provided by ZENODO

International Journal of Applied and Advanced Scientific Research (IJAASR)

Impact Factor: 5.655, ISSN (Online): 2456 - 3080
(www.dvpublication.com) Volume 3, Issue 1, 2018

ON PSEUDO COMPATIBLE P-FUZZY SOFT RELATIONS V. Ramadas* & B. Anitha**

* Professor, Department of Mathematics, PRIST University, Thanjavur, Tamilnadu ** Research Scholar, Department of Mathematics, PRIST University, Thanjavur, Tamilnadu

Cite This Article: V. Ramadas & B. Anitha, "On Pseudo Compatible P-Fuzzy Soft Relations", International Journal of Applied and Advanced Scientific Research,

Volume 3, Issue 1, Page Number 7-11, 2018.

Abstract:

We introduce the notion of pseudo compatible P-fuzzy soft relations of a sub group, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Key Words: Soft Set, Null Soft Set, Injection Function, Fuzzy Set, P-Fuzzy Soft Middle Cosset, Pseudo Fuzzy Cosset, Strongest Fuzzy Relation & Compatible Fuzzy Soft Set.

Introduction:

The concept of fuzzy sets was first introduced by Zadeh [23]. Rosenfeld [16] used this concept to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts based on the Rosenfeld's fuzzy groups were developed. Anthony and Sherwood [1] redefined fuzzy groups in terms of t- norm which is replaced the min operations of Rosenfeld's definition. Some properties of these redefined fuzzy groups, which we call t- fuzzy groups, have been developed by Sherwood [18], sessa [17], sidky and misherf (19). However the definition of t- fuzzy groups seems to be too general. Soft set theory was introduced in 1999 by Molodtsov [15] for dealing with uncertainties and it has gone through remarkably rapid strides in the mean of algebraic structures as in [1, 2, 11, 14, 15, 16, 18, 21, 23]. Moreover, Atagun and Sezgin [5] defined the concepts of soft sub rings and ideals of a ring, soft subfields of a field and soft sub modules of a module and studied their related properties with respect to soft set operations. Operations of soft sets have been studied by some authors, too. Ali et al. [4] introduced several operations of soft sets and Sezgin and Atagun [21] studied on soft set operations as well. Furthermore, soft set relations and functions [6] and soft mappings [14] with many related concepts were discussed. Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups.

Section-2 Preliminaries:

In this section, we recall basic definitions of soft set theory that are useful for subsequent sections. For more detail see the papers [[11], [15],] Throughout the paper, U refers to an initial universe, E is a set of parameters and P(U) is the power set of U. \subseteq and \supset stand for proper subset and super set, respectively.

Definition 2.1 [22]: A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$.

In other words, a soft set over U is a parameterized family of subsets of the universe U. Note that a soft set (F, A) can be denoted by F_A . In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by F_A , F_B , F_C , respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the soft sets will be denoted by F_A , G_A , H_A , respectively. For more details, we refer to [11, 17, 18, 26, 29, 7]. Note that the set of all soft sets over U will be denoted by S(U).

Definition 2.2 [12]: Let λ , $\mu \in S(U)$. Then

- (i) If $\lambda(e) = \emptyset$ for all $e \in E$, λ is said to be a null soft set, denoted by \emptyset .
- (ii) If $\lambda(e) = \mathbf{U}$ for all $e \in E$, λ is said to be an absolute soft set, denoted by \mathbf{U} .
- (iii) λ is a soft subset of μ , denoted $\lambda \subseteq \mu$, if $\lambda(e) \subseteq \mu(e)$ for all $e \in E$.
- (iv) Soft union of λ and μ , denoted by $\lambda \cup \mu$, is a soft set over U and defined by $\lambda \cup \mu$: $E \to P(U)$ such that $(\lambda \cup \mu)(e) = \lambda(e) \cup \mu(e)$ for all $e \in E$.
- (v) $\lambda = \mu$, if $\lambda \subseteq \mu$ and $\lambda \supseteq \mu$.
- (vi) Soft intersection of λ and μ , denoted by $\lambda \cap \mu$, is a soft set over U and defined by $\lambda \cap \mu$: $E \to P(U)$ such that $(\lambda \cap \mu)(e) = \lambda(e) \cap \mu(e)$ for all $e \in E$.
- (vii) Soft complement of λ is denoted by λ^{c} and defined by $\lambda^{c}: E \to P(U)$ such that $\lambda^{c}(e) = U/\lambda(e)$ for all $e \in E$.

Definition 2.3 [12]: Let E be a parameter set, $S \subset E$ and λ : $S \to E$ be an injection function. Then $S \cup \lambda(s)$ is called extended parameter set of S and denoted by ξ_S . If S=E, then extended parameter set of S will be denoted by ξ .

Definition 2.4 [6]: The relative complement of the soft set F_A over U is denoted by F_A^r , where $F_A^r: A \to P(U)$ is a mapping given as $F_A^r(a) = U \setminus F_A(a)$, for all $a \in A$.

Definition 2.5 [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$. The restricted intersection of F_A and G_B is denoted by $F_A \cup G_B$, and is defined as $F_A \cup G_B = (H,C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cap G(c)$.

Definition 2.6 [6]: Let F_A and G_B be two soft sets over U such that $A \cap B \neq \emptyset$. The restricted union of F_A and G_B is denoted by $F_A \cup_R G_B$, and is defined as $F_A \cup_R G_B = (H, C)$, where $C = A \cap B$ and for all $c \in C$, $H(c) = F(c) \cup G(c)$.

Definition 2.7 [12]: Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set ψ (F_A) over U, where ψ (F_A): $B \rightarrow P(U)$ is a set valued function defined by ψ (F_A)(b) =U{ $F(a) \mid a \in A$ and ψ (a) = b}, if $\psi^{-1}(b) \neq \emptyset$, = 0 otherwise for all $b \in B$. Here, ψ (F_A) is called the soft image of F_A under ψ . Moreover we can define a soft set $\psi^{-1}(G_B)$ over U, where $\psi^{-1}(G_B)$: $A \rightarrow P(U)$ is a set-valued function defined by $\psi^{-1}(G_B)(a) = G(\psi(a))$ for all $a \in A$. Then, $\psi^{-1}(G_B)$ is called the soft pre image (or inverse image) of G_B under ψ .

Definition 2.8 [13]: Let F_A and G_B be soft sets over the common universe U and ψ be a function from A to B. Then we can define the soft set $\psi^*(F_A)$ over U, where $\psi^*(F_A)$: $B \rightarrow P(U)$ is a set-valued function defined by $\psi^*(F_A)(b) = \bigcap \{F(a) \mid a \in A \text{ and } \psi(a) = b\}$, if $\psi^{-1}(b) \neq \emptyset$, = 0 otherwise for all $b \in B$. Here, $\psi^*(F_A)$ is called the soft anti image of F_A under ψ .

3. Structures of Fuzzy Soft Subgroup:

Definition 3.1: A mapping $\mu: X \to [0, 1]$, where X is an arbitrary non-empty set is called a fuzzy soft subset in X.

Definition 3.2: Let G be any group. A mapping μ : $G \rightarrow [0, 1]$ is a fuzzy soft subgroup of G if (FSG1) μ (xy) \geq min { μ (x), μ (y)} (FSG2) μ (x⁻¹) = μ (x) for all x,y \in G. **Example**:

Let Z be the additive group of all integers. For any integer n, nZ denote the set of all integers multiplies of n.

(i,e) n Z = { 0, \pm n, \pm 2n, \pm 3n.....}. We have Z > 2Z > 4Z > 8Z > 16Z. Define μ : Z \rightarrow [0,1] by μ (x) = 1, if x $\acute{\epsilon}$ 16Z; = 0.7, if x $\acute{\epsilon}$ 8Z -16Z; = 0.5 if x $\acute{\epsilon}$ 4Z-8Z; = 0.2 if x $\acute{\epsilon}$ 2Z-4Z; = 0 if x $\acute{\epsilon}$ Z-2Z. It can be easily verified that μ is fuzzy soft sub group of Z. If the Supplementary condition (FSG₃) μ (e $_G$) = 1 are satisfied, then the fuzzy soft group is called a standardized fuzzy soft group where e $_G$ is an identity of the group (G, $\dot{\cdot}$)

Proposition 3.3:

A fuzzy soft subset μ of a group 'G' is a fuzzy soft subgroup of \hat{G} if and only if μ (x y $^{\text{-}1}) \geq \text{min}$ { μ (x), μ (y) for every x, y in G

Proof:

Let ' μ ' be a fuzzy soft subgroup of \hat{G} . Form ' μ ' is a fuzzy group (FSG₁) and (FSG₂) are satisfied. μ (xy^{-1}) \geq min { μ (x), μ (y^{-1})} = min { μ (x), μ (y)} conversely let μ (xy^{-1}) \geq min { μ (x), μ (y)} in equality be satisfied. Choosing y = x we get that μ (xx^{-1}) = μ (x) = min { μ (x), μ (x) = μ (x). Hence for x=e. μ (x) = μ (x) = min { μ (x) = min { μ (x), μ (x)} = min { μ (x), μ (x)}

Remarks 3.4: Let ' μ ' be a fuzzy soft sub group of a group 'G' and $x \in G$. then $\mu(x y) = \mu(y)$ for every $y \in G$ if and only if $\mu(x) = \mu(e)$

Definition 3.5: Let ' μ ' be a fuzzy soft sub group of a group 'G'. For any $a \in G$ are defined by $(a \mu)(x) = \mu(a^{-1} x)$ for every $x \in G$ is called the P-fuzzy soft cosset of the group G determined by 'a' and ' μ '

Definition 3.6: Let ' μ ' be the fuzzy soft sub group of a group G. then for any a, b \in G a P-fuzzy soft middle cosset a μ b of the group G is defined by (a μ b) (x) = μ (a⁻¹ x b₋₁) for every x \in G.

Definition 3.7: Let ' μ ' be a fuzzy soft sub group of G and $a \in G$. Then the P-pseudo fuzzy cosset $(a\mu)^p$ is defined by $(a\mu)^p(x) = p(a)\mu(x)$ for every $x \in G$ and for some $p \in P$.

Example:

Let $G = \{1, w, w^2\}$ be a group with respect to multiplication where 'w' denotes the cube root of unity. Define a map $\mu : G \to [0,1]$ by

$$\mu(x) = \begin{cases} 0.7 & \text{if } x = 1 \\ 0.3 & \text{if } x = w, w^2 \end{cases}$$

The pseudo fuzzy soft cosset (a μ) p for p (x) = 0.4 for every x \in G to be equal to 0.28 if x = 1 and 0.12 if x = w, w^2

Definition 3.8: Let μ and λ be any two fuzzy soft subsets of a set 'X' and $p \in P$. the P-pseudo fuzzy soft double cosset to $(\mu \times \lambda)^p$ is defined as $((\mu \times \lambda)^p = (x \mu)^p \cap (x \mu)^p)$ for $x \in X$.

Definition 3.9: Let λ and ' μ ' be two fuzzy soft subgroups of a group 'G' then λ and μ are said to be P- fuzzy soft conjugate subgroups of G if for some $g \in G\lambda$ (x) = μ ($g^{-1} x g$) for every $x \in G$.

4. Some Properties of Pseudo Fuzzy Softt Cosets:

Proposition 4.1:

Let ' μ ' be a fuzzy soft subgroup of a group 'G'. Then P-pseudo fuzzy soft cosset (a μ) ^p is a fuzzy soft sub group of 'G' for every a \in G.

Proof: Let ' μ ' be a fuzzy soft sub group of G, for every x, y in G we have $(a \mu)^p (xy^{-1}) = p(a) \mu (xy^{-1}) \ge p(a)$ min $\{\mu(x), \mu(y)\} = \min \{p(a) \mu(x), p(a), \mu(y)\} \ge \min \{a \mu\}^p (x), (a, \mu)^p (y)\}$ for every $x \in G$. This proves that $(a \mu)^p$ is a fuzzy soft subgroup of G.

Remark 4.2: A fuzzy soft subgroup ' μ ' of a group G is said to be positive fuzzy soft subgroup of 'G' if ' μ ' is positive fuzzy soft subset of the group 'G'.

Proposition 4.3:

Every P- pseudo fuzzy soft double cosset is a fuzzy soft subgroup of a group 'G'

Proof:

```
(i) (\mu \ x \ \lambda)^p (x \ y) = \{ (x \ \mu)^p \cap (x \ \lambda)^p \} (xy) = (x \ \mu)^p (x \ y) \text{ and } (x \ \lambda)^p (xy) \}
= p \ (x) \ \mu (x \ y) \text{ and } p \ (x) \ \lambda (xy) \}
\geq p \ (x) \min \{ \ \mu (x), \ \mu (y) \} \text{ and } p \ (x) \min \{ \ \lambda (x), \ \lambda (y) \}
\geq \min \{ p \ (x) \ \mu (x), p \ (x) \ \mu (y) \} \text{ and } \min \{ p \ (x) \ \lambda (x), p \ (x) \ \lambda (y) \}
\geq \min \{ p \ (x) \ \mu (x), p \ (x) \ \mu (x) \}, \min \{ p \ (x) \ \mu (y) \ \text{and } p \ (x) \ \lambda (y) \}
= \min \{ (x \ \mu)^p \cap (x \ \lambda)^p \} (x), (x \ \mu)^p \ n \ (x \ \lambda)^p) (y) \}
\geq \min \{ (\mu x \ \lambda)^p (x), (\mu x \ \lambda)^p (y) \}
(ii) (\mu x \ \lambda)^p (x) = \{ (x \ \mu)^p \cap (x \ \lambda)^p \} (x) = (x \ \mu)^p \cap (x \ \lambda)^p (x)
= p \ (x) \ \mu \ (x) \ \text{and } p \ (x) \ \lambda (x) = p \ (x) \ \mu \ (x)^{-1} \ \text{and } p \ (x) \ \lambda (x)^{-1} \ \text{(since } \lambda \ \text{and } \mu \ \text{are fuzzy subsets)} =
(x \ \mu)^p \ (x)^{-1} \ \text{and } (x \ \lambda)^p \ (x)^{-1} = \{ \ (x \ \mu)^p \ n \ (x \ \lambda)^p \} \ (x)^{-1} = (\mu x \ \lambda)^p \ (x)^{-1}
Theorem is proved.
```

Proposition 4.4:

Every P-fuzzy soft middle cosset of a group 'G' is a fuzzy soft subgroup of G.

Proof:

Let a μ b be a P-fuzzy soft middle cosset of the group 'G' and ' λ ' and ' μ ' be two P-conjugate fuzzy soft subgroups of G.

```
(i) (a \mu b) (x y) = \mu (a^{-1} x y b^{-1}) = \lambda (x y) [\because \lambda \text{ and } \mu \text{ conjugate fuzzy soft subgroups}]

\geq \min \{ \lambda (x), \lambda (y) \} \geq \min \{ \mu (a^{-1} x b^{-1}), \mu ((a^{-1} y b^{-1}) \}

\geq \min \{ (a \mu b) (x), (a \mu b) (y) \}
```

(ii) $(a \mu b) (x) = \mu (a^{-1} x b^{-1}) = \mu (a^{-1} x^{-1} b^{-1}) (\cdot : '\mu' \text{ fuzzy sub group}) = (a \mu b) (x^{-1})$ Theorem is proved.

Definition 4.5: Let 'G' be a group. A fuzzy soft subgroup ' μ ' of 'G' is called normal if μ (x) = μ ($y^{-1}xy$) for all x, y in G. (or) A fuzzy soft subgroup μ_H of G is called a fuzzy soft normal subgroup of 'G' if μ_H (xy) = μ_H (yx) for all x, y in G.

Proposition 4.6:

Every P-pseudo fuzzy soft cosset is a fuzzy soft normal subgroup of a group 'G'

Proof:

Let $(a \ \mu)^p$ be any P-pseudo fuzzy cosset. $a \in G$ and for some $p \in P$. Now $(a \ \mu)^p(x) = p(a) \ \mu(x) = p(a)$ min $\{ \ \mu(e) \ , \ \mu(x) \ \} = p(a)$ min $\{ \ \mu(y^{-1}y) \ , \ \mu(x) \ \}$

$$\geq p$$
 (a) min { min { $\mu(y)^{-1}$, $\mu(y)$ }, $\mu(x)$ } $\geq p$ (a) min { $\mu(y)^{-1}$, min { $\mu(y)$, $\mu(x)$ } = p (a) $\mu(y^{-1} x y)$ for all $y \in G$.

Aliter:

Let (a μ) ^p be any P-pseudo fuzzy soft cosset and a \in G for some p \in P, Let μ_H is a fuzzy soft normal subgroup of G. Now (a μ H) ^p (x y) = p (a) μ_H (xy) = p (a) μ_H (y x) (μ_H is fuzzy soft normal) = (a μ_H) ^p (y x)

Proposition 4.7:

The intersection of two P-pseudo fuzzy soft cosset normal subgroup is also fuzzy soft normal subgroup of a group.

Proof:

Let $(a \mu)^p$ and $(b \mu)^p$ be any two P-pseudo fuzzy soft cosset normal subgroup of G.

$$(a \mu)^p (x) = (a \mu^p (y^{-1} x y), y \in G --- (1)$$

 $(b \mu)^p (x) = (a \mu)^p (y^{-1} x y), y \in G --- (2)$

Now, $\{(a\mu)^p \cap (b\mu)^p (x) = ((a\cap b)\mu)^p (x) = p (a\cap b) \mu (x) = p (a). p (b) \mu (x) = p (a). \mu (x) \text{ and } p (b) \mu (x) = (a\mu)^p (x) \text{ and } (b\mu)^p (x) = (a\mu)^p (y^{-1}xy) \text{ and } (b\mu)^p (y^{-1}xy) \text{ by } ((i) \& (ii)) = p (a). p (b) \mu (y^{-1}xy) = ((a\cap b)\mu)^p (y^{-1}xy) = \{(a\mu)^p \cap (b\mu)^p (y^{-1}xy) = \{(a\mu)^p \cap (b\mu)^p \} (y^{-1}xy).$

Theorem is proved

Aliter:

Let ($a \mu_H$) $^p \cap (b \mu_H)^p$ } (x y) = (($a \cap b$) μ_H) p }(x y)= $p (a \cap b) \mu_H (x y)$ = $p (a \cap b) \mu_H (y x) (\mu_H is fuzzy soft normal)$ = ($a \cap b$) μ_H) p }(y x)= { $a \cap b$) $^p \cap (b \mu_H)^p$ }(y x)

Proposition 4.8:

P-Pseudo fuzzy soft double cosset is a fuzzy soft normal subgroup of a group 'G'

Proof:

```
Let (\mu \ x \ \lambda)^p be any P- pseudo fuzzy soft double cosset for x \in X.

Now (\mu \ x \ \lambda)^p (x) = \{ (x \ \mu)^p \cap (x \ \lambda)^p \}(x) = (x \ \mu)^p (x) \cap (x \ \lambda)^p \}(x)
= p (x) \cap \mu (x) \cap p (x) \ \lambda (x) = p (x) \min \{ \mu (x), \mu (e) \} \cap p (x) \min \{ \lambda (x), \lambda (e) \}
= p (x) \min \{ \mu (x), \mu (y^{-1} y) \} \cap p (x) \min \{ \lambda (x), \lambda (y^{-1} y^1) \}
\geq p(x) \min \{ \mu (x), \min \mu (y^{-1}), \mu (y) \} \cap p (x) \min \{ \lambda (x), \min \{ \lambda (x), \lambda (y^{-1} y^1) \} \}
= p (x) \min \{ \mu (y^{-1}), \mu (x y) \} \cap p (x) \min \{ \lambda (y^{-1}), \lambda (x y) \}
= p (x) \mu (y^{-1} x y) \cap p (x) \lambda (y^{-1} x y) = \{ x \mu \}^p \cap (x \lambda)^p \} (y^{-1} x y)
= (\mu x \lambda)^p (y^{-1} x y)
```

Theorem is proved.

Proposition 4.9:

P-Fuzzy soft middle cossets forms a fuzzy soft normal subgroup of G.

Proof:

```
 \begin{split} (a \; \mu \; b) \; (x) &= \mu \; (a^{-1} \; x \; b^{-1}) = \lambda \; (x) = min \; \{ \; \lambda \; (x), \; \lambda \; (e) \; \} \\ &= min \; \{ \; \lambda \; (x), \; \lambda \; (y^{-1} \; y) \} \geq min \; \{ \; \lambda \; (x), \; min \; (\lambda \; (y \; ^{-1}), \; \lambda \; (y)) \} \\ &= min \; \{ \; \lambda \; (y^{-1}) \; min \; (\lambda \; (x), \; \lambda \; (y) \} = min \; (\lambda \; (\; y \; ^{-1}), \; \lambda \; (x \; y) \; \} \; \; = \lambda \; (\; y^{-1} \; x) \\ &= \mu \; (a \; ^{-1} \; (y^{-1} \; x \; y) \; b^{-1}) = (a \; \mu \; b) \; (y^{-1} \; x \; y) \end{split}
```

Definition 4.10: The strong fuzzy soft α -cut is defined as $A^+_{\alpha} = \{x/A(x) > \alpha\}$ where A is any fuzzy soft set .

Definition 4.11: Let 'A' be a fuzzy soft set in a set S. Then the strongest fuzzy soft relation on 'S' (ie) fuzzy soft relation on 'A' is $\mu_A(x,y) = \min \{(A(x), A(y))\}.$

Definition 4.12: Cartesian Product: Let λ and μ be any two fuzzy soft sets in X. Then the cartesian Product of λ and μ is $\lambda x \mu$: $x \times x \rightarrow [0, 1]$ defined by $(\lambda \times \mu)$ $(x, y) = \min \{\lambda(x), \mu(y)\}$ for all $x, y \in X$.

Proposition 4.13:

Let μ_A be a strongest Fuzzy soft relation on 'S' and 'A' $_{\alpha}$ ' be the strong α -cut .Then μ_A forms a strong α - cut fuzzy soft group on S.

Proof:

Let A:S \rightarrow [0,1] be any function and μ_A be the strongest fuzzy soft relation on S.

(i) Let x,y ε S

```
\begin{array}{ll} \mu_A(x,y) = \; \min \; \{A(x), \, A(y)\} \; \geq \min \; \{\alpha,\alpha\} \geq \; \alpha \\ (ii) \; \mu_A(x^{\text{-1}},y^{\text{-1}}) = \; \min \; \{A(x^{\text{-1}}), \, A(y^{\text{-1}})\} = \min \; \{A(x), \, A(y)\} = \mu_A(x,y) \\ (ii) \; \mu_A(e,\,e) = \min \; \{A(e), \, A(e)\} = \min \; \{1,1\} \quad = 1 \\ \mu_A \; \text{forms a strong fuzzy group $\alpha$- cut on $S$.} \end{array}
```

Proposition 4.14:

Let λ and μ be strong fuzzy soft α - cuts on S. Then $\lambda \times \mu$ is a strong fuzzy soft group α - cut.

Proof: Let x,y\(\varepsilon\)S and \(\lambda: x\times x \rightarrow [0,1]\) be any function.

```
 \begin{array}{ll} (i) \; (\lambda \times \mu) \; (x,y) = \min \; \{\lambda \; (x), \; \mu \; (y)\} \geq \min \; \{\alpha,\alpha\} \geq \quad \alpha \\ (ii) \; (\lambda \times \mu) \; (x^{\text{-1}},y^{\text{-1}}) = \min \; \{\lambda \; (x^{\text{-1}}), \; \mu \; (y^{\text{-1}})\} = \; \min \; \{A(x), \; A(y)\} = (\lambda \times \mu) \; (x, \; y) \\ (ii) \; (\lambda \times \mu) \; (e,e) = \min \; \{\lambda \; (e), \; \mu \; (e)\} = \min \; \{1,1\} = 1 \\ (\lambda \times \mu) \; \text{forms a strong fuzzy soft group } \; \alpha\text{-cut on } S. \\ \textbf{Remark 4.15:} \; i) \; \min \; (a,b)^i = \min \; \{a^i,b^i) \; \text{for all Positive integer `i'} \} \\ ii) \; \mu_A i(x,y) = (\mu_A(x,y))^i = \; \min \; \{A(x), \; A(y)\}^i = \; \min \; \{A^i(x), \; A^i(y)\} \\ \end{array}
```

Proposition 4.16:

Let $\mu_A{}^i$ and $\mu_A{}^j$ be two strong fuzzy soft relations and $A_\alpha{}^+$ be strong fuzzy soft α - cut .Then $\mu_A{}^i{}_{UA}{}^j$ forms a strong fuzzy soft α -cut on S.

Proof:

```
Since i < j

\mu_{A^{i}UA^{j}}(x,y) = \{(A^{i}UA^{j}, (x), (A^{i}UA^{j})(y)\} = \min \{\max \{A^{i}(x), A^{j}(x)\}, \max \{A^{i}(y), A^{j}(y)\} \}
= \max \{\min \{A^{i}(x), A^{i}(y)\}, \min \{A^{j}(x), A^{j}(y)\} \}
= \max \{\min \{A(x), A(y)\}^{I}, \min \{A(x), A(y)\}^{J}\} \}
\geq \max \{\min \{\alpha, \alpha\}^{i}, \min \{\alpha, \alpha\}^{j}\} \} \geq \max \{\alpha^{i}, \alpha^{j}\} \geq \alpha^{i}
```

International Journal of Applied and Advanced Scientific Research (IJAASR)

Impact Factor: 5.655, ISSN (Online): 2456 - 3080

(www.dvpublication.com) Volume 3, Issue 1, 2018

 $\mu_{A}^{\ i}_{\ UA}^{\ j}$ is a strong fuzzy soft α -cut on S.

Remark 4.17: Let $\mu_A{}^i$ and $\mu_A{}^j$ be two strong fuzzy soft relations and $A_\alpha{}^+$ be strong fuzzy soft α -cut. Then $\mu_A{}^i{}_{nA}{}^j$ is a strong fuzzy soft α -cut on S.

Proof: It is obvious

Definition 4.18 : A fuzzy soft binary relation μ on a semi group 'S' is called P-fuzzy soft compatible iff μ (ac, bd) $\geq \min \{\mu (a,b), \mu(c,d)\}$ for all $a,b,c,d \in S$.

Preposition 4.19:

Let μ_A be the strongest fuzzy soft relation on S. Then A_{α}^{+} is a strong $\,\alpha$ -cut then μ_A forms $\,P$ -fuzzy soft compatible.

Proof:

Now $\mu_A(ac, bd) = \min \{A(ac), (A(bd))\} \ge \min \{\min \{A(a), A(c)\}, \min (A(b) A(d))\}$ $\ge \min \{\mu_A(a,b), \mu_A(b,d)\}$

3.18 Proposition:

Let μ_A be a P-fuzzy soft compatible. Then μ_A is a strong fuzzy soft α -cut.

Proof:

Now μ_A (ac, bd) \geq { μ_A (a, b), μ_A (b, d)} =min {min (A(a), A(b)}, min {A(b), A(d)}}>min { α,α }, min { α,α }> min { α,α }> α . Hence μ_A is P-fuzzy soft compatible forms a strong fuzzy soft α -cut.

Conclusion:

Here we introduce the notion of pseudo compatible P-fuzzy soft relations of a subgroup, cossets of a group, strongest fuzzy soft relations and how they are related with fuzzy soft normal subgroups. One can obtain the similar ideal into Soft G-modular and L- fuzzy structures.

References:

- 1. J. M. Anthony and H. Sherwood, Fuzzy groups redefined J. Math. Anal. Appl.69 (1979), 124-130.
- 2. Acar U., Koyuncu F., Tanay B., Soft sets and soft rings, Comput. Math. Appl., 59(2010), 3458-3463.
- 3. Aktas. H., C. agman N., Soft sets and soft groups, Inform. Sci., 177(2007), 2726-2735.
- 4. Ali M.I., Feng F., Liu X., Min W.K., Shabir M., On some new operations in soft set theory, Comput. Math. Appl., 57(2009), 1547-1553.
- 5. Atagun A.O., Sezgin A., Soft substructures of rings, fields and modules, Comput. Math. Appl., 61(3) (2011), 592-601.
- Babitha K.V., Sunil J.J., Soft set relations and functions, Comput. Math. Appl., 60(7)(2010), 1840-1849.
- 7. Feng F., Jun Y.B., Zhao X., Soft semirings, Comput. Math. Appl., 56(2008), 2621–2628.
- 8. Feng F., Liu X.Y., Leoreanu-Fotea V., Jun Y.B., Soft sets and soft rough sets, Inform. Sci., 181(6) (2011), 1125-1137.
- 9. Jun Y.B., Soft BCK/BCI-algebras, Comput. Math. Appl., 56(2008), 1408 -1413.
- 10. Jun Y.B., Park C.H., Applications of soft sets in ideal theory of BCK/ BCI-algebras, Inform. Sci., 178(2008), 2466-2475.
- 11. Jun Y.B., Lee K.J., Zhan J., Soft p-ideals of soft BCI-algebras, Comput. Math. Appl., 58(2009), 2060-2068.
- 12. Kazancı O., Yılmaz S., Yamak S., Soft sets and soft BCH-algebras, Hacet. J. Math. Stat., 39(2)(2010), 205-217.
- 13. Majumdar P., Samanta S.K., on soft mappings, Comput. Math. Appl., 60 (9)(2010), 2666-2672.
- 14. Molodtsov D., Soft set theory-first results, Comput. Math. Appl., 37(1999), 19-31.
- 15. A. Rosenfeld, Fuzzy groups, J.math.Anal.Appl.35 (1971), 512-517.
- 16. S. Sessa, on fuzzy subgroups and fuzzy ideals under triangular norms, Fuzzy sets and fuzzy systems, 13, (1984), 95-100.
- 17. H. Sherwood, Product of fuzzy subgroups, Fuzzy sets and systems, 11, (1983), 79-89.
- 18. F. I. Sidky and M. Atif Misherf, Fuzzy cossets and cyclic and abelian fuzzy subgroups, Fuzzy sets and systems, 43, (1991), 243-250.
- 19. Sezgin A., Atagun A.O., Ayg un E., A note on soft near-rings and idealistic soft near-rings, Filomat, 25(1)(2011), 53-68.
- 20. Sezgin A., Atagun A.O., on operations of soft sets, Comput. Math. Appl., 61(5) (2011), 1457-1467.
- 21. Zhan J., Jun Y.B., Soft BL-algebras based on fuzzy sets, Comput. Math. Appl., 59(6) (2010), 2037-2046. Fuzzy sets and systems, 43, (1991), 243-250.
- 22. L.A.Zadeh, Fuzzy sets, Inform and control, 8, (1965), 338-353.