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SENSITIVITY OF DISCRETE-TIME KALMAN FILTER
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SUMMARY

The optimum "ltering results of Kalman "ltering for linear dynamic systems require an exact knowledge of
the process noise covariance matrix Q

k
, the measurement noise covariance matrix R

k
and the initial error

covariance matrix P
0
. In a number of practical solutions, Q

k
, R

k
and P

0
, are either unknown or are known

only approximately. In this paper the sensitivity due to a class of errors in statistical modelling employing
a Kalman Filter is discussed. In particular, we present a special case where it is shown that Kalman "lter
gains can be insensitive to scaling of covariance matrices. Some basic results are derived to describe the
mutual relations among the three covariance matrices (actual and perturbed covariance matrices),
their respective Kalman gain K

k
and the error covariance matrices P

k
. It is also shown that system

modelling errors, particularly scaling errors of the input matrix, do not perturb the Kalman gain. A numeri-
cal example is presented to illustrate the theoretical results, and also to show the Kalman gain insensitivity
to less restrictive statistical uncertainties in an approximate sense. Copyright ( 1999 John Wiley &
Sons, Ltd.

KEY WORDS: optimal "ltering; Kalman "lters; discrete-time linear systems; statistical modelling errors;
sensitivity

1. INTRODUCTION

Signi"cant applications of Kalman "ltering1,2 to the problem of state estimation for stochastic
systems came into view in the past three decades. Kalman "ltering has been widely used in many
areas of industrial and government applications such as satellite and submarine navigation,
radar, and video tracking systems. With the advancement of high-speed computers, Kalman "lter
has become more useful even for more complicated applications, for example, application of
Kalman "ltering to the optimality of information theoretic measures.3

The optimum "ltering results of Kalman "ltering require precise knowledge of the covariance
matrices Q

k
, R

k
and P

0
. In a number of practical solutions, these matrices are either unknown or

are known only approximately. Several results which deal with the deviation from the basic
assumptions that guarantee optimality, for example, non-Gaussian models of the errors, are
presented in the literature, such as in References 4}7, where the robusti"cation of the "lter is
considered. There are some on-line identi"cation schemes which identify Q

k
and R

k
from the

innovation sequence, but their assumptions are rather restrictive and are not applicable for
general systems.8 Other stability considerations were presented,9~11 where it is shown that
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incorrect values of the noise covariances can cause the "lter to diverge; i.e. variance of a linear
combination of the estimation error becomes unbounded. Furthermore, it has been shown10 that
if the system is detectable and the "lter is designed with only errors in the measurement noise
covariance, then the "lter divergence will never occur. In addition, it is shown10 that, if a linear
periodic discrete-time system is detectable and the noise covariance matrix is constant, then the
one-step predictor error covariance computed from the "lter is bounded for any measurement
noise covariance. For other related work, the reader may refer to the cited work.12~17,19 On the
other hand, none of the work has explicitly addressed situations where the Kalman gain is
insensitive to statistical modelling errors. In this paper, we present special situations of statistical
modelling errors where the optimality of the "lter is not destroyed.18 In order to motivate this
situation, consider a scalar system x

k`1
"/

k
x
k
#w

k
and the measurement equation z

k
"

h
k
x
k
#v

k
, for k"1, 2,

2
, such that Var(w

k
)"Q

k
, Var(v

k
)"R

k
, and Var(x

0
)"P

0
.

Case I: Assume that R
k
"0, no measurement errors. One should expect that the measurements

should contain the optimal state estimation regardless errors in the values of Q
k
and P

0
. In fact,

for this situation, the Kalman gain K
k
"1/h

k
(refer to (3)) is independent of Q

k
and P

0
. In general,

this does not apply for the n-dimensional system unless the measurement matrix H
k
is square and

nonsingular where K
k
"H~1

k
.

Case II: Assume that for k"1, 2,2, Q
k
"P

0
"0 (R

k
is non-singular), no system noise and no

initialization errors. Certainly, measurements are not needed and system update x
k`1

"/
k
x
k

would generate the optimum state sequence. Consequently, the Kalman algorithm would pro-
duce zero Kalman gain, K

k
"0 (constant) independent of the measurement variance R

k
. These

results are based on the system assumption (being scalar) and not on the nature of the statistical
uncertainties. This paper accommodates similar results for the n-dimensional linear discrete-time
systems where the insensitivity of the Kalman gain depends more on the restriction of the
statistical uncertainties rather than system limitations. For instance, it is shown that the Kalman
"lter gain can be insensitive to scaling of covariance matrices. A typical application where such
statistical modelling errors occur can be directly related to deterministic modelling uncertainties.
For example, consider a system where the model of the input coupling matrix is a scalar multiple
of its nominal value, this can directly result in a scaling error of the system noise covariance
matrix. If the measurement noise is negligible, and the system is controllable and observable, then
the steady-state Kalman gain matrix is insensitive to such errors (refer to Remark 3, Sections 3,
and 4). It is also shown, for small values of the sampling period, that the Kalman gain remains
persistent for statistical uncertainties of the form Q"MQ, where M is a diagonal positive-
de"nite matrix.

2. MAIN RESULTS

In this section, we introduce our notation, systems considered, and present the theoretical results.
The results assume two di!erent linear systems, discrete-time stochastic systems and discrete-time
invariant. In the latter we restrict our assumptions on the system and relax the statistical
limitations. Speci"cally, the linear system considered is assumed to be linear time invariant,
completely observable and controllable. These additional assumptions allow the steady-state
Kalman gain to be independent of the initial covariance matrix P

0
. In this case, only the

measurement and process covariance matrices R and Q are restricted. However, the total
independence of initial covariance matrix does not apply for general discrete-time varying linear
systems. In each section we present our results in a theorem proceeded by two remarks. The
assumptions in the theorems are more restrictive in practice and this is discussed in the next
section.
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2.1. Linear discrete-time stochastic system

Consider a linear discrete-time stochastic system, e.g. describing an error model, with state-
space description and measurement equation governed by

dx
k`1

"U
k
dx

k
#C

k
w
k

(1)

z
k
"H

k
dx

k
#v

k
(2)

where U
k
, C

k
and H

k
are n]n, n]p, q]n (known) matrices, Mw

k
N and Mv

k
N are zero-mean

Gaussian white noise sequences of p- and q-vectors, respectively, such that Var(w
k
)"Q

k
is

positive semi-de"nite matrix, Var(v
k
)"R

k
is positive-de"nite matrix and E (w

k
vT
l
)"0 for all

k and l. The initial (error) state dx
0

is also assumed independent of w
k
and v

k
in the sense that

E (dx
0
wT
k
)"0 and E (dx

0
vT
k
)"0 for all k, and the initial error covariance matrix P

0
"Var(dx

0
).

The iterative algorithm of the error covariance matrices P`
k

("P
k
), and P~

k
, and the Kalman

gain K
k

depend on the initial matrix P`
0

("P
0
), and on the sampled process and measurement

noise covariance matrices Q
k
and R

k
. Therefore, one should consider the change in P

k
, P~

k
, and

K
k
due to the change in P

0
Q

k
and R

k
. The iterative algorithm of these matrices22 is as follows:

P~
k
"U

k~1
P
k~1

UT
k~1

#C
k~1

Q
k~1

CT
k~1

K
k
"P~

k
HT

k
(H

k
P~
k

HT
k
#R

k
)~1 (3)

P
k
"(I!K

k
H

k
)P~

k

and the state update, dx`
0
"E(dx

0
)

dx~
k
"U

k~1
dx`

k~1
(prediction)

(4)

dx`
k
"dx~

k
#K

k
(z

k
!H

k
dx~

k
) (correction)

where U
k

is the system matrix in the discrete-time domain, H
k

is the measurement matrix,
P
k
"E[(dx

k
!dx`

k
) (dx

k
!dx`

k
)T], and P~

k
"E[(dx

k
!dx~

k
) (dx

k
!dx~

k
)T].

Theorem 1

Consider the linear system (1), and (2). For k"1, 2,2, let P
0
, Q

k
, R

k
('0) and K

k
be the actual

initial, system, measurement covariance, and the associated Kalman gain matrices, respectively,
and let P3

0
, Q3

k
and R3

k
('0) be the perturbed matrices, respectively. If P3

0
"a

1
P

0
, Q3

k~1
"a

k
Q

k~1
and R3

k
"a

k
R

k
with a

k
'0 for k"1, 2,2, then the Kalman gain matrices K3

k
, generated by (3),

are independent of a
k
; particularly, K3

k
"K

k
. Moreover, P3 ~

k
"a

k
P~
k

, and P3
k
"P

k
.

Proof. The proof is done by induction. The "rst sample gives

P3 ~
1
"U

0
P3
0
UT

0
#C

0
Q3

0
CT

0
"a

1
(UP

0
UT#C

0
Q

0
CT

0
)"a

1
P~
1

(5)

Employing (5), the corresponding Kalman gain is given by

K3
1
"a

1
P~
1

HT
1
(a

1
H

1
P~

1
HT

1
#a

1
R

1
)~1"P~

1
HT(H

1
P~

1
HT

1
#R

1
)~1"K

1
(6)

In addition, using (5) and (6), we have

P3
1
"(I!K

1
H

1
)a

1
P~
1
"a

1
P
1

(7)
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Next, we assume that the results hold for the (k!1)th sample, and show that results are also
satis"ed for the kth sample. Using the induction assumption, we have

P3 ~
k
"U

k~1
P3
k~1

UT
k~1

#C
k~1

Q3
k~1

CT
k~1

"a
k
(U

k~1
P
k~1

UT
k~1

#C
k~1

Q
k~1

CT
k~1

)"a
k
P~
k

K3
k
"a

k
P~
k
HT

k
(a

k
H

k
P~

k
HT

k
#a

k
R

k
)~1"P~

k
HT

k
(H

k
P~
k
HT

k
#R

k
)~1"K

k

P3
k
"(I!K

k
H

k
) a

k
P~

k
"a

k
P

k
j

Remark 1

If P3
0
"a

1
P

0
, Q3

k~1
"a

k
Q

k~1
where H

k
Q

k
HT

k
is non-singular ∀k, and R

k
"0 ("R3

k
), with

a
k
'0 for k"1, 2,

2
, then the Kalman gain matrices K

k
, generated by (3), are independent of a

k
;

in particular, K3
k
"K

k
. Moreover, P3 ~

k
"a

k
P~

k
, and P3

k
"P

k
.

The proof is a direct consequence of Theorem 1.

Remark 2

If Q
k
"0 ("Q3

k
), P3

0
"a

1
P

0
, and R3

k
"a

k
R

k
with a

k
'0 for k"1, 2,2, then the Kalman gain

matrices K3
k
, generated by (3), are independent of a

k
; speci"cally, K3

k
"K

k
. Moreover, P3 ~

k
"a

k
P~

k
,

and P3
k
"P

k
.

This proof is also a direct consequence of Theorem 1.

2.2. Linear discrete-time invariant stochastic system

In this subsection, we consider the special case where all known constant matrices are
independent of time. That is, we are going to discuss the insensitivity of Kalman "ltering due to
incorrect covariance matrices for the time-invariant linear stochastic system with the state-space
description:

dx
k`1

"Udx
k
#Cw

k

z
k
"Hdx

k
#v

k
(8)

Here, U, C and H are known n]n, n]p and q]n constant matrices, respectively, with 1)p,
q)n, Mw

k
N and Mv

k
N are zero-mean Gaussian white noise sequence with E (w

k
wT

l
)"Qd

kl
,

E (v
k
vT
l
)"Rd

kl
, E (w

k
vT
l
)"0, E (dx

0
vT
k
)"0, and E (dx

0
wT

k
)"0, where Q and R are p]p, and q]q

non-negative and positive-de"nite symmetric matrices, respectively, independent of k. It is well
known21 that if the linear stochastic system (8) is controllable and observable, then for any initial
state dx

0
such that P

0
,Var(dx

0
) is non-negative de"nite and symmetric, P~

k
PP~ as kPR,

where P~'0 is symmetric and independent of P
0
. In addition, P~ satis"es the matrix Riccati

equation

P~"U(P~!P~HT(HP~HT#R)~1HP~)UT#CQCT (9)

Moreover, the Kalman gain matrix converges; i.e. K
k
PK as kPR, where K"P~HT

(HP~HT#R)~1.

Theorem 2

Suppose that the system (8) is observable and controllable. Let P
0
, Q and R ('0) be the actual

initial, system, and measurement covariance matrices, respectively, and let P3
0
, Q3 and R3 ('0) be

the perturbed matrices, respectively. If P3
0
is any non-negative de"nite and symmetric matrix,

252 S. S. SAAB AND G. E. NASR

Copyright ( 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 249}259 (1999)



Q3 "aQ and R3 "aR with a'0, then the Kalman gain matrices associated with P
0
, Q and R,

converge to K, and the ones associated with P3
0
, Q3 and R3 , also converge to K as kPR; i.e. K is

independent of a. Moreover, P
k
PP, P~

k
PP~, P3

k
PaP, and P3 ~

k
PaP~ as kPR.

Proof. The proof for K
k
PK, P

k
PP, and P~

k
PP~ can be found in the literature.21 Say that

P3 ~
k
PP3 ~ as kPR, then P3 ~satis"es (9); i.e.

P3 ~"U (P3 ~!P3 ~HT (HP3 ~HT#R3 )~1HP3 ~)UT#CQ3 CT (10)

dividing the two sides of (10) by a,

1

a
P3 ~"UA

1

a
P3 ~!

1

a
P3 ~HT AH

1

a
P3 ~HT#

1

a
R3 B

~1
H

1

a
P3 ~B UT#C

1

a
Q3 CT

"UA
1

a
P3 ~!

1

a
P3 ~HT AH

1

a
P3 ~HT#RB

~1
H

1

a
P3 ~B UT#CQCT (11)

Since the system considered is assumed to be observable and controllable, then the solution of the
matrix Riccati equation (9) is unique. Therefore, when comparing (9) and (11), it can be concluded
that P3 ~"aP~, or P3 ~

k
PaP~ as kPR. Next, we consider the

K3 "P3 ~HT(HP3 ~HT#R3 )~1"aP~HT[a (HP~HT#R)]~1"K (12)

Similarly, using (11) and (12), we obtain

P3 "(I!K3 H)P3 ~"(I!KH) aP~"aP j

Remark 3

Suppose that the system (8) is observable and controllable. If HQHT is non-singular, P3
0

is any
non-negative de"nite and symmetric matrix, Q3 "aQ , and R3 "R"0 with a'0, then the
Kalman gain matrices associated with P

0
, Q and R, converge to K, and the ones associated with

P3
0
, Q3 and R3 , also converge to K as kPR; i.e. K is independent of a. Moreover, P

k
PP,

P~
k
PP~, P3

k
PaP, and P3 ~

k
PaP~ as kPR.

The proof is a direct consequence of Theorem 2.

Remark 4

Suppose that the system (8) is observable and controllable. If P3
0
is any non-negative de"nite

and symmetric matrix, Q3 "Q"0, and R3 "aR"0 with a'0, then the Kalman gain matrices
associated with P

0
, Q and R, converge to K, and the ones associated with P3

0
, Q3 and R3 , also

converge to K as kPR; i.e. K is independent of a. Moreover, P
k
PP, P~

k
PP~, P3

k
PaP, and

P3 ~
k
PaP~ as kPR.

The proof is also a direct consequence of Theorem 2.

3. DISCUSSION

The statistical assumptions of this paper constrain the uncertainties to be a scalar multiple of the
actual model which appear quite restrictive in practice and thus deserve further analysis. In this
section, we go over the assumptions of Remark 3, and analyse them. Note that in many
applications, only the continuous-time statistical and deterministic models are available, further-
more, the system and measurement noise covariance matrices depend on the size of the sampling
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period (while discretizing). Consequently, a continuous-time linear time-invariant system is
considered, discretized, and the main assumptions listed in Section 2.2 are examined. Consider the
continuous-time domain where A represents the error model state matrix, B the process noise
coupling matrix, and Q

#
the covariance matrix. If Q denotes the covariance matrix of the sampled

process, then Q is given by20

Q"P
T

0

eAtBQ
#
BT eATt dt (13)

If Q
#

is positive de"nite and diagonal, then Q is always positive semi-de"nite and not
necessarily diagonal. In many applications, Q

#
is symmetric and positive de"nite. If B is

non-singular (square) matrix and H is full row rank matrix (e.g. a single output system), then Q is
positive de"nite, hence HQHT is symmetric positive de"nite matrix (Nnon-singular). Next, we
give an example to illustrate a case where a statistical error of the following form Q3

#
"aQ

#
takes

place. Note that if Q3
#
"aQ

#
, then Q3 "aQ. This could be easily seen by considering a system

modelling error b3 "a@b; e.g. b"[0 0 1)5]T, and b3 "[0 0 2]T, thus, a@"2/1)5. By examining
(13), the corresponding modelling error results in Q3

#
"(a@)2Q

#
; therefore, a"(a@)2. Consequently,

such modelling errors do not e!ect the Kalman gain. By inspecting (9), for the time-invariant case,
C
k
"C":T

0
eAqb dq, and C3

k
"C3 ":T

0
eAqb3 dq"a@C.

Therefore,

P3 ~"U(P3 ~!P3 ~HT (HP3 ~HT#R3 )~1HP3 ~) UT#C3 Q3 C3 T

"U(P3 ~!P3 ~HT (HP3 ~HT#R3 )~1HP3 ~) UT#(a@)4 CQCT

The rest follows as in the proof of Theorem 2 (with the setting of Remark 3; i.e. R"R3 "0).
It is also assumed that the measurement errors are known to be zero. One example, of R"0, is

the zero-velocity updates23,24 while initializing, calibrating and/or orientating used inertial
navigation systems (INS). This occurs when the vehicle is at rest, zero-velocity measurements are
assumed. The velocity integrated by the INS is compared with zero-velocity &measurement'.
Subsequently, the error is fed to a Kalman "lter for state observation with some of state variables
being sensor bias terms, orientation errors, etc. In some other applications, for example, event-
driven Kalman "lter, the measurement and initial covariance matrices R and P

0
, could be

neglected when the time between events ¹ is large enough. The investigated system is assumed
to be observable and HQHT is non-singular. This can be detected by examining (3) and (13).
Clearly, since Q

#
is positive de"nite, then as ¹ increases, the smallest eigenvalue of Q increases.

Therefore,

K
k
"P~

k
HT

k
(H

k
P~
k

HT
k
#R

k
)~1+P~

k
HT

k
(H

k
P~
k
HT

k
)~1

This situation is well illustrated in the subsequent section, Case 2.

4. AN ILLUSTRATIVE EXAMPLE

In this section we use the real-time tracking21 as an example to illustrate the preceding results. Let
x(t), 0)t(R, denote the trajectory in three-dimensional space of a #ying object, where
t denotes the time variable. This vector-valued function is discretized with sampling period ¹ to
yield x

k
,x (k¹), k"0, 1,2. For practical purposes, x (t) can be assumed to have continuous

"rst- and second-order derivatives, denoted by x5 (t), and xK (t), respectively. For small values of ¹,
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the position and velocity vectors are given by

x
k`1

"x
k
#¹x5

k
#1

2
¹2

k
xK
k

x5
k`1

"x5
k
#¹x

k

where x5
k
,x5 (k¹), xK

k
,xK (k¹), for k"0, 1,

2
. For tracking #ying object, position measurement

is often available at each time instant. Consequently, the measurement matrix H"[I 0 0]. Note
that if the azimuthal angular error and the elevation angular error are also considered, then, using
Taylor polynomial approximation, the augmented linear stochastic system can be decoupled into
three subsystems with analogous state-space description. In order to facilitate our example even
further, we only consider the following tracking model:

x
k`1

[1]

x
k`1

[2]

x
k`1

[3]

"

1 ¹ ¹2/2

0 1 ¹

0 0 1

x
k
[1]

x
k
[2]

x
k
[3]

#

w
k
[1]

w
k
[2]

w
k
[3]

(14)

z
k

"[1 0 0]

x
k
[1]

x
k
[2]

x
k
[3]

#v
k
,

where w
k
,[w

k
[1] w

k
[2] w

k
[3]]T. It is assumed that the sequences Mw

k
N and Mv

k
N are zero-mean

Gaussian white noise satisfying E (w
k
wT
l
)"Qd

kl
, E(v

k
v
l
)"rd

kl
, E (w

k
v
l
)"0, E (x

0
v
k
)"0, and

E (x
0
wT

k
)"0. We can easily check that the system, described by (14), is completely controllable

and observable, so that the results of Theorem 2, Remarks 3 and 4 are applicable. In the following,
we use the system presented by (14), where we "x the sampling time ¹"1 s in Cases 1 and 2,
choose di!erent values for the statistical covariance matrices and compare the values of the
steady-state Kalman gain and error covariance matrices. Case 3 presents a situation, employing
small sampling period, for arbitrary uncertainties except for &known' zero-measurement errors.

4.1. Case 1

First, we set the initial error covariance matrix and the perturbed one as folows:

P
0
"

100 0 0

0 10 0

0 0 1

, P3
0
"

200 0 0

0 50 0

0 0 2

Then, we set a value for the continuous-time process covariance matrix

Q
#
"

1]10~2 0 0

0 1]10~4 0

0 0 1]10~6

(15)

In order to evaluate the sampled process covariance matrix, we use (13) with the respective state
matrix (continuous-time domain)

A"

0 1 0

0 0 1

0 0 0

SENSITIVITY OF DISCRETE-TIME KALMAN FILTER 255

Copyright ( 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 249}259 (1999)



to obtain

Q"

1)00]10~2 5)06]10~5 1)69]10~7

5)06]10~5 1)00]10~4 5)05]10~7

1)69]10~7 5)05]10~7 1)00]10~6

Next, we choose Q3
#
"100Q

#
. This implies that Q3 "100Q. Since HQHT'0, we set R"RI "0.

At steady state, we extract the value for the corresponding Kalman gain vectors

K"

1

1)63]10~1

9)17]10~3

"K3

In addition, at steady state, the &prediction' error covariance matrices are found to be as
follows:

P~"

1)18]10~2 1)94]10~3 1)08]10~4

1)94]10~3 2)05]10~3 1)17]10~4

1)08]10~4 1)17]10~4 1)183]10~5

"

1

100
P3 ~

and the correction error covariance matrices

P"

1)31]10~18 1)88]10~19 8)45]10~21

1)88]10~19 1)733]10~3 1)00]10~4

8)45]10~21 1)00]10~4 1)73]10~5

+

1

100
P3

P"

1)31]10~16 1)50]10~17 1)07]10~18

1)50]10~17 1)733]10~1 1)00]10~2

1)07]10~18 1)00]10~2 1)73]10~3

As expected, all simulation results strongly agree with the theoretical ones presented in this
paper.

4.2. Case 2

Assume that we use the same values for P
0
, P3

0
, Q, and Q3 as in Case 1, except for R"1]10~6,

and RI "100R"1]10~4. For these settings, the simulation results perfectly match the theore-
tical ones presented in Section 2. In order to make the problem more appealing, we set
R"1]10~6, and RI "0. As expected, the steady-state value for the Kalman gain vector K3 has
exactly the same value as in Case I, and the maximum di!erence for each component of K is less
than 0)01 per cent. Similar results apply for (P~, P3 ~) and the diagonal entries of (P, P3 ). Although
the latter results are speculated in Section 3, in the following, a more rigorous approach is
conducted. For the system considered in (14), the Kalman gain is found to be

K
k
"

1

P~
k

[1, 1]#R

P~
k
[1, 1]

P~
k
[1, 2]

P~
k
[1, 3]

(16)
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where the "rst diagonal entry of P~
k

is given by

P~
k
[1, 1]"P

k~1
[1, 1]#2¹P

k~1
[1, 2]#¹2P

k~1
[1, 3]#¹2P

k~1
[2, 2]

#¹3P
k~1

[2, 3]#
¹4

4
P
k~1

[3, 3]#Q
k~1

[1, 1] (17)

Therefore, for all values of R where Q
k~1

[1, 1]<R, the denominator of K
k
, P~

k
[1, 1]#

R:P~
k

[1, 1]. Consequently, for all practical purposes and the system described in (14), the
Kalman gain can be assumed to be also independent of such small values of the measurement
variance R when Q

k~1
[1, 1]<R.

4.3. Case 3

Assume that we use the same values for P
0
, P3

0
, R, R3 and Q as in Case 1, except for the

sampling period ¹"1]10~3 second, and

Q3
#
"

2 0 0

0 3 0

0 0 4

Q
#

The corresponding Kalman gain vectors

K"

1

5)0559

12)219

, and K3 "

1

5)0569

12)227

:K

The di!erence is less than 0)06 per cent. Furthermore, P3 ~:2P~, and P3 :2P. The reason behind
these surprising results can be seen by examining (16). First, we use (17), and write expressions for
P~
k
[1, 2] and P~

k
[1, 3].

P~
k
[1, 2]"P

k
[1, 2]#¹P

k
[1, 3]#¹P

k
[2, 2]#

3¹2

2
P

k
[2, 3]#

¹3

2
P
k
[3, 3]#Q[1, 2] (18)

P~
k
[1, 3]"P

k
[1, 3]#¹P

k
[2, 3]#

¹2

2
P
k
[3, 3]#Q[1, 3] (19)

Next, we write down the "rst few terms of the in"nite series expansion for the sampled process
covariance matrix Q (13),

Q"BQ
#
BT¹#

(ABQ
#
BT#BQ

#
BTAT)¹2

2!
#2 (20)

Since ¹;1, then the terms of order ¹2 are disregarded. Thus, (18) yields to Q:Q
#
¹. Thus, the

o!-diagonal terms of Q can be neglected; in particular, the two terms Q[1, 2] and Q[1, 3] in
equations (18) and (19), respectively. Therefore, by (16)} (19), we see that the Kalman gain K

k
is

independent of Q and the "rst term K
k
[1]"1. In addition, (refer to (15))

Q3 :Q3
#
¹

"

2 0 0

0 3 0

0 0 4

1]10~2 0 0

0 1]10~4 0

0 0 1]10~6

1]10~3
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"2]10~5

1 0 0

0 3
2
]10~2 0

0 0 4
2
]10~4

:2]10~5

1 0 0

0 1]10~2 0

0 0 1]10~4

"2Q

Thus, Q3 :2Q. Using the results of Remark 3, we may conclude that P3 ~:2P~, and P3 :2P.

5. CONCLUSION

It was shown that Kalman "lter gains can be insensitive to scaling of covariance matrices; i.e. the
state estimate remains unchanged or optimal under incorrect noise covariances. Moreover, the
error covariance matrices generated by the algorithm were shown to be consistent with the scaled
covariance matrices and not the state estimates. It was also shown that system modelling errors,
particularly scaling errors of the input matrix, do not e!ect the Kalman gain. By following the
ideas given in Sections 3 and 4, one can develop other similar results by considering di!erent
systems.

REFERENCES

1. Kalman, R. E., &A new approach to linear "ltering and prediction problems', IEEE ¹rans. ASME J.
Basic Engng., 82D, 34}45 (1960).

2. Kalman, R. E. and R. S. Bucy, &New results in linear "ltering and prediction theory', IEEE ¹rans. ASME
J. Basic Engng. 83D, 95}108 (1961).

3. Feng, X. and K. A. Loparo, &Optimal state estimation for stochastic systems: an information theoretic
approach,' IEEE ¹rans. Automat. Control, 42+6, 771}785 (1997).

4. McBurney, P. W., &Robust approach to reliable real-time Kalman "ltering', IEEE Position ¸ocation
Navigation Symp., Piscataway, NJ, 1990, pp. 549}556.

5. Kawase, S. and N. Yanagihara, &Robustness of the estimation with the Kalman "lter', IEEE Int. Symp.
Information ¹heory, Piscataway, NJ, 1988, pp. 54}58.

6. Kovacevic, B. D., S. S. Stankovic and Z. M. Durovic, &Approaches to robust Kalman "ltering',
Publications of the Faculty of Electrical Engineering, ;niversity of Belgrade: Automat. Control, 1, 45}59
(1991).

7. Cipra, T. and R. Romera, &Robust Kalman "lter and its application in time series analysis', Kybernetika,
27-6, 481}494 (1991).

8. Mehra, R. K., &On the identi"cation of variances and adaptive Kalman "ltering', IEEE ¹rans. Automat.
Control, AC-15, 175}184 (1970).

9. Sangsuk-Iam, S. and T. E. Bullock, &Analysis of discrete-time Kalman "ltering under incorrect noise
covariances', IEEE ¹rans. Automat. Control, AC-35, 1304}1309 (1990).

10. Sangsuk-Iam, S., &Divergence of the discrete-time Kalman "lter under incorrect noise covariances for
linear periodic systems,' Proc. American Control Conf., Baltimore, MD, 1994, pp. 1190}1194.

11. Sangsuk-Iam, S. and T. E. Bullock, &The discrete-time Kalman "lter under uncertainty in noise
covariances', in Leondes, C. T. (ed.), Control and Dynamic System, vol. 76, Academic Press, New York,
1996.

12. He!es, H., &The e!ect of erroneous on the Kalman "lter respose', IEEE ¹rans. Automat. Control, AC-11,
542}543 (1966).

13. Nishimura, T., &On the a priori information in sequential estimation problems, IEEE ¹ransact. Automat.
Control, AC-11, 197}204 (1966); and IEEE ¹ransact. Automat. Control, AC-12, 123 (1967).

258 S. S. SAAB AND G. E. NASR

Copyright ( 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 249}259 (1999)



14. Williams, J. L. and F. M. Callier, &Divergence of the stationary Kalman "lter for correct and incorrect
noise covariances', IMA J. Math. Contr. Inform., 9, 47}54 (1992).

15. Kando, H., &State estimation of stochastic singularity perturbed discrete-time systems', Opt. Control
Appl. Methods, 18-1, 15}28 (1997).

16. Farrell, J. and M. Livstone, &Calculation of discrete-time process noise statistics for hybrid continuous/
discrete-time applications', Opt. Control Appl. Methods, 17-2, 151}155 (1996).

17. Petersen, I. and D. McFarlane, &Optimal guaranteed cost "ltering for uncertain discrete-time linear
systems', Int. J. Robust Nonlinear Control, 6-4, 267}280 (1996).

18. Saab, S. S. &Discrete-Time Kalman "lter under incorrect noise covariances', Proc. American Control
Conf., Seattle, Washington, 1995, pp. 1152}1156.

19. Li, R. and D. Chu, &Stability of Kalman "lter for time-varying systems with correlated noise', Int. J. of
Adaptive Control Signal Process., 11-6, 475}487 (1997).

20. Lewis, F. Optimal Estimation with an Introduction to Stochastic Control ¹heory, Wiley, New York.
21. Chui, C. K. and G. Chen, Kalman Filtering with Real-time Applications, 2nd edn., Springer, Berlin.
22. Brown, R. G. and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley,

New York, 1992.
23. Bar-Itzhack, I. Y. and N. Berman, &Control theoretic approach to inertial navigation systems',

J. Guidance, 11-3, 237}245 (1998).
24. Saab, S. S. and Kristjan T. Gunnarsson, &Automatic alignment and calibration of an inertial navigation

system', IEEE Position ¸ocation and Navigation Symp., 1994, pp. 845}852.

SENSITIVITY OF DISCRETE-TIME KALMAN FILTER 259

Copyright ( 1999 John Wiley & Sons, Ltd. Optim. Control Appl. Meth., 20, 249}259 (1999)


