

INCOBAT: Innovative Cost Efficient Management System for Next Generation High Voltage Batteries

RIVER PUBLISHERS SERIES IN TRANSPORT TECHNOLOGY

Series Editors

HAIM ABRAMOVICH Technion – Israel Institute of Technology Israel **THILO BEIN** Fraunhofer LBF Germany

Indexing: All books published in this series are submitted to Thomson Reuters Book Citation Index (BkCI), CrossRef and to Google Scholar.

The "River Publishers Series in Transport Technology" is a series of comprehensive academic and professional books which focus on theory and applications in the various disciplines within Transport Technology, namely Automotive and Aerospace. The series will serve as a multi-disciplinary resource linking Transport Technology with society. The book series fulfils the rapidly growing worldwide interest in these areas.

Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

- Automotive
- Aerodynamics
- Aerospace Engineering
- Aeronautics
- Multifunctional Materials
- Structural Mechanics

For a list of other books in this series, visit www.riverpublishers.com

INCOBAT: Innovative Cost Efficient Management System for Next Generation High Voltage Batteries

Editors

Eric Armengaud

AVL List GmbH Austria

Riccardo Groppo

Ideas&Motion S.r.l. Italy

Sven Rzepka

Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Germany

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

River Publishers Lange Geer 44 2611 PW Delft The Netherlands

Tel.: +45369953197 www.riverpublishers.com

ISBN: 978-87-93519-63-3 (Hardback) 978-87-93519-62-6 (Ebook)

 \bigcirc The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/ licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work's Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper.

Contents

List of	f Figu	res	vii
List of	f Table	2	xi
List of	f Abbı	reviations	xiii
Execu	tive S	ummary	1
		COst efficient management system for next on high voltage BATteries (INCOBAT)	5
1	Intro	duction	5
2	Syste	em Design for Energy Efficiency (WP1)	9
	2.1	Application Scenarios and Requirements	10
	2.2	System Architecture and Partitioning	12
	2.3	Safety and Security	14
	2.4	Design and Validation Plan	17
3	Cont	rol Strategy and Software (WP2)	21
	3.1	Definition and Simulation of the State	
		of Function (SoH and SoC) and	
		of the Infrastructure Interfaces	21
	3.2	BMS Simulation on Different	
		Configuration and Scenarios	24
	3.3	Software Platform	27
4	Batte	ery Management Technology	
	and l	Hardware (WP3)	32
	4.1	BMS Satellite Technology Development	33

vi Contents

	4.2	Central Platform Development	37
	4.3	EIS Daughterboard Development	40
5	Integ	ration and Verification (WP4)	43
	5.1	Recommendations for Integration	
		of the INCOBAT Battery System	44
	5.2	Battery Pack Design	45
	5.3	INCOBAT Battery System	47
	5.4	Vehicle Integration	48
	5.5	Modification in the Engine Control	
		Unit (ECU)	50
6	Platf	orm Evaluation (WP5)	52
	6.1	Performance Evaluation	52
	6.2	Reliability/Lifetime Testing	
		and Validation	53
	6.3	Safety/Security Testing and Validation	58
7	Poter	ntial Impact	60
	7.1	Exploitation of Results	61
	7.2	Main Dissemination Activities	64
8	Main	Achievements and Outlook	68
9	Gene	eral Project Information	70
Index			73
Partne	er List	t	75
About	the E	ditors	85

List of Figures

Figure 1	INCOBAT technical innovations	8
Figure 2	INCOBAT project structure.	9
Figure 3	Refinement of project's objectives	
	into technical items: for objective 2	
	(Decrease costs of management unit)	10
Figure 4	Overview of the abstraction levels	12
Figure 5	Different views for the modeling	
	of the architecture	13
Figure 6	Depiction of ISO 26262 aligned	
	development phases and mapping	
	of respective tests and test	
	environments	16
Figure 7	Development validation plan level	
	structure being adapted to the BMS	
	system architecture	18
Figure 8	Depiction of DVP approach	20
Figure 9	Estimation results for SoC and SoF	22
Figure 10	EIS solutions analyzed in the project	23
Figure 11	Comparison of EIS impedance	
	measures of different cells	25
Figure 12	Simulation environment for	
	BSW-independent ASW testing	25

viii List of Figures

and validation process of the ba	
	ttery
core functions	
Figure 14INCOBAT SW development	
framework	
Figure 15 INCOBAT-layered SW architec	ture 29
Figure 16Allocation of INCOBAT SW	
components to cores	30
Figure 17 (a) Satellite unit TCB31 for pas	sive
balancing and (b) layout of the	chip 35
Figure 18 (a) Simulated temperature distri	bution
over board and chip surface dur	ing
operation (power dissipation	
of 12×80 mW in the balancing	5
resistors and of 2.75 W within t	he
measurement chip); (b) Simulat	ed
mechanical stress distribution o	ver
chip surface	36
Figure 19 Measured (a) and simulated (b)	warpage
over chip surface during operation	on
condition	
Figure 20 INCOBAT BMS CCU prototyp	e
hardware (EIS daughterboard n	ot
mounted)	
Figure 21EIS daughterboard plugged	
on iBMS-CCU	41
Figure 22EIS functional validation setup.	42
Figure 23Results of EIS algorithm run on	l
iBMS-CCU compared with mea	
values with lab equipment	43

Figure 24	INCOBAT front battery pack (exploded	
	view)	46
Figure 25	INCOBAT rear battery pack (exploded	
	view)	47
Figure 26	(a) Vehicle front partly disassembled,	
	with battery pack mounting frame and	
	(b) front battery pack integrated	48
Figure 27	Electric motor in the frame, attached to	
0	gear/shaft box (a); gear/shaft box with	
	different splines visible (b)	49
Figure 28	Main machine state algorithm	
8	of the ECU	51
Figure 29	Correction of the in-plane displacement	
8	of SMD resistors by out-of-plane	
	component during thermal load	55
Figure 30	Exemplary cross sections of SMD 0603	
8	resistor before and after reliability	
	testing.	56
Figure 31	Test setup for multiple-load test	
8	(a: BALI boards attached on shaker	
	and b: Temperature/humidity test	
	profile).	57
Figure 32	Tested balancing resistor after 1200	
8	cycles with started and completed	
	delamination in the contact areas (a)	
	and corresponding FE geometry	
	analysis results (b).	58
Figure 33	Conceptual depiction of FMEA	
0	to counter measure mapping	59
Figure 34	INCOBAT sustainability model	62
0	•	

List of Table

Table 1	INCOBAT publications	65
---------	----------------------	----

List of Abbreviations

- ADC Analog to Digital Converter
- ASW Application Software
- BCI Bulk Current Injection
- BSW Basis Software
- CAN Controller Area Network
- CCU Central Control Unit
- CPU Central Processing Unit
- DAC Digital to Analog Converter
- DPI Direct Power Injection
- EIS Electrochemical Impedance Spectroscopy
- EMC Electromagnetic compatibility
- FE Finite Element
- FEV Fully Electric Vehicle
- FFT Fast Fourier Transform
- FMEA Failure Mode and Effects Analysis
- HV High Voltage
- HW Hardware
- PCB Printed Circuit Board
- SoC State of Charge
- SoF State of Function
- SoH State of Health
- SW Software
- TI Technical Innovation