

European Journal of Neuroscience, Vol. 33, p. 657, 2011

NEUROSYSTEMS

doi:10.1111/j.1460-9568.2011.07625.x

COMMENTARY Two are better than one: unraveling the functions of cone arrestin in zebrafish (Commentary on Renninger, Gesemann and Neuhauss)

Cheryl M. Craft^{1,2}

¹Mary D. Allen Laboratory in Vision Research, Doheny Eye Institute, Los Angeles, CA, USA ²Departments of Ophthalmology and Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA

Since the surprising discovery of a second visual arrestin in mammalian pinealocytes and cone photoreceptors, numerous studies have examined cone arrestin's structural and functional similarities to and differences from rod arrestin (Craft *et al.*, 1994; Nikonov *et al.*, 2008). The rod arrestin or Arrestin1 binds to and terminates the light-activated, phosphorylated G-protein-coupled rhodopsin (Xu *et al.*, 1997), whereas both visual arrestins work in concert in cone photoreceptors to shut off the light-activated photoreceptor signal transduction cascade, as shown for mouse S-and M-opsin (Nikonov *et al.*, 2008).

In this issue of *EJN*, Renninger and colleagues add a new dimension to understanding the visual arrestin saga by introducing two rod arrestins (*arrS*), three β -arrestins, and focusing on two paralogs of cone arrestin (*arr3a* and *arr3b*) in the zebrafish (*Danio rerio*). The Arr3a is exclusively expressed in M- and L-wavelength sensitive cones, whereas Arr3b is found in S- and UV-wavelength-sensitive cones. Their comprehensive study provides the first clear evidence of Arr3a's involvement in the high temporal contrast sensitivity of cone vision.

As zebrafish exhibit light responses after 3 days of development, they are an ideal animal to study visual behavior (Brockerhoff *et al.*, 1995). They are tetrachromatic with ultraviolet-sensitive cones as well as red-, green- and blue-sensitive cones, and their retinas continue to grow throughout their life. Using this cone-dominated visual system as a model system for their analysis, Renninger *et al.* (2011) examined the cellular expression of the distinct isoforms of arrestin in the visual system using a combination of *in-situ* hybridization and cone arrestin paralog-specific antibodies to examine cellular distribution at different developmental stages. These straightforward morphological experiments were followed by a set of elegant physiological experiments using targeted gene knockdown of the two cone arrestins in zebrafish larvae to unravel their visual responses with electroretinography. The functional knockdown of *arr3a* led to an electroretinography photo-response recovery delay. Additional experiments with the functional inactivation of *arr3a* were used to dissect out the psychophysical responses with optokinetics, a stereotypic ocular movement that is probably mediated by the modulation of M- and L-cone input (Orger & Baier, 2005). These latter experiments distinguished behavioral differences between low-contrast (dark-adapted) conditions that affected high temporal frequency patterns, and high-contrast (light-adapted) conditions that showed a deceleration of the temporal transfer function in the *arr3a* morphant larvae.

Because of the lower abundance of the S- and UV-wavelength-sensitive cones in zebrafish, the function of *arr3b* remains undetermined; however, this work provides conclusive evidence that *arr3a* regulates high temporal resolution in high acuity color vision with experiments that are not possible in the rod-dominant mammalian retina. This work illustrates the use of the zebrafish as a vertebrate model to address the basic cellular function of cone arrestin and contributes to our broader understanding of visual processing and the complex physiology of high acuity color vision.

References

Brockerhoff, S.E., Hurley, J.B., Janssen-Bienhold, U., Neuhauss, S.C., Driever, W. & Downling, J.E. (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. *PNAS*, **92**, 10545–10549.

Craft, C.M., Whitmore, D.H. & Wiechmann, A.F. (1994) Cone arrestin identified by targeting expression of a functional family. J. Biol. Chem., 269, 4613–4619.
Nikonov, S.S., Brown, B.M., Davis, J.A., Zuniga, F.I., Bragin, A., Pugh, E.N. Jr & Craft, C.M. (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron, 59, 462–474.

Orger, M.B. & Baier, H. (2005) Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci., 22, 275-281.

Renninger, S.L., Gesemann, M. & Neuhauss, S.C.F. (2011) Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur. J. Neurosci., 33, 658–667.

Xu, J., Dodd, R.L., Makino, C.L., Simon, M.I., Baylor, D.A. & Chen, J. (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. *Nature*, 389, 505–509.