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Abstract—Stock market indexes provide a yardstick with 
which investors can compare the performance of their 
individual stock portfolios. The propose of this paper is to 
examine  a suitable model for forecasting stock prices under 
the volatility in the Colombo Stock Exchange (CSE), Sri 
Lanka. 

Since the data has a non-seasonal linear trend, an 
autoregressive integrated moving average model has used for 
modeling and forecasting. The results suggested that ARIMA 
model is more suitable for forecasting ASPI index under the 
volatility. 
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I. BACKGROUND TO THE STUDY 

A stock market is a place where facilitate exchange of 
securities between buyers and sellers (virtual or real) in a single 
platform. Generally, the movements of the stock prices are 
highly volatile and make much more dynamics. So, day by day 
the large number of companies has been listed on stock 
exchanges across the world. 

In a trading manner, the forecasting and analyzing is the 
most significant process that helps to judge the market risk and 
grab scarce opportunities; especially, forecasting the direction 
of the index or stock price for the next day is much more 
important for speculators and investors. So this study mainly 
focuses to propose a suitable methodology for forecasting stock 
prices under the volatility.  

According to the literature, different type of methodologies 
can be seen for forecasting stock price indices. Jinchuan et.al 
(2008) and Rathnayaka et.al (2014 and 2015) were carried out 
different type of studies to forecast Stock Market Volatility 
using different type of ARCH methodologies; especially, 
GARCH-M model was used to test the long-term volatility 

self-similarity and the correlation between risk and return;  

 

TGARCH model was introduced to test the volatility 
leverage effect; EGARCH model was applied to verify the 
asymmetry heteroscedasticity of stock price fluctuation. Based 
on the empirical findings, Jinchuan et.al (2008) has suggested 
that the China bull market implies a high uncertainty and risk 
in upcoming two years. 

According to the Ayodele et.al (2014), ARIMA models can be 
compete reasonably well with emerging forecasting techniques 
in short-term predictions. Based on the published stock data 
was obtained from New York Stock Exchange (NYSE) and 
Nigeria Stock Exchange (NSE), Ayodele et.al (2014) have 
done price predictive model development for stock 
forecasting’s. According to the performances comparisons 
based on the their Duane model and ARIMA models, ARIMA 
model is a viable alternative that gives satisfactory results in 
terms of its predictive performances. 

The current study was carried out based on Colombo Stock 
Exchange (CSE), Sri Lanka. The CSE is a mutual exchange 
and has 15 full members and 13 trading members licensed to 
trade both equity and debt securities. As of 31 July 2014, 295 
companies are listed on the CSE, representing twenty business 
sectors with a market capitalization over 2.4 trillion rupees 
(over US$18.5 billion), which corresponds to approximately 
1/3 of the Gross Domestic Product of the country. ("Colombo 
Stock Exchange (CSE) | Colombo Stock Watch", 2016) 

Generally, the two Price indices are mainly running under 
the CSE. They are; the All Share Price Index (ASPI) and the 
S&P Sri Lanka 20 Index (S&P SL20). ASPI measures the 
movement of share prices of all listed companies. It is based on 
market capitalization where, the weighting of shares is 
conducted in proportion to the issued ordinary capital of the 
listed companies, valued at current market capitalization.  

The propose of this study is to examine a suitable model for 
forecasting stock prices under the volatility in the Colombo 
Stock Exchange (CSE), Sri Lanka. The rest of the paper is 
organized as follows. Section II develops the hypothesis and 
explains the methodology used in our study. Section III briefly 
presents the experimental results including results and ends up 
with the conclusion and future work in Section V. 
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II. METHODOLY 

There are several different approaches have been seen in time 

series modeling and forecasting. Traditional statistical models 

include moving average, exponential smoothing, and ARIMA 

which are constrained to be linear functions to use predictions 

based on past observations. Because of their relative 

simplicity in understanding and implementation, linear models 

have been the main research focuses and applied tools during 

the past few decades.  

 

In this section, we focus on the basic principles and modeling 

process of the ARIMA model under the three different steps as 

follows. 

A. Step -1; Test of Stationary 

First, confirm Generally, the financial data are non-seasonal 

and highly fluctuate over the time. Hence, test for the 

stationary and non-stationary conditions is the initial step to be 

carryout. The concept of stationary of a stochastic process can 

be visualized as a form of statistical equilibrium. The 

statistical properties such as mean and variance of a stationary 

process do not depend upon time. It is a necessary condition 

for building a time series model that is useful for future 

forecasting. Further, the mathematical complexity of the fitted 

model reduces with this assumption. 

 

There are two types of stationary processes which have 

defined in literature. A process { Y(t),t = 0,1, 2,...} is strongly 

Stationary or Strictly Stationary if the joint probability 

distribution function of {Yt−s,Yt−s+1,...,Yt,...Yt+s−1,Yt+s} is 

independent of t for all s. Thus for a strong stationary process 

the joint distribution of any possible set of random variables 

from the process is independent of time. However, for 

practical applications, the assumption of strong stationary is 

not always needed (Tsay, 2005). 

 

It is important to note that neither strong nor weak stationarity 

implies the other. However, a weakly stationary process 

following normal distribution is also strongly stationary. Some 

mathematical tests like the one given by Dickey and Fuller are 

generally used to detect stationarity in a time series data 

(Tsay, 2005). 

 

According to the past studies Augmented Dickey-Fuller test 

(ADF) and Phillips-Perron test (PP) are the widely used 

techniques for the identification of the presence of unit roots. 

If the null hypothesis (dataset has a unit root) not being 

rejected for the original dataset then we take the differenced 

data and do the same procedure. According to at which 

differenced the dataset being stationary, determine the value of 

parameter d in the ARIMA model. However for relatively 

short time span, one can reasonably model the series using a 

stationary stochastic process. Usually time series, showing 

trend or seasonal patterns are non-stationary in nature. In such 

cases, differencing and power transformations are often used 

to remove the trend and to make the series stationary. 
.  

B. Step 2: Fitting suitable ARIMA (p, d, q) model 

In an autoregressive integrated moving average model, the 
future value of a variable is assumed to be a linear function of 
several past observations and random errors. That is, the 
underlying process that generate the time series has the form.   
𝒚𝒕 = 𝜽𝟎 + ∅𝟏𝒚𝒕−𝟏 +⋯∅𝒑𝒚𝒕−𝒑 + 𝜺𝒕 − Ɵ𝟏ɛ𝒕−𝟏…− Ɵ𝒒ɛ𝒕−𝒒(1) 

where yt and ɛt are the actual value and random error at time 

period t, respectively; ϕi (i = 1,2,…p) and θj (j = 0,1,2,...q) are 

model parameters. p and q are integers and often referred to as 

orders of the model. Random errors, ɛt, are assumed to be 

independently and identically distributed with a mean of 

zerand a constant variance of σ
2
. 

 

Above equation (1) entails several important special cases of 

the ARIMA family of models. If q = 0, then (1) becomes an 

AR model of order p. When p = 0, the model reduces to an 

MA model of order q.  

Based on the earlier work of Yule and Wold, Box and 

Jenkins developed a practical approach to building ARIMA 

models, which has the fundamental impact on the time series 

analysis and forecasting applications. This three-step model 

building process is typically repeated several times until a 

satisfactory model is selected. The final selected model can 

then be used for prediction purposes. The Box-Jenkins 

forecast method is schematically being shown below.  

 

 

Figure 1: Model Approach Process 

Finally, Forecasting performance of the various types of 

ARIMA models would be compared by computing statistics 

like Akaike Information Criteria (AIC), Schwartz Bayesian 

Criterion (SBC) and Hannan-Quinn Criterion (HQC). On the 

basis of these aforementioned selection and evaluation criteria 

concluding remarks have been drawn. 
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III. RESULTS AND DISCUSSION 

A. Case study: CSE 

The current study was carried on secondary data which 
were used to demonstrate the behavior of the Colombo Stock 
Exchange, Sri Lanka. Monthly trading data of two main price 
indices namely All Share Price Index (ASPI) and S&P Sri 
Lanka 20 Price Index (SL20) from January 2005 to September 
2016 and June 2012 to August 2016 were used respectively. 

Since the stock exchange depends on time, the researchers 
tend to fit time series models to examine the behavior of the 
stock exchange. Figure 2 and Figure 3 represent the time series 
plot for ASPI and SL20 respectively. According to both plots 
of time series, significant trend can be seen for ASPI and SL20 
respectively. 

 

Figure 2: Time series plot of ASPI values from January 2005 to 
September 2016 

B. Abbreviations and Acronyms 

As an initial step, two stationary mathematical methods namely 

Augmented Dickey Fuller (ADF) test and Phillips–Perron (PP) 

test were used to test the following hypothesis. 

 

H0: Time series has a unit root 

H1: Time series has not a unit root 

 

According to the summarized results in Table 1, both tests 

clarified that the observable time series are not stationary. So, 

as a next step, data transformation has to be done to make the 

time series stationary. Therefor 1st differenced of both indices 

were considered and carried out same study again. Both test 

results confirmed that the 1st differenced time series of ASPI 

and SL20 are stationary under the 0.05 level of significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Time series plot of SL20 values from June 2012 to August 2016 

C. Possible parameter values for ARIMA (PIQ) model 

According to the tails off position of PACF plot of AR and 

MA values from 0 to 3 would be most significant. Model in 

which used AR and MA values were significant and Akaike 

Info Criterion and were lowest, was selected as the best 

ARIMA model to forecast ASPI values.  

TABLE 1: P VALUES FOR ADF TEST AND PP TEST FOR ASPI AND SL20 

Variable level ADF test PP test 

ASPI Original data 0.7049 0.6535 

1st Difference 0.0000 0.0000 

SL20 Original data 0.2496 0.2591 

1st Difference 0.0000 0.0000 

 

Table 2 shows the three criterion values of each combination. 

The results with minimum value information criterion 

suggested that, ARIMA (1, 1, 1)  is the best ARIMA model to 

forecast ASPI values. 

 

TABLE 2: CRITERION VALUES FOR ALL AR AND MA COMBINATIONS 

 

Q 

 

 

 

 

 

 

 

 

 

P 

 0 1 2 3 

0 

  14.08048 14.09475 14.08511 

  14.1225 14.15778 14.16916 

  14.09756 14.12036 14.11927 

1 

14.08038 14.07002 14.08318 14.06956 

14.12241 14.13305 14.16722 14.17462 

14.09746 14.09563 14.11733 14.11226 

2 

14.09451 14.08241 14.06455 14.0502 

14.15755 14.16646 14.16961 14.17627 

14.12013 14.11656 14.10724 14.10143 

Below Table 3 shows the three criterion values of each 

combination and combinations in which AR and MA values for 

SL 20 data. None of the combination had the all significant AR 

and MA values. Therefore, data doesn’t fit any ARIMA model.  

TABLE 3: CRITERION VALUES FOR ALL AR AND MA COMBINATIONS 

Q 

P 

  0 1 2 

0 

  12.9291 12.96776 

  13.00486 13.0814 

  12.95805 13.01118 

1 

12.93091 12.96809 12.98598 

13.00666 13.08173 13.1375 

12.95986 13.01152 13.04388 

2 12.96484 12.98598 12.88394 
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13.07847 13.1375 13.07333 

13.00826 13.04388 12.95631 

 

Since ARIMA model was fitted only for ASPI values then it is 

needed to check the model diagnostics. 

 

D. Diagnostic checking for the selected ARIMA model for 

ASPI values 

According to the results of Jarque-Bera test don’t have enough 

evidence to say that residuals are normally distributed at 0.05 

level of Significance (0.000<0.05). The results of White test 

also showed that there was evidence for presence of 

heteroscedasticity(0.000<0.05). Further ARCH effect was 

considered. Since p-value (0.02)  is less than 0.05 of the 

ARCH test, then under 5% level of significance there was 

evidence for presence of ARCH effect. 
 

E. Forecasting 

The forecasting value of October 2016 is 6367.313 with 

forecasting error 244.5239. 

 
Figure 1: Plot of forecasting ASPI values 

IV. CONCLUSION 

The time series analysis is a useful methodology which 
comprises the tools for analyzing the time series data to 
identify the characteristics for making future adjudgements, 
especially for decision making in economic and finance.  

This research focuses on building a model for Colombo 
stock market indices   using this time series methodology. 
Monthly data of ASPI and SL20 for the period ranging from 
January 2005 to September 2016 and from June 2012 to 
August 2016 were used respectively. The most appropriate 
obtained for ASPI is the ARIMA (1, 1, 1). 
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