

# The UV spectral window: new means to constrain the stellar populations of early-type galaxies

Alexandre Vazdekis, Núria Salvador-Rusiñol, Jesus Falcón-Barroso, Michael Beasley, Elena Ricciardelli

Early Data Release and Scientific Exploitation of the J-PLUS Survey

Teruel, 2-3 October 2017



#### **Early-Type galaxies**

~ 10-20% of the galaxies but contain ~70% of the stellar mass of the Universe.

Are thought to be the endproducts within a hierarchical galaxy formation framework. In fact they do pose a major challenge to these models



To be constrained by looking at the stellar populations resulting from their Star Formation Histories



Stellar populations: results from detailed spectroscopic studies (mostly from the optical range)

Massive ETGs older and more metal-rich than their lower mass counterparts (downsizing)







and not only formed the bulk of their stars earlier but faster (<1Gyr)



## and the IMF is no longer universal...

Varies with galaxy mass: massive ETGs are enhance in low-mass dwarfs (<0.5Mo), i.e. IMF slope - σ relation (Cenarro+03; Ferreras+13; LaBarbera+13)

Varies locally within massive galaxies: bottom-heavy in the center & MW-like at ~1Re (Martín-Navarro+15a;LaBarbera+16a)

<u>Correlates with metallicity</u>: both global and locally (Martín-Navarro+15b)

It varies with time: from top to bottomheavy (V+96,97;Weidner+13;Ferreras+15)



## Extended E-MILES models

- Based on extensive fully empirical stellar spectral libraries (NGSL, MILES, Indo-US, CaT, IRTF)
- Spectral range:0.17-5µ
- Resolution: FWHM~2.5Å ( $\lambda$ <0.9μ)  $\sigma$  ~ 60 Kms<sup>-1</sup> ( $\lambda$ >0.9μ)



#### **UV line-strength indices**

- Redder indices, e.g. Fe3000 strengthen with age much faster than in the optical
- Some (not all) indices below 3000Å peak around 2-3 Gyr (e.g., Mg2800, BL2402) for metal-rich stellar populations
- Varying behaviours offer new means to constrain the SFHs!





NUV colours cannot be fitted with OLD and METAL-RICH stellar populations





NUV colours cannot be fitted with OLD and METAL-RICH stellar populations, nor the NUV line-strengths





NUV colours & line indices show evidence of 0.1-0.5% mass fraction contribution of 0.1-0.5Gyr component on the top of the old population





NUV colours & line indices show evidence of 0.1-0.5% mass fraction contribution of 0.1-0.5Gyr component on the top of the old population





- NUV colours & line indices show evidence of 0.1-0.5% mass fraction contribution of 0.1-0.5Gyr component on the top of the old population
- These tiny contributions have little impact on the visible: consistent with optical and near-IR results !!!





- Both NUV colours & linestrengths show evidence of 0.1-0.5% mass fraction contribution of a 0.1-0.5Gyr component on the top of the old population
- These tiny contributions have little impact on the visible
- ~1Gyr component ruled out!



Fully consistent results with the optical and near-IR !!!



### This result is fully consistent with residual SF within a passive evolution scenario with "no ex-situ" contributions



Cosmological numerical simulations: major "in-situ" contribution within < 1-3 Re



#### Are these results consistent with the Near-IR?



- V [3.6] & V − [4.5]: Single-burst SSP models are in good agreement with Spitzer colours of massive ETGs.
- SSP models do not match low-mass galaxies: the presence of younger components redden their [3.6] [4.5] colours.

No need for 1~Gyr like components (with large contribution of AGB stars) to fit massive ETGs. Only for low-mass ETGs are required.

#### **Evolution with redshift**

Detailed spectroscopic analysis of individual galaxies in a massive cluster at z~0.8 (similar to Coma):

Massive galaxies are found in the denser regions evolving passively Their lower mass counterparts are located on the cluster perifery and their full spectrum-fitting show more extended SFHs.

Their linestrengths show abundance patterns already similar to Coma



#### **Evolution with redshift**

#### Luminous red galaxies at z~3:

SED fitting: 3Gyr + 0.1-2%(~0.1Gyr) (similar to nearby ETGs, consistent with residual SF)

#### Downsizing already present at z~3







#### LópezCorredoira+17

#### Galaxy 8303



J-PAS filters

[M/H] & Age



#### **Spectral ratios:**

Main challenge: disentangling the age/metallicity degeneracy by means of J-PAS spectrophotometric fitting technique (see PhD thesis of L. Díaz Garcia)



**IMF** 



#### **Spectral ratios:**

Bottom-heavier IMFs with slopes above 2 (Kroupa=1.3), like those of ETGs (giant Es) with  $\sigma$ ~250km/s can be distinguished from those with  $\sigma$ ~100km/s (MW-like)



## Are the <u>J-PAS filters</u> sensitive to these small contributions from young stellar components that go unnoticed in the optical range?

 At z=0 only the very bluest filters are sensitive to young contributions >1%





#### Summary: results from extending the spectral ranges

- The UV is extremely sensitive to very small (< 1%) contributions from stellar populations with ages < 1Gyr.
- Massive ETGs are well fitted with single-burst like old stellar populations all the way from the Near-UV to 5μ. Smaller ETGs show in general more extended SFHs.
- ➤ Tiny mass fractions of 0.1-0.5% of stellar components with ages 0.1-0.5Gyr are required on the top of a dominant old stellar population to be able to fit both the colours and line-strengths in the UV. Such contributions are fully consistent with residual SF.
- Similar result holds for luminous red galaxies out to z~3.
- J-PAS filters:
  - Recovering the IMF and breaking the age/metallicity degeneracy is possible but requires very accurate photometry and state-of-the-art spectro-photometric fitting codes
  - J-PAS filters are particularly suitable for disentangling tiny young stellar components for objects in the redshift regime above 0.2.

