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Abstract:

It is shown that under certain conditions the column majorization of matrices is reversed for the column
majorization of their corresponding Moore-Penrose inverses and preserved for the column majorization of their
powers. The condition for column majorization of block matrices is determined.

Index Terms: Majorization & Moore-Penrose inverse
1. Introduction:

LetC™*" denote the space of mxn complex matrices. If AcC ™" then the Moore-Penrose inverse

A" of A is the unique solution to the equations:

AXA= A XAX=X, (AX)" = AX and (XA)"=XA [2, p.7].
A square matrix A is called EP if R(A) = R(A") or equivalently AA" = A" A, where R(A) denotes
the range space of A.A matrix A is called EP. if A is EP and is of rank r.

r

Let R™" denotes the space of mx nreal matrices. For any column vector xeR", let X1y 1 X211 -+ Xpnp denote
the coordinates of X arranged in decreasing order of magnitude: Xy 2=Xp2 ... 2 X,;. We shall write

X = (X[l] 1 X211+ X[n] )twhere t denotes the transpose. If X,Ye R", we say that y is majorized by X,
denotey <x if

gyi :iZ::Xi' for 1sk<n-1, and >y, =D X,

Also y is said to be majorized by x if and only if there exists a doubly stochastic matrix M such that y=Mx

[4, p.7-12]. Throughout this paper we consider only real matrices.
2. Majorization of Matrices:

The majorization of vectors is extended to matrices as follows:
Definition 1:

Let A and B be MX N real matrices. Then A is said to be column majorized by B, denoted by A<® B
if and only if A=MB where M is a doubly stochastic matrix of order m.

We note that the column majorization of matrices is equivalent to the majorization of the transpose of
the corresponding matrices [4, p.430].

ie. A<°B < A=MB, where M is doubly stochastic
< A=MB foralli, where A;isthe i" column of A
t t H
<A =B, foralli
<A <B'.
Lemma 1:

Let A, B be EP, matricesand A<® B . ThenR(A)=R(B)and (AB)"=B"A".
Proof:

A<°B = A=MB = N(B) < N(A) where N(A), denotes the null space of A.
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Since Aand B are EP,, R(A) = R(B), then by theorem 3 of [1], AB is EP. and by theorem
4of[1], we get (AB)" =B A" .

Lemma 2:
Let A be an EP matrix. Then

() A<® A'A < ATA<C A
(i) AA<° A AT <® ATA

Proof:
(A< A"As A=MATA
< AA"=MA"AA" (on post multiplication by A * or A)
< AAT=MA" (sinceAisEPand A"AAT=A")
< ATA<CAT
Hence the result (i). Similarly (ii) can be proved.
Remark 1:

In particular, if A is nonsingular, then A<® 1 <> | < A™. Hence A<°1=A<°A". If the

column sums of A is one, then | <¢ A™ however A need not be a doubly stochastic matrix.

Remark 2:
We note that the condition on A cannot be relaxed in the above lemma 2. For example,

01 . (00
A= , A =

0 0 10
. (10 . (00
AA" = , A'A =

00 01

Here A is not EP, however A<° A" Aand A*A<® A" .
Remark 3:

For any EP matrix A, if A< | , then A=AA"A<° A"A. Hencebylemma2 A< A"A <" A"
In particular if A is EP and doubly stochastic, then A=<° | holds automatically and hence A<® A"*A <° A*
Theorem 1:

If Ais EP. and B is symmetric idempotent with rank r, then

(i) A<B< B < A"

(i) B<*A= A"<°B”

(iii) A<*B=> A <° A"

(iv)y B<‘A= A" <A
Proof:

Since A is EP. and B is symmetric idempotent with rank r, both A and B are EP.. By lemma 1,
R(A)=R(B)=A"A= B"B=B (since A" A is the projection onto R(A) along N(A). Then (i) and (ii)
follow from lemma 2. (iii) and (iv) follow from (i) and (ii) respectively and B=B™ .

Corollary 1:

Let A be EP, ,B be symmetric idempotent with rank r and A<° B . Then A" <® B <" (A")" for any

positive integer n.
Proof:

Since A<° Band by theorem1 (i),B=B* <® A*. Hence, A<® A" follows from theorem 1 (iii).
SinceB is symmetric idempotent and by theoremB?2 of [4p.433],
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A*<°A'A =B'B =B. Thus, A"<°B is true for n=2. Now, A*<° BA = BB'A = AA'A = A<°B . Hence A
<°B. Thus, it is true for n=3. By continuing in this manner we can show that A<°B=>A"<° B for any
positive integer n. B<° (A")" follows from A" <°B and theorem 1(i). Hence the corollary.
Theorem 2:

Let A and B beEP matricessuchthat AB=BAThen A<*B<B"<° A",
Proof:

Since A,Bare EP. and A<® B, by lemma 1,R(A)=R(B)=R(B"). Since Aand B" are

EP. and R(A) = R(B™), by theorem 3 and 4 of [1], AB" is EP. and (AB")" = BA"

Thus, AB* =B"A  (by theorem 2 of [5]) (1)
A< B= AB" <° BB* (by theorem B2 of [4,p.433])
= B"A<‘ BB" (by (1))
= BB < (B"A)" (by theorem 1(i) applied to BB")
=B'B<® A'B
= B'BB" < A"BB"
=B <" A"
Conversely, since A" and B* are EP.. And by theorem 2 of [5], BA" = A"B isof rank I'.In the above
part, replacing A by B™ and B by A" andusing (A")" =A,(B")" =B,

Weget B* < A* = A< B.Hence the theorem.
REMARK 4:

The condition on A and B that they have the same rank, but AB s BAcannot hold in theorem 2.
For example, consider,

12 3 3 500

A=1/3|11 12 10 |: B=|3 6 5

7 12 11 23 3
12 3 -6 3 0 0
A" =1/45 -51 111 -87 [B"=1/151 15 -25
48 -123 111 -3 -15 30

Here AB = BA, however A<° B, A and B are EP, withrank3and B* <® A",
Corollary 2:
Let A and B be EP, matrices and A< B such that AB=BA Then A" <° B" for any

positive integer N.
Proof:

By theorem B2 of [4, p.433] and A<° B we have AB" <° BB™. Since BB" is symmetric
idempotent by theorem 1 (iii), we get

AB" <° (AB")" =BA". Bylemmal, AB'A<° BA"A=B.
Using (1), we see that AAB" <° B.Bylemmal, A*A=B"B.
Hence A’B*B <° B2 = A? <° B2.Thus the corollary is true for n=2.
Now, A®> <° B> = A® <° B?A= AB’ <°* BB* =B?®
(Since A<° B = AB? <° BB?). Thusiitis true for N =3. By continuing in this manner, we can show that
A<® B= A" <° B" forany positive integer N. Hence the corollary.
Theorem 3:

A B E F
Let M = withrank M =rank Aand L = with
C D G H
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rank L =rank E be NxN real matrices suchthat A'B = E"F 2)
Then A<® Eand C <° G.ie, A=REand C=R,G < M <° L with doubly stochastic matrix R of

O R
the form
O R,

Proof:

A B
Since M Z(C Djwith rank M =rank A, where A is kxk.and Dis (n—Kk)x(n—Kk)

matrices, by corollary in [3] it follows that N(A) = N(C), N(A") < N(B*) and D=CA'B
or equivalently, C =CA"A,B=AA'Band D=CA'B.

For L,wehave G=GE'E, F=EE"F and H =GE*F. (3)
A O E O
Now, A<°E and C<°* G <°
cC O G O

=(¢ o[ V)=(e 967
°lc o)< (e W

< M<CL
Hence the theorem.
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