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In this paper, the issue of the estimation of wave propagation characteristics in thermal media
is dealt with. A formulation, named the Thermal Semi Analytical Finite Element, based
on the semi analytical finite element approach coupled with the thermal effect is offered.
Temperature variations affect the mechanical properties of the waveguide. The question
of dispersion curves and group velocities is studied. This study is expected to be of use
in the sensitivity analysis of guided waves for wave propagation in thermal environment.
Comparisons between numerical and analytical results are given to show the effectiveness of
the proposed approach.
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1. Introduction

Guided waves are still a subject of intensive research in several engineering areas. This research
focuses on the study of guided wave properties and applications. Structural Health Monitoring
(SHM) and Non Destructive Testing (NDT) are among the fields of application of this numeri-
cal tool. To study wave propagation in structural waveguides, the semi analytical finite element
(SAFE) method has been investigated by many researchers. Hayashi et al. (2003) derived the
SAFE formulation through virtual work principles and proposed a way to calculate the group
velocity using the eigensolution at a given frequency. Damljanovic and Weaver (2004) develo-
ped linear triangular elements for the SAFE method using Lagrange’s equations to investigate
elastic waves in waveguides of arbitrary cross-section. Gavric (1995) calculated the dispersion re-
lationship in a free rail by using triangular and quadrilateral elements obtained from Hamilton’s
principle. The SAFE method was also adopted to investigate wave propagation characteristics
for thin-walled structures by Finnveden (2004), where the polynomial interpolation was used in
the propagation axis thus leading to polynomial eigenvalue problems. The method was extended
to curved structures by Finnveden and Fraggstead (2008), where isoparametric elements were
used.

In the current work, the semi analytical numerical method that may be used for wave pro-
pagation and dynamic analysis of waveguide structures is presented. The basic formulations are
investigated to illustrate the merits and shortcomings of the method through the virtual work
principle.
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The effect of temperature on guided wave structural health monitoring has been studied
by several authors in the literature, see e.g. Konstantinidis et al. (2006). They attempted to
correlate modal properties with temperature and also to develop system identification models
that could separate the influences of temperature from true indications of damage on dynamic
modal parameters (Alashti and Kashiri, 2010). Their research effort extensively examined the
causes of the effects of temperature and how they affect dynamic characteristics in a normal real-
-life of a beam. Some authors have been interested in studying the impact of thermal loading
on the guided waves mode shape. A useful research was reported on isotropic beams, plates and
shells. Jeyaraj et al. (2009) studied the vibration and acoustic response of a composite plate in
thermal environment. Kadoli and Ganesan (2006) studied the dynamic behavior of composite
and isotropic cylindrical shells with PZT layers under axisymmetric temperature variation.
In this work, the effect of temperature on the wave propagation is studied through the

proposed approach, named the thermal semi analytical finite element (TSAFE) method. Indeed,
we combine the semi analytical finite element method with thermal treatment to show the effect
of temperature on the characteristics of guided wave propagation.

Temperature variations affect various mechanical properties of the structure such as elasticity
modulus, density, etc. The modelling of the structure under thermal environment is still a subject
of intensive research in several engineering areas. Experimental and theoretical results are offered
in many researches to study the material behaviour following thermal variability and evaluate
the high-temperature thermal and mechanical properties of the material (Kodur et al., 2012; Li
et al., 2013).
The origin of this work is the treatment of wave characteristics (dispersion curves and group

velocity) as a function of temperature in order to study the thermal effect on the semi analytical
finite element method together with analytical and numerical validations.

2. Description of the Thermal Semi Analytical Finite Element (TSAFE) method

In this Section, we introduce the TSAFE method that may be used for wave propagation and
dynamic analysis of waveguide structures in the presence of the thermal effect. Consider a
structural waveguide with a uniform cross section. Under thermal environment, the weak form
based on the virtual work principle for the dynamic problem may be written as (Hayashi et al.,
2003; Gavric 1995)

W e(u∗, u, T ) =

∫

V

〈ε∗def (T )〉σ(T ) dv +

∫

V

〈u∗〉ρ(T )ü dv =Wint(T )−Wext(T ) = 0 (2.1)

where W e is the thermal virtual work of the internal forces, T is temperature, ρ(T ) is
density at temperature T , ∗ denotes virtual quantities, εdef (T ) = [εxx(T ), εyy(T ), εzz,
2εxy(T ), 2εyz(T ), 2εxz(T )]

T is the strain vector at temperature T , u = [ux, uy, uz]
T is the di-

splacement field, σ(T ) = [σxx(T ), σyy(T ), σzz(T ), σxy(T ), σyz(T ), σxz(T )]
T is the stress vector

at temperature T . Wint(T ) =
∫

V 〈ε
∗

def (T )〉σ(T ) dv and Wext(T ) = −
∫

V 〈u
∗〉ρ(T )ü dv are the

internal and external virtual work at temperature T , respectively. The harmonic waves in a
uniformly cross-sectioned waveguide are described by the orthogonal function exp(jωt − jkx),
where k is the wave number in the x direction, ω is the circular frequency. The displacement
function can be u(x, y, z, t) = u(y, z) exp(jωt − jkx), where u(y, z) describes the amplitudes
of the displacements of the waveguide cross-section. Thus the strain-displacement relationship
εdef (T ) = D(T )u, where D(T ) is a differential operator in the presence of the thermal effect,
becomes

εdef (T ) = D0(T ) + kD1u (2.2)
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Similar to the standard FE method, the natural coordinates can be employed to facilitate the
use of the standard Gauss integration formulas. The same shape functions are employed to
specify the relation between the global (x, y) and local (ς, η) coordinate systems. By inserting
the interpolation of the displacement functions in the strain-displacement relationship, we obtain

εdef (T ) = D(T )Nui (2.3)

where ui = [uxi , uyi , uzi ]6T is the displacement vector of the finite element, N is the matrix of
the element shape functions.

The relationship between the strain and the stress vectors can be given in the following
manner

σ(T ) = C(T )εdef (T ) (2.4)

where C(T ) is the material stiffness matrix at temperature T .

The external virtual work at temperature T can be developed as follows

Wext(T ) = 〈u
∗

i 〉M
e(T )üi (2.5)

whereMe(T ) is the mass matrix at temperature T , which can be given as

Me(T ) =

∫

Ωe

ρ(T )NTN dΩe (2.6)

where Ωe denotes the element domain.

The internal thermal virtual work can be developed as

Wint(T ) = 〈q
∗

i 〉K
e(T )qi (2.7)

where Ke(T ) is the stiffness matrix at temperature T , which can be written as

Ke(T ) =

∫

Ωe

NT[D(T )]TC(T )D(T )N dΩe (2.8)

Introducing equation (2.2) into equation (2.8) leads to

Ke(T ) =

∫

Ωe

NT[D0(T ) + kD1]
TC(T )[D0(T ) + kD1]N dΩ

e (2.9)

Then

Ke(T ) = Ke0(T ) + kK
e
1(T ) + k

2Ke2(T ) (2.10)

where

Ke0(T ) =

∫

Ωe

NTDT0 (T )C(T )D0(T )N dΩ
e

Ke1(T ) =

∫

Ωe

NTDT1C(T )D0(T )N dΩ
e +

∫

Ωe

NTDT0 (T )C(T )D1N dΩ
e

Ke2(T ) =

∫

Ωe

NTDT1C(T )D1N dΩ
e

(2.11)
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The assembly of the element matrices and vectors leads to the governing equation of motion of
the waveguide in the presence of the thermal effect

[K0(T )− ω
2M(T ) + kK1(T ) + k

2K2(T )]ϕ = 0 (2.12)

where ϕ denotes the nodal displacement vector.
Suppose ϕ1 and ϕ2 denote the eigenvectors associated to k and −k, respectively. From the

equation of motion, we have

[K0(T )− ω
2M(T ) + kK1(T ) + k

2K2(T )]ϕ1 = 0

[K0(T )− ω
2M(T )− kK1(T ) + k

2K2(T )]ϕ2 = 0
(2.13)

The linearization of the equation of motion can be given in the following form

[

K1(T ) K0(T )− ω
2M(T )

K0(T )− ω
2M(T ) 0

]{

kφ1
φ2

}

+ k2
[

0 K2(T )
K2(T ) K1(T )

]{

kφ1
φ2

}

= 0 (2.14)

where φ1 = ϕ1 +ϕ2 and φ2 = ϕ1 −ϕ2.
The linearized equation of motion presents the eigenvalue problem of the system

[A(T )− λB(T )]φ = 0 (2.15)

where φ = [kφ1,φ2]
T, λ = k2 and

A(T ) =

[

K1(T ) K0(T )− ω
2M(T )

K0(T )− ω
2M(T ) 0

]

B(T ) = −

[

0 K2(T )
K2(T ) K1(T )

]

The resolution of this eigenvalue problem leads to calculation of thermal characteristics of the
travelling waves.
It can be of interest, in many applicative engineering cases, to consider the wave numbers and

velocities and to provide the dispersion curves. Indeed, from the knowledge of the eigenvalue,
the wave numbers at temperature T can be extracted as follows

k(T ) = ±
√

λ(T ) (2.16)

And the group velocities can be written as

Cg(T ) =
∂ω

∂k(T )
(2.17)

3. Numerical results and discussion

In this Section, numerical results are presented and discussed in order to study the efficiency of
the proposed method as a tool for guided wave propagation under thermal environment. The
numerical simulations are treated using the software MATLAB.

3.1. Validation of the TSAFE method

In this Section, we study the case of a longitudinal wave in order to validate the TSAFE
formulation by comparisons with the analytical results. The waveguide is assimilated to the
beam element with 2 nodes and 1 dof per node. The used material is steel (ρ = 7800 kg/m3,
ν = 0, 3, E = 2 · 1011 Pa).
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The thermal mass and stiffness matrices for the traction compression mode are

Mtract−comp =
ρSd

6

[

2 1
1 2

]

Ktract−comp =
ES

d

[

1 −1
−1 1

]

(3.1)

where E is Young’s modulus, S is cross section area, ρ is mass density and d is length of the
considered element.
Experimental and theoretical results are offered in many researches works on the behaviour

of mechanical properties in the presence of thermal environment. The variation of Young’s
modulus of steel in the temperature range [25circC-1000circC] can be estimated as follows (French
Standard, 2007)

E(T )

E
= 1 +

T

2000 log T1100
(3.2)

where E(T ) is Young’s modulus at temperature T .
The thermal elongation of steel can be governed through the following equation

d(T )

d
= 1 + α∆T (3.3)

where α is the linear thermal expansion coefficient (αsteel = 1.27 · 10
−5K−1), d(T ) is length of

the structure at temperature T , ∆T is the temperature variation.
The effect of the thermal gradient on density can be given as follows

ρ(T )

ρ
=

1

1 + γ∆T
(3.4)

where γ = 3α is the volumetric thermal expansion and ρ(T ) is the density at temperature T .
In the presence of the thermal effect, the mass and stiffness matrices, for the longitudinal

mode, can be given as follows

Mtract−comp(T ) =
ρ(T )Sd(T )

6

[

2 1
1 2

]

=
(1 + α∆T )

(1 + γ∆T )

ρSd

6

[

2 1
1 2

]

Ktract−comp0 (T ) =
E(T )S

d(T )

[

1 −1
−1 1

]

=
T + 2000 log T

1100

2000(1 + α∆T ) log T1100

ES

d

[

1 −1
−1 1

]

Ktract−comp1 =

(

1 +
T

2000 log T1100

)

1

1 + α∆T
j
ES

2d

[

1 0
0 −1

]

Ktract−comp2 = −

(

1 +
T

2000 log T
1100

)

ES

3d

[

1 1/2
1/2 1

]

(3.5)

The numerical accuracy and the computational efficiency of the TSAFE method can be de-
monstrated by comparison with the analytical results given, for the longitudinal mode, in the
following form

kanalytical tract−comp(T ) = ω

√

ρ(T )

E(T )
= ω

√

ρ

E

√

√

√

√

√

2000 log T1100

(1 + γ∆T )
(

T + 2000 log T
1100

) (3.6)

Figure 1 illustrates variation of the wave number according to temperature for the longitudinal
mode. The thermal effect is treated at different frequencies to study the influence of the coupling
phenomenon between the temperature and frequency. The temperature elevation causes a small
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Fig. 1. Thermal dispersion curves for the longitudinal mode

increase in the dispersion curves. This increase is cleared at a high frequency. A good concordance
is shown between the TSAFE and analytical results in the domain of the study.

The group velocity is generally used to study the dispersive behavior of the traveling mode.
Figure 2 shows the evolution of the group velocity for the traction compression mode according
to temperature at f = 3500Hz. The wave velocity decreases with temperature.

Fig. 2. Thermal group velocity for the longitudinal mode (f = 3500Hz)

3.2. Multimodal propagation through the TSAFE method

In this Section, the TSAFE method is generalized for multimodal propagation to study the
temperature effect on the traveling modes such as longitudinal, torsional, flexural and cross
sectional modes. The simulation of the dispersion curves and the group velocities of wave pro-
pagation in a cylindrical pipe under thermal environment are the objective of this Subsection.

The TSAFE method is applied through the cylindrical pipe (Fig. 3). The used material is
steel. We use a surface element with 4 nodes that include 2 dof per node.

The material stiffness matrix at temperature T can be written using the cylindrical coordi-
nate space as

C(T ) =
E(T )

(1 + ν)(1− 2ν)







1− ν ν 0
ν 1− ν 0
0 0 (1− 2ν)/2






(3.7)

The displacement field through the cylindrical coordinate is

u(r, θ, z, t) = u(r, θ) exp[j(ωt − kz)] (3.8)
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Fig. 3. Substructure of cylindrical pipe

The strain-displacement relationship can be written in the following form

εdef = Du(r, θ, z, t) (3.9)

In the presence of thermal environment, the differential operator D(T ) at temperature T is
written as

D(T ) =

















1

r(T )

∂

∂θ
0

0
∂

∂z
∂

∂z

1

r(T )

∂

∂θ

















=
1

1 + α∆T











1

r

∂

∂θ
0

0 0

0
1

r

∂

∂θ











+ k







0 0
0 −j
−j 0







=
1

1 + α∆T
D0 + kD1

(3.10)

The stiffness matrices at temperature T can be given in the following equations

Ke0(T ) =

(

1 +
T

2000 log T1100

)

1

(1 + α∆T )2

∫

Ωe

NTDT0CD0N dΩ
e

Ke1(T ) =

(

1 +
T

2000 log T1100

)

1

1 + α∆T

(

∫

Ωe

NTDT1CD0N dΩ
e +

∫

Ωe

NTDT0CD1N dΩ
e

)

Ke2(T ) =

(

1 +
T

2000 log T1100

)

∫

Ωe

NTDT1CD1N dΩ
e

(3.11)

Using equation (3.4), the mass matrix at temperature T can be given as follows

Me(T ) =
1

1 + γ∆T

∫

Ωe

ρNTN dΩe (3.12)

In Fig. 4, the dispersion curves for multimodal propagation are presented according to tem-
perature at f = 4000Hz. We can note the thermal effect on the wave number, in particular
on the cross sectional mode. Generally, we can confirm that the wave number increases with
temperature for the multimodal propagation.
Figure 5 presents the evolution of group velocity for multimodal propagation according to

temperature at f = 4000Hz. The wave velocity decreases with temperature. We can say that the
dispersive behavior of the traveling modes is affected by temperature elevation in the structure.
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Fig. 4. Thermal dispersion curves for multimodal propagation by the TSAFE method (f = 4000Hz)

Fig. 5. Thermal group velocity for multimodal propagation by the TSAFE method (f = 4000Hz)

In conclusion, this study shows the temperature effect on the characteristics of the guided
waves such as dispersion and velocity. The temperature elevation causes augmentation of the
dispersion curves and attenuation of the group velocity. But the guided waves save their efficiency
to propagate through the structure at T ¬ 400◦C and f ¬ 4000Hz.

4. Conclusion

In this paper, the issue of wave propagation parameters estimation in thermal environment
through the TSAFE method is dealt with. The proposed approach allows wave characteristics
to be defined by dispersion curves and group velocities through thermal media. The thermal
effect is introduced into the structural parameters, and by making use of the finite element
techniques, the behavior of the wave dispersion is studied. Ultimately, analytical comparisons
are given. The main paper findings can be extracted as follows:

• The TSAFE method based on the virtual work principle in the presence of the thermal
effect is developed.

• The guided wave propagation characteristics defined by dispersion curves and group velo-
cities are studied under thermal environment.

• The numerical accuracy and the computational efficiency of this method are demonstrated
by comparison with the analytical results.

The TSAFE offers some interesting research perspectives. The use of TSAFE for energy issues
in a complex wave guide is an important task in our future work. Further investigations are
under progress in order to use such numerical methods in the context of smart materials and
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structures. In addition of the mentioned axis, the proposed numerical method will be extended
soon to the control of wave propagation in two-dimensional structures.
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