Millimeter astronomy at high redshift Roberto Decarli INAF – Osservatorio Astronomico di Bologna

Gas at high redshift: why do we care?

Gas = fuel for star formation

Molecular gas surface density

Schruba+11

Gas = fuel for BH accretion

Gas accretion accounts for the majority of local SMBH masses (e.g., Soltan 1982)

Gas = only vehicle for feedback

SN / AGN feedback only works on gas!

The ISM at high z: how do we measure it?

Molecular Hydrogen

Molecular Hydrogen

 H_2

- No electric dipole
 - Very light
 - → high energy of vibrational (~mass^{-1/2}) and rotational (~mass⁻¹) levels → T_{ex} >1000 K

Molecular Hydrogen

 H_2

No electric dipole Very light \rightarrow high energy of vibrational (~mass^{-1/2}) and rotational (~mass⁻¹) levels \rightarrow Tex>1000 K

Emission: only in AGN, shocks, etc
Absorption: via UV pumping mechanism
1) H₂ signal is lost in the Lyα forest
2) small impact parameter

 $\begin{array}{l} Bright\ rotational\ emission\ lines\\ First\ levels\ have\ T_{ex}{<}30\ K \end{array} \end{array}$

Carilli & Walter 2013

Carilli & Walter 2013

Carbon Monoxide as H₂ mass tracer CO $M(H_2) = \alpha_{CO} L'_{CO(1-0)}$

Carbon Monoxide as H_2 mass tracer

 $M(H_2) = \alpha_{CO} L'_{CO(1-0)}$

CO

Bolatto+13

Carbon Monoxide as H₂ mass tracer

 $M(H_2) = \alpha_{CO} L'_{CO(1-0)}$

CO

1) Measure α_{co} (e.g., via dynamics) 2) Know your galaxy! (Z, Lir)

Carilli & Walter 2013

HCN, HCO+, HNC, CN, CS

HCN, HCO+, HNC, CN, CS

Typically ~10-100 times fainter than CO

HCN, HCO+, HNC, CN, CS

Typically ~10-100 times fainter than CO

 H_2O

HCN, HCO+, HNC, CN, CS

Typically $\sim 10-100$ times fainter than CO

 H_2O

Can be brighter than CO

Velocity offset (km s⁻¹)

Riechers+13

HCN, HCO+, HNC, CN, CS — 3,1 _ 3,2 Ortho Para - 2,2^{- 1,5} — 0,5 - 2,3 — ^{3,1} — 1,3 - 3,0 400 Energy [K] ____ 1,4 ___ 2,1 - 0,4 - 2,2 - 1,2 — 2,0^{1,3} 200 - 1,1 - 0,2 — 1,0 — 1,1 0 - 0,0 6 2 6 2 0 4 0 4

Level

 H_2O

Beyond CO: Fine structure lines

~20		100	1,000	10,000
7 T _{gas} []		$ m H_2$	HI	OIII, HII
$O_2,$ OH K]	CI CO	CII	OI, NI, CII	OII, NII, CII

Beyond CO: Fine Structure Lines

[OI] 63 & [CII] 158: Main coolants of ISM at 30 K < T < 3000 K

Beyond CO: Fine Structure Lines

[OI] 63 / [CII] 158: Abundance

[OIII] 88 / [OI] 63: Ionization state

[NII] 122 / 205: Electron density (ionized gas)

[CI] 609 / 370: Excitation temperature (molecular gas)

[CII] 158 / [NII] 205: Ionized vs neutral ISM / Metallicity

[CII] 158 / [CI] 370: X-ray vs PDR powering / Intensity radiation field

[CII] 158 / CO(7-6): Density (>10,000 cm⁻³)

Beyond CO: Fine Structure Lines

Indirect tracers

Dust is a catalyst for H₂ formation

Indirect tracers

Dust is a catalyst for H_2 formation \rightarrow Gas and dust mass are correlated

Indirect tracers

Dust is a catalyst for H₂ formation

 \rightarrow Gas and dust mass are correlated

M_{dust} is simple to measure
Indirect tracers

Magdis+12

Indirect tracers

Dust is a catalyst for H₂ formation

 \rightarrow Gas and dust mass are correlated

M_{dust} is simple to measure

Need to assume a gas-to-dust ratio

Subtleties: same region?

ISM observations at z>1

Molecular surveys in (bright) Main Sequence galaxies:

PHIBSS1+2: Tacconi+10,13; Genzel+10,15; etc

Dannerbauer+09, Daddi+10, Aravena+10, ...

Molecular surveys in (bright) Main Sequence galaxies:

PHIBSS1+2: Tacconi+10,13; Genzel+10,15; etc

Dannerbauer+09, Daddi+10, Aravena+10, ...

Molecular Deep Fields:

PdBI+HDF-N: Decarli+14, Walter+14 ASPECS: Walter+16, Aravena+16b, Decarli+16ab COLDz: Lentati+15

Molecular surveys in (bright) Main Sequence galaxies:

PHIBSS1+2: Tacconi+10,13; Genzel+10,15; etc

Dannerbauer+09, Daddi+10, Aravena+10, ...

Molecular Deep Fields:

PdBI+HDF-N: Decarli+14, Walter+14 ASPECS: Walter+16, Aravena+16b, Decarli+16ab COLDz: Lentati+15

Clusters:

Aravena+12 Seko+16

Molecular surveys in (bright) Main Sequence galaxies:

PHIBSS1+2: Tacconi+10,13; Genzel+10,15; etc

Dannerbauer+09, Daddi+10, Aravena+10, ...

Molecular Deep Fields:

PdBI+HDF-N: Decarli+14, Walter+14 ASPECS: Walter+16, Aravena+16b, Decarli+16ab COLDz: Lentati+15

Clusters:

Aravena+12 Seko+16

Lenses:

Dessauges-Zavadsky+15

Molecular surveys in (bright) Main Sequence galaxies:

PHIBSS1+2: Tacconi+10,13; Genzel+10,15; etc

Dannerbauer+09, Daddi+10, Aravena+10, ...

Molecular Deep Fields:

PdBI+HDF-N: Decarli+14, Walter+14 ASPECS: Walter+16, Aravena+16b, Decarli+16ab COLDz: Lentati+15

Clusters:

Aravena+12 Seko+16

Lenses:

Dessauges-Zavadsky+15

Continuum surveys:

ALESS: Hodge+13, Karim+13, etc COSMOS: Scoville+14,16 HUDF: Dunlop+16 ASPECS: Aravena+16a, Bouwens+16 Others: Fujimoto+15, ...

A few results, and many open issues

Molecular gas and SFR

Molecular gas and SFR

One super-linear relation or two linear sequences?

(Genzel+10,15, Daddi+10, Narayanan+10, Krumholtz+12, Federrath+13, Sargent+14, Silverman+15, Usero+15, Liu+15, Salim+15, Escala+15, ...)

Star Formation Efficiency ...

Star Formation Efficiency (SFE):

 $\begin{array}{l} SFR \ / \ M_{gas} = SFE \\ = 1/t_{depl} \end{array}$

... and depletion time

QSOs, SMGs, starbursts: t_{dep}~10⁷-10⁸ yr

Main sequence galaxies: t_{dep}~10⁹ yr

Depletion time

Depletion time

Genzel+15

CO excitation

MS galaxy at z~1.4:

Very low CO excitation

Decarli+16b

QSO host at z~6.4: Very high CO excitation

See Simonas talk.

CO luminosity functions

Lines: SAM predictions (Lagos+12, Popping+16)

Boxes: Obs. Constraints (Walter+14, ASPECS)

Decarli+16a

Molecular mass budget

Decarli+16a

Venemans et al. (subm)

What's next?

High resolution

Hodge+12

Schuster+07, Schinnerer+13

Expanded parameter space

Decarli+16b + Dunlop+16

Expanded parameter space

Decarli+16b + Dunlop+16

Larger samples

ASPECS Large Program (expected)

MUSE:

hundreds of redshifts per pointings, UV diagnostics

MUSE:

hundreds of redshifts per pointings, UV diagnostics

MOSFIRE, K-MOS: optical diagnostics, resolved kinematics

MUSE:

hundreds of redshifts per pointings, UV diagnostics

MOSFIRE, K-MOS: optical diagnostics, resolved kinematics

JWST:

Precise masses, sensitive NIR/MIR spectroscopy

MUSE:

hundreds of redshifts per pointings, UV diagnostics

MOSFIRE, K-MOS: optical diagnostics, resolved kinematics

Full ALMA Upgraded NOEMA JVLA

JWST: Precise masses, sensitive NIR/MIR spectroscopy

Conclusions

Conclusions

1) Main Sequence galaxies have $t_{depl} \sim 1 \text{ Gyr}$ (?)

2) Molecular gas fraction is 10x higher at $z\sim2$

3) CO excitation is modest in MS galaxies

4) Molecular content evolves as cosmic SFR

5) ISM physics is now accessible even at the highest \boldsymbol{z}

Future: resolved studies, large samples, multi-tracers

