
Kernelization Algorithms for the Vertex Cover Problem:

Theory and Experiments∗

Faisal N. Abu-Khzam†, Rebecca L. Collins‡, Michael R. Fellows§,

Michael A. Langston‡, W. Henry Suters‡ and Christopher T. Symons‡

Abstract

A variety of efficient kernelization strategies for the clas-

sic vertex cover problem are developed, implemented and

compared experimentally. A new technique, termed crown

reduction, is introduced and analyzed. Applications to com-

putational biology are discussed.

1 Introduction

The computational challenge posed by NP-hard prob-
lems has inspired the development of a wide range of al-
gorithmic techniques. Due to the seemingly intractable
nature of these problems, practical approaches have his-
torically concentrated on the design of polynomial-time
algorithms that deliver only approximate solutions. The
notion of fixed parameter tractability (FPT) has re-
cently emerged as an alternative to this trend. FPT’s
roots can be traced at least as far back as work mo-
tivated by the Graph Minor Theorem to prove that
a variety of otherwise difficult problems are decidable
in low-order polynomial time when relevant parameters
are fixed. See, for example, [10, 11].

Formally, a problem is FPT if it has an algorithm
that runs in O(f(k)nc) time, where n is the problem
size, k is the input parameter, and c is a constant [9]. A
well-known example is the parameterized Vertex Cover
problem. Vertex Cover is posed as an undirected graph
G and a parameter k. The question asked is whether
G contains a set C of k or fewer vertices such that ev-
ery edge of G has at least one endpoint in C. Vertex
Cover can be solved in O(1.2852k+kn) time [5] with the
use of a bounded search tree technique. This technique

∗This research has been supported in part by the National Sci-

ence Foundation under grants EIA–9972889 and CCR–0075792,

by the Office of Naval Research under grant N00014–01–1–

0608, by the Department of Energy under contract DE–AC05–

00OR22725, and by the Tennessee Center for Information Tech-

nology Research under award E01–0178–081.
†Division of Computer Science and Mathematics, Lebanese

American University, Chouran, Beirut 1102 2801, Lebanon
‡Department of Computer Science, University of Tennessee,

Knoxville, TN 37996–3450, USA
§School of Electrical Engineering and Computer Science, Uni-

versity of Newcastle, Calaghan NSW 2308, Australia

restricts a problem’s search space to a tree whose size
is bounded only by a function of the relevant parame-
ter. Vertex Cover has a host of real-world applications,
particularly in the field of computational biology. It
can be used in the construction of phylogenetic trees,
in phenotype identification, and in analysis of microar-
ray data, to name just a few. While the fact that the
parameterized Vertex Cover problem is FPT makes the
computation of exact solutions theoretically tractable,
the practical matter of reducing run times to reason-
able levels for large parameter values has remained a
formidable challenge.

In this paper, we develop and implement a suite of
algorithms, each of which takes as input a graph G of
size n and a parameter k, and returns a graph G′ of
size n′ ≤ n and a parameter k′ ≤ k. It is important
that (1) n′ is bounded by a function only of k′ (not
of n) and (2) G has a vertex cover of size at most k

if and only if G′ has a vertex cover of size at most k′.
Each algorithm may be employed independently or in
conjunction with others. The use of such techniques
is called kernelization. An amenability to kernelization
seems to be a hallmark of problems that are FPT, and a
characteristic that distinguishes them from apparently
more difficult NP-hard problems. After kernelization
is completed, the solution process reverts to branching.
Large-scale empirical studies of branching methods are
also underway. See, for example, [2].

2 Kernelization Alternatives

Our vertex cover kernelization suite consists of four sep-
arate techniques. The first method is a simple scheme
based on the elimination of high degree vertices. The
second and third methods reformulate vertex cover as
an integer programming problem, which is then sim-
plified using linear programming. This linear program-
ming problem can either be solved using standard linear
programming techniques or restated as a network flow
problem that can then be solved using an algorithm de-
veloped by Dinic [8, 12]. The fourth method, which is
new, we call crown reduction. It is based on finding a
particular independent set and its neighborhood, both

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lebanese American University Repository

https://core.ac.uk/display/144965879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of which can be removed from the graph. We develop
the theoretical justification for each of these techniques,
and provide examples of their performance on samples
of actual application problems.

3 Preprocessing Rules

The techniques we employ are aided by a variety of pre-
processing rules. These are computationally inexpen-
sive, requiring at most O(n2) time with very modest
constants of proportionality.

Rule 1: An isolated vertex (one of degree zero) cannot
be in a vertex cover of optimal size. Because there
are no edges incident upon such a vertex, there is no
benefit in including it in any cover. Thus, in G′, an
isolated vertex can be eliminated, reducing n′ by one.
This rule is applied repeatedly until all isolated vertices
are eliminated.

Rule 2: In the case of a pendant vertex (one of degree
one), there is an optimal vertex cover that does not
contain the pendant vertex but does contain its unique
neighbor. Thus, in G′, both the pendant vertex and
its neighbor can be eliminated. This also eliminates
any additional edges incident on the neighbor, which
may leave isolated vertices for deletion under Rule 1.
This reduces n′ by the number of deleted vertices and
reduces k′ by one. This rule is applied repeatedly until
all pendant vertices are eliminated.

Rule 3: If there is a degree-two vertex with adjacent
neighbors, then there is a vertex cover of optimal size
that includes both of these neighbors. If u is a vertex
of degree 2 and v and w are its adjacent neighbors,
then at least two of the three vertices (u, v, and w)
must be in any vertex cover. Choosing u to be one of
these vertices would only cover edges (u, v) and (u, w)
while eliminating u and including v and w could possibly
cover not only these but additional edges. Thus there
is a vertex cover of optimal size that includes v and
w but not u. G′ is created by deleting u, v, w and
their incident edges from G. It is then also possible to
delete the neighbors of v and w whose degrees drop to
zero. This reduces n′ by the number of deleted vertices
and reduces k′ by two. This rule is applied repeatedly
until all degree-two vertices with adjacent vertices are
eliminated.

Rule 4: If there is a degree-two vertex, u, whose
neighbors, v and w, are non-adjacent, then u can be
folded by contracting edges {u, v} and {u, w}. This
is done by replacing u, v and w with one vertex, u′,
whose neighborhood is the union of the neighborhoods

of v and w in G. This reduces the problem size by
two and the parameter size by one. This idea was first
proposed in [5], and warrants explanation. To illustrate,
suppose u is a vertex of degree 2 with neighbors v and
w. If one neighbor of u is included in the cover and is
eliminated, then u becomes a pendant vertex and can
also be eliminated by including its other neighbor in
the cover. Thus it is safe to assume that there are two
cases: first, u is in the cover while v and w are not;
second v and w are in the cover while u is not. If u′

is not included in an optimal vertex cover of G′ then
all the edges incident on u′ must be covered by other
vertices. Therefore v and w need not be included in an
optimal vertex cover of G because the remaining edges
{u, v} and {u, w} can be covered by u. In this case,
if the size of the cover of G′ is k′ then the cover of G

will have size k = k′ + 1 so the decrement of k in the
construction is justified. On the other hand, if u′ is
included in an optimal vertex cover of G′ then at least
some of its incident edges must be covered by u′. Thus
the optimal cover of G must also cover its corresponding
edges by either v or w. This implies that both v and
w are in the vertex cover. In this case, if the size of
the cover of G′ is k′, then the cover of G will also be
of size k = k′ + 1. This rule is applied repeatedly until
all vertices of degree two are eliminated. If recovery of
the computed vertex cover is required, a record must be
kept of this folding so that once the cover of G′ has been
computed, the appropriate vertices can be included in
the cover of G.

4 Kernelization by High Degree

This simple technique [3] relies on the observation that
a vertex whose degree exceeds k must be in every vertex
cover of size at most k. (If the degree of v exceeds k but
v is not included in the cover, then all of v’s neighbors
must be in the cover, making the size of the cover at
least k + 1.) This algorithm is applied repeatedly until
all vertices of degree greater than k are eliminated. It is
superlinear (O(n2)) only because of the need to compute
the degree of each vertex.

The following theorem is a special case of a more
general result from [1]. It is used to bound the size of the
kernel that results from the application of this algorithm
in combination with the aforementioned preprocessing
rules. Note that if this algorithm and the preprocessing
rules are applied, then the degree of each remaining
vertex lies in the range [3, k′].

Theorem 4.1. If G′ is a graph with a vertex cover of

size k′, and if no vertex of G′ has degree less than three

or more than k′, then n′ ≤ k′2

3
+ k′.

Proof. Let C be a vertex cover of G′, with |C| = k′. C’s



complement, C, is an independent set of size n′ − k′.
Let F be the set of edges in G′ with endpoints in C .
Since the elements of C have degree at least three,
each element of C must have at least three neighbors
in C. Thus the number of edges in F must be at least
3(n′ − k′). The number of edges with endpoints in C

is no smaller than |F | and no larger than k′|C|, since
each element of G has at most k′ neighbors. Therefore

3(n′ − k′) ≤ |F | ≤ k′2 and n′ ≤ k′2

3
+ k′.

5 Kernelization by Linear-Programming

The optimization version of Vertex Cover can be stated
in the following manner. Assign a value Xu ∈ {0, 1}
to each vertex u of the graph G = (V, E) so that the
following conditions hold.

(1) Minimize
∑

u Xu.
(2) Satisfy Xu + Xv ≥ 1 whenever {u, v} ∈ E.

This is an integer programming formulation of the
optimization problem. In this context the objective
function is the size of the vertex cover, and the set
of all feasible solutions consists of functions from V

to {0, 1} that satisfy condition (2). We relax the
integer programming problem to a linear programming
problem by replacing the restriction Xu = {0, 1} with
Xu ≥ 0. The value of the objective function returned
by the linear programming problem is a lower bound on
the objective function returned by the related integer
programming problem [12, 13, 14].

The solution to the linear programming problem
can be used to simplify the related integer programming
problem in the following manner. Let N(S) denote the
neighborhood of S, and define P = {u ∈ V |Xu > 0.5},
Q = {u ∈ V |Xu = 0.5} and R = {u ∈ V |Xu < 0.5}.
We employ the following modification by Khuller [13]
of a theorem originally due to Nemhauser and Trotter
[14].

Theorem 5.1. If P , Q, and R are defined as above,

there is an optimal vertex cover that is a superset of P

and that is disjoint from R.

Proof. Let A be the set of vertices of P that are not in
the optimal vertex cover and let B be the set of vertices
of R that are in the optimal cover, as selected by the
solution to the integer programming problem. Notice
that N(R) ⊆ P because of condition (2). It is not
possible for |A| < |B| since in this case replacing B

with A in the cover decreases its size without uncovering
any edges (since N(R) ⊆ P ), and so it is not optimal.
Additionally it is not possible for |A| > |B| because then
we could gain a better linear programming solution by
setting ε = min{Xv−0.5 : v ∈ A} and replacing Xu with
Xu + ε for all u ∈ B and replacing Xv with Xv − ε for
all v ∈ A. Thus we must conclude that |A| = |B|, and

in this case we can replace B with A in the vertex cover
(again since N(R) ⊆ P ) to obtain the desired optimal
cover.

The graph G′ is produced by removing vertices in
P and R and their adjacent edges. The problem size is
n′ = n−|P |−|R| and the parameter size is k′ = k−|P |.
Notice that since the size of the objective function for
the linear programming problem provides a lower bound
on the objective function for the integer programming
problem, the size of any optimal cover of G′ is bounded
below by

∑
u∈Q Xu = 0.5|Q|. If this were not the case,

then the original linear programming procedure that
produced Q would not have produced an optimal result.
This allows us to observe that if |Q| > 2k′, then this is
a “no” instance of the vertex cover problem.

When dealing with large dense graphs the above
linear programming procedure may not be practical
since the number of constraints is the number of edges
in the graph. Because of this, the code used in this
paper solves the dual of the LP problem, turning the
minimization problem into a maximization problem,
and making the number of constraints equal to the
number of vertices [6, 7]. Other methods to speed LP
kernelization appear in [12].

6 Kernelization by Network Flow

This algorithm solves the linear programming formula-
tion of vertex cover by reducing it to a network flow
problem. As in [14], we define a bipartite graph B in
terms of the input graph G, find the vertex cover of B

by computing a maximum matching on it, and then as-
sign values to the vertices of G based on the cover of
B. In our implementation of this algorithm, we com-
pute the maximum matching on B by turning it into a
network flow problem and using Dinic’s maximum flow
algorithm [8, 12]. The time complexity of the overall
procedure is O(m

√
n), where m denotes the number of

edges and n denotes the number of vertices in G. The
size of the reduced problem kernel is bounded by 2k.

The difference between this method of linear pro-
gramming and the previous LP-kernelization is that this
method is faster (LP takes O(n3)) and is guaranteed to
assign values in {0, 0.5, 1}, while LP codes assign values
in the (closed) interval between 0 and 1. Given a graph
G, the following algorithm can be used to produce an
LP kernelization of G.

Step 1: Convert G = (V, E) to a bipartite graph
H = (U, F ). U = A ∪ B, where A = {Av|v ∈ V }
and B = {Bv|v ∈ V }. If (v, w) ∈ E, then we place both
(Av , Bw) and (Aw, Bv) in F .

Step 2: Convert the bipartite graph H to a network



flow graph H ′: Add a source node that has directed
arcs toward every vertex in A, and add a sink node that
receives directed arcs from every vertex in B. Make all
edges between A and B directed arcs toward B. Give
all arcs a capacity of 1.

Step 3: Find an instance of maximum flow through the
graph H ′. For this project we used Dinic’s algorithm,
but any maximum flow algorithm will work.

Step 4: The arcs in H ′ included in the instance of
maximum flow that correspond to edges in the bipartite
graph H constitute a maximum matching set, M , of H .

Step 5: From M we can find an optimal vertex cover of
H . Case 1: If all vertices are included in the matching,
the vertex cover of H is either the set A or the set B.
Case 2: If not all vertices are included in the matching,
we begin by constructing three sets S, R, and T . With
the setup we have here (|A| = |B| and all capacities
are 1), if all vertices in A are matched, then all vertices
in B are too. So we can assume that there is at least
one unmatched vertex in A. Let S denote the set of all
unmatched vertices in A. Let R denote the set of all
vertices in A that are reachable from S by alternating
paths with respect to M . Let T denote the set of
neighbors of R along edges in M . The vertex cover
of the bipartite graph H is (A−S −R)∪ (T ). The size
of the cover is |M |.

Step 6: Assign weights to all of the vertices of G

according to the vertex cover of H . For vertex v:
Wv = 1 if Av and Bv are both in the cover of H .
Wv = 0.5 if only one of Av or Bv is in the cover of H .
Wv = 0 if neither Av nor Bv is in the cover of H .
In Case 1 of Step 5, where one of the sets A or B

becomes the vertex cover, all vertices are returned with
the weight 0.5.

Step 7: The graph that remains will be G′ = (V ′, E′)
where V ′ = {v|Wv = 0.5} and k′ = k−x where x is the
number of vertices with weight Wv = 1.

Theorem 6.1. Step 5 of this algorithm produces a valid

optimal vertex cover of H.

Proof. In Case 1, the vertex cover of H includes all of
A or all of B. The size of the vertex cover is |A| = |B| =
|M |. Without loss of generality assume the vertex cover
is A. All edges in the bipartite graph have exactly one
endpoint in A. Thus, every edge is covered, and the
vertex cover is valid.

In Case 2, we have sets S, R ⊂ A and T ⊂ B.
The vertex cover is defined as (A − S − R) ∪ (T ). For
every edge (x, y) ∈ H , x must lie in S, R or A−S −R.

Suppose x lies in S, in which case x is unmatched. Then
y must be matched, because otherwise M would not be
optimal. Hence another edge (w, y) exists in M . Then,
w ∈ R and y ∈ T , and therefore (x, y) is covered. We
now argue that N(R) = T . By definition, T ⊆ N(R).
To see that N(R) ⊆ T , note that if y is contained in
N(R) and not in T , then y must be matched, because
otherwise there would be an augmenting path (some
neighbor of y contained in R is reachable from S by an
alternating path). Thus, the neighbor of y contained in
M must also be in R, and so y must lie in T . Thus,
if x lies in R, y must lie in T and again edge (x, y) is
covered. Finally, if x lies in A−S −R, (x, y) is covered
by definition.

As for the size of the cover, |S| = n− |M |, where n

is the number of vertices in the original graph. Because
all elements of R are matched, and by definition, T is all
vertices reachable from R by matched edges, |T | = |R|.
Therefore the size of the cover = |(A − S − R) ∪ T | =
|(A − S − R) ∪ R| = |A − S| = |M |. Since H is a
bipartite graph with a maximum matching of size |M |,
the minimum vertex cover size for H is |M |, so this cover
is optimal.

Theorem 6.2. Step 6 of this algorithm produces a

feasible solution to the linear programming formulation

on G.

Proof. Each vertex in G is assigned a weight – either 0,
0.5, or 1. For every edge (x, y) ∈ G, we want the sum of
their weights, Wx + Wy , to be greater than or equal to
1. Thus, for every edge (x, y), the cover of H contains
either Ax and Bx, Ay and By, Ax and By, or Ay and Bx.
If (x, y) ∈ G, then (Ax, By), (Ay, Bx) ∈ H . Because H ’s
cover contains one or both endpoints of every edge, we
know that at the least either Ax and Bx, Ay and By,
Ax and By, or Ay and Bx are in the cover. Therefore
every edge (x, y) ∈ G has a valid weight.

The graph G′ is produced in the same manner as
in the LP kernelization procedure and again we have
the situation where a “no” instance occurs whenever
|G′| > 2k. The time complexity of the algorithm is
O(m

√
n) where m and n are the number of edges and

vertices, respectively, in the graph G. Since there are at
most O(n2) edges in the graph, this implies the overall

method is O(n
5

2 ).

7 Kernelization by Crown Reduction

The technique we dub “crown reduction” is somewhat
similar to the other algorithms just described. With
it, we attempt to exploit the structure of the graph to
identify two disjoint vertex sets H and I so that there
is an optimal vertex cover containing every vertex of H



but no vertex of I . This process is based on the following
definition, theorem, and algorithm.

A crown is an ordered pair (H, I) of disjoint vertex
subsets from a graph G that satisfies the following
criteria:

(1) H = N(I),
(2) I is a nonempty independent set, and
(3) the edges connecting H and I contain a match-

ing in which all elements of H are matched.
H is said to contain the head of the crown, whose width

is |H |. I contains the points of the crown. This notion
is depicted in Figure 1.

Theorem 7.1. If G is a graph with a crown (H, I),
then there is an optimal vertex cover of G that contains

all of H and none of I.

Proof. Since there is a matching of the edges between
H and I , any vertex cover must contain at least one
vertex from each matched edge. Thus the matching will
require at least |H | vertices in the vertex cover. This
minimum number can be realized by selecting H to be in
the vertex cover. It is further noted that vertices from H

can be used to cover edges that do not connect I and H ,
while this is not true for vertices in I . Thus, including
the vertices from H does not increase, and may decrease,
the size of the vertex cover as compared to including
vertices from I . Therefore, there is a minimum-size
vertex cover that contains all the vertices in H and none
of the vertices in I .

The following algorithm can be used to find a crown
in an arbitrary input graph.

Step 1: Find a maximal matching M1 of the graph,
and identify the set of all unmatched vertices as the set
O of outsiders.

Step 2: Find a maximum auxiliary matching M2 of the
edges between O and N(O).

Step 3: Let I0 be the set of vertices in O that are
unmatched by M2.

Step 4: Repeat steps 4a and 4b until n = N so that
IN−1 = IN .

Step 4a: Let Hn = N(In).
Step 4b: Let In+1 = In ∪ {Hn’s neighbors under

M2}.

The desired crown is the ordered pair (H, I), where
H = HN and I = IN . We now determine the conditions
necessary to guarantee that this algorithm is successful
in finding such a crown.

Theorem 7.2. The algorithm produces a crown as long

as the set I0 of unmatched outsiders is not empty.

Proof. First, since M1 is a maximal matching, the set
O, and consequently its subset I , are both independent.
Second, because of the definition of H , it is clear that
H = N(IN−1) and since I = IN = IN−1 we know that
H = N(I). The third condition for a crown is proven
by contradiction. Suppose there were an element h ∈ H

that were unmatched by M2. Then the construction
of H would produce an augmented (alternating) path
of odd length. For h to be in H there must have
been an unmatched vertex in O that begins the path.
Then the repeated step 4a would always produce an
edge that is not in the matching while the next step
4b would produce an edge that is part of the matching.
This process repeats until the vertex h is reached. The
resulting path begins and ends with unmatched vertices
and alternates between matched and unmatched edges.
Such a path cannot exist if M2 is in fact a maximum
matching because we could increase the size of the
matching by swapping the matched and unmatched
edges along the path. Therefore every element of H

must be matched by M2. The actual matching used
in the crown is the matching M2 restricted to edges
between H and I .

The graph G′ is produced by removing vertices in
H and I and their adjacent edges. The problem size is
n′ = n − |H | − |I |; the parameter size is k′ = k − |H |.
It is important to note that if a maximum matching of
size greater than k is found, then there can be no vertex
cover of size at most k, making this is a “no” problem
instance. Therefore, if either of the matchings M1 and
M2 is larger than k, the process can be halted. This
fact also allows us to place an upper bound on the size
of the graph G′.

Theorem 7.3. If M1 and M2 are each of size at most

k, then there are no more than 3k vertices that lie

outside the crown.

Proof. Because the size of M1 is at most k, it contains at
most 2k vertices. Thus, the set O contains at least n−2k

vertices. Because the size of M2 is at most k, no more
than k vertices in O are matched by M2. Thus, there
are at least n− 3k vertices in O that are unmatched by
M2. These vertices are included in I0 and are therefore
in I . It follows that the number of vertices in G not
included in H and I is at most 3k.

The particular crown produced by this decomposi-
tion depends on the maximal matching M1 used in its
calculation. This suggests that it is may be desirable



���
�

���
�

���
�

���
�

��	
	



�
�

��




���
�

���
�

���
�

���
�

���
�

...

... 

...

... 

A crown of width 3

Rest of graph

Rest of graph

... ... 

... ... 

A crown of width 1

... ...

Figure 1: Sample crown decompositions.

to try to perform the decomposition repeatedly, using
pseudo-randomly chosen matchings, in an attempt to
identify as many crowns as possible and consequently to
reduce the size of the kernel as much as possible. It may
also be desirable to perform preprocessing after each de-
composition, because the decomposition itself can leave
vertices of low degree. The most computationally ex-
pensive part of the procedure is finding the maximum
matching M2, which we accomplish in our implementa-
tions by recasting the maximum matching problem on a
bipartite graph as a network flow problem. This we then
solve using Dinic’s algorithm. The run time is O(m

√
n),

which is often considerably better than O(n
5

2 ).

8 Applications and Experimental Results

Our experiments were run in the context of computa-
tional biology, where a common problem involves find-
ing maximum cliques in graphs. Clique is W [1]-hard,
however, and thus unlikely to be directly amenable to
a fixed-parameter tractable approach [9]. Of course, a
graph has a vertex cover of size k if and only if its com-
plement has a clique of size n− k. We therefore exploit
this duality, finding maximum cliques via minimum cov-
ers.

One of the applications to which we have applied
our methods involves finding phylogenetic trees based
on protein domain information, a high-throughput tech-
nique pioneered in [4]. The graphs we utilized were ob-
tained from domain data gleaned at NCBI and SWISS-
PROT, two well-known open-source repositories of bio-
logical information. Tables 1 through 3 illustrate rep-
resentative results on graphs derived from the sh2 pro-
tein domain. The integer after the domain name indi-
cates the threshold used to convert the input into an
unweighted graph.

In our implementations, the high-degree method is
incorporated along with the preprocessing rules. In gen-
eral, we have found that the most efficient approach is
to run this combination before attempting any of the
other kernelization methods. To see this, compare the
results of Table 1 with those of Table 2. Next, it is
often beneficial to use one or more other kernelization
routines. As long as the problem is not too large, net-
work flow and linear programming are sometimes able
to solve the problem without any branching whatsoever.
This behavior is exemplified in Table 2. The final task
is to perform branching if needed.

On very dense graphs, kernelization techniques
(other than the high-degree rule) may not reduce the
graph very much, if at all. Both linear programming and
network flow can be computationally expensive. Be-
cause crown reduction is quick by comparison, perform-
ing it prior to branching appears to be a wise choice.
This aspect of kernelization is highlighted in Table 4.
Unlike the others, the graph used in this experiment
was derived from microarray data, where a maximum
clique corresponds to a set of putatively co-regulated
genes.

9 A Few Conclusions

Crown reduction tends to run much faster in practice
than does linear programming. It sometimes reduces
the graph just as well, even though its worst-case bound
on kernel size is larger. Given the methods at hand,
the most effective approach seems to be first to run
preprocessing and the high-degree algorithm, followed
by crown reduction. If the remaining problem kernel is
fairly sparse, then either linear programming or network
flow should probably be applied before proceeding on
to the branching stage. On the other hand, if the



Algorithm run time kernel size (n′) parameter size (k′)

High Degree with Preprocessing 0.58 181 43
Linear Programming 1.15 0 0
Network Flow 1.25 36 18
Crown Reduction 0.23 328 98

Table 1: Graph: sh2-3.dim, n = 839, k = 246. Times are given in seconds.

Algorithm run time kernel size (n′) parameter size (k′)

Linear Programming 0.05 0 0
Network Flow 0.02 0 0
Crown Reduction 0.03 69 23

Table 2: Graph: sh2-3.dim, n = 839, k = 246. Preprocessing (including the high-degree algorithm) was performed
before each of the other 3 methods. Times are given in seconds.

Algorithm run time kernel size (n′) parameter size (k′)

Linear Programming 1:09.49 616 389
Network Flow 40.53 622 392
Crown Reduction 0.07 630 392

Table 3: Graph: sh2-10.dim, n = 726, k = 435. Preprocessing (including the high-degree algorithm) was
performed before each of the other 3 methods. Times are given in seconds.

Algorithm run time kernel size (n′) parameter size (k′)

High Degree with Preprocessing 6.95 971 896
Linear Programming 37:58.95 1683 1608
Network Flow 38:21.93 1683 1608
Crown Reduction 6.11 1683 1608

Table 4: Graph: u74-0.7-75.compl, n = 1683, k = 1608, |E| = 1, 259, 512. Times are given in seconds.



kernel is relatively dense, it is probably best to avoid
the cost of these methods, and instead begin branching
straightaway.

Acknowledgment

We wish to thank an anonymous reader, whose thorough
review of our original typescript helped us to improve
the presentation of the results we report here.

References

[1] F. N. Abu-Khzam. Topics in Graph Algorithms:

Structural Results and Algorithmic Techniques, with

Applications. PhD thesis, Dept. of Computer Science,
University of Tennessee, 2003.

[2] F. N. Abu-Khzam, M. A. Langston, and P. Shanbhag.
Scalable parallel algorithms for difficult combinatorial
problems: A case study in optimization. In Proceed-

ings, International Conference on Parallel and Dis-

tributed Computing and Systems, pages 563–568, Los
Angeles, CA, November, 2003.

[3] J. F. Buss and J. Goldsmith. Nondeterminism within
P. SIAM Journal on Computing, 22:560–572, 1993.

[4] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege,
and P. J. Taillon. Solving large FPT problems on
coarse grained parallel machines. Technical report,
Department of Computer Science, Carleton University,
Ottawa, Canada, 2002.

[5] J. Chen, I. Kanj, and W. Jia. Vertex cover: further
observations and further improvements. Journal of

Algorithms, 41:280–301, 2001.
[6] V. Chv´tal. Linear Programming. W.H.Freeman, New

York, 1983.
[7] W. Cook. Private communication, 2003.
[8] E. A. Dinic. Algorithm for solution of a problem of

maximum flows in networks with power estimation.
Soviet Math. Dokl., 11:1277–1280, 1970.

[9] R. G. Downey and M. R. Fellows. Parameterized

Complexity. Springer-Verlag, 1999.
[10] M. R. Fellows and M. A. Langston. Nonconstructive

tools for proving polynomial-time decidability. Journal

of the ACM, 35:727–739, 1988.
[11] M. R. Fellows and M. A. Langston. On search, deci-

sion and the efficiency of polynomial-time algorithms.
Journal of Computer and Systems Sciences, 49:769–
779, 1994.

[12] D. Hochbaum. Approximation Algorithms for NP-

hard Problems. PWS, 1997.
[13] S. Khuller. The vertex cover problem. ACM SIGACT

News, 33:31–33, June 2002.
[14] G.L. Nemhauser and L. E. Trotter. Vertex packings:

Structural properties and algorithms. Mathematical

Programming, 8:232–248, 1975.


