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ABSTRACT
Mobile application offloading, with the purpose of extend-
ing battery lifetime and increasing performance has been
intensively discussed recently, resulting in various different
solutions: mobile device clones operated as virtual machines
in the cloud, simultaneously running applications on the mo-
bile device and on a distant server, as well as flexible solu-
tions dynamically acquiring other mobile devices’ resources
in the user’s surrounding. Existing solutions have gaps in
the fields of data security and application security. These
gaps can be closed by integrating data usage policies, as well
as application-flow policies. In this paper, we propose and
evaluate a novel approach of integrating XACML into exist-
ing mobile application offloading-frameworks. Data owners
remain in full control of their data, still, technologies like
device-to-device offloading can be used.

CCS Concepts
•Information systems→Mobile information process-
ing systems; Web applications; •Security and pri-
vacy → Web application security; •Human-centered
computing→Ubiquitous and mobile computing; •Social
and professional topics → Privacy policies;

Keywords
Mobile Application Offloading; Mobile Cloud Computing;
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1. MOTIVATION, VISION, AND GOALS
Mobile devices are excessively used to complete all kinds of
tasks throughout the day, regardless if tasks are work related
or private tasks. The usage of mobile devices has already
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overtaken the usage of desktop computers in 20111. Since
then, more and more applications like office apps or image
processing apps are ported to mobile devices as native appli-
cations or using cross-platform frameworks. Recently, it was
not possible to execute these computationally intensive ap-
plications on mobile devices due to very limited computing
resources. The ever increasing power, larger displays, and
enhanced sensors also enable the execution of these appli-
cations on mobile devices. Reasons for this trend are clear:
mobile devices enable access to information independent of
users’ location, at any time. Still, a blocking factor on high-
end mobile devices is battery life. Heavily utilizing the mo-
bile device’s CPU for a longer period of time, drains a lot of
battery and requires the user to recharge its phone multiple
times a day. To counter this issue, technologies like Surro-
gate Computing [?] or Mobile Cloud Computing (MCC) [?]
were introduced. These technologies use computational re-
sources from other devices or clouds to save energy and im-
prove performance.

All existing frameworks targeting these technologies achieve
good results in their specific environment. Nevertheless, all
of them contribute on how to perform the actual offload-
ing operation and how to identify application-parts suitable
for offloading. Definitely, these are important aspects of an
application offloading framework, but other important fac-
tors were not considered so far: maintaining data security
and control of the data owner over its data and involved pro-
cesses. Especially in corporate use cases, strict requirements
on data security and data-flow adhere. Assurance is required
that sensitive data is not transferred to untrusted devices,
or outside of specific regions. Furthermore, complete and
explicit control of the data-flows is required.

Contributions. The contributions of this work are twofold.
First, a flexible and security-focused architecture for mobile
application offloading frameworks is introduced. The ar-
chitecture closes the gaps identified during examination of
existing frameworks. Second, the implementation of an ex-
isting framework is extended and new components are intro-
duced, to realize a mobile-application offloading-framework
which gives data- and process owners full control.

Acknowledgments. This work has been supported by the
EU H2020 Programme under the SUNFISH project, grant
agreement N.644666.

1
http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011
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2. BACKGROUND AND RELATED WORK
The resource augmentation of devices is being explored for
several years now. Multiple approaches have emerged with
different capabilities. All have one goal in common: Enable
the usage of computational power of devices in the user’s
surroundings or of distant devices/clouds for the purpose of
performance improvement or energy saving.

Pioneer work in the field of sharing resources among sur-
rounding devices was first performed by Satyanarayanan [?]
in 2001. He introduced surrogate computing concept, where
surrogates in the user’s proximity are used to outsource com-
putations. With the rise of cloud computing, soon also the
mobile cloud computing (MCC) paradigm emerged. MCC
refers to the integration of cloud computing in the mobile
environment to increase performance. Shiraz et al. [?] de-
scribe MCC as a new paradigm to extend the capabilities of
devices with constrained resources. The next logic evolution
step is introduced by Reiter and Zefferer [?] as Cloud-based
Mobile Augmentation (CMA) and by Sanaei et al. [?] as
Hybrid Mobile Cloud Computing (HMCC). These concepts
make use of both former approaches: proximate devices and
distant cloud resources.

Most existing solutions use the MCC approach. Cuervo et
al. [?] developed MAUI as one of the first solutions. Their
main goal is to extend battery lifetime by identifying and
offloading computational expensive parts, using a developer
assisted approach. In contrast to MAUI, which operates on
method level granularity, the CloneCloud framework intro-
duced by Chun et al. [?] provides a virtual clone of the
user’s mobile system in the cloud. Computational expen-
sive parts are automatically identified and are executed in
the cloud. This approach takes the burden off the devel-
oper, but these approaches require a lot of effort to keep
the application state on the user’s device and the clone syn-
chronized. This issue is tackled by Kosta et al. [?] in their
ThinkAir framework, which combines the approaches used
by MAUI and CloneCloud. ThinkAir induces an additional
compilation step where the code for the remote execution
is generated. Reiter and Zefferer [?] introduce POWER, a
HMCC framework as the only approach which also tackles
the issue of interoperability, by focusing on cross-platform
development frameworks.

Figure 1: Generalized framework architecture

A consolidated architecture of the existing frameworks is
shown in Figure 1. Frameworks generally make a clear dis-
tinction between four components: The Profiler provides
performance values of the application execution and the ap-
plication context, like the available bandwidth, the current
latency to remote computing units, or the current battery

status. The goal of the Decision Subsystem is to arrive at
a final decision whether a method call should be offloaded
or executed locally. For this process, the profiler values are
used and applied to the Cost Model, which determines if of-
floading is beneficial. The focus of cost models varies from
achieving high energy savings, to increasing the overall per-
formance of the executed application. The Offloading En-
gine is responsible for the technical offloading process.

The gap in this architecture is that data- and application
security is not considered by any of the components. The
goal of this work is to respect data- and application secu-
rity already on an architectural level and give the data- and
process owners full control of the process flows.

3. A DATA SECURITY FOCUSED HMCC
ARCHITECTURE

From a data owner’s perspective the optimal situation is to
completely decouple the decision on where to execute an of-
floaded task, from the actual application logic. This goal
is similar to the goal of decoupling access control decisions
from the application logic, which is the prime use case of
the eXtensible Access Control Markup Language (XACML).
XACML enables to write policies, evaluated on a set of pro-
vided attributes. Beside a XML-based access control policy
language, the XACML specification provides best practices
for the enforcement of the defined policies. Without going
into the very details, the following components are intro-
duced: The Policy Enforcement Point (PEP) is the connec-
tion point for applications, retrieves decisions from the Pol-
icy Decision Point (PDP), and enforces these decisions. The
PDP receives policy decision requests from the PEP, with
relevant attributes attached, and gathers policies matching
the attributes from the Policy Administration Point (PAP).
It then evaluates the policies on the received decision request
and gathers any missing attributes from the Policy Informa-
tion Point (PIP) if necessary. The result can be linked to
obligations which need to be fulfilled by the PEP before the
result is passed to the application.

3.1 Requirements
XACML infrastructures are already deployed in many cor-
porations for access control to certain services and applica-
tions. As Cuervo et al. [?] show, the latency to the remote
server has a significant impact on the energy consumption of
mobile devices and on the performance of offloaded parts of
an application in HMCC scenarios. Therefore, to make use
of the full potentials of HMCC, it is required that mobile de-
vices stay in complete control of the offloading operation and
only use the XACML decision infrastructure infrequently, to
acquire allowed actions. To achieve this goal, and to be able
to successfully and effectively transform HMCC operations
to XACML, the following requirements need to be fulfilled
by the policy infrastructure beyond access control:

1. Policies need a flexible way of specifying the targeted
input data range.

2. Policies need to be able to specify nodes, eligible for
the offloading operation in a general way. Concrete
nodes available at runtime are not known.
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Figure 2: Security aware HMCC architecture

3. Caching of policy decisions needs to be enabled by us-
ing a time-based validity constraint.

4. Policy decisions need to be cryptographically bound
to a trusted policy decision infrastructure to prohibit
forged decision responses.

3.2 Architecture
Our novel HMCC architecture extensions are highlighted in
Figure 2 and take the defined requirements from Section 3.1,
as well as an integration into existing policy infrastructures
into account. The figure shows three major extensions. The
decision subsystem is supported by a policy enforcement
component, which corresponds to the PEP in a XACML
setup. Furthermore, a device attestation component is in-
troduced that is capable of assessing if another device ful-
fills security requirements defined by the policies. The data
owner’s already existing policy decision infrastructure is in-
cluded into the HMCC framework by introducing the HMCC
adapter component. The HMCC adapter transforms re-
quests received from the client side policy enforcement com-
ponent, to a XACML representation and returns the verbose
XACML responses in an appropriate format. PDP responses
are in XML format probably with heavy XML signatures at-
tached. Processing XML is CPU and memory intensive [?,
?] compared to JSON. The HMCC adapter acts as a con-
verter from the proposed JSON representation, especially
targeting the HMCC use case to XACML and vice-versa for
the response.

A sample HMCC adapter request, targeting frameworks us-
ing method-level approaches is shown in Listing 1. This
request is generated by the policy enforcement component
in the client framework during the decision process if no
matching cached decision response is available.

Listing 1: HMCC adapter request

{”id ”: ”unique−id ” ,
”package−name ”: ”package−name” ,
”app l i ca t i on−ve r s i on ”: ”0 . 0 . 1 ” ,
”method−name ”: ”method−name” ,
”parameter−va lues ”: {
”arg1 ” : 10 , . . . } . . . }

The request contains parameters to uniquely identify the
request and to uniquely identify the current part of the
application considered for offloading with relevant associ-
ated input data. The structure of this request can be freely
adapted, depending on the actual used framework and of-
floading approach. The decision, if a parameter value is

included in the policy decision request is up to the offload-
ing framework, which needs to provide measures to identify
relevant parameters.

The response received from the HMCC adapter after con-
verting the XACML decision response to the JSON for-
mat is illustrated in Listing 2. It contains information on
where an execution is allowed in general terms: specific, no-
requirement, trusted. For strict environments, where the pol-
icy decision infrastructure needs explicit control where an
execution takes place, the specific execution mode can be
used. Execution is only allowed on computing nodes listed
in the response, identified with a matching certificate. If the
currently considered application part and input data are un-
critical, the no-requirement execution mode can be used. In
this case, the selection of an appropriate node is up to the
client-side offloading framework. Using the trusted execu-
tion mode, the decision infrastructure relies on device at-
testation services to determine if a remote device is trusted
and can be used to offload critical operations. In contrast
to the first option, this method adds flexibility to the sys-
tem because (a) the decision infrastructure does no need
to be aware of all computing nodes, and (b) the client-side
offloading framework can dynamically react to changing sys-
tem conditions and can use the best performing node in its
surrounding without issuing policy decision requests multi-
ple times. This targets the second requirement defined in
Section 3.1.

Listing 2: HMCC adapter response

{”id ”: ”unique−id ” ,
”execut ion−mode ”: ” t rus t ed ” ,
”nodes ”: [

{ ”endpoint ”: ” c l i e n t i d e n t i f i e r ” ,
” i d en t i t y ”: ” c e r t i f i c a t e f i n g e r p r i n t ”} ,

. . . ] ,
” o b l i g a t i o n s ”: [ . . . ] ,
” v a l i d i t y ”: {
”val id−f o r ”: <time−based v a l i d i t y cons t ra in t >,

” c on s t r a i n t s ”: [ . . . ] } }

The HMCC adapter’s response also contains validity con-
straints targeting time-based validity and validity restric-
tions focused on the input data. Time-based validity is real-
ized in a straight forward way, by providing a validity time-
span. Validity constraints are realized using a predicate lan-
guage for JSON, based on the draft of JSON-predicate2. Us-
ing this approach, the creators of policies can express client-
side validity terms. Under these terms, the policy decision
does not need to be retrieved again. These measures target
the first and third requirement as defined in Section 3.1 and
enable an effective client-side caching of policy decisions.
With policies and constraints matching wide ranges of pro-
cesses and input data, the number of required requests to
the policy decision infrastructure is minimized.

To target the fourth requirement from Section 3.1, policy
decisions are not transmitted in plain but are signed us-
ing JSON Web Token (JWT) [?] technology. In contrast
to XML signatures, JWT offers a lightweight signature ap-
proach with little overhead, best suited for resource-constrained
devices.

Another advanced feature is the direct inclusion of XACML
obligations. This can be used to e.g. offload an uncritical

2https://tools.ietf.org/id/draft-snell-json-test-01.html
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operation on sensitive data to untrusted nodes, by apply-
ing encryption or data masking on the sensitive data before
performing the offloading operation. This goes beyond the
scope of this paper, therefore it is not considered in detail
here.

4. IMPLEMENTATION
We reviewed existing frameworks to find a candidate that fits
our requirements best and can be used to prove the feasibil-
ity of our proposed extensions. We think that POWER [?]
is a suitable and future-proof candidate due to its modular
approach.

In the POWER framework, developers apply annotations on
source code level, to define which parts of the application
should be considered for offloading by the offloading frame-
work. This approach is extended to additionally provide in-
formation on relevant input data. The enhanced annotation
is shown in Listing 3. It includes a listing of parameters to
be transmitted to the PDP. Based on these attributes, pol-
icy administrators can create targeted policies and JSON
predicates. Furthermore, the developer specifies which (pre-
defined) decision point the framework should use.

Listing 3: Policy-aware annotation

@Off loadWithPol ic ies (
parametersToSend : [ ’ arg1 ’ , ’ arg2 ’ , ’ arg3 ’ ] ,
cookiesToSend : [ ’ cookie−name1 ’ ] ,
d e c i s i onPo in t : ’ root ’ ,
methodName : ’ o f f l oadWithPo l i c i e s ’ ,
dec i s ionPointUnreachab le : ’ l o ca l ’ )

Future o f f l o adWi thPo l i c i e s ( arg1 , arg2 , {arg3 : ” t e s t ”}){
<code>

}

As discussed in Section 3, three modes of execution are in-
troduced, as a result to the policy decision request. The
specific and no-requirement execution modes are clear and
self-contained, whereas the trusted execution mode requires
additional services to attest the trust state of connected
computing units. We looked at different options to assess
the trust-state of remote server/desktop environments and
remote mobile environments and are presenting three ap-
proaches here. We focused on lightweight approaches, suit-
able for our dynamic use case:

Intel Software Guard Extension (SGX): Intel introduced SGX
recently, a CPU extension which enables the creation and
execution of protected software containers, called enclaves.
Enclaves are protected by hardware-enforced access control
policies and directly operate on the hardware, without an
operating system layer. Baumann et al. [?] introduce a
system called Haven. With Haven, they achieved to run ap-
plications like Microsoft SQL Server and the Apache Web-
server in an Intel SGX enclave. Basically, they are running
a thin operating system layer in each enclave and launch
the unmodified applications on this layer. They reached the
limits of SGX and propose changes for the coming iterations
of Intel SGX. Furthermore, this approach requires changes
to the Windows kernel, therefore we were not able to use
this technology for demonstration purpose yet, but it seems
to be the most promising candidate for cloud, server and
desktop attestation and secure execution.

Google SafetyNet API: Mobile devices generally offer good
isolation between apps. If security mechanisms of recent
mobile devices are used, apps can protect their data in a

HMCC adapterPDP

1.1
Ultimate trust

External trust 
authority

Potentially 
untrusted devices

User’s device

Target 
device 1

Trust store

Target 
device 2

Google SafetyNet 
attestation/

verification service
1.2

1.3
1.5

Target 
device 1

2.1

2.2

Target 
device 2

2.3

1.4

Figure 3: Trust propagation through the system

way that no other entities can access the data. This is valid
as long as the device is not rooted. No security guarantees
can be made for rooted devices. The SafetyNet API3 is a
service included in the Google Play services, thus available
on all recent Android releases. A positive attestation result
strongly indicates that no one tampered with the device, the
device is not rooted and app isolation can be guaranteed. To
retrieve an attestation result, the client device contacts the
SafetyNet server with a unique nonce. The service returns
a signed statement, representing the device’s state. A sepa-
rate verification service is available to check the validity of
acquired assertions. For integration in the POWER frame-
work, a POWER application needs to run on the device,
which can be triggered remotely and returns the attestation
result to the initiating device.

Certificate-based Approach: This approach is comparable to
the former SafetyNet approach but is targeted at corpora-
tions. The SafetyNet approach is targeted at all Android
devices, regardless if they are managed by a corporation, or
by the end-user. Corporations often centrally manage their
devices using Mobile Device Management (MDM) software,
tightly integrated into their enterprise infrastructure. MDM
solutions provide an even more fine-grained control of what
is allowed on a specific device. Using this technology, corpo-
rations are able to provide secured devices with pre-installed
certificates and the relevant application to participate in the
HMCC network. This approach offers comparable security
guarantees to the SafetyNet approach but enables a more
fine-grained and corporation controlled setup. The integra-
tion in the POWER framework is done via the specific exe-
cution mode. A corporation’s policy decision infrastructure
is aware of the deployed certificates on the mobile devices,
therefore it can provide the trusted link to the used certifi-
cates in the decision response.

5. EVALUATIONS
In this chapter, we evaluate two aspects of our proposed ar-
chitecture and developed implementation. The trust model
in Section 5.1 illustrates the propagation of trust through
the system and in Section 5.2 we evaluate the performance
trade-off induced by our architecture.

5.1 Trust Propagation Model
The trust propagation refers to the assigned trust levels of
each component and their interactions with other compo-
nents. Through the interaction with other components, and
with attestation mechanisms and protocols in place, com-
ponents with an undetermined trust level can be evaluated.

3https://www.cigital.com/blog/using-safetynet-api/
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The trust propagation model of this work is illustrated in
Figure 3. It consists of three different trust levels: ultimate
trust for the core components and the user’s device, external
trust authority for external attestation service (e.g. Google
SafetyNet), and potentially untrusted devices for all other
devices which are untrusted or where the trust level is not
clear yet.

Figure 3 contains the relevant interactions of two described
trust assessment use-cases indicated by 1.x (trust assess-
ment using Google’s SafetyNet approach) and 2.x (trust as-
sessment using certificates).

In the first use case, the user’s device connects to the HMCC
adapter in the first step. The HMCC adapter authenticates
using HTTPS (or similar technologies) and verifies if the
host is trusted by verifying the HMCC adapter’s certificate
against its trust store. It then acquires a HMCC adapter
signed decision result. The signature is checked against an
embedded set of certificates in the offloading framework on
the user’s device. At this point, the device can be sure that
it is talking to a valid policy decision environment. In the
next trust relevant steps 1.2 and 1.3 the user’s device gen-
erates a nonce and requests a SafetyNet attestation from a
potentially untrusted device. The user’s device then checks
the embedded nonce and requests a cryptographic verifica-
tion from the SafetyNet verification service. Additionally,
the user’s device can check the embedded data in the attes-
tation response, like the issuing package, and the hash of the
APK requesting the attestation. These are values known to
the policy decision infrastructure and could be transmitted
to the user’s device in step 1.2. If all these checks succeed
and the attestation response indicates a non-tampered tar-
get device, the trust level of the target device is increased to
the same level as the external attestation service. Depend-
ing on the policies, this level might be equal to the ultimate
trust level.

For the second use case, the first step is performed analo-
gously, with the addition that the HMCC adapter transmits
trusted node identifiers with associated certificates. This
is targeted at corporation-managed devices, equipped with
a certificate used for authentication. In this use case, the
user’s device establishes a connection to the target device,
through means provided by the offloading framework and
performs an authentication. In the POWER framework, this
is realized by establishing a TLS connection with client au-
thentication. If the certificate used during authentication
matches the certificate received from the policy decision in-
frastructure, the device’s trust level is increased to ultimate
trust. This approach is comparable to certificate pinning,
but the pinned certificates are not embedded in the appli-
cation. They are received from the trusted policy decision
infrastructure.

5.2 Performance Evaluations
To evaluate the performance trade-off of the added pol-
icy evaluation capabilities, we performed two policy-related
evaluations: First, we measure the time it takes to evalu-
ate policies when requests are dispatched to the policy de-
cision infrastructure. Furthermore, we capture the required
time to evaluate cached policies, where no request to the
policy decision infrastructure is required. The second eval-
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Figure 4: Policy evaluation performance

uation is based on the previous evaluations performed with
the POWER [?, ?] framework.

The policy evaluation benchmark is executed on an Ama-
zon EC2 m4.xlarge2 instance running the 64-bit version of
Ubuntu 14.04 LTS. The use of an EC2 instance enables a
direct comparison of the execution times with other archi-
tectures or other approaches. The test environment is a
standard XACML environment as already illustrated in Fig-
ure 2, based on the implementation of Apache OpenAz.

For the evaluation, we populated the PAP with 1, 10, 100
and 1000 policies and generated requests, where each of
these requests was sent 100-times to the evaluation infras-
tructure. We measured the time it takes for the evaluation
infrastructure to come to a decision and the time it takes
for the HMCC adapter to convert the request. The results
in Figure 4 show the mean request-evaluation time as well
as the interquartile range (IQR).

For 100 policies in the policy store, it takes about 96ms to
evaluate a decision request, and transform and attach a sig-
nature by the HMCC adapter. These are good performance
values, especially considering the complex workflow of the
decision infrastructure. For HMCC applications without
policy caching this adds 96ms to every request. This would
render some applications unusable. Therefore, we also intro-
duced the policy caching approach, where only a single call
to the decision infrastructure is required and many calls can
be handled locally, without contacting the policy decision
infrastructure.

To evaluate the policy caching performance, we measured
the average time required to retrieve and match a cached
policy. The average evaluation time of a single policy is
calculated based on 100 executions of the evaluation proce-
dure. Our test-setup considered policy decisions with con-
straints, and without constraints. Finding policy decisions
with constraints, is computationally more intensive because
matching requires to also evaluate the constraints on the
provided input data. As test systems we used a Motorola
G2 with Android 5.1, and a Lenovo X230 running on Win-
dows 10 with Google Chrome 53. We could not determine
significant performance differences for different mobile de-
vices or desktop systems. The results in Table 1 show that
on mobile devices, the evaluation of cached policies without
constraints is about 56-times faster, and with constraints
about 24-times faster, than contacting the policy evaluation
infrastructure.

The goal of the second evaluation is to determine the per-
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Android Desktop

Without
constraints

1.71ms 0.32ms

With
constraints

3.95ms 1.43ms

Table 1: Average evaluation time of a single cached policy

formance impact of our security and privacy-focused ap-
proach. To highlight the impact and to get comparable re-
sults with previous versions of POWER, but also with other
mobile application offloading-frameworks, we re-evaluated
the performance benchmark on general programming con-
structs (GPC) as performed by Reiter and Zefferer [?]. The
goal of the evaluation is to show at which complexity Fi-
bonacci, Nestedloop and SHA1 benchmarks benefits from
offloading. As described in Section 4 we extended the test-
cases to make use of our policy approach, also utilizing the
described constraint approach. The PAP was populated
with 100 not matching policies and a single policy match-
ing each of the test cases. The evaluation results are shown
in Table 2. The results do not contain the time required
for the initial population of the policy cache. The original
results can be seen in the second column, whereas the new
results, gathered using the policy-enabled approach, can be
seen in the third column. The time required to evaluate a
single cached policy decision is only a fraction of the time
required for the actual task. Still, for the improved security
and privacy awareness of the framework, small trade-offs
in performance need to be accepted. To take the example
of SHA1: Using the standard POWER framework, a com-
plexity of 41 is required before a performance improvement
through mobile application offloading manifests. The policy
enabled approach requires a complexity of 44 to benefit from
application offloading. In conclusion, all benchmarks show
increases in the minimal required complexity. Still, they are
minimized due to advanced policy caching techniques and
enable an efficient usage of mobile application frameworks
and protect the data owner’s assets.

Benchmark
Original

complexity

Complexity with

policy approach
Data Tx (bytes) Data Rx (bytes)

Fibonacci 23 25 �450 �80
Nestedloop 16 17 �450 �80
SHA1 41 44 �450 �100

Table 2: GPC benchmark results

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed an extension to device-to-device
offloading frameworks, to enable secure policy-based approaches.
Our proposed architectural changes are based on existing
frameworks, and therefore can be widely adopted by differ-
ent frameworks. The main goal of the enhancements is to
give data owners full control of their data but still, benefit
from the increased performance of device-to-device offload-
ing approaches. To prove the feasibility of our approach we
extended the POWER framework and applied the proposed
enhancements. The evaluation shows that the impact of the
policy decision infrastructure is reduced to a minimum, due
to the used caching technique. We think that this is the
next step in the evolution of HMCC systems.

In the future, we will mainly concentrate on improving the
policy caching mechanism and enable more complex con-
straints to reduce the required number of requests to the
policy decision infrastructure even further.
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