
Python	3	at	the	Large	Synoptic	Survey	Telescope
Tim	Jenness (AURA/LSST,	Tucson,	AZ,	USA)

OTHER	CHANGES

INTRODUCTION DROPPING	PYTHON2

SUMMARY

DM Pipelines v14.0

The	LSST	software	systems	make	extensive	use	of	

Python,	with	almost	all	of	it	initially	being	developed	

solely	in	Python	2.	Since	LSST	will	be	commissioned	

when	Python	2	is	end-of-lifed it	is	critical	that	we	have	

all	our	code	support	Python	3	before	commissioning	

begins.	Over	the	past	year	we	have	made	significant	

progress	in	migrating	the	bulk	of	the	code	from	the	

Data	Management	system	onto	Python	3.	This	poster	

presents	our	migration	methodology,	and	the	current	

status	of	the	port,	with	our	eventual	aim	to	be	

running	completely	on	Python	3	by	early	2018.

In	addition	to	supporting	Python	3,	we	have	made	

two	major	improvements	to	the	Python	infrastructure	

for	DM	and	Simulations:

• We	have	replaced	our	SWIG	bindings	with	

pybind11.	pybind11	requires	that	the	interface	be	

defined	manually,	but	does	result	in	a	cleaner	

separation	of	C++,	interface,	and	Python	code.

• We	have	adopted	pytest as	our	test	execution	

framework.	This	has	significantly	enhanced	the	

reporting	of	test	metrics	in	Jenkins	CI	and	plugin	

support	has	allowed	us	to	add	automated	flake8	

testing,	parallel	execution	with	xdist,	and	code	

coverage.	

We	have	been	supporting	Python	3	and	Python	2	in	

the	Data	Management	software	since	Summer	2016,	

and	this	has	given	our		user	community	time	to	

become	accustomed	to	Python	3.	There	is	though	a	

cost	to	supporting	Python	2,	with	extra	Continuous	

Integration	resources,	source	code	distractions	

(“cruft”)	with	constructs	that	are	not	needed	in	

Python	3,	and	developers	having	to	understand	that	

they	can’t	use	Python	3	features	and	either	running	

with	two	local	installations	or	discovering	late	that	

their	working	code	fails	on	Python	2.	To	simplify	our	

development	roadmap	and	give	clarity	to	the	

community,	LSST	DM	will	drop	support	for	Python	2	

following	the	release	of	v15.0	of	the	DM		Pipelines	

Stack	in	Spring	2018.	We	will	support	critical	bug	fixes	

to	v15.0	until	the	release	of	v16.0	in	late	2018.	This	

timeline	is	consistent	with	the	release	of	Astropy v3.0;	

their	first	release	without	Python	2	support.

Version	14.0	of	the	DM	Science	Pipelines	Stack	was	

released	in	October	2017.	This	is	the	first	release	

using	pybind11.	This	release	also	begins	to	use	the	

Starlink AST	library	for	WCS	handling.

Full	release	notes	can	be	found	at:

https://pipelines.lsst.io/releases/notes.html

More Information
LSST	DM	Python	3	Porting	Guide:	https://sqr-014.lsst.io
LSST	Data	Management	Overview:	arXiv:1512.07914
LSST	Design	Overview:	arXiv:0805.2366
LSST	Science	Book:	arXiv:0912.0201
LSST	Data	Products:	http://ls.st/LSE-163
DM	Applications	Design:	http://ls.st/LDM-151
Key	Numbers:	http://lsst.org/scientists/keynumbers

LSST	PYTHON	SOFTWARE

Python	is	used	widely	at	LSST.	They	key	software	is:

• Science	Pipelines.

• VO	and	Data	Access	Services

• Simulations	software.

• LSST	Scheduler.

• Wavefront Sensor	data	processing.

The	biggest	user	of	Python	is	Data	Management	(DM)	

which	has	approximately	150,00	lines	of	Python,	and	

the	bulk	of	this	software	was	ported	to	Python	3	in	

the	second	half	of	2016.	DM	are	regularly	running	

Python	3	now	for	science	pipelines,	data	access	

services	and	the	Qserv database	administration	

scripts.	DM	currently	use	some	DESDM	infrastructure	

at	NCSA;	those	will	be	ported	by	early	2018.

The	“sims”	software	has	been	ported	to	Python	3	and	

has	no	remaining	issues.

The	Scheduler	software	has	had	an	initial	

modernization	pass	to	support	Python	3	but	has	not	

yet	been	tested.	The	Scheduler	uses	the	Software	

Abstraction	Layer	(SAL)	message	system	(based	on	

DDS)	and	the	Python	3	bindings	were	not	available	

until	October	2017.	We	expect	the	Scheduler	to	be	

running	with	Python	3	by	the	end	of	the	2017.

The	wavefront sensor	processing	software	uses	DM	

software	and	will	be	running	Python	3	when	it	is	

completed.

PYTHON	3	PORTING

We	recommend	using	the	Python	“future”	package	to	

port	Python	2	software	to	Python	3	and	to	aid	

development	when	supporting	both	Python	versions.	

We	chose	“future”	because	it	is	designed	to	make	

compatible	code	look	like	it	is	written	for	Python	3	

natively	and	minimizes	explicit	checks	for	Python	

version.

The	“futurize”	command	worked	really	well	and	

support	for	the	two	stage	conversion	was	important.

Stage	1	modernizes	code	to	use	Python	2.7	constructs	

such	as	modern	exception	catching,	checking	if	a	key	

is	in	a	dict using	“in”	rather	than	“has_key”,	and	use	of	

__future__	for	print	function.	

Stage	2	does	more	extensive	rewrites	to	support	

Python	3	changes	to	builtins and	the	standard	library.	

It	also	replaces	map(filter(lambda())	constructs	with	

more	readable	list	comprehensions.

We	found	that	using	the	Unicode	“str”	object	added	

more	complication	than	was	desired	so	we	have	left	

string	objects	as	their	native	type	in	many	places.

Proper	handling	of	bytes	and	strings	is	the	biggest	

headache	when	switching	Python	versions.

The	LSST	baseline	Python	3	is	version	3.6.	

LSST	will	be	using	Python	3.6	internally	starting	in	

2018.	This	includes	data	challenges,	and	integration	

and	testing	activities.	The	Data	Management	software	

will	drop	support	for	Python	2	following	the	release	of	

v15.0	in	Spring	2018.


