 (63% of an XC2VP7 device), a reduction from the original MIR requirements
due to use of the PowerPC caches here.

In summary, we were very pleased to find that our programmed re-implementation
of MIR was quantitatively as good as the original hand crafted implementation. This
case study, along with others, has encouraged our current research directions for the
hyper-programmable HYPMEP soft platform for networked systems.
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Abstract. A wide range of reconfigurable coarse-grain architectures has been
proposed in recent years, for an extensive set of applications. These architec-
tures vary widely in the interconnectivity, number, granularity and complexity
of the processing elements (PEs). The performance of a specific application
usually depends heavily on the adequacy of the PEs to the particular tasks in-
volved, but tools to efficiently experiment architectural features are lacking.
This work proposes an environment for exploration and simulation of coarse-
grain reconfigurable data-driven architectures. The proposed environment takes
advantage of Java and XML technologies to enable a very efficient backend for
experiments with different architectural trade-offs, from the array connectivity
and topology to the granularity and complexity of each PE. For a proof of con-
cept, we show results on implementing different versions of a FIR filter on a
hexagonal data-driven array.

1   Introduction

A large number of coarse-grained reconfigurable architectures have been presented in
recent years [1], in order to overcome some of the limitations of the fine-grained
structures used in common FPGAs. In fact, coarse-grained architectures are more
suitable to implement typical DSP algorithms, require shorter design cycles, and are
faster to reconfigure, etc. Coarse-grained architectures, behaving in a static dataflow
fashion [2] (e.g., [3], [4]), are of special interest, as they naturally process data
streams, and therefore provide a very promising solution for stream-based computa-
tions, which are becoming dominant. In addition, the control flow can be distributed
and can easily handle data-streams even in presence of irregular latency times.
Moreover, a regular design, like an array processor, can reduce the wire lengths, the
verification and test costs, the power consumption, and can also improve the circuit
reliability and scalability.

                                                          
* This work is in part supported by the Portuguese Foundation for Science and Technology
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Since many design decisions must be taken in order to implement an efficient ar-
chitecture for a given set of applications, environments to efficiently experiment with
different architectural features are fundamental. As far as we know, no environment
exists to explore a large extent of architecture trade-offs: topology, granularity, proc-
essing element (PE) characteristics, schemes of communication between PEs, etc.
Recently, some works (e.g., [5], [6]) have addressed the exploration of a few pa-
rameters of specific coarse-grained architectures. Although supporting several fea-
tures and having the potential to suggest some design decisions, the work in [7] fur-
nishes an exploration environment limited to a family of KressArray architectures.

Our work aims to support a broad range of data-driven based arrays, a significant
set of architecture parameters, and then evaluate its trade-offs by implementing repre-
sentative benchmarks. We present an environment, named as EDA (Environment for
exploring Dataflow Architectures). The environment can help the designer to system-
atically investigate different data-driven array architectures, as well as internal PE
parameters (existence of FIFOs in PE input/outputs and their size, number of in-
put/outputs of each PE, pipeline stages in each PE, etc.), and to conduct experiments
to evaluate a number of characteristics (e.g., protocol overhead).

2 Environment

A global view of EDA is shown in Fig. 1. The environment uses Java and the XML
technology [8] to enable exploration. We use XML since it facilitates the creation of
the languages needed in the environment: to specify the dataflow representation (see
Fig. 2), to specify the array architecture, to specify the placement and routing, etc.
The XSLT transformation language [11], makes easy the generation of descriptions
into the appropriate output format.

Dataflow

Architecture

Routing

Dflow

Aflow

Library
FU

Place and
Route

(XML) (Java)

EDA

Program

Compiler

Simulator
Hades

Fig. 1. Global view of the environment

The start point of the exploration flow is the dataflow specification, which can be
automatically generated by a compiler from the input program in an imperative pro-
gramming language (e.g., [9]). Each dataflow operator is directly implemented with a
functional unit (FU). The FU behavior is specified in Java. A library of FUs has been
developed to assist simulation of the dataflow representation, implemented in a given
array architecture, or as an application-specific design (ASIC). A typical FU inte-
grates an ALU, a multiplier or divider, input/output FIFOs, and the control unit to
implement the handshake mechanism (see Fig. 3b). The FU is the main component of
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each PE in the array architecture. A ready/acknowledge based protocol controls the
data transfer between FUs or PEs. Parameters such as protocol delay, FIFO size, FU
granularity are global in the context of an array architecture but can be local for an
application-specific dataflow implementation.

for (j=0; j<M; j++) {
  sum = 0;
  for (i=0; i<4; i++) {
     sum+=x[i+j]*h[i];
  }
  y[j]=sum>>15;
}

...<COMPONENT unit="ALU" opera-
tion="IMUL"  name="M0">
   <PORT name="A" value="10"/>
</COMPONENT>
<COMPONENT unit="ALU"  opera-
tion="IADD" name="A0" />...
<SIGNAL name="wire3">
   <SOURCE name="M0" port="Y"/>
   <SINK name="AO" port="A"/>
</SIGNAL>...

(a) (b) (c)

Fig. 2. 4-tap FIR example: (a) original source code; (b) graph of a static dataflow implementa-
tion; (c) XML representation

For simulating either the array architecture or the application-specific design we
use the Hades simulation environment [10]. Hades is a pure Java component-based
simulator, with a user-friendly interface, a discrete-event based simulation engine,
support for hierarchical design, and a flexible waveform viewer. Hades permits to
simulate components at different abstract levels, and thus it can also be used to simu-
late a data-driven array coupled to a standard microprocessor specified in a behavioral
level.

<CELL name="ALU" sym-
bol="ALU"/> ....
<LAYOUT length="4" width="4"
                 symbol="ALU"/> ....
<!-- override special cells -->
<LAYOUT x="2" y="0" sym-
bol="I/O"/> ...
<!-- all the cells in line 3
     are of type MEM       -->
<LAYOUT x="3" symbol="MEM"/>

(a) (b) (c)

Fig. 3.  (a) Hexagonal data-driven architecture; (b) Functional unit; (c) XML specification

Our environment supports two simulation flows: Dflow, for application-specific
implementations (e.g., ASIC or FPGA), and Aflow, for implementations in a user-
defined data-driven array architecture. With Dflow, the dataflow representation is
translated to a Hades Design and simulated (see Fig. 1). At this level, the maximum
throughput, the buffer size, the operator granularity and type can be explored, as well
as other parameters. With Aflow, the implementation in a data-driven array architec-
ture is simulated. The array architecture is described in an XML file. The placement
and routing of the implementation is also specified using an XML file. Another XML
file is used to specify the properties of each operator, such as the delays, the number
of pipeline stages, etc.
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An array architecture can be defined as a set of PEs connected with different to-
pologies. To explore different array architectures, we use an XML dialect to specify
the properties of each target architecture, such as its array topology, its interconnec-
tion network (mesh, hexagonal or other), the PE's placement, and local parameters
like the FIFO depth of the FUs. As an example, Fig. 3a shows an architecture, with a
hexagonal array topology, composed by three distinct PEs: ALU, Input and Output
ports, and internal Memories. An extract of the XML specification of the array archi-
tecture is shown in Fig. 3c.

3 Experimental Results

In this section, we provide an example of a data-driven architecture to illustrate the
proposed environment. The example consists of a data-driven hexagonal array with

bidirectional neighbor connections.
Each array cell may contain an FU
for operations (arithmetic, logical,
merge, copy, and split operations,
etc.) or can be used as a routing cell,
or both. For this example we use 32-
bit width FUs and a 4-phase asyn-
chronous handshake mechanism.
Experiments are shown for different
versions of the FIR filter (see Fig.

2a).  Table 1 shows the number of FUs needed and the results obtained by simulating
FIR implementations having different number of taps (2, 4, 8, and 16) and executing
data streams of sizes 1 K and 16 K. These simulations are used to evaluate the maxi-
mum throughput achieved before mapping the examples in an array architecture. The
simulations have been done in a Pentium 4 (at 1.8 GHz, 1 GB of RAM, with Linux).

Table 2. Results of FIR-4, using a hexagonal array with size 6 × 6, a data stream of 500 words:
(1) operations; (2) routing; (3) operations and routing

#PEsMapping

(1) (2) (3)

Input FIFOs Output
FIFOs

FIFOs
size

Throughput
compared to
maximum

Simulation
time (sec)

1 10 0 3 (1) - - 50 % 4.26
2 13 4 0 (1),(2) - 2 100% 4.42
3 13 4 0 (1)-(2)-(3) - 1 80 % 4.40
4 10 0 3 (1)-(3) (1)-(3) 1 100% 3.76

Table 2 shows results obtained by different mappings of the FIR-4 (1st col.) on the
hexagonal array. Columns 2 to 4 show the number of PEs of the array: only used to
perform an FU operation (2nd col.), only used for routing (3rd col.), and used for both
routing and operation (4th col.). The simulations also take into account the existence
of FIFOs in the inputs, outputs, or in both, for each PE and its size. Columns 5 and 6

Table 1. Results when simulating a FIR filter

Simulation time (sec)Exam-
ple

#
filter
taps

#
FUs Data

size: 1
K

Data size:
16 K

FIR-2 2 7 1.31 5.16
FIR-4 4 13 2.34 9.09
FIR-8 8 26 2.98 17.89
FIR-16 16 49 4.68 38.87
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illustrate where the FIFOs are used. Column 8 compares the array throughput to the
application-specific implementation. The maximum throughput is achieved by map-
pings 2 and 4. As shown, the simulations are fast enough to allow a very efficient
exploration of a significant number of topologies.

4 Conclusions

This paper presents an environment to simulate and explore data-driven array archi-
tectures. The environment permits to evaluate architectures with different topologies,
as well as different features of a specific architecture. It uses Java and XML tech-
nologies, and Hades, a Java simulation engine, to achieve a powerful environment
that can hardly be achieved using an HDL. Ongoing work focuses on research algo-
rithms to place and route a given dataflow implementation into the user-defined data-
driven architecture.
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Abstract. The MPEG-2 DVB Transport Stream domain carries in ad-
dition to audio and video data a Program Clock Reference(PCR). This
PCR is used to synchronize the MPEG-2 decoder clock on the receiver
side for a given program. The PCR values can be affected by an offset
inaccuracy due to encoder imperfection or by the network jitter. The
measurement of different PCR parameters like drift, precision and jitter
are necessary for evaluating the decodability efficiency. These measure-
ments are generally achieved using a Phase Lock Loop and a set of mea-
surement filters as it is recommended in the DVB-T QoS measurement
standard. In this paper, we propose a FPGA implementation of an all
digital PLL and its associated measurement filters. We demonstrate how
it is possible to process all available programs in a DVB-T transport
stream by using an FPGA with an associated embedded processor.

1 Introduction

The MPEG-2 transport stream (TS) multiplex is transmitted through the net-
work in asynchronous mode. The recovery of a 27 MHz clock on the decoder
side synchronized to the encoder clock is necessary to regenerate video signals.
Samples of this clock called Program Clock Reference (PCR) are transmitted
within the stream. These PCRs are affected by the network jitter. Measurement
of interval between PCRs arrivals, PCR precision and accumulated PCR jitter
are necessary for the evaluation of quality of service. These measurements are
generally based on the use of a Phase Lock Loop (PLL) associated to a set of
filters as is recommended by the DVB-T standard for the QoS measurement [1].

Several clock recovery methods based on statistical signal processing like
Least-square Linear Regressive (LLR) [3] are used instead of a PLL. Their per-
formances are better than those of analog PLLs in terms of time response and
jitter reduction. However, the LLR method requires many FPGA resources and
an external VCO. Moreover, in our case, it is necessary to reconstruct about ten
program clocks within the transport stream at the same time, which require to
use many VCOs which is unpractical for a hardware implementation.
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In order to overcome this problem and aiming FPGA implementation, we
propose in this paper an all digital architecture to process all programs in real
time. This architecture is based on an ADPLL. Concerning the Digitally Con-
trolled Oscillator (DCO), several techniques exist like the use of a ring oscillator
[2]. This type of oscillator is mainly used in full custom design due to the delay
time of the inverters that must be well controlled for a good stability [4].

2 System Description

2.1 General Principle

To perform the PCR related measurements, the system has to recover the trans-
mitter clock from time stamps presented at its input. These time stamps are
generated by the MPEG-2 encoder and transmitted within the transport stream.
The measurement system provides the PCR parameters corresponding to a spe-
cific program that are displayed in a monitoring system.

The measurement system is composed of an ADPLL that tracks the transmit-
ter frequency and a set of filters performing parameters extraction. The ADPLL
is composed of four main blocks as shown in figure 1. The first block is the com-
parator that computes the PCR error corresponding to the difference between
the received PCRs denoted PCRe(n) and the locally estimated one, denoted
PCRr(n). The synchronization is achieved when this difference equals zero. The
second block corresponds to the loop filter. Its output is used to trigger the sig-
nal frequency produced by the DCO, representing the third block. This block
delivers a clock signal with an average frequency depending on low variations of
the filtered error [5]. The last block represents the counter generating the local
PCRr(n).

Fig. 1. Bloc diagram of the ADPLL.

Digitally Controlled Oscillator. The Digitally Controlled Oscillator (DCO)
[5] delivers a clock signal with an average frequency over a time interval TPCR

which represents the arrival duration of two successive PCRs. The working fre-
quency range of the system is [F+ = 27MHz +810Hz, F− = 27MHz−810Hz].
The step response of the system can have an overshoot, so the maximum fre-
quency is set to Fmax = 27MHz + 2x810Hz. Those frequencies are obtained
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from a clock running at 4xFmax. The DCO requires a high frequency high pre-
cision jitter free clock named 4Fmax for which some rising edges are regularly
cancelled. The highly stable clock is divided by four or five in the interval TPCR,
according to a decision threshold.

Loop filter. The loop filter structure is determined for a zero steady state error.
In fact we aim a zero phase error for a phase step and zero frequency error for a
frequency step. This can be obtained by choosing a transfer function F (z) of the
loop filter that has a proportional term G1 and an integral term G2. Equation
1 gives the transfer function of the filter.

F (z) =
S filter(z)

Sub(z)
= G1 + G2.

1
1 − z1 (1)

3 ADPLL Architecture Implementation Results

3.1 System Verification and Optimization

To verify the functionality of the ADPLL, the overall system is modelled in
a hierarchical way with SystemC [6]. This method allows the use of different
abstraction levels.

The loop filter used is described in floating point. For harware implementa-
tion, a fixed-point format is determined with a heuristic approach: the output
of a fixed point filter is compared with the output of a floating point filter. The
maximum absolute error ΔS Filter is stored and we compute then the frequency
error ΔFr that could appear at the DCO output with equation 2 where KDCO

is the DCO slope.
ΔFr = KDCO.ΔS Filter (2)

The fractional part size is then increased until obtaining the optimized size
which corresponds to a frequency error lower than 10 Hz. The results obtained
are presented in figure 2. The fixed point fractional part size is going from 5 bits
to 10 bits and the results are given with G1 = 5 and G2 = 0.2.

We can see that between 8 bits and 10 bits, we have the same frequency
error which is 7 Hz. So, we can conclude that a good choice for the fixed point
fractional part size is 8 bits.

For the ADPLL implementation, we translate the SystemC code into syn-
thetizable VHDL language with the Nepsys Tool [7], whereas the measurement
filters algorithms are computed with an embeded Nios processor.

3.2 Experimental Setup

For testing the functionality of our measurement system, we use an Altera EX-
CALIBUR platform based on an APEX EP20K200EFC4842x FPGA. The board
is composed of a 33.33 MHz oscillator and a zero-skew clock distribution cir-
cuitry. For generating the 4Fmax frequency for the DCO, we use one of the two
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Fig. 2. DCO output error difference between the floating and the fixed point filter.

PLLs available in the APEX circuit. These PLLs make it possible to obtain a
27080625 Hz frequency from the 33.33 MHz clock by applying a 13/4 multipli-
cation factor.

3.3 Synthesis Results

VHDL synthesis results are given in table 1. The information are obtained from
the synthesis report of the measurement system implementation. This table
shows that the system requires 2823 Logic Cells corresponding to 34 % of the
total APEX 200 device resources. Nevertheless, the core processor represents
more than a half of the system resources. The ADPLL resource requirements
represent only 14 % of total available resources, moreover these resources are
mainly allocated to the divider bloc.

Table 1. Synthesis results.

Bloc function Logic cells (LC) % of used resources
PCR comparator 182 ( 6.44 %) 2.2 %
Loop filter 341 ( 12.1 %) 4.1 %
DCO divider 507 ( 18 %) 6.1 %

FSM 87 ( 3.1 %) 1.1 %
CPU core (NIOS) 1706 (60.4 %) 20.5 %
Total (20K200; 8320 LC) 2823 34 %

3.4 Experimental Results

The Drift Rate (DR) and the Overall Jitter (OJ) measurement point is located
at the PCR comparator output. The Frequency Offset (FO) measurement is
achieved by processing the loop filter output. To extract these parameters, mea-
surement filters are used as defined in the DVB standard documentation [1]. Table
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2 gives the maximum excecution time for each PCR parameter on a Nios CPU
solution. The total time is 1345 μs. Assuming that the minimum PCR arrival
time is 20 ms, we can hope to process all the PCR parameters of each program
in a DVB-T transport stream that contains about ten programs.

Table 2. Execution time of the PCR parameters.

PCR parameters PCR FO PCR DR PCR OJ Total
Max. excecution time 365 μs 400 μs 580 μs 1345 μs

4 Conclusion

In this paper we proposed an ADPLL solution implementable in FPGA for the
clock recovery in DVB-T. The system verification is achieved with SystemC. As-
sociated to a set of filters, this ADPLL can extract the PCR FO, the PCR DR
and the PCR OJ parameter. The originality of our DCO architecture proposal
makes it possible to implement as much ADPLL as existing programs. These
measurements are necessary for QoS evaluation in DVB-T. The performances
and functionality of the ADPLL architecture are verified with the implementa-
tion results. The measurement in real time of the PCR parameters for about ten
programs is currently in progress.
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Abstract. A concept for solving the communication problem among
modules dynamically placed on a reconfigurable device is presented.
Based on a dynamic network-on-chip (DyNoC) communication infras-
tructure, components placed at run-time on a device can mutually com-
municate. A 4x4 dynamic network-on-chip communication infrastructure
prototype, implemented in an FPGA occupies only 7% of the device area
and can be clocked at 391 MHz.

1 Introduction

On-line algorithms [2] have been developed in the past for temporal placement
on reconfigurable device. Almost all those algorithms consider the modules to be
rectangular boxes without communication among each other. In [1] a new on-line
placement strategy which takes into account the communication information is
presented. However, this method helps only to reduce the communication cost
among the modules by placing connected modules near to each other on the
chip. It does not determine how the communication will be realized. The dy-
namic placement of components on a reconfigurable device requires a viable
communication infrastructure to support the dynamic communication require-
ments. This paper presents a new network-on-chip-based concept to dynamically
handle the communication between modules on a reconfigurable device. A case
study is provided as an FPGA implementation of a dynamical network-on-chip
arranged in a 4x4 mesh.
The rest of the paper is organized as follow: in Section 2 we present some previous
approaches for handling dynamic on-chip communication. The requirements on
the architecture are presented in Section 3. Section 4 deals with the dynamic con-
nection of components on the network. In section 5, an FPGA-implementation
of a network infrastructure is shown. Section 6 concludes the work.
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2 Related Work

Recently, Network-on-Chip (NoC) have been shown to be a good solution to
support communication on System-on-Chip [3]. Dally et al [3] have proven that
NoCs encounter many advantages (performance, structure and modularity) to-
ward global signal wiring. A chip employing a NoC is composed of a set of net-
work clients like DSP, memory, peripheral controller, custom logic, etc. Instead
of connecting the modules using dedicated routing wires, they are connected to
a network that route packets among them. Maresceaux et al [4] proposed the use
of a NoC communication infrastructure as a component of an operating system
for reconfigurable systems. However, their NoC approache supports only fixed
processing modules defined as tile on the chip at compile time. We seek an ap-
proach which allows modules being placed on a reconfigurable device at run-time
to communicate with other on-chip modules as well as off-chip modules without
restriction on the placement.

3 Communication Infrastructure

To be able to dynamically establish communication between newly placed com-
ponents, two approaches can be followed: A packet-based communication or an
on-line signal routing. On-line signal routing can be used to establish a set of
dedicated point to point communications. However the routing of signals is a
computational intensive task which can only be efficiently computed off-line.
Moreover, if signals are routed on a given area and a new component is placed
in that area, then it will affect the signals currently routed. The packet-based
approach has the advantage that the alteration of the network will not hinder
the communication, since packets can always find their way in a strongly con-
nected network. The packet-based approach can be realized using a dynamic
NoC approach. In a static NoC, the clients are placed in rectangular tiles on the
chip and communicate with other clients via a fixed network. It has been shown
in [3] that the area occupied by the network logic is small (about 6 % of the tile’s
area). This ratio is expected to drastically decrease with the rapid growth in size
of reconfigurable devices. In order to have a better network logic/PE ratio and
make an optimal use of the resource, we impose the following requirements to
the architecture of the communication infrastructure:

– The PEs should be flexible, but coarse grained computing elements. With
fined grained PEs, the rapport network logic/PEs becomes big thus wasting
the device area.

– Each PE should have access to the network. This condition is very important
since it allows any module being placed on the reconfigurable device to always
access the network via one of its surrounding PEs.

– PEs should directly communicate with their neighbors. This is helpful be-
cause it allows wiring to be done locally within a module boundary.

– The network logic should be flexible enough to be used within the module to
which it belongs. Whenever a component is placed on a given region of the
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device, the network modules deep inside the module area cannot be used for
network operations. Therefore, they should be used as additional resource
for the module they belong to. A component will use the resource of its
network elements for the time it is running.

Figure 1 shows a communication infrastructure as described below on a recon-
figurable device.

Fig. 1. The dynamic NoC approach for reconfigurable communication

Having defined the communication infrastructure of the device, the main ques-
tions are to know how to develop components which can be dynamically con-
nected to the network at run-time. We provide some answers to those questions
in the next sections.

4 Network Access

Each task is implemented as a component, represented by a rectangular box
and stored in a database. A box encapsulates a circuit implemented with the re-
source in a given area. Therefore, a component can access the network using one
of the network elements on its boundary. Without loss of generality, we select
the network element on which the upper right PE of the component is attached.
After the placement of a new component on the device, the placer will set the
coordinates of the feasible network element as the module address for commu-
nication with the module. When placed on the device, components hide part of
the network which is restored when they complete their execution. This makes
the network dynamic. We call such a network a dynamic network-on-chip
(DyNoC).
During the temporal placement, modules will always be placed such as to main-
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tain a strongly connected1 network. As shown in figure , each placed component
is always surrounded by the network elements.

Fig. 2. A temporal placement on the DyNoC

While in a static NoC, each router always has four active neighbor-routers2, this
is not always the case in the DyNoC presented here. Whenever a component is
placed on the device, it covers the routers in its area. Since those routers cannot
be used, they will be deactivated by setting the corresponding control signals
until the component completes its execution. Upon completing its execution, the
deactivated routers are set to their default state. With this, a slightly modifica-
tion of the routing algorithm is required. Before sending the packet in a given
direction, a router must check if the router in that direction is activated. If so,
then the packet will be routed perpendicular to the direction previously chosen.

5 Case Study

To investigate the feasability of the concept presented here, we have implemented
a DyNoC similar to that described in Section 3 on an FPGA Virtex II 6000.
The resulting circuit is presented in Figure 3. The complete communication
infrastructure is made upon sixteen routers interconnected in a mesh network.
The routers are connected by a 32-bit wide bus and 4 control lines and contain
six 32-bit wide FIFO buffers with a depth of 4. The complete design occupies 7 %
of the device area. If large components are placed on the device, they will cover
a large set of routers, thus reducing the total area used by the routers. The
router has also been implemented as described in the previous Section. Each
1 A network is strongly connected, if for each pair of network elements a path exists

which connects the two elements
2 The neighbor-routers of the routers around the chips are assumed to be the package

pins through which external modules can access the network
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Fig. 3. FPGA implementation of a 4x4 DyNoC

router occupies less than 0.5 % of the device area and has a latency of 2.553
ns corresponding to a frequency of 391 MHz. Because the maximum number of
routers to traverse is 6, two components running on the device with a frequency
of 50 MHz can send and receive the packets without delay in their execution, if
the network is free.

6 Conclusion

In this paper, we have presented a concept for handling the problem of dynamic
communication among modules dynamically placed on a reconfigurable device.
We have shown how a dynamically changing network-on-chip can be used as a
viable communication infrastructure. A prototype of a 4x4 dynamic network-on-
chip implemented in an FPGA has been built. The complete network infrastruc-
ture occupies only 7% of the device and the network elements can be clocked at
391 MHz.

References

1. Ali Ahmadinia, Christophe Bobda, Marcus Bednara, and Jürgen Teich. A new
approach for on-line placement on reconfigurable devices. In Proc. of IPDPS-2004,
Reconfigurable Architectures Workshop (RAW-2004), Santa Fe NM, USA, April 26-
27, 2004.

2. K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template placement for recon-
figurable computing systems. In IEEE Design and Test - Special Issue on Recon-
figurable Computing, January-March:68–83, 2000.

3. William J. Dally and Brian Towles. Route packets, not wires: on-chip interconnec-
tion networks. In Proceedings of the Design Automation Conference, pages 684–689,
Las Vegas, NV, June 2001.

4. T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, S. Vernalde, and
R. Lauwereins. Networks on Chip as Hardware Components of an OS for Re-
configurable Systems. In Proceedings of 13th International Conference on Field
Programmable Logic and Applications, Lisbon, Portugal, September 2003.



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1037–1041, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scalable Application-Dependent Network on Chip
Adaptivity for Dynamical Reconfigurable Real-Time

Systems*

M. Huebner, M. Ullmann, L. Braun, A. Klausmann, and J. Becker

Universitaet Karlsruhe (TH), Germany
http://www.itiv.uni-karlsruhe.de/

{huebner,ullmann,braun,klausmann,becker}@itiv.uni-karlsruhe.de

Abstract. Current trends show that in future it will be essential that various
kinds of applications are running on one chip. These require an efficient and
flexible network on chip which is able to adapt to the demands of supported
modules. This makes it necessary to think about what kind of network on chip
will meet these requirements. This paper describes an approach for a
reconfigurable network on chip which allows adapting the performance and
topology at run-time to the demand of the application running on Xilinx FPGA.

1 Introduction

Today field programmable gate-arrays (FPGAs) are mainly used for rapid-prototyping
purposes. They can be reconfigured many times for different applications. Modern
state-of-the-art FPGA devices like Xilinx Virtex FPGAs [1] additionally support a
partial dynamic run-time reconfiguration which reveals new aspects for the designer
who wants to develop future applications demanding adaptive and flexible hardware.
Especially in the domain of mobile computing high-end mobile communication
applications will benefit from the capabilities of the new generation of reconfigurable
devices. A new approach to create systems which are able to manage configuration
are run-time systems. These systems use the flexibility of an FPGA by changing the
configuration partially. Only the necessary functions are configured in the chip’s
memory. By demand a function can be substituted by another while used parts stay
operative. To solve the problem of substitution and I/O management the configuration
needs a main module controlling the tasks. Additionally this module controls the on
chip intercommunication bus to prevent an overhead of bus size. To be able to deal
with the amount of needed bus resources for a special application or a scenario of
different applications running in parallel on the FPGA, an adaptive bus structure has
to be developed. [8] and [9] raise this issue with the main focus on energy saving and
basis for new design methodologies. In [7] an approach using a serial connection as
communication path is described. The communication structure in this approach is
static by using a dedicated bus line for message transfer. Changing demands of
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communication require a network on chip which provides this feature. This paper
describes one approach for such a network on chip. Section 2 describes the target
system including all components. In section 3 the method of communication is
shown. Finally section 4 contains conclusion and an outlook on further projects.

2 Target System

The target system and its reconfigurable network are realized on a partial dynamic
reconfigurable FPGA. For a big variety of user tasks five dynamically reconfigurable
areas are defined. More information for dynamic reconfiguration can be found in [2].
Figure 1 shows a schematic view of the complete system.

Fig. 1. Structural scheme of the target system with five reconfigurable modules

The reconfigurable areas are described as modules 0 to 4. All these modules can
contain different user-defined functions running in parallel. The reconfigurable
network offers the possibility to adapt the network resources to the different demands
of the modules. The access to the network is given by the “Master-Module”. A
“Module Communication Unit” (Mod Com) is used to connect the module to the
network. Similar to the Mod Com Unit the “Run-time Module Controller” is linked
via a “Controller Communication Unit” (Controller Com). In contrast to the
Controller Com the Mod Com is configured into a reconfigurable module area and
therefore together with the user-function a part of the partial reconfiguration bit
stream. The hardware platform of the system is the Xilinx Virtex-II FPGA
XC2V3000. Xilinx also offers a microprocessor IP-core called Microblaze. The
“Run-time Module Controller” applies this IP-Core. This Controller manages the
external communication and the partial dynamic reconfiguration which is executed by
using the Decompressor- and ICAP-Unit inside as well as Flash-memory and Boot-
CPLD outside the FPGA. A more detailed description of the run-time system can be
found in [3]. In this implementation the Module Controller additionally controls the
communication topology.
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2.1 Network on Chip

The network on chip is based on a serial communication protocol (section 3). Figure 2
shows an example of a Bus-Macro using four bi-directional bus lines. The connection
to a reconfigurable module is shown on the left side and to the Module Controller on
the right. Clock, clock-enable and reset signal are left out in Fig. 2. During
reconfiguration a dynamic reconfigured slot is disabled via an enable slot signal.

Fig. 2. Interfaces of the Bus-Macro

The Master-Module provides a special five bit counter for each bus line which divides
the bus-access time into timeslots. The counters have the same structure but don’t
necessarily have the same state simultaneously. Every slot is provided with the four 5
bit counter signals. The bus-arbitration is based on time-slots. The Mod Com Units
and the Controller Com Unit have fixed amounts of time-slots corresponding to the
counter values for access to one or more bus lines within a counter period. These
timeslots can be released or locked. So the distribution of network-resources and the
network structure can be adapted to the required bus-performance of the modules
during run-time. At the moment the Module Com Unit gets the release signals for its
timeslots from the Controller Com Unit. It is planned to use valid-timeslot bits which
are contained in the Module Com Unit instead. Then the ICAP Module will control
these bits in order to change the communication topology.

Fig. 3. Example of a communication topology
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Fig. 4. Access Scenario of a Bus Line

Besides the bus structure the reconfigurable NoC can be configured to different net-
structures. A bus line can be disconnected from a module by locking all belonging
time-slots. Thereby a star or ring communication topology of the reconfigurable
network can be realized during run-time (Fig.3). Also mixed topologies are possible.
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Fig. 5. Communication Topology Change between Bus and Ring
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Fig. 6. Post PAR Simulation of a Communication Topology Change

3 Module Intercommunication

The used serial communication protocol is similar to the FlexRay [5] protocol. Both
are divided into a static and a dynamic part (Fig. 4). The static part keeps the
predictability of data transmission. The dynamic part increases bandwidth if
necessary. A counter controls the transmission. Every module has a list of numbers
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which represents the time-slot numbers (table Fig.4). The dynamic part is subdivided
into priority levels. If the counter of a bus line reaches a number from this list, the
module is able to begin its data transmission. Since every module has its own unique
list data-package collisions are avoided. Besides a data block the data-packages
contain a receiver and a sender address. Whereas a static data-package has a fixed
length, the length of a dynamic data-package is flexible.

4 Conclusions and Further Work

This approach of a network on chip makes a dynamic communication topology
change with the next rising edge of the clock signal possible (keep setup-time). Data-
packages which are transmitted during switching are not influenced (avoidance of
data loss). So far the maximum real dataflow is 4.89 MB/s per bus line. The overhead
is 2.2 %. The maximum duration from a module send request to the bus line release is
261.6 μs (using all timeslots). These calculations are based on a static data block
length of 8 byte and a dynamic of 256 byte. The system clock has 40 MHz. Figure 5
and 6 show a communication topology change from bus to ring and back. This test-
design is running at 40 MHz. Fig. 6 shows beside the four bus lines some timeslot-
release signals which make the topology change possible.

This network on chip will be used in the future for multimedia applications but also
for modules with control functions. The possibility for energy saving with run-time
optimisation of the bus will also be a part for further investigations.
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Abstract. ASIPs and reconfigurable processors are architectural choices to
extend the capabilities of a given processor. ASIPs suffer from fixed hardware
after design, while ASIPs and reconfigurable processors suffer from the lack of
a pre-established instruction set, making them difficult to program. As
intermediate choice, reconfigurable coprocessors systems (RCSs) contain
dedicated hardware (coprocessors) coupled to a standard processor core to
accelerate specific tasks, allowing inserting or substituting hardware
functionalities at execution time. This paper proposes a generic model for
RCSs, targeted to reconfigurable devices with self-reconfiguration capabilities.
A proof-of-concept case study is presented as well.

1   Introduction

A single processor may meet the requirements of several embedded system scenarios
if it is somehow parameterizable. Application-specific instruction set processors
(ASIPs) and reconfigurable instruction set processors (RISPs) [1] are two opposite
forms of implementing processors with regard to design versus runtime
parameterization trade-offs. ASIPs provide flexibility and performance at the cost of
extra silicon area for each new function directly supported in hardware. If the
application requires a new specific functionality, the ASIP is redesigned. RISPs are
processors where some or all instructions are implemented as dedicated hardware and
loaded on demand, according to the software execution flow. Here, the highest degree
of flexibility is achieved. However, the lack of a pre-established fixed instruction set
makes it harder to generate the object code for new applications. This occurs because
each new function must be supported at the same time by the dedicated hardware and
the compiler.

An intermediate solution, named reconfigurable coprocessors systems (RCSs) is
addressed in this paper. As ASIPs and RISPs, RCSs contain dedicated hardware
(coprocessors) to accelerate specific tasks. However, these are not fixed at design
time as in ASIPs. It is possible to insert or substitute hardware functionalities at
execution time in RISPs and RCSs without having to redesign the processor. Contrary
to what happens in RISPs, RCSs contain a standard processor core with a fixed
instruction set, enabling the use of standard compilers.
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The processor and the parameterizable parts are loosely coupled in RCSs and
tightly coupled in RISPs and ASIPs. Additionally, ASIPs and RISPs are inherently
sequential approaches, while RCSs may benefit from the parallel execution of the
processor software and dedicated computations in each coprocessor. Communication
between the processor and the coprocessors can be achieved in this case through the
use of e.g. interrupts.

A potential performance bottleneck faced by embedded applications in RISPs and
RCSs is the latency to perform hardware reconfiguration, which can be orders of
magnitude longer than the time to perform application atomic operations. To reduce
or eliminate this problem, RISPs and RCSs assume the existence of an infrastructure
to control the storage and the dynamic loading of hardware configurations, usually
called a configuration controller [2].

Consider the current trend to increase the number of embedded processors in SoCs,
leading to the concept of “sea of processors” systems [3], and add to this the above
discussion on implementation alternatives for parameterizable embedded processors.
From these, it is possible to justify the objective of this paper, which comprises
proposing a generic implementation model for RCSs called FiPRe, and introducing a
case study used to evaluate the ideas behind the model.

2   The FiPRe Implementation Model and the R82R Case Study

The FiPRe (Fixed core Processor connected to Reconfigurable Coprocessors) model
is conceived to allow self-reconfigurable applications implemented as RCSs and can
be understood from the case study example in Fig. 1. First, there is a Fixed Region,
which has an embedded processor to execute applications and to trigger
reconfiguration actions. This region also contains a configuration controller (CC), to
manage the details of the reconfiguration process. The existence of external devices
intended to provide input/output capabilities for the embedded system is also part of
the model. Besides, a memory is needed to store coprocessor bitstreams, a block
named Configuration Memory. Finally, the model assumes the existence of a
Reconfigurable Region that contains a subset of configured coprocessors. This region
presents data exchange and configuration interfaces to the rest of the system.

A fixed instruction set processor provides advantage in terms of code and hardware
reuse, because neither the processor nor the compiler needs to be changed in the
process of developing coprocessors to achieve performance and functionality goals.

The CC handles coprocessor selection and dismiss procedures produced by the
processor. When selection is executed, the configuration memory is accessed and a
coprocessor bitstream is sent to the configuration interface.

In order to evaluate the FiPRe model to implement RCSs embedded systems, an
example case study, named R82R was designed and implemented. The system was
implemented in a single VirtexII device, with the exception of the Configuration
Memory. The case study employed a soft core processor customized for the FiPRe
model. The changes made in the original processor were to add specific instructions to
support reconfiguration (Table 1), and a specific external interface to the
reconfigurable region and to the configuration controller.
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Fig. 1. General structure of the R8NR system.

Fig. 1 displays the organization of the R82R system. The system is composed by
three main modules: a host computer, providing an interface with the system user; a
configuration memory, containing all partial bitstreams used during system execution;
the FPGA, containing fixed and reconfigurable regions of the R82R system. The
fixed part in the FPGA comprises the R8R processor [4], its local memory, containing
instructions and data, a system bus controlled by an arbiter, and peripherals (serial
interface and the configuration controller). The serial interface peripheral provides
capabilities for communication with the host computer (an RS232 serial interface).
The CC is a specialized hardware, acting as a slave of the R8R and of the host
computer, which fills the configuration memory before system execution starts.

The R8R processor was wrapped to provide communication with (i) the local
memory; (ii)the system bus; (iii) the CC; (iv) the reconfigurable region. The interface
to the reconfigurable areas comprises three identical sets of signals interconnected
through special components furnished by the FPGA vendor, called bus macros.

Table 1. Instructions added to the R8 processor in order to produce the R8R processor.

Reconfigurable
instruction

Semantics description

SELR address
Selects the coprocessor identified by address for communication with the processor, using
the reconf signal (see Fig. 1). If the coprocessor is not currently loaded into the FPGA, the
CC automatically reconfigures some area of the FPGA with it.

DISR address
Informs the CC, using the remove signal (see Fig. 1), that the coprocessor specified by
address is dismissed and can be removed if needed.

INITR address
Resets the coprocessor specified by address, using the Ioreset signal. The coprocessor must
have been previously configured.

WRR RS1 RS2
Sends the data stored in RS1 and RS2 to the coprocessor selected by the last SELR
instruction. RS1 can be used for passing a command while RS2 passes data.

RDR RS RT
Sends the data stored in RS to the coprocessor (typically a command or an address). Next,
reads data from the coprocessor, storing it into the RT register.
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3   Results

The R8NR system has been prototyped and is operational in two versions, with one
and two reconfigurable areas, respectively (R81R and R82R). A V2MB1000 board
from Insight-Memec was employed in the prototyping process.

Fig. 2 shows the comparison between the number of operations executed and the
time to execute hardware and software versions of three 16/32-bit arithmetic nodules:
multiplication, division and square root. Note that for each module, the execution
time grows linearly but with different slopes for software and hardware
implementations. Also, the reconfiguration time adds a fixed latency (~10 ms) to the
hardware implementations. The fixed latency is an approximation of the time
measured to configure one FPGA area dedicated to hold one coprocessor.

The hardware reconfiguration latency, 10ms, is
dependent on the size of the reconfigurable area
partial bitstream and on the performance of the
CC module. This graph was plotted for a CC
working at 24MHz frequency and for
reconfigurable bitstreams of 46Kbytes,
corresponding to a reconfigurable coprocessor
with an area of roughly one tenth of the
employed million-gate device.

Fig. 2. Execution time versus the number of operations for three arithmetic modules,
multiplication, division and square root, implemented in HW (hw suffix) and SW (sw suffix).

The break even point for each functionality determines when a given hardware
implementation starts to be advantageous with regard to a plain software
implementation, based on the number of times this hardware is employed before it is
reconfigured. From the graph, it can be seen that the multiplier, division and square
root coprocessors are advantageous starting from 750, 260 and 200 executions
without an intervening reconfiguration step. Consider the application of a filter (e.g.
edge or smooth) over an image with 800x600 pixels. If only one operation is applied
per pixel 480000 operations are executed, easily justifying the use of a hardware
coprocessor.  This simple experiment highlights how in practice it is possible to take
advantage of RCSs, achieving performance gains, flexibility and system area savings.

The R82R case study was synthesized using Leonardo Spectrum. The area report
data for the fixed modules is presented in Table 2.

Table 2.  Area report data for a XC2V1000 FPGA and for 0.35 μm ASIC CMOS tecnology.

Module ASIC Gates LUTs FFs %LUTs
R82R 6331 1020 555 9.96
Memory 3139 307 366 2.99
Serial Interface 5430 616 607 6.01
CC 2790 493 218 4.81
Arbiter 157 27 15 0.26
Total 17847 2443 1761 23.85
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Configuration controllers (CC) found in the literature are mostly software
implementations. The CC proposed here was implemented in hardware, having a
small area footprint (around 3,000 gates) and is expected to present superior
performance over software versions in terms of reconfiguration speed. Another
important advantage to implement the CC in hardware is that the embedded processor
is free to execute tasks in parallel during the reconfiguration process.

The Modular Design method [5] employed for generating partial bitstreams, limits
the size of a reconfigurable area to a minimum of 4 CLB FPGA columns. One
minimum size reconfigurable area contains 1280 LUTs (each column contains 320
LUTs). Nevertheless, the implemented coprocessors use in average 140 LUTs.
Therefore, it is possible to implement much larger coprocessors in these areas.
Examples are simple dedicated processors, FFT operators, and image filters.

4   Conclusions

The major contribution of the present work is the FiPRe model for RCSs. An
advantage of the model is the parallelism between processor and coprocessors,
enabling the use of non-blocking operations. Also, the compiler does not need to be
changed when a new coprocessor is added. On the other hand, an increased latency in
communication may be observed, since the system parts are loosely coupled.

Also, since RCSs are reconfigurable systems, they potentially reduce the final
system cost, as the user can employ smaller configurable devices, downloading partial
bitstreams on demand. In addition, partial system reconfiguration makes it possible to
benefit from a virtual hardware approach, in the same manner that present day
computers benefit from the use of virtual memory.

Application areas for RCSs are another crucial point. Unless sound applications are
developed to show real advantage of using RCSs over conventional solutions, such as
RISPs and ASIPs, RCSs will remain no more than an academic exercise on an
interesting subject area. Ongoing work includes performance measurement of
benchmarks and improvements on the configuration controller to reduce the time
wasted during partial reconfiguration.
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Abstract. Increasing logic resources coupled with a proliferation of in-
tegrated performance enhancing primitives in high-end FPGAs results
in an increased design complexity which requires new methodologies to
overcome. This paper presents a structured system based design method-
ology, centred around the concept of architecture reuse, which aims to
increase productivity and exploit the reconfigurability of high-end FP-
GAs. The methodology is exemplified by the Sonic-on-a-Chip architec-
ture. Preliminary experimental investigations reveal that while the pro-
posed methodology is able to achieve the desired aims, its success would
be enhanced if changes were made to existing FPGA fabrics in order to
make them better suited to modular design.

1 Introduction

Field Programmable Gate Arrays are an increasingly attractive choice for highly
integrated digital systems due to their significantly lower design costs when com-
pared to semi-custom integrated circuit design. The trade-off in FPGA-based
systems is an increase in unit cost and a degradation of performance (power,
speed, size), which vendors mitigate by embedding into the FPGA silicon per-
formance enhancing primitives such as memories and multipliers. Inevitably, the
increasing transistor density and heterogeneity of FPGAs leads to a complexity
challenge necessitating new design methodologies to increase productivity.

This paper presents a structured system design methodology for FPGA based
system-on-a-chip development, based on a paradigm of architecture reuse; in-
stead of designing a monolithic FPGA configuration by connecting together
blocks of predesigned intellectual property (IP) the system is constructed by
defining the its logical and physical structure first. Increased productivity is
achieved through (a) modularity, (b) abstraction, and (c) orthogonalisation of
concerns, such as the separation of communication and computation. Signifi-
cantly, system-level timing is pre-determined avoiding iterative design and veri-
fication cycles normally necessary to achieve timing closure.

Since the methodology is based on architectural reuse, the choice of archi-
tecture is critical; the architecture must be suited to the applications which will
be implemented on it as well as being well matched to the FPGA structure at
which it is targeted. In this paper the methodology is exemplified with a single
architectural instance described in [1] called Sonic-on-a-Chip.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1047–1051, 2004.
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2 Related Work

A popular area of research for improving designer productivity is the investiga-
tion of direct synthesis from existing software languages, e.g. [2], in an attempt
to increase the level of abstraction. While this approach has had some measure
of success, it is limited by the mismatch between logic and languages designed
to abstract the execution of code for a sequential processor. An alternative is to
use novel algorithm description formats, in which the algorithm designer explic-
itly identifies task-level parallelism [3,4]. Often the representation uses a dataflow
graph format; invariably some form of modularity is used. These techniques suffer
from a lack of a clear macro-architecture within the target FPGAs to which the
modules may be mapped. This problem can be circumvented by using a custom
modular or coarse-grained reconfigurable fabric instead of a traditional FPGA;
the SCORE system [5] is one such example. The work in this paper focuses
on an alternative, platform based approach, in which a hardware infrastructure
is designed within an FPGA to be reused by many application instances. An
FPGA based platform that employs an AMBA bus has been reported by Kalte
et al. [6]. Rather than use a general purpose bus, our work assumes an infras-
tructure optimised for a specific domain. Moreover, the architecture is part of a
larger methodology which includes precepts for hardware, software and operating
system interactions.

3 Structured System Design

In a structured system design, a complex system is built by defining an architec-
ture and then filling it with IP. The architecture can be envisaged as an interface
between the form of the application algorithm and the unstructured resources of
the FPGA. The architecture includes a modular logical layer which can be cus-
tomised to the application, and a physical infrastructure layer, which describes
how the logical modules are implemented and connected in the FPGA fabric.

The architecture design is exemplified by Sonic-on-a-Chip [1], an embed-
ded video processing platform targeted at the Virtex II Pro family of FPGAs
from Xilinx. The logical architecture is shown in Figure 1. In terms of the design
methodology, the salient and necessary features of the logical model are that it is
highly modular, extensible, and application implementation is achieved through
customisation of modules. Moreover, the computation and communication are
separated (via routers in this case) such that the topology of the application is
independent of the intermodular communication infrastructure. This is impor-
tant, since the infrastructure must remain fixed between applications.

The physical layer of the architecture must define how the logical system
structure is implemented on the FPGA, including the location of inter-modular
interconnect and the positioning of the modules. Existing design flows (includ-
ing the Modular Design flow from Xilinx) integrate the modules and infras-
tructure together at design time, which we term early integration. In our design
methodology the integration point is at run-time. This late integration affords the
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maximum design productivity advantage from modularity by separating mod-
ule development down to the bitstream level, since design, implementation and
verification of different modules can be executed independently. In addition, dif-
ferent functionality can be obtained at run-time by combining fully developed
modules in different permutations and combinations, allowing applications to be
customised from instance to instance without re-synthesis, re-implementation
and re-verification each time.

The example Sonic-on-a-Chip physical infrastructure for a Xilinx Virtex II
Pro target is illustrated in Figure 2. Note that the modularity of the logical design
is preserved at the physical level. In late integration the position of each module
is not fixed until run-time, implying modules must be bitstream-relocatable and
that both the FPGA and the infrastructure exhibit translational symmetry.

Importantly, the location of the Global Bus interconnect is fully pre-
determined. This is necessary for module relocatability; moreover, the overall
bus timing is constant and can be characterised, enabling modules to be physi-
cally implemented independently. The interconnect and relocatability is inspired
by the DISC system [7].
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Application development for Sonic-on-a-Chip begins by specifying the pro-
cessing algorithm to be implemented as a number of parallel tasks, connected
in a dataflow graph format. Each task-node of the dataflow graph needs to be
implemented in a processing element. Overall system control is handled in ap-
plication software, which loads processing element module bitstreams into the
configuration memory of the FPGA fabric and programs the routers within each
processing element to direct dataflow appropriately.

In a stand-alone software environment, it is left to the application developer
to manage the allocation of space and the positioning of modules within the
fabric. In systems where two or more applications execute concurrently an op-
erating system is usually employed to manage shared resources. In the case of
Sonic-on-a-Chip, physically adjacent modules can communicate directly, so the
relative positioning of modules must be considered by the operating system.

In order to represent the parallel processing and the topology of the hardware
modules, in our methodology the application spawns a new software process
for each hardware module. These processes are termed ghost processes, since
they do not perform any processing but are a representation of the hardware.
The communication between hardware modules is represented by redirecting the
inputs and outputs of the ghost processes to named pipes (FIFOs). This provides
a means to encode the logical topology of the algorithm dataflow as well as a
mechanism for software to interact seamlessly with hardware entities.

4 Design Evaluation

A functional simulation model has been constructed and a prototype is under
development based on the Xilinx ML300 evaluation board. The characteristics
of two computational element designs is given in Table 1. The approximately 8x
difference in resource usage is a simple but clear justification for the necessity of
variable-sized PEs.

Table 1. Processing element characteristics (designs run at 50MHz).

Type Slices Block MOPS Throughput Estimated no. per device
RAMs Msamples/s XC2VP30 XC2VP100

Image difference 345 3 50 50 peak 39 127
3x3 convolution 2450 32 528 59.3 peak 5 18

The physical implementation of processing element modules and RAM rout-
ing modules has been investigated using the partial reconfigurable design flow [8],
which uses hard macros to ensure signals entering and exiting a reconfigurable
module are always routed on the same wires. The standard bus macro in this
flow is unsuitable for our implementation since it is only designed to pass signals
across vertical module boundaries. New hard macro objects have been developed,
including one to constrain Global Bus routing to specific tristate lines.
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These investigations exposed routing issues with both the FPGA fabric and
the routing tool (Xilinx PAR F.31). The FPGA interconnect is optimised for
use as a global resource and therefore includes features such as global clock trees
and longlines, which are not well suited to partial modular reconfiguration. In
particular, horizontal longlines are not used when implementing a reconfigurable
module. In addition, the place and route tool currently recognises vertical module
boundaries only, and routing violations were observed for horizontal boundaries.

5 Conclusion

This paper introduced an architecture reuse based methodology for FPGA SoC
design, which uses modularity and abstractions to enhance productivity. The
architecture, which includes physical and logical constructs, is exemplified by
the Sonic-on-a-Chip instance. Applications comprise hardware IP modules and
control-level software; in an OS-based software environment the hardware pro-
cessing is represented by spawned software processes connected via IPC FIFOs.

Investigations into the implementation of the methodology have exposed a
dissonance between the globally optimised FPGA interconnect design and the
requirements for modular reconfigurable routing; this is an area we plan to ad-
dress in future work.

Acknowledgements. The authors thank the Commonwealth Scholarship Com-
mission in the UK, the New Zealand Vice Chancellors’ Committee and Xilinx
Inc. for financial support.
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Abstract. This paper describes the synthesis of dynamic differential logic to in-
crease the resistance of FPGAs against Differential Power Analysis. Compared
with an existing technique, it saves more than a factor 2 in slice utilization. Ex-
perimental results indicate that a secure version of the AES algorithm can now
be implemented with a mere doubling of the slice utilization when compared
with a normal non-secure single ended implementation.

1 Introduction

Side-channel attacks (SCAs) have been identified as an important open issue related to
the general security of cryptographic applications on FPGAs [1]. These attacks find
the secret key with information associated with the physical implementation of the
device, such as time delay and power consumption. Much effort has already gone into
setting up the Differential Power Analysis (DPA) on FPGAs [2].

We have previously presented a logic level design methodology to implement a
secure DPA resistant crypto processor on FPGA [3]. In this manuscript, we study the
synthesis aspects in order to reduce area consumption and time delay. The next section
briefly introduces Wave Dynamic Differential Logic (WDDL), the cornerstone of the
logic level design methodology. Section 3 discusses a technique to combine several
WDDL gates into 1 slice. This reduces the area consumption and time delay. Section 4
describes the clustering procedure of the synthesis methodology. In section 5, the
performance is evaluated. Finally, a conclusion is formulated.

2 Wave Dynamic Differential Logic

To address power attacks, we have introduced a family of secure compound standard
cells, referred to as Wave Dynamic Differential Logic [3]. WDDL can be constructed
from regular standard cells and is applicable to FPGA. WDDL achieves its resistance
by charging in every cycle a constant load capacitance. It is dual rail with precharge
logic in which a pre-discharge wave travels over the circuit. In the precharge phase,
the inputs to the WDDL gate are set at 0. This puts the output of the gate at 0 and the
precharge wave travels over to the next gate.

The set of logic gates is restricted to the WDDL AND- and OR-gates in order to
assure that every compound standard cell has exactly 1 output transition per cycle [3].
In addition, it is essential for input independent power consumption that the gate
________________________
* This work was supported in part by NSF grant CCR-0098361.
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always charges ideally the same load capacitance. The capacitances at the differential
in- and output signals are alike [4]. There is however a difference in the interconnect
capacitance due to routing variations. Placing the 2 LUTs of a compound standard cell
adjacent and in the same slice minimizes this effect. Then, the differential signals need
to travel the same distance.

The basic building block of a Virtex-II FPGA is known as a slice and consists of
two 4-input, 1-output look up tables (LUTs), some multiplexers and registers. A
WDDL AND-gate (OR-gate) occupies 1 slice, in which the G-LUT functions as an
and-operator (or-operator) on the true inputs, while the F-LUT functions as an or-
operator (and-operator) on the false inputs.

3 Slice Compaction

Currently, 2 LUTs are used to build a compound WDDL gate. Each LUT is generates
one output of the differential output pair. It is however possible to add more function-
ality into each LUT. A cluster formed by an arbitrary collection of G-LUTs and the
cluster formed by the corresponding F-LUTs behave as a compound WDDL-gate. The
2 clusters (1) are differential; (2) transmit the precharge value; and (3) have a 100%
switching factor. A LUT on the Virtex-II platform has 4 inputs and 1 output. In this
case, the clusters can have at most 4 inputs and 1 output.

Fig. 1 shows an example. Fig. 1A depicts the single ended logic function to be
implemented. The WDDL implementation that results from our original methodology
is shown in Fig. 1B. Each gate is replaced by its corresponding WDDL gate. In total,
6 slices are occupied. The logic depth is 3. Fig. 1C shows the implementation after
clustering. This implementation occupies only 2 slices and has a logical depth of 2.
The clustering algorithm to obtain such compact, side-channel resistant implementa-
tions of WDDL based circuits is the topic of this paper.

4 Logic Synthesis

The kernel of DPA-proof logic synthesis is a clustering algorithm. Given a DPA-proof
implementation consisting solely out of secure compound WDDL AND- and OR-
gates, it partitions the design into groups of LUTs with 4 or less distinct inputs and 1
output. Each group will form together with their corresponding dual group a secure
compound gate and will be mapped onto adjacent LUTs within the same slice. A
group of LUTs can be divided into many partitions. Various factors, such as graph
traversal order and redundancy introduction, influence the compaction. The remainder
of this section describes an alternative, yet efficient clustering procedure.

4.1 Clustering Through Transformation

Fig. 1C could also have been obtained through a transformation of the synthesized
single ended design, shown in Fig. 1D. It is a parallel combination of this design and
its dual. To implement an arbitrary logic function however, several inversions may be
present. Inversions prohibit a direct transformation.
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Fig. 1.  Original single ended logic function (A); WDDL implementation (B); clustered WDDL
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This is best seen with an example. Fig. 2A shows a logic function implemented
with and2, or2, and inverter gates. The synthesized single ended implementation is
shown in Fig. 2B. Note that inside one LUT, there is an inversion. This is not a good
partitioning. The precharge 0 at the input of the inverter is propagated as a 1 and con-
sequently at least 1 of the 2 dual LUTs will have a 1 at the output during the precharge
phase. Hence, the precharge 0-wave is halted. The WDDL implementation obtained
through to the original design methodology is shown in Fig. 2C. Here the inverters
have been removed. The outputs of the secure compound gate that precedes the
inverter have been exchanged and as a result there is no inverter anymore to halt the
precharge wave. This procedure however, interconnects the G- and F-LUTs.
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Fig. 2.  Inversion mixes G-LUTs and F-LUTs: arbitrary logic function with inversion (A);
synthesized single ended design (B); and original WDDL implementation (C).

4.2 Practical Design Flow

The examples of above, lead to a first design flow:
1. The design is synthesized with a limited standard cell library (and2, or2, inverter).
2. The inverters are removed from the result of step 1. The input of each inverter

becomes a global output; the output of each inverter a global input.
3. The result of step 2 is synthesized for FPGA implementation.
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4. Each LUT of step 3 is implemented in a G-LUT, its dual in the adjacent F-LUT.
The in- and outputs created in step 2 are reconnected. The inversions are estab-
lished by switching the differential connections.

A detailed discussion of this design flow is available [5].
Performing 2 synthesis procedures (in step 1 and 3) is inconvenient and seems re-

dundant. Furthermore, the methodology is only suitable for area optimization. In step
4, the disconnected paths, which have been created in step 2 through stripping of the
inverters, are connected. As a result, the delays are summed and may be larger than
the critical path of step 3. In the next section, a compressed design flow is presented
that ignores steps 2 and 3 and that can minimize the critical path.

4.3 Compressed Design Flow

Since a cluster formed by an arbitrary collection of and2 and or2 gates and its dual
will behave as a WDDL gate, the synthesis library can be expanded to include all
functions in which 4 or fewer inputs are combined with the and2 and or2 operator.
Additionally, since all signals will eventually be differential, the input signals may be
inverted and the output signals may be inverted. Or in other words instead of having a
secure AND and OR gate, we synthesize directly with the complete selection of secure
gates that can be implemented in a slice. We can now skip step 2 and 3 of the practical
design flow. The resulting secure digital design flow to implement DPA resistant
FPGAs is shown in Fig. 3. The gray colored blocks are the stages of the previous
design flow that have been expanded or excluded.

The script transforms the single ended gates in their WDDL counterparts. Each
gate declaration is replaced with a primitive module of the FPGA and the dual of this
primitive module. Mapping directives are added to implement both in adjacent LUTs.
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Fig. 3.  Secure digital design flow for FPGAs.

5 Experimental Results

We implemented substitution-boxes of Kasumi, DES and AES. For each substitution-
box, 4 designs have been implemented: (1) original WDDL, the result from the origi-
nal AND-OR design methodology (Fig. 1B and 2C); (2) differential, the result from a
regular insecure synthesis of the differential netlist of the original WDDL description;
(3) compacted WDDL, the result from the compressed design flow of section 4.3 (Fig.
1C); and (4) single ended, the result from a synthesis of a normal insecure single
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ended design (Fig. 1D and 2B). The differential implementation serves as benchmark
because the synthesis tool only has behavioral information and is free to map the
functionality onto the LUTs. We have used DesignAnalyzer for the original and the
compacted WDDL implementation and the synthesis tool in the XST Verilog design
flow for the differential and the single ended implementation. The programming files
have been generated for a Virtex2 xc2v1000-6bg575 with the same pin locations for
each implementation. Synthesis and Place & Route have been done with the default
settings of the tools.

Table 1 presents the slice utilization. On average, there is a factor 2.25 reduction
between the original and the compacted WDDL implementations. There is also an
important difference, up to 37%, between the benchmark implementation and the
compacted WDDL implementation. The compacted WDDL designs of DES and Ka-
sumi are on average a factor 4.42 larger than the single ended designs. The secure
AES design however, only requires 1.95 times the slices of the single ended design.

Table 1.  Slice utilization.

 DES Kasumi AES 

 S1 S2 S3 S4 S5 S6 S7 S8 S7 S9 Sbox 

original WDDL 138 139 137 143 136 142 137 128 249 303 797 

differential 73 81 87 78 86 85 76 73 142 157 357 

compacted WDDL 67 65 64 57 70 68 59 64 110 123 340 

single ended 14 15 14 8 13 15 15 13 30 32 174 

6 Conclusions

We have presented a design methodology to synthesize secure DPA resistant logic.
Compared with the original WDDL, slice compaction offers more than a factor 2
reduction in slice utilization. The methodology seems perfect for the AES algorithm.
Compared with a single ended design, the overhead in slice utilization is restricted to a
factor 2. The experiments have also shown that the synthesis methodology achieves
smaller utilization factor than a conventional FPGA synthesis tool.
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Abstract. In this paper, we present a technique and a tool to debug
microprocessor systems implemented in FPGAs. We propose a method based
on debug logic insertion and a set of debug modules to provide soft core
microprocessors with In-Circuit Emulation capabilities.

1   Introduction

Designers have used several approaches for embedded microprocessor system design,
including several combinations of logic simulators, instruction simulators, hardware
emulators and in-circuit emulators [1]. Nowadays, implementing microprocessor
cores in FPGAs for rapid prototyping and system implementation is becoming quite
common. Methods and tools to debug designs implemented in FPGAs are needed.

FPGA vendors offer general purpose embedded logic analyzers, like Chipscope
ILA from Xilinx, SignalTAP from Altera or CLAM from Actel. They also offer
microprocessor soft cores especially designed to be implemented in their devices, like
Xilinx MicroBlaze or Altera Nios. Modern platform FPGAs integrate embedded
processors, like Xilinx Virtex-II Pro devices, that offer several PowerPC processors,
or Altera Excalibur devices, with an ARM processor. All these microprocessors and
cores have reasonable built in debugging capabilities.

In microprocessor systems design, debug resources are needed both for hardware
and software. In this paper, we show the techniques and tools that allow system
debugging in a general way, offering highly configurable event detection and tracing
capabilities, and the debugging of microprocessor systems, providing microprocessors
with in-circuit emulation features. The features offered range from simple event
detectors and signal monitors to the most powerful and resource consuming features,
like tracing, in-circuit emulation and complex event and sequence detection.

The most important properties of the presented debug features are their high
configurability, so that the user can adjust to available logic resources, remote control
of debug logic and expandability by means of user customized debug blocks.

The paper is structured as follows: section 2 explains the used techniques and the
architecture proposed for debug logic, section 3 deals with debug modules aimed for
embedded microprocessor systems debug, section 4 shows the tool for microprocessor
debug, section 5 shows some experimental results and section 6 states some
conclusions and future lines.
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2   Debug Logic Implementation: Debug Modules

Debug logic is inserted into a design in blocks called debug modules. Debug modules
are logic blocks that monitor some signals from the design and process their values to
produce some results. They are operated from a host computer, requiring mechanisms
to send parameters and commands and to extract data from monitoring and tracing. It
is important to use non intrusive mechanisms in order to be able to debug systems in
real time. It is also desirable to use mechanisms already available in FPGAs.
Nowadays, the most popular interface for debug is JTAG [2].

The techniques that have been considered for debugging are Boundary Register
sampling, and custom JTAG user registers. Pin sampling is a mandatory feature of the
JTAG standard. Signals can be monitored by routing them to unused pins and
modules can use this feature to extract monitoring data. Custom JTAG user registers
are shift registers built using FPGA logic. Xilinx and some Actel FPGAs allow the
connection of the FPGA logic to the built-in JTAG infrastructure to build these
registers. Debug modules can use these registers to capture monitoring data and to
store working parameters and instructions.

Other techniques, like Readback for signal access and Partial Reconfiguration for
faster module insertion and module control might improve the proposed methods [3],
although they would constrain the applicability to those devices where these
techniques are available.

An architecture for debug modules has been developed (Fig. 1). In general, they
have some processing logic to analyze and extract information from circuit signals. It
can have additional logic to control the module operation. Two shift registers are used
to communicate with the host: a data register (DR) is used to capture data and send it
to the host, and a control register (CR) is used to receive commands and parameters
from the host. Modules can also have outputs, to allow module interconnection.
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Fig. 1. Debug module general architecture

Although the JTAG standard suggests the implementation of a different shift chain
for every register, we have decided to use two shift chains, because when using Xilinx
devices, only two scan chains can be implemented by using the built-in JTAG
infrastructure. In Actel devices there is no restriction.

Debug modules must be highly configurable through the intensive use of generics.
Modules can be adjusted to fit the particular dimensions of the design, by modifying
parameters such as bus widths or counter lengths. Some parameters can also be
changed to restrict resource usage; the user can specify the inclusion or deactivation
of additional features or he can establish the specific resources to be allocated (like
the amount of tracing memory to be used, for example).
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3   Microprocessor Oriented Debug Modules

Although some general purpose debug modules have been developed, only
microprocessor related modules will be discussed. We want to provide any embedded
microprocessor with features like event detection and logging, breakpoints and
watchpoints, tracing and code performance analysis. To implement these features,
several debug modules have been developed: a Clock Controller, which allows to stop
the system and perform single-step and multi-step execution, a Logic Analyzer, and
an In-Circuit Emulator macrocell.

The Logic Analyzer is a data acquisition module intended to capture address and
data bus values at system clock speed and store them in FPGA embedded memory.
Users can choose the amount of memory allocated. Trace memory can be dynamically
reorganized to trace both buses, or only one of them with a higher number of samples.

The In-Circuit Emulator macrocell is a very complex and highly configurable
event detector for buses and single signals. The ICE is connected to the
microprocessor address and data buses, and to some control signals (Fig. 2).
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Fig. 2. ICE architecture

The ICE consists of a user-configurable set of event detector blocks. The blocks
are organized in two levels: first level detectors monitor microprocessor signals or
buses directly and second level detectors monitor other detectors to make more
complex processing.

At the first level, there are blocks that can detect events on the microprocessor
signals. These detectors can be divided into single signal detectors and bus detectors.
Single signal event detectors are activated with given signal logic values or edges.

Bus event detectors check conditions in buses. There are three different detectors
for buses: simple detectors, detectors with mask and ranged detectors. Simple
Detectors check a condition between the bus value and a given value (equal, different,
greater or lower). Detectors with Mask check the bus value against a given value and
mask. Ranged Detectors check the bus value position in relation to a given range
(inside, outside, above or below the range).

Detectors have three different versions: direct detector, detector with counter and
delayed detector. The direct detector is the detector in the basic form. The event
detector with counter has a counter to record the number of times the event has taken
place. In the delayed event detector, the basic event has to take place a selectable
number of times to be considered an event.

Second level blocks use event information generated by other blocks to make more
flexible event detectors or to count events. There are three possible blocks of this
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kind. Complex Event Detectors check the occurrence of a logical condition (AND,
OR) of a selectable set of level 1 detectors. A Sequence Detector checks the
occurrence of some complex events in a sequence. Global Counters allow counting
the occurrence of complex events and sequences.

With this set of detectors, debug microprocessor features can be implemented:
breakpoints and watchpoints are implemented combining the clock controller and bus
detectors in the address and data bus; performance analysis is performed using ranged
bus detectors in the address bus; tracing is performed using the logic analyzer module
triggered by a complex event detector or a sequence detector.

4   Tools

Some tools have been developed to aid the user in debug related tasks. The CHDT
(Configuration Handling and Debug Tool) [4] has been designed to help in debug
tasks: module selection, configuration and interconnection, automatic VHDL
modification, synthesis and FPGA programming, and debug logic operation.

The debug methodology allows the design of module controllers, software tools
designed to operate debug modules. Module controllers can remotely control debug
modules by sending commands and receiving monitoring information trough the
CHDT in a client-server TCP/IP architecture. The CHDT is attached to the hardware
using the JTAG interface and acts as a server for debug module controllers.
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Fig. 3. ICE tool: execution control window

A module controller has been designed for microprocessor debugging (Fig. 3).
Among other features, it can arrange the different detectors of the ICE, the Clock
Controller and the Logic Analyzer to implement software debugging features at
assembler code level: breakpoints, watchpoints, profiling and tracing.

5   Experimental Results

The user can choose the amount of debug logic to be inserted in the system. The
possibilities range from simple Signal Monitors, which do not use additional logic, to
the debug features presented in this paper. As an example, a microprocessor system
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has been built and implemented in a board with a Virtex-200E. Debug features have
been added to a PicoBlaze, an 8-bit soft core microprocessor provided by Xilinx [5].

The ICE macrocell has been attached to the program memory, and has been
configured to implement 6 single signal detectors, 6 bus detectors with mask for the
address bus, 4 simple event bus detectors for the data bus, and 2 complex event
detectors. With this configuration, 6 breakpoints and 2 watchpoints can be
implemented. The Logic Analyzer has been attached to trace the address and data bus,
and has been configured to use all available RAM in the device. It can store 4K
samples if both buses are traced, or 12K samples if only the address bus is traced.

This debug configuration has supposed an increment in FPGA resource usage of
845 flip-flops, 1418 LUTs and 24 RAM blocks. In this case, as the FPGA still has
unused resources, more debug features could yet be implemented. Performance could
also be affected by debug logic insertion. In this case, critical path delay has just
increased from 23.5ns to 24.7ns, which is not a significant change.

6   Conclusions and Future Work

In this paper, we have presented some techniques, modules and tools that allow the
debugging of microprocessor systems implemented in FPGAs. Debugging capabilities
are provided by the insertion of debug modules into circuit descriptions, and taking
advantage of unused FPGA logic resources.

The presented approach offers some advantages over existing solutions. The
methodology allows the usage of a wide range of debugging features, including
complex event detection, tracing and in-circuit emulation for microprocessors. The
debug methodology is expandable, allowing an easy integration of new debug
features. The presented debug modules also offer a highly configurable to allow the
user to establish an appropriate trade-off between the needed features and the
available logic resources.

The presented ICE can be used as a standard source code debugger, implementing
breakpoints and watchpoints, and also as a non-intrusive debugging tool, being able to
detect and take account of complex event occurrence.

Among the future lines, there is an ongoing work to add support for readback and
partial reconfiguration. It might result into an area overhead reduction and an increase
of the overall observability.
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Abstract. FPGAs provide powerful hardware emulation platforms for rapid
prototyping of digital designs. This potential is usually restricted to overall
system level emulation, with interactive debugging possibilities limited to the
real-time observation of external signals. This article describes the most recent
advances made in the UNSHADES[1] system, where unlike most commercial
packages, signals need not be previously selected, nor are limited in number or
size by the internal memory available. This system, which adds a small debug
controller to the design to be inspected, provides many new design debugging
features such as single stepping, state modification or register inspection over
the entire design. The debug controller provides these powerful debugging op-
erations without the need for large design modification whilst occupying itself
very little FPGA resources. A minimal debug controller implemented in a
virtex-II FPGA requires the occupation of just 3 IO pins and 43 logic slices;
over half of these logic slices are dedicated to an optional 32-bit cycle counter.

1   Introduction

As digital designs grow larger, and FPGA prototyping become more common, current
design debugging concepts often become ineffective. Digital design debugging is
heavily based on user created test benches and software logic simulators. Any error,
misconception or idealization of the external stimulation will often be found in both
the design under test and the user written simulation test bench. For these reasons, the
FPGA foundries have sponsored the creation of in-circuit debuggers. An example of
which is the Xilinx Inc ChipScopeTM[2] or Altera Inc SignalTap TM[3] packages.
These packages with their associated software allow the insertion of a simple logic
analyzer IP inside the FPGA. This IP uses the internal FPGA memory to record inter-
nal signals, and later transfer the results to the user. It has the advantage that the user
design does not need to be manually modified, but competes for the limited FPGA
resources. The presence of the signal probes in the final design netlist can reduce the
design routability, lower allowable clock speeds, and possibly mask or create subtle
design timing problems that are only present when the analyzer is not used. A full
study of these effects can be found in [4].
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The UNSHADES system [1] provides a complementary debugging tool. By using
the built-in Xilinx Capture macros and the dedicated configuration port it does not
require that the design is modified in order to monitor internal system state. Full
FPGA state recording is performed in-situ and only an insignificant amount of FPGA
resources are required. The disadvantage of the UNSHADES-1 approach is that in
order to provide cycle by cycle analysis, the design must be “frozen” every time the
state is captured or modified and only “released” when the necessary state informa-
tion has been successfully transferred to the external debugger software. Although
individual clock cycles are run at full clock rate, this stop-start nature of the design
clock may cause the design to loose synchronization with the external stimulus.

The system consist of a slightly modified version of the design to be inspected, and
the custom UNSHADES debug controller. The debug controller [5], consists of a
very small finite state machine and the necessary logic to communicate the debugger
state and activate the Xilinx Capture macro when an inspection is to be made.

2   The UNSHADES System

The basic functioning of the UNSHADES system is based on the concept of debug-
ging events. Debugging event conditions are added by the user to the HDL source
code to be debugged. The event conditions are concurrent VHDL expressions that are
true when the condition is true. Together the user design and controller constitute the
complete UNSHADES debuggable design. When an event is activated, the design
under inspection is frozen, the CAPTURE macro is stimulated and the entire FPGA
register state can then be read from the SelectMap configuration port. Partial recon-
figuration and reading allows subsets of the state information to be read if full state
information is not requested. While the design is frozen a read-modify-write-write
sequence of partial configurations enables the free modification of the value of any
FPGA Flip-Flop. A 3-pin IO interface provides progress indication, single cycle step-
ping, asynchronous state capture and clock resumption functions.

For the system to work, all synchronous elements of both the controller and design
must use the same clock, and the design to be inspected must be modified to use a
single, asynchronous clock enable signal. This global clock enable signal is controlled
by the debug controller. In many cases this global signal was the limiting factor in
design operation speed, and has the inconvenience that all IPs used within the design
must either come ready with a clock enable input or provide RTL source so that the
signal can be added, this is often not the case.

3   Improving the UNSHADES System: Clock Control

In principal the easiest method for freezing the synchronous elements of the design
under inspection is to use a gated clock. Such techniques have been historically un-
suitable for FPGA due to various problems. The FPGAs provide special low skew
buffers and routing for the clock signal, any attempt to perform the logical AND with
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the clock and the gate control would be incompatible with this dedicated resource and
produce unusable high skew clock networks. Additional care must also be taken to
guarantee that runt pulses or glitches clocks are never generated. These problems
have been completely removed in the newer Xilinx FPGAs. In the Virtex-II and later
devices, a special clock buffer macro has been added. This cell, the BUFGMUX
contains all the necessary circuitry to guarantee glitch free switching between two
independent clock sources. If one of these clocks is a constant logic value, then this
cell can be used as a low skew global clock buffer with dedicated clock enable.

Figure 1(a) shows the implementation of a gated clock that can be used in the
newer Xilinx FPGAs. The input I0 of the buffer is tied low thus when the select signal
CE selects input I0, the buffer will maintain the output clock signal low as soon as the
clock input is low.  In earlier devices, this buffer did not exist, and the alternative
structure of figure 1(b) can be used. The explicit instancing of a global clock buffer
(BUFG) produces a low skew clock network, whilst a flip-flop is used to avoid
glitches. An obvious consequence of this is that the resultant gated clock is at half the
debug controller clock frequency.
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i1 s
o

BUFGMUX

(a)
CE

(b)

d
q
q

CE

BUFG

o

Fig. 1. Xilinx FPGA gated clock buffer configurations: (a) The Virtex2 BUFGMUX imple-
mentation, (b) Half speed implementation for other Xilinx devices.

It should be realized, that although both techniques produce correctly controlled
clocks, the gated-clock will have an unknown phase relationship with the debug con-
troller clock. Clock compensators (DDLs or DCMs) can not be used, as they will lose
synchronization when the clock is gated. This adds a serious complication to the de-
bugger control. The debug controller must halt the clock whenever an event is true
before the next clock edge, but it can not make decisions using its own clock due to
the unknown phase difference. The existence of debug event is possibly just a tempo-
rary glitch produced by timing delays that will have passed before the next design
clock edge. Therefore while the inspected design is running the debugging events
themselves control the gated clock, the debug controller passes to the stopped state
once it detects that the design clock has stopped. With this configuration, except in
the unlikely case that the debug event generator causes the critical delay, the design
under inspection will be able to operate at its normal design frequency. With the im-
plementation of figure 1(b) the case is somewhat worse. The clock signal is generated
from a debug controller flip-flop within an FPGA logic block and the clock signal
must use general routing resources to arrive at the BUFG clock buffer tree. In this
case the input clock frequency must be chosen such that the time between the delayed
gated clock edge and the next debug controller clock edge is equal to the desired
working clock period. This may not be possible, and timing related debugging will be
somewhat more limited.
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4   Improving the UNSHADES System: Event Definition

Figure 2 show the basic event capture structure of the debug controller. The debug
controller consists of two states (stopped and running), input filters, clock control and
event detectors. Two basic event detectors are provided that are independent of the
design under inspection. These are the “cycle counter event”, and the “resume event”.
The cycle counter event is a 32 bit counter using the gated clock. When the counter
reaches zero a “counter event” is produced. A “resume event” is produced by a rising
edge of a dedicated input pin. The resume event stops the clock while the design is
running or resumes the clock when stopped. These two events are all that is required
for the creation of a minimal debug controller. A completely unmodified design can
be placed under UNSAHDES inspection by simply including it with the controller.
Certain areas have been identified where such implementation is advantageous. The
design is completely unmodified and critical timings or input related problems are not
modified by the debugger. The design can be used "in-system" and in the moment
that a problem is observed, the debugger can be invoked by a “resume event”. Once
invoked, the user has complete single stepping and signal observation/modification
access to the design, and thus the area where the fault lies can be quickly identified.
The cycle counter allows cycle accurate periodic state inspection. It can be loaded
with a cycle number where inspection will begin or resume.
For more powerful debugging, the user must provide a list of event conditions. The
user must specify internal signal conditions that flag a moment that could be of inter-
esting for the debugging of the design. Rather than using static conditions, each de-
bug event “dbg_eventN” is implemented as:
<<dbg_eventN <= '1' WHEN (UserSignal OP dbg_constantN)   ELSE '0'; >>
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Where dbg_constantN is an internal registe, and OP a user selected operation. All
debugging constant registers are held within the debug controller, and no internal
logic can modify their value. As the “constants” are stored in flip-flops, the debugger
can now freely modify the event condition register value using the general
UNSHADES register modification option.

5   Experimental Results and Conclusions

The debug controller has been implemented and tested in SpartanII, VirtexE devices
using the flip-flop based gated clock, and in the Virtex-II devices using the
BUFGMUX cell. The debugger has allowed the detection of register overflow and
state machine errors in a variety of situations [6].
The ability of the debugger to stop a design in an arbitrary cycle and modify registers
contents is currently being exploited for the simulation of radiation produced bit up-
sets (Single Event Upsets) of digital designs for space applications, under the
ESA/ESTEC sponsored project FT-UNSHADES.
The controller is very small; only 20 to 43 FPGA slices (depending on the cycle
counter size). In Virtex-II devices with the BUFGMUX cell available, the debugger
has negligible effect on the speed and performance of the design under inspection.
The use of flip-flop registers to hold the constants that form part of debugging events
conditions enable “run time” modification of the all conditions via partial reconfigu-
ration.
Future work will study this problem so that the debugger insertion can be made trans-
parent to the design to be debugged and allow debugging of FPGA internal RAMs.
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Abstract. A method for testability-oriented optimization of sequential circuits
implemented using FPGAs with embedded memory is presented. It specifies the
content of those memory words which are not defined by the conventional FSM
synthesis. The experimental results confirm its effectiveness; for the largest
examined circuit, the self-test session required to achieve an acceptable level of
fault escapes for the optimized design, obtained using the proposed procedure,
is almost 106 times shorter than for the non-optimized design. The proposed
method does not involve any extra circuitry or speed degradation. Also, it does
not require any extra reconfiguration during self-testing.

1 Introduction

Modern FPGAs contain embedded memory. Embedded memory, in its ROM-like
mode of operation (with its content determined at the time of programming) can be
used to implement complex combinational or sequential circuits. In this paper, we
focus on implementations of finite state machines (FSMs).

A simple implementation of an FSM, in which a memory module contains the
entire combinational part of the circuit, is shown in Fig. 1(a). To reduce the size of the
memory block, an alternative implementation, shown in Fig. 1(b), that includes an
extra module, called address modifier, has been proposed [1]. Dedicated synthesis
methods have been developed for the structure of Fig. 1(b) [2-4].
When the structures of Fig. 1 are implemented using FPGAs, the memory module is
normally mapped to embedded memory blocks, whereas the address modifier is
implemented with LUTs included in programmable logic blocks. The address register
can be implemented either with flip-flops included in programmable logic blocks or
as an internal register of the embedded memory array located at its input.

To thoroughly exercise the FPGA configuration corresponding to the specific user-
defined application, application-dependent testing [5], also referred to as application-
oriented test [6] or configuration-dependent testing [7], is performed. A number of
techniques have been proposed for application-dependent testing (usually, self-
testing) of sequential circuits implemented with LUT-based FPGAs [5, 7-10]. The
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Fig. 1. Memory-based implementation of a finite state machine (FSM)

methods presented in [7-10] rely on a modification of the user-defined functions of
LUTs (without changing the LUT interconnection structure) and, therefore, are not
suitable for the memory-based FSM structures of Fig. 1. An analysis of the
applicability of the self-test technique presented in [5] to FSMs implemented using
embedded memory of FPGAs shows that a modified structure, in which an internal
register of the embedded memory array located at its output serves as the FSM
state/output register, is more suitable for testing than alternative FSM structures [11].
Therefore, in our study, we assume the BIST scheme shown in Fig. 2.

Pseudorandom Test 
Pattern Generator

Test Response Compactor

STATE/OUTPUT REGISTER

ADDRESS MODIFIER

MEMORY

EMBEDDED
MEMORY

PROGRAMMABLE
LOGIC

PROGRAMMABLE
LOGIC

clock

Fig. 2. Self-testing of an FSM implemented using an FPGA with embedded memory

2 Extension of Memory Specification

The method presented in this paper is intended to optimize the testability of an FSM
defined by an incompletely specified next state function, that is implemented using an
FPGA with embedded memory and is tested using the scheme of Fig. 2. The
optimization relies on an appropriate specification of the content of those memory
words which are left undefined by the conventional FSM synthesis procedure. This
process is referred to as extension of memory specification or, simply, memory
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extension. As the proposed optimization does not involve the FSM output function,
we assume that the output of the FSM is represented by its current state.

We assume the single transition fault model [12]. In this model, a fault means an
incorrect transition to the next state. Thus, each fault f is defined by a triple (s, v, s*),
where s is the current state and v is the input vector that causes a faulty transition to
state s* (s* denotes any state different from that defined by the next state function).
Thus, the number of faults is equal to the number of pairs (s, v) for which the next
state function is specified. With the assumed trivial output function, pair (s, v)
represents a test (the only one) for fault f.

In a self-testing environment, such as that of Fig. 2, assuming that a random test
sequence of a given length is applied, the circuit testability can be measured by the
expected fault coverage or by the escape probability, i.e. the probability that at least
one fault from the assumed set of faults will be left undetected [13]. Alternatively, the
circuit testability can be measured by the length of test (random test sequence)
required to obtain a specified level of fault coverage or escape probability.

As in our analysis we focus on the improvement of the susceptibility of the circuit
to random testing, the impact of test response compaction is disregarded. Then, the
values of the testability measures are determined by detection probabilities of faults
included in the fault model, especially faults that are most difficult to detect [12, 13].

In the FSM implementations of Fig. 1, with the trivial output function, the memory
contains state codes - the values of the next state function. Thus, any extension of the
memory specification corresponds to some extension of the next state function.

To optimize the circuit testability (to maximize the detection probability of the
most-difficult-to-detect faults), the next state function should be extended so its values
are as uniformly distributed over the set of states as possible.

For the simple memory-based implementation of the FSM (without an address
modifier), the procedure that extends the next state function NSF, so that to satisfy
this objective is quite trivial. For an FSM implementation with an address modifier,
the procedure is more complex because, in general, several state-input combinations
(for which NSF has the same value) may correspond to a single memory word. This
correspondence is defined by the mapping function mapf: (s,v) → addr, which is
determined by the function of the address modifier. The proposed procedure is

procedure NSF_extension(NSF,memory)

derive the mapping function mapf;
until all values of NSF are defined do

find a memory word whose content is not defined and such that its
address, addr, occurs most frequently as the value of mapf;
find state s* that occurs least frequently as a value of NSF;
for each (s,v) such that NSF(s,v) is not defined and mapf(s,v) =
addr, assign NSF(s,v) = s*;

3 Experimental Results

To demonstrate the effectiveness of the proposed method, we examine several
benchmark FSMs with an incompletely specified next state function. The output
functions of the benchmarks are ignored. As all the examined FSMs fit into an FPGA
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with embedded memory blocks of 4K bits (available in Altera APEX II devices and
Xilinx Virtex, Virtex-E and Spartan II devices), we consider the simple memory-
based implementation (without an address modifier).

The results of our experiments are shown in Table 1. For each FSM, we compare
an optimized design, with memory extension (in the first subrow), and a non-
optimized design, with all the memory words whose content is not specified in the
original FSM description filled with the same value (in the second subrow). The
testability measures are calculated for a random test sequence applied to the circuit
input, using a procedure developed based on theoretical results presented in [12, 13].

The following explanations should be made regarding the data shown in Table 1:
- the incompletion factor is the fraction of state-input combinations for which the

value of the next state function (in the original FSM specification) is not defined;
- DPwf is the detection probability of the worst fault (most-difficult-to-detect fault),

i.e. the probability that such a fault is detected at a given clock cycle;
- Lwf is the length of a random test sequence (length of test) required to detect the

worst fault with probability no lower than δ (required to assure an escape
probability no larger than ε, ε = 1 - δ), calculated for δ = 0.999;

- FC is the expected fault coverage, calculated for Lwf - the length of test required to
detect the worst fault in the optimal design with probability no lower than 0.999;

- LL and LU are the lower and upper bound on the length of test required to achieve
an escape probability not larger than ε = 0.001 (for circuit beecount, LL and LU

cannot be effectively calculated using formulas given in [12] because assumptions
underlying the derivation of these formulas are not satisfied); for all the examined
circuits LL = LU;

- Lnopt/Lopt shows how many times the length of test required to achieve the escape
probability no larger than ε = 0.001 (given by LL or LU) is lower in the optimized
design than in the non-optimized design.

Table 1. Testability measures for optimal and non-optimal memory extension
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The results in Table 1 show significant differences between the optimized and non-
optimized designs with regard to testability characteristics. For example:
- for circuit tma, the test session required to achieve the assumed level of test quality

for the optimal design is almost 106 times shorter than for the non-optimal design;
- for the optimal design of circuit s8, a sequence of 550 random patterns is sufficient

to obtain the fault coverage of 99.9%, whereas for the non-optimal design only
41.5% of faults are detected by the same test sequence.
It can be seen that the presented approach is very effective even for FSMs with a

small number of undefined values of the next state function. An optimal extension of
the next state function of circuit beecount, which is undefined for only 5 state-input
combinations, results in an 8-fold reduction of the test length required to achieve an
assumed level of test quality.

The presented experimental results demonstrate both the need for an appropriate
memory extension (for some circuits, e.g. circuit tma, without such an extension no
acceptable level of test quality can be achieved) and the effectiveness of the proposed
procedure.

The proposed optimization of the circuit testability does not involve any extra
circuitry or speed degradation. Unlike other techniques for application-dependent
FPGA testing, that rely on multiple reconfigurations of the user-defined circuit in the
course of the test procedure [7-10], the method presented in this paper does not
require any reconfiguration of this type. The only cost associated with the proposed
method is an extra design effort which - because of the computational simplicity of
the proposed memory extension procedure - is negligible.
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Abstract. The implementation of a neuromimetic bat model is presented in this
paper. In particular the use of an FPGA to perform high performance multi-
channel frequency filtering is described. Since many applications in auditory
modelling require implementation of filter banks that model the characteristics
of psychophysical signals, the paper focuses on an FPGA implementation of the
digital filters in the neuromimetic cochlear. The paper presents an efficient
hardware realization of a number of IIR Butterworth bandpass filters. The
pipelined parallel filter architecture is implemented on a single Xilinx Virtex II
FPGA chip running in real time.

1   Introduction

Bats exhibit navigation and prey-capture skills that when duplicated in a robot would
be the envy of any robotics engineer. This is all the more impressive if one realizes
that all the neural computations needed to sustain this behaviour occur within a brain
the size of a large pearl [1]. In order to apply insights gleaned from the study of bat
biosonar to the improvement of manmade sonar systems, it is necessary to investigate
more closely the biosonar tasks, e.g., prey capture and navigation, routinely executed
by bats. To facilitate the study of these tasks, we are building the CIRCE bat head [2],
a robotic system which reproduces, at a functional level, the echolocation system of
bats. This bionic bat head makes it possible to systematically investigate how the
world is not just perceived but actively explored by bats. In this paper a model and
implementation of one component of the CIRCE head are concentrated on: the
neuromimetic cochlea as implemented with FPGA technology.

A simplified model of the bat cochlear as shown in Fig.1, is a bandpass filterbank
with subsequent demodulation in each frequency channel by a combination of half-
wave rectification and lowpass filtering. This is followed by an optional automatic
gain control step implemented as a normalization prior to spike generation. The
analog signals are converted into a spike code by thresholding them. This
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quantitatively correct representation of the auditory nerve, allows us to study code
properties at a neural population level. The following section presents an efficient
filter bank implementation of the neuromimetic cochlea on FPGA.

Fig. 1. A simplified model of the cochlear processing

2   Hardware Implementation of the Filters

As shown Fig.1, the cochlear mechanical filtering of the basilar membrane forms the
first stage in the model. We used 2nd order IIR Butterworth bandpasss filters to
undertake the cochlear filtering.  The equation is given by

( ) ( ) ( ) )2(1)2()1( 21210 −−−−−+−+= nyanyanxbnxbnxbny                 (1)

As shown the equation (1), a single butterworth filter can be simplified into 3
multiplications and 3 subtractions, due to unique coefficient properties. The pipelined
operation is illustrated in Fig.2(a).Each column represents one clock cycle.X memory

Fig. 2. Operational process of digital filter processing

represents input variables stored and Y memory represents output variables stored.
As shown in Fig.2a, the input sample x0 in X memory and the coefficient b0 are read
in the first cycle, and then x0 is multiplied by b0 in the second cycle. y1 and a1 are also
read from the memories during cycle 2. In the third cycle, four operations take place.
(1) y2 and a2 are read from memory.(2) The product b0x0 is stored in the x memory at
the same time that the double delayed version b0x2 is read out of memory. (3) y1 and a1

are multiplied together. (4) The product b0x0 is delayed for one cycle. In the fourth
clock cycle, three operations are performed. (1) y2 and a2 are multiplied together. (2)
a1y1 is delayed one cycle. (3) The subtractor performs b0x0 - b0x2.  Due to the inversion
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equivalence of b0 and b2. This is equivalent to b0x0 + b0x2. In the fifth and sixth cycles,
the delayed a1y1 and a2y2 are subtracted from this result. The output appears in the
seventh cycle and is written back to the Y memory during a spare cycle in the later
filter operation. Fig. 2b shows how the resource usage of time domain multiplexed
filter implementations on the same physical hardware tile perfectly to make optimal
use of the multiplier resources [3]. In 32 filter implementation running at 100 MHz
with a 1 MHz sample rate, multiplier utilisation is 96%.

In our neuromimetic cochlea implementation, the input samples are broadcast into
22 bandpass filters blocks. Each of these 22 filter blocks is time domain multiplexed
to create 32 separate filters. The outputs appear on the 22 output busses at 3 cycle
intervals (after an initial latency of 7 cycles). Total 704 filtering output is in pipelined
parallel within 1μs.

In the design, all coefficients are stored in 16 RAM128X1Ss distributed RAMs in
advance. The intermediate values are stored in synchronous block RAM (RAM16_
S18_S18). The 22 parallel filter blocks take 22 multipliers and 22 RAMs. The 704
frequency filters are implemented on a single Xilinx Virtex II XC2V6000-4 running
in real time, the frequency span of the input signals is 20 kHz to 200 kHz. To improve
the precision of the design, the intermediate values of the algorithm may be extended
to 32bit, so that double the multipliers and block RAMs are required for the bandpass
filters’ implementation.

3   Conclusions

The pipelined parallel architecture of Butterworth bandpass filters has been shown to
be implemented efficiently at a high speed. The realization of the entire neuromimetic
cochlea on the chosen chip is achievable. The precision of the filters can be further
improved by extending the precision of intermediate values within the filter. The
current implementation is a scalable design and the filter coefficients are
programmable.

Acknowledgment. The CIRCE project is funded by the European Commission, FET-
LPS Initiative (IST-2001-35144).
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Abstract. Phylogenetic tree is a meaningful representation for the evolutionary
history of different organisms. Due to the exponentially increasing search space
for the optimal Maximum Likelihood (ML) criterion, the phylogeny inference is
classified as NP-hard. Heuristic search makes use of the likelihood evaluation
function extensively to give score for the candidate solutions. This tree evalua-
tion becomes a critical but computationally demanding task. In this paper, we
address the computational issue for the evaluation of a phylogenetic tree under
ML criterion, for a given set D of n properly aligned DNA sequences each with
l nucleotide sites. We present a high performance field programmable gate ar-
rays (FPGA) implementation for tackling the tree evaluation process in order to
speed up the tree reconstruction. An efficient fine-grained parallel design based
on the idea of partial likelihood is proposed. It has been shown to be 100 times
faster than solely using the software.

1   Introduction

Molecular phylogeny is the study of the evolutionary processes of different organisms
using molecular data (i.e. DNA and protein), which provides significant information
for molecular biologists to understand bacteria and virus behaviors. Evolutionary
relationships are often encoded as a bifurcating unrooted1 tree. Although there are a
variety of methods for reconstructing the phylogenetic tree from molecular data,
Maximum Likelihood (ML) has become one of the most popular approaches [1].
However, it is a difficult task to find the optimal solution based on the ML model,
simply because of the exponentially growth of the possible tree topologies with the
number of taxa. Though applying the heuristics can reduce the search space for a
near-optimal solution, the tree evaluation is computationally demanding and is being
used repeatedly. The long tree evaluation time results in the reduction of the overall
search speed. In order to reduce the computational load of tree evaluation, we intro

                                                          
1 An unrooted n-taxa tree refers to a tree with n leaf nodes (or taxa) and n-2 internal nodes.

Internal nodes and leaf nodes are of degree 3 and 1, respectively. The degree of a node is the
number of branches (or links) directly connected to the node.
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duce a speed-up scheme by using dedicate hardware for realizing the required com-
puting. In this paper, we present an FPGA-based implementation for the phylogenetic
tree likelihood computation, which is based on the idea of partial likelihood. The
architecture provides fine-grained parallelism on the likelihood computation, which
can speed up the tree evaluation process.

2 Maximum Likelihood Model

The maximum-likelihood model of interest is a probability function which has three
input sets: an unrooted bifurcating tree T, a molecular substitution model M, and n
aligned DNA sequences with l based pairs (i.e. each individual base pair is called a
site), given as an n × l matrix D. The substitution model has a set of parameters that
defines the rate of mutation from one base DNA to another. A simple model (i.e.
Jukes-Cantor Model [3]) is considered, where all rates of substitution are equal. Fol-
lowing [2], the probabilistic likelihood is defined as

=

==
l

s
s MTDPMTDPL

1

),|(ln),|(ln
(1)

where D= [Drs]n×l , Drs ∈ {A,T,G,C}, Ds is the site pattern of D at site s (i.e. the sth

column of D), and P(D|T,M) is the conditional probability calculated from the speci-
fied substitution model. M and tree T are yet to be determined. The likelihood
P(Ds|T,M) is the product of transition probabilities and the prior probability repre-
senting the incurred mutations. In general the number of product terms can be in-
creasing exponentially2 with the number of taxa.

A "pruning" algorithm described in [2] can effectively compute the likelihood
value and it is formally formulated by introducing the idea of partial likelihood [4].
The likelihood value can be computed by using a recursive routine, in which the ex-
pression is evaluated by working from the partial likelihood of smaller sub-tree to the
larger sub-tree. Subsequently, the likelihood value for the whole tree is estimated.
Based on this approach, number of multiplications is reduced3 and is linearly propor-
tional to the number of taxa. The partial likelihood can be regarded as a matrix
Q=[Qik]c×d, where c is the number of states and d is the nodes index, the recursive
routine can be “expanded” to be the evaluation of a matrix. The order of computing
these entries is importance, as data dependency exists among these partial likelihood
values. The dependency is defined by the tree topology. The entries of the matrix are
estimated while following a post-order tree traversal. After all entries of the matrix are
computed, the likelihood value can be readily obtained.

                                                          
2 For n DNA sequences each with l nucleotide sites, the likelihood computation for the n-taxa

unrooted tree requires 4n-2(2n-4) l multiplications
3 The required number of multiplications is 4(5n-12)l, where n>3.
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3 Implementation

We design a likelihood computational unit, which can be used to calculate the likeli-
hood values of a set of DNA sequences. The unit inputs the DNA sequences and the
partial likelihood updating order, and outputs the overall likelihood value. There are a
few routines in the computational unit, which are the partial likelihood computation,
root likelihood estimation and binary logarithmic computation. As the partial likeli-
hood computation is the most important routine and it takes most of the computation
effort, our discussion will focus on the partial likelihood computation in the following
paragraphs.

Each row of the partial likelihood matrix is independently estimated. Therefore
they can be computed in parallel. For DNA, there are always 4 states. Thus, we have
4 rows in the matrix. Fig. 1 shows the sequential and parallel ways to obtain the par-
tial likelihood. The figure is referring to a tree with 4 terminal nodes (i.e. A, B, C and
D). The node E and F are the internal nodes, which are the parent nodes of the leaves.
The nodes in the figure represent the process of computing the corresponding entry.
For the software implementation, the matrix is computed in sequential order. As the
partial likelihood values for each state is independent, the computation of each node
(partial likelihood) can be executed in parallel (See Fig. 1).

Fig. 1. Comparison for the execution order between software and hardware implementation

Since the partial likelihood can be expressed as a matrix, it is stored in the partial-
likelihood RAMs and addressed by the node index. We introduce 4 RAMs in parallel
and each stores one row of the matrix. Therefore the partial likelihood of different
state (i.e. a column of the matrix) can be obtained at the same time. The RAMs are
tightly coupling with 4 processing units running in parallel, in which the entries of the
partial likelihood matrix are estimated. To update a matrix entry involves a number of
multiplications and additions, which can be done in either sequential or parallel. The
design of processing unit can be varied at different degree of parallelism and it is up
to the availability of hardware resources. Another RAM is used to store the matrix
estimation order, which defines the dependency of the values in the matrix. The over-
all likelihood value can be obtained readily once finished the partial likelihood matrix
evaluation. The overall value is taken logarithm and accumulated before stored in the
register.

The likelihood for each site pattern Ds is independent of each other. Therefore, we
can partition the DNA sequences into many equal length segments and stored in dis-
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tributed memories. Then a number of likelihood computational units are assigned to
access these segments at the same time. The final results of each computational unit
will be summed up as the overall likelihood of the whole sequence. This parallelism
can be effective to reduce the computational load of the likelihood value for a long
sequence. The speed-up factor (i.e. the ratio of time for sequential execution to paral-
lel execution) equals to the number of computational units implemented. Certainly,
the speed-up factor is limited by the availability of FPGA resources, where the re-
sources consumption is also directly proportional the number of computational units
implemented.

We implemented our design using a Virtex-II XC2V6000 FPGA on the ADM-
XRC-II board which communicates with the host PC by the PCI interface. The FPGA
is running at 77.5MHz. Comparison is made between the software and FPGA imple-
mentation. The time is measured by varying the number of taxa on a fixed length
(l=500) and frequency. We found that the computation time increases linearly with
problem size (n). FPGA with single computation unit offers around 20 times speed-up
when compared to the software. For up to five computational units, that each unit
estimates the sequences of 100 sites, the FPGA provides 100 times acceleration.

4   Conclusion

An efficient FPGA implementation for maximum-likelihood (ML) phylogenetic tree
evaluation is proposed. The design can provide speed-up for the critical tree evalua-
tion process and reduce computational burden for the phylogenetic tree reconstruc-
tion. The idea of partial likelihood matrix estimation is presented. It can be mapped to
a FPGA-based fine-grained parallel architecture, which provides parallel computation
for the likelihood value. The design has been realized with Xilinx Virtex-II FPGA.
Experimental results show that the FPGA-based tree evaluation is 100 times faster
than the software solution. Evaluation of large-scale phylogenetic tree for hundreds
DNA sequences using FPGA is regarded as future work.
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Abstract. With the accelerating growth of biological databases and the
beginning of genome-scale processing, cost-effective high-performance se-
quence analysis remains an essential problem in bioinformatics. We ex-
amine the use of FPGAs for finding repetitive structures such as tandem
repeats and palindromes under various mismatch models. For all prob-
lems addressed here, we process strings in streaming mode and obtain
processing times of 5ns per character for arbitrary length strings. Using
a Xilinx XC2VP100, we can find: (i) all repeats up to size 1024, each with
any number of mismatches; (ii) all precise tandem arrays with repeats up
to size 1024; (iii) all palindromes up to size 256, each with any number of
mismatches, or (iv) a somewhat smaller size of (i) and (iii) with a single
insertion or deletion. The speed-up factors range from 250 to 6000 over
an efficient serial implementation which is itself many times faster than
a direct implementation of a theoretically optimal serial algorithm.

1 Background, Models, and Results

The dominant production techniques for biological sequence analysis have been
based on partial string matching, either with the goal of obtaining a precise solu-
tion (e.g. with dynamic programming) or, much more commonly, a fast solution
(e.g. with heuristic techniques such as BLAST). However, there are sequences of
DNA for which these heuristic techniques do not work very well. These are often
repetitive sequences; processing these has been found essential as a complement
to—or as a preprocessing step for—not only partial string matching but also se-
quence assembly [1]. Repetitive sequences are also critical in their own right; see
e.g. surveys in [2,3]. There has been much theoretical work (e.g. [4] and the fine
introduction by Gusfield [3]), but unlike sequence alignment—where there has
been some interest in FPGA-based acceleration—analysis of non-trivial repeti-
tive structures has as yet received little such attention.

In this initial study, we investigate the capabilities of a high-end FPGA,
the Xilinx XC2VP100, with respect to a set of basic problems in the analysis of
repetitive sequence structures. To constrain the study, we use a single algorithmic
� This work was supported in part by the NSF through award 9702483 and the NIH

through award RR020209-01.
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model: the data are passed through the FPGA in streaming mode and processed
systolically. We have found that hardware structures based on simple cells are
sufficient to provide the basic functions of finding all repeats and palindromes of
arbitrary size with an arbitrary number of mismatch errors constrained only by
what can fit on the chip. The simplicity of the underlying structures ensures the
fast cycle time: all processing described here can be done at a rate of one char-
acter per 5ns. With the cycle time fixed, the question becomes the complexity
of the problem that can be solved within the given hardware constraint.

The tasks shown in Table 1 were examined, implemented (in VHDL; synthe-
sis and place-and-route using Xilinx Tools), and analyzed. Each of these tasks
are for strings of arbitrary length but with n determined by available hardware.
By mismatch, we mean Hamming Distance; by edit error, we mean an inser-
tion, a deletion, or a mismatch error. By tandem array, we mean a periodic
string that can be written ar for some r ≥ 2. Two tasks not addressed here
are tandem repeats (or palindromes) with multiple edit errors and tandem ar-
rays with errors. Dealing with multiple edit errors is probably best done using
dynamic programming, while tandem arrays with errors may be best analyzed
statistically [2].

Table 1. Enumeration of tasks and maximum sizes that fit on the Xilinx XC2VP100.

Task n

1. All tandem repeats of size l from 1 to n with up to n mismatches 1024
2. All palindromes of size l from 1 to n with up to n mismatches 256
3. Same as 1 with one edit error 64
4. Same as 2 with one edit error 40
5. Tandem arrays with period of size l from 1 to n 1024

For performance comparison, we also implemented the tasks in C and ran
them on a 3GHz Xeon-based PC. We found the FPGA versions to be from
250 to 6000 times faster. The C programs use trivial algorithms; we found that
programs based on the theoretically optimal serial algorithms are complex and
many times slower for the relevant problem sizes.

2 Algorithm and Implementation Sketches

Here we very briefly sketch the algorithms and implementations. For extended
versions, including methods of filtering the output also in streaming mode, please
refer to our web site (www.bu.edu/caadlab). Generally, we use a two tier struc-
ture. In the first, we feed the string through an array of comparators/counters
and get a series of results for every point. These include the size of the repeat or
palindrome about that point and the number of mismatches. In the second tier,
which we call postprocessing, we decide what information to send off chip, and
determine higher order structure such as arrays of repeats. Tasks 1 and 2 are
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done with basic structures alone (see Figures 1 and 2); the other three depend
also on output generated during postprocessing.
Task 1. Let α1 and α2 be two strings with equal length which would be identical
but for k mismatches. Let characters be shifted through α1α2 with i1, i2, o1,
and o2 being the characters that get shifted into α1 and α2 and out of α1 and
α2, respectively. We keep running counts of k mismatches as shown in Figure 1.

count 1

==
cREF

cOUT
cIN

Len=1Len=2Len=3Len=4Len=5Len=6

Fig. 1. Structure for initial tracking of tandem repeats of all lengths and mismatches.

Task 2. A substring about the center α1α2 is a palindrome of length l when
the first l characters of α2 match those of αreverse

1 . We again fold the string
upon itself (Figure 2) but instead of comparing a single mid-point character
with all other characters in the string, we perform pair-wise comparisons for
all characters from 1 to n/2 of αreverse

1 and α2. The results form a bit vector
of length n/2. For each length l from 1 to n/2, the number of errors in the
palindrome is equal to the number of zeros (mismatches) between 1 to l.

=

cOUT

cIN
gap

len=2
len=3

+
+

+
+

Fig. 2. Part of structure for tracking palindromes repeats of all lengths and all mis-
matches. We generate the initial bit vector and then sum for each length.

Task 3. For every substring α1α2 of size 2l, a matching prefix of length p in α1
and α2 will be a matching suffix of the same length in l − p cycles. This allows
us to generate, on every cycle and for every length l from 1 to n/2, the maximal
prefix and suffix common to α1 and α2.
Task 4. The circuit described above for k mismatches was replicated twice
with the second and third copies offset one spot ahead and behind, respectively.
A two-dimensional array keeps track of whether or not a palindrome for each
possible edit error position in each length has a number of matches greater than
or equal to the length minus the number of allowable mismatches.
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Task 5. Using the hardware in Task 1, when the counter for any length l (the l-
counter) reaches l, a tandem repeat at that position has no errors. As the string
is streamed character by character, the precise tandem array of that period
continues for as long as the contents of the l-counter remains equal to l.
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Abstract. Several implementations of Artificial Neural Networks have been re-
ported in scientific papers. Nevertheless, these implementations do not allow
the direct use of off-line trained networks because of the much lower precision
when compared with the software solutions where they are prepared or modifi-
cations in the activation function. In the present work a hardware solution
called Artificial Neural Network Processor, using a FPGA, fits the requirements
for a direct implementation of Feedforward Neural Networks, because of the
high resolution and accurate activation function that were obtained. The re-
sulting hardware solution is tested with data from a real system to confirm that
it can correctly implement the models prepared off-line with MATLAB.

1   Introduction

Artificial Neural Networks (ANN) became a common solution for a wide variety of
problems in many fields, such as control and pattern recognition to name but a few. It
is therefore not surprising that some of the solutions have reached an implementation
stage where specific hardware is considered to be a better solution than the most
common implementation within a personal computer (PC) or workstation.
A number of reasons can be pointed out as the motivation for this: need for higher
processing speed, reduced cost for each implementation and reliability.
Considering the possible solutions for a digital implementation the FPGA solution is
the most interesting taking into account the balance performance/price.
In the literature it is possible to verify that several solutions have already been tested
in the FPGA context. Nevertheless, the solutions that were found do not allow the
direct use of the neural models that are prepared frequently with software (like
MATLAB or specific software for ANN) within PCs or workstations.
All the solutions that the authors were able to verify present either a much lower
precision when compared with these software solutions [1], [3] or modifications in
the activation function that make them unacceptable to use directly the weights previ-
ously prepared [6], [7].
In the present work a hardware solution called Artificial Neural Network Processor
(ANNP), using a FPGA, designed to fit the above requirements for a specific applica-
tion is presented.
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2   Hardware Implementation

The notation chosen was 32 bits floating point according to the IEEE 754-1985 stan-
dard. Although it has been stated in [2] that “A few attempts have been made to im-
plement ANNs in FPGA hardware with floating point weights. However, no success-
ful implementation has been reported to date.”, and [5] have concluded that “floating
point precision is still not feasible in FPGA based ANNs”, there were at least two
applications reported: [3] which used floating point notation of 17 bits and [4], which
used 24 bits.
In the present work, the activation function used was the hyperbolic tangent.
As implementing the full functions is too expensive, the implementation was done
using piece-wise linear approximation according to the following steps: Choose the
first linear section; Compare this linear approximation with the hyperbolic tangent
implemented in MATLAB in order to verify when the maximum allowed error is
met; Start a new linear section; Repeat the operation until the region needed was fully
represented.
This algorithm led to the representation of the hyperbolic tangent with 256 linear
sections and provides a maximum error of 0,0000218 in values that are in the range
of [-1,1] (function output). This can be compared with other solutions like the one
using the Taylor series used in [3], which obtained an error of 0,51% and piecewise-
linear approximation used in [4], which obtained 0,0254 of “standard deviation with
respect to the analytic form”.
It is worth to verify that to obtain this error with the classical LUT approach 18110
samples of the function were needed. These samples represented in the 32 bits nota-
tion used would require more than a single FPGA of the type used, just to represent
the activation function.
The hardware platform used is the Cyclone EP1C20F324C7 FPGA from ALTERA,
in the kit Cyclone SmartPack from Parallax.
The ANNP was developed using the VHDL language and implements the following
components: 32 bits multiplier in floating point notation, 32 bits adder in floating
point notation, activation function, memory blocks, 3 finite state machines, serial
communication using RS-232 protocol.
The implementation of the activation function uses 3 ROMs of 256x32 bits, that is
24.576 bits, which are implemented in 6 blocks of 256x16 bits.
The complete implementation uses 235.008 bits, which are in fact 285.696 bits if the
parity bits (and others that are used for special functions) are taken into account, of a
total amount of 294.912 bits available, that means that 96,9% of the bits were used.

3   Test System and Results

The hardware implementation of the ANN was tested using several models of a sys-
tem, which were previously prepared in MATLAB. This system is a reduced scale
prototype kiln, which was working under measurement noise. For further details
please see [8]. The comparison of the accuracy obtained in control simulations
against the MATLAB software is summarized in table 1.
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Table 1. Mean Square Error comparison between the MATLAB and FPGA results

MATLAB Simulation FPGA Results
Model

Ramp Square Random Ramp Square Random

M-1 1,2146e-4 0,0146 1,3343e-4 1,2151e-4 0,0146 1,3345e-4

M-2 7,8682e-5 0,0040 1,3445e-4 7,8666e-5 0,0040 1,3440e-4

M-3 8,1468e-6 0,0069 1,5426e-5 8,1456e-6 0,0069 1,5426e-5

4   Conclusions

This work proposes a hardware implementation of an ANN using a FPGA. The
FPGA was chosen because of the lower prices for a single implementation.
The goal that was searched was to obtain a hardware solution that allowed the direct
use of the weights, usually prepared in a software environment with a much higher
resolution than the ones usually obtained in FPGAs implementation.
This objective was successfully accomplished as was shown by the control tests done
with models of a real system, where the maximum error obtained between the
MATLAB and the hardware solution, using the MSE as a measure was of 5e-8.
A new algorithm to apply with piece-wise linear approximation was also presented
that allowed high resolution in the implementation of the hyperbolic tangent. This
algorithm allows the definition of the maximum error that is acceptable and supplies
the number and equations of the corresponding linear sections.
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Abstract. Most biometrics systems are implemented on high performance
microprocessors executing complex algorithms on software. In order to develop
a low-cost and high-speed coprocessor, floating-point computations have been
substituted by fixed-point ones, and a pipeline scheme has been developed.

1   Introduction

An automatic fingerprint authentication system is structured in three different stages:
image acquisition, feature extraction and matching. Minutiae matching is the most
widely used because it contains useful distinctive information, however it requires
complex computations during extraction. Most minutiae extraction algorithms use
orientation-field, directional filters, binarization and thinning steps in order to obtain a
1-bit wide image, from where minutiae is easily extracted. In our work we use the
Maio-Maltoni ridge line following algorithm [1] because minutiae is extracted
directly from the gray-scale image, it is less time-consuming and it can be rewritten
without floating point operations. These facts are very important bearing in mind that
the goal is to implement a high-speed and low-cost embedded system.

The use of fingerprint biometrics coprocessors is still a young field. A majority of
fingerprint OEM modules are based on high performance microprocessors or DSPs,
but feature extraction times are about 1 second or more. IKENDI offers the IKE-1
ASIC [2] based on an ARM7TDMI microprocessor plus a coprocessor, and it claims
to encode 10-20 times faster than other DSP-powered solutions. The UCLA group has
developed the ThumbPod [3] prototype based on a LEONII microprocessor, plus a
coprocessor that permits a 55% execution time reduction for the minutiae extraction,
although 4 seconds of execution time is still quite high.

2   The Ridge-Following Algorithm

The algorithm is based on the idea of tracking the fingerprint ridge lines on the gray-
scale image. As depicted in Fig. 1(a), given an starting point (ic,jc) and a starting
direction θc the algorithm computes a new point (it,jt) by moving μ pixels along
direction ϕc. Then, it is computed the section Ω as the set of 2σ+1 points orthogonal
to ϕc. The third step involves the computation of an averaged section avg(Ω)  as the
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local average of the pixels belonging to section Ω with the pixels belonging to the two
parallel planes Ω+1 Ω−1 that distant ±1 pixel. The next step computes a correlation
corr(Ω) of avg(Ω) against the gaussian mask, and returns the weak local maximum as
the closest point to the centre of Ω that accomplishes corr(Ωk−1)≤corr(Ωk)≤corr(Ωk+1),
and it is determined the new point (in,jn) and its ridge flow direction ϕn. Then it is
updated a binary image of the tracked points in order to prevent examine each ridge
more than one time. Finally (in,jn) and ϕn become the new starting point and direction
and these steps are repeated until it is reached a stop criterion.

(ic,jc)

(it,jt)
ϕc Ω

(in,jn)

Ω−1
Ω+1

ϕn

x0

y0

w0

8

8

5

SRAM
(Image)

16 8
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x1

y1

w1

8

8

5

Nstop

xynxt

CU

secc filt corr tgdrx1y1

Ω avg(Ω )

                        (a)                                                             (b)
Fig. 1. (a) Ridge line following algorithm. (b) Overview of the coprocessor

We have analysed the algorithm with the parameter values adopted in [1], and then
we have modified some computations in order to minimise the computational
requirements bearing in mind a FPGA implementation of critical tasks.

The most important change in our modified algorithm relates to the ridge direction
computation. The method used in [1] is computationally much more expensive than
the presented in [4], that we have modified in order to obtain 12 discrete directions
with angles varying in steps of 15°, which corresponds with μ=3 as used in [1].

An inspection of the extraction algorithm shows another computational expensive
step. During the process of finding the local maximum in a section Ω, the algorithm
performs first the local average of the gray levels of the pixels that belong to Ω, Ω+1

and Ω-1, to finally compute a correlation with a gaussian mask. The computations of
the ridge direction and correlation involve divisions by constants, but in our algorithm
they are not performed. This is equivalent to a change of scale, and does not affect the
position of the weak local maximum. Moreover, a correlation involves products that
can be substituted by shift operations if performed with constants that are powers of 2,
in a very efficient way if they are implemented on hardware.

3   The Coprocessor

It has been profiled the execution times for an entire fingerprint image on a
ARM7TDMI running at 50MHz, to finally implement on the FPGA the most critical
functions that occupy the 73,5% of the overall execution time.

As depicted in Figure 1(b), the coprocessor has been divided in six stages plus a
control unit (CU). The coprocessor works with a 256*256 pixels image of 8-bit gray
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levels stored on a external SRAM, and with fixed parameters μ=3 and σ=7 as used by
the Maio-Maltoni algorithm [3]. The starting point (ic,jc) and indexed angle ϕc are read
from the x0,y0 and w0 ports, returning the weak local maximum point (it,jt) and
indexed angle ϕt of the ridge flow direction in the x1,y1 and w1 ports. The stages
were implemented using a pipeline scheme to increase the clock frequency and
improve throughput. Intermediate results are stored to and read from internal FPGA
memory.

The coprocessor has been described on VHDL and mapped on a low-cost FPGA
SPARTAN-II of 30Kgates equivalent, occupying 87% of logic cells and running at a
maximum clock frequency of 76MHz. The execution of the steps performed by the
FPGA is 14.4μs running at 50MHz, while the time devoted by the ARM7TDMI at the
same clock frequency is 211μs.

The FPGA reduces in 93% the computation time when compared with the
microprocessor, due to the pipeline scheme of the coprocessor architecture and the
parallel execution of computations into its stages. When it is compared the overall
execution time of the algorithm running in the ARM not aided or aided with the
FPGA, it is reduced from 700ms to 215ms, that is a reduction of about 70%.

4   Conclusions

Biometrics algorithm designers usually do not have into account the computational
requirements of the platform that runs the software implementation. This fact leads
that fingerprint authentication systems are usually based on high-performance PCs,
embedded microprocessors or DSPs. This work demonstrates that algorithms can be
rewritten to avoid floating-point operations and other complex functions in order to
reduce the computation requirements. This way it is possible to effectively
implement, in terms of low-cost and high-speed, the critical tasks on a coprocessor
mapped on a low-cost FPGA.
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Abstract. This work presents the design of a dynamically reconfig-
urable function unit supporting Cyclic Redundancy Checks and Reed-
Solomon Codes with different code length. The architecture is designed
for the usage in mobile wireless communication systems and is optimized
concerning area and power consumption.

1 Introduction

Error detection and error correction are important tasks in wireless communi-
cation systems. Due to channel distortions, transmitted data can be falsified.
It is essential for the receiver to detect such errors and it is desirable that the
receiver can correct them as well. A very popular error detection code which is
used in actual WLAN standards is the Cyclic Redundancy Check (CRC). The
basic idea is to expand a given message by a check sequence. Therefore a message
word u(k) is divided by a generator polynomial g(x) using modulo-2 arithmetic.
The remainder of this devision forms the check sequence and is appended to the
original message. There exist two common approaches to perform CRC compu-
tations, a bit-serial and a bit-parallel one. For this work, a bit-parallel approach
is used which is based on operations in Galois Fields [1].

For the correction of errors, Reed-Solomon (RS) Codes were chosen. Like the
bit-parallel approach for CRC calculation, they are based on operations in Galois
Fields. A RS(n, k) code word v(x) consists of n symbols of length m, divided
into k message symbols and (n− k) parity symbols. Up to (n− k) symbol errors
can be detected and t = (n − k)/2 symbol errors can be corrected [2].

Both algorithms were implemented in a function-specific dynamically recon-
figurable function unit (RFU). The RFU is optimized concerning area efficiency,
and fulfills the performance requirements for actual wireless communication stan-
dards. In combination with a processor, the RFU allows the design of a flexible
solution for the MAC (M edium Access Control) layer of WLANs. All memory
elements and arithmetic blocks of the RFU can directly be accessed by the pro-
cessor. This enables the processor to utilize these blocks for additional tasks like
multiplication in the Galois Field required for encryption standards like AES
(Advanced Encryption S tandard).
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2 Reconfigurable Function-Unit

The RFU is composed of four different blocks. Hardware support for error detec-
tion and error correction is provided by the ECM (Error Control Module) while a
AES block is used for encryption/decryption tasks. The AES block is mentioned
for completeness reasons only. As the RFU is designated for the use in proces-
sors realizing the MAC-layer of WLANs, the AES block is integrated to provide
hardware support for encryption/decryption tasks. A description of the AES
block can be found in [3]. The two remaining blocks are the LUT Module and
the Common Resource block. The LUT Module combines all memory elements
of the AES and the ECM block while the Common Resource block combines all
complex arithmetic elements like the configurable Galois Field multipliers.

Fig. 1. Structure of the Error Control Module

The structure of the ECM block is depicted in figure 1. It is comprised of
two major blocks, Block A and Block B. These two blocks are derived from
the symmetry of the underlying hardware structure. Block A is used for the
Syndrome Calculation and RS encoding. Block B is used for Forney Algorithm
and CRC encoding/decoding. Euclid’s Algorithm and Chien Search require both,
Block A and Block B.

Computations like Reed-Solomon Code decoding require several reconfigura-
tions during runtime. In order to release the processor from the control overhead
of continuous reconfiguration, the control logic of the RFU is capable of perform-
ing a sequence of configuration steps autonomously. The control logic is placed in
the ID stage of a pipelined RISC processor, while the RFU is placed in parallel
to the existing ALU in the EX stage.
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3 Results

For achieving synthesis and performance results, the RFU was integrated into a
32 bit 5 stage pipelined RISC core, derived from the DLX architecture. Synthesis
was done using Synopsys’ Design Analyzer with a 0.25μm 1P5M CMOS standard
cell technology. For larger memories like the LUT Module inside the ECM block
and the configuration tables in the RFU control logic, RAM macro cells have
been deployed.

Table 1. Synthesis Results of the Reference Design and ECM Block

Module Area [μm2] Freq.[MHz]

CRC En-/Decoder 204.711 205
RS Encoder 235.151 209
RS Decoder 1.955.140 59
Total Area 2.395.002 -

(a) Reference Design

Module Area [μm2] Freq.[MHz]

Block A 191.704 140
Block B 207.755 172
Other Blocks 61.908 694
ECM 461.367 137

(b) ECM Block

Table 1 shows the synthesis and performance results of a reference design and
the reconfigurable ECM block. Table 1(a) gives the results for parallel CRC-8
encoding/decoding using Galois Field arithmetic and for RS(255,239) encoding/
decoding using a standard approach. The synthesis results for the ECM block
can be found in table 1(b). The ECM block requires only about 20 % of the area
of the reference design. Even if the Common Resource block and the LUT Mod-
ule of the RFU are counted to the area of the reconfigurable design, hardware
savings of about 28 % can be achieved. For RS(255,239) encoding and CRC8
encoding/decoding the reference architecture is faster than the reconfigurable
design, but for RS(255,239) decoding a speed-up of 1,68 could be achieved. De-
spite of this, all throughput values are more than sufficient for the data rates
required for mobile terminals.

4 Conclusion

In this paper a function-specific dynamically reconfigurable architecture for error
detection and error correction has been presented. Synthesis and performance
results proved that the architecture offers an attractive alternative to standard
implementations.

References

1. Michael Ji, H., Killian, E.: Fast Parallel CRC Algorithm and Implementation on a
Configurable Processor. IEEE Intern. Conference on Communications 3 (2002)

2. Lee, H., Yu, M.L., Song, L.: VLSI Design of Reed-Solomon Decoder Architectures.
IEEE Intern. Symposium on Circuits and Systems 5 (2000)

3. Pionteck, T., Staake, T., Stiefmeier, T., Kabulepa, L.D., Glesner, M.: Design of
a Reconfigurable AES Encryption/Decryption Engine for Mobile Terminals. IEEE
International Symposium on Circuits and Systems (2004)



J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1093–1097, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Flow Monitoring in High-Speed Networks with 2D Hash
Tables

David Nguyen, Joseph Zambreno, and Gokhan Memik

Department of Electrical and Computer Engineering
Northwestern University
Evanston, Illinois 60208

{dnguyen, zambro1, memik}@ece.northwestern.edu

Abstract. Flow monitoring is a required task for a variety of networking appli-
cations including fair scheduling and intrusion/anomaly detection. Existing
flow monitoring techniques are implemented in software, which are insufficient
for real-time monitoring in high-speed networks. In this paper, we present the
design of a flow monitoring scheme based on two-dimensional hash tables.
Taking advantage of FPGA technology, we exploit the use of parallelism in our
implementation for both accuracy and performance.  We present four tech-
niques based on this two-dimensional hash table scheme. Using a simulation
environment that processes packet traces, our implementation can find flow in-
formation within 8% of the actual value while achieving link speeds exceeding
60 Gbps for a workload with constant packet sizes of 40 bytes.

1 Introduction

There is a tremendous growth in the complexity of networking applications. Many
applications (such as QoS, fair packet scheduling, intrusion/anomaly detection, fire-
walls, traffic engineering) require flow information1 [5]. Because of increasing wire
speeds, there is a need for hardware-based flow monitoring techniques in high-speed
networks. However, most routers do not implement flow monitoring. The existing
solutions, which also include software solutions, are either too slow or inaccurate.

In this paper, we present four novel techniques utilizing a two dimensional hash
table to gather flow information. We implement our Flow Monitoring Unit (FMU)
using a Xilinx Virtex II XC2V8000 [8] chip and achieve throughput speeds up to 73
Gbps without sacrificing accuracy. We observe different designs perform better for
certain workloads/requirements. Because network traffic profiles are all unique,
FPGAs are an attractive implementation choice for their reconfigurable properties.

In Section 2, we explain the flow monitoring techniques. Section 3 presents the
FPGA implementation. In Section 4, we discuss the experimental results and Section
5 concludes the paper.

                                                          
1 In this paper, the terms flow and session are used interchangeably; both correspond to a TCP

session. Hence, flow information is statistics (such as total traffic generated) about a TCP
connection collected at a router.
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2 Flow Monitoring Unit (FMU)

2.1 Queries

The host machine uses the FMU unit by sending two types of queries.
UPDATE(k, v) : Increase the value of the key k by v.
GET(k) : Return the value for the key k.
The key k is a combination of five TCP packet header fields: source IP, destination

IP, source port, destination port, and protocol. In our design, the FMU stores the
number of packets for each flow.  Note, while tracking different flows, it is possible
for collisions to occur.  Therefore, the GET query does not always return the correct
value.  We will discuss this in Section 4 with error analysis.

2.2 Flow Monitoring Techniques

As mentioned, our FMU is based on hashing.  We chose the Jenkins hash function [4]
for this study for its proven performance for hash tables.  For a two-dimensional hash
function with dimensions NxS, there are N hash tables each with S elements. Each of
these tables is addressed by a different hash function2.  The GET(k) function takes
the results from each hash table N and uses one of the following techniques:

Min FMU: The simplest technique is called the min FMU (MIFMU). MIFMU
reads the corresponding values from the tables and returns the smallest value. This
method is most accurate for large flows.

min {Ti[hi(k)]}, }1,..,0{ −∈∀ Ni
Median FMU: The second technique is the median FMU (MEFMU). As stated,

this method returns the median of the values (corrected with a balanced hash factor
sum/S) from the tables for a key k.

median {Ti[hi(k)] – 
S

sum
}, }1,..,0{ −∈∀ Ni

Collision Estimate FMU:  The collision estimate FMU (CEFMU) estimates the
number of collisions for each hash bucket and returns the output values according to a
collision counter.  The collision counter is incremented when the current access does
not match the last access to the hash table. An additional table (Ci[hi(k)]) stores
the collision counters.  This method is most accurate for small flows.

min {Ti[hi(k)] – Ci[hi(k)]}, }1,..,0{ −∈∀ Ni
Hybrid FMU: The final technique is the hybrid FMU (HYFMU), which runs both

CEFMU and MIFMU techniques in parallel and returns one value. Again by virtue of
FPGA design, there is a negligible performance hit.  A threshold value is used to se-
lect the hybrid value.  HYFMU subtracts the output of CEFMU from the output of

                                                          
2 In our implementation, to achieve equal timing, we utilized the same hash function with

different hash seeds to generate the effect of different hash functions.
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MIFMU. Given a threshold, MIFMU is used for larger estimates and CEFMU for
smaller estimates.

3 FPGA Implementation

We implemented the FMU using the Synplify Pro synthesis tool [7] and Xilinx De-
sign Manager implementation tools. We chose Xilinx VirtexII XC2V8000 FPGA as
our target chip. The FMU architecture is presented in Figure 1. According to the
FMU type (MIFMU, MEFMU, CEFMU, HYFMU), the selection mechanism returns
the corresponding output. The resource limit for this chip was memory (S=80,000
entries) for the hash tables. This fact favors using two-dimensional hash tables. For
one, there is smaller access latency because multiple smaller tables are accessed in
parallel.  Also, the two-dimensional hash table design inherently performs better than
a single hash table.

Fig. 1. Overview of the FMU

Table 1 presents the critical path for different FMU designs. Extensive pipelining
increases the overall throughput significantly. The rightmost column of Table 1 pres-
ents the corresponding maximum bandwidth supported for GET queries. This value is
calculated for constant packet sizes of 40 bytes.

Table 1. The latency of critical paths of various FMU components

Configuration Critical Path Delay Max. Bandwidth

N = 1, S = 8K 6.63 ns. 48.3 Gbps

N = 4, S = 2K, MIFMU 4.33 ns 73.9 Gbps

N = 4, S = 2K, MEFMU 4.99 ns. 64.1 Gbps

N = 4, S = 2K, CEFMU 4.33 ns. 73.9 Gbps

N = 4, S = 2K, HYFMU (combining min and CE) 4.99 ns. 64.1 Gbps

4 Experimental Results

In this section, we present the simulation results for the different FMU techniques
(MIFMU, MEFMU, CEFMU, and HYFMU as explained in Section 2.2) we have
developed. We implemented a simulator that processes NLANR packet traces [6] and
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executes the FMU techniques.  For error analysis, the simulator finds the exact num-
ber of packets for each flow in a packet trace. We report the error rate, which is the
average error for finding flow size of all the flows in a trace.

First, we compare different FMU techniques. Figure 2 presents the average error
rates for the four FMU techniques and varying table size S=500 to S=16000 entries.
We set the number of parallel hash functions to N=4.  The CEFMU technique has the
best overall performance for varying configurations. For the largest setup, N=4 and
S=16,000, HYFMU gives the best performance with an error rate of 7.3% obviously
because it employs both MIFMU and CEFMU methods.

Fig. 2. Average error rates of various FMU techniques.

4.1 Sensitivity Analysis

For sensitivity analysis, we fix the total size for the hash tables (S) and vary the
number of parallel hash functions (N) to find the optimal parallelism. The results for
Stotal=32K entries are presented in Figure 3. For all techniques except MEFMU,
increasing the number of parallel hash functions initially results in a reduction in the
error rate. Particularly, for Stotal=32K, the error rate reduces from 69% to 17%, from
59% to 11%, and from 63% to 19% for MIFMU, CEFMU, and HYFMU, respec-
tively.  The CEFMU technique, on the other hand, improves its performance slightly
until N=4.  This is because CEFMU is more immune to collisions, which occur more
frequently in smaller hash tables.  CEFMU is designed to perform well under these
circumstances.

Fig. 3. Error rates for a total table size Stotal=32K.
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5 Conclusions

Flow monitoring is an important task in computer networks. However, almost all
techniques are implemented in software and designing hardware for them is very hard
if not impossible. With the increase in the link speeds and the wider usage of flow
information, hardware flow monitoring is becoming essential for most state-of-the-art
routers. In this paper, we presented a hardware flow monitoring design implemented
on FPGAs. The FMU unit is based on two-dimensional hashing. With hashing, it has
two major advantages over alternative techniques. First, high speeds can be achieved.
And second, the access latency to any data is constant. Clearly, any inaccuracies are a
result of depending on the performance of the hash function.  Multiple hash functions
running in parallel on an FPGA alleviates the inherent accuracy penalty. We have
applied four different techniques to address this problem. The best technique
(HYFMU), which combines CEFMU and MIFMU, can process 200M packets per
second (corresponding to a link speed of 64 Gbps for 40-byte packets), while having
an average error rate of 7.3%.
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Abstract. A VHDL generator called SIG-ECPM is presented in this pa-
per. SIG-ECPM generates fully synthesizable and portable VHDL code
implementing an elliptic curve point multiplication, which is the basic
operation of every elliptic curve cryptosystem. The use of automated de-
sign flow significantly shortens design times and reduces error proneness.

1 Introduction

Elliptic Curve Cryptography (ECC) has been of much interest in the world of
cryptography during the past few years, because a high level of security can
be achieved with considerably shorter keys than with conventional public-key
cryptography, e.g. RSA [1]. Because of the short keys, ECC is an attractive al-
ternative in applications, where bandwidths or memory resources are limited [2].
The basic operation of any elliptic curve cryptosystem is the Elliptic Curve Point
Multiplication (ECPM) defined as Q = kP where Q and P are distinct points
on an elliptic curve E and k is a large integer [1].

Automation of the design flow significantly shortens design times and reduces
error proneness of the process. A Hardware Description Language (HDL) gen-
erator called SIG-ECPM is presented in this paper. SIG is an acronym for the
Signal Processing Laboratory at Helsinki University of Technology. SIG-ECPM
generates fully synthesizable and device independent VHDL-code implement-
ing ECPM, when a set of parameters is given. Use of SIG-ECPM is beneficial in
applications where several designs have to be implemented in short time. The re-
search work was performed in the GO-SEC project at HUT (see go.cs.hut.fi).

2 The VHDL Generator

There is a large variety of recommended curves which can be used. Because the
design process of an ECPM implementation is complex, it would be too com-
plicated to implement every design by hand. Thus, a VHDL generator, which
automatically generates synthesizable VHDL-code implementing an ECPM, was
designed. This generator is called SIG-ECPM and it was written in the C pro-
gramming language.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1098–1100, 2004.
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ECPM architecture utilized by SIG-ECPM is presented in [3]. The architec-
ture implements entire ECPM while traditionally only Galois field operations
are implemented. It uses the point multiplication algorithm developed by López
and Dahab in [4]. An inverter proposed by Shantz in [5] was used for Galois field
inversions. Multiplier structure was optimized especially for the 4-to-1-bit LUT
structure of FPGAs. Details of the multiplier architecture are also presented
in [3]. To achieve maximum performance, the ECPM architecture was designed
so that the Galois field cannot be changed in the design, i.e. non-reconfigurable
designs are created [3]. Thus, a different design has to be designed for every
Galois field, which justifies the use of a VHDL generator. The use of SIG-ECPM
vastly reduces the disadvantages of non-reconfigurable implementations.

Parameters are given for SIG-ECPM and it
**** PARAMETER-FILE FOR SIG-ECPM ****
*** Curve Sect113r1

*** Field Specifications.
FIELD {

m: 113;
irrpolycoeffs: 3;
irreducible: 113 9 0;

};

*** Elliptic Curve Specifications.
ECC {

fixedP: 1;
Px: 09D73616F35F4AB1407D73562C10F;
Py: 0A52830277958EE84D1315ED31886;
fixedC: 1;
a: 03088250CA6E7C7FE649CE85820F7;
b: 0E8BEE4D3E2260744188BE0E9C723;
tvectors: 5;

};

*** Multiplier Specifications.
MULT {

multipliers: 2;
latency: 12;
tvectors: 5;

};

END;

Fig. 1. A parameter file

generates VHDL-code, which implements ECPM
on a curve described by the parameters. The pa-
rameters are given as a parameter file of about 25
lines of text. SIG-ECPM generates over 7000 lines
of VHDL-code into 26 files. Thus, it is obvious
that SIG-ECPM saves a considerable amount of
design time. An example of a parameter file, im-
plementing a curve called sect113r1 recommended
by SECG (Standards for Efficient Cryptography
Group) in [6], is presented in Fig. 1.

Parameters of Fig. 1 consist of field, elliptic
curve and multiplier specifications. The field spec-
ifications define the Galois field over which the
elliptic curve E is defined. In Fig. 1, the field is
GF (2113) and the irreducible polynomial generat-
ing this field is m(x) = x113 + x9 + 1. The elliptic
curve specifications define the elliptic curve E and
point P . These values are optional for SIG-ECPM, but fixing E and P results in
slightly faster and smaller implementations. The number and structure of Galois
field multiplier(s) is defined in the multiplier specifications. The use of a second
multiplier speeds up ECPM calculation significantly [3]. Latency constraint sets
an upper bound for the latency of a single Galois field multiplication, which
is the critical operation of ECPM. SIG-ECPM optimizes multiplier so that it
satisfies this constraint.

3 Results

Several ECPM implementations using elliptic curves recommended by the Stan-
dards for Efficient Cryptography Group (SECG) in [6] were created with SIG-
ECPM. Very competitive results were obtained, e.g. a SIG-ECPM design calcu-
lates an ECPM on sect163r1 curve in 106μs when Xilinx Virtex-II XC2V8000-5
FPGA was used as a target device. The design flow used for the designs is
presented in Fig. 2 with typical run-times.
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Parameters SIG−ECPM VHDL
Synplify
Pro 7.2 ISE 4.1 FPGA

Active−HDL

seconds minutes hours or daysTime

Fig. 2. Design flow with typical run-times for the designs created with SIG-ECPM

The benefits of SIG-ECPM are obvious when the time required for the design
process is considered. It would require days to make the entire design by hand.
With SIG-ECPM, the same work can be done in a couple of seconds. However,
the synthesis and implementation (place & route) still require a considerable
amount of time. The real bottleneck of the design process is the implementa-
tion, which requires time from hours to even days. Anyhow, design time can be
significantly shortened with a VHDL-generator, such as SIG-ECPM.

4 Conclusions

A VHDL generator called SIG-ECPM was presented in the paper. SIG-ECPM
generates fully synthesizable and portable VHDL code implementing an ECPM.
The use of a VHDL generator speeds up the design process significantly and
reduces error proneness. VHDL generators are very useful in ECC applications,
where a large variety of different parameters (curves, Galois fields, etc.) are
used. They reduce the disadvantages of fast non-reconfigurable ECPM imple-
mentations, thus, allowing faster performance.
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Abstract. The length of the longest common subsequence (LCS) be-
tween two strings of M and N characters can be computed by O(M ×N)
dynamic programming algorithms that can execute in O(M + N) on a
linear systolic array. If the strings are run-length encoded, LCS can be
computed by an O(mN + Mn − mn) algorithm, called RLE-LCS, where
m and n are the numbers of runs of the two strings. In this paper we
propose a modified RLE-LCS algorithm mappable on a linear systolic
array.

The similarity between two strings X and Y of M and N characters (X =
x1, x2, ..., xM and Y = y1, y2, ..., yN ) can be expressed in terms of the length of
their longest common subsequence (LCS), that can be computed by an O(M×N)
dynamic programming algorithm [1] that implements the following recursion:

LCS(i, j) =
{

max{LCS(i − 1, j), LCS(i, j − 1)} xi �= yj

LCS(i − 1, j − 1) + 1 xi = yj
(1)

LCS(i, j), representing the LCS between the first i characters of X and the
first j characters of Y , is incrementally computed (for i, j > 0) from LCS(i −
1, j), LCS(i−1, j−1) and LCS(i, j−1). The entries of the dynamic programming
matrix LCS are shown in Fig. 1.a for a simple example. The inherent parallelism
of the algorithm and its regular structure can be exploited for computing LCS in
O(M +N) steps by means of a linear systolic array [2], as shown in Fig. 1.b. All
matrix entries on the same column are computed by the same unit in subsequent
steps. The relative data dependencies of each unit do not change over time.

If X and Y are run-length-encoded (RLE) strings [3] of m and n runs, the
encoding induces a partitioning of the LCS matrix into sub-matrices (blocks)
associated with ordered pairs of runs (Fig. 1.c). With respect to a block B we
call: input elements the entries of LCS that do not belong to B but provide
inputs to some of its elements, root element the input element with smallest row
and column indexes, output elements the elements of B that feed entries of LCS
that do not belong to B, inner elements all other elements of B.

Any output element LCS(i, j) of a block B rooted in LCS(i0, j0) can be
incrementally computed directly from the input elements of B [4]:

LCS(i, j) =
{

max{LCS(i0, j), LCS(i, j0)} xi �= yj

LCS(i − d, j − d) + d xi = yj
(2)
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Fig. 1. Basic dynamic programming algorithm for LCS: a) 14x6 LCS matrix; b) Com-
putation steps on a systolic array of 6 elements; c) Binding between computation tasks
and systolic array elements; d) RLL(4,1) − LCS matrix.

where d = min{x − x0, y − y0}. The algorithm based on eq. 2 (called RLE-
LCS) has complexity O(mN +Mn−mn) and improved parallelism that enables
computation in O(m + n) steps (as shown in Fig. 1.c). However, the degree of
parallelism and the data dependencies among computational units change at
each step, making it difficult to map RLE-LCS on a linear systolic array.

To enforce a regular structure of data dependencies we decompress the shorter
string (say Y ) and we impose an upper bound (LMax) to the length of the runs
of the longest string (say, X), thus obtaining a modified algorithm (denoted by
RLL(LMax,1)-LCS) that executes in O(m̃ + N), where m̃ is the number of runs
of X with maximum length limited to LMax. Upper bounds limit the size of the
blocks associated with run pairs, making it possible to allocate a maximum-size
block to each pair of runs, obtaining an oversized matrix of m̃LMax ×N entries
(shown in Fig. 1.d for LMax = 4) with regular structure. We align each run of
X to the end of the corresponding block, adding gaps to all runs shorter than
LMax. Matrix entries associated with gaps (shaded in figure) do not need to be
computed.
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Fig. 2. a) Generic block in position (i, j) of basic and extended LCS matrixes. b)
Local connections of block (i, j). c) Mapping of RLL(LMax,1)-LCS algorithm on a linear
systolic array. d) Schematic of the basic computational unit.
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The LMax elements of each block are indexed from 0 to LMax − 1. We use
(i, j)[k] to denote element k of B(i, j), associated with the i-th run of X and
the j-th run of Y . Figure 2.a shows the position of B(i, j) in the original and
extended LCS matrix, while Figure 2.b shows its data dependencies. In case of a
match between xi and yj , element (i, j)[k] is computed by adding 1 to the value
found either in (i, j−1)[k+1] or in (i−1, j−1)[0], depending on whether or not
the i-th run of X is longer than k + 1. In case of mismatch, the value of (i, j)[k]
is the maximum between (i, j−1)[k] and (i−1, j)[0]. The interconnect structure
shown in Figure 2.b is general enough to support all possible situations.

The mapping on a linear systolic array is shown in Figure 2.c, where only two
blocks are shown and the computational units associated with the same block
are vertically aligned for readability. At a generic step, the right-most elements
are processing block (i, j), while the left-most elements are processing block
(i + 1, j − 1). The inputs of B(i, j) have been computed by the same processing
elements during the last two execution steps. Hence, output values need to be
stored in registers to be made available for subsequent computations. Memory
elements are represented in Figure 2.c by small squares. All outputs need to be
stored for one clock cycle, except the output of element 0 that needs to be stored
for 2 cycles.

The RTL schematic of the computational unit associated with each element
is shown in Figure 2.d. Signal match is a Boolean flag that represents the result
of the comparison between xi and yj . Signal empty is a Boolean flag raised
whenever entry (i, j − 1)[k + 1] is empty. The comparator is not represented
within the basic computational element, since it is shared by all elements of the
same block.

We used a Xilinx Virtex XCV300E FPGA to implement the RLL(LMax,1)-
LCS algorithm for LMax ranging from 1 to 10. We used 2 bits to encode the
characters and 8 bits to encode the score (i.e., the length of the LCS computed by
the algorithm). For all implementations we obtained maximum clock frequencies
in the range from 111MHz to 123MHz, the variation depending only on different
routings. The speedup achieved w.r.t. LCS depends on the effectiveness of the
compression provided by the RLL encoding of X, that depends on the limit
LMax imposed. Analyzing the run-length distribution of DNA sequences and
bitmaps representing scanned handwritten texts, we found that LMax = 5 is
sufficient to exploit 99% of the compression ratio of RLE.
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Abstract. In this paper a vision system of images perceived in real
environments based on reconfigurable architecture is presented. The system
provides surface labelling of the input images of unstructured scenes,
irrespective of the environmental lighting or scale conditions and the capture
frequencies. The nucleus of the system is based on querying SOMs constructed
with supervised training by means of descriptors extracted from images of
different surfaces perceived for successive values of the optical parameters
(lighting, scale). To improve the labelling process the system estimates the
environmental optical parameters and then SOMs are reconfigured. A
segmented architecture is proposed for the central module of the labelling
process to improve the performance of image sequences. A prototype
implemented on FPGAs applied as a guidance aid for vehicles is provided.

1 Introduction

Within the framework of the research project DPI2002-04434-C01-01 the overall
objective can be broken down into two partial aims: to provide a vision model of
unstructured scenes in realistic conditions and an architecture that fulfils the
performance expectations. Vision problems in real conditions (lighting, scale, angle...)
have been discussed in literature at low and intermediate level [1] [2]. The objective
of providing a vision model and its application in scene labelling using techniques
that query databases with non-specific descriptors are discussed in [3] [4]. The wide
consolidation of the self-organizing model [5] and the implementation possibilities at
a low level have been the criteria in its choice as classifier. The brightness histogram
was selected due to its generality and tolerance with geometrical transformations [6].
For the simplification of database queries, the use of context information is proposed
[7]. The objective that is discussed in greater depth in this article is the performance.
Among the digital implementations of the SOM model we can find two fundamental
trends, systolic arrays and SIMD [8], which have inspired the proposal for the
segmented design. The capacity for rapid prototyping of reconfigurable computation
has been used [9]. The prototype has been tested as an outdoor guidance aid for
vehicles based on surface labelling of the sequences of the incoming images.
______________
1 This study is part of the research carried out in the project MCYT. DPI2002-04434-C01-01.
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2 Vision System Architecture

The architecture proposed in this paper is based on the model developed in [3][4]. The
model proposes a preprocessing phase in order to estimate the context (lighting
conditions), followed by a processing phase that performs image labelling in real
environments querying databases. The parallelization possibilities depend both on the
descriptors and on the implementation resources used. In addition, continual pre-
processing is not necessary since the real values (lighting conditions) only change at
specific time intervals. This way, pre-processing is only performed after specific time
intervals. If conditions change, a hardware reconfiguration of the central part of the
processing should be necessary. In the processing phase, a hybrid architecture (Fig. 1)
has been proposed. The histogram modules are organized according to a SIMD
schema and the neuron modules in a segmented one. The prototipe is implemented on
a Celoxica RC1000 prototyping card. The vision system structure is shown in figure
1. It is made up of four functional units: memory, host, uc, histogram and som.

Fig. 1. Prototype structure based on reconfigurable hardware

The following lines are devoted to system functioning. First, a 1024x1024 8 bit
image is captured. This image is transferred via DMA to the system memory and
control is delegated to the uc. Each segmentation step calculates a 32x32 pixel
window of the input image. The histogram is made up of two segmentation phases:
the histogram phase (hp) and the normalization phase (np). In the hp, 4 modules are
organized to calculate the accumulation of the histogram frequencies (subhistograms)
in 32 grey levels and the sum of the pixel values in order to obtain the mean for each
subwindow. The np adds up the subhistograms calculated as well the partial sums of
the mean. In addition, it shifts the histogram frequencies to the central component and
adds the mean to the last component of the histogram. After two segmentation cycles
have passed, the som unit receives the normalized histogram of a sample window.
This unit calculates the window label, which will be stored in the memory using 50
neuron modules (in this prototype, a 400-neuron map has been used). Each module is
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designed to query sequentially the winning neuron to a subset of 8 neurons of the
SOM. The Manhattan distance between two vectors is calculated to give the minimum
distance. Finally, the labelled image is transferred from the memory to the host.

The labelling success rates of the system are calculated by comparing the results
obtained with those provided in the previous supervised labelling stage [3][4]. In the
performance tests, the system works at a clock frecuency of 40 MHz (clk) and
occupies 17,334 slices in the FPGA. A comparative test has been made between the
prototipe and software implemention for AMD (Athlon 1.7 GHz) and Intel (Pentium
IV 1.7 GHz). The prototype that is mounted in a vehicle is able to calculate from 2.52
to 130.71 images per second (images of 1024x1024 for different sample frequencies,
distances in pixels between samples). However, the software implemetation is able to
calculate from 0.05 to 3.56 and 0.05 to 3.80 for the AMD and Intel respectively.

3 Conclusions

A system for real scene labelling has been presented. The system provides the
labelling of unstructured scenes irrespective of the lighting and scale capture
conditions and the frequencies required. The system is based on a model for vision in
real conditions that stores descriptors of images perceived with successive values of
the optical parameters. The model proposes a preprocessing phase in order to estimate
the context and lighting conditions, followed by a processing phase where the
architecture reconfiguration takes place and partial views of the databases can be
queried to improve labelling. These databases are implemented by means of self-
organizing maps that organize brightness histograms extracted from the images. A
FPGA based prototype has been provided and tested. The processing frequencies
obtained enable the system to be applied as a guidance aid for vehicles in outdoor
scenarios leaving the specific use of the labelling open (land maps, route planning…).
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Abstract. Nowadays, the object oriented technology can be met in different
programming languages, also in the hardware description languages (HDLs).
Unfortunately, in the last case the situation is more complicated. Popular and
wide known tools do not support the object oriented technology, which has to
be incorporated in designs with additional overlays. These overlays are
academic solutions, or rather, it is hard to use them in real and complicated
designs. So, we have developed a simply technique for building designs in the
object oriented style. This technique involves well known tools of well known
vendors and the set of the coding rules. The additional overlays are not needed.
The presented solution was successfully tested with many projects and tools
and gave very promising results. Due to lack of the space, this paper should be
treated as a report rather than a detailed description.

1 Introduction

The group of the hardware description languages has been standardized since 1987
[7]. These standards are developed until now. Unfortunately, due to this fact, the
market of the hardware programming tools is divided in two parts: the well known
commercial part and the unknown part related to research centers. We want to join
these groups of the interest together using our solution.

We started our research with studies on available tools and solutions [5][6]. We
found some interesting projects, like: Handel-C [11], the Aldec and Celoxica ANSI-C
Software Environment [4], the SUAVE project, the SAVANT project, the REQUEST
[9] project and JHDL. Some of these tools are high level programming languages
without the object oriented background. The other projects are highly specialized
overlays, which are not integrated with commercial tools. Their common feature is
lack of the conjunction with practice [12]. Generated RTL is often oversized and not
optimized [11]. So, we did not find any ideal solution as a result of our search.

Our solution combines simplicity and utility. It can be used for simple but also for
complicated projects and may be easily incorporated into standard HDL environments
for free. The quality of the generated RTL depends only on the quality of the vendor
tools.
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2 The Description of the Object Oriented Paradigms

We present the short description of the paradigms in this chapter. Our idea may be
built with four “puzzles”. First of all we divide the design into segments. Next we
have to assure the synchronization between segments. We also will treat all parts of
the design as independent objects. Finally, we use the specialized syntax [10].

As we mentioned before, our design is divided into segments. Of course each
segment is independent of each other and becomes an object. Also, each segment may
be replaced without any changes to neighbor segments. Moreover, each segment is a
template, what means it is described with a set of generic parameters. Also, interfaces
between segments are described with generic constrains.

Segments are in a queue, so data are passed from the segment to the segment. We
delay all signals passing through the segment with the same number of clock cycles,
or rather,  all signals are aligned in time. So, we do not use the “star” structure for
synchronizing segments. In this case, there is not a possibility that signals will be out
of sync. Furthermore, all operations are synchronized with the same clock edge.

The next puzzle is the syntax. This problem is marginalized or authors present the
simplified approach. Sometime we can find strongly hardware dependent syntax [1].

In our paradigms, the base
of each name in our system
comes from the description
of the function. We add the
prefix and the suffix to this
base. The prefix reflects a
type of a VHDL object
when the suffix reflects a
type of a FPGA module.
The prefix is connected
with the VHDL, the suffix
is connected with the
structure of hardware. The
sum of these elements
gives us the name of the
object [3]. So, in this
system the name of the

object reflects its function. It is always clear what kind of the object we use.
The object oriented systems are often described and visualized with UML. We

decide to modify standard notation for our purposes [8]. The UML block in adapted
notation consists the name of the entity, generic settings, ports and the function. We
can make particular visualization of the part of the system and focus our attention on
the entity and the derived specialized entities. We can also make general visualization
of the system and see not only the deriving relation but also the owning relation then
(Fig. 1).

Described rules allow to obtain a very clear code, easy to modify, which is
portable between platforms. Figure 1 depicts an example. Here is a system which

Fig. 1. The example of the UML diagram for the design
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consists two generators of the pseudo random binary sequence and the multiplexer.
So, we have two instantiations IPRBS9 and IPRBS11 derived from the EPRBS entity
and the EMUX entity which owns the instantiations [2].

3 Conclusions

The limited number of pages allows to give only a brief overview of the subject and
the main ideas are described in general terms. However, it is enough piece of
information which shows our object oriented system for VHDL designs. This group
of  simple rules can be used for complicated projects with very good results. These
rules make the code the error-proof and readable structure for everyone, give
portability between different vendors, allow to describe problems in the object
oriented way without specialized tools, make the significant decrease in time of
development.

Authors used presented paradigms for a wide spectrum of complicated projects.
The STM-16 framer or the system for the detection of signs on the road are the best
exemplars. In these applications we obtained a very promising results for the future
and the significant increase in the quality of the code.

This paper is a result of research which is registered in The State Committee for
Scientific Research of Poland (KBN) and numbered: 3T11C 045 26. The State
Committee for Scientific Research of Poland sponsors this publication.
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Abstract. This paper proposes a simple solution to use reconfigurable hardware
in the context of distributed applications. The remote access to the reconfigu-
rable resources is carried out through Web Services technology. So it is possi-
ble to exploit the synergy of reconfigurable computing and distributed applica-
tions. A web service has been developed to remotely use the whole functional-
ity of a reconfigurable platform. An example application has been developed in
order to study the advantages and drawbacks of this methodology.

1   Introduction

Nowadays Internet allows the remote use of different reconfigurable platforms of-
fered in Web laboratories [1, 2] accessible from anywhere at any time. A step further
will be extending the use of reconfigurable hardware, connected to Internet, to Dis-
tributed Computing applications. Both Distributed and Reconfigurable computing are
quickly gaining in popularity. The aim is exploit the synergy of these two rather com-
plementary technologies.

Currently distributed applications are based on PC computers organized as clusters
embedded in a communication infrastructure. On the other hand, there are several
implementation of clusters based on reconfigurable hardware [3, 4]. These previous
works present very complex architectures. This paper presents a simple solution to
use reconfigurable hardware in the developing process of Distributed Applications
based on communication networks. Web Services [5] technology is proposed to use
the reconfigurable platform RC1000PP of Celoxica. A Web Service offers a set of
functions with a specific task through a network, usually Internet. The communica-
tion between the different parts of a distributed application is established using this
technology.

                                                          
* This work has been supported in part by the European Program No: 100671-CP-1-2002-1-

FR-MINERVA-M, and in part by Project 07T/0052/2003-3 Comunidad de Madrid, Spain.
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2   Using Reconfigurable Hardware Through Web Services

The reconfigurable platform RC1000PP of Celoxica is a PCI board built around a
XCV2000-E FPGA. A local C library allows performing all necessary operations
over the platform from a PC: configure the FPGA, set the clock frequency, exchange
data between the FPGA design and the PC host using shared memory, etc.

A first Web Service provides remote access to the FPGA design tools. It is acces-
sible through the web application shown in figure 1a. This web tool allows the user to
run the different design stages.

An additional Web Service implements all functions contained in the C library. The
formal use of these functions is similar to the original, with the same function name
and input/output parameters. This makes possible to adapt easily the application exe-
cution from local to remote, changing the library functions calls by their remote ver-
sion. As an example, a local application developed in C language to encrypt/decrypt
using the DES algorithm has been adapted to be used by the platform through the
developed web service. Two different languages have been used, Python for a win-
dow client interface, and PHP for a web client interface (figure 1b). Both programs
are identical, except the differences imposed by the syntax languages and the imple-
mentation of the SOAP [5] library. This is possible because Web Services are inde-
pendent of the language used in the application that requests the service.

Fig. 1. (a) Remote access to design tools. (b) Web client interface of the cipher application

Using the RC1000PP platform through a web service allows a user, who doesn’t
have this platform, to design applications and test them. However, in order to increase
the performance of distributed applications, the use of the remote library functions
could present drawbacks for some specific applications. When a function is invoked,
the execution time is the result of adding the time wasted to execute the function
locally to the time spent sending a receiving the data. So the final application has a
penalization due to the remote execution. To minimize this situation it is necessary to
consider the following methodology in order to design new web service functions:
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− The library functions offered by the web service are used as a first approach to
design and debug quickly the applications. On this way, the designer that knows
the library functionality implements the application easily. The performance of this
first approach is low.

− Once the applications work correctly, new functions can be added to the web
services. These new functions must implement an upper level on the platform
management and they are related to the specific application. This reduces the num-
ber of remote calls, so the execution time is smaller and the performance is better.

− Finally, if the performance is not good enough, a new remote function that imple-
ments all the application functionality is necessary to be developed. For example, a
remote function for encrypt or decrypt using a specific algorithm. This new ap-
proach reduces the network communication activity and the performance could be
the best one.

3   Conclusions and Future Work

Web Services technology is presented as a solution to integrate functions imple-
mented in reconfigurable hardware, with an application developed using high level
programming languages. The application developer can improve the execution time
of critical tasks, without the knowledge of how the reconfigurable hardware works.
The web service technology allows the remote use of a specific reconfigurable plat-
form and offers all hardware functions to be used. Although this is a previous work,
the preliminary results give rise to many appealing opportunities.

The web service presented in this work requires that the reconfigurable platforms
are included in PC architecture. However, the new reconfigurable platforms available
with embedded microprocessors will allow implementing the web service in the same
board. The use of the Virtex II Pro family to implement web services will be carried
out as future work. Another experiment will study the throughput improvement ex-
pected in a distributed applications based on the use of reconfigurable hardware
through Web Services.
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The heterogeneity of modern configurable devices makes the problem of map-
ping computations to them increasingly complex. Due to the large number of
possibilities for partitioning the data among storage modules, these architectures
allow for a much richer memory structure. One general goal in managing this
memory is to minimize the number of external memory accesses. A classic tech-
nique for reducing this number is to keep reusable data as close to the processor
as possible. In order to do so one needs to have a good idea as to if and when the
data in a specific memory location is going to be reused. General compilers are
capable of detecting the reuse as well as applying different techniques in order
to exploit this reuse. In this paper we describe how to utilize a compiler reuse
analysis to map the data to a configurable system, aiming at minimizing the
number of external memory accesses. Our target architecture is a system with
an external memory, a limited number of internal registers, and a fixed number
and capacity of internal RAM blocks.

A compiler technique for exploiting the reuse in array variables is known as
scalar replacement or register promotion. For array data values that are repeat-
edly accessed across many iterations of a loop nest, scalar replacement allows
a compiler to replace an array reference by a scalar. The compiler then saves
this scalar in a register or an internal RAM block in order to reuse it in later
loop iterations. As a result of this “caching”, scalar replacement substantially
reduces the number of memory operations. The fundamental issues here are to
first identify the data reuse of a memory location, and then to determine the
number of registers required by scalar replacement for capturing this reuse.

In order to identify the reuse of an array reference, the compiler makes use
of the data dependence analysis information embedded in distance vectors. Two
array references are data dependent if they access the same element either by
writing or by reading. The data dependence relation between different references
could be presented as a directed graph, in which each connected component is
called a reuse chain. Also, the distance between dependent accesses is captured
in a distance vector1. In this vector each element represents the iteration count
difference between a reference and its reuse for the corresponding loop level.
Figure 1(b) illustrates the distance vectors and reuse chains for the example code
1 The elements of this vector are either a constant (constant difference), a ’+’ (all

positive differences), or ’*’ (unknown difference).
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for (i = 0; i < bi; i++){
for (j = 0; j < bj; j++){
for (k = 0; k < bk; k++){
. . . = a[j];
. . . = (b[i][k] + b[i-1][k]);
. . . = c[k];
. . . = d[j][k];

}
}

}

b[i][k] a[j]

c[k]

d[j][k]b[i-1][k]

+
*
0

+
0
*

+
0
0

1
*
0

0
+
0

0
+
0

(a) C Code. (b) Reuse Chains.

Fig. 1. Example Code.

presented in Figure 1(a). For instance the elements of array c[k] are reused
across the iterations of i and j loops. The corresponding distance vector of
(+, ∗, 0) means that an array location is first reaccessed in the next iteration
of the i loop, any iteration of the j loop and the same iteration of the k loop.
In order for the data accessed by c[k] to be reused, the generated code must
capture all the values between reuses and save them in registers, in this case bk

registers, thereby saving bi × bj memory accesses.
Clearly, exploiting the reuse of a loop nest at the outer levels can require

a large number of registers and hence increase the register pressure in a given
implementation. In the presence of limited registers, a compiler algorithm can
take advantage of local storage such as RAM blocks. Typically, RAM blocks have
much higher density than discrete registers at the cost of reduced bandwidth.
In this research we are exploring effective compiler algorithms that can strike a
balance between the opportunities for data reuse, and the availability and band-
width of registers and RAM blocks. In order to compute the required number
of registers to exploit the reuse at a given level of the loop and for a particular
set of reuse chains, the compiler must first select which reuses to exploit. It then
needs to stage the allocation and flow of data between registers and RAM blocks
for maximum resource efficiency.

We have conducted a preliminary set of experiments for a small set of image
processing kernels and present here the results for a a Finite-Impulse-Response
(FIR) computation code. For this code we have developed a C reference specifica-
tion and manually translated it to behavioral VHDL for various C code versions
exploiting reuse at different loop levels. After converting these C codes into a
structural VHDL design using Mentor Graphics’ MonetTM high-level synthesis
tool, we used Synplify Pro 6.2 and Xilinx ISE 4.1i tool sets for logic synthesis
and Place-and-Route (P&R), targeting a Xilinx VirtexTM XCV 1000 BG560 de-
vice. We then extracted the real area and clock rate for each design and used
the number of cycles derived from simulation of the structural design with the
memory latency information of our target FPGA board (read latency of 6 cycles
and write latency of 1 cycle) to calculate wall-clock execution time.

In these experiments we have artificially defined a maximum limit of 64 for
the number of registers used to capture the data reuse. With this constraint
on the number of registers, we applied a simple allocation algorithm to assign
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the data to registers or RAMs at different loop levels. We then observed the
impact of the decision of using RAM vs. registers in the area and performance
of the resulting hardware design. In these results, version v1 denotes the base
code version in which no reuse is exploited at any level; versions v2, v3 denote
the versions where reuse is exploited exclusively using registers at levels 1 and
2 respectively. Finally version v4 denotes a version which exploits reuse at the
top level of the nest, but because of the limitation on the number of registers
the implementation uses internal RAM blocks rather than registers.

We present two plots, the first depicting the number of clock cycles of the
actual computation as well as the corresponding memory operations (with and
without pipelined access mode). In the same plot we present the speedup with
respect to the original version (v1) using the same memory access mode. The
speedup calculation uses the actual clock rate obtained from the hardware imple-
mentation after P&R for each design. In the second plot we present the number
of registers used to exploit reuse and the FPGA area in terms of slices.2
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Fig. 2. Experimental Results for FIR.

As the results illustrate, exploiting data reuse at all levels of the loops dra-
matically reduces the number of memory accesses and consequently improves the
performance of the implementation. However, this comes at a steep price for the
versions that do not use RAM blocks. For example, version v3 eliminates 77.7%
of the original memory operations but the corresponding hardware design uses
16% of the 12, 288 FPGA slice resources. As to the versions that use RAM blocks
(v4) to exploit the reuse at all levels, they exhibit comparable performance to
versions that exclusively use registers (v3), while using a very small fraction of
the FPGA resources. We also note that the impact of exploiting data reuse is
less dramatic when the overhead of the individual memory accesses is reduced
by exploiting pipelining techniques.

2 In the area metric we have excluded the slices due to the RAM blocks, since they
are fixed for every design whether the design uses them or not.
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Abstract. A novel configuration bitstream generation tool for a custom FPGA
platform is presented. It can support a variety of devices of similar architecture.
The tool exhibits technology independence and is easily modifiable. The tool
also allows partial reconfiguration as long as the target platform also does.

1   Introduction and Related Work

In this paper, a configuration bitstream generation tool is introduced. It is part of a
complete framework for mapping logic on a custom FPGA platform, starting from a
VHDL circuit description down to the FPGA configuration bitstream. This framework
was developed as part of the AMDREL project [1]. The tool can operate as a standa-
lone program as long as the necessary input files are provided in the appropriate for-
mat, and the architecture of the target FPGA to be configured is supported.

2   Target Fine-Grain Reconfigurable Hardware Architecture

The proposed configuration bitstream generator was developed to support a specific
custom FPGA platform, which was presented in detail in [2, 3]. The tool that is pre-
sented in this paper was developed in order to support this FPGA, but it can target a
variety of architectures.

3   Proposed Configuration Bitstream Generation Tool

DAGGER (DEMOCRITUS UNIVERSITY OF THRACE E-FPGA BITSTREAM
GENERATOR) is the tool that programs the fine-grain reconfigurable hardware plat-
form described in the previous section. DAGGER accepts four input files: i) the

                                                          
* This work was partially supported by the project IST-34793-AMDREL which is funded by

the E.C.
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placement file showing the positions of the used CLBs, ii) the routing file showing the
connections between CLBs, iii) the netlist file showing the clustering among CLBs
and iv) the function file showing the function produced by the CLB LUTs.

To summarize:
• DAGGER is FPGA architecture and process technology independent
• It generates from scratch the configuration bitstream instead of modify-

ing an existing one like JBits does

3.1   Theoretical Approach

The FPGA is represented with 5 different arrays (A, B, C, D, and E). Schematically,
the whole layout of the FPGA is shown in Fig. 1. The specific example shows a square
FPGA 4x4, with 16 (4 in each side) I/O blocks and 5 horizontal and 5 vertical chan-
nels. Arrays A (top), B (right), C (bottom) and D (left) correspond to the upper, right,
lower, and left line of I/O blocks accordingly. The central blocks of the FPGA, which
accomplish the logic functions, are described with array E (center).

GREEN RED YELLOW

A

B

C

D

E X

Y

Internal CLB

E

X

Y

From (1,0) to (4,0)

C

X

Y

F
ro

m
(0

,1
)

to
(0

,4
)

D X

Y

F
ro

m
(5

,1
)

to
(5

,4
)

B

X

Y

From (1,5) to (4,5)

A

Fig. 1. FPGA encoding with arrays

In the arrays of Fig. 1, green represents the points that a connection can be made,
yellow is used for the points that connect routing channels to other routing channels,
and red represents the points that no connection is allowed to be made. Specifically,
the green squares correspond to the connection made by the I/O pins either from the
logic block, or from the I/O block to the routing channels. The yellow squares signify
the possible places of connection among the routing channels at the switch box. Fi-
nally, the red squares do not represent connections and their sole reason of existence is
the completion of the array.

3.2   CLB Configuration

Essentially, part of DAGGER’s functionality is also the programming of the compo-
nents inside the logic block. These components are the k-input LUT, the F/F, and the
MUX which is used to multiplex the output signal (either from the LUT, either from
the F/F) that comes out of the logic block.
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An example of a typical output file that gives information about the logic block
programming is shown in Fig. 2.

Fig. 2. Example of an output file information about the logic block programming

4   Comparisons

The configuration bitstream sizes of the AMDREL fine-grain reconfigurable hardware
core and larger virtual devices are given in Table 1. The bitstream sizes are compared
to the corresponding ones of Xilinx devices with similar resources (LUTs and flip-
flops). It is evident that the bitstream sizes are of the similar order. Additionally, the
size of the reconfiguration file from DAGGER can be further reduced using well-
known data compression techniques.

Table 1. Configuration bitstream sizes

AMDREL XILINX
Device Config. bits LUTS/FFs Device Config. bits LUTS/FFs

XCS05 53,984 200/3608×8 33,600 320/320

XCS10 95,008 362/616
18×18 294,880 1620/1620 XC2S50 559,200 1536/1536
27×27 1,649,120 3645/3645 XC2S150 1,040,096 3456/3456
34×34 2,331,240 5780/5780 XCV300 1,751,808 6144/6144
39×39 2,748,034 7605/7605 XCV400 2,546,048 9600/9600
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LUT PROGRAMMING
============================================

Input pad: p_1gat_0_  pos_x = 0  pos_y=5
Input pad: p_2gat_1_  pos_x = 0  pos_y=3
Input pad: p_3gat_2_  pos_x = 4  pos_y=6
Output pad: out:p_22_  pos_x = 3 pos_y=6
Output pad: out:p_23_  pos_x = 4 pos_y=0
CLB: n_n14  pos_x = 4  pos_y=5        LOGIC = 0000000011111111   use f/f = 0
CLB: n_n5  pos_x = 4  pos_y=4        LOGIC = 0000000000001111   use f/f = 0
CLB: n n13 pos x = 5 pos y=4 LOGIC = 0000000011111111 use f/f = 0
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Abstract. AAA is a methodology developed for the fast prototyping of
real-time embedded applications and SynDEx is the software tool based
on this methodology. Based on formal transformations, AAA helps the
designer to implement signal and images processing algorithms onto mul-
ticomponent. This includes the support of both algorithm and architec-
ture specifications, resources allocations and optimizations, performances
prediction and multicomponents code generation. Since AAA did not ini-
tially support configurable components, this paper presents an extension
of AAA/SynDEx for FPGA. This still includes the support of specifica-
tion, optimization, performance prediction and automatic VHDL code
generation. This paper focuses on the implementation of this work in
SynDEx-Ic.

1 Introduction

Digital image-processing applications require growing computational power es-
pecially when they must be executed under real-time constraints. This power
can be achieved by high performance mixed hardware architectures (called mul-
ticomponent) that are based on programmable components (RISC, CISC, DSP)
and/or non programmable components (FPGA, CPLD). Furthermore, once an
application algorithm and a multicomponent architecture are specified, the set
of possible implementations is huge since there is still several problems to solve:
HW/SW partitioning of the algorithm, distributing and scheduling of the SW
part of the algorithm, adding communications, generating code for each com-
ponent (processor, configurable circuit). To implement these mixed applications
while meeting the timing constraints is actually hard to make, therefore there
is a need for dedicated high level design methodology, to solve the specification,
validation and synthesis problems. Since we want to cover mixed architectures,
we have extended AAA [2] in order to support reconfigurable components such
as FPGA therefore we have to address two problems. First we need to gener-
ate RTL code from the algorithm graph specification including automatic data
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and control paths synthesis [1]. Secondly, since resources are limited in the con-
figurable component (i.e. the number of CLB for FPGA), it is often better to
make a factorized implementation of the specification (we will create “loop” in
silicium in order to decrease the number of required resources) but since we
deal with real-time application, the resulting implementation must also satisfy
the given time constraint. Consequently we have developed heuristics to find
a good space/time compromise. The automatic RTL code generation and the
optimizing heuristics have been implemented in SynDEx and lead to a version
dedicated to circuit that we named “SynDEx-Ic”. In the future, we will focus on
mixed architectures. We will merge SynDEx-Ic and SynDEx. Several researches
for HW/SW co-design have addressed the issue of design space exploration and
performance analysis of embedded systems. Among them, we can cite the SPADE
methodology which enables modeling and exploration of signal processing sys-
tems onto coarse-grain data-flow architectures and the CODEF tool (MOSARTS
team) which allows the design space exploration based on a specification of parti-
tioning/distributing/scheduling and interconnection synthesis. The next section
introduces the algorithm specification of applications. The section 3 introduces
briefly the architecture specification. Thus, the optimization principles and the
optimization heuristic developed for SynDEx-Ic are briefly presented in section
4. Section 5 is dedicated to the automatic RTL synthesis of the applications.

2 Algorithm Specification

In the AAA methodology, an algorithm is specified as a directed acyclic graph
(DAG) infinitely repeated. Each vertex is an operation. Each edge is a data-
dependence between operations. A data-dependence may be a scalar or a vector
of elements. Each operation may be hierarchic or atomic. It is hierarchic when
its behavior is described by a sub-graph of operations, otherwise it is atomic.
An operation corresponds to a sequence of instructions if it is implemented onto
a programmable component (processor) or correspond to a RTL module if it is
implemented onto a configurable component (FPGA).

Specification of repetitive parts: In order to specify his algorithm, the de-
signer frequently has to describe repetitions of operation patterns (identical op-
erations that operate on different data) defining a ”potential data parallelism”.
In order to reduce the size of the specification and to highlight these repeti-
tive parts we use a graph factorization specification. It consists in replacing a
repeated pattern by only one instance of the pattern called a “repeated hierar-
chical operation”. It is important to notice that factorization is just a way to
reduce the specification, it does not necessarily imply a sequential execution.
We will see in the “optimization” section (page 1121) that the choice between
a sequential implementation or a parallel implementation depends on the re-
sources constraints and the timing constraints. Our algorithm model permits
also the specification of conditioned operations allowing alternatives depending
on condition.
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3 Architecture Specification

Model: Here is the fundamental difference between SynDEx and SynDEx-
Ic. For SynDEx, the target hardware architecture is made of programmable
components, it is a multiprocessor architecture while for SynDEx-Ic, the target
hardware architecture is a single configurable component (FPGA). It is modeled
by the configurable logic blocks (FPGA) and their interconnections. When we
will merge SynDEx and SynDEx-IC, the target architecture graph will be a
mixed architecture of programmable and configurable components.

Characterization: Once the architecture is specified, it is necessary for the
optimization process presented hereunder to characterize each operation of the
algorithm graph. For SynDEx-Ic the characterization consists in specifying the
worst execution duration of each operation as for SynDEx, but it is also necessary
to specify the number of configurable units required for the implementation of
each operation on the targeted FPGA.

4 Implementation and Optimization in SynDEx-Ic

Principles: From a given pair of algorithm and architecture specification,
SynDEx use a distribution and scheduling heuristic in order to minimize the ex-
ecution duration of the algorithm. Since SynDEx-Ic target a configurable com-
ponent, it uses a heuristic that try to build an implementation that fits in the
available circuit and satisfies the latency constraint. For each repeated hierarchi-
cal operation there is several possible implementations. Let’s take the example
of the operation “adap” given in figure 2. On a FPGA, this repeated operation
may be implemented fully sequentially (figure 1-a), fully parallel (figure 1-b ),
or any mix of these solutions (figure 1-c). Sequential implementations require to
synthesize a dedicated control path (made of multiplexer, demultiplexer, register
and a control unit in figure 1-a and c). Now if we look for the performances of
these three implementations, we can see that the fully sequential one (a) required
the minimum space but is the slower. The fully parallel one (b) is the faster but
consumes the maximum space. Finally the sequential-parallel implementation
depicted in (c) is an example of compromise between space and time, it is twice
faster than (a) but requires also more than twice the size. The implementation
space which must be explored in order to find an “optimized” solution, is then
composed of the combination of all the possible implementations of repeated op-
erations. Consequently, for a given algorithm graph, there is a large, but finite,
number of possible implementations which are more or less sequential, among
which we need to select one which satisfies the real time constraint, and which
uses as less as possible the hardware resources (number of logic gates for ASIC
and number of Configurable Logic Blocks CLB for FPGA). This optimization
problem is know to be NP-hard, and its size is usually huge for realistic applica-
tions. This is the reason why we use heuristics guided by a cost function, in order
to compare the performances of different implementations of the specification.
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Fig. 1. Three examples of implementation of the re-
peated operation “adap” specified in figure 2
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Fig. 2. SynDEx/SynDEx-Ic
snapshot of the Equalizer
application

These heuristics allow us to explore only a small but most interesting set of all
the possible implementations into the implementation space. Since we aim at
rapid prototyping, our heuristic is based on a fast but efficient greedy algorithm,
with a cost function f based on the critical path length metric of the implemen-
tation graph: it takes into account both the latency T and the area A of the
implementation which are obtained by the preliminary step of characterization
presented in section 3. This heuristic is based on estimator algorithms in order
to find the surface and the latency of each implementation.

5 Automatic RTL Code Generation in SynDEx-Ic

Once SynDEx-Ic has built an optimized implementation, it is able to automati-
cally generate the corresponding RTL code including the specified data path and
the synthesized control path. The RTL code generation performed by SynDEx-Ic
entails two steps. In the first step, SynDEx-Ic generates two intermediate files
based on a macro code, one corresponding to the design package of the applica-
tion and the other to the application design. For each vertex of the graph, we
produce macro functions symbolizing the definition of each component and each
connecting signal and the mapping of components. In the second step, these
intermediate files are convert into VHDL code with the help of given VHDL
libraries and a macro-processor called GNU-m4. So, using intermediate files in-
stead of generating directly the VHDL code permits to have a RTL code genera-
tor independent of a target language which can be Verilog language for example
or SystemC.

6 Conclusion and Future Work

We have presented the different steps to generate a complete RTL design cor-
responding to the optimized implementation of an application specified with
SynDEx-Ic. Given a algorithm graph specification it is then possible to generate
a multiprocessor optimized implementation using SynDEx, or a FPGA opti-
mized implementation using SynDEx-Ic. Moreover, since SynDEx-Ic is based
on SynDEx the development flow is unified from the application designer point



AAA and SynDEx-Ic: A Methodology and a Software Framework 1123

of view. The next step is to merge SynDEx and SynDEx-Ic in order to sup-
port mixed parallel architectures: architectures with programmable compo-
nents and reconfigurable components (FPGA). To support such architectures,
we first have to solve the partitioning problem between programmable and con-
figurable components. For that purpose we plan to link the two kinds of opti-
mization heuristics of AAA (i.e SynDEx heuristic for programmable components
and SynDEx-Ic heuristics for configurable components). We must also support
the automatic communication synthesis between the different components (pro-
grammable and reconfigurable). So, this methodology will be used for optimized
hardware/software co-design, leading to the generation of either executives for
the programmable parts of the architecture and RTL for the non-programmable
part.
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Abstract. In this paper present a partial run-time reconfiguration
framework focused on multiprocessor core-based systems implemented
on FPGA technology. It is called Tornado, and it is composed of an
infrastructure of signals, protocols, interfaces and controller to perform
safe hardware/software reconfigurations.

1 Introduction

G. Martin in the chapter “The History of the SoC Revolution” in [1] emphasizes
how the IP core-based design with commercial reconfigurable FPGA platforms
is a strong reality in SoC today and it will continued in the future. Focused
on applying self-configuration to these design types it must be highlighted the
work of Blodget et al. [2]. They present a Self-Reconfiguring Platform (SRP)
for Xilinx Virtex-II and Vitex II Pro. Danne et al. [3] present a technique to
implement multi-controller systems using partial reconfigurable FPGAs. They
use an external configuration manager which receives reconfiguration request
from an internal supervisor.

In this paper, we present a self-reconfiguration framework that we call Tor-
nado, which applies partial Run-Time Reconfiguration (RTR) to SoPC core
based designs that include multiple cores with tiny microprocessors embedded,
converting them in a Configurable-System-on-a-Programmable-Chip (CSoPC)
designs. We pretend to go forward into the application of the partial run-time
hardware and software reconfiguration among multiple processors cores in IP-
Core FPGA designs.

2 Tornado Self-Reconfiguration Framework

2.1 Targeted Architectures

The integration of tiny microprocessors into cores offers a very flexible tool to the
designer. Complex state machines or control loops can be efficiently implemented
using little embedded RISC microprocessors [4].The dominant implementation
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factor of these small processors is size. We will call “Mixed Cores” (MC) to the
cores built with an embedded small CPU and additional hardware.

Figure 1(a) shows an abstraction of a MC that includes a small micropro-
cessor with its software embedded into the FPGA dedicated RAM, a custom
hardware for the specific application and an interface to link the core to the on-
chip Bus. An standard specification for IP-Cores interconnection is used for the
interface. We propose to this widely employed architecture the addition of RTR
benefits. In order to convert a SoPC with mixed cores in a CSoPC we consider
two major issues:
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Fig. 1. MTM-Core with PSM multi-context and partially modificable and the gener-
alized Tornado architecture.

– Software context: The size of the program memory for the tiny CPU em-
bedded into the core is strongly constrained by the size of the dedicated
RAMs of the FPGA. The application of the partial RTR to MC allows the
addition of multiple software contexts that enhance the FPGA use in ap-
plications where the MC architecture fits (control, protocol processing, half-
duplex transceivers, etc.). Figure 1(a) represents the proposed enhancement.
Note that the embedded tiny processor has been provided with an interface
called reconf control. Basically we propose the control of the Program and
Stack Counters plus the possibility to disable the reconfiguration temporally.
We have called the microprocessor capable of managing multi-context small
software units Multicontext Tiny Microprocessor (MTM).

– Hardware context: To apply small modifications into the custom HDL
described hardware. This feature is being integrated successfully into
industrial-quality cores [3,5,6]. Nevertheless, this hardware reconfiguration is
restricted to changing the contents of an area-located elements of the FPGA
obtaining a slightly different core instead a new one.
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Figure 1(b) represents a simplified architecture of a SoPC that includes n
MTM-Cores and z IP Cores (without Tornado reconfiguration capabilities). All
of them use an standard interface to be linked with the on-chip bus. The bus
topology is only constrained by the bus specification used, having selected for
the representation a Shared Bus Topology.

To manage these different partial reconfigurations a Reconfiguration Con-
troller Core called Tornado Controller Basic (TCB) is included into the system.
As it is represented in figure 1(b), in our approach the sources of the reconfig-
uration requests could be very diverse. The reconfiguration request to the TCB
can come from any core, either MTM-Cores or general IP-Cores including Hard
or Soft powerful microprocessors embedded into the platform. It also allows a
MTM-Core request to the TCB for a self-reconfiguration through its on-chip
bus interface.

3 Conclusions

Acknowledgment In this paper we have presented a run-time partial reconfigu-
ration framework focused on multiprocessor core-based systems implemented on
FPGA technology. Future works will be focused on the application of the Tor-
nado to more complex systems and the design of more flexible reconfiguration
controllers that support dynamic partial bitstream generation.
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1 Introduction

Platform FPGAs have dramatically changed the role of FPGAs in embedded
systems. With increased density and immersed complex IPs, FPGAs no longer
simply play ‘a role’ in embedded systems – FPGAs are embedded systems. To
accommodate the increased system capability of Platform FPGAs, they also
host a rich embedded software environment. Embedded Linux has emerged as
a common software infrastructure for embedded systems in general and is also
being employed in FPGA-based embedded systems.

The computational power of platform FPGAs make them a compelling imple-
mentation technology but they also offer a unique degree of reprogrammability.
Manipulating the configuration memory of the FPGA allows us to influence both
the behavior and structure of the digital logic implemented on the device. Some
important embedded systems functionality is enabled by this: in-field upgrade;
management of both the hardware and software; system introspection and in-
field debug are each enabled by observing the configuration of the FPGA through
its programming interface. Our challenge, however, is making the programma-
bility of the FPGA easily accessible to the embedded system designer and user.
This paper outlines a highly innovative mechanism and interface to the FPGA’s
programmability. Our approach is intuitive to the user and its implementation
has a natural fit within the Platform FPGA’s embedded system infrastructure.

2 Harnessing FPGA Programmability

Most reconfigurable systems use software APIs to control and manipulate the
FPGAs in the system. A user of the API writes a program to invoke the methods
of the API and hence manipulate the bitstream data held in FPGA’s configura-
tion memory. Early FPGAs, because of their limited (serial) access mechanism
to the configuration memory, had correspondingly simple APIs that allowed the
entire memory to be read or written. Later APIs took advantage of greater flex-
ibility in configuration memory interfaces of modern FPGAs. The Xilinx JBits
API[2], for example, allowed the data in the memory to modified in finer gran-
ularity. More importantly, JBits went beyond simply transporting fragments of
data between the control program and the target FPGA’s configuration mem-
ory: it also provided the means of interpreting the semantic content of the data.

J. Becker, M. Platzner, S. Vernalde (Eds.): FPL 2004, LNCS 3203, pp. 1127–1129, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



1128 A. Donlin et al.

Recently, the self-reconfiguring platform (SRP)[1] was introduced. It provides a
subset of JBits’ capabilities in the C-language idiom and is optimized for use in
embedded systems. Furthermore, logic configured onto the FPGA may access
and manipulate the configuration data of their host FPGA.

Whilst functionally correct, these APIs do have certain limitations. Firstly,
they are language dependent: using the API requires the system designer adopt
the API vendor’s chosen language. Additionally, they are much less likely to
be standardized: the methods and data structures that comprise the API are
likely to vary between vendors. Combined, these limitations raise the barrier
of entry to implementing reconfigurable systems. The API’s language choice
must be justified and the designer must ‘acclimatize’ to the complex API. Our
contribution in this paper is to present a novel means of manipulating the content
of FPGA configuration memory. It is based on the concept of a “virtual file
system” and is language-neutral, flexible, and highly intuitive.

3 The FPGA Virtual File System

A standard file system presents the data encoded on the long-term storage me-
dia of a computer system as a hierarchy of directories and data files. The file
system is, essentially, a convenient “user-interface” to the stored data. Virtual
file systems (VFS) extend coverage of the file and directory metaphor to other
devices and resources in a system. The VFS prescribes a mapping between the
abstract notions of “file” or “directory” and target dataset. It also determines
the behavior of the basic file and directory operations (open, read, etc.), con-
verting them to a series of native transformations on the target data set. Linux’s
/proc is a familiar example of a VFS. Its files and directories actually represent
objects and live data structures within the local Linux kernel. Through /proc,
users of the system may inspect and manipulate live kernel data structures just
by performing standard file system operations on the /proc files and directories.

We have created a prototype of the VFS concept applied to FPGA configu-
ration memory. Through our FPGA-VFS we have mapped the file and directory
metaphor to allow users to interact with the resources of their system’s FPGAs
in new and convenient ways. To that end, the Xilinx FPGA-VFS allows a user
to traverse a file system view where files and directories actually correspond
to regions of configuration data from the FPGAs within their system. Related
resources are grouped within the FPGA-VFS’s directories and its files are con-
tainers holding the configuration data for a specific instance of a resource. We
may navigate the FPGA-VFS directory hierarchy with standard navigation com-
mands like ls and cd. Upon locating the file representing the configuration data
of the given resource, we may use standard applications (echo, cat, touch, rm,
etc.) to open, read, write, close or delete, etc., the file. In designing the VFS,
we select the particular configuration data to be represented by each of the files
in the VFS. We also decide how to group them into directories. In our initial
prototype, each instance of a physical resource in the FPGA is presented as a
distinct file. We group the files for the same type of resource into VFS direc-
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tories. Sub-directories within the resource-type directories organize the specific
instance files according to the geometric position of the resource in the FPGA
floorplan, or an ascending numeric sequence.

proc

pci

net

processes

fpga

Physical-
Resource View

LUTs

BRAMs

MGTs

Routing

IOBs

Platform View

App-Core View

Fig. 1. Filesystem view of the FPGA’s Physical Resources

A “physical resource” VFS is only one potential file system view of the FPGA
configuration data. We may create other VFS views that interpret and present
the same configuration data in different ways. Different views may co-exist as
different top-level directories in the FPGA-VFS file space. In Figure 1 we show
the FPGA-VFS directory structure and the main subdirectories of the physical
resources view. If, for example, we wish to modify the configuration data of a
given BRAM in our host FPGA, we need only cd to the appropriate BRAM
directory and manipulate the data files we find there.

4 Conclusions and Future Directions

FPGAs have a central role in future embedded systems. In this paper we have
introduced the FPGA-VFS as a powerful mechanism that an embedded system
designer may use to control the FPGAs within their system. Our approach over-
comes some important problems in traditional APIs for manipulating FPGA
configurations: it is flexible, language neutral and highly intuitive. We are ac-
tively exploring and prototyping alternative views and expanding the nature of
an FPGA-VFS to systems with ubiquitous internet access.
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Abstract. In this paper a context switching mechanism is implemented into an
existing MIMD based coarse grain reconfigurable IP block. Context switch is
not used only to hide reconfiguration latency, but the emphasis is on virtualiz-
ing the dimensions of an array of processors by folding the array to multiple
configurations and by using node based internal schedulers.

1   Introduction

In the coarse grain reconfigurable systems the configware is very hardware specific,
and thus the same configuration bit stream cannot usually be used in differentially
configured instances of the same architecture. However it is obvious that if the im-
plementation details of the hardware could be hidden, the configware development
would be a far more profitable. The size of an array is one of the most varying pa-
rameter in coarse grain devices, and thus one of the most interesting ones to be virtu-
alized
   The benefits of the context switch as a method for hiding the configuration delay in
reconfigurable devices is noticed and scientific work is done concerning among oth-
ers coarse grain reconfigurable systems [1,2,3,4]. However, the use of context switch
in coarse grain reconfigurable structures to virtualize the dimensions of an array is
rarely studied. In [5] the model of extensions needed to hide the size of an array is
given. However the [5] sidesteps the actual implementation and leaves all needed
scheduling to the controlling processor.

2   Context Switch Hardware Extensions in RAA

RAA [6] is a coarse grain reconfigurable algorithm accelerator IP block based on
MIMD topology. It consists of tiny 16-bit DSP processors each coupled with its own
local data and program memories. RAA uses two communication models. (1) Proces-
sors communicate via FIFOs such that each processor can read FIFOs of its four
neighbors and (2) the outside controller sees all local memories via an internal global
bus attached to the all memories via nodes’ bus interfaces. Each node has row and
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column addresses according its place and the node memories are accessed via those.
The internal structure of the node is illustrated in figure 1a.
   In the architecture level the context switch was added to the RAA by separating the
CPU core and FIFOs from memory part and by duplicating the separated memory
part such that each context has its own as shown in figure 1b.  The interface block of
the first memory part is similar to the original one, but the others recognize virtual
addresses such that the address of the first added context of node x(row,column) is
x(row+max(row),column+max(column)) and address of the second context is
x(row+2×max(row),column+2×max(column)) etc.

Fig. 1. (a) Structure of the basic node. (b) Structure of the node with three contexts.

Duplicated memory parts are seen differently from outside controller and CPU
core points of view. Because the whole memory part, including the interface, is cop-
ied the outside controller does not see if the configuration memory has its own CPU
core or is it only one context among others in a single node. Thus presented address-
ing mechanism not only implement accessing method for context memories but also
automatically hides the number of CPU cores in RAA from outside controller point of
view. The hash function used to address the duplicated memory parts automatically
places configurations such that the neighbor configurations in the bigger array are
also located adjacent nodes in the context switch extended smaller array. Because in
the RAA the nodes see only neighbors the previous condition keeps communication
solid if original to the bigger array synthesized configware bit stream is uploaded to
the smaller context switch extended array.
   From CPU core point of view there are really many memory parts and thus selec-
tion between those has to be done with multiplexer. In addition the CPU core three
instruction cycle level registers i.e. accumulator 1, accumulator 2 and program coun-
ter are duplicated such that each context has its own one and a selection between
those has to be done as well. Because the size of the array is wanted to be virtualized
in hardware level, the internal context scheduling was implemented. The scheduler is
added into the every CPU core as a hardware extension. The scheduler algorithm uses
non-pre-emptive tactic i.e. if the context in execution is not capable to continue, the
context switch to the next one is made implicitly. The possible context swiching
events are (1) end of program, (2) the outside operand in FIFO or in memory is not
ready and (3) the memory is locked by outside controller’s memory access.
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Because each node does scheduling itself, the different processors can execute differ-
ent configurations at a certain moment and thus the sender of data in FIFO can belong
to a different configuration than the receiver in certain time instant. Thus the configu-
ration identification number stamp is added to the every element of every FIFO. If
first data element in FIFO belongs to the context not in the execution the context
switch is done.

3   Results and Conclusion

In hardware side the extensions described in section 2 were implemented to the ex-
isting RAA architecture with VHDL and the developed new design was synthesized
to 0.18μm technology with Synopsys tools. The area of non-context switch extended,
two contexts, four contexts and eight contexts node was 0.17, 0.23, 0.32 and 0.51
square millimeters, respectively. Thus the size of an array increases linearly and vir-
tually four times bigger array takes ~1.7 times more area than the original one. On the
other hand it was noticed that it was not the scheduler located inside the core, but the
memories, which causes the extra area in practice.
   In this paper it is presented how a fast context switch can be implemented to the
MIMD based coarse grain reconfigurable algorithm accelerator IP block and the ac-
tual implementation is done in RAA framework. It is shown how the context switch
can be used to virtualize the dimensions of the array by using node based hardware
scheduler. The synthesis results show that an area penalty of the extra controlling
structures needed is insignificant but the increasing area comes from the additional
context memories i.e. the feature of abstracting the size of the array is got in practice
free on top of the context switch.
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Abstract. This paper deals with a design of a memory scheduler as
a part of the Liberouter project.
Nowadays, the majority of the designs of memory schedulers is aimed at
providing a high throughput while using a high-capacity DDR SDRAM
memory. The memory scheduler is FPGA-based. This allows us to test
many versions of the design with real network traffic and to set optimal
parameters for the memory scheduler units. For reasons of capacity and
throughput we use DDR SDRAM memory. The effective DRAM access
time is reduced by overlapping multiple accesses to different banks in
a special queue composed of the FPGA embedded Block SelectRAMTMs.

Keywords. Router, Virtex II, FPGA, DDR SDRAM, memory sched-
uler.

1 Introduction

Packets it the Liberouter router are processed by several blocks: Header Field
Extractor (HFE), Lookup Processor (LUP), Packet Replicator and the Priority
Queues Block, Edit Engine (EE), Memory Scheduler (MSH).

The HFE pushes the body of the packet into the dynamic memory. Mean-
while, it parses the packet’s headers and creates a structure called Unified-
header. The Unified-header is a fixed structure containing relevant information
from packet headers. The LUP processes the Unified-headers by performing the
lookup program and sends the result to the Edit Engine. The Replicator block
replicates the packet identification (dynamic memory allocation block number)
as well as the pointers to the editing programs into the dedicated queues. The
EE block modifies the headers of the packets.

The Memory Scheduler has a number of tasks: it must store packets and
the Unified-header from the HFE units in the dynamic memory, keep reference
counts for each packet (at its address in the memory), increment or decrement
reference counts upon a Replicator or an EE demand, and read a packet from
the memory upon an EE demand. Another major MSH function is to guarantee
equal access of the units to the shared memory and shared address resources.
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2 Analysis

The M/M/1 Kendall mass service system model will be used for the analytic
system model. In the M/M/1 mass service system model with limited queue
length for full queue probability stands:

pn = 1−ρ
1−ρn+1 · ρn, ρ = λ

μ
where n is queue length and ρ is traffic intensity, λ is the average number of
incoming requests per time unit and μ is the average number of served requests
per time unit. Input processes can be merged since merging the Poisson processes
is a Poisson process with λ equal to the sum of subprocesses parameters.

The memory scheduler is compared for three different parameters λ, the first
two λ parameters were obtained from the real CESNET2 network [4], the third
parameter is calculated for the 20% ballast of a 1 Gbit network. Parameter μ
is the throughput of the respective solution. Parameter Σn is the sum of all
buffers length in the request count units. The parameters are depicted in the
table below.

Table 1. ρ for different λ and the result

λIN [Mbit/s] λOUT [Mbit/s] ρDRAM [–]
200 200 0.47
75 129 0.24
23 39 0.08

The throughput of the memory scheduler is given by the Low Level Sched-
uler throughput and the length of the internal burst described in chapter 3. In
the worst case scenario, one DDR SDRAM memory read/write operation takes
8 clock cycles [5]. For 64 bits DDR SDRAM memory with 133MHz clock fre-
quency, the throughput is ρ = (133 · 106/8) · 64 · 4 = 4256 MBit/s Full queue
probability for different queue length (Σn) is depicted in Figure 1.

The memory scheduler cannot transfer a burst of the data immediately, thus
each connected unit has its own FIFO memory. For capacity reasons the Block
SelectRAMTM seems to be optimal. In Virtex II [2], the maximum bus width is
32b. All the input interfaces include input queues and the data are transfered
from these interfaces to the DDR SDRAM queue in a 32b wide burst.
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3 Realization

The MSH block structure is divided into three parts: Low level communication
with the DDR SDRAM (Low Level Scheduler), Data streams management (Data
Management) and Addresses and address references management (Address Man-
agement). The throughput of the memory scheduler also depends on the internal
burst length. Excessively long internal bursts can cause a starvation of the out-
put units and overloading of the input interfaces queues. Short bursts waste
the transfer capacity. Measurements were taken to derive the optimal length of
internal bursts. As an optimization parameter, the average number of clock cy-
cles with the input interface queue full during the full load of all interfaces was
taken. The measurement was performed in five 30 us intervals. The results of
the measurement are depicted in Figure 2.

To define the optimal length of the internal bursts, the average length of
packets in local area networks must be considered. This length is about 600B
(4800b), but packets about 64B (512b) long are also important for the network
traffic [4][6]. We arrived at a value of 1024b as a trade off between these demands.

4 Conclusions

In this paper we have presented the design of a memory scheduler as a part of
the Liberouter project [1]. We discussed the problem of data transfers from/to
input/output interfaces to/from the DDR SDRAM while attempting to find
an optimal length of internal bursts. We also discussed the length of the input
queues on the basis of a mass service system theory and the support of collective
communication network operations using the references counters. Currently, the
memory scheduler is implemented and tested on the COMBO6 board.
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Abstract. This work proposes the combination of a set of fixed identical analog
cells and a programmable digital array to create an infrastructure for reconfigu-
rable analog signal processing. The fixed analog cell (FAC) implements the
frequency translation (mixing) concept of input signal, followed by its conver-
sion to the  domain. This approach makes possible the use of a constant
analog block, and also a uniform treatment of input signals from DC to high
frequencies with a significant advantage: no analog part tuning, sizing, or re-
design required. The proposed topology allows easy integration with widely
used fine grain FPGAs or general purpose SOC, and it is ideal to develop
highly programmable mixed signal devices, since the tradeoffs among resolu-
tion, linearity, bandwidth and area can be developed at the user design time,
and not at the FPGA design time like in other mixed-signal programmable ar-
rays.

1   Introduction

There are a significant number of mixed signal SOC applications that deal with het-
erogeneous signals (low and/or high frequency) and signal processing functions (lin-
ear and non-linear). Therefore, the incorporation of some degree of analog program-
mability is imperative in current digital reconfigurable devices or general purpose
SOCs. This work discusses an analog interface architecture targeted to FPGA plat-
forms and mixed signal SOCs. This interface allows the implementation of complex
linear and non-linear circuits, permitting high performance analog prototyping and
reuse, creating a viable path to fast mixed signal prototyping.

2   Interface Architecture

The basic structure of the fixed analog cell (FAC) is composed by an input mixer and
a continuous time (CT) N-th order band-pass  modulator. The signals for control-
ling the mixer and the feedback DAC are generated by the digital reconfigurable
block [1]. As this cell is fixed at structural and functional level, it can have an optimal



Analog Signal Processing Reconfiguration for Systems-on-Chip        1137

design to provide the appropriate bandwidth, signal-to-noise-ratio-dynamic-range
(SNRDR) and frequency coverage for the target application set [2, 3]. Power and area
budget can be used as constrains for the tailoring process at design time. Moreover,
the base-band signal processing mechanism allows us to process signals from DC up
to HF in the same infrastructure, which would not be possible with any of the known
analog or mixed-signal programmable topologies. The channel processing flow pro-
posed herein requires a demodulator after the input bit-stream data acquisition to
bring the input signal to its base-band that can be implemented in the configurable
digital block, easily. The steps that follow are associated with the application of the
desired signal processing function over the input signal also using the digital infra-
structure. The analog output signal is generated by a one bit DAC and a reconstruc-
tion filter.

Figure 1 shows the architecture of this general interface using a set of identical
FACs. Each FAC has its own digital block to realize the acquisition of the generated
digital signal and its conversion to signal base-band for processing. It is important to
remark that all signal treatment is intended to be processed at signal base-band.
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Fig. 1. Analog SOC interface architecture.

3 Application Mapping and Results

A FAC discrete prototype was built to provide support for the proposed methodology
and, also, to demonstrate the application mapping potentiality of this interface. This
prototype is comprised by the FAC and the digital infrastructure (a FPGA board with
an ACEX1K EP1K100QC208 device). The FAC was designed using a second order
(lowest order or lower achievable SNRDR and bandwidth) continuous-time band-pass

 modulator and a passive CMOS mixer. Although discrete, the overall principle is
certainly valid for any VLSI implementation, with the ensuing benefits.

The interface was configured as a multi-band analog-to-digital-converter employ-
ing an optimized sinc2 decimator filter [2]. Table 1 summarizes the ADC testing
results. These results show the frequencies coverage and the balance between SNR,
area and power (logic elements – LE). With a higher order analog resonator, this
trade-off could be made even more aggressive [2].
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Table 1. The ADC test summary employing a variable size sinc2 decimator filter.

SNR [dB] / ENOB

Input Fnorm 64 – 4BW – 268 LE 128 – 2BW – 278 LE 256 – BW – 289 LE
0.1 42 / 6.5 52 / 7.5 55 / 8
10 39 / 6 48 / 7 50 / 7.5
75 40 / 6 47 / 7 51 / 7.5

It was also implemented an analog adder and an analog multiplier following the
topologies proposed in [4]. The n channel analog adder is a simple n input multi-
plexer and a module n counter operating n times the bit stream sampling frequency.
The two channel analog multiplier was synthesized resulting in a total 269 LE cost.

4 Conclusion

The results herein presented showed the potential of the proposed architecture to
provide flexible analog programmability and fast prototyping to SOC designers. The
proposed topology allows easy integration with the widely used fine grain digital
FPGAs or general purpose SOCs, and it is ideal to develop highly programmable
mixed signal devices, since the tradeoff among resolution, linearity, bandwidth and
area can be developed at the user design time, and not at the FPGA design time like in
other mixed-signal arrays. This way, the system designer can experiment different
analog and mixed signal functions with digital FPGA programming, until reaching an
optimum solution

Instead of changing the circuit topology, one shifts the signal band. This has many
useful implications, since the redesign or migration of the proposed configurable cell
to other technologies is greatly simplified. Only the analog part of the modulator must
be redesigned or targeted at the physical level to a new technology. This certainly
simplifies the design process. The remaining analog processing circuits can be easily
ported to a new technology, since they are simpler large signal modules, and hence
consolidated digital tools are available for this.

The paper has also shown that at the application level many blocks were used to
build different target applications. Most important, we clearly demonstrated the reuse
of the previously designed blocks.
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Abstract. A new procedure for Intellectual Property Protection (IPP) of circuits
based on the residue number system (RNS) and implemented over FPL devices
is presented. The aim is to protect the author rights in the development and
distribution of reusable modules (IP cores) by means of an electronic signature
embedded within the design. The presented protection scheme is oriented to
circuits based on the RNS but can be easily extended to systems implemented
on programmable devices. As an example, a 128-bit signature is introduced
into a CIC filter without affecting performance and negligible area increase.

1   Introduction

The increasing complexity in digital IC designs, combined with the hard competition
in the electronics market, is leading to substantial changes in design strategies,
directed to minimize the development time and costs. These strategies [1] are based
on the use of reusable modules (IP cores) and provide precious competitive
advantages. This makes new challenges not yet considered to arise, one of the main
being the intellectual property protection of those shared modules, being necessary to
provide mechanisms to the author for claiming intellectual property rights. The usual
procedures for IPP in media and hardware support [2] consist of hiding a signature
(watermark) that is difficult, if not impossible, to change or remove.

In our approach, an MD5 [3] digital signature is introduced in the design, with
appropriate techniques for embedding and extracting this signature in RNS-based
systems. This is possible due to the RNS particularities [4], that have traditionally
been exploited for performance enhancement and have made RNS particularly well-
suited for FPL implementation [5-6] with an extensive use of the look-up tables
available in programmable technologies.

2   Protection by Used Table Spreading on FPL

The key idea lies in “spreading” all the possible bits of the digital signature through
non used cells of look-up tables included in the RNS-based design. The fact that these
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tables are part of the design makes extremely difficult the possibility of an attacker
finding these signature bits. Thus, problems related with previous IPP methods based
on the use of tables or logic elements not in use are solved [2,7] and, as the signature
embedding is performed in the high-level design description stage, this method is
more secure than other IP protection techniques that rely on Place&Route
modifications. The steps in the signature embedding process are:

1. The selected signature is stored in a public domain document.
2. MD5 is used to convert the signature in a bit stream or digital signature.
3. This bit stream is partitioned in blocks.
4. These blocks are embedded into empty positions of look-up tables, or signature

memory positions (SMP).
5. The signature extraction stream (SES) detection hardware is included in the

design.

There is not a fixed algorithm for spreading the bits, this will depend on each
particular design, but this extra effort makes harder to change or remove the
embedded signature. The signature extraction process consists of applying the SES to
the circuit, which will make each one of the SMPs to be addressed, instead of the
memory position that the normal RNS hardware would point to. During a few clock
cycles, the output system is each one of these signature bit blocks. The extraction
process thus require some extra hardware.

3   Design Example: CIC Filter

A 3-stage CIC decimation filter [8] was chosen as study case for embedding a 128-bit
signature. It includes 2C-to-RNS conversion, four parallel RNS CIC channels and ε-
CRT-based RNS-to-2C conversion [9]. Design examples were implemented using the
Xilinx Virtex-II device family. Table 1 shows results for the conventional RNS-based
CIC filter and the signed RNS-based CIC filter proposed in this paper. Analysis of
these results shows that the area increase for the signed filters is less than 6% while
throughput penalization is negligible. In fact, there is a small performance increase
that can be explained because of a better Place&Route effort by the design tool. It
must also be noted that the area increase is a fixed quantity for this signature length,
so for more complex applications the area increase will be even less noticeable.

Table 1. Summary of simulation results

RNS-based CIC filter signed RNS-based CIC filterSpeed
grade SLICEs Fmax (MHz) SLICEs Area increase Fmax  (MHz) Speed reduction

-6 420 106.85 445 5.95% 107.19 -0.32%
-5 420 101.34 445 5.95% 103.50 -2.13%
-4 420 88.63 445 5.95% 91.26 -2.97%
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4   Conclusions

This paper describes a procedure that exploits empty memory positions in the look-up
tables used in RNS-based hardware to embed a digital signature in RNS-based
circuits. This allows its IPP usage for IP cores since it is extremely difficult to detect
and/or remove this signature. An RNS-based CIC filter was used to embed a 128-bit
signature with negligible penalties in both performance and area. Furthermore, the
procedure described can be easily extended to any FPL hardware using look-up tables.
In the case that the design to sign does not force the use of look-up tables, it is still
possible to map into tables part of the design not included in the critical path, so the
proposed method may be applied. Further work will be directed to this issue, as well
as to the optimization of the resources and security of the embedded signature.
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Abstract. In this paper, an on-line tool breakage detection algorithm in CNC
milling machines is implemented into a single 32,000-gate FPGA from Actel.
The tool breakage detection algorithm is based on three pipelined processing
units: a two-channel modulo operator, a one dimension wavelet transform and
an asymmetry correlator. The two-channel modulo operator performs two
twelve-bit square operations and a 25-bit square root. The one dimension
wavelet transform performs a 256x8 point matrix per a 256 point vector
multiplication over the incoming data from the modulo operator. The third
processor performs an asymmetry correlation over the wavelet data to give a
single value which contains the estimation of the tool condition. The overall
processing unit cost is kept low by using optimized numeric digital structures,
suited to fit into a 32,000-gate FPGA while allowing the system to give on-line
tool condition estimation. Results are presented in order to show overall system
performance.

1   Introduction

On-line tool breakage detection has been one of the main concerns on CNC milling
machine processes in order to improve the overall system efficiency because of the
manufacturing cost; typical manufactured pieces to be used as extrusive moldings can
cost 3,000 USD and up, and tool wear and breakage can irreversibly damage the piece
if it is not detected on-line. Three different aspects have to be considered to solve the
problem: the sensor and data acquisition, the digital signal processing algorithm and
the implementation cost. From the sensor point of view, Prickett and Johns [1] present
an overview to end milling tool monitoring approaches up to date. Further signal
conditioning and data acquisition of the cutting force signal provide the digital system
with the suited data in order to perform the numeric algorithm to estimate tool
condition. One dimension wavelet transform has proven its efficiency for the task as
reported by Kasashima et. al. [2]. In addition, implementation cost is a major concern
as reported implementations of commercially available solutions for on-line tool
breakage detection systems are based on general purpose multiple DSP systems,
making the implementation highly expensive for most real-world applications,
Bejhem and Nicolescu [3].

In this paper a one dimension discrete wavelet transform (DWT) over the cutting
force resultant with non-linear autocorrelation, used as a novelty compared with
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previously reported works, is the algorithm used and the implementation is in the
form of an application specific hardware signal processing (HSP) unit. The system
on-a-chip (SOC) approach for HSP is implemented into an FPGA, which significantly
improves the price/performance ratio over commercially available systems.

2   DSP Computation

The milling process model assumes that the cutting force is proportional to the
volume of workpiece material removed by each tooth, Trang and Lee [4]. The cutting
force patterns are the resultant of the cutting forces at the X and Y axis for end milling
as stated in equation 1, where F is the resultant cutting force, FX is the cutting force at
X axis and FY is the cutting force at Y axis. DWT, Daubechies [5], provides a time-
frequency representation of the original signal in a decimated form which means that
depending on the applied detail level, the result will show the time-domain samples at
the decimated frequency in a compressed form. For the present development, a 256
point original cutting force data is compressed via level-5 detail, Daubechies 12 DWT
as stated in equation 2.

22
YX FFF +=  .

(1)

FWWWWWB 12345=  . (2)

DWT output B can be seen as a multi-rate finite impulse response (FIR) filter-bank
[6] which, after matrix multiplication of the successive 5 down to 1 DWT matrix by
the 256-row matrix F, will give an 8-row B vector. The proposed method to give a
single-parameter estimation of the tool conditions is based on a non-linear
autocorrelation function to calculate the asymmetry between the cutting force
waveform of each insert at the tool-head. The asymmetry is defined as the point-to-
point variance between cutting force signals for each insert in a full revolution of the
tool-head, applied to B as stated in equation 3.
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3   HSP Architecture

The HSP unit contains three application specific DSP units with synchronization,
control data acquisition system (DAS) interfacing and PC interface as shown in Fig.
1. Three application specific DSPs are necessary in order to compute, on-line, all the
processes involved in breakage detection: Square-adder, DWT and asymmetry units.

The square-adder unit performs resultant force computation of the incoming data
from the DAS, equation 1. A fully combinational fixed-point square block based on
an adder-tree special case multiplier is used, Parhami [7]. Detail level-5 Daubechies-
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Fig. 1. Hardware signal processor general scope

12 DWT computation is performed by the second application specific DSP. The
DSP unit is based on a 16-bit x 16-bit multiplier accumulator (MAC), a double-bank
dual-port RAM and an external ROM containing DWT coefficients; this unit is based
on the radix-4 sequential Booth algorithm [7]. Intermediate data is stored in the active
bank of the RAM until one revolution on the cutting tool head is completed, equation
2. Once the DWT is computed, RAM banks are switched and the next DWT starts to
be computed in the alternate bank while the original bank keeps the information that
is accessed by the autocorrelation processor. FIR coefficients for the detail level-5
DWT are stored in an external ROM, which are pre-fetched during the multiplication
cycle. The third DSP unit is used for autocorrelation computation and it is based on a
fully combinational substractor and a 16x16 MAC, in square configuration, equation
3. The active RAM bank for the autocorrelation DSP is the inactive RAM bank for
the wavelet transform DSP in order to avoid data collision and allowing pipeline
computation.

The breakage detection process requires precise synchronization among the three
DSP units and the DAS. The system is controlled by an application specific
sequencer, which controls the DSP units by providing the handshake signal to keep
consistency among data paths. Additional synchronization is necessary in order to fit
timing requirements in the DAS. The synchronization sequencer provides precise
timing to all processes involved. The HSP unit was implemented into an ACTEL
54SX32A-TQ144 with 32,000 usable gates FPGA with standard speed at an operating
external frequency of 10 MHz.

4   Results

The experiments were set on a retrofitted to CNC milling machine, model FNK25A,
with a two-insert tool head. Undamaged new carbide inserts were used for the
experiments. The milling process started and it was stopped after tool breakage was
detected. At the beginning of the milling process, where the tools are new and
undamaged, the asymmetry value of the DWT is close to zero. When the milling
process continues, one tool starts to wear and the asymmetry value is increased.
Finally, when the tool is broken, the asymmetry is increased significantly and a peak
in the asymmetry value can identify the cycle at which the breakage happens. After
tool breakage, the detector system indicates tool condition degradation. It is shown
that DWT with asymmetry, as a non-linear autocorrelation function, gives an
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estimation of the tool condition by comparison between the measured cutting forces at
the two inserts, indicating tool wear and tool breakage.

5   Concluding Remarks

An HSP unit that has been designed and implemented into a single FPGA for a
system on-a-chip design approach in a stand-alone special purpose processor
performed the highly intensive computation requirements of the algorithm. The HSP
unit has three embedded application specific DSPs interconnected in a
multiprocessing pipelined architecture to allow the system on-line tool breakage
detection by giving a single data result, 38.9 μs after the revolution is completed.
Experimental results show that the tool breakage detection system works properly and
the complete prototype containing the power supply, analog filtering and signal
conditioning, special purpose DAS and HSP unit is estimated to be under 300 USD.

Algorithm complexity involves 512 square operations, 256 additions and 256
square root extractions for equation 1; 2048 multiplications and 2048 additions for
equation 2; 4 square operations and 8 substractions for equation 3; over-all system
control and DAS synchronization. A Pentium 4 based PC with a general purpose DAS
were used to compare results with HSP performance giving the tool condition for a
revolution after 4 s, which is totally unsuited for on-line detection. On the other side,
general purpose DSP with 100 MOPS data processing speed will require 100 μs for
numerical computation only; and synchronization, matrix data addressing,
multiprocessing and DAS control requires extra clock cycles. In addition, it must be
considered overall system cost. Investing in the development of HSP systems for
status monitoring and control helps to improve the price/performance ratio of the
instrumentation on CNC machines by providing an inexpensive built-in solution.
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Abstract. We present a Field Programmable Logic Devices (FPLDs)
based implementation of a scalable filter architecture capable of detect-
ing and removing impulsive noise in image sequences. The adaptive fil-
ter architecture is built using switching spatiotemporal filtering scheme
and robust Lower-Upper-Middle (LUM) based noise detector. It uses
highly optimized bit-serial pipelined implementation in Altera FPLDs.
The proposed architecture provides real-time performance for 3-D image
processing with sampling frequencies up to 97 Mpixels/second.

1 Introduction

Digital images are often contaminated by impulsive noise introduced into the
images during image acquisition and/or transmission [1]. Switching Median Fil-
ters (MFs) [2] adopt robust smoothing capabilities of the well-known MF. Recent
hardware and software developments support the extension of the adaptive filter-
ing schemes into video filtering [1,3]. Note that many switching methods have a
serious limitation to be extended into the three-dimensional (3-D) case, because
of their computational complexity.

2 LUM Smoother-Based Adaptive Switching Scheme

The 3-D, spatiotemporal adaptive filter introduced in [4] uses, instead of the
switching among multiple smoothing levels [1,5], a flexible noise detector based
on robust Lower-Upper-Middle (LUM) smoothing characteristics [6,7]. Since the
LUM smoother requires data sorting, it leads to an ineffective FPLD implemen-
tation. This disadvantage is removed using the design employing LUM-based
Positive Boolean Functions (PBFs) [8] and a bit-serial structure [9].

Let W = {x1, x2, . . . , xN} be an input set of the samples within the running
processing window and N an integer number denoting window size. The corre-
sponding ordered set x(1) ≤ x(2) ≤ . . . ≤ x(N) contains order statistics x(i) ∈ W ,
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for i = 1, 2, ..., N . The output of the standard LUM smoother [6] is defined by

yk = med{x(k), x
∗, x(N−k+1)} (1)

where med is a median operator and k = 1, 2, . . . , (N +1)/2 denotes a smoothing
parameter. The sample x∗ = x(N+1)/2 is the window center, x(k) is a lower- and
x(N−k+1) is an upper-order statistic such that x(k) ≤ x(N−k+1).

Fig. 1(a) depicts the structure of the method. The parameter ξ is the non-
negative threshold to be compared with λ =

∑k+2
k |x∗−yk|, where yk, yk+1, yk+2

represent the LUM smoothers defined for the consecutive values of the smooth-
ing parameter k. This aggregated absolute difference between the central sample
and the LUM smoother outputs constitutes computationally simple operations,
which make the switching rule robust [4]. If λ ≥ ξ, the output of the switching
scheme is the median y(N+1)/2. Otherwise, the central sample x∗ is noise-free and
remains unchanged. The default setting of k in defining λ is 6. The corresponding
ξ should be set to 60.
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(b) Pipelined structure

Fig. 1. Proposed 3-D adaptive filter

3 Proposed Pipelined Realization

The complete pipelined 3-D switching median based on the LUM smoothing
characteristics is depicted in Fig. 1(b). The spatiotemporal filter utilizes a 3×3×3
cube processing window (N = 27). Four pipelined LUM smoothers with B = 8
levels (for k, k + 1, k + 2 and (N + 1)/2) compute B levels of input samples
concurrently. It can be easily seen that 9 new samples appear in the input of the
proposed filter for each new window position. Therefore, 9 input shift register
blocks (triangles) are necessary. Filter output latency is (B + 1) clock periods.

The switching filtering scheme has been mapped onto selected Altera FPLDs.
We synthesized them using Altera Quartus II v. 2.2 and Leonardo Spectrum
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Table 1. Mapping of pipelined structure of the proposed adaptive video filtering frame-
work into three Altera FPLD families using Leonardo Spectrum v.2002e.16 compiler

Device EP20K160-1 EP1C6-6 EP1S25-5

Parameter LCs f (MHz) LCs f (MHz) LCs f (MHz)
Result 4929 55.7 4496 91.0 4502 97.3

Level 3 v. 2002e.16 VHDL compilers. Placement, routing and timing analysis
have been realized using Quartus II v.2.2. VHDL output generated by the fitter
was used as simulation input for ModelSim v. 5.6 VHDL simulator. Output
values have been compared with Matlab-generated test values in an automatic
testbench procedure.

Table 1 summarizes the results corresponding to the mapping of the complete
pipelined version of the switching scheme into three Altera FPLDs. Required
absolute value addition (SAD) and comparison (Comp) blocks are realized using
standard Library of Parameterized Modules (functions lpmabs and lpmcompare).

We can conclude that the filter area is relatively small (only 17% of the
Stratix EP1S25 device used in the Altera Stratix DSP evaluation board [10]
that was used for filter implementation and testing) and very fast. The unused
part of the device (almost 80%) was still big enough to constitute necessary re-
sources for implementing additional image processing functions utilized in video
compression, analysis and segmentation.

References

1. Lukac, R., Marchevsky, S.: LUM smoother with smooth control for noisy image
sequences. EURASIP J. on Applied Signal Processing (2001) 110–120

2. Zhang, S., Karim, M.: A new impulse detector for switching median filters. IEEE
Signal Processing Letters 9 (2002) 360–363

3. Kim, J., Park, H.: Adaptive 3-D median filtering for restoration of an image
sequence corrupted by impulse noise. Signal Proc.: Image Comm. (2001) 657–668

4. Lukac, R., Fischer, V., Motyl, G., Drutarovský, M.: Adaptive video filtering frame-
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Abstract. In this paper, we outline an FPGA implementation of the QR update
algorithm with Givens rotations using the High Speed Logarithmic Arithmetic
(HSLA) library. An advantage of this approach is low latency and accurate
computation (comparable with single-precision floating point) of the operations.
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1 Introduction

The QR-RLS algorithm is, thanks to its internal parallelism (it can be represented by
regular parallel array of communicating processors), well suited for use in beamforming
applications, where high data throughput is often critical.

In the case of its implementation in FPGA, one problem has to be tackled: the
computations used in the rotations use floating-point operations including division and
(possibly) square-root. Two approaches can be used: either is the algorithm transformed
to a fixed-point domain, or a floating-point library of operators is used. A disadvan-
tage of the first one is that the wordlength requirements are higher to achieve an SNR
performance comparable with the floating point representation [1].

For the floating-point implementation, several solutions are available: the libraries
developed by QuinetiQ Real-Time Systems division, by Celoxica or by Nallatech can
be mentioned as examples. In our work, the High-Speed Logarithmic Arithmetic library
(HSLA1) [2] is used.

The paper is organized in the following way: first, the recursive QR-RLS algorithm
will be briefly reviewed. Then, the HSLA library will be briefly described and the ar-
chitecture of our implementation of the QR algorithm will be outlined, followed by the
resource utilization figures.

2 Givens Rotations and the QR Algorithm

The QR-RLS algorithm [3] is based on an update of an upper triangular matrix R with a
data vector u using series of the Givens rotations. It can be mapped to a triangular array
� This work was partly supported by the Ministry of Education of the Czech Republic under the

Project LN00B096.
1 http://www.utia.cas.cz/zs/home.php?ids=hsla
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of processors, with the diagonal ones computing ci and si and updating ri:

ci = ri/
√

r2
i + u2

i si = ui/
√

r2
i + u2

i r′2
i = λ2(r2

i + u2
i ) (1)

and the off-diagonal ones updating rij and uij :

r′
ij = λ(crij + suij) ui+1,j = −srij + cuij (2)

3 HSLA

The High-Speed Logarithmic Arithmetic library (HSLA) [2] is based on computations
with the logarithmic equivalents of floating-point numbers. The numbers are represented
by an integer part, always 8 bit long, a fraction part, 10/23 bit long (in the 19/32 bit library
version) and a sign bit.

The operations are transformed accordingly: addition and subtraction take form

log2(x ± y) = a + log2(1 ± 2b−a), where a = log2 |x|, b = log2 |y|, (3)

while multiplication and division transform to a simple fixed-point addition or subtrac-
tion and the square-root operation becomes a right-shift operation.

The non-linear function log2(1 ± 2r) used in (3) is evaluated using a first-order
Taylor-series approximation. Compared to traditional solutions, where the size of the
look-up tables represents major problem, here they are kept small by using an error
correction mechanism and a range-shift algorithm. For implementation details see [2].

The addition/subtraction is fully pipelined in the HSLA implementation and has 8
clock cycles latency, other operations have 1 clock cycle latency.

4 Implementation

The experimental design has been implemented in the Xilinx Virtex-E XCV2000E-6
device, using the HandelC language from Celoxica. In order to keep the design
simple, only one instance of diagonal and one of the off-diagonal processor has been
implemented, as shown in Fig. 1. The parameters of the 19-bit implementation are
summarized in the table below:

Resource utilization:
19-bit, XCV2000E-6-BG560

SLICEs 4492/19200 23% CLK Freq. 75 MHz
BRAMs 30/160 18% FLOPS 147 MFLOPS
TBUFs 288/19520 1%

2x twin ADD/SUB, 11x MUL/DIV/SQRT

The data flows in the algorithm allow for fully pipelined implementation of the
operations in both diagonal and off-diagonal processor.
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Fig. 1. Architecture of the QR implementation

5 Conclusions

In the paper, we describe an FPGA implementation of the recursive QR-RLS algorithm
using the HSLA arithmetic library to implement floating-point arithmetic operations.
In our opinion, with the low-latency operators and bit-exact Matlab/HandelC modules,
this library represents an interesting option for development of the signal processing
applications.

In our experimental implementation, the XCV2000E-6-BG560 device was used. As
mentioned in the text, major limitation to the number of processors implemented in a
single FPGA device is the size of look-up table used by the ADD/SUB unit. Our design
uses roughly 25% of the device; in 32-bit accuracy, only one unit would fit into this
device. In future, we have to improve the efficiency of the ADD/SUB units utilization.
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Abstract. This paper presents an FPGA implementation for real-time
motion estimation of an underwater robot using computer vision. The
algorithm searches for correspondences of a given number of interest
points for every image acquired by the camera and some previous ref-
erence images. In order to minimise the lighting problems, normalised
correlation is used as similarity measurement to match corresponding
points in different images. The complexity of normalised correlation cri-
teria determined two main parts in our hardware implementation: an
array of Processing Elements (PE) and Post Processing Element (PPE).

1 Introduction

The motion of an underwater robot can be recovered from the camera motion
by processing consecutive images acquired by an on-board down-looking camera.
Point correspondences have to be found for motion estimation. Due to its regular
processing scheme, parallel implementation of the correspondence problem can
be an adequate approach to reduce the computation time. The computation can
be break down into blocks to be processed in parallel. An extensive literature
exists about array architectures applied to image processing, especially in Block
Matching Algorithms (BMA) for motion estimation [1,4,6]. While in full search
BMA the image is divided into blocks and the algorithm is looking for matching
every block in a frame, our approach is looking for correspondences of the region
in the neighborhood of specific points. These points are scene features which can
be reliably found when the camera moves from one location to another, even
when lighting conditions of the scene change. In our previous work we proposed
a hardware implementation of interest points detection [3]. On the other hand,
a complex error measurement criteria such as normalised correlation has proved
to be very adequate to underwater imaging [2]. The computation of this error is
divided into two parts. In the first part a parallel array architecture is used for
multiple data computation. Then, a computational block containing multipliers,
subtractors, square root and division computes the error measurement.

2 Hardware Implementation of the Motion Estimation
Algorithm

A correlation methodology provides, for each interest point (xc, yc) of the cur-
rent image Ic, its corresponding match (xr, yr) in the reference image Ir. The
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correlation score is defined as the covariance between the grey levels of a region
defined by the correlation window in the current image and the same region
defined in the reference image. In order to simplify the hardware implementa-
tion, we propose a breaking down of a normalised correlation criteria successfully
applied to underwater imaging [2]. There are five sums to be computed:

sum1 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j); sum2 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j)2;

sum3 =
α∑

i=−α

α∑
j=−α

Ic(xc + i, yc + j) · Ir(xr + i, yr + j);

sum4 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j)2; sum5 =
α∑

i=−α

α∑
j=−α

Ir(xr + i, yr + j).

(1)
where (2α+1)× (2α+1) is the size of the correlation window. Then, correlation
score becomes:

C =
sum3 − 1

(2α+1)2 · sum1 · sum5

1
(2α+1)2 ·

√
[(2α + 1)2 · sum2 − sum2

1] · [(2α + 1)2 · sum4 − sum2
5]

(2)

This leads to an easy parallel implementation, while each Processing Element
(PE) of an array architecture executes in parallel the computation of these five
sums. The Post Processing Element (PPE) performs the remaining computation.

2.1 Hardware Implementation

When mapping an algorithm into an array of processors, the problem is to ac-
cess multiple data to feed all the Processing Elements (PE) at the same time.
Adopting the solution of local data exchange between PEs, two parallel memory
accesses are used for the same reference image and one for the current image [6].
Once read from memory, the data are broadcasted to every PE. Buffers are used
to delay data and multiplexers to switch between data. For higher utilisation
efficiency of the architecture, the size of the search window must be defined ac-
cording to the size of the correlation window by the equation p = 2α, where
(2p + 1)× (2p + 1) is the size of the search window. The number of PEs also de-
pends on the size of the correlation window and is equal to (2α+1). One PE is in
charge of the parallel computation of the five sums defined in equation (1). Two
accumulations and three multiplication-accumulations are executed in parallel.

The results from the array of PEs are pipelined into the Post Processing
Element (PPE). The PPE computes the correlation criteria defined in the equa-
tion (2). Seven multiplications, three subtraction, one 64-bit square root and one
32-bit division have to be implemented in hardware. Parallel implementation of
these operations is performed. The square root implementation is based on the
non-restoring algorithm proposed by Li [5]. The advantage of this method is
the reduced space occupied on the FPGA device and that it generates an exact
result value. The last step of the algorithm compares all the error measurements
corresponding to every candidate match. The result of the algorithm are the
coordinates of the pixel with the biggest value for the correlation score.
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The algorithm was implemented, simulated and tested using Quartus de-
sign software from Altera. The design was synthesised for the Altera Stratix
EP1S25F672 device. This permits a complex analysis of the functionality, tim-
ing, logic elements (LE) and dedicated multipliers (DM) blocks utilization. The
array of PEs can be synthesize using 3360 LEs and 45 DMs and the PPE element
using 1957 LEs and 30 DMs among those available on the FPGA device. Run-
ning the motion estimation algorithm on a PC/104+ computer requires about
2 seconds. Our implementation impose the time constraint to 0.04s (video-rate)
for execution of this algorithm, clocking the computation according to this. The
implementation and delay information for corner detection were detailed in our
previous work [3]. For N given interest points and being tPPE , the computational
time required by PPE, the delay introduced by the parallel implementation of
the matching algorithm is given by:

TC = [2 · [(2α + 1)2 · [(2p + 1) − 2α] + 2α] + tPPE ] · N (3)

3 Conclusions

This paper proposes an FPGA implementation to solve the correspondence prob-
lem in a motion estimation algorithm. The matching algorithm is divided into
two parts: an efficient array of processing elements for multiple data process-
ing, and a post processing element in charge of the high-level computation of
normalised correlation. An optimal implementation for the square root opera-
tion has been applied. The algorithm was implemented, simulated and tested
using Quartus design software from Altera. A complex analysis of functionality,
timing, required elements and dedicated multiplier was carried out.

References

1. P. Baglietto, M. Maresca, A. Migliaro, and M. Migliardi. Parallel implementation
of the full search block matching algorithm for motion estimation. In International
Conference on Application Specific Array Processors, pages 182–192, July 1995.

2. X. Cuf́i, R. Garcia, and R. Ridao. An approach to vision-based station keeping
for an unmanned underwater vehicle. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 799–804, Lausanne, 2002.

3. V. Ila, R. Garcia, and F. Charot. Proposal of a parallel architecture for a motion de-
tection algorithm. In International Conference on Pattern Recognition, Cambridge,
Aug. 2004.

4. T. Komarek and P. Pirsch. Array architectures for block matching algorithms. IEEE
Transactions on Circuits and Systems, 36:1301 –1308, 10 , Oct 1989.

5. W. Li and W. Chu. A new non-restoring square root algorithm and its vlsi imple-
mentations. In 1996 IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 538 – 544, 7-9 Oct. 1996.

6. K.-M. Yang, M.-T. Sun, and L. Wu. A family of VLSI designs for the motion com-
pensation block-matching algorithm. IEEE Transactions on Circuits and Systems,
pages 1317 –1325, Oct. 1989.



Real-Time Detection of Moving Objects

Hiroaki Niitsuma and Tsutomu Maruyama

Institute of Engineering Mechanics and Systems, University of Tsukuba
1-1-1 Ten-ou-dai Tsukuba Ibaraki 305-8573 JAPAN

niitsuma@darwin.esys.tsukuba.ac.jp

Abstract. In this paper, we describe a compact system for real-time
detection of moving objects. In this system, we realized real-time com-
putation of the optical flow and the stereo vision by area-based matching
with one FPGA. By combining the optical flow and the stereo vision, we
can detect moving objects and distances to the objects, which are very
important for vision systems of autonomous vehicles. The system imple-
mented on XC2V6000 runs at 68 MHz, which is fast enough to process
more than 30 images (640 × 480 pixels) in one second.

1 Introduction

Compact real-time vision systems are very important for autonomous vehicles.
FPGAs are ideal devices for the compact systems, because FPGAs can sup-
port many kinds of functions by reconfiguration depending on situations. In
this paper, we describe a compact system for real-time detection of moving
objects by the optical flow and the stereo vision. In order to accelerate the per-
formance of the optical flow by hardware, many systems have been proposed to
date[1][2][3][4]. In those systems, sizes of images are limited or only sparse vector
fields are generated in order to achieve real-time processing. In our system, dense
vector field (vectors for all pixels in images) for standard size image (640× 480)
can be generated at video-rate with only one FPGA. In order to achieve high
performance with a small circuit, intermediate results in the computation along
x axis are stored in the circuit and reused w times (w×w is the size of windows
used for the area-based matching), while operations along y axis are re-executed
w times.

2 Computation Method of the Optical Flow

In the optical flow and the stereo vision, the corresponding point to a given
point in an image is searched in another image. Area-based (or correlation-based)
algorithms match small windows centered at a given pixel to find corresponding
points between the two images. We used the SAD (Sum of Absolute Difference)
algorithm for the matching. In Figure 1, a small window centered at (x, y) (Figure
1(a)) is compared with all windows in its target area centered at (x, y) (Figure
1(b)(c)(d)). When the size of the target area is (k+w−1)×(k+w−1), there are
k×k windows in the target area, and k×k SADs (Sum of Absolute Differences)
are calculated. Then, the window which gives the minimum SAD is chosen, and
its center point (x′, y′) is considered as the corresponding point to (x, y).
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time = t
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Fig. 1. Area-based Matching in the Optical Flow
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Fig. 2. Reuse of the Intermediate Results
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Fig. 3. An Implementation Method by Recalculation

In Figure 2(a), suppose that we have calculated k × k SADs and chosen
the minimum of them to obtain one vector. Then, the window is shifted to the
right by one pixel to obtain next vector (Figure 2(b)). At this point of time,
pixels in a rectangle with slanting lines in the shifted window (time = t) are
already compared with pixels in rectangles with slanting lines in its target area
(time = t + Δt) during the computation of the previous vector. Therefore, by
storing k×k× (w−1)×w ADs (Absolute Differences) calculated in Figure 2(a),
the number of new ADs to obtain the new vector can be reduced to k × k × w.

In our computation method, these k × k × w ADs are calculated in parallel
with k × k SAD units, while k × k × (w − 1) × w ADs are stored and reused.
In Figure 3, I0 is broadcasted to k × k SAD units first, and k × k ADs for I0
(|A2,6 − I0| and so on) are calculated in the k × k SAD units in parallel. In the
same way, ADs for Ij(j = 1, 4) are calculated sequentially. These calculations
takes w clock cycles in total. These ADs are, then, summed up (rectangles with
slanting lines in Figure 3), and held on the shift registers. The sums held on the
shift registers are used w times to calculate w SADs and discarded after shifted
w times.

Figure 4 shows an array of SAD units on a register array to deliver pixel
data in time = t + Δt to the SAD units. In Figure 4, k × k (k = 21) rectangles
in dark gray are SAD units, and each SAD unit calculates one SAD in w (w
= 7) clock cycles. In order to reduce memory access operations, (1) one pixel
(d6) is read into FPGA, and set on a register r6, (2) pixel data of six (w-1)
rows stored in three Block RAMs (Block RAM #0,#1 and #2; two rows can be
stored in one Block RAM) are also read out (d0-d5) and set on registers (r0-r5),
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Fig. 4. An Array of SAD Units and a Register Array

and (3) six data (d1-d6) are also stored in the three Block RAMs at the same
time. Then, data on the registers (r0-r6) are shifted 7 times, and broadcasted
to all SAD units. With this implementation, pixel data are read out only once
from the external memory bank.

3 Performance

This circuit was implemented on ADM-XRC-II by Alpha Data with one
XC2V6000. Units for stereo vision was also implemented using almost same units
as the optical flow. The circuit runs at 68 MHz, and 90% of slices in XC2V6000,
22 Block RAMs are used. This performance (30 images (640× 480) per second)
is fast enough to achieve real-time processing of the optical flow and the stereo
vision.

4 Conclusions

In this paper, we described a compact system for real-time detection of moving
objects. In our current implementation, we could find vectors for all pixels in a
large size image (640 × 480) by comparing the window (7 × 7) centered at the
pixel with its target area (27×27) in real-time (more than 30 images per second).
The size of the target area is large enough to detect moving objects which are
not moving extremely fast. We are now improving the system to work with an
edge detection system to clearly distinguish borders of the moving objects.
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Abstract. Overtaking is one of the most dangerous operations in driving. The
rear-view mirror is sometimes not consulted by the driver or is momentarily
useless because of the blind spot. This paper describes a simple FPGA system
based on motion detectors of the fly and rigid-body detection that is able to ef-
ficiently segment overtaking cars using a sparse map of features from the visual
field of the rear-view mirror. FPGA implementation allows real-time image
processing on an embedded system.

1   Introduction

Since 30 years ago machine vision systems have learned from biological systems that
represent high efficient computing schemes. However, current vision models (based
on the vertebrate visual system) are limited and require high computational resources.

Insects are a good example of a well known and simple visual motion detection
model. We describe here the hardware implementation of an algorithm based on the
motion detectors of the fly using a FPGA device. A FPGA device is a cheap option
that allows: a real-time image processing, an easier change of the parameters to adapt
the system to different conditions and a rapid prototyping.

The system described is applied to the overtaking problem, which is one of the
most dangerous situations in driving because the rear-view mirror is sometimes not
consulted by the driver or is momentarily useless because of the blind spot. The algo-
rithm detects the moving vehicle behind and determines whether it is approaching in
an overtaking trajectory or not.

2   Functional Description of the System

It is known that the detection and analysis of motion are achieved by neural opera-
tions in biological systems, starting with registration of local motion signals within
restricted regions of the visual field, and continuing with the integration of those local
motion features into global descriptions of the direction, speed and object motion.

This bottom-up strategy is adopted in the proposed system based on the processing
stages [1]: Edges extraction (the edges allow to extracting scene structure); Correla-
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tion process (the processing scheme is inspired on the motion-detection model of the
fly proposed by Reichardt [2], where describes a multiplicative correlation detector);
Rigid body motion detection (if we can detect a population of pixels in a window of
the image which share the same velocity -rigid body-, they are likely to represent the
overtaking car).

3   Hardware Implementation

The CCD camera provides 30 frames per second of 640 x 480 pixels and 256 gray
levels. We use a RC-200 board from Celoxica [3] that includes a Xilinx Virtex-II
FPGA (XC2V1000 device) [4] and 2 SRAM banks. The FPGA has 1 million system
gates, distributed in 5120 slices, and 40 embedded memory blocks of a total of 720
Kbits.

Table 1. Hardware cost of the different stages of the described system. The global clock of the
design is running at 31.5 MHz, although the tables include the maximum frequency allowed by
each stage. The data of the table are provided by the ISE environment.

Pipeline
stage

Equiv.
gates

Number
of Slices

% occupation
% on-chip
memory

Image size
Max.Fclk

(MHz)

Frame-Grab-
ber

96,576 904 17 3 640 x 480 75.9

Edges 69,247 185 3 2 640 x 480 50.2

Correlation 47,322 2,296 44 0 640 x 480 45.7

Rigid Body 25,975 1,033 20 0 640 x 480 41.4

Total sys-
tem

239,465 3,415 66 5 640 x 480 41.4

A frame-grabber collects the input image into a FIFO buffer, implemented on an
embedded memory block. This FIFO structure is used to extract the spatial edges of
the image by convolution with the Sobel 3x3 mask.

The Reichardt stage correlates a pixel with a population of stored pixels from the
previous frame. The current velocity of an edge will be the maximum among the
correlation values. To compute the maximum as fast as possible, we have used a
micro-pipelined winner-takes-all scheme which compares by pairs, in successive
clock cycles, first the correlation results, and then the winner results of the previous
comparisons. Finally, the velocity estimation allows the global computation of one
pixel per clock cycle, but with a latency that depends on the number of correlation
values.

The rigid-body stage also follows this winner-takes-all structure to compute the
maximum number of pixels that share speed.
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The necessity of storing data in the external SRAM banks forces us to design a
module that allows the writing and reading to/from the SRAM banks.

The pipeline structure consumes 1 cycle per stage due to the full potential paral-
lelism and pipeline used; therefore the limitation of the system is in the external
memory banks access. In spite of this, the system is able to process images of
640x480 pixels at the speed of 512 frames per second, when the global clock is run-
ning at 31.5 MHz.

Table 1 summarizes the main performance and hardware cost of the different parts
of the system implemented. The hardware costs in table are rough estimations ex-
tracted from sub-designs compiled with the ISE environment. When the system is
compiled as a whole many resources are shared.

The low number of equivalent gates enables the possibility of using other devices
with less equivalent gates, computing higher resolution images with parallel process-
ing units or employ them in other processing stages, for example in a tracking process
that alerts the driver when an overtaking car is detected.

In the presented approach we do not use the multiplier blocks (Virtex-II has 40
multiplier blocks) this enables the whole Virtex family as possible target platform.

4   Conclusions

This contribution describes a motion processing embedded system to be used as blind
spot monitor and driver assistance system to prevent possible distractions. It is de-
signed to detect overtaking cars. The front-end of the system are Reichardt motion
detectors. We define filters based on motion patterns of the image that seem to corre-
spond to moving objects and help to segment the overtaking vehicle (if present). This
filtering technique is a robust scheme because it is only based on a rigid body motion
rule. The moving features are processed in a competitive manner, only patterns that
activate a whole population of detectors with a similar velocity pass through this
dynamic filter stage.

The hardware cost of the proposed system is low and allows the use of cheaper de-
vices than other vision based algorithms. The described real-time computing scheme
in embedded FPGA systems (portable) together with the very promising results ob-
tained in the context of the posed problem (overtaking car detector) opens good ap-
plication perspectives in diverse fields (robot vision, automobile industry, etc).
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Abstract. In this paper, a novel architecture dedicated to image pro-
cessing is presented. The most original aspect of the approach is the
use of a System On Chip implemented in a FPGA. We show the main
advantages of such a system based on a CMOS imaging device and a pro-
grammable chip. With its structure, the system proposes a high degree
of versatility and allows the implementation of parallel image processing
algorithms. As a result, a Window Of Interest (WOI) module is detailed.

Architecture overview. In this paper, an embedded imaging architecture
based on a combination of CMOS imager and FPGA is proposed. Tradition-
ally, the image is transduced by a sensor (camera), converted and stored (image
grabber) and processed on a host computer[2]. In our approach, all early-vision1

processing is performed in the sensor. This kind of sensor composed of a camera
and an embedded processing unit, is currently called a smart sensor. The archi-
tecture presented in this paper can be considered as a development platform for
a smart image sensor based on a System-On-Chip approach.

Based on the active vision concept, our approach consists in integrating the
control of the imager in the perception loop, especially in the early vision pro-
cesses. By integration of early processing and active vision mechanisms, close
to the imager, a reactive sensor can be designed. The objective is to adapt sen-
sor attitude to change in the environment and the current task to be performed.
With such a smart sensor, it is possible to perform basic processing and selection
of relevant features closed to the imager. This faculty is able to reduce sensor
communication flow which is a significant problem of vision sensors [1]. But vi-
sion tasks are numerous and varied, and the choice of a versatile architecture
based on a reprogramable chip becomes natural. In our case, the notion of SOC
(System On Chip) describes the whole system.

It is well known that most vision applications are often focused on several
small image areas and consequently acquisition of the whole image is not neces-
sary. From this definition, it is evident that one of the main goals of an efficient
vision sensor is to select windows of interest (WOI) in the image and concentrate
processing resources on these. Indeed, the notion of local study is predominant.
This notion is crucial for the choice of the imaging technology. CCD and CMOS
are the two most common technologies used today in industrial digital cameras.
1 The term ”early vision” describes all processes except a high-level decision. It is

different from binarization, convolution or other classical low-level processes
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A particularity of CMOS imagers is to adopt a digital memory style readout, us-
ing row decoders and column amplifiers. Random access of pixel values becomes
possible, allowing selective readout of windows of interest. In this way and in
contrast to CCD imagers, it is possible to obtain a high speed imaging capability
by addressing only a small region in the image. The main advantages of CMOS
imagers are broad dynamic range, random access readout, easy integration, and
low blooming.

Design adopted. The central idea in our sensor is that visual tasks can be
broken down into a sequence of simpler subtasks. Consequently the principle
consists in having a collection of routines that represent different kinds of basic
image processing sub-functions. These can then be composed to subserve more
elaborate goal-directed programs. In our approach, the sub-functions are imple-
mented in a FPGA so that they can be changed easily. The global processing
system is composed of SOPC by which an entire system of components is put
on a single chip (FPGA).

The whole architecture is shown in Figure 1 and presents the different mod-
ules. The integration of the camera is done as shown in Figure 2.

Fig. 1. Architecture of the sensor

The design objective presented in this paper was to create a flexible interface
between the imaging device board and a host computer. This design exploits
the advantages of the SOC cited above in order to allow software control of the
acquisition chain. The design is based on a master entity which synchronizes
and defines the control parameters of a set of modules. This set of modules acts
on various points of the acquisition chain. The master entity is synthesized by a
NIOS c© soft core processor and its role is then easily defined by the software.

Application: Enhanced Windowing. This section presents the results on
the WOI generation module. As explained below, this module generates the
addresses of pixels in order to acquire only a predefined area. The advantage of
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Fig. 2. a - Camera, b - top view of the main board, c - back view of the main board

enhanced windowing directly on a CMOS imager allows to set the acquisition
times obtained for several acquisition windows (The acquisition time of a WOI
32×32 is 170 μs or 5800 fr/s ). The main point of this technique is the sampling
problem. In fact, the pixels of the CMOS imager do not have a 100% fill factor,
so there is a blind zone between the sensitive areas. The consequence is that the
distance between the sensitive areas varies as a function of the orientation of the
window. One of the next tasks will be to interpolate the pixels in order to obtain
a regular sampling step.

Full frame Tilted and sub-sampled WOI

In conclusion, this paper proposes an alternative to the classical architecture
with a highly versatile architecture dedicated to image processing.
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Retrieval Algorithm
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Abstract. The need for efficient content-based image retrieval has increased
tremendously in many application areas such as biomedicine, military,
commerce, education, and Web image classification and searching. We present
a method where local and global features are extracted. As a global feature, we
extract the colour histogram. As local features, we extract prominent regions
from the image using a k-means variant and a labeling algorithm. For each
region, colour and spatial locations are extracted. Because these algorithms are
computationally intensive, a hardware implementation is presented that
accelerates the processing of the images. The proposed design is well suited for
implementation on an FPGA. The device can be used as an add-on to a Personal
Computer (PC).

            Keywords. Image Retrieval, FPGA, Component Labelling, Clustering

1   Introduction

As the memory of Personal Computers (PC) increased and high-bandwidth Internet
connections emerged, it became easier the transfer of pictures and video sequences.
New databases emerged which are called Multimedia Databases (MD). These
databases except from text they can also include images and video sequences. It is
clear that new tools are needed in order to search for pictures or video sequences on a
multimedia database. The research area based on image indexing and retrieval is
called Content Based Image Retrieval (CBIR). Our approach is based on region based
image retrieval and the work presented in papers [1], [4] and [5]. The general method
is to segment an image into distinct objects and then extract features for each object
separately. The algorithms used for image indexing are computationally intensive and
the databases usually include thousands of images. Indexing a database like that using
a software program can be a lengthy procedure. The alternative is a hardware
implementation. This paper describes the architecture of an indexing algorithm, which
is well suited for implementation on an FPGA. The FPGA can be used as an add-on
unit to PC.
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2   The Proposed Algorithm

The algorithm we propose extracts global and local features from images. The
computed features can be used to search for similar images in an image database. As a
global feature the colour histogram is computed. The local features represent the
colours and location of regions after the application of a clustering algorithm. A block
diagram of the proposed algorithm is presented in Fig. 1.

Fig. 1. Block diagram of the proposed algorithm

The first stage of the algorithm converts the RGB image into HSV colour space. From
experiments, we concluded that a better clustering is achieved using the HSV colour
space. The conversion of RGB images to HSV is computed using a Matlab function.
Additionally, we cluster the colour space into 256 colours in order to compute the
image histogram. For the colour clustering, we use 16 hues, 4 saturations and 4
values. Now that we have reduced the number of possible colours to 256, we compute
the histogram. The histogram algorithm counts the number of times each colour was
encountered in the image.

The next two stages present the Initialise and the Clustering algorithms. We introduce
first the clustering algorithm and then we explain how it is initialised. The clustering
algorithm is used to group pixels of similar colours. Consequently, important regions
of the image will emerge. Forgy [2] proposed the following clustering algorithm:

1. Begin with a number of seed points.
2. Assign data units to the cluster with the nearest seed point. We continue this

step until all data units have been assigned to clusters.
3. Compute the centroid of the clusters produced. The centroids are handled as

new seed points
4. Alternate steps two and three until there is no change in centroids.

As data units, we use a feature vector, which consists of the colour components of
each pixel. To compute the distance between a pixel and a centroid we use the
Manhattan distance. Forgy’s clustering algorithm has a major drawback. The number
of clusters must be determined in advance. The solution we propose is to set a
threshold on the histogram and accept as initial cluster centroids the colours with a
count larger than a predefined threshold. This step is performed in the Initialise stage.
When the clustering algorithm is finished, each pixel’s colour information is replaced
by the centroid of the nearest cluster. In the last step, we feed the clustered image to
the connected component algorithm presented in [3]. The algorithm assigns a unique

Image RGB2HSV Histogram Initialise

Labelling Clustering
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label to each connected component in the image while ensuring a different label for
each distinct object. This algorithm is used for binary images but we altered the
operation in order to apply for colour images.

3   Simulation Results

This section discusses the processing benefits in terms of speed when we use a
hardware implementation. The algorithms already discussed were implemented using
the Matlab software tool. We managed to operate the histogram and the Forgy’s
clustering algorithm at a clock speed of 35MHZ. For an image of 256*256 pixels, we
achieve 530 passes per second while in Matlab we reached 33 passes per second. The
labelling algorithm is using a 70MHZ clock. We calculated that for a 256*256 image
we achieved 76 passes per second over the image. The Matlab implementation
achieved 20 passes per second. We need to note for clustering and labelling algorithm
that the number of passes needed to label or cluster an image differs from image to
image.

4   Conclusions

In this paper, we presented a hardware implementation of an indexing system. The
features we extracted were global and local. The colour histogram is the global
feature we extracted and can be used in histogram queries. In addition, the location
and colour of prominent regions were also extracted using a clustering and a labelling
algorithm. The major advantage of our design is the speed up of processing compared
to a software implementation.
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Reconfigurable hardware components such as FPGAs is used more and more
in embedded systems, since such components offer a sufficient capacity for a
complete SoC(System on a Chip) or even NoC(Network on a Chip). In order
to use efficiently the dynamic reconfiguration possibility on such components,
one needs a support in the form of operating systems to manage both software
and reconfigurable hardware processes. For this support, suitable reconfigurable
hardware model, and optimization methods are required. Our goal is the inves-
tigations of optimal strategies, methods, and architectures for controlling and
use of the newest and future generations of reconfigurable hardware.
We target a Dynamic Reconfigurable System(DRS) which is made up of a soft
core such as CPU(Central Processing Unit), and a Reconfigurable Processing
Unit(RPU). In modelling of hardware resources, the characteristics like non-
interruption of hardware tasks, reconfiguration overhead, communication model
are considered. Task and resource managements on the DRS are on-line prob-
lems, that we investigate the optimal solutions for them.
Run-time space allocation, also known as temporal placement or on-line place-
ment is a central part in reconfigurable computing system. In the on-line place-
ment problems, for placing a new module, first we should identify the set of
potential sites to place the new task. In most of the work, maximal empty rect-
angles will be stored for identifying the possible regions. But this method has a
high complexity and modules should be placed always in the bottom left corner
of an empty rectangle. Considering the fact that the set of empty rectangles
grows much faster than the set of placed rectangles (tasks) leads us to manage
the occupied space rather than the free space on the device. We identify the im-
possible regions, by computing the potential overlapping of the new module with
other placed modules. In the second step in on-line placement, the best position
to place the new module according to a set of given criteria should be selected.
In contrast to existing methods, instead of using heuristic approaches such as
best-fit or first-fit, we optimize the communication cost of the new module with
the placed modules and input/output ports of the device. We have suggested
two algorithms for this optimization, one in terms of Euclidean distance in the
communication cost, and an optimal one by Manhattan distance.
To determine how the communications should be realized, optimal routing algo-
rithms are needed. For on-line routing, there are two scenarios: packet routing
and circuit routing. We are now implementing a packet routing approach on
Xilinx FPGA for communication of placed modules, but our concentration is
to develop optimal circuit-switching routing methods, which is more technology
independent.
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Advancements in VLSI technology have enabled the development of large re-
configurable platforms, which are being increasingly used in a wide variety of
applications. Among the various reconfigurable devices currently in use, FPGAs
have emerged as the most popular reconfigurable devices. While power opti-
mization has been only of secondary importance in many FPGA applications,
growing importance of leakage in FPGAs designed in 90nm and below makes it
imperative to treat power optimization as a first class citizen.

My current research focuses on reducing the power consumption in FPGAs.
In [1], we proposed a leakage-saving technique for FPGAs that involved dividing
the FPGA fabric into small regions and switching on/off the power supply to each
region using a sleep transistor in order to conserve leakage energy. Specifically,
the regions not used by the placed design were supply-gated. It was observed that
using small regions increases the area overhead of supply transistors, and hence,
a new placement strategy was presented to maximize the number of regions that
can be supply-gated while using large regions. This resulted in average leakage
savings of 13% in Virtex-II FPGAs even with regions sizes as large as 128 slices,
compared to 15% for region sizes of 4 slices.

In another technique, we propose a dual-VDD FPGA architecture, that uses
two supply voltages to save power. Notice that normally a design consists of
several non-critical paths that have additional timing slack as compared to the
paths that determine the clock speed. Based on this observation, we propose two
algorithms that assign lower supply voltages to the portions of the FPGA on
to which the non-critical paths are mapped. Further, in a dual-VDD FPGA, a
voltage level conversion is required if a low VDD block drives a high VDD block.
Dedicated level converters, having area, delay, as well as power overheads, are
required for this job. We experimented with two placements of level converters,
one at the output pins of logic blocks (CLBs), and another at their input pins.
Our experimental results show that reducing the supply voltage selectively to
the non-critical paths helps to reduce dynamic power by 25% and leakage by
73% without affecting performance.

Modern high-end FPGAs have processors embedded in them (e.g. PowerPCs
in Xilinx Virtex-II pro). This, coupled with the fact that these FPGAs can be
dynamically reconfigured, calls for a comprehensive study of power issues in such
FPGAs. Analyzing these issues forms the next step of my research. At a later
stage, I also wish to work on novel non-silicon reconfigurable architectures.
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A class of reconfigurable processors is introduced in which support for an instruction
set is distributed among a collection of pre-defined configurations. For this new class
of reconfigurable processors, there is assumed to be a pre-defined collection of
configurations in which each configuration supports a subset of the overall instruction
set. The union of all subsets of instructions, associated with the configurations,
defines the instruction set supported by the reconfigurable processor. An objective for
this class of reconfigurable processors is the support of popular commercial
instruction set architectures with less hardware than required using existing static (i.e.,
non-reconfigurable) processors.

The basic problem considered is the following: Given a collection of
configurations for a reconfigurable processor and given an executable program based
on the entire instruction set, devise an algorithm to re-order the given program code
so as to minimize the number of configuration switches required to execute the
program on the reconfigurable processor. Our solution approach is based on a block-
based analysis of the program. A greedy algorithm that works on a precedence DAG
of a block of code is used to schedule the instructions to minimize the total number of
configuration switches for each block.

An experimental study has been conducted based on a proposed partitioning of the
PowerPCTM instruction set into two mutually exclusive subsets, one consisting of all
floating-point instructions and the other consisting of all other instructions. The
greedy algorithm is used to re-order machine code to minimize the number of
reconfigurations required. The greedy algorithm reduces the number of configuration
switches by around 50% in some cases. Additionally, the results of the experimental
study highlight that a low percentage of blocks, about 20%, require configuration
switching for the partitions assumed. In the study, static analysis of machine code was
performed, i.e., the number of times a given block is performed during an actual
program execution is not considered. The processor model is assumed to consist of
one execution unit that can be reconfigured to implement different partitions of the
instruction set.

Future investigations will involve the tracing of program executions so that the
number of times each block is actually executed can be measured. Reduction in the
number of reconfigurations for blocks that are executed multiple times provides
greater improvement in overall performance than gains reported here. Another area of
work includes investigating the application of clustering techniques to define near-
optimal instruction partitions.
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A recent trend towards networked and hardware reconfigurable systems can be identi-
fied in several areas like automotive, ambient intelligence, and many more. On the other
hand, there is a lack of sophisticated design automation tools which support designers
during the design process. With the increasing complexity of such modern embedded
systems, an urgent need for design tools at higher levels of abstraction can be seen.
The most challenging tasks in system-level design for networked reconfigurable sys-
tems is to guarantee the feasibility of solutions while exploring giant design spaces. To
overcome these problems, a hierarchical graph-based model for networked hardware
reconfigurable systems is introduced. The hierarchical system model consists of three
parts: (i) A hierarchical process graph modeling the desired functionality of the system.
Subgraphs associated with processes are used as alternative refinements for these pro-
cesses. (ii)A hierarchical architecture graph representing the set of allocatable platforms.
Subgraphs associated with hardware components are meant to be alternative configu-
rations of hardware reconfigurable components. (iii) Hierarchical mapping edges relate
processes with components of the architecture graph in a sense that these processes may
be executed on the associated hardware components. The novelty of this model lies in
the ability to support (i) Platform-based design: By optimizing a platform not only for
a single static process graph but for a set of different refinements. (ii) Reconfigurable
computing systems: The hierarchical architecture graph allows to exchange hardware
functionality at runtime. (iii) Modeling of IP cores: Hierarchical mapping edges model
partial implementations or subsystems with unknown properties. In contrast to exist-
ing solutions which mostly assume implicit communication between configurations and
where configurations are constructed by structural temporal partitioning, our model is
a real system-level model based on functional partitioning, since it supports explicit
communication which let us detect hidden deadlocks in an implementation and config-
urations consist of system-level components like CPU, IP cores, buses, or even again
FPGAs. In this Ph.D.-program, different methods for accelerating the task of design
space exploration by exploiting the hierarchical structure of the underlying model have
been proposed. All these approaches are based on Evolutionary Optimization. The most
outstanding idea is called Pareto-Front Arithmetics where subsystems are optimized in-
dependently of each other. Later, the optimization results are combined regarding the
hierarchical problem structure. Moreover, new formal methods based on SAT-techniques
for testing the feasibility of an implementation have been developed. Furthermore, these
SAT-techniques can be extended towards an analysis strategy to determine the degree
of fault tolerance of a networked hardware reconfigurable system. The feasibility of this
work, was shown by developing a networked hardware reconfigurable system, called
ReCoNet.
� This work was supported in part by the German Science Foundation (DFG), SPP 1040.
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Due to technology scaling global wires dominate the delay and power budgets,
and signal integrity, IR-drops, and process variations pose new design problems.
Shrinking time-to-market windows and ever-increasing mask costs have reduced
profits alarmingly. In response to the first category of problems, 3D integration
can significantly reduce wire-lengths, boost yield, and can particularly be useful
for FPGA fabrics because it can address problems related to routing congestion,
limited I/O connections, and long wire delays. Practical application of 3D inte-
grated circuits yet needs to gain momentum, partly due to a lack of efficient 3D
CAD tools. We propose a new efficient timing-driven partitioning-based place-
ment and routing tool for 3D FPGA integration [1]. The circuit is first divided
into layers with limited number of inter-layer vias, and then placement is per-
formed on individual layers, while minimizing the delay of critical paths. Finally,
the circuit is routed using our 3D detailed routing algorithm. We show that 3D
integration results in smaller circuit delays, provided that multi-via lengths are
employed between layers or fully buffered routing resources are used. Simula-
tions show on average a total decrease of 25% in wire-length and 35% in delay
respectively, over traditional 2D chips, when 8 layers are used in 3D integration.

One can cope with the shorter time-to-market problem in two ways. First, one
can develop more efficient design automation tools. We integrated an efficient ter-
minal alignment heuristic for delay minimization into a new partitioning-based
placement algorithm, which can achieve comparable circuit delays to those ob-
tained with VPR at four times shorter run-times [3]. Second, one can adopt new
design methodologies such as platform-based design, reconfigurable computing
[2] or improve early design-metrics estimation in order for front-end design stages
to be better aware of the later design optimization decisions. Optimization at
lower levels of abstraction should be done in a constrained fashion such that
early predictions shall actually turn to be accurate. In this way a constructive
constrained optimization design methodology can be developed, which will lead
to better predictability (hence, smaller number of design cycles).
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There are many similarities between modern 3D graphics chips and FPGAs:
a shader based graphic chip can be viewed as a highly domain specific and
very coarse-grained reconfigurable logic device. Our goal is to see how a fine-
grained FPGA can be used to implement the pixel and vertex shader stages of
a graphics pipeline, and how well the two methods compare in terms of speed,
power, flexibility, and usability, initially by implementing Direct-X 9 pixel shader
programs using Xilinx Virtex-II FPGAs.

Modern graphics cards use a customisable graphics pipeline split into two
stages, which replace the classic fixed function graphics pipeline stages. The ver-
tex shader is responsible for transforming scene geometry, such as manipulating
vertex locations and perturbing vertex normals, while the pixel shader is re-
sponsible for performing per-pixel operations, such as specular lighting effects
and environment mapping. Both shaders can be programmed by applications to
achieve different effects using a simple assembler language, and different shader
programs can be applied on a per-polygon basis.

As graphics chips have become more powerful, the capabilities and resources
available to shader program writers have also increased, with facilities such as
dynamic flow-control, floating-point registers, and more freedom in the ordering
of instructions. This increase in flexibility and scope requires large amounts of
logic to reach acceptable fill-rates, and the need to support the most complex
possible shader programs means that for most applications there will be large
amounts of logic left idle. Implementing shaders using FPGAs should increase
logic utilisation while providing the flexibility for complex CGI-style shader trees.

Optimisations performed while compiling shaders to an FPGA design in-
clude: Compiling multiple shader programs into a single design, by transforming
and interleaving instructions to maximise shareable logic; Altering the preci-
sion of fractional and fixed-point calculations to reduce logic requirements, while
maintaining the mandated precision requirements; Reducing the texture memory
bottleneck by using information gleaned from the shader to reduce the precision
of and rearrange storage; Using block-memories to create caches with texture
affinity and other program specific characteristics.

Experiments using our automatic compiler have so far achieved the imple-
mentation of six commonly used shaders on a single Xilinx Virtex-II 1000 device
with a maximum clock rate of 90MHz, providing a fill-rate of 90MPel/s. While
this can’t yet compete with commercial graphics cards, which have a clock speed
3-4 times higher and a fill rate 10-20 times higher, the price of FPGAs is going
down, whilst that of graphics chips is gradually increasing. Future work includes
rapid generation of designs using JBits, run-time reconfiguration to alter shaders
present on a device, and the implementation of vertex shaders.
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In order to achieve real estate reconfigurable computing in prospectively embed-
ded systems it is necessary to support the preemption of hardware tasks. This
means we want to freeze a module, capture the module’s state and restart the
module at a later time. In the software world, the state is basically the context
of the CPU registers. In hardware the state data is represented by the state reg-
ister values and is typically an order of magnitude larger. In addition, this data
is spread over the entire module and is not accessible by simple PUSH/POP
mechanisms. Hardware task preemption plays a key role in building fault tol-
erant systems. It can be used for error detection (e. g. register out of range
detection) as well as for the redistrubution of workload in the case of a failure.
Furthermore, task preemption allows virtualizing hardware by time multiplex-
ing. This is a challenging topic especially in real time systems where we have to
prove that the exchange of a module is achieved below a certain time boundary.

There are two basic opportunities to capture the state of a running hardware
task that is applicable with today’s FPGAs. The first methodology is to read
back the configuration bitstream. This is quite slow as the whole bitstream and
not only values representing the state is read back. As the bitstream size can be
in the megabit range, there is need to extract just the state information from the
bitstream. The second methodology to capture the state of a running hardware
module is to include a register scanpath into the module. Here, we started to
examine the deterioration of the performance (resources and speed) stemmed
from this approach. However, a scanpath allows fastest context switching and
is applicable to reconfigurable architectures without dedicated readback modes.
In addition, we want to use scanpaths for migrating modules containing a state
from and to different reconfigurable architectures or even for hardware software
migration.

In our system model we allow multi cycle IO transfers (DRAM access) and
multiple clock domains leading to a non deterministic behaviour of the freeze and
restart process. Furthermore, we consider combinatorial feedback loops and on-
chip memory blocks by automatically including wrapper blocks into the module.

To exploit the advantages of both methodologies we aim at developing a
reconfigurable architecture that takes the hardware preemption into account. We
have currently a prototype FPGA architecture running on top of a host FPGA
allowing fast context capturing. This is achieved by arranging the reconfigurable
elements and therefore the bitstream in such a way that the state data is stored in
the beginning of the bitstream. All other configuration information (e. g. routing
data) is put at the end and is not further considered. In our approach, the reading
back of the bitstream containing the state of an interrupted module can be done
simultaneously with the reconfiguration of the new module.
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Speculation and parallel processing can provide performance gains in many di-
verse applications. Compilers, grid computing, DSP, and bio-informatics are a
representation of such areas where these concepts are utilized. In the field of
network routers, packet processing can also use such speedups. As the line rate
of packets increases with every new standard (Infiniband, 10-gigabit Ethernet),
these speedups will become paramount for routers asked to do complicated tasks
while still maintaining line speeds.

In order to facilitate a design platform for rapid prototyping of these high-
speed router designs, we present CUSP (Click Utilizing Speculation and Paral-
lelism). Click is a software modular router design framework that is similar to
CUSP, but specifically built for a Linux platform and software routers. CUSP,
while also having a modular design of reusable components, additionally provides
automated speculation and parallelism. An accompanying scripting language,
CUSPED, allows quick creation of these routers from existing components.

The FPGA platform provides the base to create such a system. Repro-
grammable hardware allows for multiple data paths to execute simultaneously.
In addition to that parallelism, speculation can occur on those data paths at
no expense to other paths. This independence assumption across data paths
is very applicable and feasible across networking applications. For example, a
packet is classified when arriving at a network router. This classification leads
to another level of processing depending on the type of packet. In CUSP, the
packet is speculated to be EVERY type of packet the application can process,
and speculatively executed in parallel as those types.

This speculation requires special attention to components that can change
the state of the networking application. Specifically, memory accesses that are
speculatively executed may have to be rolled back. The notion of predicate reg-
isters in compilers can play a role in this issue. By predicating writes and using
a commit signal to validate those writes, speculation can occur on state changes
as well. To demonstrate this speculative memory, a FIFO and Table memory
constructs have been created.

We have designed an example network application that conforms to the ideas
presented above. Using a Xilinx Virtex-II Pro FPGA, this application accepts
IPv4, ARP, and ICMP packets from a gigabit link. Speculation and parallelism
occur across all these packet types involving multiple memory accesses. From
this working example, we have shown that speculation and parallelism can be
automated through a modular design.
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Automated Mapping of Coarse-Grain Pipelined
Applications to FPGA Systems

Heidi E. Ziegler
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Abstract. Configurable systems offer a unique opportunity to define
application-specific architectures. These architectures offer performance
advantages, where the use of customized pipelines exploits the inher-
ent parallelism of the application. In this research, we describe a set of
program analyses and an implementation that automatically map a se-
quential and un-annotated C program into a pipelined implementation
targeted to an FPGA with multiple external memories. This research
describes an automated approach to hardware design space exploration,
through a collaboration between parallelizing compiler technology and
high-level synthesis tools. In previous work, we described a compiler al-
gorithm that optimizes individual loop nests, expressed in C, to derive
an efficient FPGA implementation. In this research, we describe a global
optimization strategy that maps multiple loop nests to a coarse-grain
pipelined FPGA implementation.

We focus on the space-time tradeoffs associated with differing amounts of paral-
lelism, communication granularities and custom data layouts. Highly optimized
designs may be too large to fit within FPGA resource constraints, so we de-
scribe heuristics for reducing area requirements while minimizing the impact
on global performance. We present a design space exploration algorithm, which
demonstrates the potential of this approach, for automatically deriving pipelined
designs from high-level sequential specifications.

The configurability of FPGA hardware and the advent of multi-FPGA plat-
forms leads to new decision procedures for applying existing transformations.
In this research, we investigate how techniques, borrowed and adapted from ex-
isting parallelizing compiler technology, can be combined with commercial syn-
thesis tools, to automatically derive realizable and efficient designs on multiple
FPGA-based architectures. In particular, the contributions are as follows:

– Communication Analysis and Pipelining. We define a set of compiler anal-
yses and transformations required to automatically design the communi-
cation for application specific pipelines for FPGA-based architectures. We
determine the best communication granularity, the corresponding communi-
cation placement points within the code, and the exact data that must be
communicated between pipeline stages.

– Partition and Custom Data Layout. Our compiler algorithm finds a coarse-
grain computation and data partition, along with a custom data layout. To
combat the large search space, we employ several heuristics.
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– Implementation and Evaluation. We implement our analyses and present
experimental results for a set of image-processing kernels.

With the growing number of available transistors on a single die, we anticipate
the emergence of multiprocessor systems-on-a-chip and reconfigurable computing
architectures with the ability to incorporate (through soft-cores) various coarse-
grain computing elements such as microprocessor cores, and application specific
engines (ASEs). Enabling pipelined execution, communication across computing
cores, task level parallelism, and data distribution across banked memories will
become increasingly important issues. Our analyses will allow the automated
application mapping for these emerging infrastructures.
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Dynamically Reconfigurable Hardware (DRHW) presents the ideal features to cope
with the highly dynamic and non-deterministic behaviour of current multimedia ap-
plications (such as digital video and 3D games) since it provides both high perform-
ance and run-time flexibility. However, in order to take advantage of the DRHW
features dynamic task allocation support and scheduling support are needed. Working
together, the Interconnection Network (ICN) model for DRHW [1] and the hybrid
run-time/design-time scheduling Task Concurrency Management (TCM) scheduling
methodology [2] provide the desirable support to use DRHW in embedded systems.
First, the ICN model provides support not only for task allocation, but also for inter-
task communication, and operating system primitives. Second, TCM provides run-
time scheduling support and generates only a small run-time penalty due to its execu-
tion because most of the exploration and computation is done at design time.

However, the run-time flexibility of DRHW comes at the price of a very large re-
configuration overhead. For instance, reconfiguring one tenth of a Virtex XC2V6000
requires at least 4 ms, which is often unaffordable. In order to reduce this large recon-
figuration overhead, specific support is needed for the DRHW resources during the
scheduling flow. To provide this support I have developed two different techniques,
namely the prefetch-scheduling technique and the replacement technique, and inte-
grated them in the TCM scheduling flow [3]. First, the prefetch-scheduling technique
receives as input a set of tasks that must be loaded and attempts to hide their loading
latency by loading them in advance. The key idea of this technique is that if a task is
loaded before the moment of time when it is going to be executed no time-overhead is
generated by this load. Second, the replacement technique attempts to maximise the
reuse of tasks applying a replacement policy that takes into account which tasks are
more likely to be reused in the future. Thus, a task can be loaded once and executed
multiple times as long as is not replaced by another task. In this context, the tasks
loaded in the DRHW are conceptually similar to the memory pages in physical/virtual
memories. In addition, this technique takes into account how critical the execution of
a task is and it assigns more priority to those tasks that are more critical for the system
performance. Applying these techniques to an actual set of multimedia applications
they reduce the initial reconfiguration overhead by a 93% while generating a very
small run-time penalty due to its execution.
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Research into defense mechanisms for digital information has intensified in recent
years, as malicious attacks on software systems have become a rapidly growing
burden. The growing area of software protection attempts to address the prob-
lems of code understanding and code tampering along with related problems
such as authorization. Our work focuses on the design and evaluation of an ar-
chitecture for software protection that utilizes FPGAs as a run-time integrity
enforcement engine.

Recent approaches to software protection tend to lie at two extremes of
the security-performance spectrum. At one end are highly secure hardware ap-
proaches that require a substantial buy-in from hardware manufacturers [1]. The
other end provides security by either mangling the code to make it less under-
standable or by burying checksums in unlikely places [2]. These extremes invite
an approach that allows system designers to position themselves where they
choose on the security-performance spectrum.

Our proposed method works as follows. The processor is supplemented with
an FPGA-based secure hardware component that is capable of fast decryption
and can also recognize strings of keys hidden in plaintext instructions. The FPGA
is situated between the highest level of on-chip cache and main memory in order
to directly handle the instruction cache miss requests. These instructions would
then be translated and verified in some fashion before the FPGA satisfies the
cache request. An advantage to this approach is that the compiler’s knowledge of
program structure allows for tuning of the security and performance of individual
applications. Also, the use of FPGAs minimizes additional hardware design and
is applicable to a large number of commercial processor platforms. Our initial
results [3] demonstrate that the average performance penalty for this approach
is not too severe for most applications.
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Scalable Defect Tolerance Beyond the SIA
Roadmap
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As feature sizes approach the single-digit nanometer domain, manufacturing de-
fects will become much more commonplace. Each computing fabric will have
multiple defects, and physical and economic limits will make it impossible to
eliminate them all. This will be true whether manufacturing is done using future-
generation CMOS processes, or technologies such as Chemically Assembled Elec-
tronic Nanotechnology (CAEN). We will therefore have to find a way to use these
fabrics inspite of the defects.

We can compute with defective fabrics by making them reconfigurable, and
not use defective resources when mapping circuits onto the fabric. This requires
two things: a scalable testing methodology that can locate all defects in the
fabric, and layout tools that can place and route circuits onto the fabric while
avoiding the defective parts.

Scalable testing methods: Current testing algorithms for reconfigurable
fabrics such as FPGAs can deal with only a small number of defects. In par-
ticular, they cannot scale to situations where as many as 10% of the individual
switches, configurable logic gates or wires may be defective, as is predicted for
a number of proposed future technologies. We developed a testing algorithm
which gave good results in simulations where the fabric had 10% or more defec-
tive components [2,1]. Our method implements LFSR-based test circuits on the
reconfigurable fabric and analyzes test circuit outputs by a variety of methods
to identify the correctly functioning components on the fabric. In simulations,
our algorithm was able to identify upto 80% of the correctly functioning com-
ponents when the fabric had upto 10% defects. We are now implementing these
algorithms to test Xilinx VirtexII-Pro FPGAs with defective logic cells.

Layout algorithms: Once defect locations have been determined, layout
algorithms should map circuit configurations around these defective components.
This poses a new challenge for these algorithms: not only does this require per-
design layout effort, but also per-fabric effort, since each fabric will have a unique
set of defects. Also, if such fabrics are to be used for general purpose computation
rather than only as ASIC replacements, the place-and-route steps will need to
be very fast and efficient. We are currently exploring ways to partition layout
algorithms into two parts, one to be performed per-design, and a second part
to be performed per-fabric. The per-design component of the layout will be
performed once by the application developer, who will ship out the resulting
soft configuration to the users. Each user will run a quick final layout step,
which will take into account each fabric’s unique defect map to generate a hard
configuration that can be loaded onto the reconfigurable fabric.
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Abstract. Adaptive Computing Systems (ACS) built from configurable logic
processors such as FPGAs offer a very high performance in implementing a
wide range of applications. However, their programming model is mostly a
hardware paradigm, instead of software paradigm, which makes them difficult
to program by application scientists. They also suffer from portability and
scalability problems. Furthermore, the performance of these run-time
reconfigurable systems is limited by the cost of reconfiguration overhead.

One of the major limitations of ACS is that some large applications require more
hardware resources than are available, and the design cannot fit into the available
FPGA chips. One solution to this problem is run-time reconfiguration (RTR). Run-
time reconfiguration allows modular large applications to be implemented by reusing
the same configurable processor. These configurations are uploaded onto the
reconfigurable hardware as they are needed to implement the application. As
configuration time could be significant, eliminating or reducing this configuration
time overhead becomes a very critical issue for reconfigurable systems.

This thesis uses the processing locality characteristics to discover, at run time, the
workload processing needs and reconfigure the hardware accordingly, thus providing
a cache-memory-like resource management scheme. The cache management
techniques are used to determine when configurations should be loaded and unloaded
in order to exploit temporal and spatial processing locality in order to minimize the
overall cost of reconfiguration and, thus, the overall execution time. To this end, we
propose to integrate data mining techniques, such as Association Rule Mining (ARM)
and clustering, to derive meaningful rules that can be useful in configuration-cache
management, by configuring related functions together. These rules are used to
determine the correlation between the reconfigurable functions, in order to know in
advance which functions are tightly correlated to the current executing reconfigurable
function, and thus pre-fetch the configuration of these functions immediately before
they are needed.
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Abstract. A new family of architectures for multi-cycle area-efficient
evaluation of elementary and composite functions is presented, and the
design tradeoffs for implementation on FPGAs are explored. The method
based on minimax polynomial approximation is exemplified with two
common functions, sine and power-of-2. To test the performance of each
design, we compare the proposed architecture to an established table-
based method for several different input word-lengths and output preci-
sion requirements. FPGA-based results are presented, illustrating both
the technology-independent and the technology-specific attributes of the
tradeoff of area and speed between the proposed techniques.

We continue to work on a class of problem relating to the multiplica-
tion of a single number by several coefficients that, while not constant,
are drawn from a finite set of constants that change with time. Such a
situation arises commonly in synthesis due to resource sharing, for ex-
ample in a folded implementation of a polynomial evaluation using Es-
trin’s method and a FIR filter. To minimize the number of operations, we
present the formulation as a form of common sub-expression elimination.
The proposed scheme avoids the implementation of full multiplication.
In addition, an efficient implemenation is presented targeting the Xilinx
Virtex / Virtex-II family of FPGAs. We also introduce a novel use of
Integer Linear Programming for finding solutions to the minimum-cost
of such a multiplication problem. Using our formulation area saving of
up to 25% has been achieved even for small benchmark problems.

While the work so far has been focused on area optimisation, future
work will be extended to trading off speed and characteristics of the poly-
nomial approximation such as order and precision used. Increasing the
order of the polynomial and the word-lengths in the coefficients and the
intermediate signals will increase accuracy at the expense of longer de-
lay and lower throughput. Word-length optimization techniques will be
explored to alleviate the speed penalty. Since the overall precision is lim-
ited by the polynomial approximation itself, increasing precision in the
coefficients or signal representation could be superfluous and could incur
unnecessary delays. Canonical Signed-Digital (CSD) number system will
also be explored in order to achieve higher speed in the implementation
of the multipliers and adders.
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Abstract. Modern day Field Programmable Gate Arrays (FPGA) include in ad-
dition to Look-up Tables, reasonably big configurable Embedded Memory Blocks
(EMB) to cater to the on-chip memory requirements of systems/applications
mapped on them. While mapping applications on to such FPGAs, some of
the EMBs may be left unused. This paper presents a methodology to utilize
such unused EMBs as large look-up tables to map multi-output combinational
sub-circuits of the application, with depth minimization as the main objective
along with area minimization in terms of the number of LUTs used. This
paper presents a new algorithm for technology mapping onto heterogeneous
architectures containing LUTs and embedded memory blocks. For the first
time, the concept of reconvergence is used in the field of FPGA mapping and
is shown to be effective. The algorithm consists of four main stages, namely,
Pre-Processing, Reconvergence Analysis, Memory Mapping and LUT Mapping.
Experimental results show that our proposed methodology, when employed on
popular benchmark circuits, leads to upto 14% reduction in depth compared with
the DAGMap, along with comparable reduction in area.

Pre-Processing: In the first stage of the algorithm, the given circuit is
converted into an equivalent two-input network. It has been shown that this
conversion leads to better mapping of the circuit into LUTs by minimizing the
overall depth of the decomposed circuit.

Reconvergence Analysis: In this stage, the circuit obtained from the pre-
processing stage is analyzed for reconvergence and overlapping reconvergent
regions are identified for mapping into embedded memories.

Memory Mapping: We use a 2-phase heuristic for selecting appropriate
regions for memory mapping. In the first phase, the overlapping reconvergent
regions that can be mapped to the memory blocks are expanded till they just
satisfy the pin constraint imposed by the memory arrays. In the next phase,
the best among the expanded regions are selected based on the potential depth
reduction obtained by mapping the region onto embedded memory blocks.

LUT Mapping: This is the final phase of the algorithm in which the
residual circuit left after mapping onto memory blocks is mapped into LUTs. The
DAG-Map algorithm is used to implement this mapping.

Keywords: Embedded Memory Blocks, Reconvergence, Technology Map-
ping, Memory Mapping,Primary Stem Region, Dag Level, Slack.
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This paper presents a System on Chip (SoC) design framework for prime number
validation which targets reconfigurable hardware. The primality test is crucial
for most security systems using public-key schemes. It has been recognised that
strong prime number generation is important, and prime validation is an intrinsic
part of the generation. Our main contributions include: (1) A design method for
mapping the Rabin-Miller Pseudoprime Test into hardware. (2) Parallel designs
for Montgomery modular arithmetic operations. (3) A design generator for pro-
ducing hardware prime number validators based on user-defined parameters. (4)
An implementation of the proposed architectures in reconfigurable devices, with
an evaluation of its effectiveness compared with other methods. (5) A scalable
framework for parallelizing prime validations in reconfigurable hardware.

We define validation as the process of prime testing on a given number.
This work has two parts: (I) a design flow from user-defined parameters to a
synthesizeable core which includes contributions (1) to (4), and (II) a rapid-
prototyping platform for integrating user cores and on-chip processor into an SoC
design which includes contribution (5). This framework can easily be extended
for developing embedded systems and cryptographic applications.

The Rabin-Miller test has been mapped into hardware. It makes use of effi-
cient modular multipliers for computing Montgomery modular exponentiation to
further speed up the validation and to reduce the hardware cost. The parallelism
of this design has been explored for very large prime numbers. For instance, two
parallel modular multipliers are used in Montgomery modular exponentiation,
and the multiplier itself is optimised for parallel execution. A design generator
has been developed to generate a variety of Montgomery modular multipliers,
with different trade-offs in size and performance based on user-defined param-
eters. For instance, the number of small prime numbers used in the Rabin-
Miller test determines the accuracy and performance of the system, and the
user-specified bit-width determines the complexity of the modular operations in
the hardware. We systematically implement the design for different bit-widths
on reconfigurable devices in Celoxica RC200 and RC2000 platforms. The gen-
erated Handel-C designs are synthesized using Celoxica tools, and the FPGA is
then configured as a prime number validator. Our work demonstrates the flexi-
bility and trade-offs in using reconfigurable platforms. It shows that, for 512-bit
prime validation, the design takes 14,176 slices and has a critical path delay of
81ns. A 1024-bit primality test can be completed in less than a second, which
demonstrates that our prototype reconfigurable architecture can run more than
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15 times faster than a customised arithmetic crypto-processor in a smart card
system.

We also investigate a general design framework for prime number valida-
tion that makes use of an embedded microprocessor, a fast Processor Local Bus
(PLB) and programmable user-logic in reconfigurable hardware. In this frame-
work, a divide and conquer technique is applied to prime number generation.
The circuit in part (I) is used to validate one long prime number. The gener-
ated designs are first synthesized into VHDL and connected to the PLB bus
through the predefined bus interface as programmable PLB slave bus modules.
An embedded microprocessor such as the PowerPC is used to generate high
quality random numbers and to interface between user and on-chip validators.
The PLB bus provides a high performance interface between the microprocessor
and the reconfigurable logic. We have chosen Xilinx ML300 as the prototyping
platform which contains a Virtex-II Pro FPGA. Our result shows that the design
is highly scalable and can accommodate up to 8 PLB slave modules for 256-bit
prime generation in an XC2VP125 device operating at 18MHz.
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Abstract. Phylogenetic tree (or phylogeny) is a meaningful tree representation
for the evolutionary history of different organisms that it has been shown useful
in drug discovery, virus identification and functional genomic study [1]. The
objective of this project is to develop efficient FPGA implementations for
phylogenetic tree reconstruction algorithms. By taking advantage of hardware
high-performance, we explore the possibilities of parallelization and system
optimization to provide high-speed acceleration for the phylogeny inference.
The Maximum Likelihood approach for inferring the phylogeny from molecular
data has received much attention [2]. Although the optimal ML phylogenetic
tree search problem is classified as NP-hard and it is difficult to find the opti-
mal solution, the GAML algorithm (based on Genetic Algorithm and Maxi-
mum Likelihood) has been shown to find a good near-optimal solution in rea-
sonable time [3]. In [4], we have shown that using HW/SW (Hardware/ Soft-
ware) codesign for GAML implementation can provide significant speed-up
when compared with software-only implementation. Our HW/SW system has
good potential for handling large scale problems in real applications. In [5], an
enhanced version of FPGA design with parallel and pipelined implementation
for the likelihood evaluation is proposed. It has been shown 100 times faster
than the single-CPU solution for the ML tree evaluation. To reduce precision
loss attributed to truncation error in the FPGA, we are developing a dynamic
floating-point alike structure based on the fixed-point architecture. We have
also studied the implementation of phylogenetic tree reconstruction algorithm
in the embedded platform (i.e. VirtexII-Pro Platform FPGA). Significant im-
provement in data transmission rate between hardware and software and higher
clock frequency of FPGA have been realized [6].

References

1. Kishino H., et al.: Maximum Likelihood Inference of Protein Phylogeny and the Origin of
Chloroplasts. J. Mol. Evol., 31:151-160, 1990

2. Felsenstein J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J.
Mol. Evol., 17:368-376, 1981

3. P. Lewis: A Genetic Algorithm for Maximum Likelihood Phylogeny Inference Using Nu-
cleotide Sequence Data. Mol. Biol. Evol. 15(3):277-283, 1998

4. Mak S. T. and K. P. Lam: High Speed GAML-based Phylogenetic Tree Reconstruction
Using HW/SW Codesign. IEEE Computer Society Bioinformatics Conference 2003, 2003

5. Mak S. T. and K. P. Lam: FPGA-based Computation Maximum Likelihood Phylogenetic
Tree Evaluation. Accepted in Field-Programmable Logic and Applications conference, 2004

6. Mak S. T. and K. P. Lam: Embedded Computation of Maximum-Likelihood Phylogeny
Inference Using Platform FPGA. Accepted in  IEEE Computer Society Bioinformatics
Conference 2004, 2004



Minimising Reconfiguration Overheads in
Embedded Applications (Abstract)

Usama Malik

University of New South Wales,
Sydney, Australia

umalik@cse.unsw.edu.au

This PhD project seeks to examine the reconfiguration of FPGAs at the archi-
tectural level in order to develop efficient techniques for supporting application-
specific reconfiguration. This abstract presents a technique that addresses the
problem of reducing the reconfiguration delay of an FPGA application at the
time when configuration data is to be loaded onto the device. Let us consider
an on-chip configuration c1 and a new configuration c2 that we want to load
onto the device (c1 and c2 might not span the entire device). The amount of
configuration data that we need to load can be reduced if we only write those
parts of c2 that are not present in c1. In particular, a judicious placement of the
two configurations can result in maximising the amount of overlap that we seek
to exploit.

We consider the one-dimensional configuration placement problem. Our
model is a partially reconfigurable FPGA. The device configurations span the
height of the FPGA, reside in a contiguous portion of the memory, and can only
be linearly shifted across the width of the device. The smallest unit of config-
uration is a frame that spans a column of FPGA resources. It is assumed that
the device is homogeneous meaning that the same configuration configures the
same circuit no matter where it is loaded.

Minimising the configuration overhead for a sequence of relocatable one-
dimensional configurations can be shown to be NP-complete. A greedy algorithm
was evaluated for a sequence of thirteen benchmark circuits targeted at Xilinx
XCV1000 device. This algorithm places each configuration at a position that
minimises the reconfiguration data between it and the on-chip configuration. It
was found that the above technique reduces the reconfiguration delay by only 3%.
However, it was also found that if the configuration interface supports smaller
units of configurations, e.g. sub-frames as small as a single byte, then a reduction
in reconfiguration data of up to 85% is possible.

In this work, we have shown the effect of the frame granularity and circuit
location on configuration caching. Future work involves investigating the design
of FPGA architectures that support reconfiguration of one-dimensional relocat-
able circuits. We are particularly interested in ensuring the correct operation of
the system after reconfiguration, and enhancing the IO architecture of the device
to support circuit relocation. We believe this technology will benefit the embed-
ded systems domain, in which application characteristics are known a priori and
static optimisations can therefore be made to achieve performance goals.
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Application Specific Small-Scale Reconfigurability

Vinu Vijay Kumar

University of Virginia,
 Charlottesville, VA-22903, USA

vv6v@virginia.edu

Fixed logic circuits are the platform of choice for implementing systems with exact-
ing performance, area, and power requirements. However, their inability to accom-
modate design changes and modifications is particularly disadvantageous in today’s
world of emerging and rapidly evolving standards and applications. Hardware flexi-
bility, enabling application-specific adaptation to tasks and dynamic adaptation to
faults and other run-time events, can greatly increase the efficiency and useful life of
the system.

Hardware flexibility is traditionally achieved with large-scale, general-purpose re-
configurable arrays such as FPGAs, which impose significant area, delay, and power
penalties compared to fixed logic circuits. Small-scale reconfigurability (SSR) is a
design technique that minimizes these penalties by inserting into a fixed-logic design
only the flexibility that is required for a specific application. Reconfigurable logic and
interconnect (SRAM-based LUTs, MUXes, one time programmable vias, etc.) are
finely integrated with the fixed logic at a gate-level granularity. The fine integration
and application-specific implementation allows SSR to essentially bridge the gap
between the efficiency of ASICs and the flexibility of FPGAs.

This dissertation introduces SSR and methodologies for applying SSR to the im-
plementation of flexible systems for three major applications: flexible datapaths and
controllers for adaptable systems [1], complexity-independent fine-grained heteroge-
neous redundancy for online testing and fault tolerance [2,3,4], and design flexibility
for engineering change (EC) and yield enhancement. Preliminary results show large
area savings and reliability improvement in SSR-based adaptable systems compared
to traditional fixed and fully flexible implementations.
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Efficient FPGA-Based Security Kernels
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Current Research Interests: Implementing network security requires signif-
icant computational time and energy and becomes particularly challenging in
mobile, battery-powered situations. Compared to traditional microprocessors,
embedded processors, or DSPs, reconfigurable hardware can provide the com-
putational resources required for these applications more effectively due to large
on-chip bandwidth, hardware parallelism, and parameterized customization. The
purpose of my work is to demonstrate novel uses of reconfigurable hardware to-
ward real-time network security. Significant advances over state-of-the-art in
intrusion detection will be realized by developing reconfigurable hardware ar-
chitectures for on-the-fly threat and intrusion analysis, creating energy-efficient
models and implementations for mobile and sensor networks, and developing ef-
ficient soft-IP (Intellectual Property) cores for application-specific reconfigurable
fabrics.
Recent Work in Performance-Customized Design: Intrusion Detection
Systems use sophisticated rules and pattern matching to detect potential ma-
licious packets and prevent them from entering a network. This filtering re-
quires significant computational resources and is difficult using näive methods.
We utilize FPGAs to provide the computation required. The performance of a
design can be measured using the following performance metrics: ease of adap-
tivity/reconfiguration, throughput, and area/energy.
Modified KMP: The Knuth-Morris-Pratt (KMP) algorithm is a well-known,
efficient string matching technique using a single comparator and a pre-computed
transition table. We adapt KMP to achieve on-the-fly reconfiguration, high
throughput, and moderate area by adding a second comparator and an input
buffer. This guarantees the system will accept at least one character in each
cycle. The use of the buffered KMP reduces the overall work done, and thereby
reduce the area required. We proved that a unit of this architecture will termi-
nate in a maximum of n + k/2 cycles for a k-length pattern and an n-character
input stream, using a buffer of only k/2 elements.
Partitioning and Predecoding: In a separate but related work, a tool was
developed for the automatic synthesis of highly area and time-efficient intru-
sion detection systems using a high-level, graph-based partitioning methodol-
ogy. Automated system level design allows more efficient communication and
extensive reuse of hardware components for dramatic increases in area-time per-
formance. Through pre-processing, this tool-based methodology yields designs
with competitive clock frequencies that are more area efficient than any other
shift-and-compare architectures.

� Supported by the United States National Science Foundation/ITR under award No.
ACI-0325409 and in part by an equipment grant from the HP Corporation.
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Azoŕın López, J. 1104

Baeckler, G. 135
Baena, V. 1062
Bajracharya, S. 1001
Baker, Z.K. 311, 1191
Bala, P. 23
Ballester, F. 954
Bampi, S. 474, 1136
Bansal, N. 891
Baradaran, N. 1113
Bartic, T.A. 637
Batlle, J. 1152
Bazargan, K. 874
Becker, J. 115, 454, 1037
Belenguer, J. 954
Benavides, I. 986
Bensaali, F. 991
Berry, F. 1162
Bertels, K. 434
Berviller, Y. 1027
Bharath, A.A. 394
Bidarte, U. 965, 996, 1124
Bigot, A. 64
Bioul, G. 209
Blodget, B. 801, 1127

Bobda, C. 801, 847, 1032
Bochard, N. 555
Bogliolo, A. 1101
Borgosz, J. 1107
Boschetti, M.R. 474
Bouganis, C.-S. 394
Bourgeault, M. 135
Bouridane, A. 771
Braun, A. 811
Braun, L. 1037
Braunes, J. 781
Brebner, G. 404, 1017
Brião, E. 1042
Bulens, P. 231
Bungardean, C. 344

Calazans, N. 1042
Camozzato, D. 1042
Campi, F. 179
Campregher, N. 322
Canas Ferreira, J. 886
Canella, M. 1101
Canet, M.J. 494
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Tiensyrjä, K. 881
Tihhomirov, V. 354
Tiri, K. 1052
Todman, T. 627
Toma, M. 179
Tombs, J. 1062
Tommiska, M. 1098
Torralba, A. 1062
Torre, E. del 1057
Torres-Huitzil, C. 943
Torresen, J. 821
Tortosa, F. 1062
Tragoudas, S. 868
Tredennick, N. 2
Tripp, J.L. 95
Troeger, G. 1127
Tsoi, K.H. 526
Tuan, T. 145
Tull, M.P. 1170

Ullmann, M. 454, 1037

Valderas, M.G. 751, 1057
Valdés, M.D. 1011
Valls, J. 494
Vasilko, M. 322
Vassiliadis, S. 434
Veale, B.F. 1170
Veen, J.C. van der 847
Vemuri, R. 444, 669, 836, 900
Verbauwhede, I. 1052
Verdier, F. 710
Verkest, D. 637
Vernalde, S. 637
Vicedo, F. 494
Vijaykrishnan, N. 145
Villalba, J. 986
Vonnahme, E. 842
Vorbach, M. 761
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