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ABSTRACT

We consider the problem of predicting a function of misclassified binary variables.
We make an interesting observation that the naive predictor, which ignores the mis-
classification errors, is unbiased even if the total misclassification error is high as
long as the probabilities of false positives and false negatives are identical. Other
than this case, the bias of the naive predictor depends on the misclassification dis-
tribution and the magnitude of the bias can be high in certain cases. We correct the
bias of the naive predictor using a double sampling idea where both inaccurate and
accurate measurements are taken on the binary variable for all the units of a sam-
ple drawn from the original data using a probability sampling scheme. Using this
additional information and design-based sample survey theory, we derive a bias-
corrected predictor. We examine the cases where the new bias-corrected predictors
can also improve over the naive predictor in terms of mean square error (MSE).
Key words: binary classification, double sampling, finite population sampling,
misclassification, linkage error, sampling design.

1. Introduction

In many disciplines, misclassified binary data are frequently encountered. For
example, in device testing, Zhong (2002) studied the specificity and sensitivity of an
inaccurate diagnostic test along with a gold standard. Stamey et al. (2007) proposed
a Bayesian estimation of an intervention effect with pre and post misclassified bino-
mial data. Lyles et al. (2004) discussed single-armed studies with misclassification
of a repeated binary outcome. In epidemiology and medical studies, there are plenty
of examples of misclassified binary data. For example, in studying the relationship
between low level radiation exposure and cancer death rate using the Cox propor-
tional hazard model, Krewski et al. (2005) noted that misclassified binary data arise
in form of imperfect linkages caused by the computerized record linkage method.

Bross (1954) was probably the first to observe that classical estimators of the
odds ratio can be heavily biased if the misclassification error in binary data is ig-
nored; see Goldberg (1975) for a follow-up study. Neter et al. (1965) noticed that
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the matching errors pose an obstacle to the usefulness and correct interpretation of
record checks.

There are mainly two different approaches available to correct for the bias in
statistical procedures that arise from misclassified binary data. The key ingredi-
ent in both the approaches is to use additional data to deal with the identifiability
problem. The first approach, pioneered by Tenenbein (1970), employs a double
sampling scheme in which a training data set is collected and the binary responses
are measured by an accurate instrument (in the case of a random subsample from the
original data) or by both an accurate instrument and the same inaccurate instrument
used to collect the original data (in the case of an independent new sample). An ac-
curate instrument results in error-free but expensive binary data. On the other hand,
an inaccurate instrument results in misclassified but relatively less expensive binary
data. Tenenbein’s idea is intuitive and uses both accurate and inaccurate procedures
to yield not only model identifiability but also economical viability.

For the single proportion problem, when a training data is obtained using a
double sampling scheme, Tenenbein (1970) proposed a maximum likelihood esti-
mator and derived its asymptotic variance. Boese et al. (2006) constructed several
likelihood-based confidence intervals for a proportion using data subject to only
false positive misclassification. Rahardja and Zhou (2013) proposed a modification
of the Wald test in presence of misclassified binary data and applied their test to
traffic data. Rahardja and Yang (2015) constructed two likelihood-based confidence
intervals for a binomial proportion parameter using a double-sampling scheme with
misclassified binary data.

When an accurate instrument is unavailable or prohibitively expensive but cer-
tain data related to the cause of misclassification are available, one can develop an
identifiable model in an attempt to correct for the misclassification bias in the esti-
mators and predictors. For the single proportion problem using misclassified data
with no training data, Gaba and Winkler (1992) and Viana et al. (1993) developed
Bayesian approaches with highly informative priors. Bayesian inferences with in-
formative priors were also developed for two-sample problems for two proportions.
For example, see Evans et al. (1996) for risk difference (the difference of two pro-
portions) and Gustafson et al. (2001) for odds ratios. Lahiri and Larsen (2005) used
a mixture model to correct for the bias of the ordinary least square estimators of
regression coefficients due to imperfect linkages.

In this paper, we assume the existence of a training sample such as the one
proposed by Tenenbien (1970) and exploit a design-based sample survey approach
to predict a function of misclassified binary data. Consider a set U of N units. For
unit i ∈ U , we define a binary variable δi taking on values 0 and 1, and a K× 1
vector of measurements yi = (yi1, · · · ,yiK)′. We consider a situation when we do
not observe δi, but instead observe a predictor δ̂i subject to a misclassification error
ei = δ̂i − δi (i ∈ U). In this paper, we are interested in the prediction of Yδ =
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∑i∈U δiyi or a non-linear function of the components of Yδ , say f (Yδ1, · · · ,YδK),
where Yδk = ∑

N
i=1 δiyik, (k = 1, · · · ,K), based on data {(δ̂i,yi), i ∈ S⊆U}.

A natural predictor of Yδ is given by Y
δ̂
(S) = ∑i∈S δ̂iyi. If additional data that

explain the mechanism for misclassification errors ei are available, it is possible
to correct Y

δ̂
(S) for bias due to the misclassification errors. The misclassifica-

tion errors could arise due to a variety of reasons. For example, the data set may
be obtained by merging two or more data sets using a computerized record link-
age method, which may introduce misclassification errors due to incorrect linkages.
There are a large number of papers available in the literature that provide valid infer-
ences under linkage errors when data on linkage error mechanism through matching
weights are available; for a review of record linkage methodology, see Felligi and
Sunter (1969) and Herzog et al. (2007). However, in this paper, we assume that we
do not have any data that explain the misclassification error for all records in i ∈ S.
Thus, even for the special case when the misclassification errors is due to incorrect
linkages, in this paper we deal with a situation that cannot be handled by a regular
record linkage methodology such as the ones given in Scheuren and Winkler (1993)
and Lahiri and Larsen (2005).

In Section 2.1, we first obtain the bias and mean squared error of the natural
predictor for the scaler case K = 1 and then generalize to K ≥ 1. The extent of the
bias clearly depends on the misclassification error distribution. When the positive
and negative misclassification errors are equally likely, Y

δ̂
(S)≡Y

δ̂
turns out to be an

unbiased predictor of Yδ . This is an interesting observation. We propose a method
for correcting the bias in the general case by drawing a probability sample and then
obtaining the misclassification errors ei for all the units in the sample. Using this
extra information, we propose a bias-corrected predictor of Yδ . We obtain an exact
expression for the MSE of the proposed bias-corrected predictor that incorporates
both the sampling and misclassification errors. We also propose an estimator of the
MSE of the new predictor. In Section 2.2, we discuss the estimation of relative risk
estimation as an illustration of the methodology proposed in Section 2.1. In Section
2.3, we evaluate the method proposed in Section 2.1 using a numerical example. In
Section 3, we consider the case S ⊆U . Finally, some conclusions are presented in
Section 4.

2. Prediction of Yδ when S =U

2.1. The Methodology

For the simplicity of exposition, we first consider the scaler case, i.e., K = 1.
We define the bias and mean squared error (MSE) of Ŷδ as follows:

BiasM(Ŷδ ) = EM(Ŷδ −Yδ ),

MSEM(Ŷδ ) = VarM(Ŷδ −Yδ ),
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Table 1. The probability distribution of the misclassification error ei (probabilities
are given within parenthesis)

δi

δ̂i 0 1
0 0 (pi00) -1 (pi01)
1 1 (pi10) 0 (pi11)

where EM and VarM denote the expectation and variance with respect to a misclas-
sification model described by the two-way table given in Table 1.

For unit i ∈U , the table displays the misclassification error distribution, where
pi11 + pi10 + pi01 + pi00 = 1. We call pi10 and pi01 false positive and false negative
probabilities, respectively. We say that we have high, moderate and low linkage
errors if pi10 + pi01 = pi;T (say) is close to 1, 0.5 and 0, respectively.

Theorem 1. Under the misclassification model given in Table 1, we have

(i) BiasM(Ŷδ ) = ∑
i∈U

yi pi;D = YpD (say),

(ii) MSEM(Ŷδ ) = ∑
i∈U

[
pi;T − p2

i;D
]
y2

i ,

where pi;D = pi10− pi01 and pi;T = pi10 + pi01 (i ∈U).

Proof: First note that Y
δ̂
−Yδ = ∑i∈U yiei = Ye, (say). Under the misclassification

model, we have EM(ei)= pi;D and EM(e2
i )= pi;T . Thus, part (i) follows immediately.

To prove part (ii), using CovM(ei,e j) = 0 (i 6= j ∈U), we have

MSEM(Y
δ̂
) = EM

(
∑
i∈U

yiei

)2

−

[
EM(∑

i∈U
yiei)

]2

= EM

(
∑
i∈U

y2
i e2

i +∑
i 6= j

yiy jeie j

)
−

(
∑
i∈U

yi pi;D

)2

=
N

∑
i=1

y2
i pi;T +∑

i6= j
yiy j pi;D p j;D−

(
N

∑
i=1

yi pi;D

)2

.

Part (ii) now follows using algebra.
Throughout the paper, we assume that we do not have any additional data that

explain the misclassification errors ei for all units in U . Thus, we propose to draw
a sample s1 of size n from U , using a probability sampling scheme. For each unit
in the sample, we assume that we can obtain ei with some extra effort. Let πi =
Pr(s1 3 i) denote the first-order inclusion probability of unit i ∈U . We propose to
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estimate Yδ by Ŷ = Y
δ̂
− Ŷπ−1e, where Ŷπ−1e = ∑i∈s1 π

−1
i eiyi. The following theorem

shows that Ŷ is an unbiased predictor of Yδ . Moreover, the theorem provides an
expression for the total MSE of Ŷ , where total MSE incorporate errors due to both
the misclassification and sampling errors.

Theorem 2. Under the sampling design and misclassification model, we have

(i) Bias(Ŷ ) = 0,

(ii) MSE(Ŷ ) = ∑
i∈U

∑
j>i∈U

(πiπ j−πi j)ψi j,

(iii) E
[
mse(Ŷ )

]
= MSE(Ŷ ),

where πi j = Pr(s1 3 {i j}), the second-order inclusion probability, ψi j = π
−2
i y2

i piT +
π
−2
j y2

j p jT−2(πiπ j)
−1yiy j pi;D p j;D, mse(Ŷ )=∑i∈s1 ∑ j>i∈s1 π

−1
i j (πiπ j−πi j)

(
π
−1
i yiei−

π
−1
j y je j

)2.

Proof: Let Ed and Vard denote the expectation and variance with respect to the
sample design. First note that Ed

(
Ŷπ−1e

)
= Ye = Y

δ̂
−Yδ , since Ŷπ−1e is the Horvitz-

Thompson estimator of Ye. To prove part (i) of Theorem 2, note that

Bias(Ŷ ) = E(Ŷ −Yδ ) = E(Y
δ̂
− Ŷπ−1e−Yδ )

= EMEd(Yδ̂
− Ŷπ−1e−Yδ )

= EM(Y
δ̂
−Ye−Yδ )

= EM(0)

= 0,

since Y
δ̂
−Yδ = 0. To prove part (ii), we first apply the iterated formula for variance

to obtain

MSE(Ŷ ) = Var(Ŷ −Yδ )

= EMVard(Ŷ −Yδ )+VarMEd(Ŷ −Yδ )

= EMVard(Yδ̂
− Ŷπ−1e−Yδ )+VarMEd(Yδ̂

− Ŷπ−1e−Yδ )

= EMVard(Ŷπ−1e)+VarM(Y
δ̂
−Ye−Yδ )

= EM

[
∑
i∈U

∑
j>i∈U

(πiπ j−πi j)
yieiy je j

πiπ j

]
,

since Y
δ̂
−Ye−Yδ = 0. Now, part (ii) follows using EM(ei) = pi;D, EM(e2

i ) = pi;T ,
and CovM(ei,e j) = 0, (i 6= j), and algebra. Part (iii) follows using the iterated for-
mula for expectation and the design-unbiasedness of the well-known Yates-Grundy
estimator, Yates and Grundy (1953).
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We now turn our attention to the estimation of f (Yδ ), where Yδ =(Yδ1, · · · ,YδK)
′.

A natural estimator is given by f (Y
δ̂
). Using the Taylor’s series argument, it can be

shown that

EM
[

f (Y
δ̂
)− f (Yδ )

] .
= [∇ f (Yδ )]

′ EM(Y
δ̂
−Yδ ) = [∇ f (Yδ )]

′YpD ,

where ∇ f (Yδ ) is the gradient of f (Yδ ), YpD =(YpD1, · · · ,YpDK)
′ and YpDk =∑i∈U pi;Dyik

(k = 1, · · · ,K). Thus, f (Y
δ̂
) is biased for f (Yδ ). A bias-adjusted estimator is given

by f (Ŷ), where Ŷ = (Y
δ̂1− Ŷπ−1e1, · · · ,Yδ̂1− Ŷπ−1eK)

′.
Theorem 3 below is useful in obtaining the total MSE of f (Ŷ). Define Σ ≡

((σkl)) = Var(Y
δ̂
−Yδ ), the K ×K covariance matrix of Y

δ̂
−Yδ , where σkl =

Cov(Ŷk −Yδk, Ŷl −Yδ l), (k, l = 1, · · · ,K). Note that we can write σkl = (σk+l −
σkk −σll)/2, where σk+l is obtained from Var(Ŷk −Yδk) when we replace yik by
yik + yil (k 6= l, k, l = 1, · · · ,K).

Theorem 3. Under the misclassification model, we have

MSE
[

f (Ŷ)
]
≈ [∇ f (Yδ )]

′
Σ [∇ f (Yδ )] ,

where

σkk = EM

{
∑
i∈U

∑
j>i∈U

(πiπ j−πi j)
(
π
−1
i yikei−π

−1
j y jke j

)2

}
= ∑

i∈U
∑

j>i∈U
(πiπ j−πi j)ψi j;kk,

with
ψi j;kk = π

−2
i pi;T y2

ik +π
−2
j p j;T y2

jk−2(πiπ j)
−1 pi;D p j;Dyiky jk.

We propose to estimate σkk by σ̂kk = ∑i∈s1 ∑ j>i∈s1 π
−1
i j (πiπ j−πi j)

(
π
−1
i yikei−

π
−1
j y jke j

)2
, (k = 1, · · · ,K). Using the property of the Yates-Grundy estimator, we

have Ed(σ̂kk) = ∑i∈U ∑ j>i∈U(πiπ j−πi j)
(
π
−1
i yikei−π

−1
j y jke j

)2 and hence E(σ̂kk) =
EMEd(σ̂kk) = σkk. Thus, σ̂kk is an unbiased estimator of σkk (k = 1, · · · ,K). Thus,
an unbiased estimator of σkl is given by σ̂kl = (σ̂k+l − σ̂kk− σ̂ll)/2, (k 6= l, k, l =
1, · · · ,K). Thus, an approximately unbiased estimator of MSE

[
f (Ŷ)

]
is given by

mse
[

f (Ŷ)
]
=
[
∇ f (Ŷ)

]′
Σ̂
[
∇ f (Ŷ)

]
.

2.2. An illustrative example: bias adjusted SMR and relative regression coef-
ficients in the presence of linkage errors

There has been an increasing use of computerized record linkage (CRL) method
in various studies such as historical cohort mortality studies, cancer studies, political
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studies and crime studies, in several countries, Howe (1985, 1998), Bennell et al.
(2012), Giraud-Carrier et al. (2015). With very little effort, the method enables us
to collect a large amount of data by linking records of human exposure to environ-
mental hazards with records on health status. Since CRL utilizes already existing
databases, it saves a substantial amount of money to collect new data. Various gov-
ernment agencies have developed sophisticated software to implement CRL, usually
attaching weights reflecting the likelihood of a match to pairs of records.

Fair (1989) listed a number of health studies where environmental exposure data
were linked to the Canadian Mortality Data Base (CMDB). Krewski et al. (2005)
provided an example where National Dose Registry (NDR) of Canada has been
linked to CMDB in order to study the associations between excess mortality due to
cancer and occupational exposure to low levels of ionizing radiation. In Beauchamp
et al. (2011), a sample of 2000 participants from a cohort study was linked to a state-
wide hospitalisations dataset in Victoria, Australia using the national health insur-
ance (Medicare) number and demographic data as identifying variables. Kabudula
et al. (2014) applied deterministic and probabilistic record linkage approaches to
mortality records from 2006 to 2009 from the Agincourt Health and Demographic
Surveillance Systems (HDSS) to those in the national civil registration (CR) in
South Africa.

In a cohort mortality study, CRL method introduces two types of linkage errors.
The Type I linkage error (usually called a false positive) occurs when a member
of the cohort who is alive is incorrectly identified as dead. The Type II (or a false
negative) error occurs when a member of the cohort who is dead is incorrectly iden-
tified as alive. Krewski et al. (2005) investigated the impact of linkage errors on
estimates of epidemiological indicators of risk such as standardized mortality ratio
(SMR) and the parameters of relative risk regression model. Their analytical and
simulation results indicate that these indicators are, in general, subject to biases and
additional variabilities in the presence of linkage errors.

In this subsection, we use the notation used in Krewski et al. (2005). In the
analysis of cohort studies, mortality is usually characterized by the hazard function
which relates death rate as a function of time. Denoting T the time of death, the
hazard function at time u is defined as

λ (u) = lim
4u↓0

Pr{u≤ T < u+4u | T ≥ u}
4u

.

The corresponding survival function and the probability density function are given
by S(u) = exp

(
−
∫ u

0 λ (t)dt) and f (u) = λ (u)S(u), respectively. Let λi(u) and Zi(u)
be the hazard function for a specific cause of death and the value of the vector of
covariates at time u for the ith member of the cohort, i = 1, · · · ,N. The relative risk
regression is then described as

λi(u) = λ
∗(u)γ{zi(u)′β},
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where λ ∗(u), value of λi(u) when β = 0, is known as the baseline hazard and γ is a
positive function of the covariates and β .

Let t0
i and t1

i be the age at the time of entry into the study and time of loss to
follow up for the ith member of the cohort i = 1, · · · ,N. Let δi = 1 if the ith indi-
vidual has died at the time of loss to follow-up and δi = 0 otherwise. The likelihood
based on the relative risk regression model is given by L = ∏

N
i=1 f (ti)δiS(ti)1−δi . The

corresponding log-likelihood is given by

logL =
N

∑
i=1

{
δilog

(
γ{zi(t1

i )
′
β}
)
−
∫ t1

i

t0
i

γ{zi(u)′β}λ ∗(u)du

}
.

The maximum likelihood estimate β̂ of β is obtained as a solution of ∂ logL
∂β

= 0.

Note that when zi(u) = 1, γ{β̂} reduces to the standardized mortality rate given
by SMR = OBS/EXP, where OBS = ∑

N
i=1 δi = observed number of death before

time to follow-up and EXP = ∑
N
i=1 ei = expected number of deaths, with ei =∫ t1

i
t0
i

λ ∗(u)du.

Due to time-dependent covariates zi(u), the integral must be re-evaluated at each
iteration of the maximization process. Thus, it is very computer-intensive, specially
when the cohort size is large. Breslow et al. (1983) simplified the likelihood by
assuming zi(u) = z j whenever the ith cohort member passes through the state S j

( j = 1, · · · ,J). The states can be defined by cross-classification of the covariates of
interest. In this case, the log-likelihood can be written as

logL =
N

∑
i=1

{
d jlog(γ{z′jβ})− γ{z′jβ}e j

}
,

where e j = ∑
N
i=1
∫
[zi(u)∈S j]

λ ∗(u)du is the contribution to the expected number of
deaths from all person-years of observation in the state S j and d j is the total number
of death in that state. The maximum likelihood estimate of β is then obtained as a
solution to the following equation:

J

∑
i=1

∂Λ j(β )

∂β

{
d j−exp{Λ j(β )}e j

}
= 0,

where Λ j(β ) = log(γ{z j′β}).

Note that the results of Section 2.1 are valid for each state S j, j = 1, · · · ,J. We
introduce an additional suffix j to indicate that the parameter or estimator refers to
the state S j, j = 1, · · · ,J. For example, we shall have Yj in place of Y . Note that with
Y1i j = 1 and Y0i j = 0, Yj reduces to d j of Krewski et al. (2005). We have Yj = e j
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if we choose Y1i j =
∫ t1

i j

t0
i j

λ ∗(u)du and Y0i j =
∫ t2

i j

t0
i j

λ ∗(u)du. Consider f (X ,Y ) = X/Y

with X = ∑
J
j=1 d j = d and Y = ∑

J
j=1 e j = e. With these choices, f (X ,Y ) = SMR.

Suppose a sample of size n j is selected using a probability sampling scheme
from each state S j , j = 1, · · · ,J. Let πi( j) and πik( j) denote the first order and
second order inclusion probabilities in state S j , j = 1, · · · ,J. Using the results
of Section 2.1, SMR can be adjusted for its bias due to linkage errors. The bias-
corrected SMR is given by ŜMR = (d̂/ê), where d̂ = ∑

J
j=1 d̂ j, ê = ∑

J
j=1 ê j, ∆̂d j =

∑i∈s π
−1
i( j)∆δi( j), ∆̂e j = ∑i∈s π

−1
i( j)∆δi( j)

∫ t2
i j

min(t1
i j,t

2
i j)

λ ∗(u)du, d̂ j = dL
j − ˆ∆d j and ê j =

eL
j +

ˆ∆e j.
An application of Theorem 3 provides us with an estimator of the variance of

ŜMR−SMR. It is given by

var(ŜMR−SMR)= ê−2 [var(d̂−d)+ d̂2ê−2var(ê− e)+2d̂ê−1cov(d̂−d, ê− e)
]
,

where var(d̂−d)=∑
J
j=1 v j with v j =∑

n j
i ∑

n j
k>i πik( j)

−1(πi( j)πk( j)−πik( j))(π
−1
i( j)∆δi( j)−

π
−1
k( j)∆δk( j))

2. We can define var(ê− e) and cov(d̂−d, ê− e) similarly.

Let us now consider estimation of the regression coefficient β in the relative risk
regression model. First, we propose to adjust the log-likelihood given in Krewski et
al. (2005). We shall find the estimator of β as a solution, say, β̂ , of the following
score function

Q = Q(β ;(d̂ j, ê j), j = 1, · · · ,J) =
J

∑
j=1

∂Λ j(β )

∂β

{
d̂ j−exp{Λ j(β )}ê j

}
= 0.

Since E
{

Q(β ;(d̂ j, ê j), j = 1, · · · ,J)−Q(β ;(d j,e j), j = 1, · · · ,J)
}
= 0, we can ex-

pect β̂ to perform well. The covariance matrix of the proposed estimator, β̂ , can be

estimated by
[

∂Q
∂β

]2

β=β̂

.

2.3. Evaluation

In this subsection, we consider the prediction of Y = ∑
N
i=1 δi. A naive predictor

of Y that ignores the misclassification errors is given by Ŷ = ∑
N
i=1 δ̂i. Under the

misclassification error model of Section 2.1 with pikl = pkl, (i = 1, · · · ,N; k, l =
0,1), the misclassification error bias of Ŷ can be obtained as

BiasM(Ŷ ) = N(p10− p01) = Nb,

where b = p10− p01. Thus, Ŷ is positively (negatively) biased if the false posi-
tive probability is more (less) than the false negative probability. It is interesting to
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note that there is no bias in Ŷ due to misclassification even if there is a large mis-
classification error as long as the false positive and false negative probabilities are
identical.

Using the theory developed in Section 2.1, we can correct the misclassification
bias of Ŷ by drawing a simple random sample (SRS) of size n from U and deter-
mining the status of each sampled unit for misclassification error. We propose the
misclassification bias-corrected predictor of Y as

Ỹ = Ŷ − B̂ias,

where

B̂ias =
N
n

n

∑
i∈s

ei.

Evidently, the proposed predictor is unbiased with respect to the combined dis-
tribution of misclassification and sampling errors. But, the proposed method intro-
duces some costs. Also, the bias correction is expected to increase the variability.
Thus, we study how the above bias-correction affects the mean squared error that in-
corporates both the misclassification and sampling errors. We define the total mean
square error of a predictor Ŷ of Y as

MSE(Ŷ ) = E(Ŷ −Y )2,

where the expectation E is with respect to the SRS and the multinomial misclassifi-
cation error model. After considerable algebra, we obtain

MSE(Ŷ ) = N(a+Nb2),

MSE(Ỹ ) =
N2

n
(1− f )a,

where a = p10(1− p10)+ p01(1− p01)+2p10 p01 and f = n
N .

We define the relative improvement in MSE (MSERI) as follows:

MSERI =
MSE(Ŷ )−MSE(Ỹ )

MSE(Ỹ )
.

It can be shown that

MSERI = [
n

(1− f )
× b2

a
]− 1−2 f

1− f
, (1)

where a > 0, 0 < f < 1 and 0 < b2 < 1. In order for the bias-corrected predictor
Ŷ to improve on the naive predictor Ŷ in terms of MSE, b must satisfy one of the
following two conditions:

b >

√
(
1
n
− 2

N
)a = b2 (2)
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or

b <−
√

(
1
n
− 2

N
)a = b1. (3)

In many situations, the sampling fraction f is negligible in which case MSREI ≈
n b2

a .
Define the relative bias (RB) as

RB(Ŷ ) =
Nb
E(Y )

=
Nb

N(p11 + p01)
=

p10− p01

p11 + p01
.

Since both MSRI and RB depend on N only through f , we arbitrarily fix N and
vary f . For a numerical comparison, we fix N = 100. Table 2 displays RB(Ŷ ),
MSE(Ŷ ), MSE(Ỹ ) and MSERI for f = 0.05, 0.10 and two levels of misclassifica-
tion errors (LE): High (H) and Moderate (M). Table 3 reports the results for low
misclassification errors (L). First of all, we notice that the relative bias of Ŷ depends
on the configurations of false positive (p10) and false negative (p01) probabilities.
Clearly, a high relative bias in Ŷ is possible. In this case, the bias-corrected estima-
tor Ỹ can have substantially smaller MSE than Ŷ even when the sampling fraction
f is small. When the relative bias in Ŷ is small, one needs much higher sampling
fraction for Ỹ to improve on Ŷ in terms of mean squared error.

Table 2. RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for high and medium misclassi-
fication errors

n f LE p10 p01 b2 b b1 RB(Ŷ ∗) MSE(Ŷ ∗) MSE(Ŷ ) MSERI
H 0.80 0.15 0.31 0.65 -0.31 3.71 4277.75 1002.25 3.27
H 0.75 0.15 0.31 0.60 -0.31 3.00 3654.00 1026.00 2.56
H 0.60 0.10 0.28 0.50 -0.28 3.33 2545.00 855.00 1.98
H 0.10 0.60 0.28 -0.50 -0.28 -0.77 2545.00 855.00 1.98
H 0.20 0.65 0.34 -0.45 -0.34 -0.60 2089.75 1230.25 0.70

5 0.05 H 0.50 0.35 0.39 0.15 -0.39 0.38 307.75 1572.25 -0.80
H 0.30 0.60 0.38 -0.30 -0.38 -0.49 981.00 1539.00 -0.36
H 0.45 0.25 0.34 0.20 -0.34 0.44 466.00 1254.00 -0.63
M 0.10 0.40 0.27 -0.30 -0.27 -0.43 941.00 779.00 0.21
M 0.10 0.35 0.26 -0.25 -0.26 -0.45 663.75 736.25 -0.10
M 0.35 0.20 0.31 0.15 -0.31 0.27 277.75 1002.25 -0.72
M 0.15 0.35 0.29 -0.20 -0.29 -0.33 446.00 874.00 -0.49
H 0.80 0.15 0.21 0.65 -0.21 3.71 4277.75 474.75 8.01
H 0.75 0.15 0.21 0.60 -0.21 3.00 3654.00 486.00 6.52
H 0.60 0.10 0.19 0.50 -0.19 3.33 2545.00 405.00 5.28
H 0.10 0.60 0.19 -0.50 -0.19 -0.77 2545.00 405.00 5.28
H 0.20 0.65 0.23 -0.45 -0.23 -0.60 2089.75 582.75 2.59

10 0.10 H 0.50 0.35 0.26 0.15 -0.26 0.38 307.75 744.75 -0.59
H 0.30 0.60 0.25 -0.30 -0.25 -0.49 981.00 729.00 0.35
H 0.45 0.25 0.23 0.20 -0.23 0.44 466.00 594.00 -0.22
M 0.10 0.40 0.18 -0.30 -0.18 -0.43 941.00 369.00 1.55
M 0.10 0.35 0.18 -0.25 -0.18 -0.45 663.75 348.75 0.90
M 0.35 0.20 0.21 0.15 -0.21 0.27 277.75 474.75 -0.41
M 0.15 0.35 0.19 -0.20 -0.19 -0.33 446.00 414.00 0.08
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Table 3. RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for low misclassification errors
n f p10 p01 b2 b b1 RB(Ŷ ∗) MSE(Ŷ ∗) MSE(Ŷ ) MSERI
5 0.05 0.07 0.03 0.13 0.04 -0.13 0.05 25.84 186.96 -0.86

0.07 0.13 0.19 -0.06 -0.19 -0.11 55.64 373.16 -0.86
10 0.10 0.07 0.03 0.09 0.04 -0.09 0.05 25.84 88.56 -0.71

0.07 0.13 0.13 -0.06 -0.13 -0.11 55.64 176.76 -0.69
15 0.15 0.07 0.03 0.07 0.04 -0.07 0.05 25.84 55.76 -0.54

0.07 0.13 0.10 -0.06 -0.10 -0.11 55.64 111.29 -0.50
30 0.30 0.07 0.03 0.04 0.04 -0.04 0.05 25.84 22.96 0.13

0.07 0.13 0.05 -0.06 -0.05 -0.11 55.64 48.83 0.21

Suppose p10 = p01, then b = 0. Hence, RB(Ŷ ) will always be zero. Also, the
MSERI will be a function of the sampling fraction f as shown below

MSERI =−1−2 f
1− f

. (4)

Figure 1 displays the MSERI for different choices of f .
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Figure 1. MSE Relative Improvement when p10 = p01

3. Prediction of Yδ when S⊂U

In this subsection, we consider prediction of a finite population total Y = ∑
N
i=1 δi

using a sample (s1) of size n1 drawn by the probability proportional to size with
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replacement (PPSWR) sampling design, where size is defined as:

φi =
xi

∑
N
i=1 xi

,

where xi > 0 known, i ∈U . A natural estimator of Y is given by Ŷ ∗ = ∑i∈s1 ωiδ
∗
i ,

where δ ∗i is observed value of δi with misclassification error and ωi =
1

n1φi
, i ∈ s1.

Under the PPSWR sample design and the multinomial classification model of
Section 2.3, a heavy algebra yields

Bias(Ŷ ∗) = Nb

and

MSE(Ŷ ∗) =
1
n1

N

∑
i=1

1
φi

p1+−
N
n1

p1+{1+(N−1)p1+}+N[a+b2(N−1)],

where p1+ = p11 + p10 and p+1 = p11 + p01.

In order to correct the bias of the predictor Ŷ ∗, a second sample, say s2, of size
n2 is drawn from the first sample s1 using a SRS design and true δi is measured
without misclassification error. We define a bias-corrected predictor Ŷ as follows:

Ŷ = Ŷ ∗− B̂ias,

where
B̂ias =

n1

n2
∑
i∈s2

ωi(δ
∗
i −δi).

It is easy to show that Ŷ is an unbiased predictor of Y . Using heavy algebra, the
exact MSE of Ŷ under different sources of uncertainty is obtained as follows:

MSE(Ŷ ) =
1
n1
{−2N p11 +

N

∑
i=1

1
φi
[p+1 +a

1
f2
(1− f2)]

−N p1+
1
f2
(1− f2)[1+ p1+(N−1)]},

where f2 = n2
n1

.

It can be shown that

MSE(Ŷ ∗)−MSE(Ŷ ) =

1
n1
{

N

∑
i=1

1
φi
[b− a(1− f2)

f2
]−N p1+[1+ p1+(N−1)− 1

f2
(1− f2)[1+ p1+(N−1)]]

+2N p11}+N[a+b2(N−1)]. (5)
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The expression for MSERI is obtained by dividing Eq.(5) by MSE(Ŷ ). Also, we
can show that

RB(Ŷ ∗) =
Nb
E(Y )

=
Nb

N(p11 + p01)
=

b
p11 + p01

.

Tables 4, 5 and 6 display RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for high,
medium and low misclassification probabilities given by

PH =


0.10
p10

0.80− p10
0.10

 ,PM =


0.25
p10

0.50− p10
0.25

 ,PL =


0.40
p10

0.20− p10
0.40

 ,

respectively.

Different configurations of the high, medium and low misclassification errors
are considered by varying the false positive probability p10. For each case, we
consider f2 = 0.2, N = 1000 when n1 = 300, and N = 100,000 when n1 = 10,000.

Table 4. RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for high misclassification errors
n1 p10 Bias(Ŷ ∗) RB(Ŷ ∗)(%) MSE(Ŷ ∗) MSE(Ŷ ) MSERI(%)

0.10 -600 -75.00 387092.90 535198.40 -27.67
0.20 -400 -57.14 200519.40 521137.70 -61.52
0.30 -200 -33.33 93799.32 506810.60 -81.49

300 0.40 0 0.00 66932.65 492217.10 -86.40
0.50 200 50.00 119919.40 477357.20 -74.88
0.60 400 133.33 252759.50 462230.90 -45.32
0.70 600 300.00 465453.00 446838.20 4.17
0.10 -60000 -75.00 3615422483 308209682 1073.04
0.20 -40000 -57.14 1623101725 300300437 440.50
0.30 -20000 -33.33 430752967 292311194 47.36

10000 0.40 0 0.00 38376209 284241951 -86.50
0.50 20000 50.00 445971451 276092709 61.53
0.60 40000 133.33 1653538694 267863468 517.31
0.70 60000 300.00 3661077936 259554228 1310.53

Table 5. RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for medium misclassification
errors

n1 p10 Bias(Ŷ ∗) RB(Ŷ ∗)(%) MSE(Ŷ ∗) MSE(Ŷ ) MSERI(%)
0.05 -400 -57.14 200219.4 360416.3 -44.45
0.15 -200 -33.33 93499.32 346089.2 -72.98

300 0.25 0 0.00 66632.65 331495.7 -79.90
0.35 200 50.00 119619.4 316635.8 -62.22
0.45 400 133.33 252459.5 301509.5 -16.27
0.05 -40000 -57.14 1623071725 207789527 681.11
0.15 -20000 -33.33 430722967 199800284 115.58

10000 0.25 0 0.00 38346209 191731041 -80
0.35 20000 50.00 445941451 183581799 142.92
0.45 400 133.33 1653508694 175352558 842.96
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Table 6. RB(Ŷ ∗), MSE(Ŷ ∗), MSE(Ŷ ) and MSERI for low misclassification errors
n1 p10 Bias(Ŷ ∗) RB(Ŷ ∗)(%) MSE(Ŷ ∗) MSE(Ŷ ) MSERI(%)

0.01 -180 -30.51 86919.25 183920.5 -52.74
0.05 -100 -18.18 69784.31 178104.4 -60.82

300 0.10 0 0.00 66332.65 170774.4 -61.16
0.15 100 22.22 82844.34 163377.7 -49.29

0.199 198 49.38 118394.2 156064.4 -24.14
0.01 -18000 -30.51 355456551 106486050 233.81
0.05 -10000 -18.18 134508088 103264753 30.26

10000 0.10 0 0.00 38316209 99220131 -61.38
0.15 10000 22.22 142117330 95155510 49.35

0.199 19800 49.38 437875637 91152778 380.38

The results for MSE improvement achieved by the bias-corrected estimator over
the naive estimator for different situations are plotted in Figures 2 and 3.
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Figure 2. MSE Relative Improvement for f2 = 0.2, N = 1000 and n1 = 100, 200,
300
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Figure 3. MSE Relative Improvement for f2 = 0.2, N = 10,000 and n1 = 10,000,
20,000, 30,000

4. Conclusions

Our research shows that it is possible to correct bias due to misclassification in
predictors by drawing a probability sample from the original data, determining the
status of misclassification error for the sample and then applying the standard sam-
ple survey method. The bias-correction increases variance in the predictor, which
impacts the mean squared error. The improvement depends on the distribution of
the misclassification error and the sampling fraction in the drawn sample. If addi-
tional data that generates the misclassification error are available as in the record
linkage literature, it may be possible to improve on the proposed method, we plan
to investigate this direction in the future.
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